Compare commits
9 Commits
2024-10-07
...
main
Author | SHA1 | Date | |
---|---|---|---|
921d2b099a | |||
3e172175a7 | |||
562899ed0a | |||
c12067684a | |||
a333c7a5fb | |||
7745922b1f | |||
82556282f3 | |||
2c2da27752 | |||
02c1d40bc9 |
44
Makefile
Normal file
44
Makefile
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
# Makefile for lualatex
|
||||||
|
|
||||||
|
# Paths and filenames
|
||||||
|
SRC_DIR = src
|
||||||
|
OUT_DIR = out
|
||||||
|
MAIN_TEX = main.tex # in SRC_DIR
|
||||||
|
MAIN_PDF = main.pdf # in OUT_DIR
|
||||||
|
|
||||||
|
# LaTeX and Biber commands
|
||||||
|
|
||||||
|
LATEX = lualatex
|
||||||
|
BIBER = biber
|
||||||
|
|
||||||
|
LATEX_OPTS := -output-directory=$(OUT_DIR) -interaction=nonstopmode -shell-escape
|
||||||
|
|
||||||
|
.PHONY: default release clean scripts
|
||||||
|
|
||||||
|
default: english
|
||||||
|
release: german english
|
||||||
|
# Default target
|
||||||
|
english:
|
||||||
|
sed -r -i 's/usepackage\[[^]]+\]\{babel\}/usepackage[english]{babel}/' $(SRC_DIR)/$(MAIN_TEX)
|
||||||
|
-cd $(SRC_DIR) && latexmk -lualatex -g main.tex
|
||||||
|
mv $(OUT_DIR)/$(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_en_Formulary.pdf
|
||||||
|
|
||||||
|
german:
|
||||||
|
sed -r -i 's/usepackage\[[^]]+\]\{babel\}/usepackage[german]{babel}/' $(SRC_DIR)/$(MAIN_TEX)
|
||||||
|
-cd $(SRC_DIR) && latexmk -lualatex -g main.tex
|
||||||
|
mv $(OUT_DIR)/$(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_de_Formelsammlung.pdf
|
||||||
|
|
||||||
|
SCRIPT_DIR = scripts
|
||||||
|
PY_SCRIPTS = $(wildcard $(SCRIPT_DIR)/*.py)
|
||||||
|
PY_SCRIPTS_REL = $(notdir $(PY_SCRIPTS))
|
||||||
|
scripts:
|
||||||
|
-#cd $(SCRIPT_DIR) && for file in $(find -type f -name '*.py'); do echo "Running $$file"; python3 "$$file"; done
|
||||||
|
cd $(SCRIPT_DIR) && $(foreach script,$(PY_SCRIPTS_REL),echo "Running $(script)"; python3 $(script);)
|
||||||
|
|
||||||
|
# Clean auxiliary and output files
|
||||||
|
clean:
|
||||||
|
rm -r $(OUT_DIR)
|
||||||
|
|
||||||
|
# Phony targets
|
||||||
|
.PHONY: all clean biber
|
||||||
|
|
113
readme.md
Normal file
113
readme.md
Normal file
@ -0,0 +1,113 @@
|
|||||||
|
# Formulary
|
||||||
|
This is supposed to be a compact, searchable collection of the most important stuff I learned during my physics studides,
|
||||||
|
because it would be a shame if I forget it all!
|
||||||
|
|
||||||
|
## Building the PDF
|
||||||
|
### Dependencies
|
||||||
|
Any recent **TeX Live** distribution should work. You need:
|
||||||
|
- `LuaLaTeX` compiler
|
||||||
|
- several packages from ICAN
|
||||||
|
- `latexmk` to build it
|
||||||
|
|
||||||
|
### With GNU make
|
||||||
|
1. In the project directory (where this `readme` is), run `make german` or `make english`.
|
||||||
|
2. Rendered document will be `out/<date>_<formulary>.pdf`
|
||||||
|
|
||||||
|
### With Latexmk
|
||||||
|
1. Choose the language: In `main.tex`, set the language in `\usepackage[english]{babel}` to either `english` or `german`
|
||||||
|
2. In the `src` directory, run `latexmk -lualatex main.tex`
|
||||||
|
3. Rendered document will be `out/main.pdf`
|
||||||
|
|
||||||
|
### With LuaLatex
|
||||||
|
1. Choose the language: In `main.tex`, set the language in `\usepackage[english]{babel}` to either `english` or `german`
|
||||||
|
2. Create the `.aux` directory
|
||||||
|
3. In the `src` directory, run
|
||||||
|
- `lualatex -output-directory="../.aux" --interaction=nonstopmode --shell-escape "main.tex"` **3 times**
|
||||||
|
4. Rendered document will be `.aux/main.pdf`
|
||||||
|
|
||||||
|
# LaTeX Guideline
|
||||||
|
Here is some info to help myself remember why I did things the way I did.
|
||||||
|
|
||||||
|
In general, most content should be written with macros, so that the behaviour can be changed later.
|
||||||
|
|
||||||
|
## Structure
|
||||||
|
All translation keys and LaTeX labels should use a structured approach:
|
||||||
|
`<key type>:<partname>:<section name>:<subsection name>:<...>:<name>`
|
||||||
|
|
||||||
|
The `<partname>:...:<lowest section name>` will be defined as `\fqname` (fully qualified name) when using the `\Part`, `\Section`, ... commands.
|
||||||
|
|
||||||
|
`<key type>` is:
|
||||||
|
|
||||||
|
- formula: `f`
|
||||||
|
- equation: `eq`
|
||||||
|
- table: `tab`
|
||||||
|
- figure: `fig`
|
||||||
|
- parts, (sub)sections: `sec`
|
||||||
|
|
||||||
|
Use `misc` as (sub(sub))section for anything that can not be categorized within its (sub)section/part.
|
||||||
|
|
||||||
|
### Files and directories
|
||||||
|
Separate parts in different source files named `<partname>.tex`.
|
||||||
|
If a part should be split up in multiple source files itself, use a
|
||||||
|
subdirectory named `<partname>` containing `<partname>.tex` and other source files for sections.
|
||||||
|
This way, the `fqname` of a section or formula partially matches the path of the source file it is in.
|
||||||
|
|
||||||
|
## `formula` environment
|
||||||
|
The main way to display something is the formula environment:
|
||||||
|
```tex
|
||||||
|
\begin{formula}{<key>}
|
||||||
|
\desc{English name}{English description}{$q$ is some variable, $s$ \qtyRef{some_quantity}}
|
||||||
|
\desc[german]{Deutscher Name}{Deutsche Beschreibung}{$q$ ist eine Variable, $s$ \qtyRef{some_quantity}}
|
||||||
|
<content>
|
||||||
|
\end{formula}
|
||||||
|
```
|
||||||
|
Each formula automatically gets a `f:<section names...>:<key>` label.
|
||||||
|
For the content, several macros are available:
|
||||||
|
- `\eq{<equation>}` a wrapper for the `align` environment
|
||||||
|
- `\fig[width]{<path>}`
|
||||||
|
- `\quantity{<symbol>}{<units>}{<vector, scalar, extensive etc.>}` for physical quantites
|
||||||
|
- `\constant{<symbol>}{ <values> }` for constants, where `<values>` may contain one or more `\val{value}{unit}` commands.
|
||||||
|
|
||||||
|
### References
|
||||||
|
**Use references where ever possible.**
|
||||||
|
In equations, reference or explain every variable. Several referencing commands are available for easy referencing:
|
||||||
|
- `\fqSecRef{<fqname of section>}` prints the translated title of the section
|
||||||
|
- `\fqEqRef{<fqname of formula>}` prints the translated title of the formula (first argument of `\desc`)
|
||||||
|
- `\qtyRef{<key>}` prints the translated name of the quantity
|
||||||
|
- `\QtyRef{<key>}` prints the symbol and the translated name of the quantity
|
||||||
|
- `\constRef{<key>}` prints the translated name of the constant
|
||||||
|
- `\ConstRef{<key>}` prints the symbol and the translated name of the constant
|
||||||
|
- `\elRef{<symbol>}` prints the symbol of the chemical element
|
||||||
|
- `\ElRef{<symbol>}` prints the name of the chemical element
|
||||||
|
|
||||||
|
|
||||||
|
## Multilanguage
|
||||||
|
All text should be defined as a translation (`translations` package, see `util/translation.tex`).
|
||||||
|
Use `\dt` or `\DT` or the the shorthand language commands `\eng`, `\Eng` etc. to define translations.
|
||||||
|
These commands also be write the translations to an auxiliary file, which is read after the document begins.
|
||||||
|
This means (on subsequent compilations) that the translation can be resolved before they are defined.
|
||||||
|
Use the `gt` or `GT` macros to retrieve translations.
|
||||||
|
The english translation of any key must be defined, because it will also be used as fallback.
|
||||||
|
|
||||||
|
Lower case macros are relative to the current `fqname`, while upper case macros are absolute.
|
||||||
|
|
||||||
|
Never make a macro that would have to be changed if a new language was added, eg dont do
|
||||||
|
```tex
|
||||||
|
% 1: key, 2: english version, 3: german version
|
||||||
|
\newcommand{\mycmd}[3]{
|
||||||
|
\dosomestuff{english}{#1}{#2}
|
||||||
|
\dosomestuff{german}{#1}{#3}
|
||||||
|
}
|
||||||
|
|
||||||
|
\mycmd{key}{this is english}{das ist deutsch}
|
||||||
|
```
|
||||||
|
Instead, do
|
||||||
|
```tex
|
||||||
|
% [1]: lang, 2: key, 2: text
|
||||||
|
\newcommand{\mycmd}[3][english]{
|
||||||
|
\dosomestuff{#1}{#2}{#3}
|
||||||
|
}
|
||||||
|
|
||||||
|
\mycmd{key}{this is english}
|
||||||
|
\mycmd[german]{key}{das ist deutsch}
|
||||||
|
```
|
80
scripts/ch_elchem.py
Normal file
80
scripts/ch_elchem.py
Normal file
@ -0,0 +1,80 @@
|
|||||||
|
#!/usr/bin env python3
|
||||||
|
from formulary import *
|
||||||
|
from scipy.constants import gas_constant, Avogadro, elementary_charge
|
||||||
|
|
||||||
|
Faraday = Avogadro * elementary_charge
|
||||||
|
|
||||||
|
@np.vectorize
|
||||||
|
def fbutler_volmer_anode(ac, z, eta, T):
|
||||||
|
return np.exp((1-ac)*z*Faraday*eta/(gas_constant*T))
|
||||||
|
|
||||||
|
@np.vectorize
|
||||||
|
def fbutler_volmer_cathode(ac, z, eta, T):
|
||||||
|
return -np.exp(-ac*z*Faraday*eta/(gas_constant*T))
|
||||||
|
|
||||||
|
def fbutler_volmer(ac, z, eta, T):
|
||||||
|
return fbutler_volmer_anode(ac, z, eta, T) + fbutler_volmer_cathode(ac, z, eta, T)
|
||||||
|
|
||||||
|
def butler_volmer():
|
||||||
|
fig, ax = plt.subplots(figsize=size_half_third)
|
||||||
|
ax.set_xlabel("$\\eta$ [V]")
|
||||||
|
ax.set_ylabel("$j/j_0$")
|
||||||
|
etas = np.linspace(-0.1, 0.1, 400)
|
||||||
|
T = 300
|
||||||
|
z = 1.0
|
||||||
|
# other a
|
||||||
|
ac2, ac3 = 0.2, 0.8
|
||||||
|
i2 = fbutler_volmer(0.2, z, etas, T)
|
||||||
|
i3 = fbutler_volmer(0.8, z, etas, T)
|
||||||
|
ax.plot(etas, i2, color="blue", linestyle="dashed", label=f"$\\alpha_\\text{{C}}={ac2}$")
|
||||||
|
ax.plot(etas, i3, color="green", linestyle="dashed", label=f"$\\alpha_\\text{{C}}={ac3}$")
|
||||||
|
# 0.5
|
||||||
|
ac = 0.5
|
||||||
|
irel_anode = fbutler_volmer_anode(ac, z, etas, T)
|
||||||
|
irel_cathode = fbutler_volmer_cathode(ac, z, etas, T)
|
||||||
|
ax.plot(etas, irel_anode, color="gray")
|
||||||
|
ax.plot(etas, irel_cathode, color="gray")
|
||||||
|
ax.plot(etas, irel_cathode + irel_anode, color="black", label=f"$\\alpha_\\text{{C}}=0.5$")
|
||||||
|
ax.grid()
|
||||||
|
ax.legend()
|
||||||
|
ylim = 6
|
||||||
|
ax.set_ylim(-ylim, ylim)
|
||||||
|
return fig
|
||||||
|
|
||||||
|
@np.vectorize
|
||||||
|
def ftafel_anode(ac, z, eta, T):
|
||||||
|
return 10**((1-ac)*z*Faraday*eta/(gas_constant*T*np.log(10)))
|
||||||
|
|
||||||
|
@np.vectorize
|
||||||
|
def ftafel_cathode(ac, z, eta, T):
|
||||||
|
return -10**(-ac*z*Faraday*eta/(gas_constant*T*np.log(10)))
|
||||||
|
|
||||||
|
def tafel():
|
||||||
|
i0 = 1
|
||||||
|
ac = 0.2
|
||||||
|
z = 1
|
||||||
|
T = 300
|
||||||
|
eta_max = 0.2
|
||||||
|
etas = np.linspace(-eta_max, eta_max, 400)
|
||||||
|
i = np.abs(fbutler_volmer(ac, z, etas ,T))
|
||||||
|
iright = i0 * np.abs(ftafel_cathode(ac, z, etas, T))
|
||||||
|
ileft = i0 * ftafel_anode(ac, z, etas, T)
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(figsize=size_half_third)
|
||||||
|
ax.set_xlabel("$\\eta$ [V]")
|
||||||
|
ax.set_ylabel("$\\log_{10}\\left(\\frac{|j|}{j_0}\\right)$")
|
||||||
|
# ax.set_ylabel("$\\log_{10}\\left(|j|/j_0\\right)$")
|
||||||
|
ax.set_yscale("log")
|
||||||
|
# ax.plot(etas, linear, label="Tafel slope")
|
||||||
|
ax.plot(etas[etas >= 0], ileft[etas >= 0], linestyle="dashed", color="gray", label="Tafel Approximation")
|
||||||
|
ax.plot(etas[etas <= 0], iright[etas <= 0], linestyle="dashed", color="gray")
|
||||||
|
ax.plot(etas, i, label=f"Butler-Volmer $\\alpha_\\text{{C}}={ac:.1f}$")
|
||||||
|
ax.legend()
|
||||||
|
ax.grid()
|
||||||
|
return fig
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
export(butler_volmer(), "ch_butler_volmer")
|
||||||
|
export(tafel(), "ch_tafel")
|
||||||
|
|
||||||
|
|
64
scripts/cm_phonons.py
Normal file
64
scripts/cm_phonons.py
Normal file
@ -0,0 +1,64 @@
|
|||||||
|
#!/usr/bin env python3
|
||||||
|
from formulary import *
|
||||||
|
|
||||||
|
def fone_atom_basis(q, a, M, C1, C2):
|
||||||
|
return np.sqrt(4*C1/M * (np.sin(q*a/2)**2 + C2/C1 * np.sin(q*a)**2))
|
||||||
|
|
||||||
|
def one_atom_basis():
|
||||||
|
a = 1.
|
||||||
|
C1 = 0.25
|
||||||
|
C2 = 0
|
||||||
|
M = 1.
|
||||||
|
qs = np.linspace(-2*np.pi/a, 2*np.pi/a, 300)
|
||||||
|
omega = fone_atom_basis(qs, a, M, C1, C2)
|
||||||
|
fig, ax = plt.subplots(figsize=size_half_third)
|
||||||
|
ax.set_xlabel(r"$q$")
|
||||||
|
ax.set_xticks([i * np.pi/a for i in range(-2, 3)])
|
||||||
|
ax.set_xticklabels([f"${i}\\pi/a$" if i != 0 else "0" for i in range(-2, 3)])
|
||||||
|
ax.set_ylabel(r"$\omega$ in $\left[4C_1/M\right]$")
|
||||||
|
yunit = np.sqrt(4*C1/M)
|
||||||
|
ax.set_ylim(0, yunit+0.1)
|
||||||
|
ax.set_yticks([0,yunit])
|
||||||
|
ax.set_yticklabels(["0","1"])
|
||||||
|
ax.plot(qs, omega)
|
||||||
|
ax.text(-1.8*np.pi/a, 0.8, "NN\n$C_2=0$", ha='center')
|
||||||
|
ax.text(0, 0.8, "1. BZ", ha='center')
|
||||||
|
ax.vlines([-np.pi/a, np.pi/a], ymin=-2, ymax=2, color="black")
|
||||||
|
ax.grid()
|
||||||
|
return fig
|
||||||
|
|
||||||
|
def ftwo_atom_basis_acoustic(q, a, M1, M2, C):
|
||||||
|
return np.sqrt(C*(1/M1+1/M2) - C * np.sqrt((1/M1+1/M2)**2 - 4/(M1*M2) * np.sin(q*a/2)**2))
|
||||||
|
|
||||||
|
def ftwo_atom_basis_optical(q, a, M1, M2, C):
|
||||||
|
return np.sqrt(C*(1/M1+1/M2) + C * np.sqrt((1/M1+1/M2)**2 - 4/(M1*M2) * np.sin(q*a/2)**2))
|
||||||
|
|
||||||
|
def two_atom_basis():
|
||||||
|
a = 1.
|
||||||
|
C = 0.25
|
||||||
|
M1 = 1.
|
||||||
|
M2 = 0.7
|
||||||
|
qs = np.linspace(-2*np.pi/a, 2*np.pi/a, 300)
|
||||||
|
omega_a = ftwo_atom_basis_acoustic(qs, a, M1, M2, C)
|
||||||
|
omega_o = ftwo_atom_basis_optical(qs, a, M1, M2, C)
|
||||||
|
fig, ax = plt.subplots(figsize=size_half_third)
|
||||||
|
ax.plot(qs, omega_a, label="acoustic")
|
||||||
|
ax.plot(qs, omega_o, label="optical")
|
||||||
|
ax.text(0, 0.8, "1. BZ", ha='center')
|
||||||
|
ax.vlines([-np.pi/a, np.pi/a], ymin=-2, ymax=2, color="black")
|
||||||
|
ax.set_ylim(-0.03, 1.03)
|
||||||
|
ax.set_ylabel(r"$\omega$ in $\left[\sqrt{2C\mu^{-1}}\right]$")
|
||||||
|
yunit = np.sqrt(2*C*(1/M1+1/M2))
|
||||||
|
ax.set_ylim(0, yunit+0.1)
|
||||||
|
ax.set_yticks([0,yunit])
|
||||||
|
ax.set_yticklabels(["0","1"])
|
||||||
|
ax.set_xlabel(r"$q$")
|
||||||
|
ax.set_xticks([i * np.pi/a for i in range(-2, 3)])
|
||||||
|
ax.set_xticklabels([f"${i}\\pi/a$" if i != 0 else "0" for i in range(-2, 3)])
|
||||||
|
ax.legend()
|
||||||
|
ax.grid()
|
||||||
|
|
||||||
|
return fig
|
||||||
|
if __name__ == '__main__':
|
||||||
|
export(one_atom_basis(), "cm_phonon_dispersion_one_atom_basis")
|
||||||
|
export(two_atom_basis(), "cm_phonon_dispersion_two_atom_basis")
|
@ -1,5 +1,6 @@
|
|||||||
from numpy import fmax
|
from numpy import fmax
|
||||||
from plot import *
|
from formulary import *
|
||||||
|
import itertools
|
||||||
|
|
||||||
|
|
||||||
def get_fig():
|
def get_fig():
|
||||||
@ -22,7 +23,6 @@ def gauss():
|
|||||||
ax.plot(x, y, label=label)
|
ax.plot(x, y, label=label)
|
||||||
ax.legend()
|
ax.legend()
|
||||||
return fig
|
return fig
|
||||||
export(gauss(), "distribution_gauss")
|
|
||||||
|
|
||||||
# CAUCHY / LORENTZ
|
# CAUCHY / LORENTZ
|
||||||
def fcauchy(x, x_0, gamma):
|
def fcauchy(x, x_0, gamma):
|
||||||
@ -37,7 +37,6 @@ def cauchy():
|
|||||||
ax.plot(x, y, label=label)
|
ax.plot(x, y, label=label)
|
||||||
ax.legend()
|
ax.legend()
|
||||||
return fig
|
return fig
|
||||||
export(cauchy(), "distribution_cauchy")
|
|
||||||
|
|
||||||
# MAXWELL-BOLTZMANN
|
# MAXWELL-BOLTZMANN
|
||||||
def fmaxwell(x, a):
|
def fmaxwell(x, a):
|
||||||
@ -53,7 +52,37 @@ def maxwell():
|
|||||||
ax.legend()
|
ax.legend()
|
||||||
return fig
|
return fig
|
||||||
|
|
||||||
export(maxwell(), "distribution_maxwell-boltzmann")
|
# GAMMA
|
||||||
|
@np.vectorize
|
||||||
|
def fgamma(x, alpha, lam):
|
||||||
|
return lam**alpha / scp.special.gamma(alpha) * x**(alpha-1) * np.exp(-lam*x)
|
||||||
|
def gamma():
|
||||||
|
fig, ax = get_fig()
|
||||||
|
x = np.linspace(0, 20, 300)
|
||||||
|
for (alpha, lam) in itertools.product([1, 2, 5], [1, 2]):
|
||||||
|
y = fgamma(x, alpha, lam)
|
||||||
|
label = f"$\\alpha = {alpha}, \\lambda = {lam}$"
|
||||||
|
ax.plot(x, y, label=label)
|
||||||
|
ax.set_ylim(0, 1.1)
|
||||||
|
ax.set_xlim(0, 10)
|
||||||
|
ax.legend()
|
||||||
|
return fig
|
||||||
|
|
||||||
|
# BETA
|
||||||
|
@np.vectorize
|
||||||
|
def fbeta(x, alpha, beta):
|
||||||
|
return x**(alpha-1) * (1-x)**(beta-1) / scp.special.beta(alpha, beta)
|
||||||
|
def beta():
|
||||||
|
fig, ax = get_fig()
|
||||||
|
x = np.linspace(0, 20, 300)
|
||||||
|
for (alpha, lam) in itertools.product([1, 2, 5], [1, 2]):
|
||||||
|
y = fgamma(x, alpha, lam)
|
||||||
|
label = f"$\\alpha = {alpha}, \\beta = {lam}$"
|
||||||
|
ax.plot(x, y, label=label)
|
||||||
|
ax.set_ylim(0, 1.1)
|
||||||
|
ax.set_xlim(0, 10)
|
||||||
|
ax.legend()
|
||||||
|
return fig
|
||||||
|
|
||||||
|
|
||||||
# POISSON
|
# POISSON
|
||||||
@ -73,8 +102,6 @@ def poisson():
|
|||||||
ax.legend()
|
ax.legend()
|
||||||
return fig
|
return fig
|
||||||
|
|
||||||
export(poisson(), "distribution_poisson")
|
|
||||||
|
|
||||||
# BINOMIAL
|
# BINOMIAL
|
||||||
def binom(n, k):
|
def binom(n, k):
|
||||||
return scp.special.factorial(n) / (
|
return scp.special.factorial(n) / (
|
||||||
@ -98,9 +125,17 @@ def binomial():
|
|||||||
ax.legend()
|
ax.legend()
|
||||||
return fig
|
return fig
|
||||||
|
|
||||||
export(binomial(), "distribution_binomial")
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
export(gauss(), "distribution_gauss")
|
||||||
|
export(cauchy(), "distribution_cauchy")
|
||||||
|
export(maxwell(), "distribution_maxwell-boltzmann")
|
||||||
|
export(gamma(), "distribution_gamma")
|
||||||
|
export(beta(), "distribution_beta")
|
||||||
|
export(poisson(), "distribution_poisson")
|
||||||
|
export(binomial(), "distribution_binomial")
|
||||||
|
|
||||||
|
|
||||||
# FERMI-DIRAC
|
# FERMI-DIRAC
|
||||||
|
|
||||||
# BOSE-EINSTEIN
|
# BOSE-EINSTEIN
|
||||||
|
# see stat-mech
|
81
scripts/formulary.py
Normal file
81
scripts/formulary.py
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
#!/usr/bin env python3
|
||||||
|
import os
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
import scipy as scp
|
||||||
|
|
||||||
|
import matplotlib as mpl
|
||||||
|
mpl.rcParams["font.family"] = "serif"
|
||||||
|
mpl.rcParams["mathtext.fontset"] = "stix"
|
||||||
|
mpl.rcParams["text.usetex"] = True
|
||||||
|
mpl.rcParams['text.latex.preamble'] = r'\usepackage{amsmath}\usepackage{siunitx}'
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": # make relative imports work as described here: https://peps.python.org/pep-0366/#proposed-change
|
||||||
|
if __package__ is None:
|
||||||
|
__package__ = "formulary"
|
||||||
|
import sys
|
||||||
|
filepath = os.path.realpath(os.path.abspath(__file__))
|
||||||
|
sys.path.insert(0, os.path.dirname(os.path.dirname(filepath)))
|
||||||
|
|
||||||
|
from util.mpl_colorscheme import set_mpl_colorscheme
|
||||||
|
import util.colorschemes as cs
|
||||||
|
from util.gen_tex_colorscheme import generate_latex_colorscheme
|
||||||
|
# SET THE COLORSCHEME
|
||||||
|
# hard white and black
|
||||||
|
# cs.p_gruvbox["fg0"] = "#000000"
|
||||||
|
# cs.p_gruvbox["bg0"] = "#ffffff"
|
||||||
|
# COLORSCHEME = cs.gruvbox_light()
|
||||||
|
# COLORSCHEME = cs.gruvbox_dark()
|
||||||
|
# cs.p_tum["fg0"] = cs.p_tum["alt-blue"]
|
||||||
|
COLORSCHEME = cs.tum()
|
||||||
|
# COLORSCHEME = cs.legacy()
|
||||||
|
|
||||||
|
tex_src_path = "../src/"
|
||||||
|
img_out_dir = os.path.join(tex_src_path, "img")
|
||||||
|
filetype = ".pdf"
|
||||||
|
skipasserts = False
|
||||||
|
|
||||||
|
full = 8
|
||||||
|
size_half_half = (full/2, full/2)
|
||||||
|
size_third_half = (full/3, full/2)
|
||||||
|
size_half_third = (full/2, full/3)
|
||||||
|
|
||||||
|
def assert_directory():
|
||||||
|
if not skipasserts:
|
||||||
|
assert os.path.abspath(".").endswith("scripts"), "Please run from the `scripts` directory"
|
||||||
|
|
||||||
|
def texvar(var, val, math=True):
|
||||||
|
s = "$" if math else ""
|
||||||
|
s += f"\\{var} = {val}"
|
||||||
|
if math: s += "$"
|
||||||
|
return s
|
||||||
|
|
||||||
|
def export(fig, name, tight_layout=True):
|
||||||
|
assert_directory()
|
||||||
|
filename = os.path.join(img_out_dir, name + filetype)
|
||||||
|
if tight_layout:
|
||||||
|
fig.tight_layout()
|
||||||
|
fig.savefig(filename, bbox_inches="tight", pad_inches=0.0)
|
||||||
|
|
||||||
|
@np.vectorize
|
||||||
|
def smooth_step(x: float, left_edge: float, right_edge: float):
|
||||||
|
x = (x - left_edge) / (right_edge - left_edge)
|
||||||
|
if x <= 0: return 0.
|
||||||
|
elif x >= 1: return 1.
|
||||||
|
else: return 3*(x*2) - 2*(x**3)
|
||||||
|
|
||||||
|
|
||||||
|
# run even when imported
|
||||||
|
set_mpl_colorscheme(COLORSCHEME)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
assert_directory()
|
||||||
|
s = \
|
||||||
|
"""% This file was generated by scripts/formulary.py\n% Do not edit it directly, changes will be overwritten\n""" + generate_latex_colorscheme(COLORSCHEME)
|
||||||
|
filename = os.path.join(tex_src_path, "util/colorscheme.tex")
|
||||||
|
print(f"Writing tex colorscheme to {filename}")
|
||||||
|
with open(filename, "w") as file:
|
||||||
|
file.write(s)
|
||||||
|
|
149
scripts/mpl_colorscheme.py
Normal file
149
scripts/mpl_colorscheme.py
Normal file
@ -0,0 +1,149 @@
|
|||||||
|
"""
|
||||||
|
Set the colorscheme for matplotlib plots and latex.
|
||||||
|
|
||||||
|
Calling this script generates util/colorscheme.tex containing xcolor definitions.
|
||||||
|
"""
|
||||||
|
import matplotlib as mpl
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from cycler import cycler
|
||||||
|
|
||||||
|
skipasserts = False
|
||||||
|
|
||||||
|
GRUVBOX = {
|
||||||
|
"bg0": "#282828",
|
||||||
|
"bg0-hard": "#1d2021",
|
||||||
|
"bg0-soft": "#32302f",
|
||||||
|
"bg1": "#3c3836",
|
||||||
|
"bg2": "#504945",
|
||||||
|
"bg3": "#665c54",
|
||||||
|
"bg4": "#7c6f64",
|
||||||
|
"fg0": "#fbf1c7",
|
||||||
|
"fg0-hard": "#f9f5d7",
|
||||||
|
"fg0-soft": "#f2e5bc",
|
||||||
|
"fg1": "#ebdbb2",
|
||||||
|
"fg2": "#d5c4a1",
|
||||||
|
"fg3": "#bdae93",
|
||||||
|
"fg4": "#a89984",
|
||||||
|
"dark-red": "#cc241d",
|
||||||
|
"dark-green": "#98971a",
|
||||||
|
"dark-yellow": "#d79921",
|
||||||
|
"dark-blue": "#458588",
|
||||||
|
"dark-purple": "#b16286",
|
||||||
|
"dark-aqua": "#689d6a",
|
||||||
|
"dark-orange": "#d65d0e",
|
||||||
|
"dark-gray": "#928374",
|
||||||
|
"light-red": "#fb4934",
|
||||||
|
"light-green": "#b8bb26",
|
||||||
|
"light-yellow": "#fabd2f",
|
||||||
|
"light-blue": "#83a598",
|
||||||
|
"light-purple": "#d3869b",
|
||||||
|
"light-aqua": "#8ec07c",
|
||||||
|
"light-orange": "#f38019",
|
||||||
|
"light-gray": "#a89984",
|
||||||
|
"alt-red": "#9d0006",
|
||||||
|
"alt-green": "#79740e",
|
||||||
|
"alt-yellow": "#b57614",
|
||||||
|
"alt-blue": "#076678",
|
||||||
|
"alt-purple": "#8f3f71",
|
||||||
|
"alt-aqua": "#427b58",
|
||||||
|
"alt-orange": "#af3a03",
|
||||||
|
"alt-gray": "#7c6f64",
|
||||||
|
}
|
||||||
|
|
||||||
|
FORMULASHEET_COLORSCHEME = GRUVBOX
|
||||||
|
|
||||||
|
colors = ["red", "orange", "yellow", "green", "aqua", "blue", "purple", "gray"]
|
||||||
|
|
||||||
|
# default order for matplotlib
|
||||||
|
color_order = ["blue", "orange", "green", "red", "purple", "yellow", "aqua", "gray"]
|
||||||
|
|
||||||
|
def set_mpl_colorscheme(palette: dict[str, str], variant="dark"):
|
||||||
|
P = palette
|
||||||
|
if variant == "dark":
|
||||||
|
FIG_BG_COLOR = P["bg0"]
|
||||||
|
PLT_FG_COLOR = P["fg0"]
|
||||||
|
PLT_BG_COLOR = P["bg0"]
|
||||||
|
PLT_GRID_COLOR = P["bg2"]
|
||||||
|
LEGEND_FG_COLOR = PLT_FG_COLOR
|
||||||
|
LEGEND_BG_COLOR = P["bg1"]
|
||||||
|
LEGEND_BORDER_COLOR = P["bg2"]
|
||||||
|
else:
|
||||||
|
FIG_BG_COLOR = P["fg0"]
|
||||||
|
PLT_FG_COLOR = P["bg0"]
|
||||||
|
PLT_BG_COLOR = P["fg0"]
|
||||||
|
PLT_GRID_COLOR = P["fg2"]
|
||||||
|
LEGEND_FG_COLOR = PLT_FG_COLOR
|
||||||
|
LEGEND_BG_COLOR = P["fg1"]
|
||||||
|
LEGEND_BORDER_COLOR = P["fg2"]
|
||||||
|
COLORS = [P[f"{variant}-{c}"] for c in color_order]
|
||||||
|
|
||||||
|
|
||||||
|
color_rcParams = {
|
||||||
|
'axes.edgecolor': PLT_FG_COLOR,
|
||||||
|
'axes.facecolor': PLT_BG_COLOR,
|
||||||
|
'axes.labelcolor': PLT_FG_COLOR,
|
||||||
|
'axes.titlecolor': 'auto',
|
||||||
|
# 'axes.prop_cycle': cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']),
|
||||||
|
'axes.prop_cycle': cycler('color', COLORS),
|
||||||
|
# 'axes3d.xaxis.panecolor': (0.95, 0.95, 0.95, 0.5),
|
||||||
|
# 'axes3d.yaxis.panecolor': (0.9, 0.9, 0.9, 0.5),
|
||||||
|
# 'axes3d.zaxis.panecolor': (0.925, 0.925, 0.925, 0.5),
|
||||||
|
# 'boxplot.boxprops.color': 'black',
|
||||||
|
# 'boxplot.capprops.color': 'black',
|
||||||
|
# 'boxplot.flierprops.color': 'black',
|
||||||
|
# 'boxplot.flierprops.markeredgecolor': 'black',
|
||||||
|
# 'boxplot.flierprops.markeredgewidth': 1.0,
|
||||||
|
# 'boxplot.flierprops.markerfacecolor': 'none',
|
||||||
|
# 'boxplot.meanprops.color': 'C2',
|
||||||
|
# 'boxplot.meanprops.markeredgecolor': 'C2',
|
||||||
|
# 'boxplot.meanprops.markerfacecolor': 'C2',
|
||||||
|
# 'boxplot.meanprops.markersize': 6.0,
|
||||||
|
# 'boxplot.medianprops.color': 'C1',
|
||||||
|
# 'boxplot.whiskerprops.color': 'black',
|
||||||
|
'figure.edgecolor': PLT_BG_COLOR,
|
||||||
|
'figure.facecolor': PLT_BG_COLOR,
|
||||||
|
# 'figure.figsize': [6.4, 4.8],
|
||||||
|
# 'figure.frameon': True,
|
||||||
|
# 'figure.labelsize': 'large',
|
||||||
|
'grid.color': PLT_GRID_COLOR,
|
||||||
|
# 'hatch.color': 'black',
|
||||||
|
'legend.edgecolor': LEGEND_BORDER_COLOR,
|
||||||
|
'legend.facecolor': LEGEND_BG_COLOR,
|
||||||
|
'xtick.color': PLT_FG_COLOR,
|
||||||
|
'ytick.color': PLT_FG_COLOR,
|
||||||
|
'xtick.labelcolor': PLT_FG_COLOR,
|
||||||
|
'ytick.labelcolor': PLT_FG_COLOR,
|
||||||
|
# 'lines.color': 'C0',
|
||||||
|
'text.color': PLT_FG_COLOR,
|
||||||
|
}
|
||||||
|
|
||||||
|
for k, v in color_rcParams.items():
|
||||||
|
plt.rcParams[k] = v
|
||||||
|
|
||||||
|
# override single char codes
|
||||||
|
# TODO: use color name with variant from palette instead of order
|
||||||
|
mpl.colors.get_named_colors_mapping()["b"] = COLORS[0]
|
||||||
|
mpl.colors.get_named_colors_mapping()["o"] = COLORS[1]
|
||||||
|
mpl.colors.get_named_colors_mapping()["g"] = COLORS[2]
|
||||||
|
mpl.colors.get_named_colors_mapping()["r"] = COLORS[3]
|
||||||
|
mpl.colors.get_named_colors_mapping()["m"] = COLORS[4]
|
||||||
|
mpl.colors.get_named_colors_mapping()["y"] = COLORS[5]
|
||||||
|
mpl.colors.get_named_colors_mapping()["c"] = COLORS[6]
|
||||||
|
mpl.colors.get_named_colors_mapping()["k"] = P["fg0"]
|
||||||
|
mpl.colors.get_named_colors_mapping()["w"] = P["bg0"]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def color_latex_def(name, color):
|
||||||
|
name = "{" + name.replace("-", "_") + "}"
|
||||||
|
color = "{" + color.strip("#") + "}"
|
||||||
|
return f"\\definecolor{name:10}{{HTML}}{color}"
|
||||||
|
|
||||||
|
def generate_latex_colorscheme(palette, variant="light"):
|
||||||
|
s = ""
|
||||||
|
for n, c in palette.items():
|
||||||
|
s += color_latex_def(n, c) + "\n"
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
|
6269
scripts/other/PeriodicTableJSON.json
Normal file
6269
scripts/other/PeriodicTableJSON.json
Normal file
File diff suppressed because it is too large
Load Diff
55
scripts/other/Untitled.ipynb
Normal file
55
scripts/other/Untitled.ipynb
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"id": "790c45a0-a10a-411d-bfc0-bdd52e2c2492",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import tikz as t"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"id": "6c5d640f-c287-4e8d-a0c8-8a8d801b6fae",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pic = t.Picture()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "9b7f8347-1619-40cd-b864-24840901e7a1",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pic.draw(t.node("
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "conda",
|
||||||
|
"language": "python",
|
||||||
|
"name": "conda"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.12.3"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
565
scripts/other/crystal_lattices.ipynb
Normal file
565
scripts/other/crystal_lattices.ipynb
Normal file
File diff suppressed because one or more lines are too long
28402
scripts/other/elements.json
Normal file
28402
scripts/other/elements.json
Normal file
File diff suppressed because it is too large
Load Diff
79
scripts/periodic_table.py
Normal file
79
scripts/periodic_table.py
Normal file
@ -0,0 +1,79 @@
|
|||||||
|
#!/usr/bin env python3
|
||||||
|
"""
|
||||||
|
Script to process the periodic table as json into latex stuff
|
||||||
|
Source for `elements.json` is this amazing project:
|
||||||
|
https://pse-info.de/de/data
|
||||||
|
|
||||||
|
Copyright Matthias Quintern 2025
|
||||||
|
"""
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
|
||||||
|
outdir = "../src/ch"
|
||||||
|
|
||||||
|
|
||||||
|
def gen_periodic_table():
|
||||||
|
with open("other/elements.json") as file:
|
||||||
|
ptab = json.load(file)
|
||||||
|
# print(ptab["elements"][1])
|
||||||
|
s = "% This file was created by the periodic_table.py script.\n% Do not edit manually. Any changes might get lost.\n"
|
||||||
|
for i, el_key in enumerate(ptab):
|
||||||
|
el = ptab[el_key]
|
||||||
|
def get(*keys):
|
||||||
|
"""get keys or return empty string"""
|
||||||
|
val = el
|
||||||
|
for key in keys:
|
||||||
|
if not key in val: return ""
|
||||||
|
val = val[key]
|
||||||
|
return val
|
||||||
|
# print(i, el)
|
||||||
|
el_s = f"\\begin{{element}}{{{el['symbol']}}}{{{el['number']}}}{{{el['period']}}}{{{el['column']}}}"
|
||||||
|
# description
|
||||||
|
el_s += f"\n\t\\desc[english]{{{el['names']['en']}}}{{{get('appearance', 'en')}}}{{}}"
|
||||||
|
el_s += f"\n\t\\desc[german]{{{el['names']['de']}}}{{English: {get('names', 'en')}\\\\{get('appearance', 'de')}}}{{}}"
|
||||||
|
|
||||||
|
# simple properties
|
||||||
|
for field in ["crystal_structure", "set", "magnetic_ordering"]:
|
||||||
|
if field in el:
|
||||||
|
el_s += f"\n\t\\property{{{field}}}{{{el[field]}}}"
|
||||||
|
# mass
|
||||||
|
m = get("atomic_mass", "value")
|
||||||
|
if m:
|
||||||
|
assert(get("atomic_mass", "unit") == "u")
|
||||||
|
el_s += f"\n\t\\property{{{'atomic_mass'}}}{{{m}}}"
|
||||||
|
|
||||||
|
# refractive indices
|
||||||
|
temp = ""
|
||||||
|
add_refractive_index = lambda idx: f"\\GT{{{idx['label']}}}: ${idx['value']}$, "
|
||||||
|
idxs = get("optical", "refractive_index")
|
||||||
|
# print(idxs)
|
||||||
|
if type(idxs) == list:
|
||||||
|
for idx in idxs: add_refractive_index(idx)
|
||||||
|
elif type(idxs) == dict: add_refractive_index(idxs)
|
||||||
|
elif type(idxs) == float: temp += f"${idxs}$, "
|
||||||
|
if temp:
|
||||||
|
el_s += f"\n\t\\property{{{'refractive_index'}}}{{{temp[:-2]}}}"
|
||||||
|
|
||||||
|
|
||||||
|
# electron configuration
|
||||||
|
match = re.fullmatch(r"([A-Z][a-z]*)? ?(.+?)", el["electron_config"])
|
||||||
|
if match:
|
||||||
|
el_s += f"\n\t\\property{{{'electron_config'}}}{{"
|
||||||
|
if match.groups()[0]:
|
||||||
|
el_s += f"\\elRef{{{match.groups()[0]}}} "
|
||||||
|
el_s += f"{match.groups()[1]}}}"
|
||||||
|
|
||||||
|
el_s += "\n\\end{element}"
|
||||||
|
# print(el_s)
|
||||||
|
s += el_s + "\n"
|
||||||
|
# print(s)
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
ptable = gen_periodic_table()
|
||||||
|
assert os.path.abspath(".").endswith("scripts"), "Please run from the `scripts` directory"
|
||||||
|
with open(f"{outdir}/periodic_table.tex", "w") as file:
|
||||||
|
file.write(ptable)
|
||||||
|
|
@ -1,4 +1,4 @@
|
|||||||
from plot import *
|
from formulary import *
|
||||||
import scqubits as scq
|
import scqubits as scq
|
||||||
import qutip as qt
|
import qutip as qt
|
||||||
|
|
||||||
@ -23,33 +23,36 @@ def _plot_transmon_n_wavefunctions(qubit: scq.Transmon, fig_ax, which=[0,1]):
|
|||||||
ax.set_xlim(*xlim)
|
ax.set_xlim(*xlim)
|
||||||
ax.set_xticks(np.arange(xlim[0], xlim[1]+1))
|
ax.set_xticks(np.arange(xlim[0], xlim[1]+1))
|
||||||
|
|
||||||
def _plot_transmon(qubit: scq.Transmon, ngs, fig, axs):
|
def _plot_transmon(qubit: scq.Transmon, ngs, fig, axs, wavefunction=True):
|
||||||
_,_ = qubit.plot_evals_vs_paramvals("ng", ngs, fig_ax=(fig, axs[0]), evals_count=5, subtract_ground=False)
|
_,_ = qubit.plot_evals_vs_paramvals("ng", ngs, fig_ax=(fig, axs[0]), evals_count=5, subtract_ground=False)
|
||||||
_,_ = qubit.plot_wavefunction(fig_ax=(fig, axs[1]), which=[0, 1, 2], mode="abs_sqr")
|
if wavefunction:
|
||||||
_plot_transmon_n_wavefunctions(qubit, (fig, axs[2]), which=[0, 1, 2])
|
_,_ = qubit.plot_wavefunction(fig_ax=(fig, axs[1]), which=[0, 1, 2], mode="abs_sqr")
|
||||||
qubit.ng = 0.5
|
_plot_transmon_n_wavefunctions(qubit, (fig, axs[2]), which=[0, 1, 2])
|
||||||
_plot_transmon_n_wavefunctions(qubit, (fig, axs[3]), which=[0, 1, 2])
|
qubit.ng = 0.5
|
||||||
qubit.ng = 0
|
_plot_transmon_n_wavefunctions(qubit, (fig, axs[3]), which=[0, 1, 2])
|
||||||
|
qubit.ng = 0
|
||||||
|
|
||||||
|
|
||||||
def transmon_cpb():
|
def transmon_cpb(wavefunction=True):
|
||||||
EC = 1
|
EC = 1
|
||||||
qubit = scq.Transmon(EJ=30, EC=EC, ng=0, ncut=30)
|
qubit = scq.Transmon(EJ=30, EC=EC, ng=0, ncut=30)
|
||||||
ngs = np.linspace(-2, 2, 200)
|
ngs = np.linspace(-2, 2, 200)
|
||||||
fig, axs = plt.subplots(4, 3, squeeze=True, figsize=(full,full))
|
nrows = 4 if wavefunction else 1
|
||||||
|
|
||||||
|
fig, axs = plt.subplots(nrows, 3, squeeze=False, figsize=(full,full/3))
|
||||||
axs = axs.T
|
axs = axs.T
|
||||||
qubit.ng = 0
|
qubit.ng = 0
|
||||||
qubit.EJ = 0.1 * EC
|
qubit.EJ = 0.1 * EC
|
||||||
title = lambda x: f"$E_J/E_C = {x}$"
|
title = lambda x: f"$E_J/E_C = {x}$"
|
||||||
_plot_transmon(qubit, ngs, fig, axs[0])
|
_plot_transmon(qubit, ngs, fig, axs[0], wavefunction=wavefunction)
|
||||||
axs[0][0].set_title("Cooper-Pair-Box\n"+title(qubit.EJ))
|
axs[0][0].set_title("Cooper-Pair-Box\n"+title(qubit.EJ))
|
||||||
|
|
||||||
qubit.EJ = EC
|
qubit.EJ = EC
|
||||||
_plot_transmon(qubit, ngs, fig, axs[1])
|
_plot_transmon(qubit, ngs, fig, axs[1], wavefunction=wavefunction)
|
||||||
axs[1][0].set_title("Quantronium\n"+title(qubit.EJ))
|
axs[1][0].set_title("Quantronium\n"+title(qubit.EJ))
|
||||||
|
|
||||||
qubit.EJ = 20 * EC
|
qubit.EJ = 20 * EC
|
||||||
_plot_transmon(qubit, ngs, fig, axs[2])
|
_plot_transmon(qubit, ngs, fig, axs[2], wavefunction=wavefunction)
|
||||||
axs[2][0].set_title("Transmon\n"+title(qubit.EJ))
|
axs[2][0].set_title("Transmon\n"+title(qubit.EJ))
|
||||||
|
|
||||||
for ax in axs[1:,:].flatten(): ax.set_ylabel("")
|
for ax in axs[1:,:].flatten(): ax.set_ylabel("")
|
||||||
@ -58,15 +61,14 @@ def transmon_cpb():
|
|||||||
ax.set_xticklabels(["-2", "-1", "", "0", "", "1", "2"])
|
ax.set_xticklabels(["-2", "-1", "", "0", "", "1", "2"])
|
||||||
ylim = ax.get_ylim()
|
ylim = ax.get_ylim()
|
||||||
ax.vlines([-1, -0.5], ymin=ylim[0], ymax=ylim[1], color="#aaa", linestyle="dotted")
|
ax.vlines([-1, -0.5], ymin=ylim[0], ymax=ylim[1], color="#aaa", linestyle="dotted")
|
||||||
axs[0][2].legend()
|
# axs[0][2].legend()
|
||||||
fig.tight_layout()
|
fig.tight_layout()
|
||||||
return fig
|
return fig
|
||||||
|
|
||||||
export(transmon_cpb(), "qubit_transmon")
|
|
||||||
|
|
||||||
|
|
||||||
def flux_onium():
|
def flux_onium():
|
||||||
fig, axs = plt.subplots(1, 3, squeeze=True, figsize=(full,full/2))
|
fig, axs = plt.subplots(1, 3, squeeze=True, figsize=(full,full/3))
|
||||||
fluxs = np.linspace(0.4, 0.6, 50)
|
fluxs = np.linspace(0.4, 0.6, 50)
|
||||||
EJ = 35.0
|
EJ = 35.0
|
||||||
alpha = 0.3
|
alpha = 0.3
|
||||||
@ -100,4 +102,6 @@ def flux_onium():
|
|||||||
axs[2].set_title("Fluxonium")
|
axs[2].set_title("Fluxonium")
|
||||||
return fig
|
return fig
|
||||||
|
|
||||||
export(flux_onium(), "qubit_flux_onium")
|
if __name__ == "__main__":
|
||||||
|
export(transmon_cpb(wavefunction=False), "qubit_transmon")
|
||||||
|
export(flux_onium(), "qubit_flux_onium")
|
16
scripts/readme.md
Normal file
16
scripts/readme.md
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
# Scripts
|
||||||
|
Put all scripts that generate plots or tex files here.
|
||||||
|
You can run all files at once using `make scripts`
|
||||||
|
|
||||||
|
## Plots
|
||||||
|
For plots with `matplotlib`:
|
||||||
|
1. import `formulary.py`
|
||||||
|
2. use one of the preset figsizes
|
||||||
|
3. save the image using the `export` function in the `if __name__ == '__main__'` part
|
||||||
|
|
||||||
|
## Colorscheme
|
||||||
|
To ensure a uniform look of the tex source and the python plots,
|
||||||
|
the tex and matplotlib colorschemes are both handled in `formulary.py`.
|
||||||
|
Set the `COLORSCHEME` variable to the desired colors.
|
||||||
|
Importing `formulary.py` will automatically apply the colors to matplotlib,
|
||||||
|
and running it will generate `util/colorscheme.tex` for LaTeX.
|
@ -1,4 +1,5 @@
|
|||||||
numpy
|
numpy
|
||||||
|
scipy
|
||||||
matplotlib
|
matplotlib
|
||||||
scqubits
|
scqubits
|
||||||
qutip
|
qutip
|
@ -1,4 +1,5 @@
|
|||||||
from plot import *
|
#!/usr/bin env python3
|
||||||
|
from formulary import *
|
||||||
|
|
||||||
def flennard_jones(r, epsilon, sigma):
|
def flennard_jones(r, epsilon, sigma):
|
||||||
return 4 * epsilon * ((sigma/r)**12 - (sigma/r)**6)
|
return 4 * epsilon * ((sigma/r)**12 - (sigma/r)**6)
|
||||||
@ -17,7 +18,6 @@ def lennard_jones():
|
|||||||
ax.legend()
|
ax.legend()
|
||||||
ax.set_ylim(-1.1, 1.1)
|
ax.set_ylim(-1.1, 1.1)
|
||||||
return fig
|
return fig
|
||||||
export(lennard_jones(), "potential_lennard_jones")
|
|
||||||
|
|
||||||
# BOLTZMANN / FERMI-DIRAC / BOSE-EINSTEN DISTRIBUTIONS
|
# BOLTZMANN / FERMI-DIRAC / BOSE-EINSTEN DISTRIBUTIONS
|
||||||
def fboltzmann(x):
|
def fboltzmann(x):
|
||||||
@ -45,7 +45,6 @@ def id_qgas():
|
|||||||
ax.legend()
|
ax.legend()
|
||||||
ax.set_ylim(-0.1, 4)
|
ax.set_ylim(-0.1, 4)
|
||||||
return fig
|
return fig
|
||||||
export(id_qgas(), "td_id_qgas_distributions")
|
|
||||||
|
|
||||||
@np.vectorize
|
@np.vectorize
|
||||||
def fstep(x):
|
def fstep(x):
|
||||||
@ -67,7 +66,6 @@ def fermi_occupation():
|
|||||||
ax.legend()
|
ax.legend()
|
||||||
ax.set_ylim(-0.1, 1.1)
|
ax.set_ylim(-0.1, 1.1)
|
||||||
return fig
|
return fig
|
||||||
export(fermi_occupation(), "td_fermi_occupation")
|
|
||||||
|
|
||||||
def fermi_heat_capacity():
|
def fermi_heat_capacity():
|
||||||
fig, ax = plt.subplots(figsize=size_half_third)
|
fig, ax = plt.subplots(figsize=size_half_third)
|
||||||
@ -83,8 +81,8 @@ def fermi_heat_capacity():
|
|||||||
|
|
||||||
|
|
||||||
low_temp_Cv = linear(x)
|
low_temp_Cv = linear(x)
|
||||||
ax.plot(x, low_temp_Cv, color="orange", linestyle="dashed", label=r"${\pi^2}/{2}\,{T}/{T_\text{F}}$")
|
ax.plot(x, low_temp_Cv, color="o", linestyle="dashed", label=r"${\pi^2}/{2}\,{T}/{T_\text{F}}$")
|
||||||
ax.hlines([3/2], xmin=0, xmax=10, color="blue", linestyle="dashed", label="Petit-Dulong")
|
ax.hlines([3/2], xmin=0, xmax=10, color="b", linestyle="dashed", label="Petit-Dulong")
|
||||||
@np.vectorize
|
@np.vectorize
|
||||||
def unphysical_f(x):
|
def unphysical_f(x):
|
||||||
# exponential
|
# exponential
|
||||||
@ -104,7 +102,7 @@ def fermi_heat_capacity():
|
|||||||
else: return a * x
|
else: return a * x
|
||||||
# ax.plot(x, smoothing, label="smooth")
|
# ax.plot(x, smoothing, label="smooth")
|
||||||
y = unphysical_f(x)
|
y = unphysical_f(x)
|
||||||
ax.plot(x, y, color="black")
|
ax.plot(x, y, color="k")
|
||||||
ax.legend(loc="lower right")
|
ax.legend(loc="lower right")
|
||||||
|
|
||||||
|
|
||||||
@ -116,5 +114,9 @@ def fermi_heat_capacity():
|
|||||||
ax.set_xlim(0, 1.4 * T_F)
|
ax.set_xlim(0, 1.4 * T_F)
|
||||||
ax.set_ylim(0, 2)
|
ax.set_ylim(0, 2)
|
||||||
return fig
|
return fig
|
||||||
export(fermi_heat_capacity(), "td_fermi_heat_capacity")
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
export(lennard_jones(), "potential_lennard_jones")
|
||||||
|
export(fermi_heat_capacity(), "td_fermi_heat_capacity")
|
||||||
|
export(fermi_occupation(), "td_fermi_occupation")
|
||||||
|
export(id_qgas(), "td_id_qgas_distributions")
|
179
scripts/util/colorschemes.py
Normal file
179
scripts/util/colorschemes.py
Normal file
@ -0,0 +1,179 @@
|
|||||||
|
"""
|
||||||
|
A colorscheme for this project needs:
|
||||||
|
fg and bg 0-4, where 0 is used as default font / background
|
||||||
|
fg-<color> and bg-<color> where <color> is "red", "orange", "yellow", "green", "aqua", "blue", "purple", "gray"
|
||||||
|
"""
|
||||||
|
|
||||||
|
from math import floor
|
||||||
|
|
||||||
|
|
||||||
|
colors = ["red", "orange", "yellow", "green", "aqua", "blue", "purple", "gray"]
|
||||||
|
|
||||||
|
def brightness(color:str, percent:float):
|
||||||
|
if color.startswith("#"):
|
||||||
|
color = color.strip("#")
|
||||||
|
newcolor = "#"
|
||||||
|
else:
|
||||||
|
newcolor = ""
|
||||||
|
for i in range(3):
|
||||||
|
c = float(int(color[i*2:i*2+2], 16))
|
||||||
|
c = int(round(max(0, min(c*percent, 0xff)), 0))
|
||||||
|
newcolor += f"{c:02x}"
|
||||||
|
return newcolor
|
||||||
|
|
||||||
|
#
|
||||||
|
# GRUVBOX
|
||||||
|
#
|
||||||
|
p_gruvbox = {
|
||||||
|
"fg0": "#282828",
|
||||||
|
"fg0-hard": "#1d2021",
|
||||||
|
"fg0-soft": "#32302f",
|
||||||
|
"fg1": "#3c3836",
|
||||||
|
"fg2": "#504945",
|
||||||
|
"fg3": "#665c54",
|
||||||
|
"fg4": "#7c6f64",
|
||||||
|
"bg0": "#fbf1c7",
|
||||||
|
"bg0-hard": "#f9f5d7",
|
||||||
|
"bg0-soft": "#f2e5bc",
|
||||||
|
"bg1": "#ebdbb2",
|
||||||
|
"bg2": "#d5c4a1",
|
||||||
|
"bg3": "#bdae93",
|
||||||
|
"bg4": "#a89984",
|
||||||
|
"dark-red": "#cc241d",
|
||||||
|
"dark-green": "#98971a",
|
||||||
|
"dark-yellow": "#d79921",
|
||||||
|
"dark-blue": "#458588",
|
||||||
|
"dark-purple": "#b16286",
|
||||||
|
"dark-aqua": "#689d6a",
|
||||||
|
"dark-orange": "#d65d0e",
|
||||||
|
"dark-gray": "#928374",
|
||||||
|
"light-red": "#fb4934",
|
||||||
|
"light-green": "#b8bb26",
|
||||||
|
"light-yellow": "#fabd2f",
|
||||||
|
"light-blue": "#83a598",
|
||||||
|
"light-purple": "#d3869b",
|
||||||
|
"light-aqua": "#8ec07c",
|
||||||
|
"light-orange": "#f38019",
|
||||||
|
"light-gray": "#a89984",
|
||||||
|
"alt-red": "#9d0006",
|
||||||
|
"alt-green": "#79740e",
|
||||||
|
"alt-yellow": "#b57614",
|
||||||
|
"alt-blue": "#076678",
|
||||||
|
"alt-purple": "#8f3f71",
|
||||||
|
"alt-aqua": "#427b58",
|
||||||
|
"alt-orange": "#af3a03",
|
||||||
|
"alt-gray": "#7c6f64",
|
||||||
|
}
|
||||||
|
|
||||||
|
def gruvbox_light():
|
||||||
|
GRUVBOX_LIGHT = { "fg0": p_gruvbox["fg0-hard"], "bg0": p_gruvbox["bg0-hard"] } \
|
||||||
|
| {f"fg{n}": p_gruvbox[f"fg{n}"] for n in range(1,5)} \
|
||||||
|
| {f"bg{n}": p_gruvbox[f"bg{n}"] for n in range(1,5)} \
|
||||||
|
| {f"fg-{n}": p_gruvbox[f"alt-{n}"] for n in colors} \
|
||||||
|
| {f"bg-{n}": p_gruvbox[f"light-{n}"] for n in colors}
|
||||||
|
return GRUVBOX_LIGHT
|
||||||
|
|
||||||
|
def gruvbox_dark():
|
||||||
|
GRUVBOX_DARK = { "fg0": p_gruvbox["bg0-hard"], "bg0": p_gruvbox["fg0-hard"] } \
|
||||||
|
| {f"fg{n}": p_gruvbox[f"bg{n}"] for n in range(1,5)} \
|
||||||
|
| {f"bg{n}": p_gruvbox[f"fg{n}"] for n in range(1,5)} \
|
||||||
|
| {f"fg-{n}": p_gruvbox[f"light-{n}"] for n in colors} \
|
||||||
|
| {f"bg-{n}": p_gruvbox[f"dark-{n}"] for n in colors}
|
||||||
|
return GRUVBOX_DARK
|
||||||
|
|
||||||
|
#
|
||||||
|
# LEGACY
|
||||||
|
#
|
||||||
|
p_legacy = {
|
||||||
|
"fg0": "#fcfcfc",
|
||||||
|
"bg0": "#333333",
|
||||||
|
"red": "#d12229",
|
||||||
|
"green": "#007940",
|
||||||
|
"yellow": "#ffc615",
|
||||||
|
"blue": "#2440fe",
|
||||||
|
"purple": "#4D1037",
|
||||||
|
"aqua": "#008585",
|
||||||
|
"orange": "#f68a1e",
|
||||||
|
"gray": "#928374",
|
||||||
|
}
|
||||||
|
|
||||||
|
def legacy():
|
||||||
|
LEGACY = \
|
||||||
|
{ f"fg{n}": brightness(p_legacy["fg0"], 1-n/8) for n in range(5)} \
|
||||||
|
| { f"bg{n}": brightness(p_legacy["bg0"], 1+n/8) for n in range(5)} \
|
||||||
|
| { f"bg-{n}": c for n,c in p_legacy.items() } \
|
||||||
|
| { f"fg-{n}": brightness(c, 2.0) for n,c in p_legacy.items() }
|
||||||
|
return LEGACY
|
||||||
|
|
||||||
|
#
|
||||||
|
# TUM
|
||||||
|
#
|
||||||
|
p_tum = {
|
||||||
|
"dark-blue": "#072140",
|
||||||
|
"light-blue": "#5E94D4",
|
||||||
|
"alt-blue": "#3070B3",
|
||||||
|
"light-yellow": "#FED702",
|
||||||
|
"dark-yellow": "#CBAB01",
|
||||||
|
"alt-yellow": "#FEDE34",
|
||||||
|
"light-orange": "#F7811E",
|
||||||
|
"dark-orange": "#D99208",
|
||||||
|
"alt-orange": "#F9BF4E",
|
||||||
|
"light-purple": "#B55CA5",
|
||||||
|
"dark-purple": "#9B468D",
|
||||||
|
"alt-purple": "#C680BB",
|
||||||
|
"light-red": "#EA7237",
|
||||||
|
"dark-red": "#D95117",
|
||||||
|
"alt-red": "#EF9067",
|
||||||
|
"light-green": "#9FBA36",
|
||||||
|
"dark-green": "#7D922A",
|
||||||
|
"alt-green": "#B6CE55",
|
||||||
|
"light-gray": "#475058",
|
||||||
|
"dark-gray": "#20252A",
|
||||||
|
"alt-gray": "#333A41",
|
||||||
|
"light-aqua": "#689d6a",
|
||||||
|
"dark-aqua": "#427b58", # taken aquas from gruvbox
|
||||||
|
"fg0-hard": "#000000",
|
||||||
|
"fg0": "#000000",
|
||||||
|
"fg0-soft": "#20252A",
|
||||||
|
"fg1": "#072140",
|
||||||
|
"fg2": "#333A41",
|
||||||
|
"fg3": "#475058",
|
||||||
|
"fg4": "#6A757E",
|
||||||
|
"bg0-hard": "#FFFFFF",
|
||||||
|
"bg0": "#FBF9FA",
|
||||||
|
"bg0-soft": "#EBECEF",
|
||||||
|
"bg1": "#DDE2E6",
|
||||||
|
"bg2": "#E3EEFA",
|
||||||
|
"bg3": "#F0F5FA",
|
||||||
|
}
|
||||||
|
|
||||||
|
def tum():
|
||||||
|
TUM = {}
|
||||||
|
for n,c in p_tum.items():
|
||||||
|
n2 = n.replace("light", "bg").replace("dark", "fg")
|
||||||
|
TUM[n2] = c
|
||||||
|
return TUM
|
||||||
|
|
||||||
|
#
|
||||||
|
# STUPID
|
||||||
|
#
|
||||||
|
p_stupid = {
|
||||||
|
"bg0": "#0505aa",
|
||||||
|
"fg0": "#ffffff",
|
||||||
|
"red": "#ff0000",
|
||||||
|
"green": "#23ff81",
|
||||||
|
"yellow": "#ffff00",
|
||||||
|
"blue": "#5555ff",
|
||||||
|
"purple": "#b00b69",
|
||||||
|
"aqua": "#00ffff",
|
||||||
|
"orange": "#ffa500",
|
||||||
|
"gray": "#444444",
|
||||||
|
}
|
||||||
|
def stupid():
|
||||||
|
LEGACY = \
|
||||||
|
{ f"fg{n}": brightness(p_stupid["fg0"], 1-n/8) for n in range(5)} \
|
||||||
|
| { f"bg{n}": brightness(p_stupid["bg0"], 1+n/8) for n in range(5)} \
|
||||||
|
| { f"bg-{n}": c for n,c in p_stupid.items() } \
|
||||||
|
| { f"fg-{n}": brightness(c, 2.0) for n,c in p_stupid.items() }
|
||||||
|
return LEGACY
|
||||||
|
|
10
scripts/util/gen_tex_colorscheme.py
Normal file
10
scripts/util/gen_tex_colorscheme.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
def color_latex_def(name, color):
|
||||||
|
# name = name.replace("-", "_")
|
||||||
|
color = color.strip("#")
|
||||||
|
return "\\definecolor{" + name + "}{HTML}{" + color + "}"
|
||||||
|
|
||||||
|
def generate_latex_colorscheme(palette):
|
||||||
|
s = ""
|
||||||
|
for n, c in palette.items():
|
||||||
|
s += color_latex_def(n, c) + "\n"
|
||||||
|
return s
|
84
scripts/util/mpl_colorscheme.py
Normal file
84
scripts/util/mpl_colorscheme.py
Normal file
@ -0,0 +1,84 @@
|
|||||||
|
"""
|
||||||
|
Set the colorscheme for matplotlib plots and latex.
|
||||||
|
|
||||||
|
Calling this script generates util/colorscheme.tex containing xcolor definitions.
|
||||||
|
"""
|
||||||
|
import matplotlib as mpl
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from cycler import cycler
|
||||||
|
|
||||||
|
# default order for matplotlib
|
||||||
|
color_order = ["blue", "orange", "green", "red", "purple", "yellow", "aqua", "gray"]
|
||||||
|
|
||||||
|
def set_mpl_colorscheme(palette: dict[str, str]):
|
||||||
|
P = palette
|
||||||
|
FIG_BG_COLOR = P["bg0"]
|
||||||
|
PLT_FG_COLOR = P["fg0"]
|
||||||
|
PLT_BG_COLOR = P["bg0"]
|
||||||
|
PLT_GRID_COLOR = P["bg2"]
|
||||||
|
LEGEND_FG_COLOR = PLT_FG_COLOR
|
||||||
|
LEGEND_BG_COLOR = P["bg1"]
|
||||||
|
LEGEND_BORDER_COLOR = P["bg2"]
|
||||||
|
COLORS = [P[f"fg-{c}"] for c in color_order]
|
||||||
|
|
||||||
|
|
||||||
|
color_rcParams = {
|
||||||
|
'axes.edgecolor': PLT_FG_COLOR,
|
||||||
|
'axes.facecolor': PLT_BG_COLOR,
|
||||||
|
'axes.labelcolor': PLT_FG_COLOR,
|
||||||
|
'axes.titlecolor': 'auto',
|
||||||
|
# 'axes.prop_cycle': cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']),
|
||||||
|
'axes.prop_cycle': cycler('color', COLORS),
|
||||||
|
# 'axes3d.xaxis.panecolor': (0.95, 0.95, 0.95, 0.5),
|
||||||
|
# 'axes3d.yaxis.panecolor': (0.9, 0.9, 0.9, 0.5),
|
||||||
|
# 'axes3d.zaxis.panecolor': (0.925, 0.925, 0.925, 0.5),
|
||||||
|
# 'boxplot.boxprops.color': 'black',
|
||||||
|
# 'boxplot.capprops.color': 'black',
|
||||||
|
# 'boxplot.flierprops.color': 'black',
|
||||||
|
# 'boxplot.flierprops.markeredgecolor': 'black',
|
||||||
|
# 'boxplot.flierprops.markeredgewidth': 1.0,
|
||||||
|
# 'boxplot.flierprops.markerfacecolor': 'none',
|
||||||
|
# 'boxplot.meanprops.color': 'C2',
|
||||||
|
# 'boxplot.meanprops.markeredgecolor': 'C2',
|
||||||
|
# 'boxplot.meanprops.markerfacecolor': 'C2',
|
||||||
|
# 'boxplot.meanprops.markersize': 6.0,
|
||||||
|
# 'boxplot.medianprops.color': 'C1',
|
||||||
|
# 'boxplot.whiskerprops.color': 'black',
|
||||||
|
'figure.edgecolor': PLT_BG_COLOR,
|
||||||
|
'figure.facecolor': PLT_BG_COLOR,
|
||||||
|
# 'figure.figsize': [6.4, 4.8],
|
||||||
|
# 'figure.frameon': True,
|
||||||
|
# 'figure.labelsize': 'large',
|
||||||
|
'grid.color': PLT_GRID_COLOR,
|
||||||
|
# 'hatch.color': 'black',
|
||||||
|
'legend.edgecolor': LEGEND_BORDER_COLOR,
|
||||||
|
'legend.facecolor': LEGEND_BG_COLOR,
|
||||||
|
'xtick.color': PLT_FG_COLOR,
|
||||||
|
'ytick.color': PLT_FG_COLOR,
|
||||||
|
'xtick.labelcolor': PLT_FG_COLOR,
|
||||||
|
'ytick.labelcolor': PLT_FG_COLOR,
|
||||||
|
# 'lines.color': 'C0',
|
||||||
|
'text.color': PLT_FG_COLOR,
|
||||||
|
}
|
||||||
|
|
||||||
|
for k, v in color_rcParams.items():
|
||||||
|
plt.rcParams[k] = v
|
||||||
|
|
||||||
|
# override single char codes
|
||||||
|
# TODO: use color name with variant from palette instead of order
|
||||||
|
mpl.colors.get_named_colors_mapping()["b"] = COLORS[0]
|
||||||
|
mpl.colors.get_named_colors_mapping()["o"] = COLORS[1]
|
||||||
|
mpl.colors.get_named_colors_mapping()["g"] = COLORS[2]
|
||||||
|
mpl.colors.get_named_colors_mapping()["r"] = COLORS[3]
|
||||||
|
mpl.colors.get_named_colors_mapping()["m"] = COLORS[4]
|
||||||
|
mpl.colors.get_named_colors_mapping()["y"] = COLORS[5]
|
||||||
|
mpl.colors.get_named_colors_mapping()["c"] = COLORS[6]
|
||||||
|
mpl.colors.get_named_colors_mapping()["k"] = P["fg0"]
|
||||||
|
mpl.colors.get_named_colors_mapping()["w"] = P["bg0"]
|
||||||
|
mpl.colors.get_named_colors_mapping()["black"] = P["fg0"]
|
||||||
|
for color in color_order:
|
||||||
|
mpl.colors.get_named_colors_mapping()[color] = P[f"fg-{color}"]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
31
src/.latexmkrc
Normal file
31
src/.latexmkrc
Normal file
@ -0,0 +1,31 @@
|
|||||||
|
# Specify the auxiliary and output directories
|
||||||
|
$aux_dir = '../.aux';
|
||||||
|
$out_dir = '../out';
|
||||||
|
|
||||||
|
# Set lualatex as the default engine
|
||||||
|
$pdf_mode = 1; # Enable PDF generation mode
|
||||||
|
# $pdflatex = 'lualatex --interaction=nonstopmode --shell-escape'
|
||||||
|
$lualatex = 'lualatex %O --interaction=nonstopmode --shell-escape %S'
|
||||||
|
|
||||||
|
# Additional options for compilation
|
||||||
|
# '-verbose',
|
||||||
|
# '-file-line-error',
|
||||||
|
|
||||||
|
# Quickfix-like filtering (warnings to ignore)
|
||||||
|
# @warnings_to_filter = (
|
||||||
|
# qr/Underfull \\hbox/,
|
||||||
|
# qr/Overfull \\hbox/,
|
||||||
|
# qr/LaTeX Warning: .+ float specifier changed to/,
|
||||||
|
# qr/LaTeX hooks Warning/,
|
||||||
|
# qr/Package siunitx Warning: Detected the "physics" package:/,
|
||||||
|
# qr/Package hyperref Warning: Token not allowed in a PDF string/
|
||||||
|
# );
|
||||||
|
|
||||||
|
# # Filter function for warnings
|
||||||
|
# sub filter_warnings {
|
||||||
|
# my $warning = shift;
|
||||||
|
# foreach my $filter (@warnings_to_filter) {
|
||||||
|
# return 0 if $warning =~ $filter;
|
||||||
|
# }
|
||||||
|
# return 1;
|
||||||
|
# }
|
125
src/analysis.tex
125
src/analysis.tex
@ -1,125 +0,0 @@
|
|||||||
\Part[
|
|
||||||
\eng{Calculus}
|
|
||||||
\ger{Analysis}
|
|
||||||
]{cal}
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Convolution}
|
|
||||||
\ger{Faltung / Konvolution}
|
|
||||||
]{conv}
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.}
|
|
||||||
\ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}}
|
|
||||||
\end{ttext}
|
|
||||||
\begin{formula}{def}
|
|
||||||
\desc{Definition}{}{}
|
|
||||||
\desc[german]{Definition}{}{}
|
|
||||||
\eq{(f*g)(t) = f(t) * g(t) = int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau}
|
|
||||||
\end{formula}
|
|
||||||
\begin{formula}{notation}
|
|
||||||
\desc{Notation}{}{}
|
|
||||||
\desc[german]{Notation}{}{}
|
|
||||||
\eq{
|
|
||||||
f(t) * g(t-t_0) &= (f*g)(t-t_0) \\
|
|
||||||
f(t-t_0) * g(t-t_0) &= (f*g)(t-2t_0)
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
\begin{formula}{commutativity}
|
|
||||||
\desc{Commutativity}{}{}
|
|
||||||
\desc[german]{Kommutativität}{}{}
|
|
||||||
\eq{f * g = g * f}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{associativity}
|
|
||||||
\desc{Associativity}{}{}
|
|
||||||
\desc[german]{Assoziativität]}{}{}
|
|
||||||
\eq{(f*g)*h = f*(g*h)}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{distributivity}
|
|
||||||
\desc{Distributivity}{}{}
|
|
||||||
\desc[german]{Distributivität}{}{}
|
|
||||||
\eq{f * (g + h) = f*g + f*h}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{complex_conjugate}
|
|
||||||
\desc{Complex conjugate}{}{}
|
|
||||||
\desc[german]{Komplexe konjugation}{}{}
|
|
||||||
\eq{(f*g)^* = f^* * g^*}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Fourier analysis}
|
|
||||||
\ger{Fourieranalyse}
|
|
||||||
]{fourier}
|
|
||||||
\Subsubsection[
|
|
||||||
\eng{Fourier series}
|
|
||||||
\ger{Fourierreihe}
|
|
||||||
]{series}
|
|
||||||
\begin{formula}{series}
|
|
||||||
\desc{Fourier series}{Complex representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
|
|
||||||
\desc[german]{Fourierreihe}{Komplexe Darstellung}{}
|
|
||||||
\eq{f(t) = \sum_{k=-\infty}^{\infty} c_k \Exp{\frac{2\pi \I kt}{T}}}
|
|
||||||
\end{formula}
|
|
||||||
\Eng[real]{real}
|
|
||||||
\Ger[real]{reellwertig}
|
|
||||||
\begin{formula}{coefficient}
|
|
||||||
\desc{Fourier coefficients}{Complex representation}{}
|
|
||||||
\desc[german]{Fourierkoeffizienten}{Komplexe Darstellung}{}
|
|
||||||
\eq{
|
|
||||||
c_k &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Exp{-\frac{2\pi \I}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\
|
|
||||||
c_{-k} &= \overline{c_k} \quad \text{\GT{if} $f$ \GT{real}}
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{series_sincos}
|
|
||||||
\desc{Fourier series}{Sine and cosine representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
|
|
||||||
\desc[german]{Fourierreihe}{Sinus und Kosinus Darstellung}{}
|
|
||||||
\eq{f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \Cos{\frac{2\pi}{T}kt} + b_k\Sin{\frac{2\pi}{T}kt}\right)}
|
|
||||||
\end{formula}
|
|
||||||
\begin{formula}{coefficient}
|
|
||||||
\desc{Fourier coefficients}{Sine and cosine representation\\If $f$ has point symmetry: $a_{k>0}=0$, if $f$ has axial symmetry: $b_k=0$}{}
|
|
||||||
\desc[german]{Fourierkoeffizienten}{Sinus und Kosinus Darstellung\\Wenn $f$ punktsymmetrisch: $a_{k>0}=0$, wenn $f$ achsensymmetrisch: $b_k=0$}{}
|
|
||||||
\eq{
|
|
||||||
a_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Cos{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\
|
|
||||||
b_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Sin{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge1\\
|
|
||||||
a_k &= c_k + c_{-k} \quad\text{\GT{for}}\,k\ge0\\
|
|
||||||
b_k &= \I(c_k - c_{-k}) \quad\text{\GT{for}}\,k\ge1
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
\TODO{cleanup}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\Subsubsection[
|
|
||||||
\eng{Fourier transformation}
|
|
||||||
\ger{Fouriertransformation}
|
|
||||||
]{trafo}
|
|
||||||
\begin{formula}{transform}
|
|
||||||
\desc{Fourier transform}{}{$\hat{f}:\R^n \mapsto \C$, $\forall f\in L^1(\R^n)$}
|
|
||||||
\desc[german]{Fouriertransformierte}{}{}
|
|
||||||
\eq{\hat{f}(k) \coloneq \frac{1}{\sqrt{2\pi}^n} \int_{\R^n} \e^{-\I kx}f(x)\d x}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Eng[linear_in]{linear in}
|
|
||||||
\Ger[linear_in]{linear in}
|
|
||||||
\GT{for} $f\in L^1(\R^n)$:
|
|
||||||
\begin{enumerate}[i)]
|
|
||||||
\item $f \mapsto \hat{f}$ \GT{linear_in} $f$
|
|
||||||
\item $g(x) = f(x-h) \qRarrow \hat{g}(k) = \e^{-\I kn}\hat{f}(k)$
|
|
||||||
\item $g(x) = \e^{ih\cdot x}f(x) \qRarrow \hat{g}(k) = \hat{f}(k-h)$
|
|
||||||
\item $g(\lambda) = f\left(\frac{x}{\lambda}\right) \qRarrow \hat{g}(k)\lambda^n \hat{f}(\lambda k)$
|
|
||||||
\end{enumerate}
|
|
||||||
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{List of common integrals}
|
|
||||||
\ger{Liste nützlicher Integrale}
|
|
||||||
]{integrals}
|
|
||||||
|
|
||||||
\begin{formula}{riemann_zeta}
|
|
||||||
\desc{Riemann Zeta Function}{}{}
|
|
||||||
\desc[german]{Riemannsche Zeta-Funktion}{}{}
|
|
||||||
\eq{\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1-2^{(1-s)})\Gamma(s)} \int_0^\infty \d\eta \frac{\eta^{(s-1)}}{\e^\eta + 1}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
@ -1,55 +0,0 @@
|
|||||||
\Part[
|
|
||||||
\eng{Analysis}
|
|
||||||
\ger{Analysis}
|
|
||||||
]{ana}
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Convolution}
|
|
||||||
\ger{Faltung / Konvolution}
|
|
||||||
]{conv}
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.}
|
|
||||||
\ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}}
|
|
||||||
\end{ttext}
|
|
||||||
\begin{formula}{def}
|
|
||||||
\desc{Definition}{}{}
|
|
||||||
\desc[german]{Definition}{}{}
|
|
||||||
\eq{(f*g)(t) = f(t) * g(t) = int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau}
|
|
||||||
\end{formula}
|
|
||||||
\begin{formula}{notation}
|
|
||||||
\desc{Notation}{}{}
|
|
||||||
\desc[german]{Notation}{}{}
|
|
||||||
\eq{
|
|
||||||
f(t) * g(t-t_0) &= (f*g)(t-t_0) \\
|
|
||||||
f(t-t_0) * g(t-t_0) &= (f*g)(t-2t_0)
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
\begin{formula}{commutativity}
|
|
||||||
\desc{Commutativity}{}{}
|
|
||||||
\desc[german]{Kommutativität}{}{}
|
|
||||||
\eq{f * g = g * f}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{associativity}
|
|
||||||
\desc{Associativity}{}{}
|
|
||||||
\desc[german]{Assoziativität]}{}{}
|
|
||||||
\eq{(f*g)*h = f*(g*h)}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{distributivity}
|
|
||||||
\desc{Distributivity}{}{}
|
|
||||||
\desc[german]{Distributivität}{}{}
|
|
||||||
\eq{f * (g + h) = f*g + f*h}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{complex_conjugate}
|
|
||||||
\desc{Complex conjugate}{}{}
|
|
||||||
\desc[german]{Komplexe konjugation}{}{}
|
|
||||||
\eq{(f*g)^* = f^* * g^*}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Fourier analysis}
|
|
||||||
\ger{Fourieranalyse}
|
|
||||||
]{fourier}
|
|
||||||
|
|
9
src/ch/ch.tex
Normal file
9
src/ch/ch.tex
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
\Part[
|
||||||
|
\eng{Chemistry}
|
||||||
|
\ger{Chemie}
|
||||||
|
]{ch}
|
||||||
|
\Section[
|
||||||
|
\eng{Periodic table}
|
||||||
|
\ger{Periodensystem}
|
||||||
|
]{ptable}
|
||||||
|
\drawPeriodicTable
|
583
src/ch/el.tex
Normal file
583
src/ch/el.tex
Normal file
@ -0,0 +1,583 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Electrochemistry}
|
||||||
|
\ger{Elektrochemie}
|
||||||
|
]{el}
|
||||||
|
\begin{formula}{chemical_potential}
|
||||||
|
\desc{Chemical potential}{of species $i$\\Energy involved when the particle number changes}{\QtyRef{gibbs_free_energy}, \QtyRef{amount}}
|
||||||
|
\desc[german]{Chemisches Potential}{der Spezies $i$\\Involvierte Energie, wenn sich die Teilchenzahl ändert}{}
|
||||||
|
\quantity{\mu}{\joule\per\mol;\joule}{is}
|
||||||
|
\eq{
|
||||||
|
\mu_i \equiv \pdv{G}{n_i}_{n_j\neq n_i,p,T}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{standard_chemical_potential}
|
||||||
|
\desc{Standard chemical potential}{In equilibrium}{\QtyRef{chemical_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}, \QtyRef{activity}}
|
||||||
|
\desc[german]{Standard chemisches Potential}{}{}
|
||||||
|
\eq{\mu_i = \mu_i^\theta + RT \Ln{a_i}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{chemical_equilibrium}
|
||||||
|
\desc{Chemical equilibrium}{}{\QtyRef{chemical_potential}, \QtyRef{stoichiometric_coefficient}}
|
||||||
|
\desc[german]{Chemisches Gleichgewicht}{}{}
|
||||||
|
\eq{\sum_\text{\GT{products}} \nu_i \mu_i = \sum_\text{\GT{educts}} \nu_i \mu_i}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{activity}
|
||||||
|
\desc{Activity}{relative activity}{\QtyRef{chemical_potential}, \QtyRef{standard_chemical_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}}
|
||||||
|
\desc[german]{Aktivität}{Relative Aktivität}{}
|
||||||
|
\quantity{a}{}{s}
|
||||||
|
\eq{a_i = \Exp{\frac{\mu_i-\mu_i^\theta}{RT}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{electrochemical_potential}
|
||||||
|
\desc{Electrochemical potential}{Chemical potential with electrostatic contributions}{\QtyRef{chemical_potential}, $z$ valency (charge), \ConstRef{faraday}, \QtyRef{electric_scalar_potential} (Galvani Potential)}
|
||||||
|
\desc[german]{Elektrochemisches Potential}{Chemisches Potential mit elektrostatischen Enegiebeiträgen}{\QtyRef{chemical_potential}, $z$ Ladungszahl, \ConstRef{faraday}, \QtyRef{electric_scalar_potential} (Galvanisches Potential)}
|
||||||
|
\quantity{\muecp}{\joule\per\mol;\joule}{is}
|
||||||
|
\eq{\muecp_i \equiv \mu_i + z_i F \phi}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Electrochemical cell}
|
||||||
|
\ger{Elektrochemische Zelle}
|
||||||
|
]{cell}
|
||||||
|
\eng[galvanic]{galvanic}
|
||||||
|
\ger[galvanic]{galvanisch}
|
||||||
|
\eng[electrolytic]{electrolytic}
|
||||||
|
\ger[electrolytic]{electrolytisch}
|
||||||
|
|
||||||
|
\Eng[working_electrode]{Working electrode}
|
||||||
|
\Eng[counter_electrode]{Counter electrode}
|
||||||
|
\Eng[reference_electrode]{Reference electrode}
|
||||||
|
\Ger[working_electrode]{Working electrode}
|
||||||
|
\Ger[counter_electrode]{Gegenelektrode}
|
||||||
|
\Ger[reference_electrode]{Referenzelektrode}
|
||||||
|
\Eng[potentiostat]{Potentiostat}
|
||||||
|
\Ger[potentiostat]{Potentiostat}
|
||||||
|
|
||||||
|
\begin{formula}{schematic}
|
||||||
|
\desc{Schematic}{}{}
|
||||||
|
\desc[german]{Aufbau}{}{}
|
||||||
|
\begin{tikzpicture}[scale=1.0,transform shape]
|
||||||
|
\pgfmathsetmacro{\W}{6}
|
||||||
|
\pgfmathsetmacro{\H}{3}
|
||||||
|
\pgfmathsetmacro{\elW}{\W/20}
|
||||||
|
|
||||||
|
\pgfmathsetmacro{\CEx}{1/6*\W}
|
||||||
|
\pgfmathsetmacro{\WEx}{3/6*\W}
|
||||||
|
\pgfmathsetmacro{\REx}{5/6*\W}
|
||||||
|
|
||||||
|
\fill[bg-blue] (0,0) rectangle (\W, \H/2);
|
||||||
|
\draw[ultra thick] (0,0) rectangle (\W,\H);
|
||||||
|
% Electrodes
|
||||||
|
\draw[thick, fill=bg-gray] (\CEx-\elW,\H/5) rectangle (\CEx+\elW,\H);
|
||||||
|
\draw[thick, fill=bg-purple] (\WEx-\elW,\H/5) rectangle (\WEx+\elW,\H);
|
||||||
|
\draw[thick, fill=bg-yellow] (\REx-\elW,\H/5) rectangle (\REx+\elW,\H);
|
||||||
|
\node at (\CEx,3*\H/5) {C};
|
||||||
|
\node at (\WEx,3*\H/5) {W};
|
||||||
|
\node at (\REx,3*\H/5) {R};
|
||||||
|
|
||||||
|
% potentiostat
|
||||||
|
\pgfmathsetmacro{\potH}{\H+0.5+2}
|
||||||
|
\pgfmathsetmacro{\potM}{\H+0.5+1}
|
||||||
|
\draw[thick] (0,\H+0.5) rectangle (\W,\potH);
|
||||||
|
% Wires
|
||||||
|
\draw (\CEx,\H) -- (\CEx,\potM) to[voltmeter,-o] (\WEx,\potM) to[european voltage source] (\WEx+1/6*\W,\potM) to[ammeter] (\REx,\potM);
|
||||||
|
\draw (\WEx,\H) -- (\WEx,\H+1.5);
|
||||||
|
\draw (\REx,\H) -- (\REx,\H+1.5);
|
||||||
|
|
||||||
|
% labels
|
||||||
|
\node[anchor=west, align=left] at (\W+0.2, 1*\H/4) {{\color{bg-gray} \blacksquare} \GT{counter_electrode}};
|
||||||
|
\node[anchor=west, align=left] at (\W+0.2, 2*\H/4) {{\color{bg-purple}\blacksquare} \GT{working_electrode}};
|
||||||
|
\node[anchor=west, align=left] at (\W+0.2, 3*\H/4) {{\color{bg-yellow}\blacksquare} \GT{reference_electrode}};
|
||||||
|
\node[anchor=west, align=left] at (\W+0.2, \potM) {\GT{potentiostat}};
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{cell}
|
||||||
|
\desc{Electrochemical cell types}{}{}
|
||||||
|
\desc[german]{Arten der Elektrochemische Zelle}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Electrolytic cell: Uses electrical energy to force a chemical reaction
|
||||||
|
\item Galvanic cell: Produces electrical energy through a chemical reaction
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Elektrolytische Zelle: Nutzt elektrische Energie um eine Reaktion zu erzwingen
|
||||||
|
\item Galvanische Zelle: Produziert elektrische Energie durch eine chemische Reaktion
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
% todo group together
|
||||||
|
\begin{formula}{faradaic}
|
||||||
|
\desc{Faradaic process}{}{}
|
||||||
|
\desc[german]{Faradäischer Prozess}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Charge transfers between the electrode bulk and the electrolyte.}
|
||||||
|
\ger{Ladung wird zwischen Elektrode und dem Elektrolyten transferiert.}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{non-faradaic}
|
||||||
|
\desc{Non-Faradaic (capacitive) process}{}{}
|
||||||
|
\desc[german]{Nicht-Faradäischer (kapazitiver) Prozess}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Charge is stored at the electrode-electrolyte interface.}
|
||||||
|
\ger{Ladung lagert sich am Elektrode-Elektrolyt Interface an.}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{electrode_potential}
|
||||||
|
\desc{Electrode potential}{}{}
|
||||||
|
\desc[german]{Elektrodenpotential}{}{}
|
||||||
|
\quantity{E}{\volt}{s}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{standard_cell_potential}
|
||||||
|
\desc{Standard cell potential}{}{$\Delta_\txR G^\theta$ standard \qtyRef{gibbs_free_energy} of reaction, $n$ number of electrons, \ConstRef{faraday}}
|
||||||
|
\desc[german]{Standard Zellpotential}{}{$\Delta_\txR G^\theta$ Standard \qtyRef{gibbs_free_energy} der Reaktion, $n$ Anzahl der Elektronen, \ConstRef{faraday}}
|
||||||
|
\eq{E^\theta_\text{rev} = \frac{-\Delta_\txR G^\theta}{nF}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{nernst_equation}
|
||||||
|
\desc{Nernst equation}{Electrode potential for a half-cell reaction}{\QtyRef{electrode_potential}, $E^\theta$ \secEqRef{standard_cell_potential}, \ConstRef{universal_gas}, \ConstRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \QtyRef{activity}, \QtyRef{stoichiometric_coefficient}}
|
||||||
|
\desc[german]{Nernst-Gleichung}{Elektrodenpotential für eine Halbzellenreaktion}{}
|
||||||
|
\eq{E = E^\theta + \frac{RT}{zF} \Ln{\frac{ \left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{oxidized}}{\left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{reduced}}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{cell_efficiency}
|
||||||
|
\desc{Thermodynamic cell efficiency}{}{$P$ \fqEqRef{ed:el:power}}
|
||||||
|
\desc[german]{Thermodynamische Zelleffizienz}{}{}
|
||||||
|
\eq{
|
||||||
|
\eta_\text{cell} &= \frac{P_\text{obtained}}{P_\text{maximum}} = \frac{E_\text{cell}}{E_\text{cell,rev}} & & \text{\gt{galvanic}} \\
|
||||||
|
\eta_\text{cell} &= \frac{P_\text{minimum}}{P_\text{applied}} = \frac{E_\text{cell,rev}}{E_\text{cell}} & & \text{\gt{electrolytic}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Ionic conduction in electrolytes}
|
||||||
|
\ger{Ionische Leitung in Elektrolyten}
|
||||||
|
]{ion_cond}
|
||||||
|
\eng[z]{charge number}
|
||||||
|
\ger[z]{Ladungszahl}
|
||||||
|
\eng[of_i]{of ion $i$}
|
||||||
|
\ger[of_i]{des Ions $i$}
|
||||||
|
|
||||||
|
\begin{formula}{diffusion}
|
||||||
|
\desc{Diffusion}{caused by concentration gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{diffusion_constant} \gt{of_i}, \QtyRef{concentration} \gt{of_i}}
|
||||||
|
\desc[german]{Diffusion}{durch Konzentrationsgradienten}{}
|
||||||
|
\eq{ i_\text{diff} = \sum_i -z_i F D_i \left(\odv{c_i}{x}\right) }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{migration}
|
||||||
|
\desc{Migration}{caused by potential gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, \QtyRef{mobility} \gt{of_i}, $\nabla\phi_\txs$ potential gradient in the solution}
|
||||||
|
\desc[german]{Migration}{durch Potentialgradienten}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, \QtyRef{mobility} \gt{of_i}, $\nabla\phi_\txs$ Potentialgradient in der Lösung}
|
||||||
|
\eq{ i_\text{mig} = \sum_i -z_i^2 F^2 \, c_i \, \mu_i \, \nabla\Phi_\txs }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{convection}
|
||||||
|
\desc{Convection}{caused by pressure gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, $v_i^\text{flow}$ \qtyRef{velocity} \gt{of_i} in flowing electrolyte}
|
||||||
|
\desc[german]{Convection}{durch Druckgradienten}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, $v_i^\text{flow}$ \qtyRef{velocity} \gt{of_i} im fliessenden Elektrolyt}
|
||||||
|
\eq{ i_\text{conv} = \sum_i -z_i F \, c_i \, v_i^\text{flow} }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{ionic_conductivity}
|
||||||
|
\desc{Ionic conductivity}{}{\ConstRef{faraday}, $z_i$, $c_i$, $\mu_i$ charge number, \qtyRef{concentration} and \qtyRef{mobility} of the positive (+) and negative (-) ions}
|
||||||
|
\desc[german]{Ionische Leitfähigkeit}{}{\ConstRef{faraday}, $z_i$, $c_i$, $\mu_i$ Ladungszahl, \qtyRef{concentration} und \qtyRef{mobility} der positiv (+) und negativ geladenen Ionen}
|
||||||
|
\quantity{\kappa}{\per\ohm\cm=\siemens\per\cm}{}
|
||||||
|
\eq{\kappa = F^2 \left(z_+^2 \, c_+ \, \mu_+ + z_-^2 \, c_- \, \mu_-\right)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{ionic_resistance}
|
||||||
|
\desc{Ohmic resistance of ionic current flow}{}{$L$ \qtyRef{length}, $A$ \qtyRef{area}, \QtyRef{ionic_conductivity}}
|
||||||
|
\desc[german]{Ohmscher Widerstand für Ionen-Strom}{}{}
|
||||||
|
\eq{R_\Omega = \frac{L}{A\,\kappa}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{ionic_mobility}
|
||||||
|
\desc{Ionic mobility}{}{$v_\pm$ steady state drift \qtyRef{velocity}, $\phi$ \qtyRef{electric_scalar_potential}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{charge}, \QtyRef{viscosity}, $r_\pm$ ion radius}
|
||||||
|
\desc[german]{Ionische Moblilität}{}{}
|
||||||
|
\quantity{u_\pm}{\cm^2\mol\per\joule\s}{}
|
||||||
|
\eq{u_\pm = - \frac{v_\pm}{\nabla \phi \,z_\pm F} = \frac{e}{6\pi F \eta_\text{dyn} r_\pm}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{stokes_friction}
|
||||||
|
\desc{Stokes's law}{Frictional force exerted on spherical objects moving in a viscous fluid at low Reynolds numbers}{$r$ particle radius, \QtyRef{viscosity}, $v$ particle \qtyRef{velocity}}
|
||||||
|
\desc[german]{Gesetz von Stokes}{Reibungskraft auf ein sphärisches Objekt in einer Flüssigkeit bei niedriger Reynolds-Zahl}{$r$ Teilchenradius, \QtyRef{viscosity}, $v$ Teilchengeschwindigkeit}
|
||||||
|
\eq{F_\txR = 6\pi\,r \eta v}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{transference}
|
||||||
|
\desc{Transference number}{Ion transport number \\Fraction of the current carried by positive / negative ions}{$i_{+/-}$ current through positive/negative charges}
|
||||||
|
\desc[german]{Überführungszahl}{Anteil der positiv / negativ geladenen Ionen am Gesamtstrom}{$i_{+/-}$ Strom durch positive / negative Ladungn}
|
||||||
|
\eq{t_{+/-} = \frac{i_{+/-}}{i_+ + i_-}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\eng[csalt]{electrolyte \qtyRef{concentration}}
|
||||||
|
\eng[csalt]{\qtyRef{concentration} des Elektrolyts}
|
||||||
|
\begin{formula}{molar_conductivity}
|
||||||
|
\desc{Molar conductivity}{}{\QtyRef{ionic_conductivity}, $c_\text{salt}$ \gt{csalt}}
|
||||||
|
\desc[german]{Molare Leitfähigkeit}{}{\QtyRef{ionic_conductivity}, $c_\text{salt}$ \gt{salt}}
|
||||||
|
\quantity{\Lambda_\txM}{\siemens\cm^2\per\mol=\ampere\cm^2\per\volt\mol}{ievs}
|
||||||
|
\eq{\Lambda_\txM = \frac{\kappa}{c_\text{salt}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{kohlrausch_law}
|
||||||
|
\desc{Kohlrausch's law}{}{$\Lambda_\txM^0$ \qtyRef{molar_conductivity} at infinite dilution, $c_\text{salt}$ \gt{csalt}, $K$ \GT{constant}}
|
||||||
|
\desc[german]{}{}{$\Lambda_\txM^0$ \qtyRef{molar_conductivity} bei unendlicher Verdünnung, $\text{salt}$ \gt{csalt} $K$ \GT{constant}}
|
||||||
|
\eq{\Lambda_\txM = \Lambda_\txM^0 - K \sqrt{c_\text{salt}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
% Electrolyte conductivity
|
||||||
|
\begin{formula}{molality}
|
||||||
|
\desc{Molality}{}{\QtyRef{amount} of the solute, \QtyRef{mass} of the solvent}
|
||||||
|
\desc[german]{Molalität}{}{\QtyRef{amount} des gelösten Stoffs, \QtyRef{mass} des Lösungsmittels}
|
||||||
|
\quantity{b}{\mol\per\kg}{}
|
||||||
|
\eq{b = \frac{n}{m}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{molarity}
|
||||||
|
\desc{Molarity}{\GT{see} \qtyRef{concentration}}{\QtyRef{amount} of the solute, \QtyRef{volume} of the solvent}
|
||||||
|
\desc[german]{Molarität}{}{\QtyRef{amount} des gelösten Stoffs, \QtyRef{volume} des Lösungsmittels}
|
||||||
|
\quantity{c}{\mol\per\litre}{}
|
||||||
|
\eq{c = \frac{n}{V}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{ionic_strength}
|
||||||
|
\desc{Ionic strength}{Measure of the electric field in a solution through solved ions}{\QtyRef{molality}, \QtyRef{molarity}, $z$ \qtyRef{charge_number}}
|
||||||
|
\desc[german]{Ionenstärke}{Maß eienr Lösung für die elektrische Feldstärke durch gelöste Ionen}{}
|
||||||
|
\quantity{I}{\mol\per\kg;\mol\per\litre}{}
|
||||||
|
\eq{I_b &= \frac{1}{2} \sum_i b_i z_i^2 \\ I_c &= \frac{1}{2} \sum_i c_i z_i^2}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{debye_screening_length}
|
||||||
|
\desc{Debye screening length}{}{\ConstRef{avogadro}, \ConstRef{charge}, \QtyRef{ionic_strength}, \QtyRef{permittivity}, \ConstRef{boltzmann}, \QtyRef{temperature}}
|
||||||
|
\desc[german]{Debye-Länge / Abschirmlänge}{}{}
|
||||||
|
\eq{\lambda_\txD = \sqrt{\frac{\epsilon \kB T}{2\NA e^2 I_C}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{mean_ionic_activity}
|
||||||
|
\desc{Mean ionic activity coefficient}{Accounts for decreased reactivity because ions must divest themselves of their ion cloud before reacting}{}
|
||||||
|
\desc[german]{Mittlerer ionischer Aktivitätskoeffizient}{Berücksichtigt dass Ionen sich erst von ihrer Ionenwolke lösen müssen, bevor sie reagieren können}{}
|
||||||
|
\quantity{\gamma}{}{s}
|
||||||
|
\eq{\gamma_\pm = \left(\gamma_+^{\nu_+} \, \gamma_-^{\nu_-}\right)^{\frac{1}{\nu_+ + \nu_-}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{debye_hueckel_law}
|
||||||
|
\desc{Debye-Hückel limiting law}{For an infinitely dilute solution}{\QtyRef{mean_ionic_activity}, $A$ solvent dependant constant, $z$ \qtyRef{charge_number}, \QtyRef{ionic_strength} in [\si{\mol\per\kg}]}
|
||||||
|
\desc[german]{Debye-Hückel Gesetz}{Für eine unendlich verdünnte Lösung}{}
|
||||||
|
\eq{\Ln{\gamma_{\pm}} = -A \abs{z_+ \, z_-} \sqrt{I_b}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Kinetics}
|
||||||
|
\ger{Kinetik}
|
||||||
|
]{kin}
|
||||||
|
\begin{formula}{transfer_coefficient}
|
||||||
|
\desc{Transfer coefficient}{}{}
|
||||||
|
\desc[german]{Durchtrittsfaktor}{Transferkoeffizient\\Anteil des Potentials der sich auf die freie Reaktionsenthalpie des anodischen Prozesses auswirkt}{}
|
||||||
|
\eq{
|
||||||
|
\alpha_\txA &= \alpha \\
|
||||||
|
\alpha_\txC &= 1-\alpha
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{overpotential}
|
||||||
|
\desc{Overpotential}{}{}
|
||||||
|
\desc[german]{Überspannung}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Potential deviation from the equilibrium cell potential}
|
||||||
|
\ger{Abweichung der Spannung von der Zellspannung im Gleichgewicht}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{activation_overpotential}
|
||||||
|
\desc{Activation verpotential}{}{$E_\text{electrode}$ potential at which the reaction starts $E_\text{ref}$ thermodynamic potential of the reaction}
|
||||||
|
\desc[german]{Aktivierungsüberspannung}{}{$E_\text{electrode}$ Potential bei der die Reaktion beginnt, $E_\text{ref}$ thermodynamisches Potential der Reaktion}
|
||||||
|
\eq{\eta_\text{act} = E_\text{electrode} - E_\text{ref}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Mass transport}
|
||||||
|
\ger{Massentransport}
|
||||||
|
]{mass}
|
||||||
|
\begin{formula}{concentration_overpotential}
|
||||||
|
\desc{Concentration overpotential}{Due to concentration gradient near the electrode, the ions need to \hyperref[f:ch:el:ion_cond:diffusion]{diffuse} to the electrode before reacting}{\ConstRef{universal_gas}, \QtyRef{temperature}, $\c_{0/\txS}$ ion concentration in the electrolyte / at the double layer, $z$ \qtyRef{charge_number}, \ConstRef{faraday}}
|
||||||
|
\desc[german]{Konzentrationsüberspannung}{Durch einen Konzentrationsgradienten an der Elektrode müssen Ionen erst zur Elektrode \hyperref[f:ch:el:ion_cond:diffusion]{diffundieren}, bevor sie reagieren können}{}
|
||||||
|
\eq{
|
||||||
|
\eta_\text{conc,anodic} &= -\frac{RT}{\alpha \,zF} \ln \left(\frac{c_\text{red}^0}{c_\text{red}^\txS}\right) \\
|
||||||
|
\eta_\text{conc,cathodic} &= -\frac{RT}{(1-\alpha) zF} \ln \left(\frac{c_\text{ox}^0}{c_\text{ox}^\txS}\right)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{diffusion_overpotential}
|
||||||
|
\desc{Diffusion overpotential}{Due to mass transport limitations}{$j_\infty$ \secEqRef{limiting_current}, $j_\text{meas}$ measured \qtyRef{current_density}, \ConstRef{universal_gas}, \QtyRef{temperature}, $n$ \qtyRef{charge_number}, \ConstRef{faraday}}
|
||||||
|
\desc[german]{Diffusionsüberspannung}{Durch Limit des Massentransports}{}
|
||||||
|
% \eq{\eta_\text{diff} = \frac{RT}{nF} \ln \left( \frac{\cfrac{c^\txs_\text{ox}}{c^0_\text{ox}}}{\cfrac{c^\txs_\text{red}}{c^0_\text{red}}} \right)}
|
||||||
|
\eq{\eta_\text{diff} = \frac{RT}{nF} \Ln{\frac{j_\infty}{j_\infty - j_\text{meas}}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{diffusion_layer}
|
||||||
|
\desc{Cell layers}{}{}
|
||||||
|
\desc[german]{Zellschichten}{}{}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\tikzset{
|
||||||
|
label/.style={color=fg1,anchor=center,rotate=90},
|
||||||
|
}
|
||||||
|
\pgfmathsetmacro{\tkW}{8} % Total width
|
||||||
|
\pgfmathsetmacro{\tkH}{4} % Total height
|
||||||
|
\pgfmathsetmacro{\edW}{1} % electrode width
|
||||||
|
\pgfmathsetmacro{\hhW}{1} % helmholtz width
|
||||||
|
\pgfmathsetmacro{\ndW}{2} % nernst diffusion with
|
||||||
|
\pgfmathsetmacro{\eyW}{\tkW-\edW-\hhW-\ndW} % electrolyte width
|
||||||
|
\pgfmathsetmacro{\edX}{0} % electrode width
|
||||||
|
\pgfmathsetmacro{\hhX}{\edW} % helmholtz width
|
||||||
|
\pgfmathsetmacro{\ndX}{\edW+\hhW} % nernst diffusion with
|
||||||
|
\pgfmathsetmacro{\eyX}{\tkW-\eyW} % electrolyte width
|
||||||
|
|
||||||
|
\path[fill=bg-orange] (\edX,0) rectangle (\edX+\edW,\tkH); \node[label] at (\edX+\edW/2,\tkH/2) {\GT{electrode}};
|
||||||
|
\path[fill=bg-green!90!bg0] (\hhX,0) rectangle (\hhX+\hhW,\tkH); \node[label] at (\hhX+\hhW/2,\tkH/2) {\GT{helmholtz_layer}};
|
||||||
|
\path[fill=bg-green!60!bg0] (\ndX,0) rectangle (\ndX+\ndW,\tkH); \node[label] at (\ndX+\ndW/2,\tkH/2) {\GT{nernst_layer}};
|
||||||
|
\path[fill=bg-green!20!bg0] (\eyX,0) rectangle (\eyX+\eyW,\tkH); \node[label] at (\eyX+\eyW/2,\tkH/2) {\GT{electrolyte}};
|
||||||
|
\draw (\hhX,2) -- (\ndX,3) -- (\tkW,3);
|
||||||
|
% axes
|
||||||
|
\draw[->] (0,0) -- (\tkW+0.2,0) node[anchor=north] {$x$};
|
||||||
|
\draw[->] (0,0) -- (0,\tkH+0.2) node[anchor=east] {$c$};
|
||||||
|
\tkYTick{2}{$c^\txS$};
|
||||||
|
\tkYTick{3}{$c^0$};
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{formula}
|
||||||
|
\Eng[c_surface]{surface \qtyRef{concentration}}
|
||||||
|
\Eng[c_bulk]{bulk \qtyRef{concentration}}
|
||||||
|
\Ger[c_surface]{Oberflächen-\qtyRef{concentration}}
|
||||||
|
\Ger[c_bulk]{Bulk-\qtyRef{concentration}}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{diffusion_layer_thickness}
|
||||||
|
\desc{Nerst Diffusion layer thickness}{}{$c^0$ \GT{c_bulk}, $c^\txS$ \GT{c_surface}}
|
||||||
|
\desc[german]{Dicke der Nernstschen Diffusionsschicht}{}{}
|
||||||
|
\eq{\delta_\txN = \frac{c^0 - c^\txS}{\odv{c}{x}_{x=0}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{limiting_current}
|
||||||
|
\desc{(Limiting) current density}{}{$n$ \QtyRef{charge_number}, \ConstRef{faraday}, $c^0$ \GT{c_bulk}, $D$ \qtyRef{diffusion_coefficient}, $\delta_\text{diff}$ \secEqRef{diffusion_layer_thickness}}
|
||||||
|
% \desc[german]{Limitierender Strom}{}{}
|
||||||
|
\eq{
|
||||||
|
\abs{j} &= nFD \frac{c^0-c^\txS}{\delta_\text{diff}}
|
||||||
|
\shortintertext{\GT{for} $c^\txS \to 0$}
|
||||||
|
\abs{j_\infty} &= nFD \frac{c^0}{\delta_\text{diff}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{relation?}
|
||||||
|
\desc{Current - concentration relation}{}{$c^0$ \GT{c_bulk}, $c^\txS$ \GT{c_surface}, $j$ \secEqRef{limiting_current}}
|
||||||
|
\desc[german]{Strom - Konzentrationsbeziehung}{}{}
|
||||||
|
\eq{\frac{j}{j_\infty} = 1 - \frac{c^\txS}{c^0}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{kinetic_current}
|
||||||
|
\desc{Kinetic current density}{}{$j_\text{meas}$ measured \qtyRef{current_density}, $j_\infty$ \secEqRef{limiting_current}}
|
||||||
|
\desc[german]{Kinetische Stromdichte}{}{$j_\text{meas}$ gemessene \qtyRef{current_density}, $j_\infty$ \secEqRef{limiting_current}}
|
||||||
|
\eq{j_\text{kin} = \frac{j_\text{meas} j_\infty}{j_\infty - j_\text{meas}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{roughness_factor}
|
||||||
|
\desc{Roughness factor}{Surface area related to electrode geometry}{}
|
||||||
|
\eq{\rfactor}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{butler_volmer}
|
||||||
|
\desc{Butler-Volmer equation}{Reaction kinetics near the equilibrium potentential}
|
||||||
|
{$j$ \qtyRef{current_density}, $j_0$ exchange current density, $\eta$ \fqEqRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txC/\txA}$ cathodic/anodic charge transfer coefficient, $\text{rf}$ \secEqRef{roughness_factor}}
|
||||||
|
%Current through an electrode iof a unimolecular redox reaction with both anodic and cathodic reaction occuring on the same electrode
|
||||||
|
\desc[german]{Butler-Volmer-Gleichung}{Reaktionskinetik in der Nähe des Gleichgewichtspotentials}
|
||||||
|
{$j$ \qtyRef{current_density}, $j_0$ Austauschstromdichte, $\eta$ \fqEqRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txC/\txA}$ Ladungstransferkoeffizient an der Kathode/Anode, $\text{rf}$ \secEqRef{roughness_factor}}
|
||||||
|
\begin{gather}
|
||||||
|
j = j_0 \,\rfactor\, \left[ \Exp{\frac{(1-a_\txC) z F \eta}{RT}} - \Exp{-\frac{\alpha_\txC z F \eta}{RT}}\right]
|
||||||
|
\intertext{\GT{with}}
|
||||||
|
\alpha_\txA = 1 - \alpha_\txC
|
||||||
|
\end{gather}
|
||||||
|
\separateEntries
|
||||||
|
\fig{img/ch_butler_volmer.pdf}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
% \Subsubsection[
|
||||||
|
% \eng{Tafel approximation}
|
||||||
|
% \ger{Tafel Näherung}
|
||||||
|
% ]{tafel}
|
||||||
|
|
||||||
|
% \begin{formula}{slope}
|
||||||
|
% \desc{Tafel slope}{}{}
|
||||||
|
% \desc[german]{Tafel Steigung}{}{}
|
||||||
|
% \eq{}
|
||||||
|
% \end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{equation}
|
||||||
|
\desc{Tafel approximation}{For slow kinetics: $\abs{\eta} > \SI{0.1}{\volt}$}{}
|
||||||
|
\desc[german]{Tafel Näherung}{Für langsame Kinetik: $\abs{\eta} > \SI{0.1}{\volt}$}{}
|
||||||
|
\eq{
|
||||||
|
\Log{j} &\approx \Log{j_0} + \frac{\alpha_\txC zF \eta}{RT\ln(10)} && \eta \gg \SI{0.1}{\volt}\\
|
||||||
|
\Log{\abs{j}} &\approx \Log{j_0} - \frac{(1-\alpha_\txC) zF \eta}{RT\ln(10)} && \eta \ll -\SI{0.1}{\volt}
|
||||||
|
}
|
||||||
|
\fig{img/ch_tafel.pdf}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Techniques}
|
||||||
|
\ger{Techniken}
|
||||||
|
]{tech}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Reference electrodes}
|
||||||
|
\ger{Referenzelektroden}
|
||||||
|
]{ref}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Defined as reference for measuring half-cell potententials}
|
||||||
|
\ger{Definiert als Referenz für Messungen von Potentialen von Halbzellen}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{she}
|
||||||
|
\desc{Standard hydrogen elektrode (SHE)}{}{$p=\SI{e5}{\pascal}$, $a_{\ce{H+}}=\SI{1}{\mol\per\litre}$ (\Rightarrow $\pH=0$)}
|
||||||
|
\desc[german]{Standardwasserstoffelektrode (SHE)}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Potential of the reaction: \ce{2H^+ +2e^- <--> H2}}
|
||||||
|
\ger{Potential der Reaktion: \ce{2H^+ +2e^- <--> H2}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{rhe}
|
||||||
|
\desc{Reversible hydrogen electrode (RHE)}{RHE Potential does not change with the pH value}{$E^0\equiv \SI{0}{\volt}$, \QtyRef{activity}, \QtyRef{pressure}, \GT{see} \fqEqRef{ch:el:cell:nernst_equation}}
|
||||||
|
\desc[german]{Reversible Wasserstoffelektrode (RHE)}{Potential ändert sich nicht mit dem pH-Wert}{}
|
||||||
|
\eq{
|
||||||
|
E_\text{RHE} &= E^0 + \frac{RT}{F} \Ln{\frac{a_{\ce{H^+}}}{p_{\ce{H2}}}} \\
|
||||||
|
&= \SI{0}{\volt} - \SI{0.059}{\volt}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Cyclic voltammetry}
|
||||||
|
\ger{Zyklische Voltammetrie}
|
||||||
|
]{cv}
|
||||||
|
\begin{bigformula}{duck}
|
||||||
|
\desc{Cyclic voltammogram}{}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
|
||||||
|
\begin{minipage}{0.44\textwidth}
|
||||||
|
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\pgfmathsetmacro{\Ax}{-2.3}
|
||||||
|
\pgfmathsetmacro{\Ay}{ 0.0}
|
||||||
|
\pgfmathsetmacro{\Bx}{ 0.0}
|
||||||
|
\pgfmathsetmacro{\By}{ 1.0}
|
||||||
|
\pgfmathsetmacro{\Cx}{ 0.4}
|
||||||
|
\pgfmathsetmacro{\Cy}{ 1.5}
|
||||||
|
\pgfmathsetmacro{\Dx}{ 2.0}
|
||||||
|
\pgfmathsetmacro{\Dy}{ 0.5}
|
||||||
|
\pgfmathsetmacro{\Ex}{ 0.0}
|
||||||
|
\pgfmathsetmacro{\Ey}{-1.5}
|
||||||
|
\pgfmathsetmacro{\Fx}{-0.4}
|
||||||
|
\pgfmathsetmacro{\Fy}{-2.0}
|
||||||
|
\pgfmathsetmacro{\Gx}{-2.3}
|
||||||
|
\pgfmathsetmacro{\Gy}{-0.3}
|
||||||
|
\pgfmathsetmacro{\x}{3}
|
||||||
|
\pgfmathsetmacro{\y}{3}
|
||||||
|
\begin{axis}[ymin=-\y,ymax=\y,xmax=\x,xmin=-\x,
|
||||||
|
% equal axis,
|
||||||
|
minor tick num=1,
|
||||||
|
xlabel={$E$}, xlabel style={at={(axis description cs:0.5,-0.06)}},
|
||||||
|
ylabel={$j$}, ylabel style={at={(axis description cs:-0.06,0.5)}},
|
||||||
|
anchor=center, at={(0,0)},
|
||||||
|
axis equal image,clip=false,
|
||||||
|
]
|
||||||
|
% CV with beziers
|
||||||
|
\draw[thick, fg-blue] (axis cs:\Ax,\Ay) coordinate (A) node[left] {A}
|
||||||
|
..controls (axis cs:\Ax+1.8, \Ay+0.0) and (axis cs:\Bx-0.2, \By-0.4) .. (axis cs:\Bx,\By) coordinate (B) node[left] {B}
|
||||||
|
..controls (axis cs:\Bx+0.1, \By+0.2) and (axis cs:\Cx-0.3, \Cy+0.0) .. (axis cs:\Cx,\Cy) coordinate (C) node[above] {C}
|
||||||
|
..controls (axis cs:\Cx+0.5, \Cy+0.0) and (axis cs:\Dx-1.3, \Dy+0.1) .. (axis cs:\Dx,\Dy) coordinate (D) node[right] {D}
|
||||||
|
..controls (axis cs:\Dx-2.0, \Dy-0.1) and (axis cs:\Ex+0.3, \Ey+0.8) .. (axis cs:\Ex,\Ey) coordinate (E) node[right] {E}
|
||||||
|
..controls (axis cs:\Ex-0.1, \Ey-0.2) and (axis cs:\Fx+0.2, \Fy+0.0) .. (axis cs:\Fx,\Fy) coordinate (F) node[below] {F}
|
||||||
|
..controls (axis cs:\Fx-0.2, \Fy+0.0) and (axis cs:\Gx+1.5, \Gy-0.2) .. (axis cs:\Gx,\Gy) coordinate (G) node[left] {G};
|
||||||
|
\node[above] at (A) {\rightarrow};
|
||||||
|
|
||||||
|
\draw[dashed, fg2] (axis cs: \Bx,\By) -- (axis cs: \Ex, \Ey);
|
||||||
|
|
||||||
|
\draw[->] (axis cs:-\x-0.6, 0.4) -- (axis cs:-\x-0.6, \y) node[left=0.3cm, anchor=east, rotate=90] {Cath / Red};
|
||||||
|
\draw[->] (axis cs:-\x-0.6,-0.4) -- (axis cs:-\x-0.6,-\y) node[left=0.3cm, anchor=west, rotate=90] {An / Ox};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{minipage}{0.55\textwidth}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{\begin{itemize}
|
||||||
|
\item {\color{fg-blue}A-D}: Diffusion layer growth \rightarrow decreased current after peak
|
||||||
|
\item {\color{fg-blue}D}: Switching potential
|
||||||
|
\item {\color{fg-blue}B,E}: Equal concentrations of reactants
|
||||||
|
\item {\color{fg-blue}C,F}: Formal potential of redox pair: $E \approx \frac{E_\txC - E_\txF}{2}$
|
||||||
|
\item {\color{fg-blue}C,F}: Peak separation for reverisble processes: $\Delta E_\text{rev} = E_\txC - E_\txF = n\,\SI{59}{\milli\volt}$
|
||||||
|
\item Information about surface chemistry
|
||||||
|
\item Double-layer capacity (horizontal lines): $I = C v$
|
||||||
|
\end{itemize}}
|
||||||
|
\end{ttext}
|
||||||
|
\end{minipage}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\begin{formula}{peak_current}
|
||||||
|
\desc{Randles-Sevcik equation}{For reversible reaction.\\Peak current depends on square root of the scan rate}{$n$ \qtyRef{charge_number}, \ConstRef{faraday}, $A$ electrode surface area, $c^0$ bulk \qtyRef{concentration}, $v$ \qtyRef{scan_rate}, $D_\text{ox}$ \qtyRef{diffusion_coefficient} of oxidized analyte, \ConstRef{universal_gas}, \QtyRef{temperature}}
|
||||||
|
\desc[german]{Randles-Sevcik Gleichung}{Spitzenstrom}{}
|
||||||
|
\eq{i_\text{peak} = 0.446\,nFAc^0 \sqrt{\frac{nFvD_\text{ox}}{RT}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{hiddenformula}{scan_rate}
|
||||||
|
\desc{Scan rate}{}{}
|
||||||
|
\desc[german]{Scanrate}{}{}
|
||||||
|
\quantity{v}{\volt\per\s}{s}
|
||||||
|
\end{hiddenformula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{upd}
|
||||||
|
\desc{Underpotential deposition (UPD)}{}{}
|
||||||
|
\desc[german]{}{}{}
|
||||||
|
\ttxt{Reversible deposition of metal onto a foreign metal electrode at potentials positive of the Nernst potential \TODO{clarify}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Rotating disk electrodes}
|
||||||
|
% \ger{}
|
||||||
|
]{rde} \abbrLink{rde}{RDE}
|
||||||
|
\begin{formula}{viscosity}
|
||||||
|
\desc{Dynamic viscosity}{}{}
|
||||||
|
\desc[german]{Dynamisch Viskosität}{}{}
|
||||||
|
\quantity{\eta,\mu}{\pascal\s=\newton\s\per\m^2=\kg\per\m\s}{}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{kinematic_viscosity}
|
||||||
|
\desc{Kinematic viscosity}{\qtyRef{viscosity} related to density of a fluid}{\QtyRef{viscosity}, \QtyRef{density}}
|
||||||
|
\desc[german]{Kinematische Viskosität}{\qtyRef{viscosity} im Verhältnis zur Dichte der Flüssigkeit}{}
|
||||||
|
\quantity{\nu}{\cm^2\per\s}{}
|
||||||
|
\eq{\nu = \frac{\eta}{\rho}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{diffusion_layer_thickness}
|
||||||
|
\desc{Diffusion layer thickness}{\TODO{Where does 1.61 come from}}{$D$ \qtyRef{diffusion_coefficient}, $\nu$ \qtyRef{kinematic_viscosity}, \QtyRef{angular_frequency}}
|
||||||
|
\desc[german]{Diffusionsshichtdicke}{}{}
|
||||||
|
\eq{\delta_\text{diff}= 1.61 D{^\frac{1}{3}} \nu^{\frac{1}{6}} \omega^{-\frac{1}{2}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{limiting_current}
|
||||||
|
\desc{Limiting current density}{for a \abbrRef{rde}}{$n$ \QtyRef{charge_number}, \ConstRef{faraday}, $c^0$ \GT{c_bulk}, $D$ \qtyRef{diffusion_coefficient}, $\delta_\text{diff}$ \secEqRef{diffusion_layer_thickness}, $\nu$ \qtyRef{kinematic_viscosity}, \QtyRef{angular_frequency}}
|
||||||
|
% \desc[german]{Limitierender Strom}{}{}
|
||||||
|
\eq{j_\infty = nFD \frac{c^0}{\delta_\text{diff}} = \frac{1}{1.61} nFD^{\frac{2}{3}} v^{\frac{-1}{6}} c^0 \sqrt{\omega}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
115
src/ch/misc.tex
Normal file
115
src/ch/misc.tex
Normal file
@ -0,0 +1,115 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Thermoelectricity}
|
||||||
|
\ger{Thermoelektrizität}
|
||||||
|
]{thermo}
|
||||||
|
\begin{formula}{seebeck}
|
||||||
|
\desc{Seebeck coefficient}{}{$V$ voltage, \QtyRef{temperature}}
|
||||||
|
\desc[german]{Seebeck-Koeffizient}{}{}
|
||||||
|
\quantity{S}{\micro\volt\per\kelvin}{s}
|
||||||
|
\eq{S = -\frac{\Delta V}{\Delta T}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{seebeck_effect}
|
||||||
|
\desc{Seebeck effect}{Elecromotive force across two points of a material with a temperature difference}{\QtyRef{conductivity}, $V$ local voltage, \QtyRef{seebeck}, \QtyRef{temperature}}
|
||||||
|
\desc[german]{Seebeck-Effekt}{}{}
|
||||||
|
\eq{\vec{j} = \sigma(-\Grad V - S \Grad T)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{thermal_conductivity}
|
||||||
|
\desc{Thermal conductivity}{Conduction of heat, without mass transport}{\QtyRef{heat}, \QtyRef{length}, \QtyRef{area}, \QtyRef{temperature}}
|
||||||
|
\desc[german]{Wärmeleitfähigkeit}{Leitung von Wärme, ohne Stofftransport}{}
|
||||||
|
\quantity{\kappa,\lambda,k}{\watt\per\m\K=\kg\m\per\s^3\kelvin}{s}
|
||||||
|
\eq{\kappa = \frac{\dot{Q} l}{A\,\Delta T}}
|
||||||
|
\eq{\kappa_\text{tot} = \kappa_\text{lattice} + \kappa_\text{electric}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{wiedemann-franz}
|
||||||
|
\desc{Wiedemann-Franz law}{}{Electric \QtyRef{thermal_conductivity}, $L$ in \si{\watt\ohm\per\kelvin} Lorentz number, \QtyRef{conductivity}}
|
||||||
|
\desc[german]{Wiedemann-Franz Gesetz}{}{Elektrische \QtyRef{thermal_conductivity}, $L$ in \si{\watt\ohm\per\kelvin} Lorentzzahl, \QtyRef{conductivity}}
|
||||||
|
\eq{\kappa = L\sigma T}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{zt}
|
||||||
|
\desc{Thermoelectric figure of merit}{Dimensionless quantity for comparing different materials}{\QtyRef{seebeck}, \QtyRef{conductivity}, }
|
||||||
|
\desc[german]{Thermoelektrische Gütezahl}{Dimensionsoser Wert zum Vergleichen von Materialien}{}
|
||||||
|
\eq{zT = \frac{S^2\sigma}{\lambda} T}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{misc}
|
||||||
|
\ger{misc}
|
||||||
|
]{misc}
|
||||||
|
|
||||||
|
% TODO: hide
|
||||||
|
\begin{formula}{stoichiometric_coefficient}
|
||||||
|
\desc{Stoichiometric coefficient}{}{}
|
||||||
|
\desc[german]{Stöchiometrischer Koeffizient}{}{}
|
||||||
|
\quantity{\nu}{}{s}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{std_condition}
|
||||||
|
\desc{Standard temperature and pressure}{}{}
|
||||||
|
\desc[german]{Standardbedingungen}{}{}
|
||||||
|
\eq{
|
||||||
|
T &= \SI{273.15}{\kelvin} = \SI{0}{\celsius} \\
|
||||||
|
p &= \SI{100000}{\pascal} = \SI{1.000}{\bar}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{ph}
|
||||||
|
\desc{pH definition}{}{$a_{\ce{H+}}$ hyrdrogen ion \qtyRef{activity}}
|
||||||
|
\desc[german]{pH-Wert definition}{}{$a_{\ce{H+}}$ Wasserstoffionen-\qtyRef{activity}}
|
||||||
|
\eq{\pH = -\log_{10}(a_{\ce{H+}})}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{ph_rt}
|
||||||
|
\desc{pH}{At room temperature \SI{25}{\celsius}}{}
|
||||||
|
\desc[german]{pH-Wert}{Bei Raumtemperatur \SI{25}{\celsius}}{}
|
||||||
|
\eq{
|
||||||
|
\pH > 7 &\quad\tGT{basic} \\
|
||||||
|
\pH < 7 &\quad\tGT{acidic} \\
|
||||||
|
\pH = 7 &\quad\tGT{neutral}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{covalent_bond}
|
||||||
|
\desc{Covalent bond}{}{}
|
||||||
|
\desc[german]{Kolvalente Bindung}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Bonds that involve sharing of electrons to form electron pairs between atoms.}
|
||||||
|
\ger{Bindungen zwischen Atomen die durch geteilte Elektronen, welche Elektronenpaare bilden, gebildet werden.}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{grotthuss}
|
||||||
|
\desc{Grotthuß-mechanism}{}{}
|
||||||
|
\desc[german]{Grotthuß-Mechanismus}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{The mobility of protons in aqueous solutions is much higher than that of other ions because they can "move" by breaking and reforming covalent bonds of water molecules.}
|
||||||
|
\ger{The Moblilität von Protononen in wässrigen Lösungen ist wesentlich größer als die anderer Ionen, da sie sich "bewegen" können indem die Wassertsoffbrückenbindungen gelöst und neu gebildet werden.}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{common_chemicals}
|
||||||
|
\desc{Common chemicals}{}{}
|
||||||
|
\desc[german]{Häufige Chemikalien}{}{}
|
||||||
|
\begin{tabular}{l|c}
|
||||||
|
\GT{name} & \GT{formula} \\ \hline\hline
|
||||||
|
\begin{ttext}[cyanide]\eng{Cyanide}\ger{Zyanid}\end{ttext} & \ce{CN} \\ \hline
|
||||||
|
\begin{ttext}[ammonia]\eng{Ammonia}\ger{Ammoniak}\end{ttext} & \ce{NH3} \\ \hline
|
||||||
|
\begin{ttext}[hydrogen peroxide]\eng{Hydrogen Peroxide}\ger{Wasserstoffperoxid}\end{ttext} & \ce{H2O2} \\ \hline
|
||||||
|
\begin{ttext}[sulfuric acid]\eng{Sulfuric Acid}\ger{Schwefelsäure}\end{ttext} & \ce{H2SO4} \\ \hline
|
||||||
|
\begin{ttext}[ethanol]\eng{Ethanol}\ger{Ethanol}\end{ttext} & \ce{C2H5OH} \\ \hline
|
||||||
|
\begin{ttext}[acetic acid]\eng{Acetic Acid}\ger{Essigsäure}\end{ttext} & \ce{CH3COOH} \\ \hline
|
||||||
|
\begin{ttext}[methane]\eng{Methane}\ger{Methan}\end{ttext} & \ce{CH4} \\ \hline
|
||||||
|
\begin{ttext}[hydrochloric acid]\eng{Hydrochloric Acid}\ger{Salzsäure}\end{ttext} & \ce{HCl} \\ \hline
|
||||||
|
\begin{ttext}[sodium hydroxide]\eng{Sodium Hydroxide}\ger{Natriumhydroxid}\end{ttext} & \ce{NaOH} \\ \hline
|
||||||
|
\begin{ttext}[nitric acid]\eng{Nitric Acid}\ger{Salpetersäure}\end{ttext} & \ce{HNO3} \\ \hline
|
||||||
|
\begin{ttext}[calcium carbonate]\eng{Calcium Carbonate}\ger{Calciumcarbonat}\end{ttext} & \ce{CaCO3} \\ \hline
|
||||||
|
\begin{ttext}[glucose]\eng{Glucose}\ger{Glukose}\end{ttext} & \ce{C6H12O6} \\ \hline
|
||||||
|
\begin{ttext}[benzene]\eng{Benzene}\ger{Benzol}\end{ttext} & \ce{C6H6} \\ \hline
|
||||||
|
\begin{ttext}[acetone]\eng{Acetone}\ger{Aceton}\end{ttext} & \ce{C3H6O} \\ \hline
|
||||||
|
\begin{ttext}[ethylene]\eng{Ethylene}\ger{Ethylen}\end{ttext} & \ce{C2H4} \\ \hline
|
||||||
|
\begin{ttext}[potassium permanganate]\eng{Potassium Permanganate}\ger{Kaliumpermanganat}\end{ttext} & \ce{KMnO4} \\ \hline
|
||||||
|
\end{tabular}
|
||||||
|
\end{formula}
|
1054
src/ch/periodic_table.tex
Normal file
1054
src/ch/periodic_table.tex
Normal file
File diff suppressed because it is too large
Load Diff
95
src/cm/charge_transport.tex
Normal file
95
src/cm/charge_transport.tex
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Charge transport}
|
||||||
|
\ger{Ladungstransport}
|
||||||
|
]{charge_transport}
|
||||||
|
\Subsection[
|
||||||
|
\eng{Drude model}
|
||||||
|
\ger{Drude-Modell}
|
||||||
|
]{drude}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Classical model describing the transport properties of electrons in materials (metals):
|
||||||
|
The material is assumed to be an ion lattice and with freely moving electrons (electron gas). The electrons are
|
||||||
|
accelerated by an electric field and decelerated through collisions with the lattice ions.
|
||||||
|
The model disregards the Fermi-Dirac partition of the conducting electrons.
|
||||||
|
}
|
||||||
|
\ger{Ein klassisches Model zur Beschreibung der Transporteigenschaften von Elektronen in (v.a.) Metallen:
|
||||||
|
Der Festkörper wird als Ionenkristall mit frei beweglichen Elektronen (Elektronengas).
|
||||||
|
Die Elektronen werden durch ein Elektrisches Feld $E$ beschleunigt und durch Stöße mit den Gitterionen gebremst.
|
||||||
|
Das Modell vernachlässigt die Fermi-Dirac Verteilung der Leitungselektronen.
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{motion}
|
||||||
|
\desc{Equation of motion}{}{$v$ electron speed, $\vec{v}_\text{D}$ drift velocity, $\tau$ mean free time between collisions}
|
||||||
|
\desc[german]{Bewegungsgleichung}{}{$v$ Elektronengeschwindigkeit, $\vec{v}_\text{D}$ Driftgeschwindigkeit, $\tau$ Stoßzeit}
|
||||||
|
\eq{\masse \odv{\vec{v}}{t} + \frac{\masse}{\tau} \vec{v}_\text{D} = -e \vec{\E}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{scattering_time}
|
||||||
|
\desc{Scattering time}{Momentum relaxation time}{}
|
||||||
|
\desc[german]{Streuzeit}{}{}
|
||||||
|
\quantity{\tau}{\s}{s}
|
||||||
|
\ttxt{
|
||||||
|
\eng{$\tau$\\ the average time between scattering events weighted by the characteristic momentum change cause by the scattering process.}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{current_density}
|
||||||
|
\desc{Current density}{Ohm's law}{$n$ charge particle density}
|
||||||
|
\desc[german]{Stromdichte}{Ohmsches Gesetz}{$n$ Ladungsträgerdichte}
|
||||||
|
\quantity{\vec{j}}{\ampere\per\m^2}{v}
|
||||||
|
\eq{\vec{j} = -ne\vec{v}_\text{D} = ne\mu \vec{\E}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{conductivity}
|
||||||
|
\desc{Drude-conductivity}{}{}
|
||||||
|
\desc[german]{Drude-Leitfähigkeit}{}{}
|
||||||
|
\eq{\sigma = \frac{\vec{j}}{\vec{\E}} = \frac{e^2 \tau n}{\masse} = n e \mu}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Sommerfeld model}
|
||||||
|
\ger{Sommerfeld-Modell}
|
||||||
|
]{sommerfeld}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Assumes a gas of free fermions underlying the pauli-exclusion principle. Only electrons in an energy range of $\kB T$ around the Fermi energy $\EFermi$ participate in scattering processes.}
|
||||||
|
\ger{Annahme eines freien Fermionengases, welches dem Pauli-Prinzip unterliegt. Nur Elektronen in einem Energiebereich von $\kB T$ um die Fermi Energe $\EFermi$ nehmen an Streuprozessen teil.}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{current_density}
|
||||||
|
\desc{Electrical current density}{}{}
|
||||||
|
\desc[german]{Elektrische Stromdichte}{}{}
|
||||||
|
\eq{\vec{j} = -en\braket{v} = -e n \frac{\hbar}{\masse}\braket{\vec{k}} = -e \frac{1}{V} \sum_{\vec{k},\sigma} \frac{\hbar \vec{k}}{\masse}}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{The formula for the conductivity is the same as in the drude model?}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Boltzmann-transport}
|
||||||
|
\ger{Boltzmann-Transport}
|
||||||
|
]{boltzmann}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Semiclassical description using a probability distribution (\fqEqRef{stat:todo:fermi_dirac}) to describe the particles.}
|
||||||
|
\ger{Semiklassische Beschreibung, benutzt eine Wahrscheinlichkeitsverteilung (\fqEqRef{stat:todo:fermi_dirac}).}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{boltzmann_transport}
|
||||||
|
\desc{Boltzmann Transport equation}{for charge transport}{$f$ \ref{stat:todo:fermi-dirac}}
|
||||||
|
\desc[german]{Boltzmann-Transportgleichung}{für Ladungstransport}{}
|
||||||
|
\eq{
|
||||||
|
\pdv{f(\vec{r},\vec{k},t)}{t} = -\vec{v} \cdot \Grad_{\vec{r}} f - \frac{e}{\hbar}(\vec{\mathcal{E}} + \vec{v} \times \vec{B}) \cdot \Grad_{\vec{k}} f + \left(\pdv{f(\vec{r},\vec{k},t)}{t}\right)_{\text{\GT{scatter}}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{misc}
|
||||||
|
\ger{misc}
|
||||||
|
]{misc}
|
||||||
|
\begin{formula}{tsu_esaki}
|
||||||
|
\desc{Tsu-Esaki tunneling current}{Describes the current $I_{\txL \leftrightarrow \txR}$ through a barrier}{$\mu_i$ \qtyRef{chemical_pot} at left/right side, $U_i$ voltage on left/right side. Electrons occupy region between $U_i$ and $\mu_i$}
|
||||||
|
\desc[german]{Tsu-Esaki Tunnelstrom}{Beschreibt den Strom $I_{\txL \leftrightarrow \txR}$ durch eine Barriere }{$\mu_i$ \qtyRef{chemical_pot} links/rechts, $U_i$ Spannung links/rechts. Elektronen besetzen Bereich zwischen $U_i$ und $\mu_i$}
|
||||||
|
\eq{
|
||||||
|
I_\text{T} = \frac{2e}{h} \int_{U_\txL}^\infty \left(f(E, \mu_\txL) -f(E, \mu_\txR)\right) T(E) \d E
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{continuity}
|
||||||
|
\desc{Charge continuity equation}{Electric charge can only change by the amount of electric current}{\QtyRef{charge_density}, \QtyRef{current_density}}
|
||||||
|
\desc[german]{Kontinuitätsgleichung der Ladung}{Elektrische Ladung kann sich nur durch die Stärke des Stromes ändern}{}
|
||||||
|
\eq{
|
||||||
|
\pdv{\rho}{t} = - \nabla \vec{j}
|
||||||
|
}
|
||||||
|
\end{formula}
|
60
src/cm/cm.tex
Normal file
60
src/cm/cm.tex
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
\Part[
|
||||||
|
\eng{Condensed matter physics}
|
||||||
|
\ger{Festkörperphysik}
|
||||||
|
]{cm}
|
||||||
|
\TODO{Bonds, hybridized orbitals}
|
||||||
|
\TODO{Lattice vibrations, van hove singularities, debye frequency}
|
||||||
|
|
||||||
|
\begin{formula}{dos}
|
||||||
|
\desc{Density of states (DOS)}{}{\QtyRef{volume}, $N$ number of energy levels, \QtyRef{energy}}
|
||||||
|
\desc[german]{Zustandsdichte (DOS)}{}{\QtyRef{volume}, $N$ Anzahl der Energieniveaus, \QtyRef{energy}}
|
||||||
|
\eq{D(E) = \frac{1}{V}\sum_{i=1}^{N} \delta(E-E(\vec{k_i}))}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{dos_parabolic}
|
||||||
|
\desc{Density of states for parabolic dispersion}{Applies to \fqSecRef{cm:egas}}{}
|
||||||
|
\desc[german]{Zustandsdichte für parabolische Dispersion}{Bei \fqSecRef{cm:egas}}{}
|
||||||
|
\eq{
|
||||||
|
D_1(E) &= \frac{1}{2\sqrt{c_k(E-E_0)}} && (\text{1D}) \\
|
||||||
|
D_2(E) &= \frac{\pi}{2c_k} && (\text{2D}) \\
|
||||||
|
D_3(E) &= \pi \sqrt{\frac{E-E_0}{c_k^3}}&& (\text{3D})
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Lattice vibrations}
|
||||||
|
\ger{Gitterschwingungen}
|
||||||
|
]{vib}
|
||||||
|
|
||||||
|
\begin{formula}{dispersion_1atom_basis}
|
||||||
|
\desc{Phonon dispersion of a lattice with a one-atom basis}{same as the dispersion of a linear chain}{$C_n$ force constants between layer $s$ and $s+n$, $M$ \qtyRef{mass} of the reference atom, $a$ \qtyRef{lattice_constant}, $q$ phonon \qtyRef{wavevector}, $u$ Ansatz for the atom displacement}
|
||||||
|
\desc[german]{Phonondispersion eines Gitters mit zweiatomiger Basis}{gleich der Dispersion einer linearen Kette}{$C_n$ Kraftkonstanten zwischen Ebene $s$ und $s+n$, $M$ \qtyRef{mass} des Referenzatoms, $a$ \qtyRef{lattice_constant}, $q$ Phonon \qtyRef{wavevector}, $u$ Ansatz für die Atomauslenkung}
|
||||||
|
\eq{
|
||||||
|
\omega^2 = \frac{4C_1}{M}\left[\sin^2 \left(\frac{qa}{2}\right) + \frac{C2}{C1} \sin^2(qa)\right] \\
|
||||||
|
\intertext{\GT{with}}
|
||||||
|
u_{s+n} = U\e^{-i \left[\omega t - q(s+n)a \right]}
|
||||||
|
}
|
||||||
|
\fig{img/cm_phonon_dispersion_one_atom_basis.pdf}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{Plots}
|
||||||
|
\begin{formula}{dispersion_2atom_basis}
|
||||||
|
\desc{Phonon dispersion of a lattice with a two-atom basis}{}{$C$ force constant between layers, $M_i$ \qtyRef{mass} of the basis atoms, $a$ \qtyRef{lattice_constant}, $q$ phonon \qtyRef{wavevector}, $u, v$ Ansatz for the displacement of basis atom 1 and 2, respectively}
|
||||||
|
\desc[german]{Phonondispersion eines Gitters mit einatomiger Basis}{}{$C$ Kraftkonstanten zwischen Ebene $s$ und $s+n$, $M_i$ \qtyRef{mass} der Basisatome, $a$ \qtyRef{lattice_constant}, $q$ Phonon \qtyRef{wavevector}, $u, v$ jeweils Ansatz für die Atomauslenkung des Basisatoms 1 und 2}
|
||||||
|
\eq{
|
||||||
|
\omega^2_{\txa,\txo} = C \left(\frac{1}{M_1}+\frac{1}{M_2}\right) \mp C \sqrt{\left(\frac{1}{M_1}+\frac{1}{M_2}\right)^2 - \frac{4}{M_1M_2} \sin^2 \left(\frac{qa}{2}\right)}
|
||||||
|
\intertext{\GT{with}}
|
||||||
|
u_{s} = U\e^{-i \left(\omega t - qsa \right)}, \quad
|
||||||
|
v_{s} = V\e^{-i \left(\omega t - qsa \right)}
|
||||||
|
}
|
||||||
|
\fig{img/cm_phonon_dispersion_two_atom_basis.pdf}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Debye model}
|
||||||
|
\ger{Debye-Modell}
|
||||||
|
]{debye}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Atoms behave like coupled \hyperref[sec:qm:hosc]{quantum harmonic oscillators}. The finite sample size leads to periodic boundary conditio. The finite sample size leads to periodic boundary conditions for the vibrations.}
|
||||||
|
\ger{Atome verhalten sich wie gekoppelte \hyperref[sec:qm:hosc]{quantenmechanische harmonische Oszillatoren}. Die endliche Ausdehnung des Körpers führt zu periodischen Randbedingungen. }
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
|
182
src/cm/crystal.tex
Normal file
182
src/cm/crystal.tex
Normal file
@ -0,0 +1,182 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Crystals}
|
||||||
|
\ger{Kristalle}
|
||||||
|
]{crystal}
|
||||||
|
\Subsection[
|
||||||
|
\eng{Bravais lattice}
|
||||||
|
\ger{Bravais-Gitter}
|
||||||
|
]{bravais}
|
||||||
|
|
||||||
|
|
||||||
|
\Eng[lattice_system]{Lattice system}
|
||||||
|
\Ger[lattice_system]{Gittersystem}
|
||||||
|
\Eng[crystal_family]{Crystal system}
|
||||||
|
\Ger[crystal_family]{Kristall-system}
|
||||||
|
\Eng[point_group]{Point group}
|
||||||
|
\Ger[point_group]{Punktgruppe}
|
||||||
|
\eng[bravais_lattices]{Bravais lattices}
|
||||||
|
\ger[bravais_lattices]{Bravais Gitter}
|
||||||
|
|
||||||
|
\newcommand\bvimg[1]{\begin{center}\includegraphics[width=0.1\textwidth]{img/bravais/#1.pdf}\end{center}}
|
||||||
|
\renewcommand\tabularxcolumn[1]{m{#1}}
|
||||||
|
\newcolumntype{Z}{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}X}
|
||||||
|
|
||||||
|
\begin{bigformula}{2d}
|
||||||
|
\desc{2D}{In 2D, there are 5 different Bravais lattices}{}
|
||||||
|
\desc[german]{2D}{In 2D gibt es 5 verschiedene Bravais-Gitter}{}
|
||||||
|
\begin{adjustbox}{width=\textwidth}
|
||||||
|
\begin{tabularx}{\textwidth}{||Z|c|Z|Z||}
|
||||||
|
\hline
|
||||||
|
\multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{2}{c||}{5 \gt{bravais_lattices}} \\ \cline{3-4}
|
||||||
|
& & \GT{primitive} (p) & \GT{centered} (c) \\ \hline
|
||||||
|
\GT{monoclinic} (m) & $\text{C}_\text{2}$ & \bvimg{mp} & \\ \hline
|
||||||
|
\GT{orthorhombic} (o) & $\text{D}_\text{2}$ & \bvimg{op} & \bvimg{oc} \\ \hline
|
||||||
|
\GT{tetragonal} (t) & $\text{D}_\text{4}$ & \bvimg{tp} & \\ \hline
|
||||||
|
\GT{hexagonal} (h) & $\text{D}_\text{6}$ & \bvimg{hp} & \\ \hline
|
||||||
|
\end{tabularx}
|
||||||
|
\end{adjustbox}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{bigformula}{3d}
|
||||||
|
\desc{3D}{In 3D, there are 14 different Bravais lattices}{}
|
||||||
|
\desc[german]{3D}{In 3D gibt es 14 verschiedene Bravais-Gitter}{}
|
||||||
|
% \newcolumntype{g}{>{\columncolor[]{0.8}}}
|
||||||
|
\begin{adjustbox}{width=\textwidth}
|
||||||
|
\begin{tabularx}{\textwidth}{||Z|Z|c|Z|Z|Z|Z||}
|
||||||
|
\hline
|
||||||
|
\multirow{2}{*}{\GT{crystal_family}} & \multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{4}{c||}{14 \gt{bravais_lattices}} \\ \cline{4-7}
|
||||||
|
& & & \GT{primitive} (P) & \GT{base_centered} (S) & \GT{body_centered} (I) & \GT{face_centered} (F) \\ \hline
|
||||||
|
\multicolumn{2}{||c|}{\GT{triclinic} (a)} & $\text{C}_\text{i}$ & \bvimg{tP} & & & \\ \hline
|
||||||
|
\multicolumn{2}{||c|}{\GT{monoclinic} (m)} & $\text{C}_\text{2h}$ & \bvimg{mP} & \bvimg{mS} & & \\ \hline
|
||||||
|
\multicolumn{2}{||c|}{\GT{orthorhombic} (o)} & $\text{D}_\text{2h}$ & \bvimg{oP} & \bvimg{oS} & \bvimg{oI} & \bvimg{oF} \\ \hline
|
||||||
|
\multicolumn{2}{||c|}{\GT{tetragonal} (t)} & $\text{D}_\text{4h}$ & \bvimg{tP} & & \bvimg{tI} & \\ \hline
|
||||||
|
\multirow{2}{*}{\GT{hexagonal} (h)} & \GT{rhombohedral} & $\text{D}_\text{3d}$ & \bvimg{hR} & & & \\ \cline{2-7}
|
||||||
|
& \GT{hexagonal} & $\text{D}_\text{6h}$ & \bvimg{hP} & & & \\ \hline
|
||||||
|
\multicolumn{2}{||c|}{\GT{cubic} (c)} & $\text{O}_\text{h}$ & \bvimg{cP} & & \bvimg{cI} & \bvimg{cF} \\ \hline
|
||||||
|
\end{tabularx}
|
||||||
|
\end{adjustbox}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\begin{formula}{lattice_constant}
|
||||||
|
\desc{Lattice constant}{Parameter (length or angle) describing the smallest unit cell}{}
|
||||||
|
\desc[german]{Gitterkonstante}{Parameter (Länge oder Winkel) der die Einheitszelle beschreibt}{}
|
||||||
|
\quantity{a}{}{s}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{lattice_vector}
|
||||||
|
\desc{Lattice vector}{}{$n_i \in \Z$}
|
||||||
|
\desc[german]{Gittervektor}{}{}
|
||||||
|
\quantity{\vec{R}}{}{\angstrom}
|
||||||
|
\eq{\vec{R} = n_1 \vec{a_1} + n_2 \vec{a_2} + n_3 \vec{a_3}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\TODO{primitive unit cell: contains one lattice point}\\
|
||||||
|
\begin{formula}{miller}
|
||||||
|
\desc{Miller index}{}{Miller family: planes that are equivalent due to crystal symmetry}
|
||||||
|
\desc[german]{Millersche Indizes}{}{}
|
||||||
|
\eq{
|
||||||
|
(hkl) & \text{\GT{plane}}\\
|
||||||
|
[hkl] & \text{\GT{direction}}\\
|
||||||
|
\{hkl\} & \text{\GT{millerFamily}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Reciprocal lattice}
|
||||||
|
\ger{Reziprokes Gitter}
|
||||||
|
]{reci}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{The reciprokal lattice is made up of all the wave vectors $\vec{k}$ that ressemble standing waves with the periodicity of the Bravais lattice.}
|
||||||
|
\ger{Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren $\vec{k}$, die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{vectors}
|
||||||
|
\desc{Reciprocal lattice vectors}{}{$a_i$ real-space lattice vectors, $V_c$ volume of the primitive lattice cell}
|
||||||
|
\desc[german]{Reziproke Gittervektoren}{}{$a_i$ Bravais-Gitter Vektoren, $V_c$ Volumen der primitiven Gitterzelle}
|
||||||
|
\eq{
|
||||||
|
\vec{b_1} &= \frac{2\pi}{V_c} \vec{a_2} \times \vec{a_3} \\
|
||||||
|
\vec{b_2} &= \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1} \\
|
||||||
|
\vec{b_3} &= \frac{2\pi}{V_c} \vec{a_1} \times \vec{a_2}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{reciprocal_lattice_vector}
|
||||||
|
\desc{Reciprokal attice vector}{}{$n_i \in \Z$}
|
||||||
|
\desc[german]{Reziproker Gittervektor}{}{}
|
||||||
|
\quantity{\vec{G}}{}{\angstrom}
|
||||||
|
\eq{\vec{G}_{{hkl}} = h \vec{b_1} + k \vec{b_2} + l \vec{b_3}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Scattering processes}
|
||||||
|
\ger{Streuprozesse}
|
||||||
|
]{scatter}
|
||||||
|
\begin{formula}{matthiessen}
|
||||||
|
\desc{Matthiessen's rule}{Approximation, only holds if the processes are independent of each other}{\QtyRef{mobility}, \QtyRef{scattering_time}}
|
||||||
|
\desc[german]{Matthiessensche Regel}{Näherung, nur gültig wenn die einzelnen Streuprozesse von einander unabhängig sind}{}
|
||||||
|
\eq{
|
||||||
|
\frac{1}{\mu} &= \sum_{i = \textrm{\GT{\fqname}}} \frac{1}{\mu_i} \\
|
||||||
|
\frac{1}{\tau} &= \sum_{i = \textrm{\GT{\fqname}}} \frac{1}{\tau_i}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Lattices}
|
||||||
|
\ger{Gitter}
|
||||||
|
]{lat}
|
||||||
|
\begin{formula}{sc}
|
||||||
|
\desc{Simple cubic (SC)}{Reciprocal: Simple cubic}{\QtyRef{lattice_constant}}
|
||||||
|
\desc[german]{Einfach kubisch (SC)}{Reziprok: Einfach kubisch}{}
|
||||||
|
\eq{
|
||||||
|
\vec{a}_{1}=a \begin{pmatrix} 1\\0\\0 \end{pmatrix},\,
|
||||||
|
\vec{a}_{2}=a \begin{pmatrix} 0\\1\\0 \end{pmatrix},\,
|
||||||
|
\vec{a}_{3}=a \begin{pmatrix} 0\\0\\1 \end{pmatrix}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{bcc}
|
||||||
|
\desc{Body centered cubic (BCC)}{Reciprocal: \fqEqRef{cm:bravais:fcc}}{\QtyRef{lattice_constant}}
|
||||||
|
\desc[german]{Kubisch raumzentriert (BCC)}{Reziprok: \fqEqRef{cm:bravais:fcc}}{}
|
||||||
|
\eq{
|
||||||
|
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix},\,
|
||||||
|
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix},\,
|
||||||
|
\vec{a}_{3}=\frac{a}{2} \begin{pmatrix} 1\\1\\-1 \end{pmatrix}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{fcc}
|
||||||
|
\desc{Face centered cubic (FCC)}{Reciprocal: \fqEqRef{cm:bravais:bcc}}{\QtyRef{lattice_constant}}
|
||||||
|
\desc[german]{Kubisch flächenzentriert (FCC)}{Reziprok: \fqEqRef{cm:bravais:bcc}}{}
|
||||||
|
\eq{
|
||||||
|
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix},\,
|
||||||
|
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix},\,
|
||||||
|
\vec{a}_{3}=\frac{a}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{diamond}
|
||||||
|
\desc{Diamond lattice}{}{}
|
||||||
|
\desc[german]{Diamantstruktur}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{\fqEqRef{cm:bravais:fcc} with basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
|
||||||
|
\ger{\fqEqRef{cm:bravais:fcc} mit Basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ und $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{zincblende}
|
||||||
|
\desc{Zincblende lattice}{}{}
|
||||||
|
\desc[german]{Zinkblende-Struktur}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\includegraphics[width=0.5\textwidth]{img/cm_zincblende.png}
|
||||||
|
\eng{Like \fqEqRef{cm:bravais:diamond} but with different species on each basis}
|
||||||
|
\ger{Wie \fqEqRef{cm:bravais:diamond} aber mit unterschiedlichen Spezies auf den Basen}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{wurtzite}
|
||||||
|
\desc{Wurtzite structure}{hP4}{}
|
||||||
|
\desc[german]{Wurtzite-Struktur}{hP4}{}
|
||||||
|
\ttxt{
|
||||||
|
\includegraphics[width=0.5\textwidth]{img/cm_wurtzite.png}
|
||||||
|
Placeholder
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
72
src/cm/egas.tex
Normal file
72
src/cm/egas.tex
Normal file
@ -0,0 +1,72 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Free electron gas}
|
||||||
|
\ger{Freies Elektronengase}
|
||||||
|
]{egas}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Assumptions: electrons can move freely and independent of each other.}
|
||||||
|
\ger{Annahmen: Elektronen bewegen sich frei und unabhänig voneinander.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{drift_velocity}
|
||||||
|
\desc{Drift velocity}{Velocity component induced by an external force (eg. electric field)}{$v_\text{th}$ thermal velocity}
|
||||||
|
\desc[german]{Driftgeschwindgkeit}{Geschwindigkeitskomponente durch eine externe Kraft (z.B. ein elektrisches Feld)}{$v_\text{th}$ thermische Geschwindigkeit}
|
||||||
|
\eq{\vec{v}_\text{D} = \vec{v} - \vec{v}_\text{th}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{mean_free_path}
|
||||||
|
\desc{Mean free path}{}{}
|
||||||
|
\desc[german]{Mittlere freie Weglänge}{}{}
|
||||||
|
\eq{\ell = \braket{v} \tau}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{mobility}
|
||||||
|
\desc{Electrical mobility}{How quickly a particle moves through a material when moved by an electric field}{$q$ \qtyRef{charge}, $m$ \qtyRef{mass}, $\tau$ \qtyRef{scattering_time}}
|
||||||
|
\desc[german]{Elektrische Mobilität / Beweglichkeit}{Leichtigkeit mit der sich durch ein Elektrisches Feld beeinflusstes Teilchen im Material bewegt}{}
|
||||||
|
\quantity{\mu}{\centi\m^2\per\volt\s}{s}
|
||||||
|
\eq{\mu = \frac{q \tau}{m}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{2D electron gas}
|
||||||
|
\ger{2D Elektronengas}
|
||||||
|
]{2deg}
|
||||||
|
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Lower dimension gases can be obtained by restricting a 3D gas with infinetly high potential walls on a narrow area with the width $L$.}
|
||||||
|
\ger{
|
||||||
|
Niederdimensionale Elektronengase erhält man, wenn ein 3D Gas durch unendlich hohe Potentialwände auf einem schmalen Bereich mit Breite $L$ eingeschränkt wird.
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{confinement_energy}
|
||||||
|
\desc{Confinement energy}{Raises ground state energy}{}
|
||||||
|
\desc[german]{Confinement Energie}{Erhöht die Grundzustandsenergie}{}
|
||||||
|
\eq{\Delta E = \frac{\hbar^2 \pi^2}{2\masse L^2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Eng[plain_wave]{plain wave}
|
||||||
|
\Ger[plain_wave]{ebene Welle}
|
||||||
|
\begin{formula}{energy}
|
||||||
|
\desc{Energy}{}{}
|
||||||
|
\desc[german]{Energie}{}{}
|
||||||
|
\eq{E_n = \underbrace{\frac{\hbar^2 k_\parallel^2}{2\masse}}_\text{$x$-$y$: \GT{plain_wave}} + \underbrace{\frac{\hbar^2 \pi^2}{2\masse L^2} n^2}_\text{$z$}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{1D electron gas / quantum wire}
|
||||||
|
\ger{1D Eleltronengas / Quantendraht}
|
||||||
|
]{1deg}
|
||||||
|
|
||||||
|
\begin{formula}{energy}
|
||||||
|
\desc{Energy}{}{}
|
||||||
|
\desc[german]{Energie}{}{}
|
||||||
|
\eq{E_n = \frac{\hbar^2 k_x^2}{2\masse} + \frac{\hbar^2 \pi^2}{2\masse L_z^2} n_1^2 + \frac{\hbar^2 \pi^2}{2\masse L_y^2} n_2^2}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{condunctance}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{0D electron gas / quantum dot}
|
||||||
|
\ger{0D Elektronengase / Quantenpunkt}
|
||||||
|
]{0deg}
|
||||||
|
|
||||||
|
\TODO{TODO}
|
||||||
|
|
198
src/cm/low_temp.tex
Normal file
198
src/cm/low_temp.tex
Normal file
@ -0,0 +1,198 @@
|
|||||||
|
\def\L{\text{L}}
|
||||||
|
\def\gl{\text{GL}}
|
||||||
|
\def\GL{Ginzburg-Landau }
|
||||||
|
\def\Tcrit{T_\text{c}}
|
||||||
|
\def\Bcrit{B_\text{c}}
|
||||||
|
\def\ssc{\text{s}}
|
||||||
|
\def\ssn{\text{n}}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Superconductivity}
|
||||||
|
\ger{Supraleitung}
|
||||||
|
]{sc}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
Materials for which the electric resistance jumps to 0 under a critical temperature $\Tcrit$.
|
||||||
|
Below $\Tcrit$ they have perfect conductivity and perfect diamagnetism, up until a critical magnetic field $\Bcrit$.
|
||||||
|
\\\textbf{Type I}: Has a single critical magnetic field at which the superconuctor becomes a normal conductor.
|
||||||
|
\\\textbf{Type II}: Has two critical
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Materialien, bei denen der elektrische Widerstand beim unterschreiten einer kritischen Temperatur $\Tcrit$ auf 0 springt.
|
||||||
|
Sie verhalten sich dann wie ideale Leiter und ideale Diamagnete, bis zu einem kritischen Feld $\Bcrit$.
|
||||||
|
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{perfect_conductor}
|
||||||
|
\desc{Perfect conductor}{}{}
|
||||||
|
\desc[german]{Ideale Leiter}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{
|
||||||
|
In contrast to a superconductor, perfect conductors become diamagnetic only when the external magnetic field is turned on \textbf{after} the material was cooled below the critical temperature.
|
||||||
|
(\fqEqRef{ed:fields:mag:induction:lenz})
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Im Gegensatz zu einem Supraleiter werden ideale Leiter nur dann diamagnetisch, wenn das externe magnetische Feld \textbf{nach} dem Abkühlen unter die kritische Temperatur eingeschaltet wird.
|
||||||
|
(\fqEqRef{ed:fields:mag:induction:lenz})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{meissner_effect}
|
||||||
|
\desc{Meißner-Ochsenfeld effect}{Perfect diamagnetism}{}
|
||||||
|
\desc[german]{Meißner-Ochsenfeld Effekt}{Idealer Diamagnetismus}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{External magnetic field decays exponetially inside the superconductor below a critical temperature and a critical magnetic field.}
|
||||||
|
\ger{Externes Magnetfeld fällt im Supraleiter exponentiell unterhalb einer kritischen Temperatur und unterhalb einer kritischen Feldstärke ab.}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\Subsection[
|
||||||
|
\eng{London equations}
|
||||||
|
\ger{London-Gleichungen}
|
||||||
|
]{london}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
Quantitative description of the \fqEqRef{cm:sc:meissner_effect}.
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Quantitative Beschreibung des \fqEqRef{cm:sc:meissner_effect}s.
|
||||||
|
}
|
||||||
|
|
||||||
|
\end{ttext}
|
||||||
|
% \begin{formula}{coefficient}
|
||||||
|
% \desc{London-coefficient}{}{}
|
||||||
|
% \desc[german]{London-Koeffizient}{}{}
|
||||||
|
% \eq{\Lambda = \frac{m_\ssc}{n_\ssc q_\ssc^2}}
|
||||||
|
% \end{formula}
|
||||||
|
\begin{formula}{first}
|
||||||
|
% \vec{j} = \frac{nq\hbar}{m}\Grad S - \frac{nq^2}{m}\vec{A}
|
||||||
|
\desc{First London Equation}{}{$\vec{j}$ current density, $n_\ssc$, $m_\ssc$, $q_\ssc$ density, mass and charge of superconduticng particles}
|
||||||
|
\desc[german]{Erste London-Gleichun-}{}{$\vec{j}$ Stromdichte, $n_\ssc$, $m_\ssc$, $q_\ssc$ Dichte, Masse und Ladung der supraleitenden Teilchen}
|
||||||
|
\eq{
|
||||||
|
\pdv{\vec{j}_{\ssc}}{t} = \frac{n_\ssc q_\ssc^2}{m_\ssc}\vec{E} {\color{gray}- \Order{\vec{j}_\ssc^2}}
|
||||||
|
% \\{\color{gray} = \frac{q}{m}\Grad \left(\frac{1}{2} \TODO{FActor} \vec{j}^2\right)}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{second}
|
||||||
|
\desc{Second London Equation}{Describes the \fqEqRef{cm:sc:meissner_effect}}{$\vec{j}$ current density, $n_\ssc$, $m_\ssc$, $q_\ssc$ density, mass and charge of superconduticng particles}
|
||||||
|
\desc[german]{Zweite London-Gleichung}{Beschreibt den \fqEqRef{cm:sc:meissner_effect}}{$\vec{j}$ Stromdichte, $n_\ssc$, $m_\ssc$, $q_\ssc$ Dichte, Masse und Ladung der supraleitenden Teilchen}
|
||||||
|
\eq{
|
||||||
|
\Rot \vec{j_\ssc} = -\frac{n_\ssc q_\ssc^2}{m_\ssc} \vec{B}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{penetration_depth}
|
||||||
|
\desc{London penetration depth}{}{}
|
||||||
|
\desc[german]{London Eindringtiefe}{}{}
|
||||||
|
\eq{\lambda_\L = \sqrt{\frac{m_\ssc}{\mu_0 n_\ssc q_\ssc^2}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{\GL Theory (GLAG)}
|
||||||
|
\ger{\GL Theorie (GLAG)}
|
||||||
|
]{gl}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
\TODO{TODO}
|
||||||
|
}
|
||||||
|
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{coherence_length}
|
||||||
|
\desc{\GL Coherence Length}{}{}
|
||||||
|
\desc[german]{\GL Kohärenzlänge}{}{}
|
||||||
|
\eq{
|
||||||
|
\xi_\gl &= \frac{\hbar}{\sqrt{2m \abs{\alpha}}} \\
|
||||||
|
\xi_\gl(T) &= \xi_\gl(0) \frac{1}{\sqrt{1-\frac{T}{\Tcrit}}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{penetration_depth}
|
||||||
|
\desc{\GL Penetration Depth / Field screening length}{}{}
|
||||||
|
\desc[german]{\GL Eindringtiefe}{}{}
|
||||||
|
\eq{
|
||||||
|
\lambda_\gl &= \sqrt{\frac{m_\ssc\beta}{\mu_0 \abs{\alpha} q_s^2}} \\
|
||||||
|
\lambda_\gl(T) &= \lambda_\gl(0) \frac{1}{\sqrt{1-\frac{T}{\Tcrit}}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{first}
|
||||||
|
\desc{First Ginzburg-Landau Equation}{}{$\xi_\gl$ \fqEqRef{cm:sc:gl:coherence_length}, $\lambda_\gl$ \fqEqRef{cm:sc:gl:penetration_depth}}
|
||||||
|
\desc[german]{Erste Ginzburg-Landau Gleichung}{}{}
|
||||||
|
\eq{\alpha\Psi + \beta\abs{\Psi}^2 \Psi + \frac{1}{2m} (-i\hbar \Grad + 2e\vec{A})^2\Psi = 0}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{second}
|
||||||
|
\desc{Second Ginzburg-Landau Equation}{}{}
|
||||||
|
\desc[german]{Zweite Ginzburg-Landau Gleichung}{}{}
|
||||||
|
\eq{\vec{j_\ssc} = \frac{ie\hbar}{m}(\Psi^*\Grad\Psi - \Psi\Grad\Psi^*) - \frac{4e^2}{m}\abs{\Psi}^2 \vec{A}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\TODO{proximity effect}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Microscopic theory}
|
||||||
|
\ger{Mikroskopische Theorie}
|
||||||
|
]{micro}
|
||||||
|
|
||||||
|
\begin{formula}{isotop_effect}
|
||||||
|
\desc{Isotope effect}{Superconducting behaviour depends on atomic mass and thereby of the lattice \Rightarrow Microscopic origin}{$\Tcrit$ critial temperature, $M$ isotope mass, $\omega_\text{ph}$}
|
||||||
|
\desc[german]{Isotopeneffekt}{Supraleitung hängt von der Atommasse und daher von den Gittereigenschaften ab \Rightarrow Mikroskopischer Ursprung}{$\Tcrit$ kritische Temperatur, $M$ Isotopen-Masse, $\omega_\text{ph}$}
|
||||||
|
\eq{
|
||||||
|
\Tcrit \propto \frac{1}{\sqrt{M}} \\
|
||||||
|
\omega_\text{ph} \propto \frac{1}{\sqrt{M}} \Rightarrow \Tcrit \propto \omega_\text{ph}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{cooper_pairs}
|
||||||
|
\desc{Cooper pairs}{}{}
|
||||||
|
\desc[german]{Cooper-Paars}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Conduction electrons reduce their energy through an attractive interaction: One electron passing by atoms attracts the these, which creats a positive charge region behind the electron, which in turn attracts another electron. }
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{BCS-Theory}
|
||||||
|
\ger{BCS-Theorie}
|
||||||
|
]{bcs}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
Electron pairs form bosonic quasi-particles called Cooper pairs which can condensate into the ground state.
|
||||||
|
The wave function spans the whole material, which makes it conduct without resistance.
|
||||||
|
The exchange bosons between the electrons are phonons.
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Elektronenpaar bilden bosonische Quasipartikel (Cooper Paare) welche in den Grundzustand kondensieren können.
|
||||||
|
Die Wellenfunktion übersoannt den gesamten Festkörper, was einen widerstandslosen Ladungstransport garantiert.
|
||||||
|
Die Austauschbosononen zwischen den Elektronen sind Bosonen.
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
\def\BCS{{\text{BCS}}}
|
||||||
|
\begin{formula}{hamiltonian}
|
||||||
|
\desc{BCS Hamiltonian}{for $N$ interacting electrons}{
|
||||||
|
$c_{\veck\sigma}$ creation/annihilation operators create/destroy at $\veck$ with spin $\sigma$ \\
|
||||||
|
First term: non-interacting free electron gas\\
|
||||||
|
Second term: interaction energy
|
||||||
|
}
|
||||||
|
\desc[german]{BCS Hamiltonian}{}{}
|
||||||
|
\eq{
|
||||||
|
\hat{H}_\BCS =
|
||||||
|
\sum_{\sigma} \sum_\veck \epsilon_\veck \hat{c}_{\veck\sigma}^\dagger \hat{c}_{\veck\sigma}
|
||||||
|
+ \sum_{\veck,\veck^\prime} V_{\veck,\veck^\prime}
|
||||||
|
\hat{c}_{\veck\uparrow}^\dagger \hat{c}_{-\veck\downarrow}^\dagger
|
||||||
|
\hat{c}_{-\veck^\prime\downarrow} \hat{c}_{\veck^\prime,\uparrow}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{bogoliubov-valatin}
|
||||||
|
\desc{Bogoliubov-Valatin transformation}{Diagonalization of the \fqEqRef{cm:sc:micro:bcs:hamiltonian} to derive excitation energies}{}
|
||||||
|
\desc[german]{Bogoliubov-Valatin transformation}{}{}
|
||||||
|
\eq{
|
||||||
|
\hat{H}_\BCS - N\mu = \sum_\veck \big[\xi_\veck - E_\veck + \Delta_\veck g_\veck^*\big] + \sum_\veck \big[E_\veck a_\veck^\dagger a_\veck + E_\veck \beta_{-\veck}^\dagger \beta_{-\veck}\big]
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{gap_equation}
|
||||||
|
\desc{BCS-gap equation}{}{}
|
||||||
|
\desc[german]{}{}{}
|
||||||
|
\eq{\Delta_\veck^* = -\sum_\veck^+\prime V_{\veck,\veck^\prime} \frac{\Delta_{\veck^\prime}}{2E_\veck} \tanh \left(\frac{E_{\veck^\prime}}{2\kB T}\right)}
|
||||||
|
\end{formula}
|
28
src/cm/mat.tex
Normal file
28
src/cm/mat.tex
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Material physics}
|
||||||
|
\ger{Materialphysik}
|
||||||
|
]{mat}
|
||||||
|
|
||||||
|
\begin{formula}{tortuosity}
|
||||||
|
\desc{Tortuosity}{Degree of the winding of a transport path through a porous material. \\ Multiple definitions exist}{$l$ path length, $L$ distance of the end points}
|
||||||
|
\desc[german]{Toruosität}{Grad der Gewundenheit eines Transportweges in einem porösen Material. \\ Mehrere Definitionen existieren}{$l$ Weglänge, $L$ Distanz der Endpunkte}
|
||||||
|
\quantity{\tau}{}{}
|
||||||
|
\eq{
|
||||||
|
\tau &= \left(\frac{l}{L}\right)^2 \\
|
||||||
|
\tau &= \frac{l}{L}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{stress}
|
||||||
|
\desc{Stress}{Force per area}{\QtyRef{force}, \QtyRef{area}}
|
||||||
|
\desc[german]{Spannung}{(Engl. "stress") Kraft pro Fläche}{}
|
||||||
|
\quantity{\sigma}{\newton\per\m^2}{v}
|
||||||
|
\eq{\ten{\sigma}_{ij} = \frac{F_i}{A_j}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{strain}
|
||||||
|
\desc{Strain}{}{$\Delta x$ distance from reference position $x_0$}
|
||||||
|
\desc[german]{Dehnung}{(Engl. "strain")}{$\Delta x$ Auslenkung aus der Referenzposition $x_0$}
|
||||||
|
\quantity{\epsilon}{}{s}
|
||||||
|
\eq{\epsilon = \frac{\Delta x}{x_0}}
|
||||||
|
\end{formula}
|
110
src/cm/misc.tex
Normal file
110
src/cm/misc.tex
Normal file
@ -0,0 +1,110 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Band theory}
|
||||||
|
\ger{Bändermodell}
|
||||||
|
]{band}
|
||||||
|
\Subsection[
|
||||||
|
\eng{Hybrid orbitals}
|
||||||
|
\ger{Hybridorbitale}
|
||||||
|
]{hybrid_orbitals}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Hybrid orbitals are linear combinations of other atomic orbitals.}
|
||||||
|
\ger{Hybridorbitale werden durch Linearkombinationen von anderen atomorbitalen gebildet.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
% chemmacros package
|
||||||
|
\begin{formula}{sp3}
|
||||||
|
\desc{sp3 Orbital}{\GT{eg} \ce{CH4}}{}
|
||||||
|
\desc[german]{sp3 Orbital}{}{}
|
||||||
|
\eq{
|
||||||
|
1\text{s} + 3\text{p} = \text{sp3}
|
||||||
|
\orbital{sp3}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{sp2}
|
||||||
|
\desc{sp2 Orbital}{}{}
|
||||||
|
\desc[german]{sp2 Orbital}{}{}
|
||||||
|
\eq{
|
||||||
|
1\text{s} + 2\text{p} = \text{sp2}
|
||||||
|
\orbital{sp2}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{sp}
|
||||||
|
\desc{sp Orbital}{}{}
|
||||||
|
\desc[german]{sp Orbital}{}{}
|
||||||
|
\eq{
|
||||||
|
1\text{s} + 1\text{p} = \text{sp}
|
||||||
|
\orbital{sp}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Diffusion}
|
||||||
|
\ger{Diffusion}
|
||||||
|
]{diffusion}
|
||||||
|
\begin{formula}{diffusion_coefficient}
|
||||||
|
\desc{Diffusion coefficient}{}{}
|
||||||
|
\desc[german]{Diffusionskoeffizient}{}{}
|
||||||
|
\quantity{D}{\m^2\per\s}{s}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{particle_current_density}
|
||||||
|
\desc{Particle current density}{Number of particles through an area}{}
|
||||||
|
\desc[german]{Teilchenstromdichte}{Anzahl der Teilchen durch eine Fläche}{}
|
||||||
|
\quantity{J}{1\per\s^2}{s}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{einstein_relation}
|
||||||
|
\desc{Einstein relation}{Classical}{\QtyRef{diffusion_coefficient}, \mu \qtyRef{mobility}, \QtyRef{temperature}, $q$ \qtyRef{charge}}
|
||||||
|
\desc[german]{Einsteinrelation}{Klassisch}{}
|
||||||
|
\eq{D = \frac{\mu \kB T}{q}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{concentration}
|
||||||
|
\desc{Concentration}{A quantity per volume}{}
|
||||||
|
\desc[german]{Konzentration}{Eine Größe pro Volumen}{}
|
||||||
|
\quantity{c}{x\per\m^3}{s}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{fick_law_1}
|
||||||
|
\desc{Fick's first law}{Particle movement is proportional to concentration gradient}{\QtyRef{particle_current_density}, \QtyRef{diffusion_coefficient}, \QtyRef{concentration}}
|
||||||
|
\desc[german]{Erstes Ficksches Gesetz}{Teilchenbewegung ist proportional zum Konzentrationsgradienten}{}
|
||||||
|
\eq{J = -D\frac{c}{x}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{fick_law_2}
|
||||||
|
\desc{Fick's second law}{}{\QtyRef{particle_current_density}, \QtyRef{diffusion_coefficient}, \QtyRef{concentration}}
|
||||||
|
\desc[german]{Zweites Ficksches Gesetz}{}{}
|
||||||
|
\eq{\pdv{c}{t} = D \pdv[2]{c}{x}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{\GT{misc}}
|
||||||
|
\ger{\GT{misc}}
|
||||||
|
]{misc}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{work_function}
|
||||||
|
\desc{Work function}{Lowest energy required to remove an electron into the vacuum}{}
|
||||||
|
\desc[german]{Austrittsarbeit}{eng. "Work function"; minimale Energie um ein Elektron aus dem Festkörper zu lösen}{}
|
||||||
|
\quantity{W}{\eV}{s}
|
||||||
|
\eq{W = \Evac - \EFermi}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{electron_affinity}
|
||||||
|
\desc{Electron affinity}{Energy required to remove one electron from an anion with one negative charge.\\Energy difference between vacuum level and conduction band}{}
|
||||||
|
\desc[german]{Elektronenaffinität}{Energie, die benötigt wird um ein Elektron aus einem einfach-negativ geladenen Anion zu entfernen. Entspricht der Energiedifferenz zwischen Vakuum-Niveau und dem Leitungsband}{}
|
||||||
|
\quantity{\chi}{\eV}{s}
|
||||||
|
\eq{\chi = \left(\Evac - \Econd\right)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{laser}
|
||||||
|
\desc{Laser}{Light amplification by stimulated emission of radiation}{}
|
||||||
|
\desc[german]{Laser}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{\textit{Gain medium} is energized \textit{pumping energy} (electric current or light), light of certain wavelength is amplified in the gain medium}
|
||||||
|
}
|
||||||
|
\end{formula}
|
160
src/cm/semiconductors.tex
Normal file
160
src/cm/semiconductors.tex
Normal file
@ -0,0 +1,160 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Semiconductors}
|
||||||
|
\ger{Halbleiter}
|
||||||
|
]{semic}
|
||||||
|
\begin{formula}{types}
|
||||||
|
\desc{Intrinsic/extrinsic}{}{$n,p$ \fqEqRef{cm:semic:charge_density_eq}}
|
||||||
|
\desc[german]{Intrinsisch/Extrinsisch}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{
|
||||||
|
Intrinsic: pure, electron density determiend only by thermal excitation and $n_i^2 = n_0 p_0$\\
|
||||||
|
Extrinsic: doped
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Intrirnsisch: Pur, Elektronendichte gegeben durch thermische Anregung und $n_i^2 = n_0 p_0$ \\
|
||||||
|
Extrinsisch: gedoped
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{charge_density_eq}
|
||||||
|
\desc{Equilibrium charge densitites}{Holds when $\frac{\Econd-\EFermi}{\kB T}>3.6$ and $\frac{\EFermi-\Evalence}{\kB T} > 3.6$}{}
|
||||||
|
\desc[german]{Ladungsträgerdichte im Equilibrium}{Gilt wenn $\frac{\Econd-\EFermi}{\kB T}>3.6$ und $\frac{\EFermi-\Evalence}{\kB T} > 3.6$}{}
|
||||||
|
\eq{
|
||||||
|
n_0 &\approx N_\text{c}(T) \Exp{-\frac{E_\text{c} - \EFermi}{\kB T}} \\
|
||||||
|
p_0 &\approx N_\text{v}(T) \Exp{-\frac{\EFermi - E_\text{v}}{\kB T}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{charge_density_intrinsic}
|
||||||
|
\desc{Intrinsic charge density}{}{}
|
||||||
|
\desc[german]{Intrinsische Ladungsträgerdichte}{}{}
|
||||||
|
\eq{
|
||||||
|
n_\text{i} \approx \sqrt{n_0 p_0} = \sqrt{N_\text{c}(T) N_\text{v}(T)} \Exp{-\frac{E_\text{gap}}{2\kB T}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{mass_action}
|
||||||
|
\desc{Mass action law}{Charge densities at thermal equilibrium, independent of doping}{}
|
||||||
|
\desc[german]{Massenwirkungsgesetz}{Ladungsträgerdichten im Equilibrium, unabhängig der Dotierung }{}
|
||||||
|
\eq{np = n_i^2}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{bandgaps}
|
||||||
|
\desc{Bandgaps of common semiconductors}{}{}
|
||||||
|
\desc[german]{Bandlücken wichtiger Halbleiter}{}{}
|
||||||
|
\begin{tabular}{l|CCc}
|
||||||
|
& \Egap(\SI{0}{\kelvin}) [\si{\eV}] & \Egap(\SI{300}{\kelvin}) [\si{\eV}] & \\ \hline
|
||||||
|
\GT{diamond} & 5,48 & 5,47 & \GT{indirect} \\
|
||||||
|
Si & 1,17 & 1,12 & \GT{indirect} \\
|
||||||
|
Ge & 0,75 & 0,66 & \GT{indirect} \\
|
||||||
|
GaP & 2,32 & 2,26 & \GT{indirect} \\
|
||||||
|
GaAs & 1,52 & 1,43 & \GT{direct} \\
|
||||||
|
InSb & 0,24 & 0,18 & \GT{direct} \\
|
||||||
|
InP & 1,42 & 1,35 & \GT{direct} \\
|
||||||
|
CdS & 2.58 & 2.42 & \GT{direct}
|
||||||
|
\end{tabular}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{min_maj}
|
||||||
|
\desc{Minority / Majority charge carriers}{}{}
|
||||||
|
\desc[german]{Minoritäts- / Majoritätsladungstraäger}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{
|
||||||
|
Majority carriers: higher number of particles ($e^-$ in n-type, $h^+$ in p-type)\\
|
||||||
|
Minority carriers: lower number of particles ($h^+$ in n-type, $e^-$ in p-type)
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Majoritätsladungstraäger: höhere Teilchenzahl ($e^-$ in n-Typ, $h^+$ in p-Typ)\\
|
||||||
|
Minoritätsladungsträger: niedrigere Teilchenzahl ($h^+$ in n-Typ, $e^-$ in p-Typ)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{effective mass approx}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Devices and junctions}
|
||||||
|
\ger{Bauelemente und Kontakte}
|
||||||
|
]{junctions}
|
||||||
|
\begin{formula}{metal-sc}
|
||||||
|
\desc{Metal-semiconductor junction}{}{}
|
||||||
|
\desc[german]{Metall-Halbleiter Kontakt}{}{}
|
||||||
|
% \ttxt{
|
||||||
|
% \eng{
|
||||||
|
|
||||||
|
% }
|
||||||
|
% }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{bigformula}{schottky_barrier}
|
||||||
|
\desc{Schottky barrier}{Rectifying \fqEqRef{cm:sc:junctions:metal-sc}}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\centering
|
||||||
|
\resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_metal_n_sc_separate.tex}}
|
||||||
|
\resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_metal_n_sc.tex}}
|
||||||
|
\TODO{Work function electron affinity sind doch Energien und keine Potentiale, warum wird also immer $q$ davor geschrieben?}
|
||||||
|
\end{bigformula}
|
||||||
|
\begin{formula}{schottky-mott_rule}
|
||||||
|
\desc{Schottky-Mott rule}{}{$\Phi_\txB$ barrier potential, $\Phi_\txM$ \GT{metal} \qtyRef{work_function}, $\chi_\text{sc}$ \qtyRef{electron_affinity}}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{\Phi_\txB \approx \Phi_\txM - \chi_\text{sc}}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{work function verhältnisse, wann ist es ohmisch wann depleted?}
|
||||||
|
\begin{bigformula}{ohmic}
|
||||||
|
\desc{Ohmic contact}{}{}
|
||||||
|
\desc[german]{Ohmscher Kontakt}{}{}
|
||||||
|
\centering
|
||||||
|
\resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_ohmic_separate.tex}}
|
||||||
|
\resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_ohmic.tex}}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\begin{bigformula}{pn}
|
||||||
|
\desc{p-n junction}{}{}
|
||||||
|
\desc[german]{p-n Übergang}{}{}
|
||||||
|
\centering
|
||||||
|
\input{img/cm/sc_junction_pn.tex}
|
||||||
|
\resizebox{0.49\textwidth}{!}{\tikzPnJunction{1/3}{0}{0}{1/3}{0}{0}{}}
|
||||||
|
\resizebox{0.49\textwidth}{!}{\tikzPnJunction{1/2}{0.4}{-0.4}{1/2}{-0.4}{0.4}{}}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Excitons}
|
||||||
|
\ger{Exzitons}
|
||||||
|
]{exciton}
|
||||||
|
\begin{formula}{desc}
|
||||||
|
\desc{Exciton}{}{}
|
||||||
|
\desc[german]{Exziton}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{
|
||||||
|
Quasi particle, excitation in condensed matter as bound electron-hole pair.
|
||||||
|
\\ Free (Wannier) excitons: delocalised over many lattice sites
|
||||||
|
\\ Bound (Frenkel) excitonsi: localised in single unit cell
|
||||||
|
}
|
||||||
|
|
||||||
|
\ger{
|
||||||
|
Quasiteilchen, Anregung im Festkörper als gebundenes Elektron-Loch-Paar
|
||||||
|
\\ Freie (Wannier) Exzitons: delokalisiert, über mehrere Einheitszellen
|
||||||
|
\\ Gebundene (Frenkel) Exzitons: lokalisiert in einer Einheitszelle
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\eng[free_X]{for free Excitons}
|
||||||
|
\ger[free_X]{für freie Exzitons}
|
||||||
|
\begin{formula}{rydberg}
|
||||||
|
\desc{Exciton Rydberg energy}{\gt{free_X}}{$R_\txH$ \fqEqRef{qm:h:rydberg_energy}}
|
||||||
|
\desc[german]{}{}{}
|
||||||
|
\eq{
|
||||||
|
E(n) = - \left(\frac{\mu}{m_0\epsilon_r^2}\right) R_\txH \frac{1}{n^2}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{bohr_radius}
|
||||||
|
\desc{Exciton Bohr radius}{\gt{free_X}}{\QtyRef{relative_permittivity}, \ConstRef{bohr_radius}, \ConstRef{electron_mass}, $mu$ \GT{reduced_mass}}
|
||||||
|
\desc[german]{Exziton-Bohr Radius}{}{}
|
||||||
|
\eq{
|
||||||
|
r_n = \left(\frac{m_\txe\epsilon_r a_\txB}{mu}\right) n^2
|
||||||
|
}
|
||||||
|
\end{formula}
|
212
src/cm/techniques.tex
Normal file
212
src/cm/techniques.tex
Normal file
@ -0,0 +1,212 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Measurement techniques}
|
||||||
|
\ger{Messtechniken}
|
||||||
|
]{meas}
|
||||||
|
|
||||||
|
\newcommand\newTechnique{\hline}
|
||||||
|
\Eng[name]{Name}
|
||||||
|
\Ger[name]{Name}
|
||||||
|
\Eng[application]{Application}
|
||||||
|
\Ger[application]{Anwendung}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Raman spectroscopy}
|
||||||
|
\ger{Raman Spektroskopie}
|
||||||
|
]{raman}
|
||||||
|
|
||||||
|
% TODO remove fqname from minipagetable?
|
||||||
|
|
||||||
|
\begin{bigformula}{raman}
|
||||||
|
\desc{Raman spectroscopy}{}{}
|
||||||
|
\desc[german]{Raman-Spektroskopie}{}{}
|
||||||
|
\begin{minipagetable}{raman}
|
||||||
|
\tentry{application}{
|
||||||
|
\eng{Vibrational modes, Crystal structure, Doping, Band Gaps, Layer thickness in \fqEqRef{cm:misc:vdw_material}}
|
||||||
|
\ger{Vibrationsmoden, Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im \fqEqRef{cm:misc:vdw_material}}
|
||||||
|
}
|
||||||
|
\tentry{how}{
|
||||||
|
\eng{Monochromatic light (\fqEqRef{Laser}) shines on sample, inelastic scattering because of rotation-, vibration-, phonon and spinflip-processes, plot spectrum as shift of the laser light (in \si{\per\cm})}
|
||||||
|
\ger{Monochromatisches Licht (\fqEqRef{Laser}) bestrahlt Probe, inelastische Streuung durch Rotations-, Schwingungs-, Phonon und Spin-Flip-Prozesse, plotte Spektrum als Verschiebung gegen das Laser Licht (in \si{\per\cm}) }
|
||||||
|
}
|
||||||
|
\end{minipagetable}
|
||||||
|
\begin{minipage}{0.45\textwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
% \includegraphics[width=0.8\textwidth]{img/cm_amf.pdf}
|
||||||
|
% \caption{\cite{Bian2021}}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{bigformula}{pl}
|
||||||
|
\desc{Photoluminescence spectroscopy}{}{}
|
||||||
|
\desc[german]{Photolumeszenz-Spektroskopie}{}{}
|
||||||
|
\begin{minipagetable}{pl}
|
||||||
|
\tentry{application}{
|
||||||
|
\eng{Crystal structure, Doping, Band Gaps, Layer thickness in \fqEqRef{cm:misc:vdw_material}}
|
||||||
|
\ger{Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im \fqEqRef{cm:misc:vdw_material}}
|
||||||
|
}
|
||||||
|
\tentry{how}{
|
||||||
|
\eng{Monochromatic light (\fqEqRef{Laser}) shines on sample, electrons are excited, relax to the conduction band minimum and finally accross the band gap under photon emission}
|
||||||
|
\ger{Monochromatisches Licht (\fqEqRef{Laser}) bestrahlt Probe, Elektronen werden angeregt und relaxieren in das Leitungsband-Minimum und schließlich über die Bandlücke unter Photonemission}
|
||||||
|
}
|
||||||
|
\end{minipagetable}
|
||||||
|
\begin{minipage}{0.45\textwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
% \includegraphics[width=0.8\textwidth]{img/cm_amf.pdf}
|
||||||
|
% \caption{\cite{Bian2021}}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{ARPES}
|
||||||
|
\ger{ARPES}
|
||||||
|
]{arpes}
|
||||||
|
what?
|
||||||
|
in?
|
||||||
|
how?
|
||||||
|
plot
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Scanning probe microscopy SPM}
|
||||||
|
\ger{Rastersondenmikroskopie (SPM)}
|
||||||
|
]{spm}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Images of surfaces are taken by scanning the specimen with a physical probe.}
|
||||||
|
\ger{Bilder der Oberfläche einer Probe werden erstellt, indem die Probe mit einer Sonde abgetastet wird.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{bigformula}{amf}
|
||||||
|
\desc{Atomic force microscopy (AMF)}{}{}
|
||||||
|
\desc[german]{Atomare Rasterkraftmikroskopie (AMF)}{}{}
|
||||||
|
\begin{minipagetable}{amf}
|
||||||
|
\tentry{application}{
|
||||||
|
\eng{Surface stuff}
|
||||||
|
\ger{Oberflächenzeug}
|
||||||
|
}
|
||||||
|
\tentry{how}{
|
||||||
|
\eng{With needle}
|
||||||
|
\ger{Mit Nadel}
|
||||||
|
}
|
||||||
|
\end{minipagetable}
|
||||||
|
\begin{minipage}{0.45\textwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\textwidth]{img/cm_amf.pdf}
|
||||||
|
\caption{\cite{Bian2021}}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{bigformula}{stm}
|
||||||
|
\desc{Scanning tunneling microscopy (STM)}{}{}
|
||||||
|
\desc[german]{Rastertunnelmikroskop (STM)}{}{}
|
||||||
|
\begin{minipagetable}{stm}
|
||||||
|
\tentry{application}{
|
||||||
|
\eng{Surface stuff}
|
||||||
|
\ger{Oberflächenzeug}
|
||||||
|
}
|
||||||
|
\tentry{how}{
|
||||||
|
\eng{With TUnnel}
|
||||||
|
\ger{Mit TUnnel}
|
||||||
|
}
|
||||||
|
\end{minipagetable}
|
||||||
|
\begin{minipage}{0.45\textwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\textwidth]{img/cm_stm.pdf}
|
||||||
|
\caption{\cite{Bian2021}}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Fabrication techniques}
|
||||||
|
\ger{Herstellungsmethoden}
|
||||||
|
]{fab}
|
||||||
|
|
||||||
|
\begin{bigformula}{cvd}
|
||||||
|
\desc{Chemical vapor deposition (CVD)}{}{}
|
||||||
|
\desc[german]{Chemische Gasphasenabscheidung (CVD)}{}{}
|
||||||
|
\begin{minipagetable}{cvd}
|
||||||
|
\tentry{how}{
|
||||||
|
\eng{
|
||||||
|
A substrate is exposed to volatile precursors, which react and/or decompose on the heated substrate surface to produce the desired deposit.
|
||||||
|
By-products are removed by gas flow through the chamber.
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
An der erhitzten Oberfläche eines Substrates wird aufgrund einer chemischen Reaktion mit einem Gas eine Feststoffkomponente abgeschieden.
|
||||||
|
Nebenprodukte werden durch den Gasfluss durch die Kammer entfernt.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\tentry{application}{
|
||||||
|
\eng{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Polysilicon \ce{Si}
|
||||||
|
\item Silicon dioxide \ce{SiO_2}
|
||||||
|
\item Graphene
|
||||||
|
\item Diamond
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Poly-silicon \ce{Si}
|
||||||
|
\item Siliziumdioxid \ce{SiO_2}
|
||||||
|
\item Graphen
|
||||||
|
\item Diamant
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{minipagetable}
|
||||||
|
\begin{minipage}{0.45\textwidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/cm_cvd_english.pdf}
|
||||||
|
\end{minipage}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Epitaxy}
|
||||||
|
\ger{Epitaxie}
|
||||||
|
]{epitaxy}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{A type of crystal groth in which new layers are formed with well-defined orientations with respect to the crystalline seed layer.}
|
||||||
|
\ger{Eine Art des Kristallwachstums, bei der mindestens eine kristallographische Ordnung der wachsenden Schicht der des Substrates entspricht.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{bigformula}{mbe}
|
||||||
|
\desc{Molecular Beam Epitaxy (MBE)}{}{}
|
||||||
|
\desc[german]{Molekularstrahlepitaxie (MBE)}{}{}
|
||||||
|
\begin{minipagetable}{mbe}
|
||||||
|
\tentry{how}{
|
||||||
|
\eng{In a ultra-high vacuum, the elements are heated until they slowly sublime. The gases then condensate on the substrate surface}
|
||||||
|
\ger{Die Elemente werden in einem Ultrahochvakuum erhitzt, bis sie langsam sublimieren. Die entstandenen Gase kondensieren dann auf der Oberfläche des Substrats}
|
||||||
|
}
|
||||||
|
\tentry{application}{
|
||||||
|
\eng{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Gallium arsenide \ce{GaAs}
|
||||||
|
\end{itemize}
|
||||||
|
\TODO{Link to GaAs}
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Galliumarsenid \ce{GaAs}
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{minipagetable}
|
||||||
|
\begin{minipage}{0.45\textwidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/cm_mbe_english.pdf}
|
||||||
|
\end{minipage}
|
||||||
|
\end{bigformula}
|
||||||
|
|
@ -1,8 +1,11 @@
|
|||||||
\Part{Topo}
|
|
||||||
\Section[
|
\Section[
|
||||||
|
\eng{Topological Materials}
|
||||||
|
\ger{Topologische Materialien}
|
||||||
|
]{topo}
|
||||||
|
\Subsection[
|
||||||
\eng{Berry phase / Geometric phase}
|
\eng{Berry phase / Geometric phase}
|
||||||
\ger{Berry-Phase / Geometrische Phase}
|
\ger{Berry-Phase / Geometrische Phase}
|
||||||
]{berry_phase}
|
]{berry_phase}
|
||||||
|
|
||||||
\begin{ttext}[desc]
|
\begin{ttext}[desc]
|
||||||
\eng{
|
\eng{
|
||||||
@ -53,28 +56,34 @@
|
|||||||
\eq{\gamma_n = \oint_C \d \vec{R} \cdot A_n(\vec{R}) = \int_S \d\vec{S} \cdot \vec{\Omega}_n(\vec{R})}
|
\eq{\gamma_n = \oint_C \d \vec{R} \cdot A_n(\vec{R}) = \int_S \d\vec{S} \cdot \vec{\Omega}_n(\vec{R})}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{ttext}[chern_number_desc]
|
|
||||||
\eng{The Berry flux through any 2D closed surface is quantized by the \textbf{Chern number}.
|
|
||||||
If there is time-reversal symmetry, the Chern-number is 0.
|
|
||||||
}
|
|
||||||
\ger{Der Berry-Fluß durch eine geschlossene 2D Fl[cher is quantisiert durch die \textbf{Chernzahl}
|
|
||||||
Bei erhaltener Zeitumkehrungssymmetrie ist die Chernzahl 0.
|
|
||||||
}
|
|
||||||
\end{ttext}
|
|
||||||
\begin{formula}{chern_number}
|
\begin{formula}{chern_number}
|
||||||
\desc{Chern number}{Eg. number of Berry curvature monopoles in the Brillouin zone (then $\vec{R} = \vec{k}$)}{$\vec{S}$ closed surface in $\vec{R}$-space. A \textit{Chern insulator} is a 2D insulator with $C_n \neq 0$}
|
\desc{Chern number}{Eg. number of Berry curvature monopoles in the Brillouin zone (then $\vec{R} = \vec{k}$)}{$\vec{S}$ closed surface in $\vec{R}$-space. A \textit{Chern insulator} is a 2D insulator with $C_n \neq 0$}
|
||||||
\desc[german]{Chernuzahl}{Z.B. Anzahl der Berry-Krümmungs-Monopole in der Brilouinzone (dann ist $\vec{R} = \vec{k}$). Ein \textit{Chern-Isolator} ist ein 2D Isolator mit $C_n\neq0$}{$\vec{S}$ geschlossene Fläche im $\vec{R}$-Raum}
|
\desc[german]{Chernuzahl}{Z.B. Anzahl der Berry-Krümmungs-Monopole in der Brilouinzone (dann ist $\vec{R} = \vec{k}$). Ein \textit{Chern-Isolator} ist ein 2D Isolator mit $C_n\neq0$}{$\vec{S}$ geschlossene Fläche im $\vec{R}$-Raum}
|
||||||
|
\ttxt{
|
||||||
|
\eng{The Berry flux through any 2D closed surface is quantized by the \textbf{Chern number}.
|
||||||
|
If there is time-reversal symmetry, the Chern-number is 0.
|
||||||
|
}
|
||||||
|
\ger{Der Berry-Fluß durch eine geschlossene 2D Fl[cher is quantisiert durch die \textbf{Chernzahl}
|
||||||
|
Bei erhaltener Zeitumkehrungssymmetrie ist die Chernzahl 0.
|
||||||
|
}
|
||||||
|
}
|
||||||
\eq{C_n = \frac{1}{2\pi} \oint \d \vec{S}\ \cdot \vec{\Omega}_n(\vec{R})}
|
\eq{C_n = \frac{1}{2\pi} \oint \d \vec{S}\ \cdot \vec{\Omega}_n(\vec{R})}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\TODO{Hall conductance of 2D band insulator (lecture 4 revision)}
|
|
||||||
\begin{formula}{hall_conductance}
|
\begin{formula}{hall_conductance}
|
||||||
\desc{Hall conductance of a 2D band insulator}{}{}
|
\desc{Hall conductance of a 2D band insulator}{}{}
|
||||||
\desc[german]{Hall-Leitfähigkeit eines 2D Band-Isolators}{}{}
|
\desc[german]{Hall-Leitfähigkeit eines 2D Band-Isolators}{}{}
|
||||||
\eq{\vec{\sigma}_{xy} = \sum_n \frac{e^2}{h} \int_\text{\GT{occupied}} \d^2k\, \frac{\Omega_{xy}^n}{2\pi} = \sum_n C_n \frac{e^2}{h}}
|
\eq{\vec{\sigma}_{xy} = \sum_n \frac{e^2}{h} \int_\text{\GT{occupied}} \d^2k\, \frac{\Omega_{xy}^n}{2\pi} = \sum_n C_n \frac{e^2}{h}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{ttext}
|
\begin{formula}{topological_insulator}
|
||||||
\eng{A 2D insulator with a non-zero Chern number is called a \textbf{topological insulator}}
|
\desc{Topological insulator}{}{}
|
||||||
|
\desc[german]{Topologischer Isolator}{}{}
|
||||||
\end{ttext}
|
\ttxt{
|
||||||
|
\eng{A 2D insulator with a non-zero Chern number is called a \textbf{topological insulator}.}
|
||||||
|
\ger{Ein 2D Isolator mit einer Chernzahl ungleich 0 wird \textbf{topologischer Isolator} genannt.}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
374
src/comp/ad.tex
Normal file
374
src/comp/ad.tex
Normal file
@ -0,0 +1,374 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Atomic dynamics}
|
||||||
|
% \ger{}
|
||||||
|
]{ad}
|
||||||
|
\begin{formula}{hamiltonian}
|
||||||
|
\desc{Electron Hamiltonian}{}{$\hat{T}$ \fqEqRef{comp:est:kinetic_energy}, $\hat{V}$ \fqEqRef{comp:est:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}}
|
||||||
|
\desc[german]{Hamiltonian der Elektronen}{}{}
|
||||||
|
\eq{\hat{H}_\txe = \hat{T}_\txe + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{ansatz}
|
||||||
|
\desc{Wave function ansatz}{}{$\psi_\text{en}^n$ eigenstate $n$ of \fqEqRef{comp:est:hamiltonian}, $\psi_\txe^i$ eigenstate $i$ of \fqEqRef{comp:ad:bo:hamiltonian}, $\vecr,\vecR$ electron/nucleus positions, $\sigma$ electron spin, $c^{ni}$ coefficients}
|
||||||
|
\desc[german]{Wellenfunktion Ansatz}{}{}
|
||||||
|
\eq{\psi_\text{en}^n\big(\{\vecr,\sigma\},\{\vecR\}\big) = \sum_i c^{ni}\big(\{\vecR\}\big)\, \psi_\txe^i\big(\{\vecr,\sigma\},\{\vecR\}\big)}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{equation}
|
||||||
|
\desc{Equation}{}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{
|
||||||
|
\label{eq:\fqname}
|
||||||
|
\left[E_\txe^j\big(\{\vecR\}\big) + \hat{T}_\txn + V_{\txn \leftrightarrow \txn} - E^n \right]c^{nj} = -\sum_i \Lambda_{ij} c^{ni}\big(\{\vecR\}\big)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{coupling_operator}
|
||||||
|
\desc{Exact nonadiabtic coupling operator}{Electron-phonon couplings / electron-vibrational couplings}{$\psi^i_\txe$ electronic states, $\vecR$ nucleus position, $M$ nucleus \qtyRef{mass}}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\begin{multline}
|
||||||
|
\Lambda_{ij} = \int \d^3r (\psi_\txe^j)^* \left(-\sum_I \frac{\hbar^2\nabla_{\vecR_I}^2}{2M_I}\right) \psi_\txe^i \\
|
||||||
|
+ \sum_I \frac{1}{M_I} \int\d^3r \left[(\psi_\txe^j)^* (-i\hbar\nabla_{\vecR_I})\psi_\txe^i\right](-i\hbar\nabla_{\vecR_I})
|
||||||
|
\end{multline}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Born-Oppenheimer Approximation}
|
||||||
|
\ger{Born-Oppenheimer Näherung}
|
||||||
|
]{bo}
|
||||||
|
\begin{formula}{adiabatic_approx}
|
||||||
|
\desc{Adiabatic approximation}{Electronic configuration remains the same when atoms move (\absRef{adiabatic_theorem})}{$\Lambda_{ij}$ \fqEqRef{comp:ad:coupling_operator}}
|
||||||
|
\desc[german]{Adiabatische Näherung}{Elektronenkonfiguration bleibt gleich bei Bewegung der Atome gleichl (\absRef{adiabatic_theorem})}{}
|
||||||
|
\eq{\Lambda_{ij} = 0 \quad \text{\GT{for} } i\neq j}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{approx}
|
||||||
|
\desc{Born-Oppenheimer approximation}{Electrons are not influenced by the movement of the atoms}{\GT{see} \fqEqRef{comp:ad:equation}, $V_{\txn \leftrightarrow \txn} = \const$ absorbed into $E_\txe^j$}
|
||||||
|
\desc[german]{Born-Oppenheimer Näherung}{Elektronen werden nicht durch die Bewegung der Atome beeinflusst}{}
|
||||||
|
\begin{gather}
|
||||||
|
\Lambda_{ij} = 0
|
||||||
|
\shortintertext{\fqEqRef{comp:ad:bo:equation} \Rightarrow}
|
||||||
|
\left[E_e^i\big(\{\vecR\}\big) + \hat{T}_\txn - E^n\right]c^{ni}\big(\{\vecR\}\big) = 0
|
||||||
|
\end{gather}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{surface}
|
||||||
|
\desc{Born-Oppenheimer surface}{Potential energy surface (PES)\\ The nuclei follow Newtons equations of motion on the BO surface if the system is in the electronic ground state}{$E_\txe^0, \psi_\txe^0$ lowest eigenvalue/eigenstate of \fqEqRef{comp:ad:bo:hamiltonian}}
|
||||||
|
\desc[german]{Born-Oppenheimer Potentialhyperfläche}{Die Nukleonen Newtons klassichen Bewegungsgleichungen auf der BO Hyperfläche wenn das System im elektronischen Grundzustand ist}{$E_\txe^0, \psi_\txe^0$ niedrigster Eigenwert/Eigenzustand vom \fqEqRef{comp:ad:bo:hamiltonian}}
|
||||||
|
\begin{gather}
|
||||||
|
V_\text{BO}\big(\{\vecR\}\big) = E_\txe^0\big(\{\vecR\}\big) \\
|
||||||
|
M_I \ddot{\vecR}_I(t) = - \Grad_{\vecR_I} V_\text{BO}\big(\{\vecR(t)\}\big)
|
||||||
|
\end{gather}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{ansatz}
|
||||||
|
\desc{Ansatz for \secEqRef{approx}}{Product of single electronic and single nuclear state}{}
|
||||||
|
\desc[german]{Ansatz für \secEqRef{approx}}{Produkt aus einem einzelnen elektronischen Zustand und einem Nukleus-Zustand}{}
|
||||||
|
\eq{
|
||||||
|
\psi_\text{BO} = c^{n0} \big(\{\vecR\}\big) \,\psi_\txe^0 \big(\{\vecr,\sigma\},\{\vecR\}\big)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{limitations}
|
||||||
|
\desc{Limitations}{}{$\tau$ passage of time for electrons/nuclei, $L$ characteristic length scale of atomic dynamics, $\dot{\vec{R}}$ nuclear velocity, $\Delta E$ difference between two electronic states}
|
||||||
|
\desc[german]{Limitationen}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Nuclei velocities must be small and electron energy state differences large
|
||||||
|
\item Nuclei need spin for effects like spin-orbit coupling
|
||||||
|
\item Nonadiabitc effects in photochemistry, proteins
|
||||||
|
\end{itemize}
|
||||||
|
Valid when Massey parameter $\xi \gg 1$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\eq{
|
||||||
|
\xi = \frac{\tau_\txn}{\tau_\txe} = \frac{L \Delta E}{\hbar \abs{\dot{\vecR}}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Structure optimization}
|
||||||
|
\ger{Strukturoptimierung}
|
||||||
|
]{opt}
|
||||||
|
\begin{formula}{forces}
|
||||||
|
\desc{Forces}{}{}
|
||||||
|
\desc[german]{Kräfte}{}{}
|
||||||
|
\eq{\vec{F}_I = -\Grad_{\vecR_I} E \explOverEq{\fqEqRef{qm:se:hellmann_feynmann}} -\Braket{\psi(\vecR_I) | \left(\Grad_{\vecR_I} \hat{H}(\vecR_I)\right) | \psi(\vecR) }}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{ionic_cycle}
|
||||||
|
\desc{Ionic cycle}{\fqEqRef{comp:est:dft:ks:scf} for geometry optimization}{}
|
||||||
|
\desc[german]{}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{
|
||||||
|
\begin{enumerate}
|
||||||
|
\item Initial guess for $n(\vecr)$
|
||||||
|
\begin{enumerate}
|
||||||
|
\item Calculate effective potential $V_\text{eff}$
|
||||||
|
\item Solve \fqEqRef{comp:est:dft:ks:equation}
|
||||||
|
\item Calculate density $n(\vecr)$
|
||||||
|
\item Repeat b-d until self consistent
|
||||||
|
\end{enumerate}
|
||||||
|
\item Calculate \secEqRef{forces}
|
||||||
|
\item If $F\neq0$, get new geometry by interpolating $R$ and restart
|
||||||
|
\end{enumerate}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{transformation}
|
||||||
|
\desc{Transformation of atomic positions under stress}{}{$\alpha,\beta=1,2,3$ position components, $R$ position, $R(0)$ zero-strain position, $\ten{\epsilon}$ \qtyRef{strain} tensor}
|
||||||
|
\desc[german]{Transformation der Atompositionen unter Spannung}{}{$\alpha,\beta=1,2,3$ Positionskomponenten, $R$ Position, $R(0)$ Position ohne Dehnung, $\ten{\epsilon}$ \qtyRef{strain} Tensor}
|
||||||
|
\eq{R_\alpha(\ten{\epsilon}_{\alpha\beta}) = \sum_\beta \big(\delta_{\alpha\beta} + \ten{\epsilon}_{\alpha\beta}\big)R_\beta(0)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{stress_tensor}
|
||||||
|
\desc{Stress tensor}{}{$\Omega$ unit cell volume, \ten{\epsilon} \qtyRef{strain} tensor}
|
||||||
|
\desc[german]{Spannungstensor}{}{}
|
||||||
|
\eq{\ten{\sigma}_{\alpha,\beta} = \frac{1}{\Omega} \pdv{E_\text{total}}{\ten{\epsilon}_{\alpha\beta}}_{\ten{\epsilon}=0}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{pulay_stress}
|
||||||
|
\desc{Pulay stress}{}{}
|
||||||
|
\desc[german]{Pulay-Spannung}{}{}
|
||||||
|
\eq{
|
||||||
|
N_\text{PW} \propto E_\text{cut}^\frac{3}{2} \propto \abs{\vec{G}_\text{max}}^3
|
||||||
|
}
|
||||||
|
\ttxt{\eng{
|
||||||
|
Number of plane waves $N_\text{PW}$ depends on $E_\text{cut}$.
|
||||||
|
If $G$ changes during optimization, $N_\text{PW}$ may change, thus the basis set can change.
|
||||||
|
This typically leads to too small volumes.
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Lattice vibrations}
|
||||||
|
\ger{Gitterschwingungen}
|
||||||
|
]{latvib}
|
||||||
|
\begin{formula}{force_constant_matrix}
|
||||||
|
\desc{Force constant matrix}{}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{\Phi_{IJ}^{\mu\nu} = \pdv{V(\{\vecR\})}{R_I^\mu,R_J^\nu}_{\{\vecR_I\}=\{\vecR_I^0\}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{harmonic_approx}
|
||||||
|
\desc{Harmonic approximation}{Hessian matrix, 2nd order Taylor expansion of the \fqEqRef{comp:ad:bo:surface} around every nucleus position $\vecR_I^0$}{$\Phi_{IJ}^{\mu\nu}$ \secEqRef{force_constant_matrix}, $s$ displacement}
|
||||||
|
\desc[german]{Harmonische Näherung}{Hesse matrix, Taylor Entwicklung der \fqEqRef{comp:ad:bo:surface} in zweiter Oddnung um Atomposition $\vecR_I^0$}{}
|
||||||
|
\eq{ V^\text{BO}(\{\vecR_I\}) \approx V^\text{BO}(\{\vecR_I^0\}) + \frac{1}{2} \sum_{I,J}^N \sum_{\mu,\nu}^3 s_I^\mu s_J^\nu \Phi_{IJ}^{\mu\nu} }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
% solving difficult becaus we need to calculate (3N)^2 derivatives, Hellmann-Feynman cant be applied directly
|
||||||
|
% -> DFPT
|
||||||
|
|
||||||
|
% finite-difference method
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Finite difference method}
|
||||||
|
% \ger{}
|
||||||
|
]{fin_diff}
|
||||||
|
|
||||||
|
\begin{formula}{approx}
|
||||||
|
\desc{Approximation}{Assume forces in equilibrium structure vanish}{$\Delta s$ displacement of atom $J$}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{\Phi_{IJ}^{\mu\nu} \approx \frac{\vecF_I^\mu(\vecR_1^0, \dots, \vecR_J^0+\Delta s_J^\nu,\dots, \vecR_N^0)}{\Delta s_J^\nu}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{dynamical_matrix}
|
||||||
|
\desc{Dynamical matrix}{Mass reduced \absRef[fourier transform]{fourier_transform} of the \fqEqRef{comp:ad:latvib:force_constant_matrix}}{$\vec{L}$ vector from origin to unit cell $n$, $\alpha/\beta$ atom index in th unit cell, $\vecq$ \qtyRef{wave_vector}, $\Phi$ \fqEqRef{comp:ad:latvib:force_constant_matrix}, $M$ \qtyRef{mass}}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{D_{\alpha\beta}^{\mu\nu} = \frac{1}{\sqrt{M_\alpha M_\beta}} \sum_{n^\prime} \Phi_{\alpha\beta}^{\mu\nu}(n-n^\prime) \e^{\I \vec{q}(\vec{L}_n - \vec{L}_{n^\prime})}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{eigenvalue_equation}
|
||||||
|
\desc{Eigenvalue equation}{For a periodic crystal, reduces number of equations from $3N_p\times N$ to $3N_p$. Eigenvalues represent phonon band structure.}{$N_p$ number of atoms per unit cell, $\vecc$ displacement amplitudes, $\vecq$ \qtyRef{wave_vector}, $\mat{D}$ \secEqRef{dynamical_matrix}}
|
||||||
|
\desc[german]{Eigenwertgleichung}{}{}
|
||||||
|
\eq{\omega^2 \vecc(\vecq) = \mat{D}(\vecq) \vecc(\vecq) }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Anharmonic approaches}
|
||||||
|
\ger{Anharmonische Ansätze}
|
||||||
|
]{anharmonic}
|
||||||
|
|
||||||
|
\begin{formula}{qha}
|
||||||
|
\desc{Quasi-harmonic approximation}{}{}
|
||||||
|
\desc[german]{}{}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
Include thermal expansion by assuming \fqEqRef{comp:ad:bo:surface} is volume dependant.
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{pertubative}
|
||||||
|
\desc{Pertubative approaches}{}{}
|
||||||
|
% \desc[german]{Störungs}{}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
Expand \fqEqRef{comp:ad:latvib:force_constant_matrix} to third order.
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Molecular Dynamics}
|
||||||
|
\ger{Molekulardynamik}
|
||||||
|
]{md} \abbrLink{md}{MD}
|
||||||
|
\begin{formula}{desc}
|
||||||
|
\desc{Description}{}{}
|
||||||
|
\desc[german]{Beschreibung}{}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Exact (within previous approximations) approach to treat anharmonic effects in materials.
|
||||||
|
\item Computes time-dependant observables.
|
||||||
|
\item Assumes fully classical nuclei.
|
||||||
|
\item Macroscropical observables from statistical ensembles
|
||||||
|
\item System evolves in time (ehrenfest). Number of points to consider does NOT scale with system size.
|
||||||
|
\item Exact because time dependance is studied explicitly, not via harmonic approx.
|
||||||
|
\end{itemize}
|
||||||
|
\TODO{cleanup}
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{procedure}
|
||||||
|
\desc{MD simulation procedure}{}{}
|
||||||
|
\desc[german]{Ablauf von MD Simulationen}{}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
\begin{enumerate}
|
||||||
|
\item Initialize with optimized geometry, interaction potential, ensemble, integration scheme, temperature/pressure control
|
||||||
|
\item Equilibrate to desired temperature/pressure (eg with statistical starting velocities)
|
||||||
|
\item Production run, run MD long enough to calculate desired observables
|
||||||
|
\end{enumerate}
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Ab-initio molecular dynamics}
|
||||||
|
\ger{Ab-initio molecular dynamics}
|
||||||
|
]{ab-initio}
|
||||||
|
\begin{formula}{bomd}
|
||||||
|
\abbrLabel{BOMD}
|
||||||
|
\desc{Born-Oppenheimer MD (BOMD)}{}{}
|
||||||
|
\desc[german]{Born-Oppenheimer MD (BOMD)}{}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
\begin{enumerate}
|
||||||
|
\item Calculate electronic ground state of current nucleui configuration $\{\vecR(t)\}$ with \abbrRef{ksdft}
|
||||||
|
\item \hyperref[f:comp:ad:opt:forces]{Calculate forces} from the \fqEqRef{comp:ad:bo:surface}
|
||||||
|
\item Update positions and velocities
|
||||||
|
\end{enumerate}
|
||||||
|
\begin{itemize}
|
||||||
|
\gooditem "ab-inito" - no empirical information required
|
||||||
|
\baditem Many expensive \abbrRef{dft} calculations
|
||||||
|
\end{itemize}
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{cpmd}
|
||||||
|
\desc{Car-Parrinello MD (CPMD)}{}{$\mu$ electron orbital mass, $\varphi_i$ \abbrRef{ksdft} eigenststate, $\lambda_{ij}$ Lagrange multiplier}
|
||||||
|
\desc[german]{Car-Parrinello MD (CPMD)}{}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
Evolve electronic wave function $\varphi$ (adiabatically) along with the nuclei \Rightarrow only one full \abbrRef{ksdft}
|
||||||
|
}}
|
||||||
|
\begin{gather}
|
||||||
|
M_I \odv[2]{\vecR_I}{t} = -\Grad_{\vecR_I} E[\{\varphi_i\},\{\vecR_I\}] \\
|
||||||
|
% not using pdv because of comma in parens
|
||||||
|
% E[\{\varphi_i\}\{\vecR_I\}] = \Braket{\psi_0|H_\text{el}^\text{KS}|\psi_0}
|
||||||
|
\mu \odv[2]{\varphi_i(\vecr,t)}{t} = - \frac{\partial}{\partial\varphi_i^*(\vecr,t)} E[\{\varphi_i\},\{\vecR_I\}] + \sum_j \lambda_{ij} \varphi_j(\vecr,t)
|
||||||
|
\end{gather}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Force-field MD}
|
||||||
|
\ger{Force-field MD}
|
||||||
|
]{ff}
|
||||||
|
|
||||||
|
\begin{formula}{ffmd}
|
||||||
|
\desc{Force field MD (FFMD)}{}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Use empirical interaction potential instead of electronic structure
|
||||||
|
\baditem Force fields need to be fitted for specific material \Rightarrow not transferable
|
||||||
|
\gooditem Faster than \abbrRef{bomd}
|
||||||
|
\item Example: \absRef{lennard_jones}
|
||||||
|
\end{itemize}
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Integration schemes}
|
||||||
|
% \ger{}
|
||||||
|
]{scheme}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Procedures for updating positions and velocities to obey the equations of motion.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{euler}
|
||||||
|
\desc{Euler method}{First-order procedure for solving \abbrRef{ode}s with a given initial value.\\Taylor expansion of $\vecR/\vecv (t+\Delta t)$}{}
|
||||||
|
\desc[german]{Euler-Verfahren}{Prozedur um gewöhnliche DGLs mit Anfangsbedingungen in erster Ordnung zu lösen.\\Taylor Entwicklung von $\vecR/\vecv (t+\Delta t)$}{}
|
||||||
|
\eq{
|
||||||
|
\vecR(t+\Delta t) &= \vecR(t) + \vecv(t) \Delta t + \Order{\Delta t^2} \\
|
||||||
|
\vecv(t+\Delta t) &= \vecv(t) + \veca(t) \Delta t + \Order{\Delta t^2}
|
||||||
|
}
|
||||||
|
\ttxt{\eng{
|
||||||
|
Cumulative error scales linearly $\Order{\Delta t}$. Not time reversible.
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{verlet}
|
||||||
|
\desc{Verlet integration}{Preverses time reversibility, does not require velocity updates}{}
|
||||||
|
\desc[german]{Verlet-Algorithmus}{Zeitumkehr-symmetrisch}{}
|
||||||
|
\eq{
|
||||||
|
\vecR(t+\Delta t) = 2\vecR(t) -\vecR(t-\Delta t) + \veca(t) \Delta t^2 + \Order{\Delta t^4}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{velocity-verlet}
|
||||||
|
\desc{Velocity-Verlet integration}{}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{
|
||||||
|
\vecR(t+\Delta t) &= \vecR(t) + \vecv(t)\Delta t + \frac{1}{2} \veca(t) \Delta t^2 + \Order{\Delta t^4} \\
|
||||||
|
\vecv(t+\Delta t) &= \vecv(t) + \frac{\veca(t) + \veca(t+\Delta t)}{2} \Delta t + \Order{\Delta t^4}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\TODO{leapfrog}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Thermostats and barostats}
|
||||||
|
\ger{Thermostate und Barostate}
|
||||||
|
]{stats}
|
||||||
|
\begin{formula}{velocity_rescaling}
|
||||||
|
\desc{Velocity rescaling}{Thermostat, keep temperature at $T_0$ by rescaling velocities. Does not allow temperature fluctuations and thus does not obey the \absRef{c_ensemble}}{$T$ target \qtyRef{temperature}, $M$ \qtyRef{mass} of nucleon $I$, $\vecv$ \qtyRef{velocity}, $f$ number of degrees of freedom, $\lambda$ velocity scaling parameter, \ConstRef{boltzmann}}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{
|
||||||
|
\Delta T(t) &= T_0 - T(t) \\
|
||||||
|
&= \sum_I^N \frac{M_I\,(\lambda \vecv_I(t))^2}{f\kB} - \sum_I^N \frac{M_I\,\vecv_I(t)^2}{f\kB} \\
|
||||||
|
&= (\lambda^2 - 1) T(t)
|
||||||
|
}
|
||||||
|
\eq{\lambda = \sqrt{\frac{T_0}{T(t)}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{berendsen}
|
||||||
|
\desc{Berendsen thermostat}{Does not obey \absRef{c_ensemble} but efficiently brings system to target temperature}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{\odv{T}{t} = \frac{T_0-T}{\tau}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{nose-hoover}
|
||||||
|
\desc{Nosé-Hoover thermostat}{Control the temperature with by time stretching with an associated mass.\\Compliant with \absRef{c_ensemble}}{$s$ scaling factor, $Q$ associated "mass", $\mathcal{L}$ \absRef{lagrangian}, $g$ degrees of freedom}
|
||||||
|
\desc[german]{Nosé-Hoover Thermostat}{}{}
|
||||||
|
\begin{gather}
|
||||||
|
\d\tilde{t} = \tilde{s}\d t \\
|
||||||
|
\mathcal{L} = \sum_{I=1}^N \frac{1}{2} M_I \tilde{s}^2 v_i^2 - V(\tilde{\vecR}_1, \ldots, \tilde{\vecR}_I, \ldots, \tilde{\vecR}_N) + \frac{1}{2} Q \dot{\tilde{s}}^2 - g \kB T_0 \ln \tilde{s}
|
||||||
|
\end{gather}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Calculating observables}
|
||||||
|
\ger{Berechnung von Observablen}
|
||||||
|
]{obs}
|
||||||
|
\begin{formula}{spectral_density}
|
||||||
|
\desc{Spectral density}{Wiener-Khinchin theorem\\\absRef{fourier_transform} of \absRef{autocorrelation}}{$C$ \absRef{autocorrelation}}
|
||||||
|
\desc[german]{Spektraldichte}{Wiener-Khinchin Theorem\\\absRef{fourier_transform} of \absRef{autocorrelation}}{}
|
||||||
|
\eq{S(\omega) = \int_{-\infty}^\infty \d\tau C(\tau) \e^{-\I\omega t} }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{vdos} \abbrLabel{VDOS}
|
||||||
|
\desc{Vibrational density of states (VDOS)}{}{$S_{v_i}$ velocity \secEqRef{spectral_density} of particle $I$}
|
||||||
|
\desc[german]{Vibrationszustandsdicht (VDOS)}{}{}
|
||||||
|
\eq{g(\omega) \sim \sum_{I=1}^N M_I S_{v_I}(\omega)}
|
||||||
|
\end{formula}
|
4
src/comp/comp.tex
Normal file
4
src/comp/comp.tex
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
\Part[
|
||||||
|
\eng{Computational Physics}
|
||||||
|
\ger{Computergestützte Physik}
|
||||||
|
]{comp}
|
289
src/comp/est.tex
Normal file
289
src/comp/est.tex
Normal file
@ -0,0 +1,289 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Electronic structure theory}
|
||||||
|
% \ger{}
|
||||||
|
]{est}
|
||||||
|
|
||||||
|
\begin{formula}{kinetic_energy}
|
||||||
|
\desc{Kinetic energy}{of species $i$}{$i$ = nucleons/electrons, $N$ number of particles, $m$ \qtyRef{mass}}
|
||||||
|
\desc[german]{Kinetische Energie}{von Spezies $i$}{$i$ = Nukleonen/Elektronen, $N$ Teilchenzahl, $m$ \qtyRef{mass}}
|
||||||
|
\eq{\hat{T}_i &= -\sum_{n=1}^{N_i} \frac{\hbar^2}{2 m_i} \vec{\nabla}^2_n}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{potential_energy}
|
||||||
|
\desc{Electrostatic potential}{between species $i$ and $j$}{$i,j$ = nucleons/electrons, $r$ particle position, $Z_i$ charge of species $i$, \ConstRef{charge}}
|
||||||
|
\desc[german]{Elektrostatisches Potential}{zwischen Spezies $i$ und $j$}{}
|
||||||
|
\eq{\hat{V}_{i \leftrightarrow j} &= -\sum_{k,l} \frac{Z_i Z_j e^2}{\abs{\vecr_k - \vecr_l}}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{hamiltonian}
|
||||||
|
\desc{Electronic structure Hamiltonian}{}{$\hat{T}$ \fqEqRef{comp:est:kinetic_energy}, $\hat{V}$ \fqEqRef{comp:est:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}}
|
||||||
|
\eq{\hat{H} &= \hat{T}_\txe + \hat{T}_\txn + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe} + V_{\txn \leftrightarrow \txn}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{mean_field}
|
||||||
|
\desc{Mean field approximation}{Replaces 2-particle operator by 1-particle operator}{Example for Coulomb interaction between many electrons}
|
||||||
|
\desc[german]{Molekularfeldnäherung}{Ersetzt 2-Teilchen Operator durch 1-Teilchen Operator}{Beispiel für Coulomb Wechselwirkung zwischen Elektronen}
|
||||||
|
\eq{
|
||||||
|
\frac{1}{2}\sum_{i\neq j} \frac{e^2}{\abs{\vec{r}_i - \vec{r}_j}} \approx \sum_{i} V_\text{eff}(\vec{r}_i)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Tight-binding}
|
||||||
|
\ger{Modell der stark gebundenen Elektronen / Tight-binding}
|
||||||
|
]{tb}
|
||||||
|
\begin{formula}{assumptions}
|
||||||
|
\desc{Assumptions}{}{}
|
||||||
|
\desc[german]{Annahmen}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Atomic wave functions are localized \Rightarrow Small overlap, interaction cutoff
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{hamiltonian}
|
||||||
|
\desc{Tight-binding Hamiltonian}{in second quantized form}{$\hat{a}_i^\dagger$, $\hat{a}_i$ \GT{creation_annihilation_ops} create/destory an electron on site $i$, $\epsilon_i$ on-site energy, $t_{i,j}$ hopping amplitude, usually $\epsilon$ and $t$ are determined from experiments or other methods}
|
||||||
|
\desc[german]{Tight-binding Hamiltonian}{in zweiter Quantisierung}{$\hat{a}_i^\dagger$, $\hat{a}_i$ \GT{creation_annihilation_ops} erzeugen/vernichten ein Elektron auf Platz $i$, $\epsilon_i$ on-site Energie, $t_{i,j}$ hopping Amplitude, meist werden $\epsilon$ und $t$ aus experimentellen Daten oder anderen Methoden bestimmt}
|
||||||
|
\eq{\hat{H} = \sum_i \epsilon_i \hat{a}_i^\dagger \hat{a}_i - \sum_{i,j} t_{i,j} \left(\hat{a}_i^\dagger \hat{a}_j + \hat{a}_j^\dagger \hat{a}_i\right)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Density functional theory (DFT)}
|
||||||
|
\ger{Dichtefunktionaltheorie (DFT)}
|
||||||
|
]{dft}
|
||||||
|
\abbrLink{dft}{DFT}
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Hartree-Fock}
|
||||||
|
\ger{Hartree-Fock}
|
||||||
|
]{hf}
|
||||||
|
\begin{formula}{description}
|
||||||
|
\desc{Description}{}{}
|
||||||
|
\desc[german]{Beschreibung}{}{}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Assumes wave functions are \fqEqRef{qm:other:slater_det} \Rightarrow Approximation
|
||||||
|
\item \fqEqRef{comp:est:mean_field} theory obeying the Pauli principle
|
||||||
|
\item Self-interaction free: Self interaction is cancelled out by the Fock-term
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{equation}
|
||||||
|
\desc{Hartree-Fock equation}{}{
|
||||||
|
$\varphi_\xi$ single particle wavefunction of $\xi$th orbital,
|
||||||
|
$\hat{T}$ kinetic electron energy,
|
||||||
|
$\hat{V}_{\text{en}}$ electron-nucleus attraction,
|
||||||
|
$\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential},
|
||||||
|
}
|
||||||
|
\desc[german]{Hartree-Fock Gleichung}{}{
|
||||||
|
$\varphi_\xi$ ein-Teilchen Wellenfunktion des $\xi$-ten Orbitals,
|
||||||
|
$\hat{T}$ kinetische Energie der Elektronen,
|
||||||
|
$\hat{V}_{\text{en}}$ Electron-Kern Anziehung,
|
||||||
|
$\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential}
|
||||||
|
}
|
||||||
|
\eq{
|
||||||
|
\left(\hat{T} + \hat{V}_{\text{en}} + \hat{V}_{\text{HF}}^\xi\right)\varphi_\xi(x) = \epsilon_\xi \varphi_\xi(x)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{potential}
|
||||||
|
\desc{Hartree-Fock potential}{}{}
|
||||||
|
\desc[german]{Hartree Fock Potential}{}{}
|
||||||
|
\eq{
|
||||||
|
V_{\text{HF}}^\xi(\vecr) =
|
||||||
|
\sum_{\vartheta} \int \d x'
|
||||||
|
\frac{e^2}{\abs{\vecr - \vecr'}}
|
||||||
|
\left(
|
||||||
|
\underbrace{\abs{\varphi_\xi(x')}^2}_{\text{Hartree-Term}}
|
||||||
|
- \underbrace{\frac{\varphi_{\vartheta}^*(x') \varphi_{\xi}(x') \varphi_{\vartheta}(x)}{\varphi_\xi(x)}}_{\text{Fock-Term}}
|
||||||
|
\right)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{scf}
|
||||||
|
\desc{Self-consistent field cycle}{}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{
|
||||||
|
\begin{enumerate}
|
||||||
|
\item Initial guess for $\psi$
|
||||||
|
\item Solve SG for each particle
|
||||||
|
\item Make new guess for $\psi$
|
||||||
|
\end{enumerate}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Hohenberg-Kohn Theorems}
|
||||||
|
\ger{Hohenberg-Kohn Theoreme}
|
||||||
|
]{hk}
|
||||||
|
\begin{formula}{hk1}
|
||||||
|
\desc{Hohenberg-Kohn theorem (HK1)}{}{}
|
||||||
|
\desc[german]{Hohenberg-Kohn Theorem (HK1)}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{For any system of interacting electrons, the ground state electron density $n(\vecr)$ determines $\hat{V}_\text{ext}$ uniquely up to a trivial constant. }
|
||||||
|
\ger{Die Elektronendichte des Grundzustandes $n(\vecr)$ bestimmt ein einzigartiges $\hat{V}_{\text{ext}}$ eines Systems aus interagierenden Elektronen bis auf eine Konstante.}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{hk2}
|
||||||
|
\desc{Hohenberg-Kohn theorem (HK2)}{}{}
|
||||||
|
\desc[german]{Hohenberg-Kohn Theorem (HK2)}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Given the energy functional $E[n(\vecr)]$, the ground state density and energy can be obtained variationally. The density that minimizes the total energy is the ecxact ground state density. }
|
||||||
|
\ger{Für ein Energiefunktional $E[n(\vecr)]$ kann die Grundzustandsdichte und Energie durch systematische Variation bestimmt werden. Die Dichte, welche die Gesamtenergie minimiert ist die exakte Grundzustandsichte. }
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{density}
|
||||||
|
\desc{Ground state electron density}{}{}
|
||||||
|
\desc[german]{Grundzustandselektronendichte}{}{}
|
||||||
|
\eq{n(\vecr) = \Braket{\psi_0|\sum_{i=1}^N \delta(\vecr-\vecr_i)|\psi_0}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Kohn-Sham DFT}
|
||||||
|
\ger{Kohn-Sham DFT}
|
||||||
|
]{ks}
|
||||||
|
\abbrLink{ksdft}{KS-DFT}
|
||||||
|
\begin{formula}{map}
|
||||||
|
\desc{Kohn-Sham map}{}{}
|
||||||
|
\desc[german]{Kohn-Sham Map}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Maps fully interacting system of electrons to a system of non-interacting electrons with the same ground state density $n^\prime(\vecr) = n(\vecr)$}
|
||||||
|
}
|
||||||
|
\eq{n(\vecr) = \sum_{i=1}^N \abs{\phi_i(\vecr)}^2}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{functional}
|
||||||
|
\desc{Kohn-Sham functional}{}{$T_\text{KS}$ kinetic enery, $V_\text{ext}$ external potential, $E_\txH$ \hyperref[f:comp:est:dft:hf:potential]{Hartree term}, $E_\text{XC}$ \fqEqRef{comp:est:dft:xc:xc}}
|
||||||
|
\desc[german]{Kohn-Sham Funktional}{}{}
|
||||||
|
\eq{E_\text{KS}[n(\vecr)] = T_\text{KS}[n(\vecr)] + V_\text{ext}[n(\vecr)] + E_\text{H}[n(\vecr)] + E_\text{XC}[n(\vecr)] }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{equation}
|
||||||
|
\desc{Kohn-Sham equation}{Exact single particle \abbrRef{schroedinger_equation} (though often exact $E_\text{XC}$ is not known)\\ Solving it uses up a large portion of supercomputer resources}{$\phi_i^\text{KS}$ KS orbitals, $\int\d^3r v_\text{ext}(\vecr)n(\vecr)=V_\text{ext}[n(\vecr)]$}
|
||||||
|
\desc[german]{Kohn-Sham Gleichung}{Exakte Einteilchen-\abbrRef{schroedinger_equation} (allerdings ist das exakte $E_\text{XC}$ oft nicht bekannt)\\ Die Lösung der Gleichung macht einen großen Teil der Supercomputer Ressourcen aus}{}
|
||||||
|
\begin{multline}
|
||||||
|
\biggr\{
|
||||||
|
-\frac{\hbar^2\nabla^2}{2m}
|
||||||
|
+ v_\text{ext}(\vecr)
|
||||||
|
+ e^2 \int\d^3 \vecr^\prime \frac{n(\vecr^\prime)}{\abs{\vecr-\vecr^\prime}} \\
|
||||||
|
+ \pdv{E_\txX[n(\vecr)]}{n(\vecr)}
|
||||||
|
+ \pdv{E_\txC[n(\vecr)]}{n(\vecr)}
|
||||||
|
\biggr\} \phi_i^\text{KS}(\vecr) =\\
|
||||||
|
= \epsilon_i^\text{KS} \phi_i^\text{KS}(\vecr)
|
||||||
|
\end{multline}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{scf}
|
||||||
|
\desc{Self-consistent field cycle for Kohn-Sham}{}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\itemsep=\parsep
|
||||||
|
\eng{
|
||||||
|
\begin{enumerate}
|
||||||
|
\item Initial guess for $n(\vecr)$
|
||||||
|
\item Calculate effective potential $V_\text{eff}$
|
||||||
|
\item Solve \fqEqRef{comp:est:dft:ks:equation}
|
||||||
|
\item Calculate density $n(\vecr)$
|
||||||
|
\item Repeat 2-4 until self consistent
|
||||||
|
\end{enumerate}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Exchange-Correlation functionals}
|
||||||
|
\ger{Exchange-Correlation Funktionale}
|
||||||
|
]{xc}
|
||||||
|
\begin{formula}{xc}
|
||||||
|
\desc{Exchange-Correlation functional}{}{}
|
||||||
|
\desc[german]{Exchange-Correlation Funktional}{}{}
|
||||||
|
\eq{ E_\text{XC}[n(\vecr)] = \Braket{\hat{T}} - T_\text{KS}[n(\vecr)] + \Braket{\hat{V}_\text{int}} - E_\txH[n(\vecr)] }
|
||||||
|
\ttxt{\eng{
|
||||||
|
Accounts for:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Kinetic energy difference between interaction and non-interacting system
|
||||||
|
\item Exchange energy due to Pauli principle
|
||||||
|
\item Correlation energy due to many-body Coulomb interaction (not accounted for in mean field Hartree term $E_\txH$)
|
||||||
|
\end{itemize}
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{lda}
|
||||||
|
\desc{Local density approximation (LDA)}{Simplest DFT functionals}{$\epsilon_\txX$ calculated exchange energy from \hyperref[f:comp:qmb:models:heg]{HEG model}, $\epsilon_\txC$ correlation energy calculated with \fqSecRef{comp:qmb:methods:qmonte-carlo}}
|
||||||
|
\desc[german]{}{}{}
|
||||||
|
\abbrLabel{LDA}
|
||||||
|
\eq{E_\text{XC}^\text{LDA}[n(\vecr)] = \int \d^3r\,n(r) \Big[\epsilon_\txX[n(\vecr)] + \epsilon_\txC[n(\vecr)]\Big]}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{gga}
|
||||||
|
\desc{Generalized gradient approximation (GGA)}{}{$\epsilon_\txX$ calculated exchange energy from \hyperref[f:comp:qmb:models:heg]{HEG model}, $F_\text{XC}$ function containing exchange-correlation energy dependency on $n$ and $\Grad n$}
|
||||||
|
\desc[german]{}{}{}
|
||||||
|
\abbrLabel{GGA}
|
||||||
|
\eq{E_\text{XC}^\text{GGA}[n(\vecr)] = \int \d^3r\,n(r) \epsilon_\txX[n(\vecr)]\,F_\text{XC}[n(\vecr), \Grad n(\vecr)]}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\TODO{PBE}
|
||||||
|
|
||||||
|
\begin{formula}{hybrid}
|
||||||
|
\desc{Hybrid functionals}{}{}
|
||||||
|
\desc[german]{Hybride Funktionale}{}{$\alpha$ mixing paramter, $E_\txX$ exchange energy, $E_\txC$ correlation energy}
|
||||||
|
\eq{\alpha E_\txX^\text{HF} + (1-\alpha) E_\txX^\text{GGA} + E_\txC^\text{GGA}}
|
||||||
|
\ttxt{\eng{
|
||||||
|
Include \hyperref[f:comp:dft:hf:potential]{Fock term} (exact exchange) in other functional, like \abbrRef{gga}. Computationally expensive
|
||||||
|
}}
|
||||||
|
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{range-separated-hybrid}
|
||||||
|
\desc{Range separated hyrid functionals (RSH)}{Here HSE as example}{$\alpha$ mixing paramter, $E_\txX$ exchange energy, $E_\txC$ correlation energy}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\begin{gather}
|
||||||
|
\frac{1}{r} = \frac{\erf(\omega r)}{r} + \frac{\erfc{\omega r}}{r} \\
|
||||||
|
E_\text{XC}^\text{HSE} = \alpha E_\text{X,SR}^\text{HF}(\omega) + (1-\alpha)E_\text{X,SR}^\text{GGA}(\omega) + E_\text{X,LR}^\text{GGA}(\omega) + E_\txC^\text{GGA}
|
||||||
|
\end{gather}
|
||||||
|
\separateEntries
|
||||||
|
\ttxt{\eng{
|
||||||
|
Use \abbrRef{gga} and \hyperref[comp:est:dft:hf:potential]{Fock} exchange for short ranges (SR) and only \abbrRef{GGA} for long ranges (LR).
|
||||||
|
\abbrRef{GGA} correlation is always used. Useful when dielectric screening reduces long range interactions, saves computational cost.
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{comparison}
|
||||||
|
\desc{Comparison of DFT functionals}{}{}
|
||||||
|
\desc[german]{Vergleich von DFT Funktionalen}{}{}
|
||||||
|
\begin{tabular}{l|c}
|
||||||
|
\hyperref[f:comp:est:dft:hf:potential]{Hartree-Fock} & only exchange, no correlation \Rightarrow upper bound of GS energy \\
|
||||||
|
\abbrRef{lda} & understimates e repulsion \Rightarrow Overbinding \\
|
||||||
|
\abbrRef{gga} & underestimate band gap \\
|
||||||
|
hybrid & underestimate band gap
|
||||||
|
\end{tabular}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Basis sets}
|
||||||
|
\ger{Basis-Sets}
|
||||||
|
]{basis}
|
||||||
|
\begin{formula}{plane_wave}
|
||||||
|
\desc{Plane wave basis}{Plane wave ansatz in \fqEqRef{comp:est:dft:ks:equation}\\Good for periodic structures, allows computation parallelization over a sample points in the \abbrRef{brillouin_zone}}{}
|
||||||
|
\desc[german]{Ebene Wellen als Basis}{}{}
|
||||||
|
\eq{\sum_{\vecG^\prime} \left[\frac{\hbar^2 \abs{\vecG+\veck}^2}{2m} \delta_{\vecG,\vecG^\prime} + V_\text{eff}(\vecG-\vecG^\prime)\right] c_{i,\veck,\vecG^\prime} = \epsilon_{i,\veck} c_{i,\veck,\vecG}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{plane_wave_cutoff}
|
||||||
|
\desc{Plane wave cutoff}{Number of plane waves included in the calculation must be finite}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{E_\text{cutoff} = \frac{\hbar^2 \abs{\veck+\vecG}^2}{2m}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Pseudo-Potential method}
|
||||||
|
\ger{Pseudopotentialmethode}
|
||||||
|
]{pseudo}
|
||||||
|
\begin{formula}{ansatz}
|
||||||
|
\desc{Ansatz}{}{}
|
||||||
|
\desc[german]{Ansatz}{}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
Core electrons are absorbed into the potential since they do not contribute much to interesting properties.
|
||||||
|
}}
|
||||||
|
\end{formula}
|
84
src/comp/ml.tex
Normal file
84
src/comp/ml.tex
Normal file
@ -0,0 +1,84 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Machine-Learning}
|
||||||
|
\ger{Maschinelles Lernen}
|
||||||
|
]{ml}
|
||||||
|
\Subsection[
|
||||||
|
\eng{Performance metrics}
|
||||||
|
\ger{Metriken zur Leistungsmessung}
|
||||||
|
]{performance}
|
||||||
|
\eng[cp]{correct predictions}
|
||||||
|
\ger[cp]{richtige Vorhersagen}
|
||||||
|
\eng[fp]{false predictions}
|
||||||
|
\ger[fp]{falsche Vorhersagen}
|
||||||
|
|
||||||
|
\eng[y]{ground truth}
|
||||||
|
\eng[yhat]{prediction}
|
||||||
|
\ger[y]{Wahrheit}
|
||||||
|
\ger[yhat]{Vorhersage}
|
||||||
|
|
||||||
|
\begin{formula}{accuracy}
|
||||||
|
\desc{Accuracy}{}{}
|
||||||
|
\desc[german]{Genauigkeit}{}{}
|
||||||
|
\eq{a = \frac{\tgt{cp}}{\tgt{fp} + \tgt{cp}}}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{is $n$ the nuber of predictions or the number of output features?}
|
||||||
|
\begin{formula}{mean_abs_error}
|
||||||
|
\desc{Mean absolute error (MAE)}{}{$y$ \gt{y}, $\hat{y}$ \gt{yhat}, $n$ ?}
|
||||||
|
\desc[german]{Mittlerer absoluter Fehler (MAE)}{}{}
|
||||||
|
\eq{\text{MAE} = \frac{1}{n} \sum_{i=1}^n \abs{y_i - \hat{y}_i}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{root_mean_square_error}
|
||||||
|
\desc{Root mean squared error (RMSE)}{}{$y$ \gt{y}, $\hat{y}$ \gt{yhat}, $n$ ?}
|
||||||
|
\desc[german]{Standardfehler der Regression}{Quadratwurzel des mittleren quadratischen Fehlers (RSME)}{}
|
||||||
|
\eq{\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^n \left(y_i - \hat{y}_i\right)^2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Regression}
|
||||||
|
\ger{Regression}
|
||||||
|
]{reg}
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Linear Regression}
|
||||||
|
\ger{Lineare Regression}
|
||||||
|
]{linear}
|
||||||
|
\begin{formula}{eq}
|
||||||
|
\desc{Linear regression}{Fits the data under the assumption of \hyperref[f:math:pt:distributions:cont:normal]{normally distributed errors}}{$\mat{x}\in\R^{N\times M}$ input data, $\mat{y}\in\R^{N\times L}$ output data, $\mat{b}$ bias, $\vec{W}$ weights, $N$ samples, $M$ features, $L$ output variables}
|
||||||
|
\desc[german]{Lineare Regression}{Fitted Daten unter der Annahme \hyperref[f:math:pt:distributions:cont:normal]{normalverteilter Fehler}}{}
|
||||||
|
\eq{\mat{y} = \mat{b} + \mat{x} \cdot \vec{W}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{design_matrix}
|
||||||
|
\desc{Design matrix}{Stack column of ones to the feature vector\\Useful when $b$ is scalar}{$x_{ij}$ feature $j$ of sample $i$}
|
||||||
|
\desc[german]{Designmatrix Ansatz}{}{}
|
||||||
|
\eq{
|
||||||
|
\mat{X} = \begin{pmatrix} 1 & x_{11} & \ldots & x_{1M} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{N1} & \ldots & x_{NM} \end{pmatrix}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{scalar_bias}
|
||||||
|
\desc{Linear regression with scalar bias}{Using the design matrix, the scalar is absorbed into the weight vector}{$\mat{y}$ output data, $\mat{X}$ \fqEqRef{comp:ml:reg:design_matrix}, $\vec{W}$ weights}
|
||||||
|
\desc[german]{Lineare Regression mit skalarem Bias}{Durch die Designmatrix wird der Bias in den Gewichtsvektor absorbiert}{}
|
||||||
|
\eq{\mat{y} = \mat{X} \cdot \vec{W}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{normal_equation}
|
||||||
|
\desc{Normal equation}{Solves \fqEqRef{comp:ml:reg:linear:scalar_bias}}{$\mat{y}$ output data, $\mat{X}$ \fqEqRef{comp:ml:reg:linear:design_matrix}, $\vec{W}$ weights}
|
||||||
|
\desc[german]{Normalengleichung}{Löst \fqEqRef{comp:ml:reg:linear:scalar_bias}}{}
|
||||||
|
\eq{\vec{W} = \left(\mat{X}^\T \mat{X}\right)^{-1} \mat{X}^T \mat{y}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Ridge regression}
|
||||||
|
\ger{Ridge Regression}
|
||||||
|
]{ridge}
|
||||||
|
\TODO{ridge reg, Kernel ridge reg, gaussian process reg}
|
||||||
|
% \Subsection[
|
||||||
|
% \eng{Bayesian probability theory}
|
||||||
|
% % \ger{}
|
||||||
|
% ]{bayesian}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Gradient descent}
|
||||||
|
\ger{Gradientenverfahren}
|
||||||
|
]{gd}
|
||||||
|
\TODO{in lecture 30 CMP}
|
||||||
|
|
39
src/comp/qmb.tex
Normal file
39
src/comp/qmb.tex
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Quantum many-body physics}
|
||||||
|
\ger{Quanten-Vielteilchenphysik}
|
||||||
|
]{qmb}
|
||||||
|
\Subsection[
|
||||||
|
\eng{Quantum many-body models}
|
||||||
|
\ger{Quanten-Vielteilchenmodelle}
|
||||||
|
]{models}
|
||||||
|
\begin{formula}{heg}
|
||||||
|
\desc{Homogeneous electron gas (HEG)}{Also "Jellium"}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Both positive (nucleus) and negative (electron) charges are distributed uniformly.}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Methods}
|
||||||
|
\ger{Methoden}
|
||||||
|
]{methods}
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Quantum Monte-Carlo}
|
||||||
|
\ger{Quantum Monte-Carlo}
|
||||||
|
]{qmonte-carlo}
|
||||||
|
|
||||||
|
|
||||||
|
\TODO{TODO}
|
||||||
|
\Subsection[
|
||||||
|
\eng{Importance sampling}
|
||||||
|
\ger{Importance sampling / Stichprobenentnahme nach Wichtigkeit}
|
||||||
|
]{importance_sampling}
|
||||||
|
\TODO{Monte Carlo}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Matrix product states}
|
||||||
|
\ger{Matrix Produktzustände}
|
||||||
|
]{mps}
|
||||||
|
|
||||||
|
|
@ -1,397 +0,0 @@
|
|||||||
\Part[
|
|
||||||
\eng{Condensed matter physics}
|
|
||||||
\ger{Festkörperphysik}
|
|
||||||
]{cm}
|
|
||||||
\Section[
|
|
||||||
\eng{Bravais lattice}
|
|
||||||
\ger{Bravais-Gitter}
|
|
||||||
]{bravais}
|
|
||||||
|
|
||||||
% \begin{ttext}
|
|
||||||
% \eng{
|
|
||||||
|
|
||||||
% }
|
|
||||||
% \ger{
|
|
||||||
|
|
||||||
% }
|
|
||||||
% \end{ttext}
|
|
||||||
|
|
||||||
\eng[bravais_table2]{In 2D, there are 5 different Bravais lattices}
|
|
||||||
\ger[bravais_table2]{In 2D gibt es 5 verschiedene Bravais-Gitter}
|
|
||||||
|
|
||||||
\eng[bravais_table3]{In 3D, there are 14 different Bravais lattices}
|
|
||||||
\ger[bravais_table3]{In 3D gibt es 14 verschiedene Bravais-Gitter}
|
|
||||||
|
|
||||||
\Eng[lattice_system]{Lattice system}
|
|
||||||
\Ger[lattice_system]{Gittersystem}
|
|
||||||
\Eng[crystal_family]{Crystal system}
|
|
||||||
\Ger[crystal_family]{Kristall-system}
|
|
||||||
\Eng[point_group]{Point group}
|
|
||||||
\Ger[point_group]{Punktgruppe}
|
|
||||||
\eng[bravais_lattices]{Bravais lattices}
|
|
||||||
\ger[bravais_lattices]{Bravais Gitter}
|
|
||||||
|
|
||||||
\newcommand\bvimg[1]{\begin{center}\includegraphics[width=0.1\textwidth]{img/bravais/#1.pdf}\end{center}}
|
|
||||||
\renewcommand\tabularxcolumn[1]{m{#1}}
|
|
||||||
\newcolumntype{Z}{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}X}
|
|
||||||
\begin{table}[H]
|
|
||||||
\centering
|
|
||||||
\caption{\gt{bravais_table2}}
|
|
||||||
\label{tab:bravais2}
|
|
||||||
|
|
||||||
\begin{adjustbox}{width=\textwidth}
|
|
||||||
\begin{tabularx}{\textwidth}{||Z|c|Z|Z||}
|
|
||||||
\hline
|
|
||||||
\multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{2}{c||}{5 \gt{bravais_lattices}} \\ \cline{3-4}
|
|
||||||
& & \GT{primitive} (p) & \GT{centered} (c) \\ \hline
|
|
||||||
\GT{monoclinic} (m) & $\text{C}_\text{2}$ & \bvimg{mp} & \\ \hline
|
|
||||||
\GT{orthorhombic} (o) & $\text{D}_\text{2}$ & \bvimg{op} & \bvimg{oc} \\ \hline
|
|
||||||
\GT{tetragonal} (t) & $\text{D}_\text{4}$ & \bvimg{tp} & \\ \hline
|
|
||||||
\GT{hexagonal} (h) & $\text{D}_\text{6}$ & \bvimg{hp} & \\ \hline
|
|
||||||
\end{tabularx}
|
|
||||||
\end{adjustbox}
|
|
||||||
\end{table}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{table}[H]
|
|
||||||
\centering
|
|
||||||
\caption{\gt{bravais_table3}}
|
|
||||||
\label{tab:bravais3}
|
|
||||||
|
|
||||||
% \newcolumntype{g}{>{\columncolor[]{0.8}}}
|
|
||||||
\begin{adjustbox}{width=\textwidth}
|
|
||||||
% \begin{tabularx}{\textwidth}{|c|}
|
|
||||||
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
|
||||||
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
|
||||||
% \end{tabularx}
|
|
||||||
% \begin{tabular}{|c|}
|
|
||||||
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
|
||||||
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
|
||||||
% \end{tabular}
|
|
||||||
% \\
|
|
||||||
\begin{tabularx}{\textwidth}{||Z|Z|c|Z|Z|Z|Z||}
|
|
||||||
\hline
|
|
||||||
\multirow{2}{*}{\GT{crystal_family}} & \multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{4}{c||}{14 \gt{bravais_lattices}} \\ \cline{4-7}
|
|
||||||
& & & \GT{primitive} (P) & \GT{base_centered} (S) & \GT{body_centered} (I) & \GT{face_centered} (F) \\ \hline
|
|
||||||
\multicolumn{2}{||c|}{\GT{triclinic} (a)} & $\text{C}_\text{i}$ & \bvimg{tP} & & & \\ \hline
|
|
||||||
\multicolumn{2}{||c|}{\GT{monoclinic} (m)} & $\text{C}_\text{2h}$ & \bvimg{mP} & \bvimg{mS} & & \\ \hline
|
|
||||||
\multicolumn{2}{||c|}{\GT{orthorhombic} (o)} & $\text{D}_\text{2h}$ & \bvimg{oP} & \bvimg{oS} & \bvimg{oI} & \bvimg{oF} \\ \hline
|
|
||||||
\multicolumn{2}{||c|}{\GT{tetragonal} (t)} & $\text{D}_\text{4h}$ & \bvimg{tP} & & \bvimg{tI} & \\ \hline
|
|
||||||
\multirow{2}{*}{\GT{hexagonal} (h)} & \GT{rhombohedral} & $\text{D}_\text{3d}$ & \bvimg{hR} & & & \\ \cline{2-7}
|
|
||||||
& \GT{hexagonal} & $\text{D}_\text{6h}$ & \bvimg{hP} & & & \\ \hline
|
|
||||||
\multicolumn{2}{||c|}{\GT{cubic} (c)} & $\text{O}_\text{h}$ & \bvimg{cP} & & \bvimg{cI} & \bvimg{cF} \\ \hline
|
|
||||||
\end{tabularx}
|
|
||||||
\end{adjustbox}
|
|
||||||
\end{table}
|
|
||||||
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{Reciprocal lattice}
|
|
||||||
\ger{Reziprokes Gitter}
|
|
||||||
]{reci}
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{The reciprokal lattice is made up of all the wave vectors $\vec{k}$ that ressemble standing waves with the periodicity of the Bravais lattice.}
|
|
||||||
\ger{Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren $\vec{k}$, die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.}
|
|
||||||
\end{ttext}
|
|
||||||
|
|
||||||
\begin{formula}{vectors}
|
|
||||||
\desc{Reciprocal lattice vectors}{}{$a_i$ real-space lattice vectors, $V_c$ volume of the primitive lattice cell}
|
|
||||||
\desc[german]{Reziproke Gittervektoren}{}{$a_i$ Bravais-Gitter Vektoren, $V_c$ Volumen der primitiven Gitterzelle}
|
|
||||||
\eq{
|
|
||||||
\vec{b_1} &= \frac{2\pi}{V_c} \vec{a_2} \times \vec{a_3} \\
|
|
||||||
\vec{b_2} &= \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1} \\
|
|
||||||
\vec{b_3} &= \frac{2\pi}{V_c} \vec{a_1} \times \vec{a_2}
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Scattering processes}
|
|
||||||
\ger{Streuprozesse}
|
|
||||||
]{scatter}
|
|
||||||
\begin{formula}{matthiessen}
|
|
||||||
\desc{Matthiessen's rule}{Approximation, only holds if the processes are independent of each other}{$\mu$ mobility, $\tau$ scattering time}
|
|
||||||
\desc[german]{Matthiessensche Regel}{Näherung, nur gültig wenn die einzelnen Streuprozesse von einander unabhängig sind}{$\mu$ Moblitiät, $\tau$ Streuzeit}
|
|
||||||
\eq{
|
|
||||||
\frac{1}{\mu} &= \sum_{i = \textrm{\GT{\fqname}}} \frac{1}{\mu_i} \\
|
|
||||||
\frac{1}{\tau} &= \sum_{i = \textrm{\GT{\fqname}}} \frac{1}{\tau_i}
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{Free electron gas}
|
|
||||||
\ger{Freies Elektronengase}
|
|
||||||
]{free_e_gas}
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{Assumptions: electrons can move freely and independent of each other.}
|
|
||||||
\ger{Annahmen: Elektronen bewegen sich frei und unabhänig voneinander.}
|
|
||||||
\end{ttext}
|
|
||||||
|
|
||||||
\begin{formula}{drift_velocity}
|
|
||||||
\desc{Drift velocity}{Velocity component induced by an external force (eg. electric field)}{$v_\text{th}$ thermal velocity}
|
|
||||||
\desc[german]{Driftgeschwindgkeit}{Geschwindigkeitskomponente durch eine externe Kraft (z.B. ein elektrisches Feld)}{$v_\text{th}$ thermische Geschwindigkeit}
|
|
||||||
\eq{\vec{v}_\text{D} = \vec{v} - \vec{v}_\text{th}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{mean_free_time}
|
|
||||||
\desc{Mean free time}{}{}
|
|
||||||
\desc[german]{Streuzeit}{}{}
|
|
||||||
\eq{\tau}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{mean_free_path}
|
|
||||||
\desc{Mean free path}{}{}
|
|
||||||
\desc[german]{Mittlere freie Weglänge}{}{}
|
|
||||||
\eq{\ell = \braket{v} \tau}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{mobility}
|
|
||||||
\desc{Electrical mobility}{}{$q$ charge, $m$ mass}
|
|
||||||
\desc[german]{Beweglichkeit}{}{$q$ Ladung, $m$ Masse}
|
|
||||||
\eq{\mu = \frac{q \tau}{m}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Drude model}
|
|
||||||
\ger{Drude-Modell}
|
|
||||||
]{drude}
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{Classical model describing the transport properties of electrons in materials (metals):
|
|
||||||
The material is assumed to be an ion lattice and with freely moving electrons (electron gas). The electrons are
|
|
||||||
accelerated by an electric field and decelerated through collisions with the lattice ions.
|
|
||||||
The model disregards the Fermi-Dirac partition of the conducting electrons.
|
|
||||||
}
|
|
||||||
\ger{Ein klassisches Model zur Beschreibung der Transporteigenschaften von Elektronen in (v.a.) Metallen:
|
|
||||||
Der Festkörper wird als Ionenkristall mit frei beweglichen Elektronen (Elektronengas).
|
|
||||||
Die Elektronen werden durch ein Elektrisches Feld $E$ beschleunigt und durch Stöße mit den Gitterionen gebremst.
|
|
||||||
Das Modell vernachlässigt die Fermi-Dirac Verteilung der Leitungselektronen.
|
|
||||||
}
|
|
||||||
\end{ttext}
|
|
||||||
\begin{formula}{motion}
|
|
||||||
\desc{Equation of motion}{}{$v$ electron speed, $\vec{v}_\text{D}$ drift velocity, $\tau$ mean free time between collisions}
|
|
||||||
\desc[german]{Bewegungsgleichung}{}{$v$ Elektronengeschwindigkeit, $\vec{v}_\text{D}$ Driftgeschwindigkeit, $\tau$ Stoßzeit}
|
|
||||||
\eq{\masse \odv{\vec{v}}{t} + \frac{\masse}{\tau} \vec{v}_\text{D} = -e \vec{E}}
|
|
||||||
\end{formula}
|
|
||||||
\begin{formula}{current_density}
|
|
||||||
\desc{Current density}{Ohm's law}{$n$ charge particle density}
|
|
||||||
\desc[german]{Stromdichte}{Ohmsches Gesetz}{$n$ Ladungsträgerdichte}
|
|
||||||
\eq{\vec{j} = -ne\vec{v}_\text{D} = ne\mu \vec{E}}
|
|
||||||
\end{formula}
|
|
||||||
\begin{formula}{conductivity}
|
|
||||||
\desc{Drude-conductivity}{}{}
|
|
||||||
\desc[german]{Drude-Leitfähigkeit}{}{}
|
|
||||||
\eq{\sigma = \frac{\vec{j}}{\vec{E}} = \frac{e^2 \tau n}{\masse} = n e \mu}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Sommerfeld model}
|
|
||||||
\ger{Sommerfeld-Modell}
|
|
||||||
]{sommerfeld}
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{Assumes a gas of free fermions underlying the pauli-exclusion principle. Only electrons in an energy range of $\kB T$ around the Fermi energy $\EFermi$ participate in scattering processes.}
|
|
||||||
\ger{Annahme eines freien Fermionengases, welches dem Pauli-Prinzip unterliegt. Nur Elektronen in einem Energiebereich von $\kB T$ um die Fermi Energe $\EFermi$ nehmen an Streuprozessen teil.}
|
|
||||||
\end{ttext}
|
|
||||||
\begin{formula}{current_density}
|
|
||||||
\desc{Current density}{}{}
|
|
||||||
\desc[german]{Stromdichte}{}{}
|
|
||||||
\eq{\vec{j} = -en\braket{v} = -e n \frac{\hbar}{\masse}\braket{\vec{k}} = -e \frac{1}{V} \sum_{\vec{k},\sigma} \frac{\hbar \vec{k}}{\masse}}
|
|
||||||
\end{formula}
|
|
||||||
\TODO{The formula for the conductivity is the same as in the drude model?}
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{2D electron gas}
|
|
||||||
\ger{2D Elektronengas}
|
|
||||||
]{2deg}
|
|
||||||
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{Lower dimension gases can be obtained by restricting a 3D gas with infinetly high potential walls on a narrow area with the width $L$.}
|
|
||||||
\ger{
|
|
||||||
Niederdimensionale Elektronengase erhält man, wenn ein 3D Gas durch unendlich hohe Potentialwände auf einem schmalen Bereich mit Breite $L$ eingeschränkt wird.
|
|
||||||
}
|
|
||||||
\end{ttext}
|
|
||||||
\begin{formula}{confinement_energy}
|
|
||||||
\desc{Confinement energy}{Raises ground state energy}{}
|
|
||||||
\desc[german]{Confinement Energie}{Erhöht die Grundzustandsenergie}{}
|
|
||||||
\eq{\Delta E = \frac{\hbar^2 \pi^2}{2\masse L^2}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Eng[plain_wave]{plain wave}
|
|
||||||
\Ger[plain_wave]{ebene Welle}
|
|
||||||
\begin{formula}{energy}
|
|
||||||
\desc{Energy}{}{}
|
|
||||||
\desc[german]{Energie}{}{}
|
|
||||||
\eq{E_n = \underbrace{\frac{\hbar^2 k_\parallel^2}{2\masse}}_\text{$x$-$y$: \GT{plain_wave}} + \underbrace{\frac{\hbar^2 \pi^2}{2\masse L^2} n^2}_\text{$z$}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{1D electron gas / quantum wire}
|
|
||||||
\ger{1D Eleltronengas / Quantendraht}
|
|
||||||
]{1deg}
|
|
||||||
|
|
||||||
\begin{formula}{energy}
|
|
||||||
\desc{Energy}{}{}
|
|
||||||
\desc[german]{Energie}{}{}
|
|
||||||
\eq{E_n = \frac{\hbar^2 k_x^2}{2\masse} + \frac{\hbar^2 \pi^2}{2\masse L_z^2} n_1^2 + \frac{\hbar^2 \pi^2}{2\masse L_y^2} n_2^2}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{0D electron gas / quantum dot}
|
|
||||||
\ger{0D Elektronengase / Quantenpunkt}
|
|
||||||
]{0deg}
|
|
||||||
|
|
||||||
\TODO{TODO}
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{Measurement techniques}
|
|
||||||
\ger{Messtechniken}
|
|
||||||
]{meas}
|
|
||||||
\Subsection[
|
|
||||||
\eng{ARPES}
|
|
||||||
\ger{ARPES}
|
|
||||||
]{arpes}
|
|
||||||
what?
|
|
||||||
in?
|
|
||||||
how?
|
|
||||||
plot
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Scanning probe microscopy SPM}
|
|
||||||
\ger{Rastersondenmikroskopie (SPM)}
|
|
||||||
]{spm}
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{Images of surfaces are taken by scanning the specimen with a physical probe.}
|
|
||||||
\ger{Bilder der Oberfläche einer Probe werden erstellt, indem die Probe mit einer Sonde abgetastet wird.}
|
|
||||||
\end{ttext}
|
|
||||||
|
|
||||||
\Eng[name]{Name}
|
|
||||||
\Ger[name]{Name}
|
|
||||||
\Eng[application]{Application}
|
|
||||||
\Ger[application]{Anwendung}
|
|
||||||
|
|
||||||
|
|
||||||
\begin{minipagetable}{amf}
|
|
||||||
\entry{name}{
|
|
||||||
\eng{Atomic force microscopy (AMF)}
|
|
||||||
\ger{Atomare Rasterkraftmikroskopie (AMF)}
|
|
||||||
}
|
|
||||||
\entry{application}{
|
|
||||||
\eng{Surface stuff}
|
|
||||||
\ger{Oberflächenzeug}
|
|
||||||
}
|
|
||||||
\entry{how}{
|
|
||||||
\eng{With needle}
|
|
||||||
\ger{Mit Nadel}
|
|
||||||
}
|
|
||||||
\end{minipagetable}
|
|
||||||
\begin{minipage}{0.5\textwidth}
|
|
||||||
\begin{figure}[H]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=0.8\textwidth]{img/cm_amf.pdf}
|
|
||||||
\caption{\cite{Bian2021}}
|
|
||||||
\end{figure}
|
|
||||||
\end{minipage}
|
|
||||||
|
|
||||||
|
|
||||||
\begin{minipagetable}{stm}
|
|
||||||
\entry{name}{
|
|
||||||
\eng{Scanning tunneling microscopy (STM)}
|
|
||||||
\ger{Rastertunnelmikroskop (STM)}
|
|
||||||
}
|
|
||||||
\entry{application}{
|
|
||||||
\eng{Surface stuff}
|
|
||||||
\ger{Oberflächenzeug}
|
|
||||||
}
|
|
||||||
\entry{how}{
|
|
||||||
\eng{With TUnnel}
|
|
||||||
\ger{Mit TUnnel}
|
|
||||||
}
|
|
||||||
\end{minipagetable}
|
|
||||||
\begin{minipage}{0.5\textwidth}
|
|
||||||
\begin{figure}[H]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=0.8\textwidth]{img/cm_stm.pdf}
|
|
||||||
\caption{\cite{Bian2021}}
|
|
||||||
\end{figure}
|
|
||||||
\end{minipage}
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{Fabrication techniques}
|
|
||||||
\ger{Herstellungsmethoden}
|
|
||||||
]{fab}
|
|
||||||
\begin{minipagetable}{cvd}
|
|
||||||
\entry{name}{
|
|
||||||
\eng{Chemical vapor deposition (CVD)}
|
|
||||||
\ger{Chemische Gasphasenabscheidung (CVD)}
|
|
||||||
}
|
|
||||||
\entry{how}{
|
|
||||||
\eng{
|
|
||||||
A substrate is exposed to volatile precursors, which react and/or decompose on the heated substrate surface to produce the desired deposit.
|
|
||||||
By-products are removed by gas flow through the chamber.
|
|
||||||
}
|
|
||||||
\ger{
|
|
||||||
An der erhitzten Oberfläche eines Substrates wird aufgrund einer chemischen Reaktion mit einem Gas eine Feststoffkomponente abgeschieden.
|
|
||||||
Nebenprodukte werden durch den Gasfluss durch die Kammer entfernt.
|
|
||||||
}
|
|
||||||
}
|
|
||||||
\entry{application}{
|
|
||||||
\eng{
|
|
||||||
\begin{itemize}
|
|
||||||
\item Polysilicon \ce{Si}
|
|
||||||
\item Silicon dioxide \ce{SiO_2}
|
|
||||||
\item Graphene
|
|
||||||
\item Diamond
|
|
||||||
\end{itemize}
|
|
||||||
}
|
|
||||||
\ger{
|
|
||||||
\begin{itemize}
|
|
||||||
\item Poly-silicon \ce{Si}
|
|
||||||
\item Siliziumdioxid \ce{SiO_2}
|
|
||||||
\item Graphen
|
|
||||||
\item Diamant
|
|
||||||
\end{itemize}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
\end{minipagetable}
|
|
||||||
\begin{minipage}{0.5\textwidth}
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=\textwidth]{img/cm_cvd_english.pdf}
|
|
||||||
\end{minipage}
|
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Epitaxy}
|
|
||||||
\ger{Epitaxie}
|
|
||||||
]{epitaxy}
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{A type of crystal groth in which new layers are formed with well-defined orientations with respect to the crystalline seed layer.}
|
|
||||||
\ger{Eine Art des Kristallwachstums, bei der mindestens eine kristallographische Ordnung der wachsenden Schicht der des Substrates entspricht.}
|
|
||||||
\end{ttext}
|
|
||||||
|
|
||||||
\begin{minipagetable}{mbe}
|
|
||||||
\entry{name}{
|
|
||||||
\eng{Molecular Beam Epitaxy (MBE)}
|
|
||||||
\ger{Molekularstrahlepitaxie (MBE)}
|
|
||||||
}
|
|
||||||
\entry{how}{
|
|
||||||
\eng{In a ultra-high vacuum, the elements are heated until they slowly sublime. The gases then condensate on the substrate surface}
|
|
||||||
\ger{Die Elemente werden in einem Ultrahochvakuum erhitzt, bis sie langsam sublimieren. Die entstandenen Gase kondensieren dann auf der Oberfläche des Substrats}
|
|
||||||
}
|
|
||||||
\entry{application}{
|
|
||||||
\eng{
|
|
||||||
\begin{itemize}
|
|
||||||
\item Gallium arsenide \ce{GaAs}
|
|
||||||
\end{itemize}
|
|
||||||
\TODO{Link to GaAs}
|
|
||||||
}
|
|
||||||
\ger{
|
|
||||||
\begin{itemize}
|
|
||||||
\item Galliumarsenid \ce{GaAs}
|
|
||||||
\end{itemize}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
\end{minipagetable}
|
|
||||||
\begin{minipage}{0.5\textwidth}
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=\textwidth]{img/cm_mbe_english.pdf}
|
|
||||||
\end{minipage}
|
|
54
src/constants.tex
Normal file
54
src/constants.tex
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Constants}
|
||||||
|
\ger{Konstanten}
|
||||||
|
]{constants}
|
||||||
|
\begin{formula}{planck}
|
||||||
|
\desc{Planck Constant}{}{}
|
||||||
|
\desc[german]{Plancksches Wirkumsquantum}{}{}
|
||||||
|
\constant{h}{def}{
|
||||||
|
\val{6.62607015\cdot 10^{-34}}{\joule\s}
|
||||||
|
\val{4.135667969\dots\xE{-15}}{\eV\s}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{universal_gas}
|
||||||
|
\desc{Universal gas constant}{Proportionality factor for ideal gases}{\ConstRef{avogadro}, \ConstRef{boltzmann}}
|
||||||
|
\desc[german]{Universelle Gaskonstante}{Proportionalitätskonstante für ideale Gase}{}
|
||||||
|
\constant{R}{def}{
|
||||||
|
\val{8.31446261815324}{\joule\per\mol\kelvin}
|
||||||
|
\val{\NA \cdot \kB}{}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{avogadro}
|
||||||
|
\desc{Avogadro constant}{Number of molecules per mole}{}
|
||||||
|
\desc[german]{Avogadro-Konstante}{Anzahl der Moleküle pro mol}{}
|
||||||
|
\constant{\NA}{def}{
|
||||||
|
\val{6.02214076 \xE{23}}{1\per\mole}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{boltzmann}
|
||||||
|
\desc{Boltzmann constant}{Temperature-Energy conversion factor}{}
|
||||||
|
\desc[german]{Boltzmann-Konstante}{Temperatur-Energie Umrechnungsfaktor}{}
|
||||||
|
\constant{\kB}{def}{
|
||||||
|
\val{1.380649 \xE{-23}}{\joule\per\kelvin}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{faraday}
|
||||||
|
\desc{Faraday constant}{Electric charge of one mol of single-charged ions}{\ConstRef{avogadro}, \ConstRef{boltzmann}}
|
||||||
|
\desc[german]{Faraday-Konstante}{Elektrische Ladungs von einem Mol einfach geladener Ionen}{}
|
||||||
|
\constant{F}{def}{
|
||||||
|
\val{9.64853321233100184\xE{4}}{\coulomb\per\mol}
|
||||||
|
\val{\NA\,e}{}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{charge}
|
||||||
|
\desc{Unit charge}{}{}
|
||||||
|
\desc[german]{Elementarladung}{}{}
|
||||||
|
\constant{e}{def}{
|
||||||
|
\val{1.602176634\xE{-19}}{\coulomb}
|
||||||
|
}
|
||||||
|
\end{formula}
|
8
src/ed/ed.tex
Normal file
8
src/ed/ed.tex
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
\Part[
|
||||||
|
\eng{Electrodynamics}
|
||||||
|
\ger{Elektrodynamik}
|
||||||
|
]{ed}
|
||||||
|
|
||||||
|
% pure electronic stuff in el
|
||||||
|
% pure magnetic stuff in mag
|
||||||
|
% electromagnetic stuff in em
|
81
src/ed/el.tex
Normal file
81
src/ed/el.tex
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Electric field}
|
||||||
|
\ger{Elektrisches Feld}
|
||||||
|
]{el}
|
||||||
|
\begin{formula}{electric_field}
|
||||||
|
\desc{Electric field}{Surrounds charged particles}{}
|
||||||
|
\desc[german]{Elektrisches Feld}{Umgibt geladene Teilchen}{}
|
||||||
|
\quantity{\vec{\E}}{\volt\per\m=\kg\m\per\s^3\ampere}{v}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\def\Epotential{\phi}
|
||||||
|
\begin{formula}{electric_scalar_potential}
|
||||||
|
\desc{Electric potential}{Work required to move a unit of charge between two points}{}
|
||||||
|
\desc[german]{Elektrisches Potential}{Benötigte Arbeit um eine Einheitsladung zwischen zwei Punkten zu bewegen}{}
|
||||||
|
\quantity{\Epotential}{\volt=\kg\m^2\per\s^3\ampere}{s}
|
||||||
|
\eq{\Epotential = -\int \vec{\E} \cdot\d\vecr}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{gauss_law}
|
||||||
|
\desc{Gauss's law for electric fields}{Electric flux through a closed surface is proportional to the electric charge}{$S$ closed surface}
|
||||||
|
\desc[german]{Gaußsches Gesetz für elektrische Felder}{Der magnetische Fluss durch eine geschlossene Fläche ist proportional zur elektrischen Ladung}{$S$ geschlossene Fläche}
|
||||||
|
\eq{\PhiE = \iint_S \vec{\E}\cdot\d\vec{S} = \frac{Q}{\varepsilon_0}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{permittivity}
|
||||||
|
\desc{Permittivity}{Dieletric function\\Electric polarizability of a dielectric material}{}
|
||||||
|
\desc[german]{Permitivität}{Dielektrische Konstante / Dielektrische Funktion\\Elektrische Polarisierbarkeit eines dielektrischen Materials}{}
|
||||||
|
\quantity{\epsilon}{\ampere\s\per\volt\m=\farad\per\m=\coulomb\per\volt\m=C^2\per\newton\m^2=\ampere^2\s^4\per\kg\m^3}{}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{relative_permittivity}
|
||||||
|
\desc{Relative permittivity / Dielectric constant}{}{\QtyRef{permittivity}, \ConstRef{vacuum_permittivity}}
|
||||||
|
\desc[german]{Relative Permittivität / Dielectric constant}{}{}
|
||||||
|
\eq{
|
||||||
|
\epsilon(\omega)_\txr = \frac{\epsilon(\omega)}{\epsilon_0}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{vacuum_permittivity}
|
||||||
|
\desc{Vacuum permittivity}{Electric constant}{}
|
||||||
|
\desc[german]{Vakuum Permittivität}{Elektrische Feldkonstante}{}
|
||||||
|
\constant{\epsilon_0}{exp}{
|
||||||
|
\val{8.8541878188(14)\xE{-1}}{\ampere\s\per\volt\m}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{electric_susceptibility}
|
||||||
|
\desc{Electric susceptibility}{Describes how polarized a dielectric material becomes when an electric field is applied}{$\epsilon_\txr$ \fqEqRef{ed:el:relative_permittivity}}
|
||||||
|
\desc[german]{Elektrische Suszeptibilität}{Beschreibt wie stark ein dielektrisches Material polarisiert wird, wenn ein elektrisches Feld angelegt wird}{}
|
||||||
|
\quantity{\chi_\txe}{}{s}
|
||||||
|
\eq{
|
||||||
|
\epsilon_\txr = 1 + \chi_\txe
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{dielectric_polarization_density}
|
||||||
|
\desc{Dielectric polarization density}{}{\ConstRef{vacuum_permittivity}, \QtyRef{electric_susceptibility}, \QtyRef{electric_field}}
|
||||||
|
\desc[german]{Dielektrische Polarisationsdichte}{}{}
|
||||||
|
\quantity{\vec{P}}{\coulomb\per\m^2}{v}
|
||||||
|
\eq{\vec{P} = \epsilon_0 \chi_\txe \vec{\E}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{electric_displacement_field}
|
||||||
|
\desc{Electric displacement field}{}{\ConstRef{vacuum_permittivity}, \QtyRef{electric_field}, \QtyRef{dielectric_polarization_density}}
|
||||||
|
\desc[german]{Elektrische Flussdichte / dielektrische Verschiebung}{}{}
|
||||||
|
\quantity{\vec{D}}{\coulomb\per\m^2=\ampere\s\per\m^2}{v}
|
||||||
|
\eq{\vec{D} = \epsilon_0 \vec{\E} + \vec{P}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{electric_flux}
|
||||||
|
\desc{Electric flux}{through area $\vec{A}$}{\QtyRef{electric_displacement_field}}
|
||||||
|
\desc[german]{Elektrischer Fluss}{durch die Fläche $\vec{A}$}{}
|
||||||
|
\eq{\Phi_\txE = \int_A \vec{D}\cdot \d \vec{A}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{power}
|
||||||
|
\desc{Electric power}{}{$U$ \qtyRef{electric_scalar_potential}, \QtyRef{current}}
|
||||||
|
\desc[german]{Elektrische Leistung}{}{}
|
||||||
|
\eq{P_\text{el} = U\,I}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
111
src/ed/em.tex
Normal file
111
src/ed/em.tex
Normal file
@ -0,0 +1,111 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Electromagnetism}
|
||||||
|
\ger{Elektromagnetismus}
|
||||||
|
]{em}
|
||||||
|
\begin{formula}{speed_of_light}
|
||||||
|
\desc{Speed of light}{in the vacuum}{}
|
||||||
|
\desc[german]{Lightgeschwindigkeit}{in the vacuum}{}
|
||||||
|
\constant{c}{exp}{
|
||||||
|
\val{299792458}{\m\per\s}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{vacuum_relations}
|
||||||
|
\desc{Vacuum permittivity - permeability relation}{\TODO{Does this have a name?}}{\ConstRef{vacuum_permittivity}, \ConstRef{magnetic_vacuum_permeability}, \ConstRef{speed_of_light}}
|
||||||
|
\desc[german]{Vakuum Permittivität - Permeabilität Beziehung}{}{}
|
||||||
|
\eq{
|
||||||
|
\epsilon_0 \mu_0 = \frac{1}{c^2}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{poisson_equation}
|
||||||
|
\desc{Poisson equation for electrostatics}{}{\QtyRef{charge_density}, \QtyRef{permittivity}, $\Phi$ Potential}
|
||||||
|
\desc[german]{Poisson Gleichung in der Elektrostatik}{}{}
|
||||||
|
\eq{\laplace \Phi(\vecr) = -\frac{\rho(\vecr)}{\epsilon}}
|
||||||
|
\TODO{double check $\Phi$}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{poynting}
|
||||||
|
\desc{Poynting vector}{Directional energy flux or power flow of an electromagnetic field [$\si{\W\per\m^2}$]}{}
|
||||||
|
\desc[german]{Poynting-Vektor}{Gerichteter Energiefluss oder Leistungsfluss eines elektromgnetischen Feldes [$\si{\W\per\m^2}$]}{}
|
||||||
|
\eq{\vec{S} = \vec{E} \times \vec{H}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{electric_field}
|
||||||
|
\desc{Electric field}{}{\QtyRef{electric_field}, \QtyRef{electric_scalar_potential}, \QtyRef{magnetic_vector_potential}}
|
||||||
|
\desc[german]{Elektrisches Feld}{}{}
|
||||||
|
\eq{\vec{\E} = -\Grad\Epotential - \pdv{\vec{A}}{t}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{hamiltonian}
|
||||||
|
\desc{Hamiltonian of a particle in an electromagnetic field}{In the \fqEqRef{ed:em:gauge:coulomb}}{\QtyRef{mass}, $\hat{p}$ \fqEqRef{qm:se:momentum_operator}, \QtyRef{charge}, \QtyRef{magnetic_vector_potential}, \ConstRef{speed_of_light}}
|
||||||
|
\desc[german]{Hamiltonian eines Teilchens im elektromagnetischen Feld}{In der \fqEqRef{ed:em:gauge:coulomb}}{}
|
||||||
|
\eq{
|
||||||
|
\hat{H} = \frac{1}{2m} \left[\hat{p} \ \frac{e \vec{A}}{c}\right]^2
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Maxwell-Equations}
|
||||||
|
\ger{Maxwell-Gleichungen}
|
||||||
|
]{Maxwell}
|
||||||
|
\begin{formula}{vacuum}
|
||||||
|
\desc{Vacuum}{microscopic formulation}{}
|
||||||
|
\desc[german]{Vakuum}{Mikroskopische Formulierung}{}
|
||||||
|
\eq{
|
||||||
|
\Div \vec{\E} &= \frac{\rho_\text{el}}{\epsilon_0} \\
|
||||||
|
\Div \vec{B} &= 0 \\
|
||||||
|
\Rot \vec{\E} &= - \odv{\vec{B}}{t} \\
|
||||||
|
\Rot \vec{B} &= \mu_0 \vec{j} + \frac{1}{c^2} \odv{\vec{\E}}{t}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{material}
|
||||||
|
\desc{Matter}{Macroscopic formulation}{}
|
||||||
|
\desc[german]{Materie}{Makroskopische Formulierung}{}
|
||||||
|
\eq{
|
||||||
|
\Div \vec{D} &= \rho_\text{el} \\
|
||||||
|
\Div \vec{B} &= 0 \\
|
||||||
|
\Rot \vec{\E} &= - \odv{\vec{B}}{t} \\
|
||||||
|
\Rot \vec{H} &= \vec{j} + \odv{\vec{D}}{t}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Gauges}
|
||||||
|
\ger{Eichungen}
|
||||||
|
]{gauge}
|
||||||
|
\begin{formula}{coulomb}
|
||||||
|
\desc{Coulomb gauge}{}{\QtyRef{magnetic_vector_potential}}
|
||||||
|
\desc[german]{Coulomb-Eichung}{}{}
|
||||||
|
\eq{
|
||||||
|
\Div \vec{A} = 0
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\TODO{Polarization}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Induction}
|
||||||
|
\ger{Induktion}
|
||||||
|
]{induction}
|
||||||
|
\begin{formula}{farady_law}
|
||||||
|
\desc{Faraday's law of induction}{}{}
|
||||||
|
\desc[german]{Faradaysche Induktionsgesetz}{}{}
|
||||||
|
\eq{U_\text{ind} = -\odv{}{t} \PhiB = - \odv{}{t} \iint_A\vec{B} \cdot \d\vec{A}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{lenz}
|
||||||
|
\desc{Lenz's law}{}{}
|
||||||
|
\desc[german]{Lenzsche Regel}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{
|
||||||
|
Change of magnetic flux through a conductor induces a current that counters that change of magnetic flux.
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Die Änderung des magnetischen Flußes durch einen Leiter induziert einen Strom der der Änderung entgegenwirkt.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{formula}
|
122
src/ed/mag.tex
Normal file
122
src/ed/mag.tex
Normal file
@ -0,0 +1,122 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Magnetic field}
|
||||||
|
\ger{Magnetfeld}
|
||||||
|
]{mag}
|
||||||
|
|
||||||
|
\begin{formula}{magnetic_flux}
|
||||||
|
\desc{Magnetic flux}{}{$\vec{A}$ \GT{area}}
|
||||||
|
\desc[german]{Magnetischer Fluss}{}{}
|
||||||
|
\quantity{\PhiB}{\weber=\volt\per\s=\kg\m^2\per\s^2\A}{scalar}
|
||||||
|
\eq{\PhiB = \iint_A \vec{B}\cdot\d\vec{A}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{magnetic_flux_density}
|
||||||
|
\desc{Magnetic flux density}{Defined by \fqEqRef{ed:mag:lorentz}}{$\vec{H}$ \qtyRef{magnetic_field_intensity}, $\vec{M}$ \qtyRef{magnetization}, \ConstRef{magnetic_vacuum_permeability}}
|
||||||
|
\desc[german]{Magnetische Flussdichte}{Definiert über \fqEqRef{ed:mag:lorentz}}{}
|
||||||
|
\quantity{\vec{B}}{\tesla=\volt\s\per\m^2=\newton\per\ampere\m=\kg\per\ampere\s^2}{}
|
||||||
|
\eq{\vec{B} = \mu_0 (\vec{H}+\vec{M})}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{magnetic_vector_potential}
|
||||||
|
\desc{Magnetic vector potential}{}{}
|
||||||
|
\desc[german]{Magnetisches Vektorpotential}{}{}
|
||||||
|
\quantity{\vec{A}}{\tesla\m=\volt\s\per\m=\kg\m\per\s^2\ampere}{ievs}
|
||||||
|
\eq{\Rot\vec{A}(\vecr) = \vec{B}(\vecr)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{magnetic_field_intensity}
|
||||||
|
\desc{Magnetic field intensity}{}{}
|
||||||
|
\desc[german]{Magnetische Feldstärke}{}{}
|
||||||
|
\quantity{\vec{H}}{\ampere\per\m}{vector}
|
||||||
|
\eq{
|
||||||
|
\vec{H} \equiv \frac{1}{\mu_0}\vec{B} - \vec{M}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{lorentz}
|
||||||
|
\desc{Lorentz force law}{Force on charged particle}{}
|
||||||
|
\desc[german]{Lorentzkraft}{Kraft auf geladenes Teilchen}{}
|
||||||
|
\eq{
|
||||||
|
\vec{F} = q \vec{\E} + q \vec{v}\times\vec{B}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{magnetic_permeability}
|
||||||
|
\desc{Magnetic permeability}{}{$B$ \qtyRef{magnetic_flux_density}, $H$ \qtyRef{magnetic_field_intensity}}
|
||||||
|
\desc[german]{Magnetisch Permeabilität}{}{}
|
||||||
|
\quantity{\mu}{\henry\per\m=\volt\s\per\ampere\m}{scalar}
|
||||||
|
\eq{\mu=\frac{B}{H}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{magnetic_vacuum_permeability}
|
||||||
|
\desc{Magnetic vauum permeability}{}{}
|
||||||
|
\desc[german]{Magnetische Vakuumpermeabilität}{}{}
|
||||||
|
\constant{\mu_0}{exp}{
|
||||||
|
\val{1.25663706127(20)}{\henry\per\m=\newton\per\ampere^2}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{relative_permeability}
|
||||||
|
\desc{Relative permeability}{}{}
|
||||||
|
\desc[german]{Realtive Permeabilität}{}{}
|
||||||
|
\eq{
|
||||||
|
\mu_\txr = \frac{\mu}{\mu_0}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{gauss_law}
|
||||||
|
\desc{Gauss's law for magnetism}{Magnetic flux through a closed surface is $0$ \Rightarrow there are no magnetic monopoles}{$S$ closed surface}
|
||||||
|
\desc[german]{Gaußsches Gesetz für Magnetismus}{Der magnetische Fluss durch eine geschlossene Fläche ist $0$ \Rightarrow es gibt keine magnetischen Monopole}{$S$ geschlossene Fläche}
|
||||||
|
\eq{\PhiB = \iint_S \vec{B}\cdot\d\vec{S} = 0}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{magnetization}
|
||||||
|
\desc{Magnetization}{Vector field describing the density of magnetic dipoles}{}
|
||||||
|
\desc[german]{Magnetisierung}{Vektorfeld, welches die Dichte von magnetischen Dipolen beschreibt.}{}
|
||||||
|
\quantity{\vec{M}}{\ampere\per\m}{vector}
|
||||||
|
\eq{\vec{M} = \odv{\vec{m}}{V} = \chi_\txm \cdot \vec{H}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{magnetic_moment}
|
||||||
|
\desc{Magnetic moment}{Strength and direction of a magnetic dipole}{}
|
||||||
|
\desc[german]{Magnetisches Moment}{Stärke und Richtung eines magnetischen Dipols}{}
|
||||||
|
\quantity{\vec{m}}{\ampere\m^2}{vector}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{angular_torque}
|
||||||
|
\desc{Torque}{}{$m$ \qtyRef{magnetic_moment}}
|
||||||
|
\desc[german]{Drehmoment}{}{}
|
||||||
|
\eq{\vec{\tau} = \vec{m} \times \vec{B}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{magnetic_susceptibility}
|
||||||
|
\desc{Susceptibility}{}{$\mu_\txr$ \fqEqRef{ed:mag:relative_permeability}}
|
||||||
|
\desc[german]{Suszeptibilität}{}{}
|
||||||
|
\eq{\chi_\txm = \pdv{M}{B} = \mu_\txr - 1}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Magnetic materials}
|
||||||
|
\ger{Magnetische Materialien}
|
||||||
|
]{materials}
|
||||||
|
\begin{formula}{paramagnetism}
|
||||||
|
\desc{Paramagnetism}{Magnetic field strengthend in the material}{$\mu$ \fqEqRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fqEqRef{ed:mag:magnetic_susceptibility}}
|
||||||
|
\desc[german]{Paramagnetismus}{Magnetisches Feld wird im Material verstärkt}{}
|
||||||
|
\eq{\mu_\txr &> 1 \\ \chi_\txm &> 0}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{diamagnetism}
|
||||||
|
\desc{Diamagnetism}{Magnetic field expelled from material}{$\mu$ \fqEqRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fqEqRef{ed:mag:magnetic_susceptibility}}
|
||||||
|
\desc[german]{Diamagnetismus}{Magnetisches Feld wird aus dem Material gedrängt}{}
|
||||||
|
\eq{0 < \mu_\txr < 1 \\ -1 < \chi_\txm < 0}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{ferromagnetism}
|
||||||
|
\desc{Ferromagnetism}{Magnetic moments align to external magnetic field and stay aligned when the field is turned off (Remanescence)}{$\mu$ \fqEqRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fqEqRef{ed:mag:magnetic_susceptibility}}
|
||||||
|
\desc[german]{Ferromagnetismus}{Magnetische Momente werden am äußeren Feld ausgerichtet und behalten diese ausrichtung auch wenn das Feld abgeschaltet wird (Remanenz)}{}
|
||||||
|
\eq{
|
||||||
|
\mu_\txr \gg 1
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
141
src/ed/misc.tex
Normal file
141
src/ed/misc.tex
Normal file
@ -0,0 +1,141 @@
|
|||||||
|
% TODO move
|
||||||
|
\Section[
|
||||||
|
\eng{Hall-Effect}
|
||||||
|
\ger{Hall-Effekt}
|
||||||
|
]{hall}
|
||||||
|
|
||||||
|
\begin{formula}{cyclotron}
|
||||||
|
\desc{Cyclontron frequency}{}{}
|
||||||
|
\desc[german]{Zyklotronfrequenz}{}{}
|
||||||
|
\eq{\omega_\text{c} = \frac{e B}{\masse}}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{Move}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Classical Hall-Effect}
|
||||||
|
\ger{Klassischer Hall-Effekt}
|
||||||
|
]{classic}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Current flowing in $x$ direction in a conductor ($l \times b \times d$) with a magnetic field $B$ in $z$ direction leads to a hall voltage $U_\text{H}$ in $y$ direction.}
|
||||||
|
\ger{Fließt in einem Leiter ($l \times b \times d$) ein Strom in $x$ Richtung, während der Leiter von einem Magnetfeld $B$ in $z$-Richtung durchdrungen, wird eine Hallspannung $U_\text{H}$ in $y$-Richtung induziert.}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{voltage}
|
||||||
|
\desc{Hall voltage}{}{$n$ charge carrier density}
|
||||||
|
\desc[german]{Hallspannung}{}{$n$ Ladungsträgerdichte}
|
||||||
|
\eq{U_\text{H} = \frac{I B}{ne d}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{coefficient}
|
||||||
|
\desc{Hall coefficient}{Sometimes $R_\txH$}{}
|
||||||
|
\desc[german]{Hall-Koeffizient}{Manchmal $R_\txH$}{}
|
||||||
|
\eq{A_\text{H} := -\frac{E_y}{j_x B_z} \explOverEq{\GT{metals}} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{resistivity}
|
||||||
|
\desc{Resistivity}{}{}
|
||||||
|
\desc[german]{Spezifischer Widerstand}{}{}
|
||||||
|
\eq{\rho_{xx} &= \frac{\masse}{ne^2\tau} \\ \rho_{xy} &= \frac{B}{ne}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Integer quantum hall effect}
|
||||||
|
\ger{Ganzahliger Quantenhalleffekt}
|
||||||
|
]{quantum}
|
||||||
|
|
||||||
|
\begin{formula}{conductivity}
|
||||||
|
\desc{Conductivity tensor}{}{}
|
||||||
|
\desc[german]{Leitfähigkeitstensor}{}{}
|
||||||
|
\eq{\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{resistivity_tensor}
|
||||||
|
\desc{Resistivity tensor}{}{}
|
||||||
|
\desc[german]{Spezifischer Widerstands-tensor}{}{}
|
||||||
|
\eq{
|
||||||
|
\rho = \sigma^{-1}
|
||||||
|
% \sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{resistivity}
|
||||||
|
\desc{Resistivity}{}{$\nu \in \mathbb{Z}$ filing factor}
|
||||||
|
\desc[german]{Spezifischer Hallwiderstand}{}{$\nu \in \mathbb{Z}$ Füllfaktor}
|
||||||
|
\eq{\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
% \begin{formula}{qhe}
|
||||||
|
% \desc{Integer quantum hall effect}{}{}
|
||||||
|
% \desc[german]{Ganzahliger Quanten-Hall-Effekt}{}{}
|
||||||
|
% \fig{img/qhe-klitzing.jpeg}
|
||||||
|
% \end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{fqhe}
|
||||||
|
\desc{Fractional quantum hall effect}{}{$\nu$ fraction of two numbers without shared divisors}
|
||||||
|
\desc[german]{Fraktionaler Quantum-Hall-Effekt}{}{$\nu$ Bruch aus Zahlen ohne gemeinsamen Teiler}
|
||||||
|
\eq{\nu = \frac{1}{3},\frac{2}{5},\frac{3}{7},\frac{2}{3}...}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
\begin{itemize}
|
||||||
|
\item \textbf{Integer} (QHE): filling factor $\nu$ is an integer
|
||||||
|
\item \textbf{Fractional} (FQHE): filling factor $\nu$ is a fraction
|
||||||
|
\item \textbf{Spin} (QSHE): spin currents instead of charge currents
|
||||||
|
\item \textbf{Anomalous} (QAHE): symmetry breaking by internal effects instead of external magnetic fields
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
\begin{itemize}
|
||||||
|
\item \textbf{Integer} (QHE): Füllfaktor $\nu$ ist ganzzahlig
|
||||||
|
\item \textbf{Fractional} (FQHE): Füllfaktor $\nu$ ist ein Bruch
|
||||||
|
\item \textbf{Spin} (QSHE): Spin Ströme anstatt Ladungsströme
|
||||||
|
\item \textbf{Anomalous} (QAHE): Symmetriebruch durch interne Effekte anstatt druch ein externes Magnetfeld
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
|
||||||
|
\TODO{sort}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Dipole-stuff}
|
||||||
|
\ger{Dipol-zeug}
|
||||||
|
]{dipole}
|
||||||
|
|
||||||
|
\begin{formula}{poynting}
|
||||||
|
\desc{Dipole radiation Poynting vector}{}{}
|
||||||
|
\desc[german]{Dipolsrahlung Poynting-Vektor}{}{}
|
||||||
|
\eq{\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right)\frac{\sin^2\theta}{r^2} \vec{r}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{power}
|
||||||
|
\desc{Time-average power}{}{}
|
||||||
|
\desc[german]{Zeitlich mittlere Leistung}{}{}
|
||||||
|
\eq{P = \frac{\mu_0\omega^4 p_0^2}{12\pi c}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{misc}
|
||||||
|
\ger{misc}
|
||||||
|
]{misc}
|
||||||
|
\begin{formula}{impedance_r}
|
||||||
|
\desc{Impedance of an ohmic resistor}{}{\QtyRef{resistance}}
|
||||||
|
\desc[german]{Impedanz eines Ohmschen Widerstands}{}{}
|
||||||
|
\eq{Z_{R} = R}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{impedance_c}
|
||||||
|
\desc{Impedance of a capacitor}{}{\QtyRef{capacity}, \QtyRef{angular_velocity}}
|
||||||
|
\desc[german]{Impedanz eines Kondensators}{}{}
|
||||||
|
\eq{Z_{C} = \frac{1}{\I\omega C}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{impedance_l}
|
||||||
|
\desc{Impedance of an inductor}{}{\QtyRef{inductance}, \QtyRef{angular_velocity}}
|
||||||
|
\desc[german]{Impedanz eines Induktors}{}{}
|
||||||
|
\eq{Z_{L} = \I\omega L}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\TODO{impedance addition for parallel / linear}
|
103
src/ed/optics.tex
Normal file
103
src/ed/optics.tex
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Optics}
|
||||||
|
\ger{Optik}
|
||||||
|
]{optics}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Properties of light and its interactions with matter}
|
||||||
|
\ger{Ausbreitung von Licht und die Interaktion mit Materie}
|
||||||
|
\end{ttext}
|
||||||
|
\separateEntries
|
||||||
|
|
||||||
|
\begin{formula}{refraction_index}
|
||||||
|
\eng[cm]{speed of light in the medium}
|
||||||
|
\ger[cm]{Lichtgeschwindigkeit im Medium}
|
||||||
|
\desc{Refraction index}{}{\QtyRef{relative_permittivity}, \QtyRef{relative_permeability}, \ConstRef{speed_of_light}, $c_\txM$ \gt{cm}}
|
||||||
|
\desc[german]{Brechungsindex}{}{}
|
||||||
|
\quantity{\complex{n}}{}{s}
|
||||||
|
\eq{
|
||||||
|
\complex{n} = \nreal + i\ncomplex
|
||||||
|
}
|
||||||
|
\eq{
|
||||||
|
n = \sqrt{\epsilon_\txr \mu_\txr}
|
||||||
|
}
|
||||||
|
\eq{
|
||||||
|
n = \frac{c_0}{c_\txM}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\TODO{what does the complex part of the dielectric function represent?}
|
||||||
|
|
||||||
|
\begin{formula}{refraction_index_real}
|
||||||
|
\desc{Real part of the refraction index}{}{}
|
||||||
|
\desc[german]{Reller Teil des Brechungsindex}{}{}
|
||||||
|
\quantity{\nreal}{}{s}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{refraction_index_complex}
|
||||||
|
\desc{Extinction coefficient}{Complex part of the refraction index}{\GT{sometimes} $\kappa$}
|
||||||
|
\desc[german]{Auslöschungskoeffizient}{Komplexer Teil des Brechungsindex}{}
|
||||||
|
\quantity{\ncomplex}{}{s}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{reflectivity}
|
||||||
|
\desc{Reflectio}{}{\QtyRef{refraction_index}}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{
|
||||||
|
R = \abs{\frac{\complex{n}-1}{\complex{n}+1}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{snell}
|
||||||
|
\desc{Snell's law}{}{$\nreal_i$ \qtyRef{refraction_index_real}, $\theta_i$ incidence angle (normal to the surface)}
|
||||||
|
\desc[german]{Snelliussches Brechungsgesetz}{}{$n_i$ \qtyRef{refraction_index}, $\theta_i$ Einfallswinkel (normal zur Fläche)}
|
||||||
|
\eq{\nreal_1 \sin\theta_1 = \nreal_2\sin\theta_2}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{group_velocity}
|
||||||
|
\desc{Group velocity}{Velocity with which the envelope of a wave propagates through space}{\QtyRef{angular_frequency}, \QtyRef{angular_wavenumber}}
|
||||||
|
\desc[german]{Gruppengeschwindigkeit}{Geschwindigkeit, mit sich die Einhülende einer Welle ausbreitet}{}
|
||||||
|
\eq{
|
||||||
|
v_\txg \equiv \pdv{\omega}{k}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{phase_velocity}
|
||||||
|
\desc{Phase velocity}{Velocity with which a wave propagates through a medium}{\QtyRef{angular_frequency}, \QtyRef{angular_wavenumber}, \QtyRef{wavelength}, \QtyRef{time_period}}
|
||||||
|
\desc[german]{Phasengeschwindigkeit}{Geschwindigkeit, mit der sich eine Welle im Medium ausbreitet}{}
|
||||||
|
\eq{
|
||||||
|
v_\txp = \frac{\omega}{k} = \frac{\lambda}{T}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{absorption_coefficient}
|
||||||
|
\desc{Absorption coefficient}{Intensity reduction while traversing a medium, not necessarily by energy transfer to the medium}{\QtyRef{refraction_index_complex}, \ConstRef{speed_of_light}, \QtyRef{angular_frequency}}
|
||||||
|
\desc[german]{Absoprtionskoeffizient}{Intensitätsverringerung beim Druchgang eines Mediums, nicht zwingend durch Energieabgabe an Medium}{}
|
||||||
|
\quantity{\alpha}{\per\cm}{s}
|
||||||
|
\eq{
|
||||||
|
\alpha &= 2\ncomplex \frac{\omega}{c} \\
|
||||||
|
\alpha &= \frac{\omega}{nc} \epsilon^\prime \text{\TODO{For direct band gaps; from adv. sc: sheet 10 2b). Check which is correct}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{intensity}
|
||||||
|
\desc{Electromagnetic radiation intensity}{Surface power density}{$S$ \fqEqRef{ed:poynting}}
|
||||||
|
\desc[german]{Elektromagnetische Strahlungsintensität}{Flächenleistungsdichte}{}
|
||||||
|
\quantity{I}{\watt\per\m^2=\k\per\s^3}{s}
|
||||||
|
\eq{I = \abs{\braket{S}_t}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
% \begin{formula}{lambert_beer_law}
|
||||||
|
% \desc{Beer-Lambert law}{Intensity in an absorbing medium}{$E_\lambda$ extinction, \QtyRef{absorption_coefficient}, \QtyRef{concentration}, $d$ Thickness of the medium}
|
||||||
|
% \desc[german]{Lambert-beersches Gesetz}{Intensität in einem absorbierenden Medium}{$E_\lambda$ Extinktion, \QtyRef{refraction_index_complex}, \QtyRef{concentration}, $d$ Dicke des Mediums}
|
||||||
|
% \eq{
|
||||||
|
% E_\lambda = \log_{10} \frac{I_0}{I} = \kappa c d \\
|
||||||
|
% }
|
||||||
|
% \end{formula}
|
||||||
|
\begin{formula}{lambert_beer_law}
|
||||||
|
\desc{Beer-Lambert law}{Intensity in an absorbing medium}{\QtyRef{intensity}, \QtyRef{absorption_coefficient}, $z$ penetration depth}
|
||||||
|
\desc[german]{Lambert-beersches Gesetz}{Intensität in einem absorbierenden Medium}{\QtyRef{intensity}, \QtyRef{absorption_coefficient}, $z$ Eindringtiefe}
|
||||||
|
\eq{
|
||||||
|
I(z) = I_0 \e^{-\kappa z}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
@ -1,222 +0,0 @@
|
|||||||
\def\PhiB{\Phi_\text{B}}
|
|
||||||
\def\PhiE{\Phi_\text{E}}
|
|
||||||
|
|
||||||
\Part[
|
|
||||||
\eng{Electrodynamics}
|
|
||||||
\ger{Elektrodynamik}
|
|
||||||
]{ed}
|
|
||||||
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{Maxwell-Equations}
|
|
||||||
\ger{Maxwell-Gleichungen}
|
|
||||||
]{Maxwell}
|
|
||||||
\begin{formula}{vacuum}
|
|
||||||
\desc{Vacuum}{microscopic formulation}{}
|
|
||||||
\desc[german]{Vakuum}{Mikroskopische Formulierung}{}
|
|
||||||
\eq{
|
|
||||||
\Div \vec{E} &= \frac{\rho_\text{el}}{\epsilon_0} \\
|
|
||||||
\Div \vec{B} &= 0 \\
|
|
||||||
\Rot \vec{E} &= - \odv{\vec{B}}{t} \\
|
|
||||||
\Rot \vec{B} &= \mu_0 \vec{j} + \frac{1}{c^2} \odv{\vec{E}}{t}
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{material}
|
|
||||||
\desc{Matter}{Macroscopic formulation}{}
|
|
||||||
\desc[german]{Materie}{Makroskopische Formulierung}{}
|
|
||||||
\eq{
|
|
||||||
\Div \vec{D} &= \rho_\text{el} \\
|
|
||||||
\Div \vec{B} &= 0 \\
|
|
||||||
\Rot \vec{E} &= - \odv{\vec{B}}{t} \\
|
|
||||||
\Rot \vec{H} &= \vec{j} + \odv{\vec{D}}{t}
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{Fields}
|
|
||||||
\ger{Felder}
|
|
||||||
]{fields}
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Electric field}
|
|
||||||
\ger{Elektrisches Feld}
|
|
||||||
]{mag}
|
|
||||||
\begin{formula}{gauss_law}
|
|
||||||
\desc{Gauss's law for electric fields}{Electric flux through a closed surface is proportional to the electric charge}{$S$ closed surface}
|
|
||||||
\desc[german]{Gaußsches Gesetz für elektrische Felder}{Der magnetische Fluss durch eine geschlossene Fläche ist proportional zur elektrischen Ladung}{$S$ geschlossene Fläche}
|
|
||||||
\eq{\PhiE = \iint_S \vec{E}\cdot\d\vec{S} = \frac{Q}{\varepsilon_0}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Magnetic field}
|
|
||||||
\ger{Magnetfeld}
|
|
||||||
]{mag}
|
|
||||||
|
|
||||||
\Eng[magnetic_flux]{Magnetix flux density}
|
|
||||||
\Ger[magnetic_flux]{Magnetische Flussdichte}
|
|
||||||
|
|
||||||
% \begin{quantity}{mag_flux}{\Phi}{\Wb}{\kg\m^2\per\s^2\A^1}{scalar}
|
|
||||||
% \sign{}
|
|
||||||
% \desc{Magnetic flux density}{}
|
|
||||||
% \desc[german]{Magnetische Feldstärke}{}
|
|
||||||
% \end{quantity}
|
|
||||||
|
|
||||||
\begin{formula}{magnetic_flux}
|
|
||||||
\desc{Magnetic flux}{}{}
|
|
||||||
\desc[german]{Magnetischer Fluss}{}{}
|
|
||||||
\eq{\PhiB = \iint_A \vec{B}\cdot\d\vec{A}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{gauss_law}
|
|
||||||
\desc{Gauss's law for magnetism}{Magnetic flux through a closed surface is $0$ \Rightarrow there are no magnetic monopoles}{$S$ closed surface}
|
|
||||||
\desc[german]{Gaußsches Gesetz für Magnetismus}{Der magnetische Fluss durch eine geschlossene Fläche ist $0$ \Rightarrow es gibt keine magnetischen Monopole}{$S$ geschlossene Fläche}
|
|
||||||
\eq{\PhiB = \iint_S \vec{B}\cdot\d\vec{S} = 0}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{name}
|
|
||||||
\desc{}{}{}
|
|
||||||
\desc[german]{}{}{}
|
|
||||||
\eq{}
|
|
||||||
\end{formula}
|
|
||||||
\begin{formula}{magnetization}
|
|
||||||
\desc{Magnetization}{}{$m$ mag. moment, $V$ volume}
|
|
||||||
\desc[german]{Magnetisierung}{}{$m$ mag. Moment, $V$ Volumen}
|
|
||||||
\eq{\vec{M} = \odv{\vec{m}}{V} = \chi_\text{m} \cdot \vec{H}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{angular_torque}
|
|
||||||
\desc{Torque}{}{$m$ mag. moment}
|
|
||||||
\desc[german]{Drehmoment}{}{$m$ mag. Moment}
|
|
||||||
\eq{\vec{\tau} = \vec{m} \times \vec{B}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{suceptibility}
|
|
||||||
\desc{Susceptibility}{}{}
|
|
||||||
\desc[german]{Suszeptibilität}{}{}
|
|
||||||
\eq{\chi_\text{m} = \pdv{M}{B} = \frac{\mu}{\mu_0} - 1 }
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
|
|
||||||
\begin{formula}{poynting}
|
|
||||||
\desc{Poynting vector}{Directional energy flux or power flow of an electromagnetic field [$\si{\W\per\m^2}$]}{}
|
|
||||||
\desc[german]{Poynting-Vektor}{Gerichteter Energiefluss oder Leistungsfluss eines elektromgnetischen Feldes [$\si{\W\per\m^2}$]}{}
|
|
||||||
\eq{\vec{S} = \vec{E} \times \vec{H}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Induction}
|
|
||||||
\ger{Unduktion}
|
|
||||||
]{induction}
|
|
||||||
\begin{formula}{farady_law}
|
|
||||||
\desc{Faraday's law of induction}{}{}
|
|
||||||
\desc[german]{Faradaysche Induktionsgesetz}{}{}
|
|
||||||
\eq{U_\text{ind} = -\odv{}{t} \PhiB = - \odv{}{t} \iint_A\vec{B} \cdot \d\vec{A}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{Hall-Effect}
|
|
||||||
\ger{Hall-Effekt}
|
|
||||||
]{hall}
|
|
||||||
|
|
||||||
\begin{formula}{cyclotron}
|
|
||||||
\desc{Cyclontron frequency}{}{}
|
|
||||||
\desc[german]{Zyklotronfrequenz}{}{}
|
|
||||||
\eq{\omega_\text{c} = \frac{e B}{\masse}}
|
|
||||||
\end{formula}
|
|
||||||
\TODO{Move}
|
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Classical Hall-Effect}
|
|
||||||
\ger{Klassischer Hall-Effekt}
|
|
||||||
]{classic}
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{Current flowing in $x$ direction in a conductor ($l \times b \times d$) with a magnetic field $B$ in $z$ direction leads to a hall voltage $U_\text{H}$ in $y$ direction.}
|
|
||||||
\ger{Fließt in einem Leiter ($l \times b \times d$) ein Strom in $x$ Richtung, während der Leiter von einem Magnetfeld $B$ in $z$-Richtung durchdrungen, wird eine Hallspannung $U_\text{H}$ in $y$-Richtung induziert.}
|
|
||||||
\end{ttext}
|
|
||||||
\begin{formula}{voltage}
|
|
||||||
\desc{Hall voltage}{}{$n$ charge carrier density}
|
|
||||||
\desc[german]{Hallspannung}{}{$n$ Ladungsträgerdichte}
|
|
||||||
\eq{U_\text{H} = \frac{I B}{ne d}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{coefficient}
|
|
||||||
\desc{Hall coefficient}{}{}
|
|
||||||
\desc[german]{Hall-Koeffizient}{}{}
|
|
||||||
\eq{R_\text{H} = -\frac{Eg}{j_x Bg} = \frac{1}{ne} = \frac{\rho_{xy}}{B_z}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{resistivity}
|
|
||||||
\desc{Resistivity}{}{}
|
|
||||||
\desc[german]{Spezifischer Widerstand}{}{}
|
|
||||||
\eq{\rho_{xx} &= \frac{\masse}{ne^2\tau} \\ \rho_{xy} &= \frac{B}{ne}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Integer quantum hall effect}
|
|
||||||
\ger{Ganzahliger Quantenhalleffekt}
|
|
||||||
]{quantum}
|
|
||||||
|
|
||||||
\begin{formula}{conductivity}
|
|
||||||
\desc{Conductivity tensor}{}{}
|
|
||||||
\desc[german]{Leitfähigkeitstensor}{}{}
|
|
||||||
\eq{\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{resistivity}
|
|
||||||
\desc{Resistivity tensor}{}{}
|
|
||||||
\desc[german]{Spezifischer Widerstands-tensor}{}{}
|
|
||||||
\eq{
|
|
||||||
\rho = \sigma^{-1}
|
|
||||||
% \sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{resistivity}
|
|
||||||
\desc{Resistivity}{}{$\nu \in \mathbb{Z}$}
|
|
||||||
\desc[german]{Spezifischer Hallwiderstand}{}{$\nu \in \mathbb{Z}$}
|
|
||||||
\eq{\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
% \begin{formula}{qhe}
|
|
||||||
% \desc{Integer quantum hall effect}{}{}
|
|
||||||
% \desc[german]{Ganzahliger Quanten-Hall-Effekt}{}{}
|
|
||||||
% \fig{img/qhe-klitzing.jpeg}
|
|
||||||
% \end{formula}
|
|
||||||
|
|
||||||
|
|
||||||
\TODO{sort}
|
|
||||||
\begin{formula}{impedance_c}
|
|
||||||
\desc{Impedance of a capacitor}{}{}
|
|
||||||
\desc[german]{Impedanz eines Kondesnators}{}{}
|
|
||||||
\eq{Z_{C} = \frac{1}{i\omega C}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{impedance_l}
|
|
||||||
\desc{Impedance of an inductor}{}{}
|
|
||||||
\desc[german]{Impedanz eines Induktors}{}{}
|
|
||||||
\eq{Z_{L} = i\omega L}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\TODO{impedance addition for parallel / linear}
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{Dipole-stuff}
|
|
||||||
\ger{Dipol-zeug}
|
|
||||||
]{dipole}
|
|
||||||
|
|
||||||
\begin{formula}{poynting}
|
|
||||||
\desc{Dipole radiation Poynting vector}{}{}
|
|
||||||
\desc[german]{Dipolsrahlung Poynting-Vektor}{}{}
|
|
||||||
\eq{\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right)\frac{\sin^2\theta}{r^2} \vec{r}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{power}
|
|
||||||
\desc{Time-average power}{}{}
|
|
||||||
\desc[german]{Zeitlich mittlere Leistung}{}{}
|
|
||||||
\eq{P = \frac{\mu_0\omega^4 p_0^2}{12\pi c}}
|
|
||||||
\end{formula}
|
|
54
src/img/cm/sc_junction_metal_n_sc.tex
Normal file
54
src/img/cm/sc_junction_metal_n_sc.tex
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
\begin{tikzpicture}[scale=0.9]
|
||||||
|
|
||||||
|
\pgfmathsetmacro{\tkW}{8} % Total width
|
||||||
|
\pgfmathsetmacro{\tkH}{5} % Total height
|
||||||
|
% left
|
||||||
|
\pgfmathsetmacro{\tkLx}{0} % Start
|
||||||
|
\pgfmathsetmacro{\tkLW}{2} % Right width
|
||||||
|
\pgfmathsetmacro{\tkLyshift}{0.0} % y-shift
|
||||||
|
\pgfmathsetmacro{\tkLBendH}{0} % Band bending height
|
||||||
|
\pgfmathsetmacro{\tkLBendW}{0} % Band bending width
|
||||||
|
\pgfmathsetmacro{\tkLEV}{4.0+\tkLyshift}% Vacuum energy
|
||||||
|
\pgfmathsetmacro{\tkLEf}{1.5+\tkLyshift}% Fermi level energy
|
||||||
|
% right
|
||||||
|
\pgfmathsetmacro{\tkRx}{\tkLW} % Left start
|
||||||
|
\pgfmathsetmacro{\tkRW}{\tkW-\tkRx} % Left width
|
||||||
|
\pgfmathsetmacro{\tkRyshift}{-0.5} % y-shift
|
||||||
|
\pgfmathsetmacro{\tkRBendH}{0.5} % Band bending height
|
||||||
|
\pgfmathsetmacro{\tkRBendW}{\tkRW/4} % Band bending width
|
||||||
|
\pgfmathsetmacro{\tkREv}{0.7+\tkRyshift}% Valence band energy
|
||||||
|
\pgfmathsetmacro{\tkREc}{2.4+\tkRyshift}% Conduction band energy
|
||||||
|
\pgfmathsetmacro{\tkREV}{4.0+\tkRyshift}% Vacuum energy
|
||||||
|
\pgfmathsetmacro{\tkREf}{2.0+\tkRyshift}% Fermi level energy
|
||||||
|
|
||||||
|
% materials
|
||||||
|
\draw[sc metal] (0,0) rectangle (\tkLW,\tkH);
|
||||||
|
\node at (\tkLW/2,\tkH-0.2) {\GT{metal}};
|
||||||
|
\path[sc n type] (\tkRx,0) rectangle (\tkW,\tkH);
|
||||||
|
\node at (\tkRx+\tkRW/2,\tkH-0.2) {\GT{n-type}};
|
||||||
|
\path[sc separate] (\tkLW,0) -- (\tkLW,\tkH);
|
||||||
|
|
||||||
|
% axes
|
||||||
|
\draw[->] (0,0) -- (\tkW+0.2,0) node[anchor=north] {$x$};
|
||||||
|
\draw[->] (0,0) -- (0,\tkH+0.2) node[anchor=east] {$E$};
|
||||||
|
|
||||||
|
% right bands
|
||||||
|
\path[sc occupied] (\tkRx, 0) -- \rightBandUp{}{\tkREv} -- (\tkW, 0) -- cycle;
|
||||||
|
\draw[sc band con] \rightBandUp{$\Econd$}{\tkREc};
|
||||||
|
\draw[sc band val] \rightBandUp{$\Evalence$}{\tkREv};
|
||||||
|
\draw[sc band vac] (0,\tkLEV) -- \rightBandUp{$\Evac$}{\tkREV};
|
||||||
|
\draw[sc fermi level] \rightBand{$\Efermi$}{\tkREf};
|
||||||
|
% left bands
|
||||||
|
\path[sc occupied] (0,0) rectangle (\tkLW,\tkLEf);
|
||||||
|
\draw[sc fermi level] \leftBand{$\Efermi$}{\tkLEf};
|
||||||
|
|
||||||
|
% work functions
|
||||||
|
\drawDArrow{\tkLW/2}{\tkLEf}{\tkLEV}{$e\Phi_\txM$}
|
||||||
|
\drawDArrow{\tkRx+\tkRW*3/4}{\tkREf}{\tkREV}{$e\Phi_\txS$}
|
||||||
|
\drawDArrow{\tkRx+\tkRW*2/4}{\tkREc}{\tkREV}{$e\chi$}
|
||||||
|
% barrier height
|
||||||
|
\drawDArrow{\tkRx+\tkRBendW}{\tkREc}{\tkREc+\tkRBendH}{$eU_\text{Bias}$}
|
||||||
|
\drawDArrow{\tkRx}{\tkREf}{\tkREc+\tkRBendH}{$e\Phi_\txB$}
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
|
49
src/img/cm/sc_junction_metal_n_sc_separate.tex
Normal file
49
src/img/cm/sc_junction_metal_n_sc_separate.tex
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
\begin{tikzpicture}[scale=0.9]
|
||||||
|
|
||||||
|
\pgfmathsetmacro{\tkW}{8} % Total width
|
||||||
|
\pgfmathsetmacro{\tkH}{5} % Total height
|
||||||
|
% left
|
||||||
|
\pgfmathsetmacro{\tkLx}{0} % Start
|
||||||
|
\pgfmathsetmacro{\tkLW}{2} % Right width
|
||||||
|
\pgfmathsetmacro{\tkLyshift}{0.0} % y-shift
|
||||||
|
\pgfmathsetmacro{\tkLBendH}{0} % Band bending height
|
||||||
|
\pgfmathsetmacro{\tkLBendW}{0} % Band bending width
|
||||||
|
\pgfmathsetmacro{\tkLEV}{4.0+\tkLyshift}% Vacuum energy
|
||||||
|
\pgfmathsetmacro{\tkLEf}{1.5+\tkLyshift}% Fermi level energy
|
||||||
|
% right
|
||||||
|
\pgfmathsetmacro{\tkRx}{4} % Left start
|
||||||
|
\pgfmathsetmacro{\tkRW}{\tkW-\tkRx} % Left width
|
||||||
|
\pgfmathsetmacro{\tkRyshift}{0} % y-shift
|
||||||
|
\pgfmathsetmacro{\tkRBendH}{0.5} % Band bending height
|
||||||
|
\pgfmathsetmacro{\tkRBendW}{\tkRW/4} % Band bending width
|
||||||
|
\pgfmathsetmacro{\tkREv}{0.7+\tkRyshift}% Valence band energy
|
||||||
|
\pgfmathsetmacro{\tkREc}{2.4+\tkRyshift}% Conduction band energy
|
||||||
|
\pgfmathsetmacro{\tkREV}{4.0+\tkRyshift}% Vacuum energy
|
||||||
|
\pgfmathsetmacro{\tkREf}{2.0+\tkRyshift}% Fermi level energy
|
||||||
|
|
||||||
|
% materials
|
||||||
|
\draw[sc metal] (0,0) rectangle (\tkLW,\tkH);
|
||||||
|
\node at (\tkLW/2,\tkH-0.2) {\GT{metal}};
|
||||||
|
\path[sc n type] (\tkRx,0) rectangle (\tkW,\tkH);
|
||||||
|
\node at (\tkRx+\tkRW/2,\tkH-0.2) {\GT{n-type}};
|
||||||
|
|
||||||
|
% axes
|
||||||
|
\draw[->] (0,0) -- (\tkW+0.2,0) node[anchor=north] {$x$};
|
||||||
|
\draw[->] (0,0) -- (0,\tkH+0.2) node[anchor=east] {$E$};
|
||||||
|
|
||||||
|
% right bands
|
||||||
|
\path[sc occupied] (\tkRx, 0) -- \rightBand{}{\tkREv} -- (\tkW, 0) -- cycle;
|
||||||
|
\draw[sc band con] \rightBand{$\Econd$}{\tkREc};
|
||||||
|
\draw[sc band val] \rightBand{$\Evalence$}{\tkREv};
|
||||||
|
\draw[sc band vac] (0,\tkLEV) -- \rightBand{$\Evac$}{\tkREV};
|
||||||
|
\draw[sc fermi level] \rightBand{$\Efermi$}{\tkREf};
|
||||||
|
% left bands
|
||||||
|
\path[sc occupied] (0,0) rectangle (\tkLW,\tkLEf);
|
||||||
|
\draw[sc fermi level] \leftBand{$\Efermi$}{\tkLEf};
|
||||||
|
|
||||||
|
% work functions
|
||||||
|
\drawDArrow{\tkLW/2}{\tkLEf}{\tkLEV}{$e\Phi_\txM$}
|
||||||
|
\drawDArrow{\tkRx+\tkRW*2/3}{\tkREf}{\tkREV}{$e\Phi_\txS$}
|
||||||
|
\drawDArrow{\tkRx+\tkRW*1/3}{\tkREc}{\tkREV}{$e\chi$}
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
51
src/img/cm/sc_junction_ohmic.tex
Normal file
51
src/img/cm/sc_junction_ohmic.tex
Normal file
@ -0,0 +1,51 @@
|
|||||||
|
\begin{tikzpicture}[scale=1]
|
||||||
|
|
||||||
|
\pgfmathsetmacro{\tkW}{8} % Total width
|
||||||
|
\pgfmathsetmacro{\tkH}{5} % Total height
|
||||||
|
% left
|
||||||
|
\pgfmathsetmacro{\tkLx}{0} % Start
|
||||||
|
\pgfmathsetmacro{\tkLW}{2} % Right width
|
||||||
|
\pgfmathsetmacro{\tkLyshift}{-0.5} % y-shift
|
||||||
|
\pgfmathsetmacro{\tkLBendH}{0} % Band bending height
|
||||||
|
\pgfmathsetmacro{\tkLBendW}{0} % Band bending width
|
||||||
|
\pgfmathsetmacro{\tkLEV}{4.0+\tkLyshift}% Vacuum energy
|
||||||
|
\pgfmathsetmacro{\tkLEf}{2.5+\tkLyshift}% Fermi level energy
|
||||||
|
% right
|
||||||
|
\pgfmathsetmacro{\tkRx}{\tkLW} % Left start
|
||||||
|
\pgfmathsetmacro{\tkRW}{\tkW-\tkRx} % Left width
|
||||||
|
\pgfmathsetmacro{\tkRyshift}{0} % y-shift
|
||||||
|
\pgfmathsetmacro{\tkRBendH}{-0.5} % Band bending height
|
||||||
|
\pgfmathsetmacro{\tkRBendW}{\tkRW/4} % Band bending width
|
||||||
|
\pgfmathsetmacro{\tkREv}{0.7+\tkRyshift}% Valence band energy
|
||||||
|
\pgfmathsetmacro{\tkREc}{2.5+\tkRyshift}% Conduction band energy
|
||||||
|
\pgfmathsetmacro{\tkREV}{4.0+\tkRyshift}% Vacuum energy
|
||||||
|
\pgfmathsetmacro{\tkREf}{2.0+\tkRyshift}% Fermi level energy
|
||||||
|
|
||||||
|
% materials
|
||||||
|
\draw[sc metal] (0,0) rectangle (\tkLW,\tkH);
|
||||||
|
\node at (\tkLW/2,\tkH-0.2) {\GT{metal}};
|
||||||
|
\path[sc n type] (\tkRx,0) rectangle (\tkW,\tkH);
|
||||||
|
\node at (\tkRx+\tkRW/2,\tkH-0.2) {\GT{n-type}};
|
||||||
|
\path[sc separate] (\tkRx,0) -- (\tkRx,\tkH);
|
||||||
|
|
||||||
|
\drawAxes
|
||||||
|
|
||||||
|
% right bands
|
||||||
|
\path[sc occupied] (\tkRx, 0) -- \rightBandAuto{}{\tkREv} -- (\tkW, 0) -- cycle;
|
||||||
|
\draw[sc band con] \rightBandAuto{$\Econd$}{\tkREc};
|
||||||
|
\draw[sc band val] \rightBandAuto{$\Evalence$}{\tkREv};
|
||||||
|
\draw[sc band vac] (0,\tkLEV) -- \rightBandAuto{$\Evac$}{\tkREV};
|
||||||
|
\draw[sc fermi level] \rightBand{$\Efermi$}{\tkREf};
|
||||||
|
% left bands
|
||||||
|
\path[sc occupied] (0,0) rectangle (\tkLW,\tkLEf);
|
||||||
|
\draw[sc fermi level] \leftBand{$\Efermi$}{\tkLEf};
|
||||||
|
|
||||||
|
% work functions
|
||||||
|
\drawDArrow{\tkLW/2}{\tkLEf}{\tkLEV}{$e\Phi_\txM$}
|
||||||
|
\drawDArrow{\tkRx+\tkRW*3/4}{\tkREf}{\tkREV}{$e\Phi_\txS$}
|
||||||
|
\drawDArrow{\tkRx+\tkRW*2/4}{\tkREc}{\tkREV}{$e\chi$}
|
||||||
|
% barrier height
|
||||||
|
\drawDArrow{\tkRx+\tkRBendW}{\tkREc}{\tkREc-\tkRBendH}{$eU_\text{Bias}$}
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
|
48
src/img/cm/sc_junction_ohmic_separate.tex
Normal file
48
src/img/cm/sc_junction_ohmic_separate.tex
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
\begin{tikzpicture}[scale=1]
|
||||||
|
|
||||||
|
\pgfmathsetmacro{\tkW}{8} % Total width
|
||||||
|
\pgfmathsetmacro{\tkH}{5} % Total height
|
||||||
|
% left
|
||||||
|
\pgfmathsetmacro{\tkLx}{0} % Start
|
||||||
|
\pgfmathsetmacro{\tkLW}{2} % Right width
|
||||||
|
\pgfmathsetmacro{\tkLyshift}{0.0} % y-shift
|
||||||
|
\pgfmathsetmacro{\tkLBendH}{0} % Band bending height
|
||||||
|
\pgfmathsetmacro{\tkLBendW}{0} % Band bending width
|
||||||
|
\pgfmathsetmacro{\tkLEV}{4.0+\tkLyshift}% Vacuum energy
|
||||||
|
\pgfmathsetmacro{\tkLEf}{2.5+\tkLyshift}% Fermi level energy
|
||||||
|
% right
|
||||||
|
\pgfmathsetmacro{\tkRx}{4} % Left start
|
||||||
|
\pgfmathsetmacro{\tkRW}{\tkW-\tkRx} % Left width
|
||||||
|
\pgfmathsetmacro{\tkRyshift}{0} % y-shift
|
||||||
|
\pgfmathsetmacro{\tkRBendH}{0.5} % Band bending height
|
||||||
|
\pgfmathsetmacro{\tkRBendW}{\tkRW/4} % Band bending width
|
||||||
|
\pgfmathsetmacro{\tkREv}{0.7+\tkRyshift}% Valence band energy
|
||||||
|
\pgfmathsetmacro{\tkREc}{2.5+\tkRyshift}% Conduction band energy
|
||||||
|
\pgfmathsetmacro{\tkREV}{4.0+\tkRyshift}% Vacuum energy
|
||||||
|
\pgfmathsetmacro{\tkREf}{2.0+\tkRyshift}% Fermi level energy
|
||||||
|
|
||||||
|
% materials
|
||||||
|
\draw[sc metal] (0,0) rectangle (\tkLW,\tkH);
|
||||||
|
\node at (\tkLW/2,\tkH-0.2) {\GT{metal}};
|
||||||
|
\path[sc n type] (\tkRx,0) rectangle (\tkW,\tkH);
|
||||||
|
\node at (\tkRx+\tkRW/2,\tkH-0.2) {\GT{n-type}};
|
||||||
|
|
||||||
|
\drawAxes
|
||||||
|
|
||||||
|
% right bands
|
||||||
|
\path[sc occupied] (\tkRx, 0) -- \rightBand{}{\tkREv} -- (\tkW, 0) -- cycle;
|
||||||
|
\draw[sc band con] \rightBand{$\Econd$}{\tkREc};
|
||||||
|
\draw[sc band val] \rightBand{$\Evalence$}{\tkREv};
|
||||||
|
\draw[sc band vac] (0,\tkLEV) -- \rightBand{$\Evac$}{\tkREV};
|
||||||
|
\draw[sc fermi level] \rightBand{$\Efermi$}{\tkREf};
|
||||||
|
% left bands
|
||||||
|
\path[sc occupied] (0,0) rectangle (\tkLW,\tkLEf);
|
||||||
|
\draw[sc fermi level] \leftBand{$\Efermi$}{\tkLEf};
|
||||||
|
|
||||||
|
% work functions
|
||||||
|
\drawDArrow{\tkLW/2}{\tkLEf}{\tkLEV}{$e\Phi_\txM$}
|
||||||
|
\drawDArrow{\tkRx+\tkRW*2/3}{\tkREf}{\tkREV}{$e\Phi_\txS$}
|
||||||
|
\drawDArrow{\tkRx+\tkRW*1/3}{\tkREc}{\tkREV}{$e\chi$}
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
|
65
src/img/cm/sc_junction_pn.tex
Normal file
65
src/img/cm/sc_junction_pn.tex
Normal file
@ -0,0 +1,65 @@
|
|||||||
|
\newcommand\tikzPnJunction[7]{
|
||||||
|
\begin{tikzpicture}[scale=1.0]
|
||||||
|
|
||||||
|
\pgfmathsetmacro{\tkW}{8} % Total width
|
||||||
|
\pgfmathsetmacro{\tkH}{5} % Total height
|
||||||
|
% left
|
||||||
|
\pgfmathsetmacro{\tkLx}{0} % Start
|
||||||
|
\pgfmathsetmacro{\tkLW}{\tkW*#1} % Width
|
||||||
|
\pgfmathsetmacro{\tkLyshift}{#2} % y-shift
|
||||||
|
\pgfmathsetmacro{\tkLBendH}{#3} % Band bending height
|
||||||
|
\pgfmathsetmacro{\tkLBendW}{\tkLW/4} % Band bending width
|
||||||
|
\pgfmathsetmacro{\tkLEv}{0.7+\tkLyshift}% Valence band energy
|
||||||
|
\pgfmathsetmacro{\tkLEc}{2.3+\tkLyshift}% Conduction band energy
|
||||||
|
\pgfmathsetmacro{\tkLEV}{4.0+\tkLyshift}% Vacuum energy
|
||||||
|
\pgfmathsetmacro{\tkLEf}{1.1+\tkLyshift}% Fermi level energy
|
||||||
|
% right
|
||||||
|
\pgfmathsetmacro{\tkRx}{\tkW*(1-#4)} % Start
|
||||||
|
\pgfmathsetmacro{\tkRW}{\tkW*#4} % Width
|
||||||
|
\pgfmathsetmacro{\tkRyshift}{#5} % y-shift
|
||||||
|
\pgfmathsetmacro{\tkRBendH}{#6} % Band bending height
|
||||||
|
\pgfmathsetmacro{\tkRBendW}{\tkRW/4} % Band bending width
|
||||||
|
\pgfmathsetmacro{\tkREv}{0.7+\tkRyshift}% Valence band energy
|
||||||
|
\pgfmathsetmacro{\tkREc}{2.3+\tkRyshift}% Conduction band energy
|
||||||
|
\pgfmathsetmacro{\tkREV}{4.0+\tkRyshift}% Vacuum energy
|
||||||
|
\pgfmathsetmacro{\tkREf}{1.9+\tkRyshift}% Fermi level energy
|
||||||
|
|
||||||
|
% materials
|
||||||
|
\draw[sc p type] (0,0) rectangle (\tkLW,\tkH);
|
||||||
|
\node at (\tkLW/2,\tkH-0.2) {\GT{p-type}};
|
||||||
|
\path[sc separate] (\tkRx,0) -- (\tkRx,\tkH);
|
||||||
|
\path[sc n type] (\tkRx,0) rectangle (\tkW,\tkH);
|
||||||
|
\node at (\tkRx+\tkRW/2,\tkH-0.2) {\GT{n-type}};
|
||||||
|
\path[sc separate] (\tkLW,0) -- (\tkLW,\tkH);
|
||||||
|
|
||||||
|
\drawAxes
|
||||||
|
|
||||||
|
% right bands
|
||||||
|
\path[sc occupied] (\tkRx, 0) -- \rightBandAuto{}{\tkREv} -- (\tkW, 0) -- cycle;
|
||||||
|
\draw[sc band con] \rightBandAuto{$\Econd$}{\tkREc};
|
||||||
|
\draw[sc band val] \rightBandAuto{$\Evalence$}{\tkREv};
|
||||||
|
\draw[sc band vac] \rightBandAuto{$\Evac$}{\tkREV};
|
||||||
|
\draw[sc fermi level] \rightBand{$\Efermi$}{\tkREf};
|
||||||
|
% left bands
|
||||||
|
\path[sc occupied] (\tkLx, 0) -- \leftBandAuto{}{\tkLEv} -- (\tkLW, 0) -- cycle;
|
||||||
|
\draw[sc band con] \leftBandAuto{$\Econd$}{\tkLEc};
|
||||||
|
\draw[sc band val] \leftBandAuto{$\Evalence$}{\tkLEv};
|
||||||
|
\draw[sc band vac] \leftBandAuto{$\Evac$}{\tkLEV};
|
||||||
|
\draw[sc fermi level] \leftBand{$\Efermi$}{\tkLEf};
|
||||||
|
|
||||||
|
% work functions
|
||||||
|
|
||||||
|
\drawDArrow{\tkRx+\tkRW*2/3}{\tkREf}{\tkREV}{$e\Phi_\txn$}
|
||||||
|
\drawDArrow{\tkRx+\tkRW*1/3}{\tkREc}{\tkREV}{$e\chi_\txn$}
|
||||||
|
\drawDArrow{\tkLx+\tkLW*2/3}{\tkLEf}{\tkLEV}{$e\Phi_\txp$}
|
||||||
|
\drawDArrow{\tkLx+\tkLW*1/3}{\tkLEc}{\tkLEV}{$e\chi_\txp$}
|
||||||
|
% barrier height
|
||||||
|
% \drawDArrow{\tkRx+\tkRBendW}{\tkREc}{\tkREc+\tkRBendH}{$eU_\text{Bias}$}
|
||||||
|
% \drawDArrow{\tkRx}{\tkREf}{\tkREc+\tkRBendH}{$e\Phi_\txB$}
|
||||||
|
#7
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
}
|
||||||
|
% \tikzPnJunction{1/3}{0}{0}{1/3}{0}{0}{}
|
||||||
|
% \tikzPnJunction{1/2}{0.4}{-0.4}{1/2}{-0.4}{0.4}{}
|
||||||
|
|
BIN
src/img/cm_wurtzite.png
Normal file
BIN
src/img/cm_wurtzite.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 89 KiB |
BIN
src/img/cm_zincblende.png
Normal file
BIN
src/img/cm_zincblende.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 268 KiB |
284
src/main.tex
284
src/main.tex
@ -1,142 +1,142 @@
|
|||||||
|
%! TeX program = lualatex
|
||||||
|
% (for vimtex)
|
||||||
\documentclass[11pt, a4paper]{article}
|
\documentclass[11pt, a4paper]{article}
|
||||||
% \usepackage[utf8]{inputenc}
|
% SET LANGUAGE HERE
|
||||||
\usepackage[english]{babel}
|
\usepackage[german]{babel}
|
||||||
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
|
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
|
||||||
% ENVIRONMENTS etc
|
% ENVIRONMENTS etc
|
||||||
\usepackage{adjustbox}
|
\usepackage{adjustbox}
|
||||||
\usepackage{colortbl} % color table
|
\usepackage{colortbl} % color table
|
||||||
\usepackage{tabularx} % bravais table
|
\usepackage{tabularx} % bravais table
|
||||||
\usepackage{multirow} % for superconducting qubit table
|
\usepackage{multirow} % for superconducting qubit table
|
||||||
\usepackage{hhline} % for superconducting qubit table
|
\usepackage{hhline} % for superconducting qubit table
|
||||||
% TOOLING
|
% TOOLING
|
||||||
\usepackage{graphicx}
|
\usepackage{graphicx}
|
||||||
\usepackage{etoolbox}
|
\usepackage{etoolbox}
|
||||||
\usepackage{luacode}
|
% \usepackage{luacode}
|
||||||
\usepackage{expl3} % switch case and other stuff
|
\usepackage{expl3} % switch case and other stuff
|
||||||
\usepackage{substr}
|
\usepackage{substr}
|
||||||
\usepackage{xcolor}
|
\usepackage{xcolor}
|
||||||
\usepackage{float}
|
% FORMATING
|
||||||
\usepackage[hidelinks]{hyperref}
|
\usepackage{float} % float barrier
|
||||||
\usepackage{subcaption}
|
\usepackage{subcaption} % subfigures
|
||||||
|
\usepackage[hidelinks]{hyperref} % hyperrefs for \fqEqRef, \qtyRef, etc
|
||||||
\usepackage[shortlabels]{enumitem} % easily change enum symbols to i), a. etc
|
\usepackage[shortlabels]{enumitem} % easily change enum symbols to i), a. etc
|
||||||
\hypersetup{colorlinks = true, % Colours links instead of ugly boxes
|
\setlist{noitemsep} % no vertical space between items
|
||||||
urlcolor = blue, % Colour for external hyperlinks
|
\setlist[1]{labelindent=\parindent} % < Usually a good idea
|
||||||
linkcolor = cyan, % Colour of internal links
|
\setlist[itemize]{leftmargin=*}
|
||||||
citecolor = red % Colour of citations
|
% \setlist[enumerate]{labelsep=*, leftmargin=1.5pc} % horizontal indent of items
|
||||||
}
|
|
||||||
\usepackage{translations}
|
|
||||||
\input{util/translation.tex}
|
|
||||||
|
|
||||||
\usepackage{sectsty}
|
|
||||||
\usepackage{titlesec}
|
|
||||||
\input{util/colorscheme.tex}
|
|
||||||
|
|
||||||
|
\usepackage{titlesec} % colored titles
|
||||||
|
\usepackage{array} % more array options
|
||||||
|
\newcolumntype{C}{>{$}c<{$}} % math-mode version of "c" column type
|
||||||
|
% \usepackage{sectsty}
|
||||||
% GRAPHICS
|
% GRAPHICS
|
||||||
\usepackage{tikz} % drawings
|
\usepackage{pgfplots}
|
||||||
|
\pgfplotsset{compat=1.18}
|
||||||
|
\usepackage{tikz} % drawings
|
||||||
\usetikzlibrary{decorations.pathmorphing}
|
\usetikzlibrary{decorations.pathmorphing}
|
||||||
|
\usetikzlibrary{decorations.pathreplacing} % braces
|
||||||
\usetikzlibrary{calc}
|
\usetikzlibrary{calc}
|
||||||
\usepackage{circuitikz}
|
\usetikzlibrary{patterns}
|
||||||
|
\usetikzlibrary{patterns}
|
||||||
|
\input{util/tikz_macros}
|
||||||
|
% speed up compilation by externalizing figures
|
||||||
|
% \usetikzlibrary{external}
|
||||||
|
% \tikzexternalize[prefix=tikz_figures]
|
||||||
|
% \tikzexternalize
|
||||||
|
\usepackage{circuitikz} % electrical circuits with tikz
|
||||||
% SCIENCE PACKAGES
|
% SCIENCE PACKAGES
|
||||||
\usepackage{mathtools}
|
\usepackage{mathtools}
|
||||||
\usepackage{MnSymbol} % for >>> \ggg sign
|
% set display math skips
|
||||||
|
\AtBeginDocument{
|
||||||
|
\abovedisplayskip=0pt
|
||||||
|
\abovedisplayshortskip=0pt
|
||||||
|
\belowdisplayskip=0pt
|
||||||
|
\belowdisplayshortskip=0pt
|
||||||
|
}
|
||||||
|
\usepackage{MnSymbol} % for >>> \ggg sign
|
||||||
|
\usepackage[version=4,arrows=pgf-filled]{mhchem}
|
||||||
|
\usepackage{upgreek} % upright greek letters for chemmacros
|
||||||
|
\usepackage{chemmacros} % for orbitals images
|
||||||
% \usepackage{esdiff} % derivatives
|
% \usepackage{esdiff} % derivatives
|
||||||
% esdiff breaks when taking \dot{q} has argument
|
% esdiff breaks when taking \dot{q} has argument
|
||||||
\usepackage{derivative}
|
\usepackage{derivative} % \odv, \pdv
|
||||||
\usepackage[version=4,arrows=pgf-filled]{mhchem}
|
\usepackage{bbold} % \mathbb font
|
||||||
\usepackage{bbold} % \mathbb font
|
\usepackage{braket} % <bra|ket>
|
||||||
\usepackage{braket}
|
\usepackage{siunitx} % \si \SI units
|
||||||
\usepackage{siunitx}
|
|
||||||
\sisetup{output-decimal-marker = {,}}
|
\sisetup{output-decimal-marker = {,}}
|
||||||
\sisetup{separate-uncertainty}
|
\sisetup{separate-uncertainty}
|
||||||
\sisetup{per-mode = power}
|
\sisetup{per-mode = power}
|
||||||
\sisetup{exponent-product=\ensuremath{\cdot}}
|
\sisetup{exponent-product=\ensuremath{\cdot}}
|
||||||
|
|
||||||
|
% DEBUG
|
||||||
|
% \usepackage{lua-visual-debug}
|
||||||
|
% DUMB STUFF
|
||||||
|
% \usepackage{emoji}
|
||||||
|
% \newcommand\temoji[1]{\text{\emoji{#1}}}
|
||||||
|
% \def\sigma{\temoji{shark}}
|
||||||
|
% \def\lambda{\temoji{sheep}}
|
||||||
|
% \def\psi{\temoji{pickup-truck}}
|
||||||
|
% \def\pi{\temoji{birthday-cake}}
|
||||||
|
% \def\Pi{\temoji{hospital}}
|
||||||
|
% \def\rho{\temoji{rhino}}
|
||||||
|
% \def\nu{\temoji{unicorn}}
|
||||||
|
% \def\mu{\temoji{mouse}}
|
||||||
|
|
||||||
|
\newcommand{\TODO}[1]{{\color{fg-red}TODO:#1}}
|
||||||
\newcommand{\TODO}[1]{{\color{bright_red}TODO:#1}}
|
|
||||||
\newcommand{\ts}{\textsuperscript}
|
\newcommand{\ts}{\textsuperscript}
|
||||||
|
|
||||||
% put an explanation above an equal sign
|
|
||||||
% [1]: equality sign (or anything else)
|
|
||||||
% 2: text (not in math mode!)
|
|
||||||
\newcommand{\explUnderEq}[2][=]{%
|
|
||||||
\underset{\substack{\uparrow\\\mathrlap{\text{\hspace{-1em}#2}}}}{#1}}
|
|
||||||
\newcommand{\explOverEq}[2][=]{%
|
|
||||||
\overset{\substack{\mathrlap{\text{\hspace{-1em}#2}}\\\downarrow}}{#1}}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% "automate" sectioning
|
|
||||||
% start <section>, get heading from translation, set label
|
|
||||||
% fqname is the fully qualified name: the keys of all previous sections joined with a ':'
|
|
||||||
% [1]: code to run after setting \fqname, but before the \part, \section etc
|
|
||||||
% 2: key
|
|
||||||
\newcommand{\Part}[2][desc]{
|
|
||||||
\newpage
|
|
||||||
\def\partname{#2}
|
|
||||||
\def\sectionname{}
|
|
||||||
\def\subsectionname{}
|
|
||||||
\def\subsubsectionname{}
|
|
||||||
\edef\fqname{\partname}
|
|
||||||
#1
|
|
||||||
\part{\GT{\fqname}}
|
|
||||||
\label{sec:\fqname}
|
|
||||||
}
|
|
||||||
\newcommand{\Section}[2][]{
|
|
||||||
\def\sectionname{#2}
|
|
||||||
\def\subsectionname{}
|
|
||||||
\def\subsubsectionname{}
|
|
||||||
\edef\fqname{\partname:\sectionname}
|
|
||||||
#1
|
|
||||||
\section{\GT{\fqname}}
|
|
||||||
\label{sec:\fqname}
|
|
||||||
}
|
|
||||||
% \newcommand{\Subsection}[1]{\Subsection{#1}{}}
|
|
||||||
\newcommand{\Subsection}[2][]{
|
|
||||||
\def\subsectionname{#2}
|
|
||||||
\def\subsubsectionname{}
|
|
||||||
\edef\fqname{\partname:\sectionname:\subsectionname}
|
|
||||||
#1
|
|
||||||
\subsection{\GT{\fqname}}
|
|
||||||
\label{sec:\fqname}
|
|
||||||
}
|
|
||||||
\newcommand{\Subsubsection}[2][]{
|
|
||||||
\def\subsubsectionname{#2}
|
|
||||||
\edef\fqname{\partname:\sectionname:\subsectionname:\subsubsectionname}
|
|
||||||
#1
|
|
||||||
\subsubsection{\GT{\fqname}}
|
|
||||||
\label{sec:\fqname}
|
|
||||||
}
|
|
||||||
|
|
||||||
% Make the translation of #1 a reference to a equation
|
|
||||||
% 1: key
|
|
||||||
\newcommand{\fqEqRef}[1]{
|
|
||||||
\hyperref[eq:#1]{\GT{#1}}
|
|
||||||
}
|
|
||||||
% Make the translation of #1 a reference to a section
|
|
||||||
% 1: key
|
|
||||||
\newcommand{\fqSecRef}[1]{
|
|
||||||
\hyperref[sec:#1]{\GT{#1}}
|
|
||||||
}
|
|
||||||
|
|
||||||
% \usepackage{xstring}
|
% \usepackage{xstring}
|
||||||
|
|
||||||
|
|
||||||
\input{circuit.tex}
|
% Create a text file with relevant labels for vim-completion
|
||||||
|
\newwrite\labelsFile
|
||||||
|
\immediate\openout\labelsFile=\jobname.labels.txt
|
||||||
|
\newcommand\storeLabel[1]{
|
||||||
|
\immediate\write\labelsFile{#1}%
|
||||||
|
}
|
||||||
|
\AtEndDocument{\immediate\closeout\labelsFile}
|
||||||
|
|
||||||
% some translations
|
\input{circuit.tex}
|
||||||
|
\input{util/macros.tex}
|
||||||
|
\input{util/environments.tex} % requires util/translation.tex to be loaded first
|
||||||
|
\usepackage{pkg/mqlua}
|
||||||
|
\usepackage{pkg/mqfqname}
|
||||||
|
% TRANSLATION
|
||||||
|
% \usepackage{translations}
|
||||||
|
\usepackage{pkg/mqtranslation}
|
||||||
|
\input{util/colorscheme.tex}
|
||||||
|
\input{util/colors.tex} % after colorscheme
|
||||||
|
|
||||||
|
\usepackage{pkg/mqconstant}
|
||||||
|
\usepackage{pkg/mqquantity}
|
||||||
|
\usepackage{pkg/mqformula}
|
||||||
|
\usepackage{pkg/mqperiodictable}
|
||||||
|
|
||||||
|
% INPUT
|
||||||
|
% 1: starting pattern of files to input using the Input command. All other files are ignored
|
||||||
|
\newcommand\InputOnly[1]{\edef\inputOnlyFile{#1}}
|
||||||
|
\edef\inputOnlyFile{all}
|
||||||
|
\newcommand\Input[1]{
|
||||||
|
% yes this could surely be done in tex
|
||||||
|
\directlua{
|
||||||
|
if '\luaescapestring{\inputOnlyFile}' == 'all' or string.startswith('\luaescapestring{#1}', '\luaescapestring{\inputOnlyFile}') then
|
||||||
|
tex.print("\\input{\luaescapestring{#1}}")
|
||||||
|
end
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
\title{Formelsammlung}
|
\title{Formelsammlung}
|
||||||
\author{Matthias Quintern}
|
\author{Matthias Quintern}
|
||||||
\date{\today}
|
\date{\today}
|
||||||
|
|
||||||
\input{util/macros.tex}
|
|
||||||
\input{util/environments.tex}
|
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
\IfFileExists{\jobname.translations.aux}{%
|
||||||
|
\input{\jobname.translations.aux}
|
||||||
|
}{}
|
||||||
|
|
||||||
|
\makeatletter\let\percentchar\@percentchar\makeatother
|
||||||
|
|
||||||
\maketitle
|
\maketitle
|
||||||
\tableofcontents
|
\tableofcontents
|
||||||
@ -145,32 +145,78 @@
|
|||||||
|
|
||||||
\input{util/translations.tex}
|
\input{util/translations.tex}
|
||||||
|
|
||||||
\input{linalg.tex}
|
% \InputOnly{ch}
|
||||||
|
|
||||||
\input{geometry.tex}
|
\Input{math/math}
|
||||||
|
\Input{math/linalg}
|
||||||
|
\Input{math/geometry}
|
||||||
|
\Input{math/calculus}
|
||||||
|
\Input{math/probability_theory}
|
||||||
|
|
||||||
\input{analysis.tex}
|
\Input{mechanics}
|
||||||
|
\Input{statistical_mechanics}
|
||||||
|
|
||||||
\input{probability_theory.tex}
|
\Input{ed/ed}
|
||||||
|
\Input{ed/el}
|
||||||
|
\Input{ed/mag}
|
||||||
|
\Input{ed/em}
|
||||||
|
\Input{ed/optics}
|
||||||
|
\Input{ed/misc}
|
||||||
|
|
||||||
\input{mechanics.tex}
|
\Input{qm/qm}
|
||||||
|
\Input{qm/atom}
|
||||||
|
|
||||||
\input{statistical_mechanics.tex}
|
\Input{cm/cm}
|
||||||
|
\Input{cm/crystal}
|
||||||
|
\Input{cm/egas}
|
||||||
|
\Input{cm/charge_transport}
|
||||||
|
\Input{cm/low_temp}
|
||||||
|
\Input{cm/semiconductors}
|
||||||
|
\Input{cm/misc}
|
||||||
|
\Input{cm/techniques}
|
||||||
|
\Input{cm/topo}
|
||||||
|
\Input{cm/mat}
|
||||||
|
|
||||||
\input{electrodynamics.tex}
|
\Input{particle}
|
||||||
|
|
||||||
\input{quantum_mechanics.tex}
|
|
||||||
\input{atom.tex}
|
|
||||||
|
|
||||||
\input{condensed_matter.tex}
|
\Input{quantum_computing}
|
||||||
|
|
||||||
% \input{topo.tex}
|
\Input{comp/comp}
|
||||||
|
\Input{comp/qmb}
|
||||||
|
\Input{comp/est}
|
||||||
|
\Input{comp/ad}
|
||||||
|
\Input{comp/ml}
|
||||||
|
|
||||||
% \input{quantum_computing.tex}
|
\Input{ch/periodic_table} % only definitions
|
||||||
|
\Input{ch/ch}
|
||||||
|
\Input{ch/el}
|
||||||
|
\Input{ch/misc}
|
||||||
|
|
||||||
% \input{many-body-simulations.tex}
|
\newpage
|
||||||
|
\Part[
|
||||||
|
\eng{Appendix}
|
||||||
|
\ger{Anhang}
|
||||||
|
]{appendix}
|
||||||
|
\begin{formula}{world}
|
||||||
|
\desc{World formula}{}{}
|
||||||
|
\desc[german]{Weltformel}{}{}
|
||||||
|
\eq{E = mc^2 +\text{AI}}
|
||||||
|
\end{formula}
|
||||||
|
\Input{quantities}
|
||||||
|
\Input{constants}
|
||||||
|
|
||||||
|
% \listofquantities
|
||||||
|
\listoffigures
|
||||||
|
\listoftables
|
||||||
|
\Section[
|
||||||
|
\eng{List of elements}
|
||||||
|
\ger{Liste der Elemente}
|
||||||
|
]{elements}
|
||||||
|
\printAllElements
|
||||||
|
\newpage
|
||||||
|
% \Input{test}
|
||||||
|
|
||||||
%\newpage
|
|
||||||
% \bibliographystyle{plain}
|
% \bibliographystyle{plain}
|
||||||
% \bibliography{ref}
|
% \bibliography{ref}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
@ -1,10 +0,0 @@
|
|||||||
\Part[
|
|
||||||
\eng{Many-body simulations}
|
|
||||||
\ger{Vielteilchen Simulationen}
|
|
||||||
]{mbsim}
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{Importance sampling}
|
|
||||||
\ger{Importance sampling / Stichprobenentnahme nach Wichtigkeit}
|
|
||||||
]{importance_sampling}
|
|
||||||
|
|
321
src/math/calculus.tex
Normal file
321
src/math/calculus.tex
Normal file
@ -0,0 +1,321 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Calculus}
|
||||||
|
\ger{Analysis}
|
||||||
|
]{cal}
|
||||||
|
|
||||||
|
% \begin{formula}{shark}
|
||||||
|
% \desc{Shark-midnight formula}{\emoji{shark}-s}{}
|
||||||
|
% \desc[german]{Shark-Mitternachtformel}{}{}
|
||||||
|
% \eq{
|
||||||
|
% \temoji{seal}_{1,2} = \frac{-\temoji{shark}\pm \sqrt{\temoji{shark}^2-4\temoji{octopus}\temoji{tropical-fish}}}{2\temoji{octopus}}
|
||||||
|
% }
|
||||||
|
% \end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Fourier analysis}
|
||||||
|
\ger{Fourieranalyse}
|
||||||
|
]{fourier}
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Fourier series}
|
||||||
|
\ger{Fourierreihe}
|
||||||
|
]{series}
|
||||||
|
\begin{formula}{series} \absLabel[fourier_series]
|
||||||
|
\desc{Fourier series}{Complex representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
|
||||||
|
\desc[german]{Fourierreihe}{Komplexe Darstellung}{}
|
||||||
|
\eq{f(t) = \sum_{k=-\infty}^{\infty} c_k \Exp{\frac{2\pi \I kt}{T}}}
|
||||||
|
\end{formula}
|
||||||
|
\Eng[real]{real}
|
||||||
|
\Ger[real]{reellwertig}
|
||||||
|
\begin{formula}{coefficient-complex}
|
||||||
|
\desc{Fourier coefficients}{Complex representation}{}
|
||||||
|
\desc[german]{Fourierkoeffizienten}{Komplexe Darstellung}{}
|
||||||
|
\eq{
|
||||||
|
c_k &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Exp{-\frac{2\pi \I}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\
|
||||||
|
c_{-k} &= \overline{c_k} \quad \text{\GT{if} $f$ \GT{real}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{series_sincos}
|
||||||
|
\desc{Fourier series}{Sine and cosine representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
|
||||||
|
\desc[german]{Fourierreihe}{Sinus und Kosinus Darstellung}{}
|
||||||
|
\eq{f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \Cos{\frac{2\pi}{T}kt} + b_k\Sin{\frac{2\pi}{T}kt}\right)}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{coefficient}
|
||||||
|
\desc{Fourier coefficients}{Sine and cosine representation\\If $f$ has point symmetry: $a_{k>0}=0$, if $f$ has axial symmetry: $b_k=0$}{}
|
||||||
|
\desc[german]{Fourierkoeffizienten}{Sinus und Kosinus Darstellung\\Wenn $f$ punktsymmetrisch: $a_{k>0}=0$, wenn $f$ achsensymmetrisch: $b_k=0$}{}
|
||||||
|
\eq{
|
||||||
|
a_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Cos{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\
|
||||||
|
b_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Sin{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge1\\
|
||||||
|
a_k &= c_k + c_{-k} \quad\text{\GT{for}}\,k\ge0\\
|
||||||
|
b_k &= \I(c_k - c_{-k}) \quad\text{\GT{for}}\,k\ge1
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{cleanup}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Fourier transformation}
|
||||||
|
\ger{Fouriertransformation}
|
||||||
|
]{trafo}
|
||||||
|
\begin{formula}{transform} \absLabel[fourier_transform]
|
||||||
|
\desc{Fourier transform}{}{$\hat{f}:\R^n \mapsto \C$, $\forall f\in L^1(\R^n)$}
|
||||||
|
\desc[german]{Fouriertransformierte}{}{}
|
||||||
|
\eq{\hat{f}(k) \coloneq \frac{1}{\sqrt{2\pi}^n} \int_{\R^n} \e^{-\I kx}f(x)\d x}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Eng[linear_in]{linear in}
|
||||||
|
\Ger[linear_in]{linear in}
|
||||||
|
\GT{for} $f\in L^1(\R^n)$:
|
||||||
|
\begin{enumerate}[i)]
|
||||||
|
\item $f \mapsto \hat{f}$ \GT{linear_in} $f$
|
||||||
|
\item $g(x) = f(x-h) \qRarrow \hat{g}(k) = \e^{-\I kn}\hat{f}(k)$
|
||||||
|
\item $g(x) = \e^{ih\cdot x}f(x) \qRarrow \hat{g}(k) = \hat{f}(k-h)$
|
||||||
|
\item $g(\lambda) = f\left(\frac{x}{\lambda}\right) \qRarrow \hat{g}(k)\lambda^n \hat{f}(\lambda k)$
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Convolution}
|
||||||
|
\ger{Faltung / Konvolution}
|
||||||
|
]{conv}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.}
|
||||||
|
\ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{def}
|
||||||
|
\desc{Definition}{}{}
|
||||||
|
\desc[german]{Definition}{}{}
|
||||||
|
\eq{(f*g)(t) = f(t) * g(t) = \int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{notation}
|
||||||
|
\desc{Notation}{}{}
|
||||||
|
\desc[german]{Notation}{}{}
|
||||||
|
\eq{
|
||||||
|
f(t) * g(t-t_0) &= (f*g)(t-t_0) \\
|
||||||
|
f(t-t_0) * g(t-t_0) &= (f*g)(t-2t_0)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{commutativity}
|
||||||
|
\desc{Commutativity}{}{}
|
||||||
|
\desc[german]{Kommutativität}{}{}
|
||||||
|
\eq{f * g = g * f}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{associativity}
|
||||||
|
\desc{Associativity}{}{}
|
||||||
|
\desc[german]{Assoziativität]}{}{}
|
||||||
|
\eq{(f*g)*h = f*(g*h)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{distributivity}
|
||||||
|
\desc{Distributivity}{}{}
|
||||||
|
\desc[german]{Distributivität}{}{}
|
||||||
|
\eq{f * (g + h) = f*g + f*h}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{complex_conjugate}
|
||||||
|
\desc{Complex conjugate}{}{}
|
||||||
|
\desc[german]{Komplexe konjugation}{}{}
|
||||||
|
\eq{(f*g)^* = f^* * g^*}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Misc}
|
||||||
|
\ger{Verschiedenes}
|
||||||
|
]{misc}
|
||||||
|
|
||||||
|
\begin{formula}{stirling-approx}
|
||||||
|
\desc{Stirling approximation}{}{}
|
||||||
|
\desc[german]{Stirlingformel}{}{}
|
||||||
|
\eq{\ln (N!) \approx N \ln(N) - N + \Order(\ln(N))}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{error-function}
|
||||||
|
\desc{Error function}{$\erf: \C \to \C$ and complementary error function $\erfc$}{}
|
||||||
|
\desc[german]{Fehlerfunktion}{$\erf: \C \to \C$ und komplementäre Fehlerfunktion $\erfc$}{}
|
||||||
|
\eq{
|
||||||
|
\erf(x) &= \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \d t \\
|
||||||
|
\erfc(x) &= 1 - \erf(x)\\
|
||||||
|
&= \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \d t
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{delta_of_function}
|
||||||
|
\desc{Dirac-Delta of a function}{}{$g(x_0) = 0$}
|
||||||
|
\desc[german]{Dirac-Delta einer Funktion}{}{}
|
||||||
|
\eq{\delta(f(x)) = \frac{\delta(x-x_0)}{\abs{g^\prime(x_0)}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{geometric_series}
|
||||||
|
\desc{Geometric series}{}{$\abs{q}<1$}
|
||||||
|
\desc[german]{Geometrische Reihe}{}{}
|
||||||
|
\eq{\sum_{k=0}^{\infty}q^k = \frac{1}{1-q}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Logarithm}
|
||||||
|
\ger{Logarithmus}
|
||||||
|
]{log}
|
||||||
|
\begin{formula}{identities}
|
||||||
|
\desc{Logarithm identities}{}{}
|
||||||
|
\desc[german]{Logarithmus Identitäten}{Logarithmus Rechenregeln}{}
|
||||||
|
\eq{
|
||||||
|
\log(xy) &= \log(x) + \log(y) \\
|
||||||
|
\log \left(\frac{x}{y}\right) &= \log(x) - \log(y) \\
|
||||||
|
\log \left(x^d\right) &= d\log(x) \\
|
||||||
|
\log \left(\sqrt[y]{x}\right) &= \frac{\log(x)}{y} \\
|
||||||
|
x^{\log(y)} &= y^{\log(x)}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{intergral}
|
||||||
|
\desc{Integral of natural logarithm}{}{}
|
||||||
|
\desc[german]{Integral des natürluchen Logarithmus}{}{}
|
||||||
|
\eq{
|
||||||
|
\int \ln(x) \d x &= x \left(\ln(x) -1\right) \\
|
||||||
|
\int \ln(ax + b) \d x &= \frac{ax+b}{a} \left(\ln(ax + b) -1\right)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Vector calculus}
|
||||||
|
\ger{Vektor Analysis}
|
||||||
|
]{vec}
|
||||||
|
\begin{formula}{laplace}
|
||||||
|
\desc{Laplace operator}{}{}
|
||||||
|
\desc[german]{Laplace-Operator}{}{}
|
||||||
|
\eq{\laplace = \Grad^2 = \pdv[2]{}{x} + \pdv[2]{}{y} + \pdv[2]{}{z}}
|
||||||
|
\end{formula}
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Spherical symmetry}
|
||||||
|
\ger{Kugelsymmetrie}
|
||||||
|
]{sphere}
|
||||||
|
\begin{formula}{coordinates}
|
||||||
|
\desc{Spherical coordinates}{}{}
|
||||||
|
\desc[german]{Kugelkoordinaten}{}{}
|
||||||
|
\eq{
|
||||||
|
x &= r \sin\phi,\cos\theta \\
|
||||||
|
y &= r \cos\phi,\cos\theta \\
|
||||||
|
z &= r \sin\theta
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{laplace}
|
||||||
|
\desc{Laplace operator}{}{}
|
||||||
|
\desc[german]{Laplace-Operator}{}{}
|
||||||
|
\eq{\Grad^2 = \laplace = \frac{1}{r^2} \pdv{}{r} \left(r^2 \pdv{}{r}\right)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Integrals}
|
||||||
|
\ger{Integralrechnung}
|
||||||
|
]{integral}
|
||||||
|
\begin{formula}{partial}
|
||||||
|
\desc{Partial integration}{}{}
|
||||||
|
\desc[german]{Partielle integration}{}{}
|
||||||
|
\eq{
|
||||||
|
\int_a^b f^\prime(x)\cdot g(x) \d x= \left[f(x)\cdot g(x)\right]_a^b - \int_a^b f(x)\cdot g^\prime(x) \d x
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{substitution}
|
||||||
|
\desc{Integration by substitution}{}{}
|
||||||
|
\desc[german]{Integration durch Substitution}{}{}
|
||||||
|
\eq{
|
||||||
|
\int_a^b f(g(x))\,g^\prime(x) \d x = \int_{g(a)}^{g(b)} f(z) \d z
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{gauss}
|
||||||
|
\desc{Gauss's theorem / Divergence theorem}{Divergence in a volume equals the flux through the surface}{$A = \partial V$}
|
||||||
|
\desc[german]{Satz von Gauss}{Divergenz in einem Volumen ist gleich dem Fluss durch die Oberfläche}{}
|
||||||
|
\eq{
|
||||||
|
\iiint_V \Div{\vec{F}} \d V = \oiint_A \vec{F} \cdot \d\vec{A}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{stokes}
|
||||||
|
\desc{Stokes's theorem}{}{$S = \partial A$}
|
||||||
|
\desc[german]{Klassischer Satz von Stokes}{}{}
|
||||||
|
\eq{\int_A (\Rot{\vec{F}}) \cdot \d\vec{S} = \oint_{S} \vec{F} \cdot \d \vec{r}}
|
||||||
|
\end{formula}
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{List of common integrals}
|
||||||
|
\ger{Liste nützlicher Integrale}
|
||||||
|
]{list}
|
||||||
|
% Put links to other integrals here
|
||||||
|
\fqEqRef{cal:log:integral}
|
||||||
|
|
||||||
|
\begin{formula}{arcfunctions}
|
||||||
|
\desc{Arcsine, arccosine, arctangent}{}{}
|
||||||
|
\desc[german]{Arkussinus, Arkuskosinus, Arkustangens}{}{}
|
||||||
|
\eq{
|
||||||
|
\int \frac{1}{\sqrt{1-x^2}} \d x = \arcsin x \\
|
||||||
|
\int -\frac{1}{\sqrt{1-x^2}} \d x = \arccos x \\
|
||||||
|
\int \frac{1}{x^2+1} \d x = \arctan x
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{archyperbolicfunctions}
|
||||||
|
\desc{Arcsinh, arccosh, arctanh}{}{}
|
||||||
|
% \desc[german]{Arkussinus, Arkuskosinus, Arkustangens}{}{}
|
||||||
|
\eq{
|
||||||
|
\int \frac{1}{\sqrt{x^2+1}} \d x &= \arsinh x \\
|
||||||
|
\int \frac{1}{\sqrt{x^2-1}} \d x &= \arcosh x \quad\eqnote{\GT{for} $(x > 1)$}\\
|
||||||
|
\int \frac{1}{1-x^2} \d x &= \artanh x \quad\eqnote{\GT{for} $(\abs{x} < 1)$}\\
|
||||||
|
\int \frac{1}{1-x^2} \d x &= \arcoth x \quad\eqnote{\GT{for} $(\abs{x} > 1)$}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{spheical-coordinates-int}
|
||||||
|
\desc{Integration in spherical coordinates}{}{}
|
||||||
|
\desc[german]{Integration in Kugelkoordinaten}{}{}
|
||||||
|
\eq{\iiint\d x \d y \d z= \int_0^{\infty} \!\! \int_0^{2\pi} \!\! \int_0^\pi \d r \d\phi\d\theta \, r^2\sin\theta}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{riemann_zeta}
|
||||||
|
\desc{Riemann Zeta Function}{}{}
|
||||||
|
\desc[german]{Riemannsche Zeta-Funktion}{}{}
|
||||||
|
\eq{\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1-2^{(1-s)})\Gamma(s)} \int_0^\infty \d\eta \frac{\eta^{(s-1)}}{\e^\eta + 1}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{gamma_function}
|
||||||
|
\desc{Gamma function}{}{}
|
||||||
|
\desc[german]{Gamma-Funktion}{}{}
|
||||||
|
\eq{
|
||||||
|
\Gamma(n) &= (n-1)! \\
|
||||||
|
\Gamma(z) &= \int_0^\infty t^{z-1} \e^{-t} \d t \\
|
||||||
|
\Gamma(z+1) &= z\Gamma(z)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{upper_incomplete_gamma_function}
|
||||||
|
\desc{Upper incomplete gamma function}{}{}
|
||||||
|
\desc[german]{Unvollständige Gamma-Funktion der unteren Grenze}{}{}
|
||||||
|
\eq{\Gamma(s,x) = \int_x-^\infty t^{s-1}\e^{-t} \d t}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{lower_incomplete_gamma_function}
|
||||||
|
\desc{Lower incomplete gamma function}{}{}
|
||||||
|
\desc[german]{Unvollständige Gamma-Funktion der oberen Grenze}{}{}
|
||||||
|
\eq{\gamma(s,x) = \int_0^x t^{s-1}\e^{-t} \d t}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{beta_function}
|
||||||
|
\desc{Beta function}{Complete beta function}{}
|
||||||
|
\desc[german]{Beta-Funktion}{}{}
|
||||||
|
\eq{
|
||||||
|
\txB(z_1,z_2) &= \int_0^1 t^{z_1-1} (1-t)^{z_2-1} \d t \\
|
||||||
|
\txB(z_1, z_2) &= \frac{\Gamma(z_1) \Gamma(z_2)}{\Gamma(z_1+z_2)}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{incomplete_beta_function}
|
||||||
|
\desc{Incomplete beta function}{Complete beta function}{}
|
||||||
|
\desc[german]{Unvollständige Beta-Funktion}{}{}
|
||||||
|
\eq{\txB(x; z_1,z_2) = \int_0^x t^{z_1-1} (1-t)^{z_2-1} \d t}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\TODO{differential equation solutions}
|
||||||
|
|
||||||
|
|
@ -1,53 +1,53 @@
|
|||||||
\Part[
|
\Section[
|
||||||
\eng{Geometry}
|
\eng{Geometry}
|
||||||
\ger{Geometrie}
|
\ger{Geometrie}
|
||||||
]{geo}
|
]{geo}
|
||||||
|
|
||||||
\Section[
|
\Subsection[
|
||||||
\eng{Trigonometry}
|
\eng{Trigonometry}
|
||||||
\ger{Trigonometrie}
|
\ger{Trigonometrie}
|
||||||
]{trig}
|
]{trig}
|
||||||
|
|
||||||
\begin{formula}{exponential_function}
|
\begin{formula}{exponential_function}
|
||||||
\desc{Exponential function}{}{}
|
\desc{Exponential function}{}{}
|
||||||
\desc[german]{Exponentialfunktion}{}{}
|
\desc[german]{Exponentialfunktion}{}{}
|
||||||
\eq{\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}}
|
\eq{\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{sine}
|
\begin{formula}{sine}
|
||||||
\desc{Sine}{}{}
|
\desc{Sine}{}{}
|
||||||
\desc[german]{Sinus}{}{}
|
\desc[german]{Sinus}{}{}
|
||||||
\eq{\sin(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n+1)}}{(2n+1)!} \\
|
\eq{\sin(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n+1)}}{(2n+1)!} \\
|
||||||
&= \frac{e^{ix}-e^{-ix}}{2i}}
|
&= \frac{e^{ix}-e^{-ix}}{2i}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{cosine}
|
\begin{formula}{cosine}
|
||||||
\desc{Cosine}{}{}
|
\desc{Cosine}{}{}
|
||||||
\desc[german]{Kosinus}{}{}
|
\desc[german]{Kosinus}{}{}
|
||||||
\eq{\cos(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n)}}{(2n)!} \\
|
\eq{\cos(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n)}}{(2n)!} \\
|
||||||
&= \frac{e^{ix}+e^{-ix}}{2}}
|
&= \frac{e^{ix}+e^{-ix}}{2}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
\begin{formula}{hyperbolic_sine}
|
\begin{formula}{hyperbolic_sine}
|
||||||
\desc{Hyperbolic sine}{}{}
|
\desc{Hyperbolic sine}{}{}
|
||||||
\desc[german]{Sinus hyperbolicus}{}{}
|
\desc[german]{Sinus hyperbolicus}{}{}
|
||||||
\eq{\sinh(x) &= -i\sin{ix} \\ &= \frac{e^{x}-e^{-x}}{2}}
|
\eq{\sinh(x) &= -i\sin{ix} \\ &= \frac{e^{x}-e^{-x}}{2}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{hyperbolic_cosine}
|
\begin{formula}{hyperbolic_cosine}
|
||||||
\desc{Hyperbolic cosine}{}{}
|
\desc{Hyperbolic cosine}{}{}
|
||||||
\desc[german]{Kosinus hyperbolicus}{}{}
|
\desc[german]{Kosinus hyperbolicus}{}{}
|
||||||
\eq{\cosh(x) &= \cos{ix} \\ &= \frac{e^{x}+e^{-x}}{2}}
|
\eq{\cosh(x) &= \cos{ix} \\ &= \frac{e^{x}+e^{-x}}{2}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Various theorems}
|
\eng{Various theorems}
|
||||||
\ger{Verschiedene Theoreme}
|
\ger{Verschiedene Theoreme}
|
||||||
]{theorems}
|
]{theorems}
|
||||||
\begin{formula}{sum}
|
\begin{formula}{sum}
|
||||||
\desc{}{}{}
|
\desc{Hypthenuse in the unit circle}{}{}
|
||||||
\desc[german]{}{}{}
|
\desc[german]{Hypothenuse im Einheitskreis}{}{}
|
||||||
\eq{1 &= \sin^2 x + \cos^2 x}
|
\eq{1 &= \sin^2 x + \cos^2 x}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -71,17 +71,17 @@
|
|||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{name}
|
\begin{formula}{other}
|
||||||
\desc{}{}{$\tan\theta = b$}
|
\desc{Other}{}{$\tan\theta = b$}
|
||||||
\desc[german]{}{}{$\tan\theta = b$}
|
\desc[german]{Sonstige}{}{$\tan\theta = b$}
|
||||||
\eq{\cos x + b\sin x = \sqrt{1 + b^2}\cos(x-\theta)}
|
\eq{\cos x + b\sin x = \sqrt{1 + b^2}\cos(x-\theta)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
\Subsubsection[
|
||||||
\eng{Table of values}
|
\eng{Table of values}
|
||||||
\ger{Wertetabelle}
|
\ger{Wertetabelle}
|
||||||
]{value_table}
|
]{value_table}
|
||||||
\begingroup
|
\begingroup
|
||||||
\setlength{\tabcolsep}{0.9em} % horizontal
|
\setlength{\tabcolsep}{0.9em} % horizontal
|
||||||
\renewcommand{\arraystretch}{2} % vertical
|
\renewcommand{\arraystretch}{2} % vertical
|
@ -1,14 +1,66 @@
|
|||||||
\def\id{\mathbb{1}}
|
\Section[
|
||||||
|
|
||||||
\Part[
|
|
||||||
\eng{Linear algebra}
|
\eng{Linear algebra}
|
||||||
\ger{Lineare Algebra}
|
\ger{Lineare Algebra}
|
||||||
]{linalg}
|
]{linalg}
|
||||||
|
|
||||||
\Section[
|
\Subsection[
|
||||||
|
\eng{Matrix basics}
|
||||||
|
\ger{Matrizen Basics}
|
||||||
|
]{matrix}
|
||||||
|
|
||||||
|
\begin{formula}{matrix_matrix_product}
|
||||||
|
\desc{Matrix-matrix product as sum}{}{}
|
||||||
|
\desc[german]{Matrix-Matrix Produkt als Summe}{}{}
|
||||||
|
\eq{C_{ij} = \sum_{k} A_{ik} B_{kj}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{matrix_vector_product}
|
||||||
|
\desc{Matrix-vector product as sum}{}{}
|
||||||
|
\desc[german]{Matrix-Vektor Produkt als Summe}{}{}
|
||||||
|
\eq{\vec{c}_{i} = \sum_{j} A_{ij} \vec{b}_{j}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{symmetric}
|
||||||
|
\desc{Symmetric matrix}{}{$A$ $n\times n$ \GT{matrix}}
|
||||||
|
\desc[german]{Symmetrische matrix}{}{}
|
||||||
|
\eq{A^\T = A}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{unitary}
|
||||||
|
\desc{Unitary matrix}{}{}
|
||||||
|
\desc[german]{Unitäre Matrix}{}{}
|
||||||
|
\eq{U ^\dagger U = \id}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Transposed matrix}
|
||||||
|
\ger{Transponierte Matrix}
|
||||||
|
]{transposed}
|
||||||
|
\begin{formula}{sum}
|
||||||
|
\desc{Sum}{}{}
|
||||||
|
\desc[german]{Summe}{}{}
|
||||||
|
\eq{(A+B)^\T = A^\T + B^\T}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{product}
|
||||||
|
\desc{Product}{}{}
|
||||||
|
\desc[german]{Produkt}{}{}
|
||||||
|
\eq{(AB)^\T = B^\T A^\T}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{inverse}
|
||||||
|
\desc{Inverse}{}{}
|
||||||
|
\desc[german]{Inverse}{}{}
|
||||||
|
\eq{(A^{-1})^\T = (A^\T)^{-1}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{exponential}
|
||||||
|
\desc{Exponential}{}{}
|
||||||
|
\desc[german]{Exponential}{}{}
|
||||||
|
\eq{\exp(A^\T) = (\exp A)^\T \\ \ln(A^\T)=(\ln A)^\T}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
\eng{Determinant}
|
\eng{Determinant}
|
||||||
\ger{Determinante}
|
\ger{Determinante}
|
||||||
]{determinant}
|
]{determinant}
|
||||||
\begin{formula}{2x2}
|
\begin{formula}{2x2}
|
||||||
\desc{2x2 matrix}{}{}
|
\desc{2x2 matrix}{}{}
|
||||||
\desc[german]{2x2 Matrix}{}{}
|
\desc[german]{2x2 Matrix}{}{}
|
||||||
@ -43,9 +95,19 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
\Section[
|
\Subsection[
|
||||||
|
\eng{Misc}
|
||||||
|
\ger{Misc}
|
||||||
|
]{misc}
|
||||||
|
|
||||||
|
\begin{formula}{normal_equation}
|
||||||
|
\desc{Normal equation}{Solves a linear regression problem}{\mat{\theta} hypothesis / weight matrix, \mat{X} design matrix, \vec{y} output vector}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{
|
||||||
|
\mat{\theta} = (\mat{X}^\T \mat{X})^{-1} \mat{X}^\T \vec{y}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
]{zeug}
|
|
||||||
|
|
||||||
\begin{formula}{inverse_2x2}
|
\begin{formula}{inverse_2x2}
|
||||||
\desc{Inverse $2\times 2$ matrix}{}{}
|
\desc{Inverse $2\times 2$ matrix}{}{}
|
||||||
@ -56,12 +118,6 @@
|
|||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{unitary}
|
|
||||||
\desc{Unitary matrix}{}{}
|
|
||||||
\desc[german]{Unitäre Matrix}{}{}
|
|
||||||
\eq{U ^\dagger U = \id}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{svd}
|
\begin{formula}{svd}
|
||||||
\desc{Singular value decomposition}{Factorization of complex matrices through rotating \rightarrow rescaling \rightarrow rotation.}{$A$: $m\times n$ matrix, $U$: $m\times m$ unitary matrix, $\Lambda$: $m\times n$ rectangular diagonal matrix with non-negative numbers on the diagonal, $V$: $n\times n$ unitary matrix}
|
\desc{Singular value decomposition}{Factorization of complex matrices through rotating \rightarrow rescaling \rightarrow rotation.}{$A$: $m\times n$ matrix, $U$: $m\times m$ unitary matrix, $\Lambda$: $m\times n$ rectangular diagonal matrix with non-negative numbers on the diagonal, $V$: $n\times n$ unitary matrix}
|
||||||
\desc[german]{Singulärwertzerlegung}{Faktorisierung einer reellen oder komplexen Matrix durch Rotation \rightarrow Skalierung \rightarrow Rotation.}{}
|
\desc[german]{Singulärwertzerlegung}{Faktorisierung einer reellen oder komplexen Matrix durch Rotation \rightarrow Skalierung \rightarrow Rotation.}{}
|
||||||
@ -95,7 +151,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
\Section[
|
\Subsection[
|
||||||
\eng{Eigenvalues}
|
\eng{Eigenvalues}
|
||||||
\ger{Eigenwerte}
|
\ger{Eigenwerte}
|
||||||
]{eigen}
|
]{eigen}
|
5
src/math/math.tex
Normal file
5
src/math/math.tex
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
\Part[
|
||||||
|
\eng{Mathematics}
|
||||||
|
\ger{Mathematik}
|
||||||
|
]{math}
|
||||||
|
|
345
src/math/probability_theory.tex
Normal file
345
src/math/probability_theory.tex
Normal file
@ -0,0 +1,345 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Probability theory}
|
||||||
|
\ger{Wahrscheinlichkeitstheorie}
|
||||||
|
]{pt}
|
||||||
|
|
||||||
|
\begin{formula}{mean}
|
||||||
|
\desc{Mean}{Expectation value}{}
|
||||||
|
\desc[german]{Mittelwert}{Erwartungswert}{}
|
||||||
|
\eq{\braket{x} = \int w(x)\, x\, \d x}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{variance}
|
||||||
|
\desc{Variance}{Square of the \fqEqRef{math:pt:std-deviation}}{}
|
||||||
|
\desc[german]{Varianz}{Quadrat der\fqEqRef{math:pt:std-deviation}}{}
|
||||||
|
\eq{\sigma^2 = (\Delta \hat{x})^2 = \Braket{\hat{x}^2} - \braket{\hat{x}}^2 = \braket{(x - \braket{x})^2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{covariance}
|
||||||
|
\desc{Covariance}{}{}
|
||||||
|
\desc[german]{Kovarianz}{}{}
|
||||||
|
\eq{\cov(x,y) = \sigma(x,y) = \sigma_{XY} = \Braket{(x-\braket{x})\,(y-\braket{y})}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{std-deviation}
|
||||||
|
\desc{Standard deviation}{}{}
|
||||||
|
\desc[german]{Standardabweichung}{}{}
|
||||||
|
\eq{\sigma = \sqrt{\sigma^2} = \sqrt{(\Delta x)^2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{median}
|
||||||
|
\desc{Median}{Value separating lower half from top half}{$x$ dataset with $n$ elements}
|
||||||
|
\desc[german]{Median}{Teilt die untere von der oberen Hälfte}{$x$ Reihe mit $n$ Elementen}
|
||||||
|
\eq{
|
||||||
|
\textrm{med}(x) = \left\{ \begin{array}{ll} x_{(n+1)/2} & \text{$n$ \GT{odd}} \\ \frac{x_{(n/2)}+x_{((n/2)+1)}}{2} & \text{$n$ \GT{even}} \end{array} \right.
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{pdf}
|
||||||
|
\desc{Probability density function}{Random variable has density $f$. The integral gives the probability of $X$ taking a value $x\in[a,b]$.}{$f$ normalized: $\int_{-\infty}^\infty f(x) \d x= 1$}
|
||||||
|
\desc[german]{Wahrscheinlichkeitsdichtefunktion}{Zufallsvariable hat Dichte $f$. Das Integral gibt Wahrscheinlichkeit an, dass $X$ einen Wert $x\in[a,b]$ annimmt}{$f$ normalisiert $\int_{-\infty}^\infty f(x) \d x= 1$}
|
||||||
|
\eq{P([a,b]) := \int_a^b f(x) \d x}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{cdf}
|
||||||
|
\desc{Cumulative distribution function}{}{$f$ probability density function}
|
||||||
|
\desc[german]{Kumulative Verteilungsfunktion}{}{$f$ Wahrscheinlichkeitsdichtefunktion}
|
||||||
|
\eq{F(x) = \int_{-\infty}^x f(t) \d t}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{pmf}
|
||||||
|
\desc{Probability mass function}{Probability $p$ that \textbf{discrete} random variable $X$ has exact value $x$}{$P$ probability measure}
|
||||||
|
\desc[german]{Wahrscheinlichkeitsfunktion / Zählfunktion}{Wahrscheinlichkeit $p$ dass eine \textbf{diskrete} Zufallsvariable $X$ einen exakten Wert $x$ annimmt}{}
|
||||||
|
\eq{p_X(x) = P(X = x)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{autocorrelation} \absLabel
|
||||||
|
\desc{Autocorrelation}{Correlation of $f$ to itself at an earlier point in time, $C$ is a covariance function}{$\tau$ lag-time}
|
||||||
|
\desc[german]{Autokorrelation}{Korrelation vonn $f$ zu sich selbst zu einem früheren Zeitpunkt. $C$ ist auch die Kovarianzfunktion}{$\tau$ Zeitverschiebung}
|
||||||
|
\eq{C_A(\tau) &= \lim_{T \to \infty} \frac{1}{2T}\int_{-T}^{T} f(t+\tau) f(t) \d t) \\ &= \braket{f(t+\tau)\cdot f(t)}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{binomial_coefficient}
|
||||||
|
\desc{Binomial coefficient}{Number of possibilitites of choosing $k$ objects out of $n$ objects\\}{}
|
||||||
|
\desc[german]{Binomialkoeffizient}{Anzahl der Möglichkeiten, $k$ aus $n$ zu wählen\\ "$n$ über $k$"}{}
|
||||||
|
\eq{\binom{n}{k} = \frac{n!}{k!(n-k)!}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Distributions}
|
||||||
|
\ger{Verteilungen}
|
||||||
|
]{distributions}
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Continuous probability distributions}
|
||||||
|
\ger{Kontinuierliche Wahrscheinlichkeitsverteilungen}
|
||||||
|
]{cont}
|
||||||
|
\begin{bigformula}{normal}
|
||||||
|
\desc{Gauß/Normal distribution}{}{}
|
||||||
|
\desc[german]{Gauß/Normal-Verteilung}{}{}
|
||||||
|
\begin{minipage}{\distleftwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/distribution_gauss.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{distribution}
|
||||||
|
\disteq{parameters}{\mu \in \R,\quad \sigma^2 \in \R}
|
||||||
|
\disteq{support}{x \in \R}
|
||||||
|
\disteq{pdf}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}
|
||||||
|
\disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]}
|
||||||
|
\disteq{mean}{\mu}
|
||||||
|
\disteq{median}{\mu}
|
||||||
|
\disteq{variance}{\sigma^2}
|
||||||
|
\end{distribution}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\begin{formula}{standard_normal_distribution}
|
||||||
|
\desc{Density function of the standard normal distribution}{$\mu = 0$, $\sigma = 1$}{}
|
||||||
|
\desc[german]{Dichtefunktion der Standard-Normalverteilung}{$\mu = 0$, $\sigma = 1$}{}
|
||||||
|
\eq{\varphi(x) = \frac{1}{\sqrt{2\pi}} \e^{-\frac{1}{2}x^2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{bigformula}{cauchy}
|
||||||
|
\desc{Cauchys / Lorentz distribution}{Also known as Cauchy-Lorentz distribution, Lorentz(ian) function, Breit-Wigner distribution.}{}
|
||||||
|
\desc[german]{Cauchy / Lorentz-Verteilung}{Auch bekannt als Cauchy-Lorentz Verteilung, Lorentz Funktion, Breit-Wigner Verteilung.}{}
|
||||||
|
\begin{minipage}{\distleftwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/distribution_cauchy.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{distribution}
|
||||||
|
\disteq{parameters}{x_0 \in \R,\quad \gamma \in \R}
|
||||||
|
\disteq{support}{x \in \R}
|
||||||
|
\disteq{pdf}{\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}}
|
||||||
|
\disteq{cdf}{\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}}
|
||||||
|
\disteq{mean}{\text{\GT{undefined}}}
|
||||||
|
\disteq{median}{x_0}
|
||||||
|
\disteq{variance}{\text{\GT{undefined}}}
|
||||||
|
\end{distribution}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\begin{bigformula}{maxwell-boltzmann}
|
||||||
|
\desc{Maxwell-Boltzmann distribution}{}{}
|
||||||
|
\desc[german]{Maxwell-Boltzmann Verteilung}{}{}
|
||||||
|
\begin{minipage}{\distleftwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/distribution_maxwell-boltzmann.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{distribution}
|
||||||
|
\disteq{parameters}{a > 0}
|
||||||
|
\disteq{support}{x \in (0, \infty)}
|
||||||
|
\disteq{pdf}{\sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp\left(-\frac{x^2}{2a^2}\right)}
|
||||||
|
\disteq{cdf}{\erf \left(\frac{x}{\sqrt{2} a}\right) - \sqrt{\frac{2}{\pi}} \frac{x}{a} \exp\left({\frac{-x^2}{2a^2}}\right)}
|
||||||
|
\disteq{mean}{2a \frac{2}{\pi}}
|
||||||
|
\disteq{median}{}
|
||||||
|
\disteq{variance}{\frac{a^2(3\pi-8)}{\pi}}
|
||||||
|
\end{distribution}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{bigformula}{gamma}
|
||||||
|
\desc{Gamma Distribution}{with $\lambda$ parameter}{$\Gamma$ \fqEqRef{math:cal:integral:list:gamma}, $\gamma$ \fqEqRef{math:cal:integral:list:lower_incomplete_gamma_function}}
|
||||||
|
\desc[german]{Gamma Verteilung}{mit $\lambda$ Parameter}{}
|
||||||
|
\begin{minipage}{\distleftwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/distribution_gamma.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{distribution}
|
||||||
|
\disteq{parameters}{\alpha > 0, \lambda > 0}
|
||||||
|
\disteq{support}{x\in(0,1)}
|
||||||
|
\disteq{pdf}{\frac{\lambda^\alpha}{\Gamma(\alpha) x^{\alpha-1} \e^{-\lambda x}}}
|
||||||
|
\disteq{cdf}{\frac{1}{\Gamma(\alpha) \gamma(\alpha, \lambda x)}}
|
||||||
|
\disteq{mean}{\frac{\alpha}{\lambda}}
|
||||||
|
\disteq{variance}{\frac{\alpha}{\lambda^2}}
|
||||||
|
\end{distribution}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\begin{bigformula}{beta}
|
||||||
|
\desc{Beta Distribution}{}{$\txB$ \fqEqRef{math:cal:integral:list:beta_function} / \fqEqRef{math:cal:integral:list:incomplete_beta_function}}
|
||||||
|
\desc[german]{Beta Verteilung}{}{}
|
||||||
|
\begin{minipage}{\distleftwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/distribution_beta.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{distribution}
|
||||||
|
\disteq{parameters}{\alpha \in \R, \beta \in \R}
|
||||||
|
\disteq{support}{x\in[0,1]}
|
||||||
|
\disteq{pdf}{\frac{x^{\alpha-1} (1-x)^{\beta-1}}{\txB(\alpha,\beta)}}
|
||||||
|
\disteq{cdf}{\frac{\txB(x;\alpha,\beta)}{\txB(\alpha,\beta)}}
|
||||||
|
\disteq{mean}{\frac{\alpha}{\alpha+\beta}}
|
||||||
|
% \disteq{median}{\frac{}{}} % pretty complicated, probably not needed
|
||||||
|
\disteq{variance}{\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}}
|
||||||
|
\end{distribution}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Discrete probability distributions}
|
||||||
|
\ger{Diskrete Wahrscheinlichkeitsverteilungen}
|
||||||
|
]{discrete}
|
||||||
|
\begin{bigformula}{binomial}
|
||||||
|
\desc{Binomial distribution}{}{}
|
||||||
|
\desc[german]{Binomialverteilung}{}{}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{For the number of trials going to infinity ($n\to\infty$), the binomial distribution converges to the \hyperref[sec:pb:distributions:poisson]{poisson distribution}}
|
||||||
|
\ger{Geht die Zahl der Versuche gegen unendlich ($n\to\infty$), konvergiert die Binomualverteilung gegen die \hyperref[sec:pb:distributions:poisson]{Poissonverteilung}}
|
||||||
|
\end{ttext}\\
|
||||||
|
\begin{minipage}{\distleftwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/distribution_binomial.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{distribution}
|
||||||
|
\disteq{parameters}{n \in \Z, \quad p \in [0,1],\quad q = 1 - p}
|
||||||
|
\disteq{support}{k \in \{0,\,1,\,\dots,\,n\}}
|
||||||
|
\disteq{pmf}{\binom{n}{k} p^k q^{n-k}}
|
||||||
|
% \disteq{cdf}{\text{regularized incomplete beta function}}
|
||||||
|
\disteq{mean}{np}
|
||||||
|
\disteq{median}{\floor{np} \text{ or } \ceil{np}}
|
||||||
|
\disteq{variance}{npq = np(1-p)}
|
||||||
|
\end{distribution}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\begin{bigformula}{poisson}
|
||||||
|
\desc{Poisson distribution}{}{}
|
||||||
|
\desc[german]{Poissonverteilung}{}{}
|
||||||
|
\begin{minipage}{\distleftwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/distribution_poisson.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{distribution}
|
||||||
|
\disteq{parameters}{\lambda \in (0,\infty)}
|
||||||
|
\disteq{support}{k \in \N}
|
||||||
|
\disteq{pmf}{\frac{\lambda^k \e^{-\lambda}}{k!}}
|
||||||
|
\disteq{cdf}{\e^{-\lambda} \sum_{j=0}^{\floor{k}} \frac{\lambda^j}{j!}}
|
||||||
|
\disteq{mean}{\lambda}
|
||||||
|
\disteq{median}{\approx\floor*{\lambda + \frac{1}{3} - \frac{1}{50\lambda}}}
|
||||||
|
\disteq{variance}{\lambda}
|
||||||
|
\end{distribution}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% TEMPLATE
|
||||||
|
% \begin{distribution}{maxwell-boltzmann}
|
||||||
|
% \distdesc{Maxwell-Boltzmann distribution}{}
|
||||||
|
% \distdesc[german]{Maxwell-Boltzmann Verteilung}{}
|
||||||
|
% \disteq{parameters}{}
|
||||||
|
% \disteq{pdf}{}
|
||||||
|
% \disteq{cdf}{}
|
||||||
|
% \disteq{mean}{}
|
||||||
|
% \disteq{median}{}
|
||||||
|
% \disteq{variance}{}
|
||||||
|
% \end{distribution}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Central limit theorem}
|
||||||
|
\ger{Zentraler Grenzwertsatz}
|
||||||
|
]{cls}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
Suppose $X_1, X_2, \dots$ is a sequence of independent and identically distributed random variables with $\braket{X_i} = \mu$ and $(\Delta X_i)^2 = \sigma^2 < \infty$.
|
||||||
|
As $N$ approaches infinity, the random variables $\sqrt{N}(\bar{X}_N - \mu)$ converge to a normal distribution $\mathcal{N}(0, \sigma^2)$.
|
||||||
|
\\ That means that the variance scales with $\frac{1}{\sqrt{N}}$ and statements become accurate for large $N$.
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Sei $X_1, X_2, \dots$ eine Reihe unabhängiger und gleichverteilter Zufallsvariablen mit $\braket{X_i} = \mu$ und $(\Delta X_i)^2 = \sigma^2 < \infty$.
|
||||||
|
Für $N$ gegen unendlich konvergieren die Zufallsvariablen $\sqrt{N}(\bar{X}_N - \mu)$ zu einer Normalverteilung $\mathcal{N}(0, \sigma^2)$.
|
||||||
|
\\ Das bedeutet, dass die Schwankung mit $\frac{1}{\sqrt{N}}$ wächst und Aussagen für große $N$ scharf werden.
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Propagation of uncertainty / error}
|
||||||
|
\ger{Fehlerfortpflanzung}
|
||||||
|
]{error}
|
||||||
|
\begin{formula}{generalised}
|
||||||
|
\desc{Generalized error propagation}{}{$V$ \fqEqRef{math:pt:covariance} matrix, $J$ \fqEqRef{math:cal:jacobi-matrix}}
|
||||||
|
\desc[german]{Generalisiertes Fehlerfortpflanzungsgesetz}{$V$ \fqEqRef{math:pt:covariance} Matrix, $J$ \fqEqRef{cal:jacobi-matrix}}{}
|
||||||
|
\eq{V_y = J(x) \cdot V_x \cdot J^{\T} (x)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{uncorrelated}
|
||||||
|
\desc{Propagation of uncorrelated errors}{Linear approximation}{}
|
||||||
|
\desc[german]{Fortpflanzung unabhängiger fehlerbehaftete Größen}{Lineare Näherung}{}
|
||||||
|
\eq{u_y = \sqrt{ \sum_{i} \left(\pdv{y}{x_i}\cdot u_i\right)^2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{weight}
|
||||||
|
\desc{Weight}{Variance is a possible choice for a weight}{$\sigma$ \fqEqRef{math:pt:variance}}
|
||||||
|
\desc[german]{Gewicht}{Varianz ist eine mögliche Wahl für ein Gewicht}{}
|
||||||
|
\eq{w_i = \frac{1}{\sigma_i^2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{weighted-mean}
|
||||||
|
\desc{Weighted mean}{}{$w_i$ \fqEqRef{math:pt:error:weight}}
|
||||||
|
\desc[german]{Gewichteter Mittelwert}{}{}
|
||||||
|
\eq{\overline{x} = \frac{\sum_{i} (x_i w_i)}{\sum_i w_i}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{weighted-mean-error}
|
||||||
|
\desc{Variance of weighted mean}{}{$w_i$ \fqEqRef{math:pt:error:weight}}
|
||||||
|
\desc[german]{Varianz des gewichteten Mittelwertes}{}{}
|
||||||
|
\eq{\sigma^2_{\overline{x}} = \frac{1}{\sum_i w_i}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Maximum likelihood estimation}
|
||||||
|
\ger{Maximum likelihood Methode}
|
||||||
|
]{mle}
|
||||||
|
\begin{formula}{likelihood}
|
||||||
|
\desc{Likelihood function}{Likelihood of observing $x$ when parameter is $\theta$\\in general not normalized!}{$\rho$ \fqEqRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ depending on parameter $\theta$, $\Theta$ parameter space}
|
||||||
|
\desc[german]{Likelihood Funktion}{"Plausibilität" $x$ zu messen, wenn der Parameter $\theta$ ist\\nicht normalisiert!}{$\rho$ \fqEqRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ hängt ab von Parameter $\theta$, $\Theta$ Parameterraum}
|
||||||
|
\eq{L:\Theta \rightarrow [0,1], \quad \theta \mapsto \rho(x|\theta)}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{likelihood_independant}
|
||||||
|
\desc{Likelihood function}{for independent and identically distributed random variables}{$x_i$ $n$ random variables, $\rho$ \fqEqRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ depending on parameter $\theta$}
|
||||||
|
\desc[german]{Likelihood function}{für unabhängig und identisch verteilte Zufallsvariablen}{$x_i$ $n$ Zufallsvariablen$\rho$ \fqEqRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ hängt ab von Parameter $\theta$}
|
||||||
|
\eq{L(\theta) = \prod_{i=1}^n f(x_i;\theta)}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{maximum_likelihood_estimate}
|
||||||
|
\desc{Maximum likelihood estimate (MLE)}{Paramater for which outcome is most likely}{$L$ \fqEqRef{pt:mle:likelihood}, $\theta$ parameter of a \fqEqRef{math:pt:pdf}}
|
||||||
|
\desc[german]{Maximum likelihood-Schätzung (MLE)}{Paramater, für den das Ergebnis am Wahrscheinlichsten ist}{$L$ \fqEqRef{math:pt:mle:likelihood}, $\theta$ Parameter einer \fqEqRef{math:pt:pdf}}
|
||||||
|
\eq{\theta_\text{ML} &= \argmax_\theta L(\theta)\\ &= \argmax_\theta \log \big(L(\theta)\big)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Bayesian probability theory}
|
||||||
|
\ger{Bayessche Wahrscheinlichkeitstheorie}
|
||||||
|
]{bayesian}
|
||||||
|
\begin{formula}{prior}
|
||||||
|
\desc{Prior distribution}{Expected distribution before conducting the experiment}{$\theta$ parameter}
|
||||||
|
\desc[german]{Prior Verteilung}{}{}
|
||||||
|
\eq{p(\theta)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{evidence}
|
||||||
|
\desc{Evidence}{}{$p(\mathcal{D}|\theta)$ \fqEqRef{math:pt:mle:likelihood}, $p(\theta)$ \fqEqRef{math:pt:bayesian:prior}, $\mathcal{D}$ data set}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{p(\mathcal{D}) = \int\d\theta \,p(\mathcal{D}|\theta)\,p(\theta)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{theorem}
|
||||||
|
\desc{Bayes' theorem}{}{$p(\theta|\mathcal{D})$ posterior distribution, $p(\mathcal{D}|\theta)$ \fqEqRef{math:pt:mle:likelihood}, $p(\theta)$ \fqEqRef{math:pt:bayesian:prior}, $p(\mathcal{D})$ \fqEqRef{math:pt:bayesian:evidence}, $\mathcal{D}$ data set}
|
||||||
|
\desc[german]{Satz von Bayes}{}{}
|
||||||
|
\eq{p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)\,p(\theta)}{p(\mathcal{D})}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{map}
|
||||||
|
\desc{Maximum a posterior estimation (MAP)}{}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\eq{\theta_\text{MAP} = \argmax_\theta p(\theta|\mathcal{D}) = \argmax_\theta p(\mathcal{D}|\theta)\,p(\theta)}
|
||||||
|
\end{formula}
|
||||||
|
|
@ -3,6 +3,46 @@
|
|||||||
\ger{Mechanik}
|
\ger{Mechanik}
|
||||||
]{mech}
|
]{mech}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Newton}
|
||||||
|
\ger{Newton}
|
||||||
|
]{newton}
|
||||||
|
\begin{formula}{newton_laws}
|
||||||
|
\desc{Newton's laws}{}{}
|
||||||
|
\desc[german]{Newtonsche Gesetze}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{
|
||||||
|
\begin{enumerate}
|
||||||
|
\item A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force
|
||||||
|
\item $$\vec{F} = m \cdot \vec{a}$$
|
||||||
|
\item If two bodies exert forces on each other, these force have the same magnitude but opposite directions
|
||||||
|
$$\vec{F}_{\txA\rightarrow\txB} = -\vec{F}_{\txB\rightarrow\txA}$$
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
\begin{enumerate}
|
||||||
|
\item Ein kräftefreier Körper bleibt in Ruhe oder bewegt sich geradlinig mit konstanter Geschwindigkeit
|
||||||
|
\item $$\vec{F} = m \cdot \vec{a}$$
|
||||||
|
\item Eine Kraft von Körper A auf Körper B geht immer mit einer gleich große, aber entgegen gerichteten Kraft von Körper B auf Körper A einher:
|
||||||
|
$$\vec{F}_{\txA\rightarrow\txB} = -\vec{F}_{\txB\rightarrow\txA}$$
|
||||||
|
\end{enumerate}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Misc}
|
||||||
|
\ger{Verschiedenes}
|
||||||
|
]{misc}
|
||||||
|
\begin{formula}{hook}
|
||||||
|
\desc{Hooke's law}{}{$F$ \qtyRef{force}, $D$ \qtyRef{spring_constant}, $\Delta l$ spring length}
|
||||||
|
\desc[german]{Hookesches Gesetz}{}{$F$ \qtyRef{force}, $D$ \qtyRef{spring_constant}, $\Delta l$ Federlänge}
|
||||||
|
\eq{
|
||||||
|
F = D\Delta l
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
\def\lagrange{\mathcal{L}}
|
\def\lagrange{\mathcal{L}}
|
||||||
\Section[
|
\Section[
|
||||||
\eng{Lagrange formalism}
|
\eng{Lagrange formalism}
|
||||||
@ -26,7 +66,7 @@
|
|||||||
Zum Beispiel findet man für ein 2D Pendel die generalisierte Koordinate $q=\varphi$, mit $\vec{x} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \end{pmatrix}$.
|
Zum Beispiel findet man für ein 2D Pendel die generalisierte Koordinate $q=\varphi$, mit $\vec{x} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \end{pmatrix}$.
|
||||||
}
|
}
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
\begin{formula}{lagrangian}
|
\begin{formula}{lagrangian} \absLabel
|
||||||
\desc{Lagrange function}{}{$T$ kinetic energy, $V$ potential energy }
|
\desc{Lagrange function}{}{$T$ kinetic energy, $V$ potential energy }
|
||||||
\desc[german]{Lagrange-Funktion}{}{$T$ kinetische Energie, $V$ potentielle Energie}
|
\desc[german]{Lagrange-Funktion}{}{$T$ kinetische Energie, $V$ potentielle Energie}
|
||||||
\eq{\lagrange = T - V}
|
\eq{\lagrange = T - V}
|
||||||
|
114
src/particle.tex
Normal file
114
src/particle.tex
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
\Part[
|
||||||
|
\eng{Particle physics}
|
||||||
|
\ger{Teilchenphysik}
|
||||||
|
]{particle}
|
||||||
|
|
||||||
|
\begin{formula}{electron_mass}
|
||||||
|
\desc{Electron mass}{}{}
|
||||||
|
\desc[german]{Elektronenmasse}{}{}
|
||||||
|
\constant{m_\txe}{exp}{
|
||||||
|
\val{9.1093837139(28) \xE{-31}}{\kg}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{spin}
|
||||||
|
\desc{Spin}{}{}
|
||||||
|
\desc[german]{Spin}{}{}
|
||||||
|
\quantity{\sigma}{}{v}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{bigformula}{standard_model}
|
||||||
|
\desc{Standard model}{}{}
|
||||||
|
\desc[german]{Standartmodell}{}{}
|
||||||
|
\centering
|
||||||
|
|
||||||
|
\tikzset{%
|
||||||
|
label/.style = { black, midway, align=center },
|
||||||
|
toplabel/.style = { label, above=.5em, anchor=south },
|
||||||
|
leftlabel/.style = { midway, left=.5em, anchor=east },
|
||||||
|
bottomlabel/.style = { label, below=.5em, anchor=north },
|
||||||
|
force/.style = { rotate=-90,scale=0.4 },
|
||||||
|
round/.style = { rounded corners=2mm },
|
||||||
|
legend/.style = { anchor=east },
|
||||||
|
nosep/.style = { inner sep=0pt },
|
||||||
|
generation/.style = { anchor=base },
|
||||||
|
brace/.style = { decoration={brace,mirror},decorate }
|
||||||
|
}
|
||||||
|
|
||||||
|
% [1]: color
|
||||||
|
% 2: symbol
|
||||||
|
% 3: name
|
||||||
|
% 4: mass
|
||||||
|
% 5: spin
|
||||||
|
% 6: charge
|
||||||
|
% 7: colors
|
||||||
|
\newcommand\drawParticle[7][white]{%
|
||||||
|
\begin{tikzpicture}[x=2.2cm, y=2.2cm]
|
||||||
|
% \path[fill=#1,blur shadow={shadow blur steps=5}] (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
|
||||||
|
% \path[fill=#1,stroke=black,blur shadow={shadow blur steps=5},rounded corners] (0,0) rectangle (1,1);
|
||||||
|
\path[fill=#1!20!bg0,draw=#1,thick] (0.02,0.02) rectangle (0.98,0.98);
|
||||||
|
\node at(0.92, 0.50) [nosep,anchor=east]{\Large #2};
|
||||||
|
% \node at(0.95, 0.15) [nosep,anchor=south east]{\footnotesize #3};
|
||||||
|
\node at(0.05, 0.15) [nosep,anchor=south west]{\footnotesize #3};
|
||||||
|
% \ifstrempty{#2}{}{\node at(0) [nosep,anchor=west,scale=1.5] {#2};}
|
||||||
|
% \ifstrempty{#3}{}{\node at(0.1,-0.85) [nosep,anchor=west,scale=0.3] {#3};}
|
||||||
|
\ifstrempty{#4}{}{\node at(0.05,0.85) [nosep,anchor=west] {\footnotesize #4};}
|
||||||
|
\ifstrempty{#5}{}{\node at(0.05,0.70) [nosep,anchor=west] {\footnotesize #5};}
|
||||||
|
\ifstrempty{#6}{}{\node at(0.05,0.55) [nosep,anchor=west] {\footnotesize #6};}
|
||||||
|
% \ifstrempty{#7}{}{\node at(0.05,0.40) [nosep,anchor=west] {\footnotesize #7};}
|
||||||
|
\end{tikzpicture}
|
||||||
|
}
|
||||||
|
\def\colorLepton{bg-aqua}
|
||||||
|
\def\colorQuarks{bg-purple}
|
||||||
|
\def\colorGauBos{bg-red}
|
||||||
|
\def\colorScaBos{bg-yellow}
|
||||||
|
\eng[quarks]{Quarks}
|
||||||
|
\ger[quarks]{Quarks}
|
||||||
|
\eng[leptons]{Leptons}
|
||||||
|
\ger[leptons]{Leptonen}
|
||||||
|
\eng[fermions]{Fermions}
|
||||||
|
\ger[fermions]{Fermionen}
|
||||||
|
\eng[bosons]{Bosons}
|
||||||
|
\ger[bosons]{Bosonen}
|
||||||
|
|
||||||
|
\begin{tikzpicture}[x=2.2cm, y=2.2cm]
|
||||||
|
\node at(0, 0) {\drawParticle[\colorQuarks]{$u$} {up} {$2.3$ MeV}{1/2}{$2/3$}{R/G/B}};
|
||||||
|
\node at(0,-1) {\drawParticle[\colorQuarks]{$d$} {down} {$4.8$ MeV}{1/2}{$-1/3$}{R/G/B}};
|
||||||
|
\node at(0,-2) {\drawParticle[\colorLepton]{$e$} {electron} {$511$ keV}{1/2}{$-1$}{}};
|
||||||
|
\node at(0,-3) {\drawParticle[\colorLepton]{$\nu_e$} {$e$ neutrino} {$<2.2$ eV}{1/2}{0}{}};
|
||||||
|
\node at(1, 0) {\drawParticle[\colorQuarks]{$c$} {charm} {$1.275$ GeV}{1/2}{$2/3$}{R/G/B}};
|
||||||
|
\node at(1,-1) {\drawParticle[\colorQuarks]{$s$} {strange} {$95$ MeV}{1/2}{$-1/3$}{R/G/B}};
|
||||||
|
\node at(1,-2) {\drawParticle[\colorLepton]{$\mu$} {muon} {$105.7$ MeV}{1/2}{$-1$}{}};
|
||||||
|
\node at(1,-3) {\drawParticle[\colorLepton]{$\nu_\mu$} {$\mu$ neutrino}{$<170$ keV}{1/2}{0}{}};
|
||||||
|
\node at(2, 0) {\drawParticle[\colorQuarks]{$t$} {top} {$173.2$ GeV}{1/2}{$2/3$}{R/G/B}};
|
||||||
|
\node at(2,-1) {\drawParticle[\colorQuarks]{$b$} {bottom} {$4.18$ GeV}{1/2}{$-1/3$}{R/G/B}};
|
||||||
|
\node at(2,-2) {\drawParticle[\colorLepton]{$\tau$} {tau} {$1.777$ GeV}{1/2}{$-1$}{}};
|
||||||
|
\node at(2,-3) {\drawParticle[\colorLepton]{$\nu_\tau$} {$\tau$ neutrino} {$<15.5$ MeV}{1/2}{0}{}};
|
||||||
|
\node at(3, 0) {\drawParticle[\colorGauBos]{$g$} {gluon} {0}{1}{0}{color}};
|
||||||
|
\node at(3,-1) {\drawParticle[\colorGauBos]{$\gamma$} {photon} {0}{1}{0}{}};
|
||||||
|
\node at(3,-2) {\drawParticle[\colorGauBos]{$Z$} {} {$91.2$ GeV}{1}{0}{}};
|
||||||
|
\node at(3,-3) {\drawParticle[\colorGauBos]{$W_\pm$} {} {$80.4$ GeV}{1}{$\pm1$}{}};
|
||||||
|
\node at(4,0) {\drawParticle[\colorScaBos]{$H$} {Higgs} {$125.1$ GeV}{0}{0}{}};
|
||||||
|
|
||||||
|
\draw [->] (-0.7, 0.35) node [legend] {\qtyRef{mass}} -- (-0.5, 0.35);
|
||||||
|
\draw [->] (-0.7, 0.20) node [legend] {\qtyRef{spin}} -- (-0.5, 0.20);
|
||||||
|
\draw [->] (-0.7, 0.05) node [legend] {\qtyRef{charge}} -- (-0.5, 0.05);
|
||||||
|
\draw [->] (-0.7,-0.10) node [legend] {\GT{colors}} -- (-0.5,-0.10);
|
||||||
|
|
||||||
|
\draw [brace,draw=\colorQuarks] (-0.55, 0.5) -- (-0.55,-1.5) node[leftlabel,color=\colorQuarks] {\gt{quarks}};
|
||||||
|
\draw [brace,draw=\colorLepton] (-0.55,-1.5) -- (-0.55,-3.5) node[leftlabel,color=\colorLepton] {\gt{leptons}};
|
||||||
|
\draw [brace] (-0.5,-3.55) -- ( 2.5,-3.55) node[bottomlabel] {\gt{fermions}};
|
||||||
|
\draw [brace] ( 2.5,-3.55) -- ( 4.5,-3.55) node[bottomlabel] {\gt{bosons}};
|
||||||
|
|
||||||
|
|
||||||
|
\draw [brace] (0.5,0.55) -- (-0.5,0.55) node[toplabel] {\small standard matter};
|
||||||
|
\draw [brace] (2.5,0.55) -- ( 0.5,0.55) node[toplabel] {\small unstable matter};
|
||||||
|
\draw [brace] (4.5,0.55) -- ( 2.5,0.55) node[toplabel] {\small force carriers};
|
||||||
|
|
||||||
|
\node at (0,0.85) [generation] {\small I};
|
||||||
|
\node at (1,0.85) [generation] {\small II};
|
||||||
|
\node at (2,0.85) [generation] {\small III};
|
||||||
|
\node at (1,1.05) [generation] {\small generation};
|
||||||
|
\end{tikzpicture}
|
||||||
|
|
||||||
|
\end{bigformula}
|
62
src/pkg/mqconstant.sty
Normal file
62
src/pkg/mqconstant.sty
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
\ProvidesPackage{mqconstant}
|
||||||
|
\RequirePackage{mqlua}
|
||||||
|
\RequirePackage{etoolbox}
|
||||||
|
|
||||||
|
\directLuaAux{
|
||||||
|
if constants == nil then
|
||||||
|
constants = {}
|
||||||
|
end
|
||||||
|
}
|
||||||
|
|
||||||
|
% [1]: label to point to
|
||||||
|
% 2: key
|
||||||
|
% 3: symbol
|
||||||
|
% 4: either exp or def; experimentally or defined constant
|
||||||
|
\newcommand{\constant@new}[4][\relax]{
|
||||||
|
\directLuaAux{
|
||||||
|
constants["#2"] = {}
|
||||||
|
constants["#2"]["symbol"] = [[\detokenize{#3}]]
|
||||||
|
constants["#2"]["exp_or_def"] = [[\detokenize{#4}]]
|
||||||
|
constants["#2"]["values"] = {} %-- array of {value, unit}
|
||||||
|
}
|
||||||
|
\ifstrempty{#1}{}{
|
||||||
|
\directLuaAuxExpand{
|
||||||
|
constants["#2"]["linkto"] = [[#1]] %-- fqname required for getting the translation key
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
% 1: key
|
||||||
|
% 2: value
|
||||||
|
% 3: units
|
||||||
|
\newcommand{\constant@addValue}[3]{
|
||||||
|
\directlua{
|
||||||
|
table.insert(constants["#1"]["values"], { value = [[\detokenize{#2}]], unit = [[\detokenize{#3}]] })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
% 1: key
|
||||||
|
\newcommand\constant@print[1]{
|
||||||
|
\begingroup % for label
|
||||||
|
Symbol: $\luavar{constants["#1"]["symbol"]}$
|
||||||
|
% \\Unit: $\directlua{split_and_print_units(constants["#1"]["units"])}$
|
||||||
|
\directlua{
|
||||||
|
tex.print("\\\\\\GT{const:"..constants["#1"]["exp_or_def"].."}")
|
||||||
|
}
|
||||||
|
\directlua{
|
||||||
|
%--tex.sprint("Hier steht Luatext" .. ":", #constVals)
|
||||||
|
for i, pair in ipairs(constants["#1"]["values"]) do
|
||||||
|
tex.sprint("\\\\\\hspace*{1cm}${", pair["value"], "}\\,\\si{", pair["unit"], "}$")
|
||||||
|
%--tex.sprint("VALUE ", i, v)
|
||||||
|
end
|
||||||
|
}
|
||||||
|
% label it only once
|
||||||
|
\directlua{
|
||||||
|
if constants["#1"]["labeled"] == nil then
|
||||||
|
constants["#1"]["labeled"] = true
|
||||||
|
tex.print("\\label{const:#1}")
|
||||||
|
end
|
||||||
|
}
|
||||||
|
\endgroup
|
||||||
|
}
|
||||||
|
\newcounter{constant}
|
250
src/pkg/mqformula.sty
Normal file
250
src/pkg/mqformula.sty
Normal file
@ -0,0 +1,250 @@
|
|||||||
|
\ProvidesPackage{mqformula}
|
||||||
|
|
||||||
|
\RequirePackage{mqfqname}
|
||||||
|
\RequirePackage{mqconstant}
|
||||||
|
\RequirePackage{mqquantity}
|
||||||
|
|
||||||
|
%
|
||||||
|
% FORMULA ENVIRONMENT
|
||||||
|
% The following commands are meant to be used with the formula environment
|
||||||
|
%
|
||||||
|
|
||||||
|
% Name in black and below description in gray
|
||||||
|
% [1]: minipage width
|
||||||
|
% 2: fqname of name
|
||||||
|
% 3: fqname of a translation that holds the explanation
|
||||||
|
\newcommand{\NameWithDescription}[3][\descwidth]{
|
||||||
|
\begin{minipage}{#1}
|
||||||
|
\IfTranslationExists{#2}{
|
||||||
|
\raggedright
|
||||||
|
\GT{#2}
|
||||||
|
}{\detokenize{#2}}
|
||||||
|
\IfTranslationExists{#3}{
|
||||||
|
\\ {\color{fg1} \GT{#3}}
|
||||||
|
}{}
|
||||||
|
\end{minipage}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
% TODO: rename
|
||||||
|
\newsavebox{\contentBoxBox}
|
||||||
|
% [1]: minipage width
|
||||||
|
% 2: fqname of a translation that holds the explanation
|
||||||
|
\newenvironment{ContentBoxWithExplanation}[2][\eqwidth]{
|
||||||
|
\def\ContentFqName{#2}
|
||||||
|
\begin{lrbox}{\contentBoxBox}
|
||||||
|
\begin{minipage}{#1}
|
||||||
|
}{
|
||||||
|
\IfTranslationExists{\ContentFqName}{%
|
||||||
|
\smartnewline
|
||||||
|
\noindent
|
||||||
|
\begingroup
|
||||||
|
\color{fg1}
|
||||||
|
\GT{\ContentFqName}
|
||||||
|
% \edef\temp{\GT{#1_defs}}
|
||||||
|
% \expandafter\StrSubstitute\expandafter{\temp}{:}{\\}
|
||||||
|
\endgroup
|
||||||
|
}{}
|
||||||
|
\end{minipage}
|
||||||
|
\end{lrbox}
|
||||||
|
\fbox{\usebox{\contentBoxBox}}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
% Class defining commands shared by all formula environments
|
||||||
|
% 1: key
|
||||||
|
\newenvironment{formulainternal}[1]{
|
||||||
|
% [1]: language
|
||||||
|
% 2: name
|
||||||
|
% 3: description
|
||||||
|
% 4: definitions/links
|
||||||
|
\newcommand{\desc}[4][english]{
|
||||||
|
% language, name, description, definitions
|
||||||
|
\ifblank{##2}{}{\dt[#1]{##1}{##2}}
|
||||||
|
\ifblank{##3}{}{\dt[#1_desc]{##1}{##3}}
|
||||||
|
\ifblank{##4}{}{\dt[#1_defs]{##1}{##4}}
|
||||||
|
}
|
||||||
|
\directlua{n_formulaEntries = 0}
|
||||||
|
|
||||||
|
% makes this formula referencable with \abbrRef{<name>}
|
||||||
|
% [1]: label to use
|
||||||
|
% 2: Abbreviation to use for references
|
||||||
|
\newcommand{\abbrLabel}[2][#1]{
|
||||||
|
\abbrLink[f:\fqname]{##1}{##2}
|
||||||
|
}
|
||||||
|
% makes this formula referencable with \absRef{<name>}
|
||||||
|
% [1]: label to use
|
||||||
|
\newcommand{\absLabel}[1][#1]{
|
||||||
|
\absLink[f:\fqname]{##1}
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand{\newFormulaEntry}{
|
||||||
|
\directlua{
|
||||||
|
if n_formulaEntries > 0 then
|
||||||
|
tex.print("\\vspace{0.3\\baselineskip}\\hrule\\vspace{0.3\\baselineskip}")
|
||||||
|
end
|
||||||
|
n_formulaEntries = n_formulaEntries + 1
|
||||||
|
}
|
||||||
|
% \par\noindent\ignorespaces
|
||||||
|
}
|
||||||
|
% 1: equation for align environment
|
||||||
|
\newcommand{\eq}[1]{
|
||||||
|
\newFormulaEntry
|
||||||
|
\begin{align}
|
||||||
|
% \label{eq:\fqname:#1}
|
||||||
|
##1
|
||||||
|
\end{align}
|
||||||
|
}
|
||||||
|
% 1: equation for alignat environment
|
||||||
|
\newcommand{\eqAlignedAt}[2]{
|
||||||
|
\newFormulaEntry
|
||||||
|
\begin{flalign}%
|
||||||
|
\TODO{\text{remove macro}}
|
||||||
|
% dont place label when one is provided
|
||||||
|
% \IfSubStringInString{label}\unexpanded{#3}{}{
|
||||||
|
% \label{eq:#1}
|
||||||
|
% }
|
||||||
|
##1%
|
||||||
|
\end{flalign}
|
||||||
|
}
|
||||||
|
% 1: equation for flalign environment
|
||||||
|
\newcommand{\eqFLAlign}[2]{
|
||||||
|
\newFormulaEntry
|
||||||
|
\begin{alignat}{##1}%
|
||||||
|
% dont place label when one is provided
|
||||||
|
% \IfSubStringInString{label}\unexpanded{#3}{}{
|
||||||
|
% \label{eq:#1}
|
||||||
|
% }
|
||||||
|
##2%
|
||||||
|
\end{alignat}
|
||||||
|
}
|
||||||
|
\newcommand{\fig}[2][1.0]{
|
||||||
|
\newFormulaEntry
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=##1\textwidth]{##2}
|
||||||
|
}
|
||||||
|
% 1: content for the ttext environment
|
||||||
|
\newcommand{\ttxt}[2][#1:desc]{
|
||||||
|
\newFormulaEntry
|
||||||
|
\begin{ttext}[##1]
|
||||||
|
##2
|
||||||
|
\end{ttext}
|
||||||
|
}
|
||||||
|
% 1: symbol
|
||||||
|
% 2: units
|
||||||
|
% 3: comment key to translation
|
||||||
|
\newcommand{\quantity}[3]{%
|
||||||
|
\quantity@new[\fqname]{#1}{##1}{##2}{##3}
|
||||||
|
\newFormulaEntry
|
||||||
|
\quantity@print{#1}
|
||||||
|
}
|
||||||
|
|
||||||
|
% must be used only in third argument of "constant" command
|
||||||
|
% 1: value
|
||||||
|
% 2: unit
|
||||||
|
\newcommand{\val}[2]{
|
||||||
|
\constant@addValue{#1}{##1}{##2}
|
||||||
|
}
|
||||||
|
% 1: symbol
|
||||||
|
% 2: either exp or def; experimentally or defined constant
|
||||||
|
% 3: one or more \val{value}{unit} commands
|
||||||
|
\newcommand{\constant}[3]{
|
||||||
|
\constant@new[\fqname]{#1}{##1}{##2}
|
||||||
|
\begingroup
|
||||||
|
##3
|
||||||
|
\endgroup
|
||||||
|
\newFormulaEntry
|
||||||
|
\constant@print{#1}
|
||||||
|
}
|
||||||
|
}{}
|
||||||
|
|
||||||
|
\newenvironment{formula}[1]{
|
||||||
|
\begin{formulainternal}{#1}
|
||||||
|
|
||||||
|
\begingroup
|
||||||
|
\label{f:\fqname:#1}
|
||||||
|
\storeLabel{\fqname:#1}
|
||||||
|
\par\noindent\ignorespaces
|
||||||
|
% \textcolor{gray}{\hrule}
|
||||||
|
% \vspace{0.5\baselineskip}
|
||||||
|
\NameWithDescription[\descwidth]{\fqname:#1}{\fqname:#1_desc}
|
||||||
|
\hfill
|
||||||
|
\begin{ContentBoxWithExplanation}{\fqname:#1_defs}
|
||||||
|
}{
|
||||||
|
\end{ContentBoxWithExplanation}
|
||||||
|
\endgroup
|
||||||
|
\separateEntries
|
||||||
|
% \textcolor{fg3}{\hrule}
|
||||||
|
% \vspace{0.5\baselineskip}
|
||||||
|
\ignorespacesafterend
|
||||||
|
\end{formulainternal}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
% BIG FORMULA
|
||||||
|
\newenvironment{bigformula}[1]{
|
||||||
|
\begin{formulainternal}{#1}
|
||||||
|
|
||||||
|
\edef\tmpFormulaName{#1}
|
||||||
|
\par\noindent
|
||||||
|
\begin{minipage}{\textwidth} % using a minipage to now allow line breaks within the bigformula
|
||||||
|
\label{f:\fqname:#1}
|
||||||
|
\par\noindent\ignorespaces
|
||||||
|
% \textcolor{gray}{\hrule}
|
||||||
|
% \vspace{0.5\baselineskip}
|
||||||
|
\textbf{
|
||||||
|
\IfTranslationExists{\fqname:#1}{%
|
||||||
|
\raggedright
|
||||||
|
\GT{\fqname:#1}
|
||||||
|
}{\detokenize{#1}}
|
||||||
|
}
|
||||||
|
\IfTranslationExists{\fqname:#1_desc}{
|
||||||
|
: {\color{fg1} \GT{\fqname:#1_desc}}
|
||||||
|
}{}
|
||||||
|
\hfill
|
||||||
|
\par
|
||||||
|
}{
|
||||||
|
\edef\tmpContentDefs{\fqname:\tmpFormulaName_defs}
|
||||||
|
\IfTranslationExists{\tmpContentDefs}{%
|
||||||
|
\smartnewline
|
||||||
|
\noindent
|
||||||
|
\begingroup
|
||||||
|
\color{fg1}
|
||||||
|
\GT{\tmpContentDefs}
|
||||||
|
% \edef\temp{\GT{#1_defs}}
|
||||||
|
% \expandafter\StrSubstitute\expandafter{\temp}{:}{\\}
|
||||||
|
\endgroup
|
||||||
|
}{}
|
||||||
|
\end{minipage}
|
||||||
|
\separateEntries
|
||||||
|
% \textcolor{fg3}{\hrule}
|
||||||
|
% \vspace{0.5\baselineskip}
|
||||||
|
\ignorespacesafterend
|
||||||
|
\end{formulainternal}
|
||||||
|
}
|
||||||
|
|
||||||
|
\newenvironment{hiddenformula}[1]{
|
||||||
|
\begin{formulainternal}{#1}
|
||||||
|
\renewcommand{\eq}[1]{}
|
||||||
|
\renewcommand{\eqAlignedAt}[2]{}
|
||||||
|
\renewcommand{\eqFLAlign}[2]{}
|
||||||
|
\renewcommand{\fig}[2][1.0]{}
|
||||||
|
\renewcommand{\ttxt}[2][#1:desc]{}
|
||||||
|
% 1: symbol
|
||||||
|
% 2: units
|
||||||
|
% 3: comment key to translation
|
||||||
|
\renewcommand{\quantity}[3]{%
|
||||||
|
\quantity@new[\fqname]{#1}{##1}{##2}{##3}
|
||||||
|
}
|
||||||
|
% 1: symbol
|
||||||
|
% 2: either exp or def; experimentally or defined constant
|
||||||
|
% 3: one or more \val{value}{unit} commands
|
||||||
|
\renewcommand{\constant}[3]{
|
||||||
|
\constant@new[\fqname]{#1}{##1}{##2}
|
||||||
|
\begingroup
|
||||||
|
##3
|
||||||
|
\endgroup
|
||||||
|
}
|
||||||
|
}{
|
||||||
|
\end{formulainternal}
|
||||||
|
}
|
209
src/pkg/mqfqname.sty
Normal file
209
src/pkg/mqfqname.sty
Normal file
@ -0,0 +1,209 @@
|
|||||||
|
\ProvidesPackage{mqfqname}
|
||||||
|
\RequirePackage{mqlua}
|
||||||
|
\RequirePackage{etoolbox}
|
||||||
|
|
||||||
|
|
||||||
|
\directlua{
|
||||||
|
sections = sections or {}
|
||||||
|
|
||||||
|
function fqnameEnter(name)
|
||||||
|
table.insert(sections, name)
|
||||||
|
% table.sort(sections)
|
||||||
|
end
|
||||||
|
|
||||||
|
function fqnameLeave()
|
||||||
|
if table.getn(sections) > 0 then
|
||||||
|
table.remove(sections)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function fqnameGet()
|
||||||
|
return table.concat(sections, ":")
|
||||||
|
end
|
||||||
|
|
||||||
|
function fqnameLeaveOnlyFirstN(n)
|
||||||
|
if n >= 0 then
|
||||||
|
while table.getn(sections) > n do
|
||||||
|
table.remove(sections)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
}
|
||||||
|
\newcommand{\mqfqname@update}{%
|
||||||
|
\edef\fqname{\luavar{fqnameGet()}}
|
||||||
|
}
|
||||||
|
\newcommand{\mqfqname@enter}[1]{%
|
||||||
|
\directlua{fqnameEnter("\luaescapestring{#1}")}%
|
||||||
|
\mqfqname@update
|
||||||
|
}
|
||||||
|
\newcommand{\mqfqname@leave}{%
|
||||||
|
\directlua{fqnameLeave()}%
|
||||||
|
\mqfqname@update
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand{\mqfqname@leaveOnlyFirstN}[1]{%
|
||||||
|
\directlua{fqnameLeaveOnlyFirstN(#1)}%
|
||||||
|
}
|
||||||
|
|
||||||
|
% SECTIONING
|
||||||
|
% start <section>, get heading from translation, set label
|
||||||
|
% secFqname is the fully qualified name of sections: the keys of all previous sections joined with a ':'
|
||||||
|
% fqname is secFqname:<key> where <key> is the key/id of some environment, like formula
|
||||||
|
% [1]: code to run after setting \fqname, but before the \part, \section etc
|
||||||
|
% 2: key
|
||||||
|
\newcommand{\Part}[2][desc]{
|
||||||
|
\newpage
|
||||||
|
\mqfqname@leaveOnlyFirstN{0}
|
||||||
|
\mqfqname@enter{#2}
|
||||||
|
\edef\secFqname{\fqname}
|
||||||
|
#1
|
||||||
|
% this is necessary so that \part/\section... takes the fully expanded string. Otherwise the pdf toc will have just the fqname
|
||||||
|
\edef\fqnameText{\GT{\fqname}}
|
||||||
|
\part{\fqnameText}
|
||||||
|
\label{sec:\fqname}
|
||||||
|
}
|
||||||
|
\newcommand{\Section}[2][]{
|
||||||
|
\mqfqname@leaveOnlyFirstN{1}
|
||||||
|
\mqfqname@enter{#2}
|
||||||
|
\edef\secFqname{\fqname}
|
||||||
|
#1
|
||||||
|
\edef\fqnameText{\GT{\fqname}}
|
||||||
|
\section{\fqnameText}
|
||||||
|
\label{sec:\fqname}
|
||||||
|
}
|
||||||
|
\newcommand{\Subsection}[2][]{
|
||||||
|
\mqfqname@leaveOnlyFirstN{2}
|
||||||
|
\mqfqname@enter{#2}
|
||||||
|
\edef\secFqname{\fqname}
|
||||||
|
#1
|
||||||
|
\edef\fqnameText{\GT{\fqname}}
|
||||||
|
\subsection{\fqnameText}
|
||||||
|
\label{sec:\fqname}
|
||||||
|
}
|
||||||
|
\newcommand{\Subsubsection}[2][]{
|
||||||
|
\mqfqname@leaveOnlyFirstN{3}
|
||||||
|
\mqfqname@enter{#2}
|
||||||
|
\edef\secFqname{\fqname}
|
||||||
|
#1
|
||||||
|
\edef\fqnameText{\GT{\fqname}}
|
||||||
|
\subsubsection{\fqnameText}
|
||||||
|
\label{sec:\fqname}
|
||||||
|
}
|
||||||
|
\edef\fqname{NULL}
|
||||||
|
|
||||||
|
\newcommand\printFqName{\expandafter\detokenize\expandafter{\fqname}}
|
||||||
|
|
||||||
|
|
||||||
|
\newcommand\luaDoubleFieldValue[3]{%
|
||||||
|
\directlua{
|
||||||
|
if #1 \string~= nil and #1[#2] \string~= nil and #1[#2][#3] \string~= nil then
|
||||||
|
tex.sprint(#1[#2][#3])
|
||||||
|
return
|
||||||
|
end
|
||||||
|
luatexbase.module_warning('luaDoubleFieldValue', 'Invalid indices to `#1`: `#2` and `#3`');
|
||||||
|
tex.sprint("???")
|
||||||
|
}%
|
||||||
|
}
|
||||||
|
% REFERENCES
|
||||||
|
% All xyzRef commands link to the key using the translated name
|
||||||
|
% Uppercase (XyzRef) commands have different link texts, but the same link target
|
||||||
|
% 1: key/fully qualified name (without qty/eq/sec/const/el... prefix)
|
||||||
|
|
||||||
|
% Equations/Formulas
|
||||||
|
% \newrobustcmd{\fqEqRef}[1]{%
|
||||||
|
\newrobustcmd{\fqEqRef}[1]{%
|
||||||
|
% \edef\fqeqrefname{\GT{#1}}
|
||||||
|
% \hyperref[eq:#1]{\fqeqrefname}
|
||||||
|
\hyperref[f:#1]{\GT{#1}}%
|
||||||
|
}
|
||||||
|
% Formula in the current section
|
||||||
|
\newrobustcmd{\secEqRef}[1]{%
|
||||||
|
% \edef\fqeqrefname{\GT{#1}}
|
||||||
|
% \hyperref[eq:#1]{\fqeqrefname}
|
||||||
|
\hyperref[f:\secFqname:#1]{\GT{\secFqname:#1}}%
|
||||||
|
}
|
||||||
|
|
||||||
|
% Section
|
||||||
|
% <name>
|
||||||
|
\newrobustcmd{\fqSecRef}[1]{%
|
||||||
|
\hyperref[sec:#1]{\GT{#1}}%
|
||||||
|
}
|
||||||
|
% Quantities
|
||||||
|
% <symbol>
|
||||||
|
\newrobustcmd{\qtyRef}[1]{%
|
||||||
|
\edef\tempname{\luaDoubleFieldValue{quantities}{"#1"}{"linkto"}}%
|
||||||
|
\hyperref[qty:#1]{\expandafter\GT\expandafter{\tempname:#1}}%
|
||||||
|
}
|
||||||
|
% <symbol> <name>
|
||||||
|
\newrobustcmd{\QtyRef}[1]{%
|
||||||
|
$\luaDoubleFieldValue{quantities}{"#1"}{"symbol"}$ \qtyRef{#1}%
|
||||||
|
}
|
||||||
|
% Constants
|
||||||
|
% <name>
|
||||||
|
\newrobustcmd{\constRef}[1]{%
|
||||||
|
\edef\tempname{\luaDoubleFieldValue{constants}{"#1"}{"linkto"}}%
|
||||||
|
\hyperref[const:#1]{\expandafter\GT\expandafter{\tempname:#1}}%
|
||||||
|
}
|
||||||
|
% <symbol> <name>
|
||||||
|
\newrobustcmd{\ConstRef}[1]{%
|
||||||
|
$\luaDoubleFieldValue{constants}{"#1"}{"symbol"}$ \constRef{#1}%
|
||||||
|
}
|
||||||
|
% Element from periodic table
|
||||||
|
% <symbol>
|
||||||
|
\newrobustcmd{\elRef}[1]{%
|
||||||
|
\hyperref[el:#1]{{\color{fg0}#1}}%
|
||||||
|
}
|
||||||
|
% <name>
|
||||||
|
\newrobustcmd{\ElRef}[1]{%
|
||||||
|
\hyperref[el:#1]{\GT{el:#1}}%
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% "LABELS"
|
||||||
|
% These currently do not place a label,
|
||||||
|
% instead they provide an alternative way to reference an existing label
|
||||||
|
\directLuaAux{
|
||||||
|
absLabels = absLabels or {}
|
||||||
|
abbrLabels = abbrLabel or {}
|
||||||
|
}
|
||||||
|
% [1]: target (fqname to point to)
|
||||||
|
% 2: key
|
||||||
|
\newcommand{\absLink}[2][sec:\fqname]{
|
||||||
|
\directLuaAuxExpand{
|
||||||
|
absLabels["#2"] = [[#1]]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
% [1]: target (fqname to point to)
|
||||||
|
% 2: key
|
||||||
|
% 3: label (abbreviation)
|
||||||
|
\newcommand{\abbrLink}[3][sec:\fqname]{
|
||||||
|
\directLuaAuxExpand{
|
||||||
|
abbrLabels["#2"] = {}
|
||||||
|
abbrLabels["#2"]["abbr"] = [[#3]]
|
||||||
|
abbrLabels["#2"]["fqname"] = [[#1]]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
% [1]:
|
||||||
|
\newrobustcmd{\absRef}[2][\relax]{%
|
||||||
|
\directlua{
|
||||||
|
if absLabels["#2"] == nil then
|
||||||
|
tex.sprint("\\detokenize{#2}???")
|
||||||
|
else
|
||||||
|
if "#1" == "" then %-- if [#1] is not given, use translation of key as text, else us given text
|
||||||
|
tex.sprint("\\hyperref[" .. absLabels["#2"] .. "]{\\GT{" .. absLabels["#2"] .. "}}")
|
||||||
|
else
|
||||||
|
tex.sprint("\\hyperref[" .. absLabels["#2"] .. "]{\luaescapestring{#1}}")
|
||||||
|
end
|
||||||
|
end
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\newrobustcmd{\abbrRef}[1]{%
|
||||||
|
\directlua{
|
||||||
|
if abbrLabels["#1"] == nil then
|
||||||
|
tex.sprint("\\detokenize{#1}???")
|
||||||
|
else
|
||||||
|
tex.sprint("\\hyperref[" .. abbrLabels["#1"]["fqname"] .. "]{" .. abbrLabels["#1"]["abbr"] .. "}")
|
||||||
|
end
|
||||||
|
}
|
||||||
|
}
|
88
src/pkg/mqlua.sty
Normal file
88
src/pkg/mqlua.sty
Normal file
@ -0,0 +1,88 @@
|
|||||||
|
\ProvidesPackage{mqlua}
|
||||||
|
|
||||||
|
\RequirePackage{luacode}
|
||||||
|
\LuaCodeDebugOn
|
||||||
|
|
||||||
|
\newcommand\luavar[1]{\directlua{tex.sprint(#1)}}
|
||||||
|
|
||||||
|
\begin{luacode*}
|
||||||
|
function warning(message)
|
||||||
|
-- Get the current file name and line number
|
||||||
|
-- local info = debug.getinfo(2, "Sl")
|
||||||
|
-- local file_name = info.source
|
||||||
|
-- local line_number = info.currentline
|
||||||
|
-- tex.error(string.format("Warning %s at %s:%d", message, file_name, line_number))
|
||||||
|
texio.write("\nWARNING: " .. message .. "\n")
|
||||||
|
end
|
||||||
|
|
||||||
|
OUTDIR = os.getenv("TEXMF_OUTPUT_DIRECTORY") or "."
|
||||||
|
|
||||||
|
function fileExists(file)
|
||||||
|
local f = io.open(file, "rb")
|
||||||
|
if f then f:close() end
|
||||||
|
return f ~= nil
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
warning("TEST")
|
||||||
|
\end{luacode*}
|
||||||
|
|
||||||
|
% units: siunitx units arguments, possibly chained by '='
|
||||||
|
% returns: 1\si{unit1} = 1\si{unit2} = ...
|
||||||
|
\directlua{
|
||||||
|
function split_and_print_units(units)
|
||||||
|
if units == nil then
|
||||||
|
tex.print("1")
|
||||||
|
return
|
||||||
|
end
|
||||||
|
|
||||||
|
local parts = {}
|
||||||
|
for part in string.gmatch(units, "[^=]+") do
|
||||||
|
table.insert(parts, part)
|
||||||
|
end
|
||||||
|
local result = ""
|
||||||
|
for i, unit in ipairs(parts) do
|
||||||
|
if i > 1 then result = result .. " = " end
|
||||||
|
result = result .. "\\SI{1}{" .. unit .. "}"
|
||||||
|
end
|
||||||
|
tex.print(result)
|
||||||
|
end
|
||||||
|
}
|
||||||
|
|
||||||
|
% STRING UTILITY
|
||||||
|
\luadirect{
|
||||||
|
function string.startswith(s, start)
|
||||||
|
return string.sub(s,1,string.len(start)) == start
|
||||||
|
end
|
||||||
|
|
||||||
|
function string.sanitize(s)
|
||||||
|
% -- Use gsub to replace the specified characters with an empty string
|
||||||
|
local result = s:gsub("[_^&]", "")
|
||||||
|
return result
|
||||||
|
end
|
||||||
|
}
|
||||||
|
% Write directlua command to aux and run it as well
|
||||||
|
% This one expands the argument in the aux file:
|
||||||
|
\newcommand\directLuaAuxExpand[1]{
|
||||||
|
\immediate\write\luaAuxFile{\noexpand\directlua{#1}}
|
||||||
|
\directlua{#1}
|
||||||
|
}
|
||||||
|
% This one does not:
|
||||||
|
\newcommand\directLuaAux[1]{
|
||||||
|
\immediate\write\luaAuxFile{\noexpand\directlua{\detokenize{#1}}}
|
||||||
|
\directlua{#1}
|
||||||
|
}
|
||||||
|
|
||||||
|
% read
|
||||||
|
\IfFileExists{\jobname.lua.aux}{%
|
||||||
|
\input{\jobname.lua.aux}%
|
||||||
|
}{%
|
||||||
|
% \@latex@warning@no@line{"Lua aux not loaded!"}
|
||||||
|
}
|
||||||
|
\def\luaAuxLoaded{False}
|
||||||
|
|
||||||
|
% write
|
||||||
|
\newwrite\luaAuxFile
|
||||||
|
\immediate\openout\luaAuxFile=\jobname.lua.aux
|
||||||
|
\immediate\write\luaAuxFile{\noexpand\def\noexpand\luaAuxLoaded{True}}%
|
||||||
|
\AtEndDocument{\immediate\closeout\luaAuxFile}
|
170
src/pkg/mqperiodictable.sty
Normal file
170
src/pkg/mqperiodictable.sty
Normal file
@ -0,0 +1,170 @@
|
|||||||
|
\ProvidesPackage{mqperiodictable}
|
||||||
|
\RequirePackage{mqtranslation}
|
||||||
|
\RequirePackage{mqlua}
|
||||||
|
% Store info about elements in a lua table
|
||||||
|
% Print as list or as periodic table
|
||||||
|
% The data is taken from https://pse-info.de/de/data as json and parsed by the scripts/periodic_table.py
|
||||||
|
|
||||||
|
% INFO
|
||||||
|
\directLuaAux{
|
||||||
|
if elements == nil then
|
||||||
|
elements = {} %-- Symbol: {symbol, atomic_number, properties, ... }
|
||||||
|
elementsOrder = {} %-- Number: Symbol
|
||||||
|
end
|
||||||
|
}
|
||||||
|
|
||||||
|
% 1: symbol
|
||||||
|
% 2: nr
|
||||||
|
% 3: period
|
||||||
|
% 4: column
|
||||||
|
\newenvironment{element}[4]{
|
||||||
|
% [1]: language
|
||||||
|
% 2: name
|
||||||
|
% 3: description
|
||||||
|
% 4: definitions/links
|
||||||
|
\newcommand{\desc}[4][english]{
|
||||||
|
% language, name, description, definitions
|
||||||
|
\ifblank{##2}{}{\DT[el:#1]{##1}{##2}}
|
||||||
|
\ifblank{##3}{}{\DT[el:#1_desc]{##1}{##3}}
|
||||||
|
\ifblank{##4}{}{\DT[el:#1_defs]{##1}{##4}}
|
||||||
|
}
|
||||||
|
\directLuaAux{
|
||||||
|
elementsOrder[#2] = "#1";
|
||||||
|
elements["#1"] = {};
|
||||||
|
elements["#1"]["symbol"] = [[\detokenize{#1}]];
|
||||||
|
elements["#1"]["atomic_number"] = [[\detokenize{#2}]];
|
||||||
|
elements["#1"]["period"] = [[\detokenize{#3}]];
|
||||||
|
elements["#1"]["column"] = [[\detokenize{#4}]];
|
||||||
|
elements["#1"]["properties"] = {};
|
||||||
|
}
|
||||||
|
% 1: key
|
||||||
|
% 2: value
|
||||||
|
\newcommand{\property}[2]{
|
||||||
|
\directlua{ %-- writing to aux is only needed for references for now
|
||||||
|
elements["#1"]["properties"]["##1"] = "\luaescapestring{\detokenize{##2}}" %-- cant use [[ ]] because electron_config ends with ]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\edef\lastElementName{#1}
|
||||||
|
}{
|
||||||
|
% \expandafter\printElement{\lastElementName}
|
||||||
|
\ignorespacesafterend
|
||||||
|
}
|
||||||
|
|
||||||
|
% LIST
|
||||||
|
\newcommand\printElement[1]{
|
||||||
|
\edef\elementName{el:#1}
|
||||||
|
\par\noindent\ignorespaces
|
||||||
|
\vspace{0.5\baselineskip}
|
||||||
|
\begingroup
|
||||||
|
% label it only once
|
||||||
|
% \detokenize{\label{el:#1}}
|
||||||
|
\directlua{
|
||||||
|
if elements["#1"]["labeled"] == nil then
|
||||||
|
elements["#1"]["labeled"] = true
|
||||||
|
tex.print("\\phantomsection\\label{el:#1}")
|
||||||
|
end
|
||||||
|
}
|
||||||
|
\NameWithDescription[\descwidth]{\elementName}{\elementName_desc}
|
||||||
|
\hfill
|
||||||
|
\begin{ContentBoxWithExplanation}{\elementName_defs}
|
||||||
|
\directlua{
|
||||||
|
tex.sprint("Symbol: \\ce{"..elements["#1"]["symbol"].."}")
|
||||||
|
tex.sprint("\\\\Number: "..elements["#1"]["atomic_number"])
|
||||||
|
}
|
||||||
|
\directlua{
|
||||||
|
%--tex.sprint("Hier steht Luatext" .. ":", #elementVals)
|
||||||
|
for key, value in pairs(elements["#1"]["properties"]) do
|
||||||
|
tex.sprint("\\\\\\hspace*{1cm}{\\GT{", key, "}: ", value, "}")
|
||||||
|
%--tex.sprint("VALUE ", i, v)
|
||||||
|
end
|
||||||
|
}
|
||||||
|
\end{ContentBoxWithExplanation}
|
||||||
|
\endgroup
|
||||||
|
\textcolor{fg3}{\hrule}
|
||||||
|
\vspace{0.5\baselineskip}
|
||||||
|
\ignorespacesafterend
|
||||||
|
}
|
||||||
|
\newcommand{\printAllElements}{
|
||||||
|
\directlua{
|
||||||
|
%-- tex.sprint("\\printElement{"..val.."}")
|
||||||
|
for key, val in ipairs(elementsOrder) do
|
||||||
|
%-- tex.sprint(key, val);
|
||||||
|
tex.print("\\printElement{"..val.."}")
|
||||||
|
end
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
% PERIODIC TABLE
|
||||||
|
\directlua{
|
||||||
|
category2color = {
|
||||||
|
metal = "bg-blue!50!bg0",
|
||||||
|
metalloid = "fg-orange!50!bg0",
|
||||||
|
transitionmetal = "fg-blue!50!bg0",
|
||||||
|
lanthanoide = "bg-orange!50!bg0",
|
||||||
|
alkalimetal = "fg-red!50!bg0",
|
||||||
|
alkalineearthmetal = "fg-purple!50!bg0",
|
||||||
|
nonmetal = "fg-aqua!50!bg0",
|
||||||
|
halogen = "fg-yellow!50!bg0",
|
||||||
|
noblegas = "bg-purple!50!bg0"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\directlua{
|
||||||
|
function getColor(cat)
|
||||||
|
local color = category2color[cat]
|
||||||
|
if color == nil then
|
||||||
|
return "bg3"
|
||||||
|
else
|
||||||
|
return color
|
||||||
|
end
|
||||||
|
end
|
||||||
|
}
|
||||||
|
\newcommand{\drawPeriodicTable}{
|
||||||
|
\def\ptableUnit{0.90cm}
|
||||||
|
\begin{tikzpicture}[
|
||||||
|
element/.style={anchor=north west, draw, minimum width=\ptableUnit, minimum height=\ptableUnit, align=center},
|
||||||
|
element_annotation/.style={anchor=north west, font=\tiny, inner sep=1pt},
|
||||||
|
x=\ptableUnit,
|
||||||
|
y=\ptableUnit
|
||||||
|
]
|
||||||
|
\directlua{
|
||||||
|
for k, v in pairs(elements) do
|
||||||
|
local column = tonumber(v.column)
|
||||||
|
local period = tonumber(v.period)
|
||||||
|
if 5 < period and 4 <= column and column <= 17 then
|
||||||
|
period = period + 3
|
||||||
|
elseif column > 17 then
|
||||||
|
column = column - 14
|
||||||
|
end
|
||||||
|
tex.print("\\node[element,fill=".. getColor(v.properties.set) .."] at (".. column ..", -".. period ..") {\\elRef{".. v.symbol .."}};")
|
||||||
|
tex.print("\\node[element_annotation] at (".. column ..", -".. period ..") {".. v.atomic_number .."};")
|
||||||
|
if v.properties.atomic_mass \string~= nil then
|
||||||
|
tex.print("\\node[element_annotation,anchor=south west] at (".. column ..", -".. period+1 ..") {".. string.format("\percentchar .3f", v.properties.atomic_mass) .."};")
|
||||||
|
end
|
||||||
|
end
|
||||||
|
}
|
||||||
|
\draw[ultra thick,fg-purple] (4,-6) -- (4,-11);
|
||||||
|
% color legend for categories
|
||||||
|
\directlua{
|
||||||
|
local x0 = 4
|
||||||
|
local y0 = -1
|
||||||
|
local x = 0
|
||||||
|
local y = 0
|
||||||
|
local ystep = 0.4
|
||||||
|
for set, color in pairs(category2color) do
|
||||||
|
%-- tex.print("\\draw[fill=".. color .."] ("..x0+x..","..y0+y..") rectangle ("..x0+x..","..y0+y..")()")
|
||||||
|
tex.print("\\node[anchor=west, align=left] at ("..x0+x..","..y0-y..") {{\\color{".. color .."}\\blacksquare} \\GT{".. set .."}};")
|
||||||
|
y = y + 1*ystep
|
||||||
|
if y > 4*ystep then
|
||||||
|
y = 0
|
||||||
|
x = x+4
|
||||||
|
end
|
||||||
|
end
|
||||||
|
}
|
||||||
|
% period numbers
|
||||||
|
\directlua{
|
||||||
|
for i = 1, 7 do
|
||||||
|
tex.print("\\node[anchor=east,align=right] at (1,".. -i-0.5 ..") {".. i .."};")
|
||||||
|
end
|
||||||
|
}
|
||||||
|
\end{tikzpicture}
|
||||||
|
}
|
43
src/pkg/mqquantity.sty
Normal file
43
src/pkg/mqquantity.sty
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
\ProvidesPackage{mqquantity}
|
||||||
|
\RequirePackage{mqlua}
|
||||||
|
\RequirePackage{etoolbox}
|
||||||
|
|
||||||
|
\directLuaAux{
|
||||||
|
if quantities == nil then
|
||||||
|
quantities = {}
|
||||||
|
end
|
||||||
|
}
|
||||||
|
|
||||||
|
% [1]: label to point to
|
||||||
|
% 2: key - must expand to a valid lua string!
|
||||||
|
% 3: symbol
|
||||||
|
% 4: units
|
||||||
|
% 5: comment key to translation
|
||||||
|
\newcommand{\quantity@new}[5][\relax]{%
|
||||||
|
\directLuaAux{
|
||||||
|
quantities["#2"] = {}
|
||||||
|
quantities["#2"]["symbol"] = [[\detokenize{#3}]]
|
||||||
|
quantities["#2"]["units"] = [[\detokenize{#4}]]
|
||||||
|
quantities["#2"]["comment"] = [[\detokenize{#5}]]
|
||||||
|
}
|
||||||
|
\ifstrempty{#1}{}{
|
||||||
|
\directLuaAuxExpand{
|
||||||
|
quantities["#2"]["linkto"] = [[#1]] %-- fqname required for getting the translation key
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
% 1: key
|
||||||
|
\newcommand\quantity@print[1]{
|
||||||
|
\begingroup % for label
|
||||||
|
Symbol: $\luavar{quantities["#1"]["symbol"]}$
|
||||||
|
\\Unit: $\directlua{split_and_print_units(quantities["#1"]["units"])}$
|
||||||
|
% label it only once
|
||||||
|
\directlua{
|
||||||
|
if quantities["#1"]["labeled"] == nil then
|
||||||
|
quantities["#1"]["labeled"] = true
|
||||||
|
tex.print("\\label{qty:#1}")
|
||||||
|
end
|
||||||
|
}
|
||||||
|
\endgroup
|
||||||
|
}
|
177
src/pkg/mqtranslation.sty
Normal file
177
src/pkg/mqtranslation.sty
Normal file
@ -0,0 +1,177 @@
|
|||||||
|
\ProvidesPackage{mqtranslation}
|
||||||
|
\RequirePackage{mqfqname}
|
||||||
|
\RequirePackage{etoolbox}
|
||||||
|
\RequirePackage{amsmath}
|
||||||
|
\RequirePackage{mqlua}
|
||||||
|
|
||||||
|
% TODO resolve circular dependency with fqname
|
||||||
|
|
||||||
|
\begin{luacode}
|
||||||
|
translations = translations or {}
|
||||||
|
-- string to append to missing translations
|
||||||
|
-- unknownTranslation = "???"
|
||||||
|
unknownTranslation = ""
|
||||||
|
language = "\languagename"
|
||||||
|
fallbackLanguage = "english"
|
||||||
|
-- using additional .aux extension because vimtex wouldnt stop compiling otherwise
|
||||||
|
translationsFilepath = OUTDIR .. "/translations.lua.aux" or "/tmp/translations.lua"
|
||||||
|
|
||||||
|
function tlAdd(language, key, value)
|
||||||
|
if value == "" then
|
||||||
|
return
|
||||||
|
end
|
||||||
|
if translations[language] == nil then
|
||||||
|
translations[language] = {}
|
||||||
|
end
|
||||||
|
translations[language][key] = value
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
function tlExists(language, key)
|
||||||
|
return not (translations[language] == nil or translations[language][key] == nil)
|
||||||
|
end
|
||||||
|
|
||||||
|
function tlExistsFallback(language, key)
|
||||||
|
if tlExists(language, key) then
|
||||||
|
return true
|
||||||
|
end
|
||||||
|
return tlExists(fallbackLanguage, key)
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
function tlGet(language, key)
|
||||||
|
if tlExists(language, key) then
|
||||||
|
return translations[language][key]
|
||||||
|
end
|
||||||
|
return string.sanitize(key .. unknownTranslation)
|
||||||
|
end
|
||||||
|
|
||||||
|
function tlGetFallback(language, key)
|
||||||
|
if tlExists(language, key) then
|
||||||
|
return translations[language][key]
|
||||||
|
end
|
||||||
|
if language ~= fallbackLanguage then
|
||||||
|
if tlExists(fallbackLanguage, key) then
|
||||||
|
return translations[fallbackLanguage][key]
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return string.sanitize(key .. unknownTranslation)
|
||||||
|
end
|
||||||
|
|
||||||
|
function tlGetCurrent(key)
|
||||||
|
return tlGet(language, key)
|
||||||
|
end
|
||||||
|
|
||||||
|
function tlGetFallbackCurrent(key)
|
||||||
|
return tlGetFallback(language, key)
|
||||||
|
end
|
||||||
|
|
||||||
|
\end{luacode}
|
||||||
|
|
||||||
|
% Write the translations table as lua code to an auxiliary file
|
||||||
|
% If the file exists, read it when loading the package.
|
||||||
|
% This way, translations may be used before they are defined, since it will exist in the second compilation.
|
||||||
|
\begin{luacode*}
|
||||||
|
function serialize(tbl)
|
||||||
|
local result = {}
|
||||||
|
for k, v in pairs(tbl) do
|
||||||
|
local key = type(k) == "string" and ("[\"%s\"]"):format(k) or "[" .. tostring(k) .. "]"
|
||||||
|
-- using level 2 multiline string to avoid problems when a string ends with ]
|
||||||
|
local value = type(v) == "table" and serialize(v) or "[==[" .. tostring(v) .. "]==]"
|
||||||
|
table.insert(result, key .. " = " .. value)
|
||||||
|
end
|
||||||
|
return "{" .. table.concat(result, ",\n" ) .. "}\n"
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
function dumpTranslations()
|
||||||
|
local file = io.open(translationsFilepath, "w")
|
||||||
|
file:write("return " .. serialize(translations) .. "\n")
|
||||||
|
file:close()
|
||||||
|
end
|
||||||
|
|
||||||
|
if fileExists(translationsFilepath) then
|
||||||
|
translations = dofile(translationsFilepath) or {}
|
||||||
|
end
|
||||||
|
\end{luacode*}
|
||||||
|
|
||||||
|
|
||||||
|
\AtEndDocument{\directlua{dumpTranslations()}}
|
||||||
|
|
||||||
|
%
|
||||||
|
% TRANSLATION COMMANDS
|
||||||
|
%
|
||||||
|
% The lower case commands use \fqname based keys, the upper case absolute keys.
|
||||||
|
% Example:
|
||||||
|
% \dt[example]{german}{Beispiel} % defines the key \fqname:example
|
||||||
|
% \ger[example]{Beispiel} % defines the key \fqname:example
|
||||||
|
% \DT[example]{german}{Beispiel} % defines the key example
|
||||||
|
% \Ger[example]{Beispiel} % defines the key example
|
||||||
|
%
|
||||||
|
% For ease of use in the ttext environment and the optional argument of the \Part, \Section, ... commands,
|
||||||
|
% all "define translation" commands use \fqname as default key
|
||||||
|
|
||||||
|
% Get a translation
|
||||||
|
% expandafter required because the translation commands dont expand anything
|
||||||
|
% shortcuts for translations
|
||||||
|
% 1: key
|
||||||
|
\newcommand{\gt}[1]{\luavar{tlGetFallbackCurrent(\luastring{\fqname:#1})}}
|
||||||
|
\newrobustcmd{\robustGT}[1]{\luavar{tlGetFallbackCurrent(\luastring{#1})}}
|
||||||
|
\newcommand{\GT}[1]{\luavar{tlGetFallbackCurrent(\luastring{#1})}}
|
||||||
|
|
||||||
|
% text variants for use in math mode
|
||||||
|
\newcommand{\tgt}[1]{\text{\gt{#1}}}
|
||||||
|
\newcommand{\tGT}[1]{\text{\GT{#1}}}
|
||||||
|
|
||||||
|
% Define a new translation
|
||||||
|
% [1]: key, 2: lang, 3: translation
|
||||||
|
\newcommand{\dt}[3][\fqname]{%
|
||||||
|
\directlua{
|
||||||
|
if \luastring{#1} == \luastring{\fqname} then
|
||||||
|
tlAdd(\luastring{#2}, \luastring{\fqname}, \luastringN{#3})
|
||||||
|
else
|
||||||
|
tlAdd(\luastring{#2}, \luastring{\fqname:#1}, \luastringN{#3})
|
||||||
|
end
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
% Define a new translation
|
||||||
|
% [1]: key, 2: lang, 3: translation
|
||||||
|
\newcommand{\DT}[3][\fqname]{%
|
||||||
|
\directlua{
|
||||||
|
if \luastring{#1} == \luastring{\fqname} then
|
||||||
|
tlAdd(\luastring{#2}, \luastring{\fqname}, \luastringN{#3})
|
||||||
|
else
|
||||||
|
tlAdd(\luastring{#2}, \luastring{#1}, \luastringN{#3})
|
||||||
|
end
|
||||||
|
}
|
||||||
|
}
|
||||||
|
% [1]: key, 2: translation
|
||||||
|
\newcommand{\ger}[2][\fqname]{\dt[#1]{german}{#2}}
|
||||||
|
\newcommand{\eng}[2][\fqname]{\dt[#1]{english}{#2}}
|
||||||
|
|
||||||
|
\newcommand{\Ger}[2][\fqname]{\DT[#1]{german}{#2}}
|
||||||
|
\newcommand{\Eng}[2][\fqname]{\DT[#1]{english}{#2}}
|
||||||
|
|
||||||
|
\newcommand{\IfTranslationExists}[3]{%
|
||||||
|
\directlua{
|
||||||
|
if tlExistsFallback(language, \luastring{#1}) then
|
||||||
|
tex.sprint(\luastringN{#2})
|
||||||
|
else
|
||||||
|
tex.sprint(\luastringN{#3})
|
||||||
|
end
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
% use this to define text in different languages for the key <env arg>
|
||||||
|
% the translation for <env arg> is printed when the environment ends.
|
||||||
|
% (temporarily change fqname to the \fqname:<env arg> to allow
|
||||||
|
% the use of \eng and \ger without the key parameter)
|
||||||
|
% [1]: key
|
||||||
|
\newenvironment{ttext}[1][desc]{%
|
||||||
|
\mqfqname@enter{#1}%
|
||||||
|
}{%
|
||||||
|
\GT{\fqname}%
|
||||||
|
\mqfqname@leave%
|
||||||
|
}
|
@ -1,194 +0,0 @@
|
|||||||
\Part[
|
|
||||||
\eng{Probability theory}
|
|
||||||
\ger{Wahrscheinlichkeitstheorie}
|
|
||||||
]{pt}
|
|
||||||
|
|
||||||
\begin{formula}{mean}
|
|
||||||
\desc{Mean}{}{}
|
|
||||||
\desc[german]{Mittelwert}{}{}
|
|
||||||
\eq{\braket{x} = \int w(x)\, x\, \d x}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{variance}
|
|
||||||
\desc{Variance}{}{}
|
|
||||||
\desc[german]{Varianz}{}{}
|
|
||||||
\eq{\sigma^2 = (\Delta \hat{x})^2 = \braket{\hat{x}^2} - \braket{\hat{x}}^2 = \braket{(x - \braket{x})^2}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{std_deviation}
|
|
||||||
\desc{Standard deviation}{}{}
|
|
||||||
\desc[german]{Standardabweichung}{}{}
|
|
||||||
\eq{\sigma = \sqrt{(\Delta x)^2}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{median}
|
|
||||||
\desc{Median}{Value separating lower half from top half}{$x$ dataset with $n$ elements}
|
|
||||||
\desc[german]{Median}{Teilt die untere von der oberen Hälfte}{$x$ Reihe mit $n$ Elementen}
|
|
||||||
\eq{
|
|
||||||
\textrm{med}(x) = \left\{ \begin{array}{ll} x_{(n+1)/2} & \text{$n$ \GT{odd}} \\ \frac{x_{(n/2)}+x_{((n/2)+1)}}{2} & \text{$n$ \GT{even}} \end{array} \right.
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{pdf}
|
|
||||||
\desc{Probability density function}{Random variable has density $f$. The integral gives the probability of $X$ taking a value $x\in[a,b]$.}{$f$ normalized: $\int_{-\infty}^\infty f(x) \d x= 1$}
|
|
||||||
\desc[german]{Wahrscheinlichkeitsdichtefunktion}{Zufallsvariable hat Dichte $f$. Das Integral gibt Wahrscheinlichkeit an, dass $X$ einen Wert $x\in[a,b]$ annimmt}{$f$ normalisiert $\int_{-\infty}^\infty f(x) \d x= 1$}
|
|
||||||
\eq{P([a,b]) := \int_a^b f(x) \d x}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{cdf}
|
|
||||||
\desc{Cumulative distribution function}{}{$f$ probability density function}
|
|
||||||
\desc[german]{Kumulative Verteilungsfunktion}{}{$f$ Wahrscheinlichkeitsdichtefunktion}
|
|
||||||
\eq{F(x) = \int_{-\infty}^x f(t) \d t}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{Distributions}
|
|
||||||
\ger{Verteilungen}
|
|
||||||
]{distributions}
|
|
||||||
\Subsubsection[
|
|
||||||
\eng{Gauß/Normal distribution}
|
|
||||||
\ger{Gauß/Normal-Verteilung}
|
|
||||||
]{normal}
|
|
||||||
\begin{minipage}{\distleftwidth}
|
|
||||||
\begin{figure}[H]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=\textwidth]{img/distribution_gauss.pdf}
|
|
||||||
\end{figure}
|
|
||||||
\end{minipage}
|
|
||||||
\begin{distribution}
|
|
||||||
\disteq{parameters}{\mu \in \R,\quad \sigma^2 \in \R}
|
|
||||||
\disteq{support}{x \in \R}
|
|
||||||
\disteq{pdf}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}
|
|
||||||
\disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]}
|
|
||||||
\disteq{mean}{\mu}
|
|
||||||
\disteq{median}{\mu}
|
|
||||||
\disteq{variance}{\sigma^2}
|
|
||||||
\end{distribution}
|
|
||||||
|
|
||||||
\begin{formula}{standard_normal_distribution}
|
|
||||||
\desc{Density function of the standard normal distribution}{$\mu = 0$, $\sigma = 1$}{}
|
|
||||||
\desc[german]{Dichtefunktion der Standard-Normalverteilung}{$\mu = 0$, $\sigma = 1$}{}
|
|
||||||
\eq{\varphi(x) = \frac{1}{\sqrt{2\pi}} \e^{-\frac{1}{2}x^2}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Subsubsection[
|
|
||||||
\eng{Cauchys / Lorentz distribution}
|
|
||||||
\ger{Cauchy / Lorentz-Verteilung}
|
|
||||||
]{cauchy}
|
|
||||||
\begin{minipage}{\distleftwidth}
|
|
||||||
\begin{figure}[H]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=\textwidth]{img/distribution_cauchy.pdf}
|
|
||||||
\end{figure}
|
|
||||||
\end{minipage}
|
|
||||||
\begin{distribution}
|
|
||||||
\disteq{parameters}{x_0 \in \R,\quad \gamma \in \R}
|
|
||||||
\disteq{support}{x \in \R}
|
|
||||||
\disteq{pdf}{\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}}
|
|
||||||
\disteq{cdf}{\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}}
|
|
||||||
\disteq{mean}{\text{\GT{undefined}}}
|
|
||||||
\disteq{median}{x_0}
|
|
||||||
\disteq{variance}{\text{\GT{undefined}}}
|
|
||||||
\end{distribution}
|
|
||||||
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{Also known as \textbf{Cauchy-Lorentz distribution}, \textbf{Lorentz(ian) function}, \textbf{Breit-Wigner distribution}.}
|
|
||||||
\ger{Auch bekannt als \textbf{Cauchy-Lorentz Verteilung}, \textbf{Lorentz Funktion}, \textbf{Breit-Wigner Verteilung}.}
|
|
||||||
\end{ttext}
|
|
||||||
|
|
||||||
|
|
||||||
\Subsubsection[
|
|
||||||
\eng{Binomial distribution}
|
|
||||||
\ger{Binomialverteilung}
|
|
||||||
]{binomial}
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{For the number of trials going to infinity ($n\to\infty$), the binomial distribution converges to the \hyperref[sec:pb:distributions::poisson]{poisson distribution}}
|
|
||||||
\ger{Geht die Zahl der Versuche gegen unendlich ($n\to\infty$), konvergiert die Binomualverteilung gegen die \hyperref[sec:pb:distributions::poisson]{Poissonverteilung}}
|
|
||||||
\end{ttext}
|
|
||||||
\begin{minipage}{\distleftwidth}
|
|
||||||
\begin{figure}[H]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=\textwidth]{img/distribution_binomial.pdf}
|
|
||||||
\end{figure}
|
|
||||||
\end{minipage}
|
|
||||||
\begin{distribution}
|
|
||||||
\disteq{parameters}{n \in \Z, \quad p \in [0,1],\quad q = 1 - p}
|
|
||||||
\disteq{support}{k \in \{0,\,1,\,\dots,\,n\}}
|
|
||||||
\disteq{pmf}{\binom{n}{k} p^k q^{n-k}}
|
|
||||||
% \disteq{cdf}{\text{regularized incomplete beta function}}
|
|
||||||
\disteq{mean}{np}
|
|
||||||
\disteq{median}{\floor{np} \text{ or } \ceil{np}}
|
|
||||||
\disteq{variance}{npq = np(1-p)}
|
|
||||||
\end{distribution}
|
|
||||||
\Subsubsection[
|
|
||||||
\eng{Poisson distribution}
|
|
||||||
\ger{Poissonverteilung}
|
|
||||||
]{poisson}
|
|
||||||
\begin{minipage}{\distleftwidth}
|
|
||||||
\begin{figure}[H]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=\textwidth]{img/distribution_poisson.pdf}
|
|
||||||
\end{figure}
|
|
||||||
\end{minipage}
|
|
||||||
\begin{distribution}
|
|
||||||
\disteq{parameters}{\lambda \in (0,\infty)}
|
|
||||||
\disteq{support}{k \in \N}
|
|
||||||
\disteq{pmf}{\frac{\lambda^k \e^{-\lambda}}{k!}}
|
|
||||||
\disteq{cdf}{\e^{-\lambda} \sum_{j=0}^{\floor{k}} \frac{\lambda^j}{j!}}
|
|
||||||
\disteq{mean}{\lambda}
|
|
||||||
\disteq{median}{\approx\floor*{\lambda + \frac{1}{3} - \frac{1}{50\lambda}}}
|
|
||||||
\disteq{variance}{\lambda}
|
|
||||||
\end{distribution}
|
|
||||||
|
|
||||||
|
|
||||||
\Subsubsection[
|
|
||||||
\eng{Maxwell-Boltzmann distribution}
|
|
||||||
\ger{Maxwell-Boltzmann Verteilung}
|
|
||||||
]{maxwell-boltzmann}
|
|
||||||
\begin{minipage}{\distleftwidth}
|
|
||||||
\begin{figure}[H]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=\textwidth]{img/distribution_maxwell-boltzmann.pdf}
|
|
||||||
\end{figure}
|
|
||||||
\end{minipage}
|
|
||||||
\begin{distribution}
|
|
||||||
\disteq{parameters}{a > 0}
|
|
||||||
\disteq{support}{x \in (0, \infty)}
|
|
||||||
\disteq{pdf}{\sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp\left(-\frac{x^2}{2a^2}\right)}
|
|
||||||
\disteq{cdf}{\erf \left(\frac{x}{\sqrt{2} a}\right) - \sqrt{\frac{2}{\pi}} \frac{x}{a} \exp\left({\frac{-x^2}{2a^2}}\right)}
|
|
||||||
\disteq{mean}{2a \frac{2}{\pi}}
|
|
||||||
\disteq{median}{}
|
|
||||||
\disteq{variance}{\frac{a^2(3\pi-8)}{\pi}}
|
|
||||||
\end{distribution}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% \begin{distribution}{maxwell-boltzmann}
|
|
||||||
% \distdesc{Maxwell-Boltzmann distribution}{}
|
|
||||||
% \distdesc[german]{Maxwell-Boltzmann Verteilung}{}
|
|
||||||
% \disteq{parameters}{}
|
|
||||||
% \disteq{pdf}{}
|
|
||||||
% \disteq{cdf}{}
|
|
||||||
% \disteq{mean}{}
|
|
||||||
% \disteq{median}{}
|
|
||||||
% \disteq{variance}{}
|
|
||||||
% \end{distribution}
|
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Central limit theorem}
|
|
||||||
\ger{Zentraler Grenzwertsatz}
|
|
||||||
]{cls}
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{
|
|
||||||
Suppose $X_1, X_2, \dots$ is a sequence of independent and identically distributed random variables with $\braket{X_i} = \mu$ and $(\Delta X_i)^2 = \sigma^2 < \infty$.
|
|
||||||
As $N$ approaches infinity, the random variables $\sqrt{N}(\bar{X}_N - \mu)$ converge to a normal distribution $\mathcal{N}(0, \sigma^2)$.
|
|
||||||
\\ That means that the variance scales with $\frac{1}{\sqrt{N}}$ and statements become accurate for large $N$.
|
|
||||||
}
|
|
||||||
\ger{
|
|
||||||
Sei $X_1, X_2, \dots$ eine Reihe unabhängiger und gleichverteilter Zufallsvariablen mit $\braket{X_i} = \mu$ und $(\Delta X_i)^2 = \sigma^2 < \infty$.
|
|
||||||
Für $N$ gegen unendlich konvergieren die Zufallsvariablen $\sqrt{N}(\bar{X}_N - \mu)$ zu einer Normalverteilung $\mathcal{N}(0, \sigma^2)$.
|
|
||||||
\\ Das bedeutet, dass die Schwankung mit $\frac{1}{\sqrt{N}}$ wächst und Aussagen für große $N$ scharf werden.
|
|
||||||
}
|
|
||||||
\end{ttext}
|
|
||||||
|
|
@ -28,7 +28,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{wave_function}
|
\begin{formula}{wave_function}
|
||||||
\desc{Wave function}{}{}
|
\desc{Wave function}{}{$R_{nl}(r)$ \fqEqRef{qm:h:radial}, $Y_{lm}$ \fqEqRef{qm:spherical_harmonics}}
|
||||||
\desc[german]{Wellenfunktion}{}{}
|
\desc[german]{Wellenfunktion}{}{}
|
||||||
\eq{\psi_{nlm}(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta,\phi)}
|
\eq{\psi_{nlm}(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta,\phi)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
@ -49,10 +49,36 @@
|
|||||||
\eq{E_n &= \frac{Z^2\mu e^4}{n^2(4\pi\epsilon_0)^2 2\hbar^2} = -E_\textrm{H}\frac{Z^2}{n^2}}
|
\eq{E_n &= \frac{Z^2\mu e^4}{n^2(4\pi\epsilon_0)^2 2\hbar^2} = -E_\textrm{H}\frac{Z^2}{n^2}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{rydberg_constant_heavy}
|
||||||
|
\desc{Rydberg constant}{for heavy atoms}{\ConstRef{electron_mass}, \ConstRef{elementary_charge}, \QtyRef{vacuum_permittivity}, \ConstRef{planck}, \ConstRef{vacuum_speed_of_light}}
|
||||||
|
\desc[german]{Rydberg-Konstante}{für schwere Atome}{}
|
||||||
|
\constant{R_\infty}{exp}{
|
||||||
|
\val{10973731.568157(12)}{\per\m}
|
||||||
|
}
|
||||||
|
\eq{
|
||||||
|
R_\infty = \frac{m_e e^4}{8\epsilon_0^2 h^3 c}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{rydberg_constant_corrected}
|
||||||
|
\desc{Rydberg constant}{corrected for nucleus mass $M$}{\QtyRef{rydberg_constant_heavy}, $\mu = \left(\frac{1}{m_\txe} + \frac{1}{M}\right)^{-1}$ \GT{reduced_mass}, \ConstRef{electron_mass}}
|
||||||
|
\desc[german]{Rydberg Konstante}{korrigiert für Kernmasse $M$}{}
|
||||||
|
\eq{R_\txM = \frac{\mu}{m_\txe} R_\infty}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{rydberg_energy}
|
\begin{formula}{rydberg_energy}
|
||||||
\desc{Rydberg energy}{}{}
|
\desc{Rydberg energy}{Energy unit}{\ConstRef{rydberg_constant_heavy}, \ConstRef{planck}, \ConstRef{vacuum_speed_of_light}}
|
||||||
\desc[german]{Rydberg-Energy}{}{}
|
\desc[german]{Rydberg-Energy}{Energie Einheit}{}
|
||||||
\eq{E_\textrm{H} = h\,c\,R_\textrm{H} = \frac{\mu e^4}{(4\pi\epsilon_0)^2 2\hbar^2}}
|
\eq{1\,\text{Ry} = hc\,R_\infty}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{bohr_radius}
|
||||||
|
\desc{Bohr radius}{}{\ConstRef{vacuum_permittivity}, \ConstRef{electron_mass}}
|
||||||
|
\desc[german]{Bohrscher Radius}{}{}
|
||||||
|
\constant{a_0}{exp}{
|
||||||
|
\val{5.29177210544(82) \xE{-11}}{\m}
|
||||||
|
}
|
||||||
|
\eq{a_0 = \frac{4\pi \epsilon_0 \hbar^2}{e^2 m_\txe}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
@ -178,5 +204,18 @@
|
|||||||
\ger{Effekte im Magnetfeld}
|
\ger{Effekte im Magnetfeld}
|
||||||
]{mag_effects}
|
]{mag_effects}
|
||||||
\TODO{all}
|
\TODO{all}
|
||||||
|
|
||||||
\\\TODO{Hunds rules}
|
\\\TODO{Hunds rules}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{misc}
|
||||||
|
\ger{Sonstiges}
|
||||||
|
]{other}
|
||||||
|
\begin{formula}{auger_effect}
|
||||||
|
\desc{Auger-Meitner-Effekt}{Auger-Effect}{}
|
||||||
|
\desc[german]{Auger-Meitner-Effekt}{Auger-Effekt}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{An excited electron relaxes into a lower, unoccupied energy level. The released energy causes the emission of another electron in a higher energy level (Auger-Electron)}
|
||||||
|
\ger{Ein angeregtes Elektron fällt in ein unbesetztes, niedrigeres Energieniveau zurück. Durch die frei werdende Energie verlässt ein Elektron aus einer höheren Schale das Atom (Auger-Elektron).}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
@ -53,6 +53,44 @@
|
|||||||
\eq{\hat{A} = \hat{A}^\dagger}
|
\eq{\hat{A} = \hat{A}^\dagger}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Measurement}
|
||||||
|
\ger{Messung}
|
||||||
|
]{measurement}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{An observable is a hermition operator acting on $\hat{H}$. The measurement randomly yields one of the eigenvalues of $\hat{O}$ (all real).}
|
||||||
|
\ger{Eine Observable ist ein hermitscher Operator, der auf $\hat{H}$ wirkt. Die Messung ergibt zufällig einen der Eigenwerte von $\hat{O}$, welche alle reell sind.}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{name}
|
||||||
|
\desc{Measurement probability}{Probability to measure $\psi$ in state $\lambda$}{}
|
||||||
|
\desc[german]{Messwahrscheinlichkeit}{Wahrscheinlichkeit, $\psi$ im Zustand $\lambda$ zu messen}{}
|
||||||
|
\eq{p(\lambda) = \braket{\psi|\hat{P}_\lambda|\psi}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{state_after}
|
||||||
|
\desc{State after measurement}{}{}
|
||||||
|
\desc[german]{Zustand nach der Messung}{}{}
|
||||||
|
\eq{\ket{\psi}_\text{post} = \frac{1}{\sqrt{p(\lambda)}}\hat{P}_\lambda \ket{\psi}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Pauli matrices}
|
||||||
|
\ger{Pauli-Matrizen}
|
||||||
|
]{pauli_matrices}
|
||||||
|
\begin{formula}{pauli_matrices}
|
||||||
|
\desc{Pauli matrices}{}{}
|
||||||
|
\desc[german]{Pauli Matrizen}{}{}
|
||||||
|
\newFormulaEntry
|
||||||
|
\begin{alignat}{2}
|
||||||
|
\sigma_x &= \sigmaxmatrix &&= \sigmaxbraket \label{eq:pauli_x} \\
|
||||||
|
\sigma_y &= \sigmaymatrix &&= \sigmaybraket \label{eq:pauli_y} \\
|
||||||
|
\sigma_z &= \sigmazmatrix &&= \sigmazbraket \label{eq:pauli_z}
|
||||||
|
\end{alignat}
|
||||||
|
\end{formula}
|
||||||
|
% $\sigma_x$ NOT
|
||||||
|
% $\sigma_y$ PHASE
|
||||||
|
% $\sigma_z$ Sign
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
\ger{Wahrscheinlichkeitstheorie}
|
\ger{Wahrscheinlichkeitstheorie}
|
||||||
\eng{Probability theory}
|
\eng{Probability theory}
|
||||||
@ -84,23 +122,6 @@
|
|||||||
\sigma_A \sigma_B &\ge \frac{1}{2} \abs{\braket{[\hat{A},\hat{B}]}}
|
\sigma_A \sigma_B &\ge \frac{1}{2} \abs{\braket{[\hat{A},\hat{B}]}}
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\Subsubsection[
|
|
||||||
\eng{Pauli matrices}
|
|
||||||
\ger{Pauli-Matrizen}
|
|
||||||
]{pauli_matrices}
|
|
||||||
\begin{formula}{pauli_matrices}
|
|
||||||
\desc{Pauli matrices}{}{}
|
|
||||||
\desc[german]{Pauli Matrizen}{}{}
|
|
||||||
\eqAlignedAt{2}{
|
|
||||||
\sigma_x &= \sigmaxmatrix &&= \sigmaxbraket \label{eq:pauli_x} \\
|
|
||||||
\sigma_y &= \sigmaymatrix &&= \sigmaybraket \label{eq:pauli_y} \\
|
|
||||||
\sigma_z &= \sigmazmatrix &&= \sigmazbraket \label{eq:pauli_z}
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
% $\sigma_x$ NOT
|
|
||||||
% $\sigma_y$ PHASE
|
|
||||||
% $\sigma_z$ Sign
|
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
@ -157,7 +178,7 @@
|
|||||||
\Section[
|
\Section[
|
||||||
\eng{Schrödinger equation}
|
\eng{Schrödinger equation}
|
||||||
\ger{Schrödingergleichung}
|
\ger{Schrödingergleichung}
|
||||||
]{schroedinger_equation}
|
]{se}
|
||||||
\begin{formula}{energy_operator}
|
\begin{formula}{energy_operator}
|
||||||
\desc{Energy operator}{}{}
|
\desc{Energy operator}{}{}
|
||||||
\desc[german]{Energieoperator}{}{}
|
\desc[german]{Energieoperator}{}{}
|
||||||
@ -185,9 +206,18 @@
|
|||||||
\begin{formula}{schroedinger_equation}
|
\begin{formula}{schroedinger_equation}
|
||||||
\desc{Schrödinger equation}{}{}
|
\desc{Schrödinger equation}{}{}
|
||||||
\desc[german]{Schrödingergleichung}{}{}
|
\desc[german]{Schrödingergleichung}{}{}
|
||||||
|
\abbrLabel{SE}
|
||||||
\eq{i\hbar\frac{\partial}{\partial t}\psi(x, t) = (- \frac{\hbar^2}{2m} \vec{\nabla}^2 + \vec{V}(x)) \psi(x)}
|
\eq{i\hbar\frac{\partial}{\partial t}\psi(x, t) = (- \frac{\hbar^2}{2m} \vec{\nabla}^2 + \vec{V}(x)) \psi(x)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{hellmann_feynmann} \absLabel
|
||||||
|
\desc{Hellmann-Feynman-Theorem}{Derivative of the energy to a parameter}{}
|
||||||
|
\desc[german]{Hellmann-Feynman-Theorem}{Abletiung der Energie nach einem Parameter}{}
|
||||||
|
\eq{
|
||||||
|
\odv{E_\lambda}{\lambda} = \int \d^3r \psi^*_\lambda \odv{\hat{H}_\lambda}{\lambda} \psi_\lambda = \Braket{\psi(\lambda)|\odv{\hat{H}_{\lambda}}{\lambda}|\psi(\lambda)}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Time evolution}
|
\eng{Time evolution}
|
||||||
\ger{Zeitentwicklug}
|
\ger{Zeitentwicklug}
|
||||||
@ -212,6 +242,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\TODO{unitary transformation of time dependent H}
|
\TODO{unitary transformation of time dependent H}
|
||||||
|
|
||||||
\Subsubsection[
|
\Subsubsection[
|
||||||
@ -250,27 +281,28 @@
|
|||||||
]{ehrenfest_theorem}
|
]{ehrenfest_theorem}
|
||||||
\GT{see_also} \ref{sec:qm:basics:schroedinger_equation:correspondence_principle}
|
\GT{see_also} \ref{sec:qm:basics:schroedinger_equation:correspondence_principle}
|
||||||
\begin{formula}{ehrenfest_theorem}
|
\begin{formula}{ehrenfest_theorem}
|
||||||
\desc{Ehrenfesttheorem}{applies to both pictures}{}
|
\desc{Ehrenfest theorem}{applies to both pictures}{}
|
||||||
\desc[german]{Ehrenfest-Theorem}{gilt für beide Bilder}{}
|
\desc[german]{Ehrenfest-Theorem}{gilt für beide Bilder}{}
|
||||||
\eq{
|
\eq{
|
||||||
\odv{}{t} \braket{\hat{A}} = \frac{1}{i\hbar}\braket{[\hat{A},\hat{H}]} + \Braket{\pdv{\hat{A}}{t}}
|
\odv{}{t} \braket{\hat{A}} = \frac{1}{i\hbar}\braket{[\hat{A},\hat{H}]} + \Braket{\pdv{\hat{A}}{t}}
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{ehrenfest_theorem_x}
|
\begin{formula}{ehrenfest_theorem_x}
|
||||||
\desc{}{Example for $x$}{}
|
\desc{Ehrenfest theorem example}{Example for $x$}{}
|
||||||
\desc[german]{}{Beispiel für $x$}{}
|
\desc[german]{Ehrenfest-Theorem Beispiel}{Beispiel für $x$}{}
|
||||||
\eq{m\odv[2]{}{t}\braket{x} = -\braket{\nabla V(x)} = \braket{F(x)}}
|
\eq{m\odv[2]{}{t}\braket{x} = -\braket{\nabla V(x)} = \braket{F(x)}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
% \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time}
|
% \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time}
|
||||||
|
|
||||||
\Subsection[
|
% TODO: wo gehört das hin?
|
||||||
\ger{Korrespondenzprinzip}
|
\begin{formula}{correspondence_principle}
|
||||||
\eng{Correspondence principle}
|
\desc{Correspondence principle}{}{}
|
||||||
]{correspondence_principle}
|
\desc[german]{Korrespondenzprinzip}{}{}
|
||||||
\begin{ttext}[desc]
|
\ttxt{
|
||||||
\ger{Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenmechanik ableiten.}
|
\ger{Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenmechanik ableiten.}
|
||||||
\eng{The classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.}
|
\eng{The classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.}
|
||||||
\end{ttext}
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -279,8 +311,8 @@
|
|||||||
\ger{Störungstheorie}
|
\ger{Störungstheorie}
|
||||||
]{qm_pertubation}
|
]{qm_pertubation}
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng[desc]{The following holds true if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.}
|
\eng{The following holds true if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.}
|
||||||
\ger[desc]{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.}
|
\ger{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.}
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
\begin{formula}{pertubation_hamiltonian}
|
\begin{formula}{pertubation_hamiltonian}
|
||||||
\desc{Hamiltonian}{}{}
|
\desc{Hamiltonian}{}{}
|
||||||
@ -310,7 +342,7 @@
|
|||||||
\desc{2. order energy shift}{}{}
|
\desc{2. order energy shift}{}{}
|
||||||
\desc[german]{Energieverschiebung 2. Ordnung}{}{}
|
\desc[german]{Energieverschiebung 2. Ordnung}{}{}
|
||||||
% \eq{E_n^{(1)} = \Braket{\psi_n^{(0)}|\hat{H_1}|\psi_n^{(0)}}}
|
% \eq{E_n^{(1)} = \Braket{\psi_n^{(0)}|\hat{H_1}|\psi_n^{(0)}}}
|
||||||
\eq{E_n^{(2)} = \sum_{k\neq n}\frac{\abs*{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}^2}{E_n^{(0)} - E_k^{(0)}}}
|
\eq{E_n^{(2)} = \sum_{k\neq n}\frac{\abs{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}^2}{E_n^{(0)} - E_k^{(0)}}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
% \begin{formula}{qm:pertubation:}
|
% \begin{formula}{qm:pertubation:}
|
||||||
% \desc{1. order states}{}{}
|
% \desc{1. order states}{}{}
|
||||||
@ -319,16 +351,16 @@
|
|||||||
% \end{formula}
|
% \end{formula}
|
||||||
|
|
||||||
\begin{formula}{golden_rule}
|
\begin{formula}{golden_rule}
|
||||||
\desc{Fermi\'s golden rule}{Transition rate from initial state $\ket{i}$ under a pertubation $H^1$ to final state $\ket{f}$}{}
|
\desc{Fermi's golden rule}{Transition rate from initial state $\ket{i}$ under a pertubation $H^1$ to final state $\ket{f}$}{}
|
||||||
\desc[german]{Fermis goldene Regel}{Übergangsrate des initial Zustandes $\ket{i}$ unter einer Störung $H^1$ zum Endzustand $\ket{f}$}{}
|
\desc[german]{Fermis goldene Regel}{Übergangsrate des initial Zustandes $\ket{i}$ unter einer Störung $H^1$ zum Endzustand $\ket{f}$}{}
|
||||||
\eq{\Gamma_{i\to f} = \frac{2\pi}{\hbar} \abs*{\braket{f | H^1 | i}}^2\,\rho(E_f)}
|
\eq{\Gamma_{i\to f} = \frac{2\pi}{\hbar} \abs{\braket{f | H^1 | i}}^2\,\rho(E_f)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
\Section[
|
\Section[
|
||||||
\eng{Harmonic oscillator}
|
\eng{Harmonic oscillator}
|
||||||
\ger{Harmonischer Oszillator}
|
\ger{Harmonischer Oszillator}
|
||||||
]{qm_hosc}
|
]{hosc}
|
||||||
\begin{formula}{hamiltonian}
|
\begin{formula}{hamiltonian}
|
||||||
\desc{Hamiltonian}{}{}
|
\desc{Hamiltonian}{}{}
|
||||||
\desc[german]{Hamiltonian}{}{}
|
\desc[german]{Hamiltonian}{}{}
|
||||||
@ -379,6 +411,31 @@
|
|||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{c_a_matrices}
|
||||||
|
\desc{Matrix forms}{}{}
|
||||||
|
\desc[german]{Matrix-Form}{}{}
|
||||||
|
\eq{
|
||||||
|
\hat{n} &= \begin{pmatrix}
|
||||||
|
0 & 0 & 0 & 0 \\
|
||||||
|
0 & 1 & 0 & 0 \\
|
||||||
|
0 & 0 & \ddots & 0 \\
|
||||||
|
0 & 0 & 0 & N
|
||||||
|
\end{pmatrix} \\
|
||||||
|
\hat{a} &= \begin{pmatrix}
|
||||||
|
0 & \sqrt{1} & 0 & 0 \\
|
||||||
|
0 & 0 & \ddots & 0 \\
|
||||||
|
0 & 0 & 0 & \sqrt{N} \\
|
||||||
|
0 & 0 & 0 & 0
|
||||||
|
\end{pmatrix} \\
|
||||||
|
\hat{a}^\dagger &= \begin{pmatrix}
|
||||||
|
0 & 0 & 0 & 0 \\
|
||||||
|
\sqrt{1} & 0 & 0 & 0 \\
|
||||||
|
0 & \ddots & 0 & 0 \\
|
||||||
|
0 & 0 & \sqrt{N} & 0
|
||||||
|
\end{pmatrix}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
\Subsubsection[
|
\Subsubsection[
|
||||||
\eng{Harmonischer Oszillator}
|
\eng{Harmonischer Oszillator}
|
||||||
\ger{Harmonic Oscillator}
|
\ger{Harmonic Oscillator}
|
||||||
@ -413,6 +470,21 @@
|
|||||||
\eng{Angular momentum}
|
\eng{Angular momentum}
|
||||||
\ger{Drehmoment}
|
\ger{Drehmoment}
|
||||||
]{angular_momentum}
|
]{angular_momentum}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Aharanov-Bohm effect}
|
||||||
|
\ger{Aharanov-Bohm Effekt}
|
||||||
|
]{aharanov_bohm}
|
||||||
|
\begin{formula}{phase}
|
||||||
|
\desc{Acquired phase}{Electron along a closed loop aquires a phase proportional to the enclosed magnetic flux}{}
|
||||||
|
\desc[german]{Erhaltene Phase}{Elektron entlang eines geschlossenes Phase erhält eine Phase die proportional zum eingeschlossenen magnetischem Fluss ist}{}
|
||||||
|
\eq{\delta = \frac{2 e}{\hbar} \oint \vec{A}\cdot \d\vec{s} = \frac{2 e}{\hbar} \Phi}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{replace with loop intergral symbol and add more info}
|
||||||
|
\Section[
|
||||||
|
\eng{Periodic potentials}
|
||||||
|
\ger{Periodische Potentiale}
|
||||||
|
]{periodic}
|
||||||
\begin{formula}{bloch_waves}
|
\begin{formula}{bloch_waves}
|
||||||
\desc{Bloch waves}{
|
\desc{Bloch waves}{
|
||||||
Solve the stat. SG in periodic potential with period
|
Solve the stat. SG in periodic potential with period
|
||||||
@ -429,16 +501,14 @@
|
|||||||
\eq{\psi_k(\vec{r}) = e^{i \vec{k}\cdot \vec{r}} \cdot u_{\vec{k}}(\vec{r})}
|
\eq{\psi_k(\vec{r}) = e^{i \vec{k}\cdot \vec{r}} \cdot u_{\vec{k}}(\vec{r})}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\Subsection[
|
\begin{formula}{periodicity}
|
||||||
\eng{Aharanov-Bohm effect}
|
\desc{Periodicity}{}{\QtyRef{lattice_vector}, \QtyRef{reciprocal_lattice_vector}}
|
||||||
\ger{Aharanov-Bohm Effekt}
|
\desc[german]{Periodizität}{}{}
|
||||||
]{aharanov_bohm}
|
\eq{
|
||||||
\begin{formula}{phase}
|
u_\vec{k}(\vec{r} + \vec{R}) = u_\vec{k}(\vec{r}) \\
|
||||||
\desc{Acquired phase}{Electron along a closed loop aquires a phase proportional to the enclosed magnetic flux}{}
|
\psi_{\vec{k}+\vec{G}}(\vec{r}) = \psi_\vec{k}(\vec{r})
|
||||||
\desc[german]{Erhaltene Phase}{Elektron entlang eines geschlossenes Phase erhält eine Phase die proportional zum eingeschlossenen magnetischem Fluss ist}{}
|
}
|
||||||
\eq{\delta = \frac{2 e}{\hbar} \oint \vec{A}\cdot \d\vec{s} = \frac{2 e}{\hbar} \Phi}
|
\end{formula}
|
||||||
\end{formula}
|
|
||||||
\TODO{replace with loop intergral symbol and add more info}
|
|
||||||
|
|
||||||
|
|
||||||
\Section[
|
\Section[
|
||||||
@ -482,7 +552,7 @@
|
|||||||
\eq{H &= \underbrace{\hbar\omega_c \hat{a}^\dagger \hat{a}}_\text{\GT{field}}
|
\eq{H &= \underbrace{\hbar\omega_c \hat{a}^\dagger \hat{a}}_\text{\GT{field}}
|
||||||
+ \underbrace{\hbar\omega_\text{a} \frac{\hat{\sigma}_z}{2}}_\text{\GT{atom}}
|
+ \underbrace{\hbar\omega_\text{a} \frac{\hat{\sigma}_z}{2}}_\text{\GT{atom}}
|
||||||
+ \underbrace{\frac{\hbar\Omega}{2} \hat{E} \hat{S}}_\text{int} \\
|
+ \underbrace{\frac{\hbar\Omega}{2} \hat{E} \hat{S}}_\text{int} \\
|
||||||
\shortintertext{\GT{after} \hyperref[eq:qm:other:RWS]{RWA}:} \\
|
\shortintertext{\GT{after} \hyperref[eq:qm:other:RWA]{RWA}:} \\
|
||||||
&= \hbar\omega_c \hat{a}^\dagger \hat{a}
|
&= \hbar\omega_c \hat{a}^\dagger \hat{a}
|
||||||
+ \hbar\omega_\text{a} \hat{\sigma}^\dagger \hat{\sigma}
|
+ \hbar\omega_\text{a} \hat{\sigma}^\dagger \hat{\sigma}
|
||||||
+ \frac{\hbar\Omega}{2} (\hat{a}\hat{\sigma^\dagger} + \hat{a}^\dagger \hat{\sigma})
|
+ \frac{\hbar\Omega}{2} (\hat{a}\hat{\sigma^\dagger} + \hat{a}^\dagger \hat{\sigma})
|
||||||
@ -493,10 +563,33 @@
|
|||||||
\eng{Other}
|
\eng{Other}
|
||||||
\ger{Sonstiges}
|
\ger{Sonstiges}
|
||||||
]{other}
|
]{other}
|
||||||
\begin{formula}{RWS}
|
\begin{formula}{RWA}
|
||||||
\desc{Rotating Wave Approximation (RWS)}{Rapidly oscilating terms are neglected}{$\omega_\text{L}$ light frequency, $\omega_0$ transition frequency}
|
\desc{Rotating Wave Approximation (RWS)}{Rapidly oscilating terms are neglected}{$\omega_\text{L}$ light frequency, $\omega_0$ transition frequency}
|
||||||
\desc[german]{Rotating Wave Approximation / Drehwellennäherung (RWS)}{Schnell oscillierende Terme werden vernachlässigt}{$\omega_\text{L}$ Frequenz des Lichtes, $\omega_0$ Übergangsfrequenz}
|
\desc[german]{Rotating Wave Approximation / Drehwellennäherung (RWS)}{Schnell oscillierende Terme werden vernachlässigt}{$\omega_\text{L}$ Frequenz des Lichtes, $\omega_0$ Übergangsfrequenz}
|
||||||
\eq{\Delta\omega \coloneq \abs{\omega_0 - \omega_\text{L}} \ll \abs{\omega_0 + \omega_\text{L}} \approx 2\omega_0}
|
\eq{\Delta\omega \coloneq \abs{\omega_0 - \omega_\text{L}} \ll \abs{\omega_0 + \omega_\text{L}} \approx 2\omega_0}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{adiabatic_theorem} \absLabel
|
||||||
|
\desc{Adiabatic theorem}{}{}
|
||||||
|
\desc[german]{Adiabatentheorem}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.}
|
||||||
|
\ger{Ein quantenmechanisches System bleibt in im derzeitigen Eigenzustand falls eine Störung langsam genug wirkt und der Eigenwert durch eine Lücke vom Rest des Spektrums getrennt ist.}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{slater_det}
|
||||||
|
\desc{Slater determinant}{Construction of a fermionic (antisymmetric) many-particle wave function from single-particle wave functions}{}
|
||||||
|
\desc[german]{Slater Determinante}{Konstruktion einer fermionischen (antisymmetrischen) Vielteilchen Wellenfunktion aus ein-Teilchen Wellenfunktionen}{}
|
||||||
|
\eq{
|
||||||
|
\Psi(q_1, \dots, q_N) = \frac{1}{\sqrt{N!}}
|
||||||
|
\begin{vmatrix}
|
||||||
|
\phi_a(q_1) & \phi_a(q_2) & \cdots & \phi_a(q_N) \\
|
||||||
|
\phi_b(q_1) & \phi_b(q_2) & \cdots & \phi_b(q_N) \\
|
||||||
|
\vdots & \vdots & \ddots & \vdots \\
|
||||||
|
\phi_z(q_1) & \phi_z(q_2) & \cdots & \phi_z(q_N)
|
||||||
|
\end{vmatrix}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
161
src/quantities.tex
Normal file
161
src/quantities.tex
Normal file
@ -0,0 +1,161 @@
|
|||||||
|
% if this causes a compilation error, check that none of the units have been redefined
|
||||||
|
|
||||||
|
% Put quantites here that are referenced often, even if they are not exciting themselves.
|
||||||
|
% This could later allow making a list of all links to this quantity, creating a list of releveant formulas
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Physical quantities}
|
||||||
|
\ger{Physikalische Größen}
|
||||||
|
]{quantities}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{SI quantities}
|
||||||
|
\ger{SI-Basisgrößen}
|
||||||
|
]{si}
|
||||||
|
\begin{formula}{time}
|
||||||
|
\desc{Time}{}{}
|
||||||
|
\desc[german]{Zeit}{}{}
|
||||||
|
\quantity{t}{\second}{}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{length}
|
||||||
|
\desc{Length}{}{}
|
||||||
|
\desc[german]{Länge}{}{}
|
||||||
|
\quantity{l}{\m}{e}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{mass}
|
||||||
|
\desc{Mass}{}{}
|
||||||
|
\desc[german]{Masse}{}{}
|
||||||
|
\quantity{m}{\kg}{es}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{temperature}
|
||||||
|
\desc{Temperature}{}{}
|
||||||
|
\desc[german]{Temperatur}{}{}
|
||||||
|
\quantity{T}{\kelvin}{is}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{current}
|
||||||
|
\desc{Electric current}{}{}
|
||||||
|
\desc[german]{Elektrischer Strom}{}{}
|
||||||
|
\quantity{I}{\ampere}{es}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{amount}
|
||||||
|
\desc{Amount of substance}{}{}
|
||||||
|
\desc[german]{Stoffmenge}{}{}
|
||||||
|
\quantity{n}{\mol}{es}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{luminous_intensity}
|
||||||
|
\desc{Luminous intensity}{}{}
|
||||||
|
\desc[german]{Lichtstärke}{}{}
|
||||||
|
\quantity{I_\text{V}}{\candela}{s}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Mechanics}
|
||||||
|
\ger{Mechanik}
|
||||||
|
]{mech}
|
||||||
|
\begin{formula}{force}
|
||||||
|
\desc{Force}{}{}
|
||||||
|
\desc[german]{Kraft}{}{}
|
||||||
|
\quantity{\vec{F}}{\newton=\kg\m\per\second^2}{ev}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{spring_constant}
|
||||||
|
\desc{Spring constant}{}{}
|
||||||
|
\desc[german]{Federkonstante}{}{}
|
||||||
|
\quantity{k}{\newton\per\m=\kg\per\second^2}{s}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{velocity}
|
||||||
|
\desc{Velocity}{}{}
|
||||||
|
\desc[german]{Geschwindigkeit}{}{}
|
||||||
|
\quantity{\vec{v}}{\m\per\s}{v}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{torque}
|
||||||
|
\desc{Torque}{}{}
|
||||||
|
\desc[german]{Drehmoment}{}{}
|
||||||
|
\quantity{\tau}{\newton\m=\kg\m^2\per\s^2}{v}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{pressure}
|
||||||
|
\desc{Pressure}{}{}
|
||||||
|
\desc[german]{Druck}{}{}
|
||||||
|
\quantity{p}{\newtone\per\m^2}{}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Thermodynamics}
|
||||||
|
\ger{Thermodynamik}
|
||||||
|
]{td}
|
||||||
|
\begin{formula}{volume}
|
||||||
|
\desc{Volume}{$d$ dimensional Volume}{}
|
||||||
|
\desc[german]{Volumen}{$d$ dimensionales Volumen}{}
|
||||||
|
\quantity{V}{\m^d}{}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{heat_capacity}
|
||||||
|
\desc{Heat capacity}{}{}
|
||||||
|
\desc[german]{Wärmekapazität}{}{}
|
||||||
|
\quantity{C}{\joule\per\kelvin}{}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Electrodynamics}
|
||||||
|
\ger{Elektrodynamik}
|
||||||
|
]{el}
|
||||||
|
\begin{formula}{charge}
|
||||||
|
\desc{Charge}{}{}
|
||||||
|
\desc[german]{Ladung}{}{}
|
||||||
|
\quantity{q}{\coulomb=\ampere\s}{}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{charge_number}
|
||||||
|
\desc{Charge number}{}{}
|
||||||
|
\desc[german]{Ladungszahl}{Anzahl der Elementarladungen}{}
|
||||||
|
\quantity{Z}{}{}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{charge_density}
|
||||||
|
\desc{Charge density}{}{}
|
||||||
|
\desc[german]{Ladungsdichte}{}{}
|
||||||
|
\quantity{\rho}{\coulomb\per\m^3}{s}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{frequency}
|
||||||
|
\desc{Frequency}{}{}
|
||||||
|
\desc[german]{Frequenz}{}{}
|
||||||
|
\quantity{f}{\hertz=\per\s}{s}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{angular_frequency}
|
||||||
|
\desc{Angular frequency}{}{\QtyRef{time_period}, \QtyRef{frequency}}
|
||||||
|
\desc[german]{Kreisfrequenz}{}{}
|
||||||
|
\quantity{\omega}{\radian\per\s}{s}
|
||||||
|
\eq{\omega = \frac{2\pi/T}{2\pi f}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{time_period}
|
||||||
|
\desc{Time period}{}{\QtyRef{frequency}}
|
||||||
|
\desc[german]{Periodendauer}{}{}
|
||||||
|
\quantity{T}{\s}{s}
|
||||||
|
\eq{T = \frac{1}{f}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{conductivity}
|
||||||
|
\desc{Conductivity}{}{}
|
||||||
|
\desc[german]{Leitfähigkeit}{}{}
|
||||||
|
\quantity{\sigma}{\per\ohm\m}{}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Others}
|
||||||
|
\ger{Sonstige}
|
||||||
|
]{other}
|
||||||
|
\begin{formula}{area}
|
||||||
|
\desc{Area}{}{}
|
||||||
|
\desc[german]{Fläche}{}{}
|
||||||
|
\quantity{A}{m^2}{v}
|
||||||
|
\end{formula}
|
@ -22,14 +22,18 @@
|
|||||||
\ger{Gates}
|
\ger{Gates}
|
||||||
]{gates}
|
]{gates}
|
||||||
\begin{formula}{gates}
|
\begin{formula}{gates}
|
||||||
\desc{}{}{}
|
\desc{Gates}{}{}
|
||||||
\desc[german]{}{}{}
|
\desc[german]{Gates}{}{}
|
||||||
\eqAlignedAt{2}{
|
\eng[bitflip]{Bitflip}
|
||||||
|
\eng[bitphaseflip]{Bit-Phase flip}
|
||||||
|
\eng[phaseflip]{Phaseflip}
|
||||||
|
\eng[hadamard]{Hadamard}
|
||||||
|
\begin{alignat}{2}
|
||||||
& \text{\gt{bitflip}:} & \hat{X} &= \sigma_x = \sigmaxmatrix \\
|
& \text{\gt{bitflip}:} & \hat{X} &= \sigma_x = \sigmaxmatrix \\
|
||||||
& \text{\gt{bitphaseflip}:} & \hat{Y} &= \sigma_y = \sigmaymatrix \\
|
& \text{\gt{bitphaseflip}:} & \hat{Y} &= \sigma_y = \sigmaymatrix \\
|
||||||
& \text{\gt{phaseflip}:} & \hat{Z} &= \sigma_z = \sigmazmatrix \\
|
& \text{\gt{phaseflip}:} & \hat{Z} &= \sigma_z = \sigmazmatrix \\
|
||||||
& \text{\gt{hadamard}:} & \hat{H} &= \frac{1}{\sqrt{2}}(\hat{X}-\hat{Z}) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
|
& \text{\gt{hadamard}:} & \hat{H} &= \frac{1}{\sqrt{2}}(\hat{X}-\hat{Z}) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
|
||||||
}
|
\end{alignat}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
% \begin{itemize}
|
% \begin{itemize}
|
||||||
% \item \gt{bitflip}: $\hat{X} = \sigma_x = \sigmaxmatrix$
|
% \item \gt{bitflip}: $\hat{X} = \sigma_x = \sigmaxmatrix$
|
||||||
@ -92,12 +96,10 @@
|
|||||||
\begin{formula}{circuit}
|
\begin{formula}{circuit}
|
||||||
\desc{SQUID}{Superconducting quantum interference device, consists of parallel \hyperref{sec:qc:scq:josephson_junction}{josephson junctions}, can be used to measure extremely weak magnetic fields}{}
|
\desc{SQUID}{Superconducting quantum interference device, consists of parallel \hyperref{sec:qc:scq:josephson_junction}{josephson junctions}, can be used to measure extremely weak magnetic fields}{}
|
||||||
\desc[german]{SQUID}{Superconducting quantum interference device, besteht aus parralelen \hyperref{sec:qc:scq:josephson_junction}{Josephson Junctions} und kann zur Messung extrem schwacher Magnetfelder genutzt werden}{}
|
\desc[german]{SQUID}{Superconducting quantum interference device, besteht aus parralelen \hyperref{sec:qc:scq:josephson_junction}{Josephson Junctions} und kann zur Messung extrem schwacher Magnetfelder genutzt werden}{}
|
||||||
\content{
|
\centering
|
||||||
\centering
|
\begin{tikzpicture}
|
||||||
\begin{circuitikz}
|
\draw (0, 0) \squidloop{loop}{};
|
||||||
\draw (0, 0) \squidloop{loop}{};
|
\end{tikzpicture}
|
||||||
\end{circuitikz}
|
|
||||||
}
|
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{hamiltonian}
|
\begin{formula}{hamiltonian}
|
||||||
\desc{Hamiltonian}{}{$\hat{\phi}$ phase difference across the junction}
|
\desc{Hamiltonian}{}{$\hat{\phi}$ phase difference across the junction}
|
||||||
@ -109,7 +111,7 @@
|
|||||||
\eng{Josephson Qubit??}
|
\eng{Josephson Qubit??}
|
||||||
\ger{TODO}
|
\ger{TODO}
|
||||||
]{josephson_qubit}
|
]{josephson_qubit}
|
||||||
\begin{circuitikz}
|
\begin{tikzpicture}
|
||||||
\draw (0,0) to[capacitor] (0,2);
|
\draw (0,0) to[capacitor] (0,2);
|
||||||
\draw (0,0) to (2,0);
|
\draw (0,0) to (2,0);
|
||||||
\draw (0,2) to (2,2);
|
\draw (0,2) to (2,2);
|
||||||
@ -117,10 +119,10 @@
|
|||||||
|
|
||||||
\draw[->] (3,1) -- (4,1);
|
\draw[->] (3,1) -- (4,1);
|
||||||
\draw (5,0) to[josephsoncap=$C_\text{J}$] (5,2);
|
\draw (5,0) to[josephsoncap=$C_\text{J}$] (5,2);
|
||||||
\end{circuitikz}
|
\end{tikzpicture}
|
||||||
\TODO{Include schaltplan}
|
\TODO{Include schaltplan}
|
||||||
|
|
||||||
\begin{circuitikz}
|
\begin{tikzpicture}
|
||||||
\draw (0,0) to[sV=$V_\text{g}$] (0,2);
|
\draw (0,0) to[sV=$V_\text{g}$] (0,2);
|
||||||
\draw (0,2) to[capacitor=$C_\text{g}$] (2,2);
|
\draw (0,2) to[capacitor=$C_\text{g}$] (2,2);
|
||||||
\draw (2,2) to (4,2);
|
\draw (2,2) to (4,2);
|
||||||
@ -128,7 +130,7 @@
|
|||||||
\draw (4,0) to[capacitor=$C_C$] (4,2);
|
\draw (4,0) to[capacitor=$C_C$] (4,2);
|
||||||
\draw (0,0) to (2,0);
|
\draw (0,0) to (2,0);
|
||||||
\draw (2,0) to (4,0);
|
\draw (2,0) to (4,0);
|
||||||
\end{circuitikz}
|
\end{tikzpicture}
|
||||||
|
|
||||||
\begin{formula}{charging_energy}
|
\begin{formula}{charging_energy}
|
||||||
\desc{Charging energy / electrostatic energy}{}{}
|
\desc{Charging energy / electrostatic energy}{}{}
|
||||||
@ -217,16 +219,14 @@
|
|||||||
\baditem Sensibel für charge noise
|
\baditem Sensibel für charge noise
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
}{}
|
}{}
|
||||||
\content{
|
\centering
|
||||||
\centering
|
\begin{tikzpicture}
|
||||||
\begin{circuitikz}
|
\draw (0,0) to[sV=$V_\text{g}$] (0,2);
|
||||||
\draw (0,0) to[sV=$V_\text{g}$] (0,2);
|
% \draw (0,0) to (2,0);
|
||||||
% \draw (0,0) to (2,0);
|
\draw (0,2) to[capacitor=$C_\text{g}$] (2,2);
|
||||||
\draw (0,2) to[capacitor=$C_\text{g}$] (2,2);
|
\draw (2,0) to[josephsoncap=$C_\text{J}$] (2,2);
|
||||||
\draw (2,0) to[josephsoncap=$C_\text{J}$] (2,2);
|
\draw (0,0) to (2,0);
|
||||||
\draw (0,0) to (2,0);
|
\end{tikzpicture}
|
||||||
\end{circuitikz}
|
|
||||||
}
|
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
@ -256,15 +256,13 @@
|
|||||||
\baditem Geringe Anharmonizität $\alpha$
|
\baditem Geringe Anharmonizität $\alpha$
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
}{}
|
}{}
|
||||||
\content{
|
\centering
|
||||||
\centering
|
\begin{tikzpicture}
|
||||||
\begin{circuitikz}
|
% \draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
||||||
% \draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
% to[capacitor=$C_\text{g}$] ++(2,0)
|
||||||
% to[capacitor=$C_\text{g}$] ++(2,0)
|
\draw (0,0) to ++(2,0) to ++(0,-0.5) to[josephsoncap=$C_\text{J}$] ++(-0,-2) to ++(0,-0.5) to ++(-2,0)
|
||||||
\draw (0,0) to ++(2,0) to ++(0,-0.5) to[josephsoncap=$C_\text{J}$] ++(-0,-2) to ++(0,-0.5) to ++(-2,0)
|
to[capacitor=$C_C$] ++(0,3);
|
||||||
to[capacitor=$C_C$] ++(0,3);
|
\end{tikzpicture}
|
||||||
\end{circuitikz}
|
|
||||||
}
|
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{hamiltonian}
|
\begin{formula}{hamiltonian}
|
||||||
@ -280,17 +278,14 @@
|
|||||||
\begin{formula}{circuit}
|
\begin{formula}{circuit}
|
||||||
\desc{Frequency tunable transmon}{By using a \fqSecRef{qc:scq:elements:squid} instead of a \fqSecRef{qc:scq:elements:josephson_junction}, the qubit is frequency tunable through an external field}{}
|
\desc{Frequency tunable transmon}{By using a \fqSecRef{qc:scq:elements:squid} instead of a \fqSecRef{qc:scq:elements:josephson_junction}, the qubit is frequency tunable through an external field}{}
|
||||||
\desc[german]{}{Durch Nutzung eines \fqSecRef{qc:scq:elements:squid} anstatt eines \fqSecRef{qc:scq:elements:josephson_junction}s, ist die Frequenz des Qubits durch ein externes Magnetfeld einstellbar}{}
|
\desc[german]{}{Durch Nutzung eines \fqSecRef{qc:scq:elements:squid} anstatt eines \fqSecRef{qc:scq:elements:josephson_junction}s, ist die Frequenz des Qubits durch ein externes Magnetfeld einstellbar}{}
|
||||||
\content{
|
\centering
|
||||||
\centering
|
\begin{tikzpicture}
|
||||||
\begin{circuitikz}
|
% \draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
||||||
% \draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
% to[capacitor=$C_\text{g}$] ++(2,0)
|
||||||
% to[capacitor=$C_\text{g}$] ++(2,0)
|
\draw (0,0) to ++(-2,0)
|
||||||
\draw (0,0) to ++(-2,0)
|
to ++(3,0) to ++(0,-0.5) \squidloop{loop}{SQUID} to ++(0,-0.5) to ++(-3,0)
|
||||||
to ++(3,0) to ++(0,-0.5) \squidloop{loop}{SQUID} to ++(0,-0.5) to ++(-3,0)
|
to[capacitor=$C_C$] ++(0,3);
|
||||||
to[capacitor=$C_C$] ++(0,3);
|
\end{tikzpicture}
|
||||||
|
|
||||||
\end{circuitikz}
|
|
||||||
}
|
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{energy}
|
\begin{formula}{energy}
|
||||||
@ -319,25 +314,23 @@
|
|||||||
\begin{formula}{circuit}
|
\begin{formula}{circuit}
|
||||||
\desc{Phase qubit}{}{}
|
\desc{Phase qubit}{}{}
|
||||||
\desc[german]{Phase Qubit}{}{}
|
\desc[german]{Phase Qubit}{}{}
|
||||||
\content{
|
\centering
|
||||||
\centering
|
\begin{tikzpicture}
|
||||||
\begin{circuitikz}
|
% \draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
||||||
% \draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
% to ++(2,0) coordinate(top1)
|
||||||
% to ++(2,0) coordinate(top1)
|
% to ++(2,0) coordinate(top2)
|
||||||
% to ++(2,0) coordinate(top2)
|
% to ++(2,0) coordinate(top3);
|
||||||
% to ++(2,0) coordinate(top3);
|
% \draw (0,0)
|
||||||
% \draw (0,0)
|
% to ++(2,0) coordinate(bot1)
|
||||||
% to ++(2,0) coordinate(bot1)
|
% to ++(2,0) coordinate(bot2)
|
||||||
% to ++(2,0) coordinate(bot2)
|
% to ++(2,0) coordinate(bot3);
|
||||||
% to ++(2,0) coordinate(bot3);
|
\draw[color=gray] (0,0) to[capacitor=$C_C$] (0,-2);
|
||||||
\draw[color=gray] (0,0) to[capacitor=$C_C$] (0,-2);
|
% \draw (top1) to ++(0,-0.5) to[josephsoncap=$C_\text{J}$] ++(-0,-2) to (bot2);
|
||||||
% \draw (top1) to ++(0,-0.5) to[josephsoncap=$C_\text{J}$] ++(-0,-2) to (bot2);
|
\draw(0,0) to ++(2,0) to[josephsoncap=$C_\text{J}$] ++(0,-2) to ++(-2,0);
|
||||||
\draw(0,0) to ++(2,0) to[josephsoncap=$C_\text{J}$] ++(0,-2) to ++(-2,0);
|
\draw (2,0) to ++(2,0) to[cute inductor=$E_L$] ++(0,-2) to ++(-2,0);
|
||||||
\draw (2,0) to ++(2,0) to[cute inductor=$E_L$] ++(0,-2) to ++(-2,0);
|
\node at (3,-1.5) {$\Phi_\text{ext}$};
|
||||||
\node at (3,-1.5) {$\Phi_\text{ext}$};
|
\end{tikzpicture}
|
||||||
\end{circuitikz}
|
\\\TODO{Ist beim Fluxonium noch die Voltage source dran?}
|
||||||
\\\TODO{Ist beim Fluxonium noch die Voltage source dran?}
|
|
||||||
}
|
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{hamiltonian}
|
\begin{formula}{hamiltonian}
|
||||||
\desc{Hamiltonian}{}{$\delta = \frac{\phi}{\phi_0}$}
|
\desc{Hamiltonian}{}{$\delta = \frac{\phi}{\phi_0}$}
|
||||||
@ -359,17 +352,16 @@
|
|||||||
\begin{formula}{circuit}
|
\begin{formula}{circuit}
|
||||||
\desc{Flux qubit / Persistent current qubit}{}{}
|
\desc{Flux qubit / Persistent current qubit}{}{}
|
||||||
\desc[german]{Flux Qubit / Persistent current qubit}{}{}
|
\desc[german]{Flux Qubit / Persistent current qubit}{}{}
|
||||||
\content{
|
\centering
|
||||||
\centering
|
\begin{tikzpicture}
|
||||||
\begin{circuitikz}
|
\draw (0,0) to[josephsoncap=$\alpha E_\text{J}$, scale=0.8, transform shape] (0,-3);
|
||||||
\draw (0,0) to[josephsoncap=$\alpha E_\text{J}$, scale=0.8, transform shape] (0,-3);
|
\draw (0,0) to ++(3,0)
|
||||||
\draw (0,0) to ++(3,0)
|
to[josephsoncap=$E_\text{J}$] ++(0,-1.5)
|
||||||
to[josephsoncap=$E_\text{J}$] ++(0,-1.5)
|
to[josephsoncap=$E_\text{J}$] ++(0,-1.5)
|
||||||
to[josephsoncap=$E_\text{J}$] ++(0,-1.5)
|
to ++(-3,0);
|
||||||
to ++(-3,0);
|
\node at (1.5,-1.5) {$\Phi_\text{ext}$};
|
||||||
\node at (1.5,-1.5) {$\Phi_\text{ext}$};
|
\end{tikzpicture}
|
||||||
\end{circuitikz}
|
% \begin{tikzpicture}
|
||||||
% \begin{circuitikz}
|
|
||||||
% \draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
% \draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
||||||
% to ++(2,0) coordinate(top1)
|
% to ++(2,0) coordinate(top1)
|
||||||
% to ++(2,0) coordinate(top2)
|
% to ++(2,0) coordinate(top2)
|
||||||
@ -385,8 +377,7 @@
|
|||||||
% to[josephsoncap=$E_\text{J}$] ++(0,-1.5)
|
% to[josephsoncap=$E_\text{J}$] ++(0,-1.5)
|
||||||
% to[josephsoncap=$E_\text{J}$] (bot3);
|
% to[josephsoncap=$E_\text{J}$] (bot3);
|
||||||
% \node at (5,0.5) {$\Phi_\text{ext}$};
|
% \node at (5,0.5) {$\Phi_\text{ext}$};
|
||||||
% \end{circuitikz}
|
% \end{tikzpicture}
|
||||||
}
|
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
@ -404,18 +395,16 @@
|
|||||||
Anstatt zu tunneln, können die Cooper-Paare über das induktive Element auf die Insel gelangen.
|
Anstatt zu tunneln, können die Cooper-Paare über das induktive Element auf die Insel gelangen.
|
||||||
Das induktive Element besteht aus sehr vielen parallelen Josephson-Kontakten um parisitische Kapazitäten zu vermeiden.
|
Das induktive Element besteht aus sehr vielen parallelen Josephson-Kontakten um parisitische Kapazitäten zu vermeiden.
|
||||||
}{}
|
}{}
|
||||||
\content{
|
\centering
|
||||||
\centering
|
\begin{tikzpicture}
|
||||||
\begin{circuitikz}
|
% \draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
||||||
% \draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
% to ++(2,0) coordinate(top1);
|
||||||
% to ++(2,0) coordinate(top1);
|
\draw[color=gray] (0,0) to ++(-2,0) to[capacitor=$C_C$] ++(0,-3) to ++(2,0);
|
||||||
\draw[color=gray] (0,0) to ++(-2,0) to[capacitor=$C_C$] ++(0,-3) to ++(2,0);
|
\draw (0,0) to[josephsoncap=$C_\text{J}$] ++(-0,-3);
|
||||||
\draw (0,0) to[josephsoncap=$C_\text{J}$] ++(-0,-3);
|
\draw (0,0) to ++(2,0) to[cute inductor=$E_L$] ++(0,-3) to ++(-2,0);
|
||||||
\draw (0,0) to ++(2,0) to[cute inductor=$E_L$] ++(0,-3) to ++(-2,0);
|
\node at (1,-0.5) {$\Phi_\text{ext}$};
|
||||||
\node at (1,-0.5) {$\Phi_\text{ext}$};
|
\end{tikzpicture}
|
||||||
\end{circuitikz}
|
\\\TODO{Ist beim Fluxonium noch die Voltage source dran?}
|
||||||
\\\TODO{Ist beim Fluxonium noch die Voltage source dran?}
|
|
||||||
}
|
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\def\temp{$E_\text{C} = \frac{(2e)^2}{2C}, E_\text{L} = \frac{\varphi_0^2}{2L}, \delta_\text{s} = \frac{\varphi_\text{s}}{\varphi_0}$}
|
\def\temp{$E_\text{C} = \frac{(2e)^2}{2C}, E_\text{L} = \frac{\varphi_0^2}{2L}, \delta_\text{s} = \frac{\varphi_\text{s}}{\varphi_0}$}
|
||||||
@ -448,7 +437,7 @@
|
|||||||
\begin{formula}{rabi_oscillation}
|
\begin{formula}{rabi_oscillation}
|
||||||
\desc{Rabi oscillations}{}{$\omega_{21}$ resonance frequency of the energy transition, $\Omega$ Rabi frequency}
|
\desc{Rabi oscillations}{}{$\omega_{21}$ resonance frequency of the energy transition, $\Omega$ Rabi frequency}
|
||||||
\desc[german]{Rabi-Oszillationen}{}{$\omega_{21}$ Resonanzfrequenz des Energieübergangs, $\Omega$ Rabi-Frequenz}
|
\desc[german]{Rabi-Oszillationen}{}{$\omega_{21}$ Resonanzfrequenz des Energieübergangs, $\Omega$ Rabi-Frequenz}
|
||||||
\eq{\Omega_ TODO}
|
\eq{\Omega_ \text{\TODO{TODO}}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
@ -471,7 +460,7 @@
|
|||||||
\eq{\Gamma_1 = \frac{1}{T_1} = \Gamma_{1\uparrow} + \Gamma_{1\downarrow}}
|
\eq{\Gamma_1 = \frac{1}{T_1} = \Gamma_{1\uparrow} + \Gamma_{1\downarrow}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{ttext}[long]
|
\begin{ttext}[longdesc]
|
||||||
\eng{$\Gamma_{1\uparrow}$ is supressed at low temperatures because of detailed balance}
|
\eng{$\Gamma_{1\uparrow}$ is supressed at low temperatures because of detailed balance}
|
||||||
\ger{$\Gamma_{1\uparrow}$ ist bei niedrigen Temperaturen unterdrückt wegen detailed balance}
|
\ger{$\Gamma_{1\uparrow}$ ist bei niedrigen Temperaturen unterdrückt wegen detailed balance}
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
|
@ -1,46 +0,0 @@
|
|||||||
# Knowledge Collection
|
|
||||||
This is supposed to be a compact, searchable collection of the most important stuff I had to during my physics studides,
|
|
||||||
because it would be a shame if I forget it all!
|
|
||||||
|
|
||||||
# LaTeX Guideline
|
|
||||||
Here is some info to help myself remember why I did things the way I did.
|
|
||||||
|
|
||||||
In general, most content should be written with macros, so that the behaviour can be changed later.
|
|
||||||
|
|
||||||
## `fqname`
|
|
||||||
All translation keys and LaTeX labels should use a structured approach:
|
|
||||||
`<key type>:<partname>:<section name>:<subsection name>:<...>:<name>`
|
|
||||||
|
|
||||||
The `<partname>:...:<lowest section name>` will be defined as `fqname` (fully qualified name) macro when using the `\Part`, `\Section`, ... macros.
|
|
||||||
|
|
||||||
`<key type>` should be
|
|
||||||
|
|
||||||
- equation: `eq`
|
|
||||||
- table: `tab`
|
|
||||||
- figure: `fig`
|
|
||||||
- parts, (sub)sections: `sec`
|
|
||||||
|
|
||||||
## Multilanguage
|
|
||||||
All text should be defined as a translation (`translations` package, see `util/translation.tex`) and then used using the `gt` or `GT` macros.
|
|
||||||
The english translation of any key must be defined, because it will also be used as fallback.
|
|
||||||
|
|
||||||
Never make a macro that would have to be changed if a new language was added, eg dont do
|
|
||||||
```tex
|
|
||||||
% 1: key, 2: english version, 3: german version
|
|
||||||
\newcommand{\mycmd}[3]{
|
|
||||||
\dosomestuff{english}{#1}{#2}
|
|
||||||
\dosomestuff{german}{#1}{#3}
|
|
||||||
}
|
|
||||||
|
|
||||||
\mycmd{key}{this is english}{das ist deutsch}
|
|
||||||
```
|
|
||||||
Instead, do
|
|
||||||
```tex
|
|
||||||
% [1]: lang, 2: key, 2: text
|
|
||||||
\newcommand{\mycmd}[3][english]{
|
|
||||||
\dosomestuff{#1}{#2}{#3}
|
|
||||||
}
|
|
||||||
|
|
||||||
\mycmd{key}{this is english}
|
|
||||||
\mycmd[german]{key}{das ist deutsch}
|
|
||||||
```
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -1,36 +0,0 @@
|
|||||||
import os
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import numpy as np
|
|
||||||
import math
|
|
||||||
import scipy as scp
|
|
||||||
|
|
||||||
outdir = "../img/"
|
|
||||||
filetype = ".pdf"
|
|
||||||
skipasserts = False
|
|
||||||
|
|
||||||
full = 8
|
|
||||||
size_half_half = (full/2, full/2)
|
|
||||||
size_third_half = (full/3, full/2)
|
|
||||||
size_half_third = (full/2, full/3)
|
|
||||||
|
|
||||||
def texvar(var, val, math=True):
|
|
||||||
s = "$" if math else ""
|
|
||||||
s += f"\\{var} = {val}"
|
|
||||||
if math: s += "$"
|
|
||||||
return s
|
|
||||||
|
|
||||||
def export(fig, name, notightlayout=False):
|
|
||||||
if not skipasserts:
|
|
||||||
assert os.path.abspath(".").endswith("scripts"), "Please run from the `scripts` directory"
|
|
||||||
filename = os.path.join(outdir, name + filetype)
|
|
||||||
if not notightlayout:
|
|
||||||
fig.tight_layout()
|
|
||||||
fig.savefig(filename) #, bbox_inches="tight")
|
|
||||||
|
|
||||||
|
|
||||||
@np.vectorize
|
|
||||||
def smooth_step(x: float, left_edge: float, right_edge: float):
|
|
||||||
x = (x - left_edge) / (right_edge - left_edge)
|
|
||||||
if x <= 0: return 0.
|
|
||||||
elif x >= 1: return 1.
|
|
||||||
else: return 3*(x**2) - 2*(x**3)
|
|
41
src/spv.tex
Normal file
41
src/spv.tex
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
\Section[
|
||||||
|
\eng{Surface-Photovoltage}
|
||||||
|
\ger{Oberflächen-Photospannung}
|
||||||
|
]{spv}
|
||||||
|
Mechanisms:
|
||||||
|
\begin{formula}{scr}
|
||||||
|
\desc{Space-charge regions}{}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Under illumination, the potential of a space charge region is reduced through the separation of photogenerated charge carriers}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{dember}
|
||||||
|
\desc{Dember-Photovoltage}{}{\QtyRef{diffusion_coefficient}}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Usually electrons diffuse faster than holes ($D_\txe > D_\txh$) \Rightarrow charge carrier separation}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{asymmetric_charge_transfer}
|
||||||
|
\desc{Asymmetric charge transfer}{}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Asymmetric transfer rates from bulk to surface states and vice versa leads to charge carrier separation}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{exciton_dissociation}
|
||||||
|
\desc{Exciton dissociation}{Important in organic semiconductors with conjugated molecules}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Excitons dissociate at donor-acceptor heterojunctions and the electron is transferred to the acceptor}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{surface_dipoles}
|
||||||
|
\desc{Surface dipoles}{}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\ttxt{
|
||||||
|
\eng{Light can excite electrons, which are then attracted to one part of the molecule. This leads to an orientation of surface dipoles}
|
||||||
|
}
|
||||||
|
\end{formula}
|
@ -1,84 +1,84 @@
|
|||||||
\Part[
|
\Part[
|
||||||
\eng{Statistichal Mechanics}
|
\eng{Statistichal Mechanics}
|
||||||
\ger{Statistische Mechanik}
|
\ger{Statistische Mechanik}
|
||||||
]{stat}
|
]{stat}
|
||||||
|
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{
|
\eng{
|
||||||
\textbf{Intensive quantities:} Additive for subsystems (system size dependent): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$\\
|
\textbf{Extensive quantities:} Additive for subsystems (system size dependent): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$\\
|
||||||
\textbf{Extensive quantities:} Independent of system size, ratio of two intensive quantities
|
\textbf{Intensive quantities:} Independent of system size, ratio of two extensive quantities
|
||||||
}
|
}
|
||||||
\ger{
|
\ger{
|
||||||
\textbf{Intensive Größen:} Additiv für Subsysteme (Systemgrößenabhänig): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$\\
|
\textbf{Extensive Größen:} Additiv für Subsysteme (Systemgrößenabhänig): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$\\
|
||||||
\textbf{Extensive Größen:} Unabhängig der Systemgröße, Verhältnis zweier intensiver Größen
|
\textbf{Intensive Größen:} Unabhängig der Systemgröße, Verhältnis zweier extensiver Größen
|
||||||
}
|
}
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
|
|
||||||
\begin{formula}{liouville}
|
\begin{formula}{liouville}
|
||||||
\desc{Liouville equation}{}{$\{\}$ poisson bracket}
|
\desc{Liouville equation}{}{$\{\}$ poisson bracket}
|
||||||
\desc[german]{Liouville-Gleichung}{}{$\{\}$ Poisson-Klammer}
|
\desc[german]{Liouville-Gleichung}{}{$\{\}$ Poisson-Klammer}
|
||||||
\eq{\pdv{\rho}{t} = - \sum_{i=1}^{N} \left(\pdv{\rho}{q_i} \pdv{H}{p_i} - \pdv{\rho}{p_i} \pdv{H}{q_i} \right) = \{H, \rho\}}
|
\eq{\pdv{\rho}{t} = - \sum_{i=1}^{N} \left(\pdv{\rho}{q_i} \pdv{H}{p_i} - \pdv{\rho}{p_i} \pdv{H}{q_i} \right) = \{H, \rho\}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Entropy}
|
||||||
|
\ger{Entropie}
|
||||||
|
]{entropy}
|
||||||
|
|
||||||
|
\begin{formula}{properties}
|
||||||
|
\desc{Positive-definite and additive}{}{}
|
||||||
|
\desc[german]{Positiv Definit und Additiv}{}{}
|
||||||
|
\eq{
|
||||||
|
S &\ge 0 \\
|
||||||
|
S(E_1, E_2) &= S_1 + S_2
|
||||||
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\Section[
|
\begin{formula}{von_neumann}
|
||||||
\eng{Entropy}
|
\desc{Von-Neumann}{}{$\rho$ density matrix}
|
||||||
\ger{Entropie}
|
\desc[german]{Von-Neumann}{}{$\rho$ Dichtematrix}
|
||||||
]{entropy}
|
\eq{S = - \kB \braket{\log \rho} = - \kB \tr(\rho \log\rho)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{properties}
|
\begin{formula}{gibbs}
|
||||||
\desc{Positive-definite and additive}{}{}
|
\desc{Gibbs}{}{$p_n$ probability for micro state $n$}
|
||||||
\desc[german]{Positiv Definit und Additiv}{}{}
|
\desc[german]{Gibbs}{}{$p_n$ Wahrscheinlichkeit für Mikrozustand $n$}
|
||||||
\eq{
|
\eq{S = - \kB \sum_n p_n \log p_n}
|
||||||
S &\ge 0 \\
|
\end{formula}
|
||||||
S(E_1, E_2) &= S_1 + S_2
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{von_neumann}
|
\begin{formula}{boltzmann}
|
||||||
\desc{Von-Neumann}{}{$\rho$ density matrix}
|
\desc{Boltzmann}{}{$\Omega$ \#micro states}
|
||||||
\desc[german]{Von-Neumann}{}{$\rho$ Dichtematrix}
|
\desc[german]{Boltzmann}{}{$\Omega$ \#Mikrozustände}
|
||||||
\eq{S = - \kB \braket{\log \rho} = - \kB \tr(\rho \log\rho)}
|
\eq{S = \kB \log\Omega}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{gibbs}
|
\begin{formula}{temp}
|
||||||
\desc{Gibbs}{}{$p_n$ probability for micro state $n$}
|
\desc{Temperature}{}{}
|
||||||
\desc[german]{Gibbs}{}{$p_n$ Wahrscheinlichkeit für Mikrozustand $n$}
|
\desc[german]{Temperatur}{}{}
|
||||||
\eq{S = - \kB \sum_n p_n \log p_n}
|
\eq{\frac{1}{T} \coloneq \pdv{S}{E}_V}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{boltzmann}
|
\begin{formula}{pressure}
|
||||||
\desc{Boltzmann}{}{$\Omega$ \#micro states}
|
\desc{Pressure}{}{}
|
||||||
\desc[german]{Boltzmann}{}{$\Omega$ \#Mikrozustände}
|
\desc[german]{Druck}{}{}
|
||||||
\eq{S = \kB \log\Omega}
|
\eq{p = T \pdv{S}{V}_E}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{temp}
|
|
||||||
\desc{Temperature}{}{}
|
|
||||||
\desc[german]{Temperatur}{}{}
|
|
||||||
\eq{\frac{1}{T} \coloneq \pdv{S}{E}_V}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{pressure}
|
|
||||||
\desc{Pressure}{}{}
|
|
||||||
\desc[german]{Druck}{}{}
|
|
||||||
\eq{p = T \pdv{S}{V}_E}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Part[
|
\Part[
|
||||||
\eng{Thermodynamics}
|
\eng{Thermodynamics}
|
||||||
\ger{Thermodynamik}
|
\ger{Thermodynamik}
|
||||||
]{td}
|
]{td}
|
||||||
|
|
||||||
\begin{formula}{therm_wavelength}
|
\begin{formula}{therm_wavelength}
|
||||||
\desc{Thermal wavelength}{}{}
|
\desc{Thermal wavelength}{}{}
|
||||||
\desc[german]{Thermische Wellenlänge}{}{}
|
\desc[german]{Thermische Wellenlänge}{}{}
|
||||||
\eq{\lambda = \frac{\hbar}{\sqrt{2\pi m \kB T}}}
|
\eq{\lambda = \frac{\hbar}{\sqrt{2\pi m \kB T}}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\Section[
|
\Section[
|
||||||
\eng{Processes}
|
\eng{Processes}
|
||||||
\ger{Prozesse}
|
\ger{Prozesse}
|
||||||
]{process}
|
]{process}
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{
|
\eng{
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
@ -111,27 +111,32 @@
|
|||||||
\ger{Irreversible Gasexpansion (Gay-Lussac-Versuch)}
|
\ger{Irreversible Gasexpansion (Gay-Lussac-Versuch)}
|
||||||
]{gay}
|
]{gay}
|
||||||
|
|
||||||
\begin{minipage}{0.6\textwidth}
|
\begin{bigformula}{experiment}
|
||||||
\vfill
|
\desc{Gay-Lussac experiment}{}{}
|
||||||
\begin{ttext}
|
\desc[german]{Gay-Lussac-Versuch}{}{}
|
||||||
\eng{
|
\begin{minipage}{0.6\textwidth}
|
||||||
A classical gas in a system with volume $V_1$ is separated from another system with volume $V_2$.
|
\vfill
|
||||||
In the Gay-Lussac experiment, the separation is removed and the gas flows into $V_2$.
|
\begin{ttext}
|
||||||
}
|
\eng{
|
||||||
\ger{
|
A classical gas in a system with volume $V_1$ is separated from another system with volume $V_2$.
|
||||||
Ein klassisches Gas in einem System mit Volumen $V_1$ ist getrennt von einem zweiten System mit Volumen $V_2$.
|
In the Gay-Lussac experiment, the separation is removed and the gas flows into $V_2$.
|
||||||
Beim Gay-Lussac Versuch wird die Trennwand entfern und das Gas fließt in das Volumen $V_2$.
|
}
|
||||||
}
|
\ger{
|
||||||
\end{ttext}
|
Ein klassisches Gas in einem System mit Volumen $V_1$ ist getrennt von einem zweiten System mit Volumen $V_2$.
|
||||||
\vfill
|
Beim Gay-Lussac Versuch wird die Trennwand entfern und das Gas fließt in das Volumen $V_2$.
|
||||||
\end{minipage}
|
}
|
||||||
\hfill
|
\end{ttext}
|
||||||
\begin{minipage}{0.3\textwidth}
|
\vfill
|
||||||
\begin{figure}[H]
|
\end{minipage}
|
||||||
\centering
|
\hfill
|
||||||
\includegraphics[width=\textwidth]{img/td_gay_lussac.pdf}
|
\begin{minipage}{0.3\textwidth}
|
||||||
\end{figure}
|
\begin{figure}[H]
|
||||||
\end{minipage}
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/td_gay_lussac.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
|
||||||
\begin{formula}{entropy}
|
\begin{formula}{entropy}
|
||||||
\desc{Entropy change}{}{}
|
\desc{Entropy change}{}{}
|
||||||
@ -149,7 +154,7 @@
|
|||||||
\Section[
|
\Section[
|
||||||
\eng{Phase transitions}
|
\eng{Phase transitions}
|
||||||
\ger{Phasenübergänge}
|
\ger{Phasenübergänge}
|
||||||
]{phases}
|
]{phases}
|
||||||
|
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{
|
\eng{
|
||||||
@ -187,7 +192,7 @@
|
|||||||
\Subsubsection[
|
\Subsubsection[
|
||||||
\eng{Osmosis}
|
\eng{Osmosis}
|
||||||
\ger{Osmose}
|
\ger{Osmose}
|
||||||
]{osmosis}
|
]{osmosis}
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{
|
\eng{
|
||||||
Osmosis is the spontaneous net movement or diffusion of solvent molecules
|
Osmosis is the spontaneous net movement or diffusion of solvent molecules
|
||||||
@ -213,7 +218,7 @@
|
|||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Material properties}
|
\eng{Material properties}
|
||||||
\ger{Materialeigenschaften}
|
\ger{Materialeigenschaften}
|
||||||
]{}
|
]{props}
|
||||||
\begin{formula}{heat_cap}
|
\begin{formula}{heat_cap}
|
||||||
\desc{Heat capacity}{}{$Q$ heat}
|
\desc{Heat capacity}{}{$Q$ heat}
|
||||||
\desc[german]{Wärmekapazität}{}{$Q$ Wärme}
|
\desc[german]{Wärmekapazität}{}{$Q$ Wärme}
|
||||||
@ -266,12 +271,12 @@
|
|||||||
\Section[
|
\Section[
|
||||||
\eng{Laws of thermodynamics}
|
\eng{Laws of thermodynamics}
|
||||||
\ger{Hauptsätze der Thermodynamik}
|
\ger{Hauptsätze der Thermodynamik}
|
||||||
]{laws}
|
]{laws}
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Zeroeth law}
|
\eng{Zeroeth law}
|
||||||
\ger{Nullter Hauptsatz}
|
\ger{Nullter Hauptsatz}
|
||||||
]{law0}
|
]{law0}
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.}
|
\eng{If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.}
|
||||||
\ger{Wenn sich zwei Siesteme jeweils im thermischen Gleichgewicht mit einem dritten befinden, befinden sie sich auch untereinander im thermischen Gleichgewicht.}
|
\ger{Wenn sich zwei Siesteme jeweils im thermischen Gleichgewicht mit einem dritten befinden, befinden sie sich auch untereinander im thermischen Gleichgewicht.}
|
||||||
@ -307,7 +312,7 @@
|
|||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Second law}
|
\eng{Second law}
|
||||||
\ger{Zweiter Hauptsatz}
|
\ger{Zweiter Hauptsatz}
|
||||||
]{law2}
|
]{law2}
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{
|
\eng{
|
||||||
\textbf{Clausius}: Heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at the same time.\\
|
\textbf{Clausius}: Heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at the same time.\\
|
||||||
@ -321,7 +326,7 @@
|
|||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Third law}
|
\eng{Third law}
|
||||||
\ger{Dritter Hauptsatz}
|
\ger{Dritter Hauptsatz}
|
||||||
]{law3}
|
]{law3}
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{It is impussible to cool a system to absolute zero.}
|
\eng{It is impussible to cool a system to absolute zero.}
|
||||||
\ger{Es ist unmöglich, ein System bis zum absoluten Nullpunkt abzukühlen.}
|
\ger{Es ist unmöglich, ein System bis zum absoluten Nullpunkt abzukühlen.}
|
||||||
@ -332,7 +337,7 @@
|
|||||||
\desc[german]{Entropiedichte}{}{$s = \frac{S}{N}$}
|
\desc[german]{Entropiedichte}{}{$s = \frac{S}{N}$}
|
||||||
\eq{
|
\eq{
|
||||||
\lim_{T\to 0} s(T) &= 0 \\
|
\lim_{T\to 0} s(T) &= 0 \\
|
||||||
\shortintertext{\GT{and_therefore_also}} \\
|
\shortintertext{\GT{and_therefore_also}}
|
||||||
\lim_{T\to 0} c_V &= 0
|
\lim_{T\to 0} c_V &= 0
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
@ -340,25 +345,77 @@
|
|||||||
\Section[
|
\Section[
|
||||||
\eng{Ensembles}
|
\eng{Ensembles}
|
||||||
\ger{Ensembles}
|
\ger{Ensembles}
|
||||||
]{ensembles}
|
]{ensembles}
|
||||||
|
\Eng[const_variables]{Constant variables}
|
||||||
|
\Ger[const_variables]{Konstante Variablen}
|
||||||
|
|
||||||
|
\begin{bigformula}{nve} \absLabel[mc_ensemble]
|
||||||
|
\desc{Microcanonical ensemble}{}{}
|
||||||
|
\desc[german]{Mikrokanonisches Ensemble}{}{}
|
||||||
|
\begin{minipagetable}{nve}
|
||||||
|
\entry{const_variables} {$E$, $V,$ $N$ }
|
||||||
|
\entry{partition_sum} {$\Omega = \sum_n 1$ }
|
||||||
|
\entry{probability} {$p_n = \frac{1}{\Omega}$}
|
||||||
|
\entry{td_pot} {$S = \kB\ln\Omega$ }
|
||||||
|
\entry{pressure} {$p = T \pdv{S}{V}_{E,N}$}
|
||||||
|
\entry{entropy} {$S = \kB = \ln\Omega$ }
|
||||||
|
\end{minipagetable}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\begin{bigformula}{nvt} \absLabel[c_ensemble]
|
||||||
|
\desc{Canonical ensemble}{}{}
|
||||||
|
\desc[german]{Kanonisches Ensemble}{}{}
|
||||||
|
\begin{minipagetable}{nvt}
|
||||||
|
\entry{const_variables} {$T$, $V$, $N$ }
|
||||||
|
\entry{partition_sum} {$Z = \sum_n \e^{-\beta E_n}$ }
|
||||||
|
\entry{probability} {$p_n = \frac{\e^{-\beta E_n}}{Z}$}
|
||||||
|
\entry{td_pot} {$F = - \kB T \ln Z$ }
|
||||||
|
\entry{pressure} {$p = -\pdv{F}{V}_{T,N}$ }
|
||||||
|
\entry{entropy} {$S = -\pdv{F}{T}_{V,N}$ }
|
||||||
|
\end{minipagetable}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\begin{bigformula}{mvt} \absLabel[gc_ensemble]
|
||||||
|
\desc{Grand canonical ensemble}{}{}
|
||||||
|
\desc[german]{Grosskanonisches Ensemble}{}{}
|
||||||
|
\begin{minipagetable}{mvt}
|
||||||
|
\entry{const_variables} {$T$, $V$, $\mu$ }
|
||||||
|
\entry{partition_sum} {$Z_\text{g} = \sum_{n} \e^{-\beta(E_n - \mu N_n)}$ }
|
||||||
|
\entry{probability} {$p_n = \frac{\e^{-\beta (E_n - \mu N_n}}{Z_\text{g}}$}
|
||||||
|
\entry{td_pot} {$ \Phi = - \kB T \ln Z$ }
|
||||||
|
\entry{pressure} {$p = -\pdv{\Phi}{V}_{T,\mu} = -\frac{\Phi}{V}$ }
|
||||||
|
\entry{entropy} {$S = -\pdv{\Phi}{T}_{V,\mu}$ }
|
||||||
|
\end{minipagetable}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\begin{bigformula}{npt}
|
||||||
|
\desc{Isobaric-isothermal}{Gibbs ensemble}{}
|
||||||
|
% \desc[german]{Kanonisches Ensemble}{}{}
|
||||||
|
\begin{minipagetable}{npt}
|
||||||
|
\entry{const_variables} {$N$, $p$, $T$}
|
||||||
|
\entry{partition_sum} {}
|
||||||
|
\entry{probability} {$p_n ? \frac{\e^{-\beta(E_n + pV_n)}}{Z}$}
|
||||||
|
\entry{td_pot} {}
|
||||||
|
\entry{pressure} {}
|
||||||
|
\entry{entropy} {}
|
||||||
|
\end{minipagetable}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\begin{bigformula}{nph}
|
||||||
|
\desc{Isonthalpic-isobaric ensemble}{Enthalpy ensemble}{}
|
||||||
|
% \desc[german]{Kanonisches Ensemble}{}{}
|
||||||
|
\begin{minipagetable}{nph}
|
||||||
|
\entry{const_variables} {}
|
||||||
|
\entry{partition_sum} {}
|
||||||
|
\entry{probability} {}
|
||||||
|
\entry{td_pot} {}
|
||||||
|
\entry{pressure} {}
|
||||||
|
\entry{entropy} {}
|
||||||
|
\end{minipagetable}
|
||||||
|
\end{bigformula}
|
||||||
|
|
||||||
|
\TODO{complete, link potentials}
|
||||||
|
|
||||||
\begin{table}[H]
|
|
||||||
\centering
|
|
||||||
\caption{caption}
|
|
||||||
\label{tab:\fqname}
|
|
||||||
|
|
||||||
\begin{tabular}{l|c|c|c}
|
|
||||||
& \gt{mk} & \gt{k} & \gt{gk} \\ \hline
|
|
||||||
\GT{variables} & $E$, $V,$ $N$ & $T$, $V$, $N$ & $T$, $V$, $\mu$ \\ \hline
|
|
||||||
\GT{partition_sum} & $\Omega = \sum_n 1$ & $Z = \sum_n \e^{-\beta E_n}$ & $Z_\text{g} = \sum_{n} \e^{-\beta(E_n - \mu N_n)}$ \\ \hline
|
|
||||||
\GT{probability} & $p_n = \frac{1}{\Omega}$ & $p_n = \frac{\e^{-\beta E_n}}{Z}$ & $p_n = \frac{\e^{-\beta (E_n - \mu N_n}}{Z_\text{g}}$ \\ \hline
|
|
||||||
\GT{td_pot} & $S = \kB\ln\Omega$ & $F = - \kB T \ln Z$ & $ \Phi = - \kB T \ln Z$ \\ \hline
|
|
||||||
\GT{pressure} & $p = T \pdv{S}{V}_{E,N}$ &$p = -\pdv{F}{V}_{T,N}$ & $p = -\pdv{\Phi}{V}_{T,\mu} = -\frac{\Phi}{V}$ \\ \hline
|
|
||||||
\GT{entropy} & $S = \kB = \ln\Omega$ & $S = -\pdv{F}{T}_{V,N}$ & $S = -\pdv{\Phi}{T}_{V,\mu}$ \\ \hline
|
|
||||||
\end{tabular}
|
|
||||||
\end{table}
|
|
||||||
|
|
||||||
\begin{formula}{ergodic_hypo}
|
\begin{formula}{ergodic_hypo}
|
||||||
\desc{Ergodic hypothesis}{Over a long periode of time, all accessible microstates in the phase space are equiprobable}{$A$ Observable}
|
\desc{Ergodic hypothesis}{Over a long periode of time, all accessible microstates in the phase space are equiprobable}{$A$ Observable}
|
||||||
@ -370,27 +427,27 @@
|
|||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Potentials}
|
\eng{Potentials}
|
||||||
\ger{Potentiale}
|
\ger{Potentiale}
|
||||||
]{pots}
|
]{pots}
|
||||||
\begin{formula}{internal_energy}
|
\begin{formula}{internal_energy}
|
||||||
\desc{Internal energy}{}{}
|
\desc{Internal energy}{}{}
|
||||||
\desc[german]{Innere Energie}{}{}
|
\desc[german]{Innere Energie}{}{}
|
||||||
\eq{\d U(S,V,N) = T\d S -p\d V + \mu\d N}
|
\eq{\d U(S,V,N) = T\d S -p\d V + \mu\d N}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
\begin{formula}{free_energy}
|
||||||
|
\desc{Free energy / Helmholtz energy }{}{}
|
||||||
|
\desc[german]{Freie Energie / Helmholtz Energie}{}{}
|
||||||
|
\eq{\d F(T,V,N) = -S\d T -p\d V + \mu\d N}
|
||||||
|
\end{formula}
|
||||||
\begin{formula}{enthalpy}
|
\begin{formula}{enthalpy}
|
||||||
\desc{Enthalpy}{}{}
|
\desc{Enthalpy}{}{}
|
||||||
\desc[german]{Enthalpie}{}{}
|
\desc[german]{Enthalpie}{}{}
|
||||||
\eq{\d H(S,p,N) = T\d S +V\d p + \mu\d N}
|
\eq{\d H(S,p,N) = T\d S +V\d p + \mu\d N}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{gibbs_energy}
|
\begin{formula}{gibbs_energy}
|
||||||
\desc{Gibbs energy}{}{}
|
\desc{Free enthalpy / Gibbs energy}{}{}
|
||||||
\desc[german]{Gibbsche Energie}{}{}
|
\desc[german]{Freie Entahlpie / Gibbs-Energie}{}{}
|
||||||
\eq{\d G(T,p,N) = -S\d T + V\d p + \mu\d N}
|
\eq{\d G(T,p,N) = -S\d T + V\d p + \mu\d N}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{free_energy}
|
|
||||||
\desc{Free energy / Helmholtz energy }{}{}
|
|
||||||
\desc[german]{Freie Energie / Helmholtz Energie}{}{}
|
|
||||||
\eq{\d F(T,V,N) = -S\d T -p\d V + \mu\d N}
|
|
||||||
\end{formula}
|
|
||||||
\begin{formula}{grand_canon_pot}
|
\begin{formula}{grand_canon_pot}
|
||||||
\desc{Grand canonical potential}{}{}
|
\desc{Grand canonical potential}{}{}
|
||||||
\desc[german]{Großkanonisches Potential}{}{}
|
\desc[german]{Großkanonisches Potential}{}{}
|
||||||
@ -398,11 +455,32 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\TODO{Maxwell Relationen, TD Quadrat}
|
\TODO{Maxwell Relationen, TD Quadrat}
|
||||||
|
\begin{formula}{td-square}
|
||||||
|
\desc{Thermodynamic squre}{}{}
|
||||||
|
\desc[german]{Themodynamisches Quadrat}{Guggenheim Quadrat}{}
|
||||||
|
\begin{minipage}{0.3\textwidth}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\draw[thick] (0,0) grid (3,3);
|
||||||
|
\node at (0.5, 2.5) {$-S$};
|
||||||
|
\node at (1.5, 2.5) {\color{blue}$U$};
|
||||||
|
\node at (2.5, 2.5) {$V$};
|
||||||
|
\node at (0.5, 1.5) {\color{blue}$H$};
|
||||||
|
\node at (2.5, 1.5) {\color{blue}$F$};
|
||||||
|
\node at (0.5, 0.5) {$-p$};
|
||||||
|
\node at (1.5, 0.5) {\color{blue}$G$};
|
||||||
|
\node at (2.5, 0.5) {$T$};
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{The corners opposite from the potential are the coefficients and each coefficients differential is opposite to it.}
|
||||||
|
\ger{Die Ecken gegenüber des Potentials sind die Koeffizienten, das Differential eines Koeffizienten ist in der Ecke gegenüber.}
|
||||||
|
\end{ttext}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
\Section[
|
\Section[
|
||||||
\eng{Ideal gas}
|
\eng{Ideal gas}
|
||||||
\ger{Ideales Gas}
|
\ger{Ideales Gas}
|
||||||
]{id_gas}
|
]{id_gas}
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{The ideal gas consists of non-interacting, undifferentiable particles.}
|
\eng{The ideal gas consists of non-interacting, undifferentiable particles.}
|
||||||
\ger{Das ideale Gas besteht aus nicht-wechselwirkenden, ununterscheidbaren Teilchen.}
|
\ger{Das ideale Gas besteht aus nicht-wechselwirkenden, ununterscheidbaren Teilchen.}
|
||||||
@ -467,20 +545,18 @@
|
|||||||
\begin{formula}{desc}
|
\begin{formula}{desc}
|
||||||
\desc{Molecule gas}{2 particles of mass $M$ connected by a ``spring'' with distance $L$}{}
|
\desc{Molecule gas}{2 particles of mass $M$ connected by a ``spring'' with distance $L$}{}
|
||||||
\desc[german]{Molekülgas}{2 Teilchen der Masse $M$ sind verbunden durch eine ``Feder'' mit Länge $L$}{}
|
\desc[german]{Molekülgas}{2 Teilchen der Masse $M$ sind verbunden durch eine ``Feder'' mit Länge $L$}{}
|
||||||
\content{
|
% \begin{figure}[h]
|
||||||
% \begin{figure}[h]
|
\centering
|
||||||
\centering
|
\tikzstyle{spring}=[thick,decorate,decoration={coil,aspect=0.8,amplitude=5,pre length=0.1cm,post length=0.1cm,segment length=10}]
|
||||||
\tikzstyle{spring}=[thick,decorate,decoration={coil,aspect=0.8,amplitude=5,pre length=0.1cm,post length=0.1cm,segment length=10}]
|
\begin{tikzpicture}
|
||||||
\begin{tikzpicture}
|
\def\radius{0.5}
|
||||||
\def\radius{0.5}
|
\coordinate (left) at (-3, 0);
|
||||||
\coordinate (left) at (-3, 0);
|
\coordinate (right) at (3, 0);
|
||||||
\coordinate (right) at (3, 0);
|
\draw (left) circle (\radius);
|
||||||
\draw (left) circle (\radius);
|
\draw[spring] ($(left) + (\radius,0)$) -- ($(right) - (\radius,0)$);
|
||||||
\draw[spring] ($(left) + (\radius,0)$) -- ($(right) - (\radius,0)$);
|
\draw (right) circle (\radius);
|
||||||
\draw (right) circle (\radius);
|
\end{tikzpicture}
|
||||||
\end{tikzpicture}
|
|
||||||
% \end{figure}
|
% \end{figure}
|
||||||
}
|
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{translation}
|
\begin{formula}{translation}
|
||||||
@ -506,7 +582,7 @@
|
|||||||
\Section[
|
\Section[
|
||||||
\eng{Real gas}
|
\eng{Real gas}
|
||||||
\ger{Reales Gas}
|
\ger{Reales Gas}
|
||||||
]{real_gas}
|
]{real_gas}
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Virial expansion}
|
\eng{Virial expansion}
|
||||||
@ -536,10 +612,11 @@
|
|||||||
% b - \frac{a}{\kB T}}
|
% b - \frac{a}{\kB T}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{lennard_jones}
|
\begin{formula}{lennard_jones} \absLabel
|
||||||
\desc{Lennard-Jones potential}{Potential between two molecules. Attractive for $r > \sigma$, repulsive for $r < \sigma$}{}
|
\desc{Lennard-Jones potential}{Potential between two molecules. Attractive for $r > \sigma$, repulsive for $r < \sigma$.\\ In condensed matter: Attraction due to Landau Dispersion \TODO{verify} and repulsion due to Pauli exclusion principle.}{}
|
||||||
\desc[german]{Lennard-Jones-Potential}{Potential zwischen zwei Molekülen. Attraktiv für $r > \sigma$, repulsiv für $r < \sigma$}{}
|
\desc[german]{Lennard-Jones-Potential}{Potential zwischen zwei Molekülen. Attraktiv für $r > \sigma$, repulsiv für $r < \sigma$.\\ In Festkörpern: Anziehung durch Landau-Dispersion und Abstoßung durch Pauli-Prinzip.}{}
|
||||||
\figeq{img/potential_lennard_jones.pdf}{V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6}\right]}
|
\fig[0.7]{img/potential_lennard_jones.pdf}
|
||||||
|
\eq{V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6}\right]}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
@ -566,7 +643,7 @@
|
|||||||
\Section[
|
\Section[
|
||||||
\eng{Ideal quantum gas}
|
\eng{Ideal quantum gas}
|
||||||
\ger{Ideales Quantengas}
|
\ger{Ideales Quantengas}
|
||||||
]{id_qgas}
|
]{id_qgas}
|
||||||
\def\bosfer{$\pm$: {$\text{bos} \atop \text{fer}$}}
|
\def\bosfer{$\pm$: {$\text{bos} \atop \text{fer}$}}
|
||||||
|
|
||||||
\begin{formula}{fugacity}
|
\begin{formula}{fugacity}
|
||||||
@ -611,7 +688,8 @@
|
|||||||
\begin{formula}{occupation_number}
|
\begin{formula}{occupation_number}
|
||||||
\desc{Occupation number}{}{\bosfer}
|
\desc{Occupation number}{}{\bosfer}
|
||||||
\desc[german]{Besetzungszahl}{}{\bosfer}
|
\desc[german]{Besetzungszahl}{}{\bosfer}
|
||||||
\figeq{img/td_id_qgas_distributions.pdf}{%
|
\fig[0.7]{img/td_id_qgas_distributions.pdf}
|
||||||
|
\eq{
|
||||||
\braket{n(\epsilon)} &= \frac{1}{\e^{\beta(\epsilon - \mu)} \mp 1} \\
|
\braket{n(\epsilon)} &= \frac{1}{\e^{\beta(\epsilon - \mu)} \mp 1} \\
|
||||||
\shortintertext{\GT{for} $\epsilon - \mu \gg \kB T$}
|
\shortintertext{\GT{for} $\epsilon - \mu \gg \kB T$}
|
||||||
&= \frac{1}{\e^{\beta(\epsilon - \mu)}}
|
&= \frac{1}{\e^{\beta(\epsilon - \mu)}}
|
||||||
@ -639,7 +717,7 @@
|
|||||||
\eq{
|
\eq{
|
||||||
pV &= \kB T \ln Z_g \\
|
pV &= \kB T \ln Z_g \\
|
||||||
\shortintertext{\GT{after} \GT{td:real_gas:virial}}
|
\shortintertext{\GT{after} \GT{td:real_gas:virial}}
|
||||||
&= N \kB T \left[1 \mp \frac{\lambda^3}{2^{5/2} g v} + \Order\left(\left(\frac{\lambda^3}{v}\right)^2\right)\right]
|
&= N \kB T \left[1 \mp \frac{\lambda^3}{2^{5/2} g v} + \Order{\left(\frac{\lambda^3}{v}\right)^2}\right]
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{relevance}
|
\begin{formula}{relevance}
|
||||||
@ -657,8 +735,8 @@
|
|||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Bosons}
|
\eng{Bosons}
|
||||||
\ger{Bosonen}
|
\ger{Bosonen}
|
||||||
]{bos}
|
]{bos}
|
||||||
\begin{formula}{partition_sum}
|
\begin{formula}{partition-sum}
|
||||||
\desc{Partition sum}{}{$p \in\N_0$}
|
\desc{Partition sum}{}{$p \in\N_0$}
|
||||||
\desc[german]{Zustandssumme}{}{$p \in\N_0$}
|
\desc[german]{Zustandssumme}{}{$p \in\N_0$}
|
||||||
\eq{Z_\text{g} = \prod_{p} \frac{1}{1-\e^{-\beta(\epsilon_p - \mu)}}}
|
\eq{Z_\text{g} = \prod_{p} \frac{1}{1-\e^{-\beta(\epsilon_p - \mu)}}}
|
||||||
@ -673,7 +751,7 @@
|
|||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Fermions}
|
\eng{Fermions}
|
||||||
\ger{Fermionen}
|
\ger{Fermionen}
|
||||||
]{fer}
|
]{fer}
|
||||||
\begin{formula}{partition_sum}
|
\begin{formula}{partition_sum}
|
||||||
\desc{Partition sum}{}{$p = 0,\,1$}
|
\desc{Partition sum}{}{$p = 0,\,1$}
|
||||||
\desc[german]{Zustandssumme}{}{$p = 0,\,1$}
|
\desc[german]{Zustandssumme}{}{$p = 0,\,1$}
|
||||||
@ -682,7 +760,8 @@
|
|||||||
\begin{formula}{occupation}
|
\begin{formula}{occupation}
|
||||||
\desc{Occupation number}{Fermi-Dirac distribution. At $T=0$ \textit{Fermi edge} at $\epsilon=\mu$}{}
|
\desc{Occupation number}{Fermi-Dirac distribution. At $T=0$ \textit{Fermi edge} at $\epsilon=\mu$}{}
|
||||||
\desc[german]{Besetzungszahl}{Fermi-Dirac Verteilung}{Bei $T=0$ \textit{Fermi-Kante} bei $\epsilon=\mu$}
|
\desc[german]{Besetzungszahl}{Fermi-Dirac Verteilung}{Bei $T=0$ \textit{Fermi-Kante} bei $\epsilon=\mu$}
|
||||||
\figeq{img/td_fermi_occupation.pdf}{\braket{n_p} = \frac{1}{\e^{\beta(\epsilon-\mu)}+1}}
|
\fig[0.7]{img/td_fermi_occupation.pdf}
|
||||||
|
\eq{\braket{n_p} = \frac{1}{\e^{\beta(\epsilon-\mu)}+1}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{slater_determinant}
|
\begin{formula}{slater_determinant}
|
||||||
@ -725,7 +804,7 @@
|
|||||||
\Subsubsection[
|
\Subsubsection[
|
||||||
\eng{Strong degeneracy}
|
\eng{Strong degeneracy}
|
||||||
\ger{Starke Entartung}
|
\ger{Starke Entartung}
|
||||||
]{degenerate}
|
]{degenerate}
|
||||||
\eng[low_temps]{for low temperatures $T \ll T_\text{F}$}
|
\eng[low_temps]{for low temperatures $T \ll T_\text{F}$}
|
||||||
\ger[low_temps]{für geringe Temperaturen $T\ll T_\text{F}$}
|
\ger[low_temps]{für geringe Temperaturen $T\ll T_\text{F}$}
|
||||||
|
|
||||||
@ -748,7 +827,8 @@
|
|||||||
\begin{formula}{heat_cap}
|
\begin{formula}{heat_cap}
|
||||||
\desc{Heat capacity}{\gt{low_temps}}{differs from \fqEqRef{td:TODO:petit_dulong}}
|
\desc{Heat capacity}{\gt{low_temps}}{differs from \fqEqRef{td:TODO:petit_dulong}}
|
||||||
\desc[german]{Wärmecapacity}{\gt{low_temps}}{weicht ab vom \fqEqRef{td:TODO:petit_dulong}}
|
\desc[german]{Wärmecapacity}{\gt{low_temps}}{weicht ab vom \fqEqRef{td:TODO:petit_dulong}}
|
||||||
\figeq{img/td_fermi_heat_capacity.pdf}{C_V = \pdv{E}{T}_V = N\kB \frac{\pi}{2} \left(\frac{T}{T_\text{F}}\right)}
|
\fig[0.7]{img/td_fermi_heat_capacity.pdf}
|
||||||
|
\eq{C_V = \pdv{E}{T}_V = N\kB \frac{\pi}{2} \left(\frac{T}{T_\text{F}}\right)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
0
src/svgs/convertToPdf.sh
Executable file → Normal file
0
src/svgs/convertToPdf.sh
Executable file → Normal file
102
src/test.tex
Normal file
102
src/test.tex
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
\part{Testing}
|
||||||
|
|
||||||
|
% \directlua{tex.sprint("Compiled in directory: \\detokenize{" .. lfs.currentdir() .. "}")} \\
|
||||||
|
% \directlua{tex.sprint("Jobname: " .. tex.jobname)} \\
|
||||||
|
% \directlua{tex.sprint("Output directory \\detokenize{" .. os.getenv("TEXMF_OUTPUT_DIRECTORY") .. "}")} \\
|
||||||
|
% \directlua{tex.sprint("String sanitize \\detokenize{" .. string.sanitize("m_a^th?") .. "}")}
|
||||||
|
|
||||||
|
\languagename
|
||||||
|
|
||||||
|
\paragraph{File loading}
|
||||||
|
\noindent Lua Aux loaded? \luaAuxLoaded\\
|
||||||
|
% Translations Aux loaded? \translationsAuxLoaded\\
|
||||||
|
Input only: \inputOnlyFile
|
||||||
|
|
||||||
|
\paragraph{Testing GT, GetTranslation, IfTranslationExists, IfTranslation}
|
||||||
|
\addtranslation{english}{ttest}{This is the english translation of \texttt{ttest}}
|
||||||
|
\noindent
|
||||||
|
GT: ttest = \GT{ttest}\\
|
||||||
|
% GetTranslation: ttest = \GetTranslation{ttest}\\
|
||||||
|
% Is english? = \IfTranslation{english}{ttest}{yes}{no} \\
|
||||||
|
% Is german? = \IfTranslation{german}{ttest}{yes}{no} \\
|
||||||
|
Is defined = \IfTranslationExists{ttest}{yes}{no} \\
|
||||||
|
|
||||||
|
\paragraph{Testing translation keys containing macros}
|
||||||
|
\def\ttest{NAME}
|
||||||
|
% \addtranslation{english}{\ttest:name}{With variable}
|
||||||
|
% \addtranslation{german}{\ttest:name}{Mit Variable}
|
||||||
|
% \addtranslation{english}{NAME:name}{Without variable}
|
||||||
|
% \addtranslation{german}{NAME:name}{Without Variable}
|
||||||
|
\DT[\ttest:name]{english}{DT With variable}
|
||||||
|
\DT[\ttest:name]{german}{DT Mit Variable}
|
||||||
|
\noindent
|
||||||
|
GT: {\textbackslash}ttest:name = \GT{\ttest:name}\\
|
||||||
|
% GetTranslation: {\textbackslash}ttest:name = \GetTranslation{\ttest:name}\\
|
||||||
|
% Is english? = \IfTranslation{english}{\ttest:name}{yes}{no} \\
|
||||||
|
% Is german? = \IfTranslation{german}{\ttest:name}{yes}{no} \\
|
||||||
|
% Is defined? = \IfTranslationExists{\ttest:name}{yes}{no} \\
|
||||||
|
% Is defined? = \expandafter\IfTranslationExists\expandafter{\ttest:name}{yes}{no}
|
||||||
|
|
||||||
|
\paragraph{Testing relative translations}
|
||||||
|
\begingroup
|
||||||
|
\edef\prevFqname{\fqname}
|
||||||
|
\edef\fqname{\prevFqname:test}
|
||||||
|
\eng{English, relative}
|
||||||
|
\ger{Deutsch, relativ}
|
||||||
|
\endgroup
|
||||||
|
\dt[testkey]{english}{Testkey}
|
||||||
|
{\textbackslash}gt\{test\}: \gt{test}\\
|
||||||
|
{\textbackslash}gt\{test\}: \gt{testkey}
|
||||||
|
|
||||||
|
% \DT[qty:test]{english}{HAHA}
|
||||||
|
|
||||||
|
\paragraph{Testing hyperrefs}
|
||||||
|
\noindent{This text is labeled with "test" \label{test}}\\
|
||||||
|
\hyperref[test]{This should refer to the line above}\\
|
||||||
|
Link to quantity which is defined after the reference: \qtyRef{test}\\
|
||||||
|
\DT[eq:test]{english}{If you read this, then the translation for eq:test was expandend!}
|
||||||
|
Link to defined quantity: \qtyRef{mass}
|
||||||
|
\\ Link to element with name: \ElRef{H}
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:test}
|
||||||
|
E = mc^2
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\paragraph{Testing translation keys with token symbols like undescores}
|
||||||
|
\noindent
|
||||||
|
\GT{absolute_undefined_translation_with_underscors}\\
|
||||||
|
\gt{relative_undefined_translation_with_underscors}\\
|
||||||
|
\GT{absolute_undefined_translation_with_&ersand}
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{Testing formula2}
|
||||||
|
\begin{formula}{test}
|
||||||
|
\desc{Test}{Test Description}{Defs}
|
||||||
|
\desc[german]{Test (DE)}{Beschreibung}{Defs (DE)}
|
||||||
|
\eq{
|
||||||
|
\text{equationwith}_{\alpha} \delta \E \left[yo\right]
|
||||||
|
}
|
||||||
|
\quantity{\tau}{\m\per\s}{iv}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{test2}
|
||||||
|
\desc{Test2}{Test Description}{Defs}
|
||||||
|
\desc[german]{Test2 (DE)}{Beschreibung}{Defs (DE)}
|
||||||
|
\ttxt{
|
||||||
|
\eng{This text is english}
|
||||||
|
\ger{Dieser Text ist deutsch}
|
||||||
|
}
|
||||||
|
\ttxt[moretext]{
|
||||||
|
\eng{This text is english, again}
|
||||||
|
\ger{Dieser Text ist wieder deutsch}
|
||||||
|
}
|
||||||
|
\begin{equation}
|
||||||
|
M\omega\rho\epsilon
|
||||||
|
\end{equation}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{test3}
|
||||||
|
\desc{Test2}{Test Description}{Defs}
|
||||||
|
\desc[german]{Test2 (DE)}{Beschreibung}{Defs (DE)}
|
||||||
|
Formula with just plain text.
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
37
src/util/colors.tex
Normal file
37
src/util/colors.tex
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
|
||||||
|
% \redefinecolor{black}{HTML}{fg0}
|
||||||
|
% Dark mode
|
||||||
|
\pagecolor{bg0}
|
||||||
|
\color{fg0}
|
||||||
|
|
||||||
|
% \pagecolor{dark0_hard}
|
||||||
|
% \color{light0_hard}
|
||||||
|
|
||||||
|
% section headings in bright colors, \titleformat from titlesec package
|
||||||
|
\titleformat{\section}
|
||||||
|
{\color{fg-purple}\normalfont\Large\bfseries}
|
||||||
|
{\color{fg-purple}\thesection}{1em}{}
|
||||||
|
|
||||||
|
\titleformat{\subsection}
|
||||||
|
{\color{fg-blue}\normalfont\large\bfseries}
|
||||||
|
{\color{fg-blue}\thesubsection}{1em}{}
|
||||||
|
|
||||||
|
\titleformat{\subsubsection}
|
||||||
|
{\color{fg-aqua}\normalfont\normalsize\bfseries}
|
||||||
|
{\color{fg-aqua}\thesubsubsection}{1em}{}
|
||||||
|
|
||||||
|
\titleformat{\paragraph}
|
||||||
|
{\color{fg-green}\normalfont\normalsize\bfseries}
|
||||||
|
{\color{fg-green}\theparagraph}{1em}{}
|
||||||
|
|
||||||
|
\titleformat{\subparagraph}
|
||||||
|
{\color{fg-purple}\normalfont\normalsize\bfseries}
|
||||||
|
{\color{fg-purple}\thesubparagraph}{1em}{}
|
||||||
|
|
||||||
|
\hypersetup{
|
||||||
|
colorlinks=true,
|
||||||
|
linkcolor=fg-purple,
|
||||||
|
citecolor=fg-green,
|
||||||
|
filecolor=fg-blue,
|
||||||
|
urlcolor=fg-orange
|
||||||
|
}
|
@ -1,73 +1,38 @@
|
|||||||
% Define Gruvbox colors
|
% This file was generated by scripts/formulary.py
|
||||||
\definecolor{dark0_hard}{HTML}{1d2021}
|
% Do not edit it directly, changes will be overwritten
|
||||||
\definecolor{dark0}{HTML}{282828}
|
\definecolor{fg-blue}{HTML}{072140}
|
||||||
\definecolor{dark0_soft}{HTML}{32302f}
|
\definecolor{bg-blue}{HTML}{5E94D4}
|
||||||
\definecolor{dark1}{HTML}{3c3836}
|
\definecolor{alt-blue}{HTML}{3070B3}
|
||||||
\definecolor{dark2}{HTML}{504945}
|
\definecolor{bg-yellow}{HTML}{FED702}
|
||||||
\definecolor{dark3}{HTML}{665c54}
|
\definecolor{fg-yellow}{HTML}{CBAB01}
|
||||||
\definecolor{dark4}{HTML}{7c6f64}
|
\definecolor{alt-yellow}{HTML}{FEDE34}
|
||||||
\definecolor{medium}{HTML}{928374}
|
\definecolor{bg-orange}{HTML}{F7811E}
|
||||||
\definecolor{light0_hard}{HTML}{f9f5d7}
|
\definecolor{fg-orange}{HTML}{D99208}
|
||||||
\definecolor{light0}{HTML}{fbf1c7}
|
\definecolor{alt-orange}{HTML}{F9BF4E}
|
||||||
\definecolor{light0_soft}{HTML}{f2e5bc}
|
\definecolor{bg-purple}{HTML}{B55CA5}
|
||||||
\definecolor{light1}{HTML}{ebdbb2}
|
\definecolor{fg-purple}{HTML}{9B468D}
|
||||||
\definecolor{light2}{HTML}{d5c4a1}
|
\definecolor{alt-purple}{HTML}{C680BB}
|
||||||
\definecolor{light3}{HTML}{bdae93}
|
\definecolor{bg-red}{HTML}{EA7237}
|
||||||
\definecolor{light4}{HTML}{a89984}
|
\definecolor{fg-red}{HTML}{D95117}
|
||||||
\definecolor{bright_red}{HTML}{fb4934}
|
\definecolor{alt-red}{HTML}{EF9067}
|
||||||
\definecolor{bright_green}{HTML}{b8bb26}
|
\definecolor{bg-green}{HTML}{9FBA36}
|
||||||
\definecolor{bright_yellow}{HTML}{fabd2f}
|
\definecolor{fg-green}{HTML}{7D922A}
|
||||||
\definecolor{bright_blue}{HTML}{83a598}
|
\definecolor{alt-green}{HTML}{B6CE55}
|
||||||
\definecolor{bright_purple}{HTML}{d3869b}
|
\definecolor{bg-gray}{HTML}{475058}
|
||||||
\definecolor{bright_aqua}{HTML}{8ec07c}
|
\definecolor{fg-gray}{HTML}{20252A}
|
||||||
\definecolor{bright_orange}{HTML}{fe8019}
|
\definecolor{alt-gray}{HTML}{333A41}
|
||||||
\definecolor{neutral_red}{HTML}{cc241d}
|
\definecolor{bg-aqua}{HTML}{689d6a}
|
||||||
\definecolor{neutral_green}{HTML}{98971a}
|
\definecolor{fg-aqua}{HTML}{427b58}
|
||||||
\definecolor{neutral_yellow}{HTML}{d79921}
|
\definecolor{fg0-hard}{HTML}{000000}
|
||||||
\definecolor{neutral_blue}{HTML}{458588}
|
\definecolor{fg0}{HTML}{000000}
|
||||||
\definecolor{neutral_purple}{HTML}{b16286}
|
\definecolor{fg0-soft}{HTML}{20252A}
|
||||||
\definecolor{neutral_aqua}{HTML}{689d6a}
|
\definecolor{fg1}{HTML}{072140}
|
||||||
\definecolor{neutral_orange}{HTML}{d65d0e}
|
\definecolor{fg2}{HTML}{333A41}
|
||||||
\definecolor{faded_red}{HTML}{9d0006}
|
\definecolor{fg3}{HTML}{475058}
|
||||||
\definecolor{faded_green}{HTML}{79740e}
|
\definecolor{fg4}{HTML}{6A757E}
|
||||||
\definecolor{faded_yellow}{HTML}{b57614}
|
\definecolor{bg0-hard}{HTML}{FFFFFF}
|
||||||
\definecolor{faded_blue}{HTML}{076678}
|
\definecolor{bg0}{HTML}{FBF9FA}
|
||||||
\definecolor{faded_purple}{HTML}{8f3f71}
|
\definecolor{bg0-soft}{HTML}{EBECEF}
|
||||||
\definecolor{faded_aqua}{HTML}{427b58}
|
\definecolor{bg1}{HTML}{DDE2E6}
|
||||||
\definecolor{faded_orange}{HTML}{af3a03}
|
\definecolor{bg2}{HTML}{E3EEFA}
|
||||||
|
\definecolor{bg3}{HTML}{F0F5FA}
|
||||||
% Use Gruvbox colors for various elements
|
|
||||||
% \pagecolor{light0_hard}
|
|
||||||
% \color{dark0_hard}
|
|
||||||
% \pagecolor{dark0_hard}
|
|
||||||
% \color{light0_hard}
|
|
||||||
|
|
||||||
% Section headings in bright colors
|
|
||||||
\titleformat{\section}
|
|
||||||
{\color{neutral_purple}\normalfont\Large\bfseries}
|
|
||||||
{\color{neutral_purple}\thesection}{1em}{}
|
|
||||||
|
|
||||||
\titleformat{\subsection}
|
|
||||||
{\color{neutral_blue}\normalfont\large\bfseries}
|
|
||||||
{\color{neutral_blue}\thesubsection}{1em}{}
|
|
||||||
|
|
||||||
\titleformat{\subsubsection}
|
|
||||||
{\color{neutral_aqua}\normalfont\normalsize\bfseries}
|
|
||||||
{\color{neutral_aqua}\thesubsubsection}{1em}{}
|
|
||||||
|
|
||||||
\titleformat{\paragraph}
|
|
||||||
{\color{neutral_green}\normalfont\normalsize\bfseries}
|
|
||||||
{\color{neutral_green}\theparagraph}{1em}{}
|
|
||||||
|
|
||||||
\titleformat{\subparagraph}
|
|
||||||
{\color{neutral_purple}\normalfont\normalsize\bfseries}
|
|
||||||
{\color{neutral_purple}\thesubparagraph}{1em}{}
|
|
||||||
|
|
||||||
% Links in neutral colors
|
|
||||||
\hypersetup{
|
|
||||||
colorlinks=true,
|
|
||||||
linkcolor=neutral_red,
|
|
||||||
citecolor=neutral_green,
|
|
||||||
filecolor=neutral_blue,
|
|
||||||
urlcolor=neutral_orange
|
|
||||||
}
|
|
||||||
|
@ -1,195 +1,36 @@
|
|||||||
% use this to define text in different languages for the key <env arg>
|
|
||||||
% the translation for <env arg> when the environment ends.
|
|
||||||
% (temporarily change fqname to the \fqname:<env arg> to allow
|
|
||||||
% the use of \eng and \ger without the key parameter)
|
|
||||||
% [1]: key
|
|
||||||
\newenvironment{ttext}[1][desc]{
|
|
||||||
\edef\realfqname{\fqname}
|
|
||||||
\edef\fqname{\fqname:#1}
|
|
||||||
}{
|
|
||||||
\expandafter\GT\expandafter{\fqname} \\
|
|
||||||
\edef\fqname{\realfqname}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
\def\descwidth{0.3\textwidth}
|
\def\descwidth{0.3\textwidth}
|
||||||
\def\eqwidth{0.6\textwidth}
|
\def\eqwidth{0.6\textwidth}
|
||||||
|
|
||||||
% [1]: minipage width
|
\newcommand\separateEntries{
|
||||||
% 2: fqname of name
|
|
||||||
% 3: fqname of a translation that holds the explanation
|
|
||||||
\newcommand{\NameWithExplanation}[3][\descwidth]{
|
|
||||||
\begin{minipage}{#1}
|
|
||||||
\iftranslation{#2}{
|
|
||||||
\raggedright
|
|
||||||
\gt{#2}
|
|
||||||
}{}
|
|
||||||
\iftranslation{#3}{
|
|
||||||
\\ {\color{dark1} \gt{#3}}
|
|
||||||
}{}
|
|
||||||
\end{minipage}
|
|
||||||
}
|
|
||||||
|
|
||||||
% [1]: minipage width
|
|
||||||
% 2: content
|
|
||||||
% 3: fqname of a translation that holds the explanation
|
|
||||||
\newcommand{\ContentBoxWithExplanation}[3][\eqwidth]{
|
|
||||||
\fbox{
|
|
||||||
\begin{minipage}{#1}
|
|
||||||
% \vspace{-\baselineskip} % remove the space that comes from starting a new paragraph
|
|
||||||
#2
|
|
||||||
\noindent\iftranslation{#3}{
|
|
||||||
\begingroup
|
|
||||||
\color{dark1}
|
|
||||||
\gt{#3}
|
|
||||||
% \edef\temp{\GT{#1_defs}}
|
|
||||||
% \expandafter\StrSubstitute\expandafter{\temp}{:}{\\}
|
|
||||||
\endgroup
|
|
||||||
}{}
|
|
||||||
% \vspace{-\baselineskip} % remove the space that comes from starting a new paragraph
|
|
||||||
\end{minipage}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
% 1: fqname, optional with #1_defs and #1_desc defined
|
|
||||||
% 2: content
|
|
||||||
\newcommand{\NameLeftContentRight}[2]{
|
|
||||||
\par\noindent\ignorespaces
|
|
||||||
% \textcolor{gray}{\hrule}
|
|
||||||
\vspace{0.5\baselineskip}
|
\vspace{0.5\baselineskip}
|
||||||
\NameWithExplanation[\descwidth]{#1}{#1_desc}
|
\textcolor{fg3}{\hrule}
|
||||||
\hfill
|
|
||||||
\ContentBoxWithExplanation[\eqwidth]{#2}{#1_defs}
|
|
||||||
\textcolor{dark3}{\hrule}
|
|
||||||
\vspace{0.5\baselineskip}
|
\vspace{0.5\baselineskip}
|
||||||
% \par
|
|
||||||
% \hrule
|
|
||||||
}
|
|
||||||
|
|
||||||
\newcommand{\insertEquation}[2]{
|
|
||||||
\NameLeftContentRight{#1}{
|
|
||||||
\begin{align}
|
|
||||||
\label{eq:\fqname:#1}
|
|
||||||
#2
|
|
||||||
\end{align}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
\newcommand{\insertFLAlign}[2]{ % eq name, #cols, eq
|
|
||||||
\NameLeftContentRight{#1}{%
|
|
||||||
\begin{flalign}%
|
|
||||||
% dont place label when one is provided
|
|
||||||
% \IfSubStringInString{label}\unexpanded{#3}{}{
|
|
||||||
% \label{eq:#1}
|
|
||||||
% }
|
|
||||||
#2%
|
|
||||||
\end{flalign}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
\newcommand{\insertAlignedAt}[3]{ % eq name, #cols, eq
|
|
||||||
\NameLeftContentRight{#1}{%
|
|
||||||
\begin{alignat}{#2}%
|
|
||||||
% dont place label when one is provided
|
|
||||||
% \IfSubStringInString{label}\unexpanded{#3}{}{
|
|
||||||
% \label{eq:#1}
|
|
||||||
% }
|
|
||||||
#3%
|
|
||||||
\end{alignat}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
\newcommand\luaexpr[1]{\directlua{tex.sprint(#1)}}
|
|
||||||
% 1: fqname
|
|
||||||
% 2: file path
|
|
||||||
% 3: equation
|
|
||||||
\newcommand{\insertEquationWithFigure}[4][0.55]{
|
|
||||||
\par\noindent\ignorespaces
|
|
||||||
% \textcolor{gray}{\hrule}
|
|
||||||
\vspace{0.5\baselineskip}
|
|
||||||
\begin{minipage}{#1\textwidth}
|
|
||||||
\NameWithExplanation[\textwidth]{#2}{#2_desc}
|
|
||||||
% TODO: why is this ignored
|
|
||||||
\vspace{1.0cm}
|
|
||||||
% TODO: fix box is too large without 0.9
|
|
||||||
\ContentBoxWithExplanation[0.90\textwidth]{
|
|
||||||
\begin{align}
|
|
||||||
\label{eq:\fqname:#2}
|
|
||||||
#4
|
|
||||||
\end{align}
|
|
||||||
}{#2_defs}
|
|
||||||
\end{minipage}
|
|
||||||
\hfill
|
|
||||||
\begin{minipage}{\luaexpr{1.0-#1}\textwidth}
|
|
||||||
\begin{figure}[H]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=\textwidth]{#3}
|
|
||||||
\label{fig:\fqname:#2}
|
|
||||||
\end{figure}
|
|
||||||
\end{minipage}
|
|
||||||
\textcolor{dark3}{\hrule}
|
|
||||||
\vspace{0.5\baselineskip}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
\newenvironment{formula}[1]{
|
|
||||||
% key
|
|
||||||
\newcommand{\desc}[4][english]{
|
|
||||||
% language, name, description, definitions
|
|
||||||
\dt[#1]{##1}{##2}
|
|
||||||
\ifblank{##3}{}{\dt[#1_desc]{##1}{##3}}
|
|
||||||
\ifblank{##4}{}{\dt[#1_defs]{##1}{##4}}
|
|
||||||
}
|
|
||||||
\newcommand{\eq}[1]{
|
|
||||||
\insertEquation{#1}{##1}
|
|
||||||
}
|
|
||||||
\newcommand{\eqAlignedAt}[2]{
|
|
||||||
\insertAlignedAt{#1}{##1}{##2}
|
|
||||||
}
|
|
||||||
\newcommand{\eqFLAlign}[1]{
|
|
||||||
\insertFLAlign{#1}{##1}
|
|
||||||
}
|
|
||||||
\newcommand{\figeq}[2]{
|
|
||||||
\insertEquationWithFigure{#1}{##1}{##2}
|
|
||||||
}
|
|
||||||
\newcommand{\content}[1]{
|
|
||||||
\NameLeftContentRight{#1}{##1}
|
|
||||||
}
|
|
||||||
}{\ignorespacesafterend}
|
|
||||||
|
|
||||||
|
|
||||||
\newenvironment{quantity}[5]{
|
|
||||||
% key, symbol, si unit, si base units, comment (key to translation)
|
|
||||||
\newcommand{\desc}[3][english]{
|
|
||||||
% language, name, description
|
|
||||||
\DT[qty:#1]{}{##1}{##2}
|
|
||||||
\ifblank{##3}{}{\DT[qty:#1_desc]{##1}{##3}}
|
|
||||||
}
|
|
||||||
\newcommand{\eq}[1]{
|
|
||||||
\insertEquation{#1}{##1}
|
|
||||||
}
|
|
||||||
\newcommand{\eqAlignedAt}[2]{
|
|
||||||
\insertAlignedAt{#1}{##1}{##2}
|
|
||||||
}
|
|
||||||
\newcommand{\eqFLAlign}[1]{
|
|
||||||
\insertFLAlign{#1}{##1}
|
|
||||||
}
|
|
||||||
|
|
||||||
\edef\qtyname{#1}
|
|
||||||
\edef\qtysign{#2}
|
|
||||||
\edef\qtyunit{#3}
|
|
||||||
\edef\qtybaseunits{#4}
|
|
||||||
\edef\qtycomment{#5}
|
|
||||||
}
|
|
||||||
{
|
|
||||||
Quantity: \expandafter\GT\expandafter{qty:\qtyname}: \GT{qty:\qtyname_desc} \\
|
|
||||||
$\qtysign$ $[\SI{\qtyunit}] = [\SI{\qtybaseunits}]$ - \qtycomment \\
|
|
||||||
\ignorespacesafterend
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% Custon environment with table of contents, requires etoolbox?
|
||||||
|
% Define a custom list
|
||||||
|
\newcommand{\listofmyenv}{%
|
||||||
|
\section*{List of My Environments}%
|
||||||
|
\addcontentsline{toc}{section}{List of My Environments}%
|
||||||
|
\par\noindent\hrule\par\vspace{0.5\baselineskip}\@starttoc{myenv}%
|
||||||
|
}
|
||||||
|
\newcommand{\addmyenv}[1]{\addcontentsline{myenv}{subsection}{\protect\numberline{\themyenv}#1}}
|
||||||
|
% Define the custom environment
|
||||||
|
\newcounter{myenv}
|
||||||
|
\newenvironment{myenv}[1]{%
|
||||||
|
\refstepcounter{myenv}%
|
||||||
|
\addmyenv{#1}%
|
||||||
|
\noindent\textbf{My Environment \themyenv: #1}\par%
|
||||||
|
}{\par\vspace{0.5\baselineskip}}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%
|
||||||
|
% DISTRIBUTION
|
||||||
|
%
|
||||||
\def\distrightwidth{0.45\textwidth}
|
\def\distrightwidth{0.45\textwidth}
|
||||||
\def\distleftwidth{0.45\textwidth}
|
\def\distleftwidth{0.45\textwidth}
|
||||||
|
|
||||||
@ -202,11 +43,12 @@
|
|||||||
% add links to some names
|
% add links to some names
|
||||||
\directlua{
|
\directlua{
|
||||||
local cases = {
|
local cases = {
|
||||||
pdf = "eq:pt:distributions:pdf",
|
pdf = "f:math:pt:pdf",
|
||||||
pmf = "eq:pt:distributions:pdf",
|
pmf = "f:math:pt:pmf",
|
||||||
cdf = "eq:pt:distributions:cdf",
|
cdf = "f:math:pt:cdf",
|
||||||
mean = "eq:pt:mean",
|
mean = "f:math:pt:mean",
|
||||||
variance = "eq:pt:variance"
|
variance = "f:math:pt:variance",
|
||||||
|
median = "f:math:pt:median",
|
||||||
}
|
}
|
||||||
if cases["\luaescapestring{##1}"] \string~= nil then
|
if cases["\luaescapestring{##1}"] \string~= nil then
|
||||||
tex.sprint("\\hyperref["..cases["\luaescapestring{##1}"].."]{\\GT{##1}}")
|
tex.sprint("\\hyperref["..cases["\luaescapestring{##1}"].."]{\\GT{##1}}")
|
||||||
@ -239,22 +81,34 @@
|
|||||||
\edef\tmpMinipagetableWidth{#1}
|
\edef\tmpMinipagetableWidth{#1}
|
||||||
\edef\tmpMinipagetableName{#2}
|
\edef\tmpMinipagetableName{#2}
|
||||||
\directlua{
|
\directlua{
|
||||||
|
table_name = "\luaescapestring{#2}"
|
||||||
entries = {}
|
entries = {}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
% Normal entry
|
||||||
|
% 1: field name (translation key)
|
||||||
|
% 2: entry text
|
||||||
|
\newcommand{\entry}[2]{
|
||||||
|
\directlua{
|
||||||
|
table.insert(entries, {key = "\luaescapestring{##1}", value = [[\detokenize{##2}]]})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
% Translation entry
|
||||||
% 1: field name (translation key)
|
% 1: field name (translation key)
|
||||||
% 2: translation define statements (field content)
|
% 2: translation define statements (field content)
|
||||||
\newcommand{\entry}[2]{
|
\newcommand{\tentry}[2]{
|
||||||
% temporarily set fqname so that the translation commands dont need an explicit key
|
% temporarily set fqname so that the translation commands dont need an explicit key
|
||||||
\edef\fqname{\tmpFqname:#2:##1}
|
\edef\fqname{\tmpFqname:#2:##1}
|
||||||
##2
|
##2
|
||||||
\edef\fqname{\tmpFqname}
|
\edef\fqname{\tmpFqname}
|
||||||
\directlua{
|
\directlua{
|
||||||
table.insert(entries, "\luaescapestring{##1}")
|
table.insert(entries, {key = "\luaescapestring{##1}", value = "\\gt{" .. table_name .. ":\luaescapestring{##1}}"})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}{
|
}{
|
||||||
% \hfill
|
% \hfill
|
||||||
|
% reset the fqname
|
||||||
|
\edef\fqname{\tmpFqname}
|
||||||
\begin{minipage}{\tmpMinipagetableWidth}
|
\begin{minipage}{\tmpMinipagetableWidth}
|
||||||
\begingroup
|
\begingroup
|
||||||
\setlength{\tabcolsep}{0.9em} % horizontal
|
\setlength{\tabcolsep}{0.9em} % horizontal
|
||||||
@ -262,13 +116,12 @@
|
|||||||
\begin{tabularx}{\textwidth}{|l|X|}
|
\begin{tabularx}{\textwidth}{|l|X|}
|
||||||
\hline
|
\hline
|
||||||
\directlua{
|
\directlua{
|
||||||
for _, k in ipairs(entries) do
|
for _, kv in ipairs(entries) do
|
||||||
tex.print("\\GT{" .. k .. "} & \\gt{\tmpMinipagetableName:" .. k .. "}\\\\")
|
tex.print("\\GT{" .. kv.key .. "} & " .. kv.value .. "\\\\")
|
||||||
end
|
end
|
||||||
}
|
}
|
||||||
\hline
|
\hline
|
||||||
\end{tabularx}
|
\end{tabularx}
|
||||||
\endgroup
|
\endgroup
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
% reset the fqname
|
|
||||||
}
|
}
|
||||||
|
180
src/util/fqname.tex
Normal file
180
src/util/fqname.tex
Normal file
@ -0,0 +1,180 @@
|
|||||||
|
% Everything related to referencing stuff
|
||||||
|
|
||||||
|
\newcommand\printFqName{\expandafter\detokenize\expandafter{\fqname}}
|
||||||
|
|
||||||
|
% SECTIONING
|
||||||
|
% start <section>, get heading from translation, set label
|
||||||
|
% secFqname is the fully qualified name of sections: the keys of all previous sections joined with a ':'
|
||||||
|
% fqname is secFqname:<key> where <key> is the key/id of some environment, like formula
|
||||||
|
% [1]: code to run after setting \fqname, but before the \part, \section etc
|
||||||
|
% 2: key
|
||||||
|
\newcommand{\Part}[2][desc]{
|
||||||
|
\newpage
|
||||||
|
\def\partName{#2}
|
||||||
|
\def\sectionName{}
|
||||||
|
\def\subsectionName{}
|
||||||
|
\def\subsubsectionName{}
|
||||||
|
\edef\fqname{\partName}
|
||||||
|
\edef\secFqname{\fqname}
|
||||||
|
#1
|
||||||
|
\edef\fqnameText{\expandafter\GetTranslation\expandafter{\fqname}}
|
||||||
|
\part{\fqnameText}
|
||||||
|
\label{sec:\fqname}
|
||||||
|
}
|
||||||
|
\newcommand{\Section}[2][]{
|
||||||
|
\def\sectionName{#2}
|
||||||
|
\def\subsectionName{}
|
||||||
|
\def\subsubsectionName{}
|
||||||
|
\edef\fqname{\partName:\sectionName}
|
||||||
|
\edef\secFqname{\fqname}
|
||||||
|
#1
|
||||||
|
% this is necessary so that \section takes the fully expanded string. Otherwise the pdf toc will have just the fqname
|
||||||
|
\edef\fqnameText{\expandafter\GetTranslation\expandafter{\fqname}}
|
||||||
|
\section{\fqnameText}
|
||||||
|
\label{sec:\fqname}
|
||||||
|
}
|
||||||
|
% \newcommand{\Subsection}[1]{\Subsection{#1}{}}
|
||||||
|
\newcommand{\Subsection}[2][]{
|
||||||
|
\def\subsectionName{#2}
|
||||||
|
\def\subsubsectionName{}
|
||||||
|
\edef\fqname{\partName:\sectionName:\subsectionName}
|
||||||
|
\edef\secFqname{\fqname}
|
||||||
|
#1
|
||||||
|
\edef\fqnameText{\expandafter\GetTranslation\expandafter{\fqname}}
|
||||||
|
\subsection{\fqnameText}
|
||||||
|
\label{sec:\fqname}
|
||||||
|
}
|
||||||
|
\newcommand{\Subsubsection}[2][]{
|
||||||
|
\def\subsubsectionName{#2}
|
||||||
|
\edef\fqname{\partName:\sectionName:\subsectionName:\subsubsectionName}
|
||||||
|
\edef\secFqname{\fqname}
|
||||||
|
#1
|
||||||
|
\edef\fqnameText{\expandafter\GetTranslation\expandafter{\fqname}}
|
||||||
|
\subsubsection{\fqnameText}
|
||||||
|
\label{sec:\fqname}
|
||||||
|
}
|
||||||
|
\edef\fqname{NULL}
|
||||||
|
|
||||||
|
\newcommand\luaDoubleFieldValue[3]{%
|
||||||
|
\directlua{
|
||||||
|
if #1 \string~= nil and #1[#2] \string~= nil and #1[#2][#3] \string~= nil then
|
||||||
|
tex.sprint(#1[#2][#3])
|
||||||
|
return
|
||||||
|
end
|
||||||
|
luatexbase.module_warning('luaDoubleFieldValue', 'Invalid indices to `#1`: `#2` and `#3`');
|
||||||
|
tex.sprint("???")
|
||||||
|
}%
|
||||||
|
}
|
||||||
|
% REFERENCES
|
||||||
|
% All xyzRef commands link to the key using the translated name
|
||||||
|
% Uppercase (XyzRef) commands have different link texts, but the same link target
|
||||||
|
% 1: key/fully qualified name (without qty/eq/sec/const/el... prefix)
|
||||||
|
|
||||||
|
% Equations/Formulas
|
||||||
|
% \newrobustcmd{\fqEqRef}[1]{%
|
||||||
|
\newrobustcmd{\fqEqRef}[1]{%
|
||||||
|
% \edef\fqeqrefname{\GT{#1}}
|
||||||
|
% \hyperref[eq:#1]{\fqeqrefname}
|
||||||
|
\hyperref[f:#1]{\GT{#1}}%
|
||||||
|
}
|
||||||
|
% Formula in the current section
|
||||||
|
\newrobustcmd{\secEqRef}[1]{%
|
||||||
|
% \edef\fqeqrefname{\GT{#1}}
|
||||||
|
% \hyperref[eq:#1]{\fqeqrefname}
|
||||||
|
\hyperref[f:\secFqname:#1]{\GT{\secFqname:#1}}%
|
||||||
|
}
|
||||||
|
|
||||||
|
% Section
|
||||||
|
% <name>
|
||||||
|
\newrobustcmd{\fqSecRef}[1]{%
|
||||||
|
\hyperref[sec:#1]{\GT{#1}}%
|
||||||
|
}
|
||||||
|
% Quantities
|
||||||
|
% <symbol>
|
||||||
|
\newrobustcmd{\qtyRef}[1]{%
|
||||||
|
\edef\tempname{\luaDoubleFieldValue{quantities}{"#1"}{"fqname"}}%
|
||||||
|
\hyperref[qty:#1]{\expandafter\GT\expandafter{\tempname:#1}}%
|
||||||
|
}
|
||||||
|
% <symbol> <name>
|
||||||
|
\newrobustcmd{\QtyRef}[1]{%
|
||||||
|
$\luaDoubleFieldValue{quantities}{"#1"}{"symbol"}$ \qtyRef{#1}%
|
||||||
|
}
|
||||||
|
% Constants
|
||||||
|
% <name>
|
||||||
|
\newrobustcmd{\constRef}[1]{%
|
||||||
|
\edef\tempname{\luaDoubleFieldValue{constants}{"#1"}{"fqname"}}%
|
||||||
|
\hyperref[const:#1]{\expandafter\GT\expandafter{\tempname:#1}}%
|
||||||
|
}
|
||||||
|
% <symbol> <name>
|
||||||
|
\newrobustcmd{\ConstRef}[1]{%
|
||||||
|
$\luaDoubleFieldValue{constants}{"#1"}{"symbol"}$ \constRef{#1}%
|
||||||
|
}
|
||||||
|
% Element from periodic table
|
||||||
|
% <symbol>
|
||||||
|
\newrobustcmd{\elRef}[1]{%
|
||||||
|
\hyperref[el:#1]{{\color{fg0}#1}}%
|
||||||
|
}
|
||||||
|
% <name>
|
||||||
|
\newrobustcmd{\ElRef}[1]{%
|
||||||
|
\hyperref[el:#1]{\GT{el:#1}}%
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% "LABELS"
|
||||||
|
% These currently do not place a label,
|
||||||
|
% instead they provide an alternative way to reference an existing label
|
||||||
|
\directLuaAux{
|
||||||
|
if absLabels == nil then
|
||||||
|
absLabels = {}
|
||||||
|
end
|
||||||
|
}
|
||||||
|
% [1]: target (fqname to point to)
|
||||||
|
% 2: key
|
||||||
|
\newcommand{\absLink}[2][sec:\fqname]{
|
||||||
|
\directLuaAuxExpand{
|
||||||
|
absLabels["#2"] = [[#1]]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\directLuaAux{
|
||||||
|
if abbrLabels == nil then
|
||||||
|
abbrLabels = {}
|
||||||
|
end
|
||||||
|
}
|
||||||
|
% [1]: target (fqname to point to)
|
||||||
|
% 2: key
|
||||||
|
% 3: label (abbreviation)
|
||||||
|
\newcommand{\abbrLink}[3][sec:\fqname]{
|
||||||
|
\directLuaAuxExpand{
|
||||||
|
abbrLabels["#2"] = {}
|
||||||
|
abbrLabels["#2"]["abbr"] = [[#3]]
|
||||||
|
abbrLabels["#2"]["fqname"] = [[#1]]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
% [1]:
|
||||||
|
\newrobustcmd{\absRef}[2][\relax]{%
|
||||||
|
\directlua{
|
||||||
|
if absLabels["#2"] == nil then
|
||||||
|
tex.sprint("\\detokenize{#2}???")
|
||||||
|
else
|
||||||
|
if "#1" == "" then %-- if [#1] is not given, use translation of key as text, else us given text
|
||||||
|
tex.sprint("\\hyperref[" .. absLabels["#2"] .. "]{\\GT{" .. absLabels["#2"] .. "}}")
|
||||||
|
else
|
||||||
|
tex.sprint("\\hyperref[" .. absLabels["#2"] .. "]{\luaescapestring{#1}}")
|
||||||
|
end
|
||||||
|
end
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\newrobustcmd{\abbrRef}[1]{%
|
||||||
|
\directlua{
|
||||||
|
if abbrLabels["#1"] == nil then
|
||||||
|
tex.sprint("\\detokenize{#1}???")
|
||||||
|
else
|
||||||
|
tex.sprint("\\hyperref[" .. abbrLabels["#1"]["fqname"] .. "]{" .. abbrLabels["#1"]["abbr"] .. "}")
|
||||||
|
end
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -1,50 +1,198 @@
|
|||||||
\def\gooditem{\item[{$\color{neutral_red}\bullet$}]}
|
% use \newcommand instead of \def because we want to throw an error if a command gets redefined
|
||||||
\def\baditem{\item[{$\color{neutral_green}\bullet$}]}
|
\newcommand\smartnewline[1]{\ifhmode\\\fi} % newline only if there in horizontal mode
|
||||||
|
\newcommand\gooditem{\item[{$\color{fg-green}\bullet$}]}
|
||||||
|
\newcommand\baditem{\item[{$\color{fg-red}\bullet$}]}
|
||||||
|
|
||||||
\def\Grad{\vec{\nabla}}
|
% Functions with (optional) paranthesis
|
||||||
\def\Div{\vec{\nabla} \cdot}
|
% 1: The function (like \exp, \sin etc.)
|
||||||
\def\Rot{\vec{\nabla} \times}
|
% 2: The argument (optional)
|
||||||
\def\vecr{\vec{r}}
|
% If an argument is provided, it is wrapped in paranthesis.
|
||||||
|
\newcommand\CmdWithParenthesis[2]{
|
||||||
|
\ifstrequal{#2}{\relax}{
|
||||||
|
#1
|
||||||
|
}{
|
||||||
|
#1\left(#2\right)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\newcommand\CmdInParenthesis[2]{
|
||||||
|
\ifstrequal{#2}{\relax}{
|
||||||
|
#1
|
||||||
|
}{
|
||||||
|
\left(#1 #2\right)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
\def\kB{k_\text{B}}
|
|
||||||
\def\EFermi{E_\text{F}}
|
|
||||||
|
|
||||||
\def\masse{m_\textrm{e}}
|
% COMMON SYMBOLS WITH SUPER/SUBSCRIPTS, VECTOR ARROWS ETC.
|
||||||
|
% \def\laplace{\Delta} % Laplace operator
|
||||||
|
\newcommand\laplace{\bigtriangleup} % Laplace operator
|
||||||
|
% symbols
|
||||||
|
\newcommand\Grad{\vec{\nabla}}
|
||||||
|
\newcommand\Div {\vec{\nabla} \cdot}
|
||||||
|
\newcommand\Rot {\vec{\nabla} \times}
|
||||||
|
% symbols with parens
|
||||||
|
\newcommand\GradS[1][\relax]{\CmdInParenthesis{\Grad}{#1}}
|
||||||
|
\newcommand\DivS [1][\relax]{\CmdInParenthesis{\Div} {#1}}
|
||||||
|
\newcommand\RotS [1][\relax]{\CmdInParenthesis{\Rot} {#1}}
|
||||||
|
% text with parens
|
||||||
|
\newcommand\GradT[1][\relax]{\CmdWithParenthesis{\text{grad}\,}{#1}}
|
||||||
|
\newcommand\DivT[1][\relax] {\CmdWithParenthesis{\text{div}\,} {#1}}
|
||||||
|
\newcommand\RotT[1][\relax] {\CmdWithParenthesis{\text{rot}\,} {#1}}
|
||||||
|
\newcommand\kB{k_\text{B}} % boltzmann
|
||||||
|
\newcommand\NA{N_\text{A}} % avogadro
|
||||||
|
\newcommand\EFermi{E_\text{F}} % fermi energy
|
||||||
|
\newcommand\Efermi{E_\text{F}} % fermi energy
|
||||||
|
\newcommand\Evalence{E_\text{v}} % val vand energy
|
||||||
|
\newcommand\Econd{E_\text{c}} % cond. band nergy
|
||||||
|
\newcommand\Egap{E_\text{gap}} % band gap energy
|
||||||
|
\newcommand\Evac{E_\text{vac}} % vacuum energy
|
||||||
|
\newcommand\masse{m_\text{e}} % electron mass
|
||||||
|
\newcommand\Four{\mathcal{F}} % Fourier transform
|
||||||
|
\newcommand\Lebesgue{\mathcal{L}} % Lebesgue
|
||||||
|
% \newcommand\O{\mathcal{O}} % order
|
||||||
|
\newcommand\PhiB{\Phi_\text{B}} % mag. flux
|
||||||
|
\newcommand\PhiE{\Phi_\text{E}} % electric flux
|
||||||
|
\newcommand\nreal{n^{\prime}} % refraction real part
|
||||||
|
\newcommand\ncomplex{n^{\prime\prime}} % refraction index complex part
|
||||||
|
\newcommand\I{i} % complex/imaginary unit
|
||||||
|
\newcommand\crit{\text{crit}} % crit (for subscripts)
|
||||||
|
\newcommand\muecp{\overline{\mu}} % electrochemical potential
|
||||||
|
% \newcommand\pH{\text{pH}} % pH, already defined by one of the chem packages
|
||||||
|
\newcommand\rfactor{\text{rf}} % rf roughness_factor
|
||||||
|
|
||||||
\def\R{\mathbb{R}}
|
|
||||||
\def\C{\mathbb{C}}
|
|
||||||
\def\Z{\mathbb{Z}}
|
|
||||||
\def\N{\mathbb{N}}
|
|
||||||
|
|
||||||
\def\Four{\mathcal{F}} % Fourier transform
|
% SYMBOLS
|
||||||
\def\Lebesgue{\mathcal{L}} % Lebesgue
|
\newcommand\R{\mathbb{R}}
|
||||||
\def\Order{\mathcal{O}}
|
\newcommand\C{\mathbb{C}}
|
||||||
|
\newcommand\Z{\mathbb{Z}}
|
||||||
|
\newcommand\N{\mathbb{N}}
|
||||||
|
\newcommand\id{\mathbb{1}}
|
||||||
|
% caligraphic
|
||||||
|
\newcommand\E{\mathcal{E}} % electric field
|
||||||
|
% upright, vector
|
||||||
|
\newcommand\txA{\text{A}} \newcommand\vecA{\vec{A}}
|
||||||
|
\newcommand\txB{\text{B}} \newcommand\vecB{\vec{B}}
|
||||||
|
\newcommand\txC{\text{C}} \newcommand\vecC{\vec{C}}
|
||||||
|
\newcommand\txD{\text{D}} \newcommand\vecD{\vec{D}}
|
||||||
|
\newcommand\txE{\text{E}} \newcommand\vecE{\vec{E}}
|
||||||
|
\newcommand\txF{\text{F}} \newcommand\vecF{\vec{F}}
|
||||||
|
\newcommand\txG{\text{G}} \newcommand\vecG{\vec{G}}
|
||||||
|
\newcommand\txH{\text{H}} \newcommand\vecH{\vec{H}}
|
||||||
|
\newcommand\txI{\text{I}} \newcommand\vecI{\vec{I}}
|
||||||
|
\newcommand\txJ{\text{J}} \newcommand\vecJ{\vec{J}}
|
||||||
|
\newcommand\txK{\text{K}} \newcommand\vecK{\vec{K}}
|
||||||
|
\newcommand\txL{\text{L}} \newcommand\vecL{\vec{L}}
|
||||||
|
\newcommand\txM{\text{M}} \newcommand\vecM{\vec{M}}
|
||||||
|
\newcommand\txN{\text{N}} \newcommand\vecN{\vec{N}}
|
||||||
|
\newcommand\txO{\text{O}} \newcommand\vecO{\vec{O}}
|
||||||
|
\newcommand\txP{\text{P}} \newcommand\vecP{\vec{P}}
|
||||||
|
\newcommand\txQ{\text{Q}} \newcommand\vecQ{\vec{Q}}
|
||||||
|
\newcommand\txR{\text{R}} \newcommand\vecR{\vec{R}}
|
||||||
|
\newcommand\txS{\text{S}} \newcommand\vecS{\vec{S}}
|
||||||
|
\newcommand\txT{\text{T}} \newcommand\vecT{\vec{T}}
|
||||||
|
\newcommand\txU{\text{U}} \newcommand\vecU{\vec{U}}
|
||||||
|
\newcommand\txV{\text{V}} \newcommand\vecV{\vec{V}}
|
||||||
|
\newcommand\txW{\text{W}} \newcommand\vecW{\vec{W}}
|
||||||
|
\newcommand\txX{\text{X}} \newcommand\vecX{\vec{X}}
|
||||||
|
\newcommand\txY{\text{Y}} \newcommand\vecY{\vec{Y}}
|
||||||
|
\newcommand\txZ{\text{Z}} \newcommand\vecZ{\vec{Z}}
|
||||||
|
|
||||||
|
\newcommand\txa{\text{a}} \newcommand\veca{\vec{a}}
|
||||||
|
\newcommand\txb{\text{b}} \newcommand\vecb{\vec{b}}
|
||||||
|
\newcommand\txc{\text{c}} \newcommand\vecc{\vec{c}}
|
||||||
|
\newcommand\txd{\text{d}} \newcommand\vecd{\vec{d}}
|
||||||
|
\newcommand\txe{\text{e}} \newcommand\vece{\vec{e}}
|
||||||
|
\newcommand\txf{\text{f}} \newcommand\vecf{\vec{f}}
|
||||||
|
\newcommand\txg{\text{g}} \newcommand\vecg{\vec{g}}
|
||||||
|
\newcommand\txh{\text{h}} \newcommand\vech{\vec{h}}
|
||||||
|
\newcommand\txi{\text{i}} \newcommand\veci{\vec{i}}
|
||||||
|
\newcommand\txj{\text{j}} \newcommand\vecj{\vec{j}}
|
||||||
|
\newcommand\txk{\text{k}} \newcommand\veck{\vec{k}}
|
||||||
|
\newcommand\txl{\text{l}} \newcommand\vecl{\vec{l}}
|
||||||
|
\newcommand\txm{\text{m}} \newcommand\vecm{\vec{m}}
|
||||||
|
\newcommand\txn{\text{n}} \newcommand\vecn{\vec{n}}
|
||||||
|
\newcommand\txo{\text{o}} \newcommand\veco{\vec{o}}
|
||||||
|
\newcommand\txp{\text{p}} \newcommand\vecp{\vec{p}}
|
||||||
|
\newcommand\txq{\text{q}} \newcommand\vecq{\vec{q}}
|
||||||
|
\newcommand\txr{\text{r}} \newcommand\vecr{\vec{r}}
|
||||||
|
\newcommand\txs{\text{s}} \newcommand\vecs{\vec{s}}
|
||||||
|
\newcommand\txt{\text{t}} \newcommand\vect{\vec{t}}
|
||||||
|
\newcommand\txu{\text{u}} \newcommand\vecu{\vec{u}}
|
||||||
|
\newcommand\txv{\text{v}} \newcommand\vecv{\vec{v}}
|
||||||
|
\newcommand\txw{\text{w}} \newcommand\vecw{\vec{w}}
|
||||||
|
\newcommand\txx{\text{x}} \newcommand\vecx{\vec{x}}
|
||||||
|
\newcommand\txy{\text{y}} \newcommand\vecy{\vec{y}}
|
||||||
|
\newcommand\txz{\text{z}} \newcommand\vecz{\vec{z}}
|
||||||
|
|
||||||
% complex, may be changed later to idot or upright...
|
% SPACES
|
||||||
\def\I{i}
|
\newcommand\sdots{\,\dots\,}
|
||||||
|
\newcommand\qdots{\quad\dots\quad}
|
||||||
|
\newcommand\qRarrow{\quad\Rightarrow\quad}
|
||||||
|
|
||||||
\def\sdots{\,\dots\,}
|
% ANNOTATIONS
|
||||||
\def\qdots{\quad\dots\quad}
|
% put an explanation above an equal sign
|
||||||
\def\qRarrow{\quad\Rightarrow\quad}
|
% [1]: equality sign (or anything else)
|
||||||
|
% 2: text (not in math mode!)
|
||||||
|
\newcommand{\explUnderEq}[2][=]{%
|
||||||
|
\underset{\substack{\uparrow\\\mathrlap{\text{\hspace{-1em}#2}}}}{#1}}
|
||||||
|
\newcommand{\explOverEq}[2][=]{%
|
||||||
|
\overset{\substack{\mathrlap{\text{\hspace{-1em}#2}}\\\downarrow}}{#1}}
|
||||||
|
\newcommand{\eqnote}[1]{
|
||||||
|
\text{\color{fg2}#1}
|
||||||
|
}
|
||||||
|
|
||||||
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
|
|
||||||
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
|
|
||||||
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
|
|
||||||
|
|
||||||
|
% DELIMITERS
|
||||||
|
% not using DeclarePairedDelmiter to always get scaling
|
||||||
|
\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
|
||||||
|
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
|
||||||
|
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
|
||||||
|
|
||||||
|
% OPERATORS
|
||||||
|
% * places subset under the word instead of next to it
|
||||||
\DeclareMathOperator{\e}{e}
|
\DeclareMathOperator{\e}{e}
|
||||||
\DeclareMathOperator{\T}{T} % transposed
|
\def\T{\text{T}} % transposed
|
||||||
\DeclareMathOperator{\sgn}{sgn}
|
\DeclareMathOperator{\sgn}{sgn}
|
||||||
\DeclareMathOperator{\tr}{tr}
|
\DeclareMathOperator{\tr}{tr}
|
||||||
\DeclareMathOperator{\const}{const}
|
\DeclareMathOperator{\const}{const}
|
||||||
\DeclareMathOperator{\erf}{erf}
|
\DeclareMathOperator{\erf}{erf}
|
||||||
|
\DeclareMathOperator{\erfc}{erfc}
|
||||||
|
\DeclareMathOperator{\cov}{cov}
|
||||||
|
|
||||||
|
\DeclareMathOperator*{\argmin}{arg\,min}
|
||||||
|
\DeclareMathOperator*{\argmax}{arg\,max}
|
||||||
|
% \DeclareMathOperator{\div}{div}
|
||||||
|
% \DeclareMathOperator{\grad}{grad}
|
||||||
|
% \DeclareMathOperator{\rot}{rot}
|
||||||
|
% \DeclareMathOperator{\arcsin}{arcsin}
|
||||||
|
% \DeclareMathOperator{\arccos}{arccos}
|
||||||
|
% \DeclareMathOperator{\arctan}{arctan}
|
||||||
|
\DeclareMathOperator{\arccot}{arccot}
|
||||||
|
\DeclareMathOperator{\arsinh}{arsinh}
|
||||||
|
\DeclareMathOperator{\arcosh}{arcosh}
|
||||||
|
\DeclareMathOperator{\artanh}{artanh}
|
||||||
|
\DeclareMathOperator{\arcoth}{arcoth}
|
||||||
% diff, for integrals and stuff
|
% diff, for integrals and stuff
|
||||||
% \DeclareMathOperator{\dd}{d}
|
% \DeclareMathOperator{\dd}{d}
|
||||||
\renewcommand*\d{\mathop{}\!\mathrm{d}}
|
\renewcommand*\d{\mathop{}\!\mathrm{d}}
|
||||||
|
% times 10^{x}
|
||||||
% functions with paranthesis
|
\newcommand\xE[1]{\cdot 10^{#1}}
|
||||||
\newcommand\CmdWithParenthesis[2]{
|
|
||||||
#1\left(#2\right)
|
|
||||||
}
|
|
||||||
\newcommand\Exp[1]{\CmdWithParenthesis{\exp}{#1}}
|
\newcommand\Exp[1]{\CmdWithParenthesis{\exp}{#1}}
|
||||||
\newcommand\Sin[1]{\CmdWithParenthesis{\sin}{#1}}
|
\newcommand\Sin[1]{\CmdWithParenthesis{\sin}{#1}}
|
||||||
\newcommand\Cos[1]{\CmdWithParenthesis{\cos}{#1}}
|
\newcommand\Cos[1]{\CmdWithParenthesis{\cos}{#1}}
|
||||||
|
\newcommand\Ln[1]{\CmdWithParenthesis{\ln}{#1}}
|
||||||
|
\newcommand\Log[1]{\CmdWithParenthesis{\log}{#1}}
|
||||||
|
\newcommand\Order[1]{\CmdWithParenthesis{\mathcal{O}}{#1}}
|
||||||
|
|
||||||
|
% VECTOR, MATRIX and TENSOR
|
||||||
|
% use vecAr to force an arrow
|
||||||
|
\NewCommandCopy{\vecAr}{\vec}
|
||||||
|
% extra {} assure they can b directly used after _
|
||||||
|
%% arrow/underline
|
||||||
|
\newcommand\mat[1]{{\ensuremath{\underline{#1}}}}
|
||||||
|
\renewcommand\vec[1]{{\ensuremath{\vecAr{#1}}}}
|
||||||
|
\newcommand\ten[1]{{\ensuremath{[#1]}}}
|
||||||
|
\newcommand\complex[1]{{\ensuremath{\tilde{#1}}}}
|
||||||
|
%% bold
|
||||||
|
% \newcommand\mat[1]{{\ensuremath{\bm{#1}}}}
|
||||||
|
% \renewcommand\vec[1]{{\ensuremath{\bm{#1}}}}
|
||||||
|
114
src/util/tikz_macros.tex
Normal file
114
src/util/tikz_macros.tex
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
|
||||||
|
\tikzset{
|
||||||
|
% bands
|
||||||
|
sc band con/.style={ draw=fg0, thick},
|
||||||
|
sc band val/.style={ draw=fg0, thick},
|
||||||
|
sc band vac/.style={ draw=fg1, thick},
|
||||||
|
sc band/.style={ draw=fg0, thick},
|
||||||
|
sc fermi level/.style={draw=fg-aqua,dashed,thick},
|
||||||
|
% electron filled
|
||||||
|
sc occupied/.style={
|
||||||
|
pattern=north east lines,
|
||||||
|
pattern color=fg-aqua,
|
||||||
|
draw=none
|
||||||
|
},
|
||||||
|
% materials
|
||||||
|
sc p type/.style={ draw=none,fill=bg-yellow!20},
|
||||||
|
sc n type/.style={ draw=none,fill=bg-blue!20},
|
||||||
|
sc metal/.style={ draw=none,fill=bg-purple!20},
|
||||||
|
sc oxide/.style={ draw=none,fill=bg-green!20},
|
||||||
|
sc separate/.style={ draw=fg0,dotted},
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand\drawDArrow[4]{
|
||||||
|
\draw[<->] (#1,#2) -- (#1,#3) node[midway,right] () {#4};
|
||||||
|
}
|
||||||
|
% Band bending down at L-R interface: BendH must be negative
|
||||||
|
% need two functions for different out= angles, or use if else on the sign of BendH
|
||||||
|
\newcommand\leftBandAuto[2]{
|
||||||
|
\directlua{
|
||||||
|
if \tkLBendH == 0 then
|
||||||
|
tex.print([[(\tkLx,#2) \ifblank{#1}{}{node[anchor=east] \detokenize{{#1}}} -- (\tkLW,#2) ]])
|
||||||
|
else
|
||||||
|
if \tkLBendH > 0 then
|
||||||
|
angle = 180+45
|
||||||
|
else
|
||||||
|
angle = 180-45
|
||||||
|
end
|
||||||
|
tex.sprint([[(\tkLx,#2) \ifblank{#1}{}{node[anchor=east] \detokenize{{#1}}}
|
||||||
|
-- (\tkLW-\tkLBendW,#2) to[out=0,in=]], angle, [[](\tkLW,#2+\tkLBendH)]])
|
||||||
|
end
|
||||||
|
}
|
||||||
|
% % \ifthenelse{\equal{\tkLBendH}{0}}%
|
||||||
|
% % {%
|
||||||
|
% \ifthenelse{\tkLBendH > 0}%
|
||||||
|
% {\pgfmathsetmacro{\angle}{-45}}%
|
||||||
|
% {\pgfmathsetmacro{\angle}{45}}%
|
||||||
|
% % }
|
||||||
|
}
|
||||||
|
\newcommand\rightBandAuto[2]{
|
||||||
|
\directlua{
|
||||||
|
if \tkRBendH == 0 then
|
||||||
|
%-- tex.print([[\rightBand{#1}{#2}]])
|
||||||
|
tex.print([[(\tkRx,#2) -- (\tkW,#2)]]) %-- \ifblank{#1}{}{node[anchor=west] \{#1\}}]])
|
||||||
|
else
|
||||||
|
if \tkRBendH > 0 then
|
||||||
|
angle = -45
|
||||||
|
else
|
||||||
|
angle = 45
|
||||||
|
end
|
||||||
|
tex.sprint([[(\tkRx,#2+\tkRBendH) to[out=]], angle, [[,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2) ]])
|
||||||
|
%-- \ifblank{#1}{}{node[anchor=west] \{#1\}} ]])
|
||||||
|
end
|
||||||
|
if "\luaescapestring{#1}" \string~= "" then
|
||||||
|
tex.print([[node[anchor=west] \detokenize{{#1}} ]])
|
||||||
|
end
|
||||||
|
}
|
||||||
|
% \ifthenelse{\equal{\tkRBendH}{0}}%
|
||||||
|
% {\rightBand{#1}{#2}}
|
||||||
|
% {%
|
||||||
|
% \ifthenelse{\tkRBendH > 0}%
|
||||||
|
% {\pgfmathsetmacro{\angle}{-45}}%
|
||||||
|
% {\pgfmathsetmacro{\angle}{45}}%
|
||||||
|
% (\tkRx,#2+\tkRBendH) to[out=45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2)
|
||||||
|
% \ifblank{#1}{}{node[anchor=west]{#1}}
|
||||||
|
% }
|
||||||
|
}
|
||||||
|
\newcommand\leftBandDown[2]{
|
||||||
|
(\tkRx,#2+\tkRBendH) to[out=45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2)
|
||||||
|
\ifblank{#1}{}{node[anchor=west]{#1}}
|
||||||
|
}
|
||||||
|
\newcommand\rightBandDown[2]{
|
||||||
|
(\tkRx,#2+\tkRBendH) to[out=45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2)
|
||||||
|
\ifblank{#1}{}{node[anchor=west]{#1}}
|
||||||
|
}
|
||||||
|
% Band bending down at L-R interface: BendH must be positive
|
||||||
|
\newcommand\leftBandUp[2]{
|
||||||
|
(\tkLx,#2) \ifblank{#1}{}{node[anchor=east]{#1}}
|
||||||
|
-- (\tkLW-\tkLBendW,#2) to[out=0,in=180+45] (\tkLW,#2+\tkLBendH)
|
||||||
|
}
|
||||||
|
\newcommand\rightBandUp[2]{
|
||||||
|
(\tkRx,#2+\tkRBendH) to[out=-45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2)
|
||||||
|
\ifblank{#1}{}{node[anchor=west]{#1}}
|
||||||
|
}
|
||||||
|
% Straight band
|
||||||
|
\newcommand\leftBand[2]{
|
||||||
|
(\tkLx,#2) \ifblank{#1}{}{node[anchor=east]{#1}} -- (\tkLW,#2)
|
||||||
|
}
|
||||||
|
\newcommand\rightBand[2]{
|
||||||
|
(\tkRx,#2) -- (\tkW,#2) \ifblank{#1}{}{node[anchor=west]{#1}}
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand\drawAxes{
|
||||||
|
\draw[->] (0,0) -- (\tkW+0.2,0) node[anchor=north] {$x$};
|
||||||
|
\draw[->] (0,0) -- (0,\tkH+0.2) node[anchor=east] {$E$};
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand\tkXTick[2]{
|
||||||
|
\pgfmathsetmacro{\tickwidth}{0.1}
|
||||||
|
\draw (#1, -\tickwidth/2) -- (#1, \tickwidth/2) node[anchor=north] {#2};
|
||||||
|
}
|
||||||
|
\newcommand\tkYTick[2]{
|
||||||
|
\pgfmathsetmacro{\tickwidth}{0.1}
|
||||||
|
\draw (-\tickwidth/2, #1) -- (\tickwidth/2,#1) node[anchor=east] {#2};
|
||||||
|
}
|
@ -1,66 +0,0 @@
|
|||||||
%
|
|
||||||
% TRANSLATION COMMANDS
|
|
||||||
%
|
|
||||||
% The lower case commands use \fqname based keys, the upper case absolute keys.
|
|
||||||
% Example:
|
|
||||||
% \dt[example]{german}{Beispiel} % defines the key \fqname:example
|
|
||||||
% \ger[example]{Beispiel} % defines the key \fqname:example
|
|
||||||
% \DT[example]{german}{Beispiel} % defines the key example
|
|
||||||
% \Ger[example]{Beispiel} % defines the key example
|
|
||||||
%
|
|
||||||
% For ease of use in the ttext environment and the optional argument of the \Part, \Section, ... commands,
|
|
||||||
% all "define translation" commands use \fqname as default key
|
|
||||||
|
|
||||||
% Get a translation
|
|
||||||
% expandafter required because the translation commands dont expand anything
|
|
||||||
% shortcuts for translations
|
|
||||||
% 1: key
|
|
||||||
\newcommand{\gt}[1]{\expandafter\GetTranslation\expandafter{\fqname:#1}}
|
|
||||||
\newcommand{\GT}[1]{\expandafter\GetTranslation\expandafter{#1}}
|
|
||||||
|
|
||||||
\newcommand{\IfTranslationExists}{
|
|
||||||
% \IfTranslation{\languagename}
|
|
||||||
\IfTranslation{english} % only check english. All translations must be defined for english
|
|
||||||
}
|
|
||||||
\newcommand{\iftranslation}[1]{\expandafter\IfTranslationExists\expandafter{\fqname:#1}}
|
|
||||||
|
|
||||||
% Define a translation and also make the fallback if it is the english translation
|
|
||||||
% 1: lang, 2: key, 3: translation
|
|
||||||
\newcommand{\addtranslationcustom}[3]{
|
|
||||||
\ifstrequal{#1}{english}{
|
|
||||||
\addtranslationfallback{#2}{#3}
|
|
||||||
}{}
|
|
||||||
\addtranslation{#1}{#2}{#3}
|
|
||||||
}
|
|
||||||
|
|
||||||
% Define a new translation
|
|
||||||
% [1]: key, 2: lang, 3: translation
|
|
||||||
\newcommand{\dt}[3][\fqname]{
|
|
||||||
\ifstrempty{#3}{}{ % dont add empty translations so that the fallback will be used instead
|
|
||||||
% hack because using expandafter on the second arg didnt work
|
|
||||||
\def\tempaddtranslation{\addtranslationcustom{#2}}
|
|
||||||
\ifstrequal{#1}{\fqname}{
|
|
||||||
\expandafter\tempaddtranslation\expandafter{\fqname}{#3}
|
|
||||||
}{
|
|
||||||
\expandafter\tempaddtranslation\expandafter{\fqname:#1}{#3}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
\newcommand{\DT}[3][\fqname]{
|
|
||||||
\ifstrempty{#3}{}{ % dont add empty translations so that the fallback will be used instead
|
|
||||||
% hack because using expandafter on the second arg didnt work
|
|
||||||
\def\tempaddtranslation{\addtranslationcustom{#2}}
|
|
||||||
\ifstrequal{#1}{\fqname}{
|
|
||||||
\expandafter\tempaddtranslation\expandafter{\fqname}{#3}
|
|
||||||
}{
|
|
||||||
\expandafter\tempaddtranslation\expandafter{#1}{#3}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
% [1]: key, 2: translation
|
|
||||||
\newcommand{\ger}[2][\fqname]{\dt[#1]{german}{#2}}
|
|
||||||
\newcommand{\eng}[2][\fqname]{\dt[#1]{english}{#2}}
|
|
||||||
|
|
||||||
\newcommand{\Ger}[2][\fqname]{\DT[#1]{german}{#2}}
|
|
||||||
\newcommand{\Eng}[2][\fqname]{\DT[#1]{english}{#2}}
|
|
||||||
|
|
@ -1,27 +1,78 @@
|
|||||||
|
% WORDS
|
||||||
|
\Eng[even]{even}
|
||||||
|
\Ger[even]{gerade}
|
||||||
|
|
||||||
|
\Eng[odd]{odd}
|
||||||
|
\Ger[odd]{ungerade}
|
||||||
|
|
||||||
|
% SCIENTIFIC
|
||||||
\Eng[angle_deg]{Degree}
|
\Eng[angle_deg]{Degree}
|
||||||
\Ger[angle_deg]{Grad}
|
\Ger[angle_deg]{Grad}
|
||||||
|
|
||||||
\Eng[angle_rad]{Radian}
|
\Eng[angle_rad]{Radian}
|
||||||
\Ger[angle_rad]{Rad}
|
\Ger[angle_rad]{Rad}
|
||||||
|
|
||||||
\Eng[see_also]{See also}
|
|
||||||
\Ger[see_also]{Siehe auch}
|
|
||||||
|
|
||||||
\Eng[and_therefore]{and therefore}
|
|
||||||
\Ger[and_therefore]{und damit}
|
|
||||||
|
|
||||||
\Eng[and_therefore_also]{and therefore also}
|
|
||||||
\Ger[and_therefore_also]{und damit auch}
|
|
||||||
|
|
||||||
\Eng[time]{Time}
|
\Eng[time]{Time}
|
||||||
\Ger[time]{Zeit}
|
\Ger[time]{Zeit}
|
||||||
|
|
||||||
\Eng[ensemble]{Ensemble}
|
\Eng[ensemble]{Ensemble}
|
||||||
\Ger[ensemble]{Ensemble}
|
\Ger[ensemble]{Ensemble}
|
||||||
|
|
||||||
\Eng[even]{even}
|
\Eng[area]{area}
|
||||||
\Ger[even]{gerade}
|
\Ger[area]{Fläche}
|
||||||
|
|
||||||
|
% SPECIFIC
|
||||||
|
\Eng[diamond]{Diamond}
|
||||||
|
\Ger[diamond]{Diamant}
|
||||||
|
|
||||||
|
\Eng[metal]{Metal}
|
||||||
|
\Ger[metal]{Metall}
|
||||||
|
|
||||||
|
\Eng[semiconductor]{Semiconductor}
|
||||||
|
\Ger[semiconductor]{Halbleiter}
|
||||||
|
|
||||||
|
|
||||||
|
\Eng[creation_annihilation_ops]{Creation / Annihilation operators}
|
||||||
|
\Ger[creation_annihilation_ops]{Erzeugungs / Vernichtungs-Operatoren}
|
||||||
|
|
||||||
|
% FORMATING
|
||||||
|
\Eng[list_of_quantitites]{List of quantitites}
|
||||||
|
\Ger[list_of_quantitites]{Liste von Größen}
|
||||||
|
|
||||||
|
\Eng[other]{Others}
|
||||||
|
\Ger[other]{Sonstige}
|
||||||
|
|
||||||
|
\Eng[sometimes]{sometimes}
|
||||||
|
\Ger[sometimes]{manchmal}
|
||||||
|
|
||||||
|
\Eng[see_also]{See also}
|
||||||
|
\Ger[see_also]{Siehe auch}
|
||||||
|
|
||||||
|
\Eng[for]{for}
|
||||||
|
\Ger[for]{für}
|
||||||
|
|
||||||
|
\Eng[and_therefore]{and therefore}
|
||||||
|
\Ger[and_therefore]{und damit}
|
||||||
|
|
||||||
|
\Eng[and_therefore_also]{and therefore also}
|
||||||
|
\Ger[and_therefore_also]{und damit auch}
|
||||||
|
|
||||||
|
\Eng[const:exp]{Experimental value}
|
||||||
|
\Ger[const:exp]{Experimenteller Wert}
|
||||||
|
\Eng[const:def]{Defined value}
|
||||||
|
\Ger[const:def]{Definierter Wert}
|
||||||
|
|
||||||
|
% PERIODIC TABLE
|
||||||
|
\Eng[symbol]{Symbol}
|
||||||
|
\Ger[symbol]{Symbol}
|
||||||
|
|
||||||
|
\Eng[atomic_number]{Number}
|
||||||
|
\Ger[atomic_number]{Ordnungszahl}
|
||||||
|
|
||||||
|
\Eng[electron_config]{Electronic configuration}
|
||||||
|
\Ger[electron_config]{Elektronenkonfiguration}
|
||||||
|
|
||||||
|
\Eng[crystal_structure]{Crystal structure}
|
||||||
|
\Ger[crystal_structure]{Kristallstruktur}
|
||||||
|
|
||||||
\Eng[odd]{odd}
|
|
||||||
\Ger[odd]{ungerade}
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user