add cmp
This commit is contained in:
parent
562899ed0a
commit
3e172175a7
@ -1,47 +1,80 @@
|
||||
#!/usr/bin env python3
|
||||
from formulasheet import *
|
||||
from formulary import *
|
||||
from scipy.constants import gas_constant, Avogadro, elementary_charge
|
||||
|
||||
Faraday = Avogadro * elementary_charge
|
||||
|
||||
@np.vectorize
|
||||
def fbutler_volmer_left(ac, z, eta, T):
|
||||
def fbutler_volmer_anode(ac, z, eta, T):
|
||||
return np.exp((1-ac)*z*Faraday*eta/(gas_constant*T))
|
||||
|
||||
@np.vectorize
|
||||
def fbutler_volmer_right(ac, z, eta, T):
|
||||
def fbutler_volmer_cathode(ac, z, eta, T):
|
||||
return -np.exp(-ac*z*Faraday*eta/(gas_constant*T))
|
||||
|
||||
def fbutler_volmer(ac, z, eta, T):
|
||||
return fbutler_volmer_left(ac, z, eta, T) + fbutler_volmer_right(ac, z, eta, T)
|
||||
return fbutler_volmer_anode(ac, z, eta, T) + fbutler_volmer_cathode(ac, z, eta, T)
|
||||
|
||||
def butler_volmer():
|
||||
fig, ax = plt.subplots(figsize=size_half_third)
|
||||
ax.set_xlabel("$\\eta$")
|
||||
ax.set_ylabel("$i/i_0$")
|
||||
ax.set_xlabel("$\\eta$ [V]")
|
||||
ax.set_ylabel("$j/j_0$")
|
||||
etas = np.linspace(-0.1, 0.1, 400)
|
||||
T = 300
|
||||
z = 1.0
|
||||
# other a
|
||||
alpha2, alpha3 = 0.2, 0.8
|
||||
ac2, ac3 = 0.2, 0.8
|
||||
i2 = fbutler_volmer(0.2, z, etas, T)
|
||||
i3 = fbutler_volmer(0.8, z, etas, T)
|
||||
ax.plot(etas, i2, color="blue", linestyle="dashed", label=f"$\\alpha={alpha2}$")
|
||||
ax.plot(etas, i3, color="green", linestyle="dashed", label=f"$\\alpha={alpha3}$")
|
||||
ax.plot(etas, i2, color="blue", linestyle="dashed", label=f"$\\alpha_\\text{{C}}={ac2}$")
|
||||
ax.plot(etas, i3, color="green", linestyle="dashed", label=f"$\\alpha_\\text{{C}}={ac3}$")
|
||||
# 0.5
|
||||
ac = 0.5
|
||||
irel_left = fbutler_volmer_left(ac, z, etas, T)
|
||||
irel_right = fbutler_volmer_right(ac, z, etas, T)
|
||||
ax.plot(etas, irel_left, color="gray")
|
||||
ax.plot(etas, irel_right, color="gray")
|
||||
ax.plot(etas, irel_right + irel_left, color="black", label=f"$\\alpha=0.5$")
|
||||
irel_anode = fbutler_volmer_anode(ac, z, etas, T)
|
||||
irel_cathode = fbutler_volmer_cathode(ac, z, etas, T)
|
||||
ax.plot(etas, irel_anode, color="gray")
|
||||
ax.plot(etas, irel_cathode, color="gray")
|
||||
ax.plot(etas, irel_cathode + irel_anode, color="black", label=f"$\\alpha_\\text{{C}}=0.5$")
|
||||
ax.grid()
|
||||
ax.legend()
|
||||
ylim = 6
|
||||
ax.set_ylim(-ylim, ylim)
|
||||
return fig
|
||||
|
||||
@np.vectorize
|
||||
def ftafel_anode(ac, z, eta, T):
|
||||
return 10**((1-ac)*z*Faraday*eta/(gas_constant*T*np.log(10)))
|
||||
|
||||
@np.vectorize
|
||||
def ftafel_cathode(ac, z, eta, T):
|
||||
return -10**(-ac*z*Faraday*eta/(gas_constant*T*np.log(10)))
|
||||
|
||||
def tafel():
|
||||
i0 = 1
|
||||
ac = 0.2
|
||||
z = 1
|
||||
T = 300
|
||||
eta_max = 0.2
|
||||
etas = np.linspace(-eta_max, eta_max, 400)
|
||||
i = np.abs(fbutler_volmer(ac, z, etas ,T))
|
||||
iright = i0 * np.abs(ftafel_cathode(ac, z, etas, T))
|
||||
ileft = i0 * ftafel_anode(ac, z, etas, T)
|
||||
|
||||
fig, ax = plt.subplots(figsize=size_half_third)
|
||||
ax.set_xlabel("$\\eta$ [V]")
|
||||
ax.set_ylabel("$\\log_{10}\\left(\\frac{|j|}{j_0}\\right)$")
|
||||
# ax.set_ylabel("$\\log_{10}\\left(|j|/j_0\\right)$")
|
||||
ax.set_yscale("log")
|
||||
# ax.plot(etas, linear, label="Tafel slope")
|
||||
ax.plot(etas[etas >= 0], ileft[etas >= 0], linestyle="dashed", color="gray", label="Tafel Approximation")
|
||||
ax.plot(etas[etas <= 0], iright[etas <= 0], linestyle="dashed", color="gray")
|
||||
ax.plot(etas, i, label=f"Butler-Volmer $\\alpha_\\text{{C}}={ac:.1f}$")
|
||||
ax.legend()
|
||||
ax.grid()
|
||||
return fig
|
||||
|
||||
if __name__ == '__main__':
|
||||
export(butler_volmer(), "ch_butler_volmer")
|
||||
export(tafel(), "ch_tafel")
|
||||
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
#!/usr/bin env python3
|
||||
from formulasheet import *
|
||||
from formulary import *
|
||||
|
||||
def fone_atom_basis(q, a, M, C1, C2):
|
||||
return np.sqrt(4*C1/M * (np.sin(q*a/2)**2 + C2/C1 * np.sin(q*a)**2))
|
||||
|
@ -1,5 +1,5 @@
|
||||
from numpy import fmax
|
||||
from formulasheet import *
|
||||
from formulary import *
|
||||
import itertools
|
||||
|
||||
|
||||
|
@ -1,71 +0,0 @@
|
||||
#!/usr/bin env python3
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import math
|
||||
import scipy as scp
|
||||
|
||||
if __name__ == "__main__": # make relative imports work as described here: https://peps.python.org/pep-0366/#proposed-change
|
||||
if __package__ is None:
|
||||
__package__ = "formulasheet"
|
||||
import sys
|
||||
filepath = os.path.realpath(os.path.abspath(__file__))
|
||||
sys.path.insert(0, os.path.dirname(os.path.dirname(filepath)))
|
||||
|
||||
from util.mpl_colorscheme import set_mpl_colorscheme
|
||||
import util.colorschemes as cs
|
||||
# SET THE COLORSCHEME
|
||||
# hard white and black
|
||||
# cs.p_gruvbox["fg0"] = "#000000"
|
||||
# cs.p_gruvbox["bg0"] = "#ffffff"
|
||||
COLORSCHEME = cs.gruvbox_dark()
|
||||
# print(COLORSCHEME)
|
||||
# COLORSCHEME = cs.GRUVBOX_DARK
|
||||
|
||||
tex_src_path = "../src/"
|
||||
img_out_dir = os.path.join(tex_src_path, "img")
|
||||
filetype = ".pdf"
|
||||
skipasserts = False
|
||||
|
||||
full = 8
|
||||
size_half_half = (full/2, full/2)
|
||||
size_third_half = (full/3, full/2)
|
||||
size_half_third = (full/2, full/3)
|
||||
|
||||
def assert_directory():
|
||||
if not skipasserts:
|
||||
assert os.path.abspath(".").endswith("scripts"), "Please run from the `scripts` directory"
|
||||
|
||||
def texvar(var, val, math=True):
|
||||
s = "$" if math else ""
|
||||
s += f"\\{var} = {val}"
|
||||
if math: s += "$"
|
||||
return s
|
||||
|
||||
def export(fig, name, notightlayout=False):
|
||||
assert_directory()
|
||||
filename = os.path.join(img_out_dir, name + filetype)
|
||||
if not notightlayout:
|
||||
fig.tight_layout()
|
||||
fig.savefig(filename) #, bbox_inches="tight")
|
||||
|
||||
@np.vectorize
|
||||
def smooth_step(x: float, left_edge: float, right_edge: float):
|
||||
x = (x - left_edge) / (right_edge - left_edge)
|
||||
if x <= 0: return 0.
|
||||
elif x >= 1: return 1.
|
||||
else: return 3*(x*2) - 2*(x**3)
|
||||
|
||||
|
||||
# run even when imported
|
||||
set_mpl_colorscheme(COLORSCHEME)
|
||||
|
||||
if __name__ == "__main__":
|
||||
assert_directory()
|
||||
s = \
|
||||
"""% This file was generated by scripts/formulasheet.py\n% Do not edit it directly, changes will be overwritten\n""" + cs.generate_latex_colorscheme(COLORSCHEME)
|
||||
filename = os.path.join(tex_src_path, "util/colorscheme.tex")
|
||||
print(f"Writing tex colorscheme to {filename}")
|
||||
with open(filename, "w") as file:
|
||||
file.write(s)
|
||||
|
@ -1,4 +1,4 @@
|
||||
from formulasheet import *
|
||||
from formulary import *
|
||||
import scqubits as scq
|
||||
import qutip as qt
|
||||
|
||||
|
@ -1,9 +1,16 @@
|
||||
# Scripts
|
||||
Put all scripts that generate plots or tex files here.
|
||||
You can run all files at once using `make scripts`
|
||||
|
||||
## Plots
|
||||
For plots with `matplotlib`:
|
||||
1. import `plot.py`
|
||||
1. import `formulary.py`
|
||||
2. use one of the preset figsizes
|
||||
3. save the image using the `export` function in the `if __name__ == '__main__'` part
|
||||
|
||||
## Colorscheme
|
||||
To ensure a uniform look of the tex source and the python plots,
|
||||
the tex and matplotlib colorschemes are both handled in `formulary.py`.
|
||||
Set the `COLORSCHEME` variable to the desired colors.
|
||||
Importing `formulary.py` will automatically apply the colors to matplotlib,
|
||||
and running it will generate `util/colorscheme.tex` for LaTeX.
|
||||
|
@ -1,5 +1,5 @@
|
||||
#!/usr/bin env python3
|
||||
from formulasheet import *
|
||||
from formulary import *
|
||||
|
||||
def flennard_jones(r, epsilon, sigma):
|
||||
return 4 * epsilon * ((sigma/r)**12 - (sigma/r)**6)
|
||||
|
@ -65,7 +65,7 @@ p_gruvbox = {
|
||||
"alt-gray": "#7c6f64",
|
||||
}
|
||||
|
||||
def grubox_light():
|
||||
def gruvbox_light():
|
||||
GRUVBOX_LIGHT = { "fg0": p_gruvbox["fg0-hard"], "bg0": p_gruvbox["bg0-hard"] } \
|
||||
| {f"fg{n}": p_gruvbox[f"fg{n}"] for n in range(1,5)} \
|
||||
| {f"bg{n}": p_gruvbox[f"bg{n}"] for n in range(1,5)} \
|
||||
@ -177,14 +177,3 @@ def stupid():
|
||||
| { f"fg-{n}": brightness(c, 2.0) for n,c in p_stupid.items() }
|
||||
return LEGACY
|
||||
|
||||
# UTILITY
|
||||
def color_latex_def(name, color):
|
||||
# name = name.replace("-", "_")
|
||||
color = color.strip("#")
|
||||
return "\\definecolor{" + name + "}{HTML}{" + color + "}"
|
||||
|
||||
def generate_latex_colorscheme(palette, variant="light"):
|
||||
s = ""
|
||||
for n, c in palette.items():
|
||||
s += color_latex_def(n, c) + "\n"
|
||||
return s
|
||||
|
302
src/ch/ch.tex
302
src/ch/ch.tex
@ -7,305 +7,3 @@
|
||||
\ger{Periodensystem}
|
||||
]{ptable}
|
||||
\drawPeriodicTable
|
||||
|
||||
\Section[
|
||||
\eng{Electrochemistry}
|
||||
\ger{Elektrochemie}
|
||||
]{el}
|
||||
|
||||
\eng[std_cell]{standard cell potential}
|
||||
\ger[std_cell]{Standardzellpotential}
|
||||
\eng[electrode_pot]{electrode potential}
|
||||
\ger[electrode_pot]{Elektrodenpotential}
|
||||
\begin{formula}{chemical_potential}
|
||||
\desc{Chemical potential}{of species $i$\\Energy involved when the particle number changes}{\QtyRef{gibbs_free_energy}, \QtyRef{amount}}
|
||||
\desc[german]{Chemisches Potential}{der Spezies $i$\\Involvierte Energie, wenn sich die Teilchenzahl ändert}{}
|
||||
\quantity{\mu}{\joule\per\mol;\joule}{is}
|
||||
\eq{
|
||||
\mu_i \equiv \pdv{G}{n_i}_{n_j\neq n_i,p,T}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{standard_chemical_potential}
|
||||
\desc{Standard chemical potential}{In equilibrium}{\QtyRef{chemical_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}, \QtyRef{activity}}
|
||||
\desc[german]{Standard chemisches Potential}{}{}
|
||||
\eq{\mu_i = \mu_i^\theta + RT \Ln{a_i}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{chemical_equilibrium}
|
||||
\desc{Chemical equilibrium}{}{\QtyRef{chemical_potential}, \QtyRef{stoichiometric_coefficient}}
|
||||
\desc[german]{Chemisches Gleichgewicht}{}{}
|
||||
\eq{\sum_\text{\GT{products}} \nu_i \mu_i = \sum_\text{\GT{educts}} \nu_i \mu_i}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{activity}
|
||||
\desc{Activity}{relative activity}{\QtyRef{chemical_potential}, \QtyRef{standard_chemical_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}}
|
||||
\desc[german]{Aktivität}{Relative Aktivität}{}
|
||||
\quantity{a}{}{s}
|
||||
\eq{a_i = \Exp{\frac{\mu_i-\mu_i^\theta}{RT}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{electrochemical_potential}
|
||||
\desc{Electrochemical potential}{Chemical potential with electrostatic contributions}{\QtyRef{chemical_potential}, $z$ valency (charge), \ConstRef{faraday}, \QtyRef{electric_scalar_potential} (Galvani Potential)}
|
||||
\desc[german]{Elektrochemisches Potential}{Chemisches Potential mit elektrostatischen Enegiebeiträgen}{\QtyRef{chemical_potential}, $z$ Ladungszahl, \ConstRef{faraday}, \QtyRef{electric_scalar_potential} (Galvanisches Potential)}
|
||||
\quantity{\muecp}{\joule\per\mol;\joule}{is}
|
||||
\eq{\muecp_i \equiv \mu_i + z_i F \phi}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{nernst_equation}
|
||||
\desc{Nernst equation}{Elektrode potential for a half-cell reaction}{$E$ electrode potential, $E^\theta$ \gt{std_cell}, \ConstRef{universal_gas}, \ConstRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \QtyRef{activity}, \QtyRef{stoichiometric_coefficient}}
|
||||
\desc[german]{Nernst-Gleichung}{Elektrodenpotential für eine Halbzellenreaktion}{}
|
||||
\eq{E = E^\theta + \frac{RT}{zF} \Ln{\frac{ \left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{oxidized}}{\left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{reduced}}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{cell}
|
||||
\desc{Electrochemical cell}{}{}
|
||||
\desc[german]{Elektrochemische Zelle}{}{}
|
||||
\ttxt{
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item Electrolytic cell: Uses electrical energy to force a chemical reaction
|
||||
\item Galvanic cell: Produces electrical energy through a chemical reaction
|
||||
\end{itemize}
|
||||
}
|
||||
\ger{
|
||||
\begin{itemize}
|
||||
\item Elektrolytische Zelle: Nutzt elektrische Energie um eine Reaktion zu erzwingen
|
||||
\item Galvanische Zelle: Produziert elektrische Energie durch eine chemische Reaktion
|
||||
\end{itemize}
|
||||
}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{standard_cell_potential}
|
||||
\desc{Standard cell potential}{}{$\Delta_\txR G^\theta$ standard \qtyRef{gibbs_free_energy} of reaction, $n$ number of electrons, \ConstRef{faraday}}
|
||||
\desc[german]{Standard Zellpotential}{}{$\Delta_\txR G^\theta$ Standard \qtyRef{gibbs_free_energy} der Reaktion, $n$ Anzahl der Elektronen, \ConstRef{faraday}}
|
||||
\eq{E^\theta_\text{rev} = \frac{-\Delta_\txR G^\theta}{nF}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{she}
|
||||
\desc{Standard hydrogen electrode (SHE)}{}{}
|
||||
\desc[german]{Standard Wasserstoffelektrode}{}{}
|
||||
\ttxt{
|
||||
\eng{Defined as reference for measuring half-cell potententials}
|
||||
\ger{Definiert als Referenz für Messungen von Potentialen von Halbzellen}
|
||||
}
|
||||
$a_{\ce{H+}} =1 \, (\text{pH} = 0)$, $p_{\ce{H2}} = \SI{100}{\kilo\pascal}$
|
||||
\end{formula}
|
||||
|
||||
\eng[galvanic]{galvanic}
|
||||
\ger[galvanic]{galvanisch}
|
||||
\eng[electrolytic]{electrolytic}
|
||||
\ger[electrolytic]{electrolytisch}
|
||||
\begin{formula}{cell_efficiency}
|
||||
\desc{Thermodynamic cell efficiency}{}{$P$ \fqEqRef{ed:el:power}}
|
||||
\desc[german]{Thermodynamische Zelleffizienz}{}{}
|
||||
\eq{
|
||||
\eta_\text{cell} &= \frac{P_\text{obtained}}{P_\text{maximum}} = \frac{E_\text{cell}}{E_\text{cell,rev}} & & \text{\gt{galvanic}} \\
|
||||
\eta_\text{cell} &= \frac{P_\text{minimum}}{P_\text{applied}} = \frac{E_\text{cell,rev}}{E_\text{cell}} & & \text{\gt{electrolytic}}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Ionic conduction in electrolytes}
|
||||
\ger{Ionische Leitung in Elektrolyten}
|
||||
]{ion_cond}
|
||||
\eng[z]{charge number}
|
||||
\ger[z]{Ladungszahl}
|
||||
\eng[of_i]{of ion $i$}
|
||||
\ger[of_i]{des Ions $i$}
|
||||
|
||||
\begin{formula}{diffusion}
|
||||
\desc{Diffusion}{caused by concentration gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{diffusion_constant} \gt{of_i}, \QtyRef{concentration} \gt{of_i}}
|
||||
\desc[german]{Diffusion}{durch Konzentrationsgradienten}{}
|
||||
\eq{ i_\text{diff} = \sum_i -z_i F D_i \left(\odv{c_i}{x}\right) }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{migration}
|
||||
\desc{Migration}{caused by potential gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, \QtyRef{mobility} \gt{of_i}, $\nabla\phi_\txs$ potential gradient in the solution}
|
||||
\desc[german]{Migration}{durch Potentialgradienten}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, \QtyRef{mobility} \gt{of_i}, $\nabla\phi_\txs$ Potentialgradient in der Lösung}
|
||||
\eq{ i_\text{mig} = \sum_i -z_i^2 F^2 \, c_i \, \mu_i \, \nabla\Phi_\txs }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{convection}
|
||||
\desc{Convection}{caused by pressure gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, $v_i^\text{flow}$ \qtyRef{velocity} \gt{of_i} in flowing electrolyte}
|
||||
\desc[german]{Convection}{durch Druckgradienten}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, $v_i^\text{flow}$ \qtyRef{velocity} \gt{of_i} im fliessenden Elektrolyt}
|
||||
\eq{ i_\text{conv} = \sum_i -z_i F \, c_i \, v_i^\text{flow} }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{ionic_conductivity}
|
||||
\desc{Ionic conductivity}{}{\ConstRef{faraday}, $z_i$, $c_i$, $\mu_i$ charge number, \qtyRef{concentration} and \qtyRef{mobility} of the positive (+) and negative (-) ions}
|
||||
\desc[german]{Ionische Leitfähigkeit}{}{\ConstRef{faraday}, $z_i$, $c_i$, $\mu_i$ Ladungszahl, \qtyRef{concentration} und \qtyRef{mobility} der positiv (+) und negativ geladenen Ionen}
|
||||
\quantity{\kappa}{\per\ohm\cm=\siemens\per\cm}{}
|
||||
\eq{\kappa = F^2 \left(z_+^2 \, c_+ \, \mu_+ + z_-^2 \, c_- \, \mu_-\right)}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{ionic_resistance}
|
||||
\desc{Ohmic resistance of ionic current flow}{}{$L$ \qtyRef{length}, $A$ \qtyRef{area}, \QtyRef{ionic_conductivity}}
|
||||
\desc[german]{Ohmscher Widerstand für Ionen-Strom}{}{}
|
||||
\eq{R_\Omega = \frac{L}{A\,\kappa}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{ionic_mobility}
|
||||
\desc{Ionic mobility}{}{$v_\pm$ steady state drift \qtyRef{velocity}, $\phi$ \qtyRef{electric_scalar_potential}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{charge}, \QtyRef{viscosity}, $r_\pm$ ion radius}
|
||||
\desc[german]{Ionische Moblilität}{}{}
|
||||
\quantity{u_\pm}{\cm^2\mol\per\joule\s}{}
|
||||
% \eq{u_\pm = - \frac{v_\pm}{\nabla \phi \,z_\pm F} = \frac{e}{6\pi F \eta_\text{dyn} \r_\pm}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{transference}
|
||||
\desc{Transference number}{Ion transport number \\Fraction of the current carried by positive / negative ions}{$i_{+/-}$ current through positive/negative charges}
|
||||
\desc[german]{Überführungszahl}{Anteil der positiv / negativ geladenen Ionen am Gesamtstrom}{$i_{+/-}$ Strom durch positive / negative Ladungn}
|
||||
\eq{t_{+/-} = \frac{i_{+/-}}{i_+ + i_-}}
|
||||
\end{formula}
|
||||
|
||||
\eng[csalt]{electrolyte \qtyRef{concentration}}
|
||||
\eng[csalt]{\qtyRef{concentration} des Elektrolyts}
|
||||
\begin{formula}{molar_conductivity}
|
||||
\desc{Molar conductivity}{}{\QtyRef{ionic_conductivity}, $c_\text{salt}$ \gt{csalt}}
|
||||
\desc[german]{Molare Leitfähigkeit}{}{\QtyRef{ionic_conductivity}, $c_\text{salt}$ \gt{salt}}
|
||||
\quantity{\Lambda_\txM}{\siemens\cm^2\per\mol=\ampere\cm^2\per\volt\mol}{ievs}
|
||||
\eq{\Lambda_\txM = \frac{\kappa}{c_\text{salt}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{kohlrausch_law}
|
||||
\desc{Kohlrausch's law}{}{$\Lambda_\txM^0$ \qtyRef{molar_conductivity} at infinite dilution, $c_\text{salt}$ \gt{csalt}, $K$ \GT{constant}}
|
||||
\desc[german]{}{}{$\Lambda_\txM^0$ \qtyRef{molar_conductivity} bei unendlicher Verdünnung, $\text{salt}$ \gt{csalt} $K$ \GT{constant}}
|
||||
\eq{\Lambda_\txM = \Lambda_\txM^0 - K \sqrt{c_\text{salt}}}
|
||||
\end{formula}
|
||||
|
||||
% Electrolyte conductivity
|
||||
\begin{formula}{molality}
|
||||
\desc{Molality}{}{\QtyRef{amount} of the solute, \QtyRef{mass} of the solvent}
|
||||
\desc[german]{Molalität}{}{\QtyRef{amount} des gelösten Stoffs, \QtyRef{mass} des Lösungsmittels}
|
||||
\quantity{b}{\mol\per\kg}{}
|
||||
\eq{b = \frac{n}{m}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{molarity}
|
||||
\desc{Molarity}{\GT{see} \qtyRef{concentration}}{\QtyRef{amount} of the solute, \QtyRef{volume} of the solvent}
|
||||
\desc[german]{Molarität}{}{\QtyRef{amount} des gelösten Stoffs, \QtyRef{volume} des Lösungsmittels}
|
||||
\quantity{c}{\mol\per\litre}{}
|
||||
\eq{c = \frac{n}{V}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{ionic_strength}
|
||||
\desc{Ionic strength}{Measure of the electric field in a solution through solved ions}{\QtyRef{molality}, \QtyRef{molarity}, $z$ \qtyRef{charge_number}}
|
||||
\desc[german]{Ionenstärke}{Maß eienr Lösung für die elektrische Feldstärke durch gelöste Ionen}{}
|
||||
\quantity{I}{\mol\per\kg;\mol\per\litre}{}
|
||||
\eq{I_b &= \frac{1}{2} \sum_i b_i z_i^2 \\ I_c &= \frac{1}{2} \sum_i c_i z_i^2}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{debye_screening_length}
|
||||
\desc{Debye screening length}{}{\ConstRef{avogadro}, \ConstRef{charge}, \QtyRef{ionic_strength}, \QtyRef{permittivity}, \ConstRef{boltzmann}, \QtyRef{temperature}}
|
||||
\desc[german]{Debye-Länge / Abschirmlänge}{}{}
|
||||
\eq{\lambda_\txD = \sqrt{\frac{\epsilon \kB T}{2\NA e^2 I_C}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{mean_ionic_activity}
|
||||
\desc{Mean ionic activity coefficient}{Accounts for decreased reactivity because ions must divest themselves of their ion cloud before reacting}{}
|
||||
\desc[german]{Mittlerer ionischer Aktivitätskoeffizient}{Berücksichtigt dass Ionen sich erst von ihrer Ionenwolke lösen müssen, bevor sie reagieren können}{}
|
||||
\quantity{\gamma}{}{s}
|
||||
\eq{\gamma_\pm = \left(\gamma_+^{\nu_+} \, \gamma_-^{\nu_-}\right)^{\frac{1}{\nu_+ + \nu_-}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{debye_hueckel_law}
|
||||
\desc{Debye-Hückel limiting law}{For an infinitely dilute solution}{\QtyRef{mean_ionic_activity}, $A$ solvent dependant constant, $z$ \qtyRef{charge_number}, \QtyRef{ionic_strength} in [\si{\mol\per\kg}]}
|
||||
\desc[german]{Debye-Hückel Gesetz}{Für eine unendlich verdünnte Lösung}{}
|
||||
\eq{\Ln{\gamma_{\pm}} = -A \abs{z_+ \, z_-} \sqrt{I_b}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Kinetics}
|
||||
\ger{Kinetik}
|
||||
]{kin}
|
||||
\begin{formula}{overpotential}
|
||||
\desc{Overpotential}{}{$E_\text{electrode}$ potential at which the reaction starts $E_\text{ref}$ thermodynamic potential of the reaction}
|
||||
\desc[german]{Überspannung}{}{$E_\text{electrode}$ Potential bei der die Reaktion beginnt, $E_\text{ref}$ thermodynamisches Potential der Reaktion}
|
||||
\eq{\eta_\text{act} = E_\text{electrode} - E_\text{ref}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{activation_overpotential}
|
||||
\desc{Activation overpotential}{}{}
|
||||
\desc[german]{Aktivierungsüberspannung}{}{}
|
||||
\eq{}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{concentration_overpotential}
|
||||
\desc{Concentration overpotential}{}{}
|
||||
\desc[german]{Konzentrationsüberspannung}{}{}
|
||||
\eq{\eta_\text{conc} = -\frac{RT}{(1-\alpha) nF} \ln \left(\frac{c_\text{ox}^0}{c_\text{ox}^\txS}\right)}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{diffusion_overpotential}
|
||||
\desc{Diffusionoverpotential}{}{}
|
||||
\desc[german]{Diffusionsüberspannung}{}{}
|
||||
\eq{}
|
||||
\end{formula}
|
||||
\begin{formula}{roughness_factor}
|
||||
\desc{Roughness factor}{Surface area related to electrode geometry}{}
|
||||
\eq{\rfactor}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{butler_volmer}
|
||||
\desc{Butler-Volmer equation}{Reaction kinetics near the equilibrium potentential}
|
||||
{$j$ \qtyRef{current_density}, $j_0$ exchange current density, $\eta$ \fqEqRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txc/\txa}$ cathodic/anodic charge transfer coefficient}
|
||||
%Current through an electrode iof a unimolecular redox reaction with both anodic and cathodic reaction occuring on the same electrode
|
||||
\desc[german]{Butler-Volmer-Gleichung}{Reaktionskinetik in der Nähe des Gleichgewichtspotentials}
|
||||
{$j$ \qtyRef{current_density}, $j_0$ Austauschstromdichte, $\eta$ \fqEqRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txc/\txa}$ Ladungstransferkoeffizient an der Kathode/Anode}
|
||||
\begin{gather}
|
||||
j = j_0 \,\rfactor\, \left[ \Exp{\frac{(1-a_\txc) z F \eta}{RT}} - \Exp{-\frac{\alpha_\txc z F \eta}{RT}}\right]
|
||||
\intertext{\GT{with}}
|
||||
\alpha_\txa = 1 - \alpha_\txc
|
||||
\end{gather}
|
||||
\separateEntries
|
||||
\fig{img/ch_butler_volmer.pdf}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{misc}
|
||||
\ger{misc}
|
||||
]{misc}
|
||||
\begin{formula}{std_condition}
|
||||
\desc{Standard temperature and pressure}{}{}
|
||||
\desc[german]{Standardbedingungen}{}{}
|
||||
\eq{
|
||||
T &= \SI{273.15}{\kelvin} = \SI{0}{\celsius} \\
|
||||
p &= \SI{100000}{\pascal} = \SI{1.000}{\bar}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{ph}
|
||||
\desc{pH definition}{}{$a_{\ce{H+}}$ hyrdrogen ion \qtyRef{activity}}
|
||||
\desc[german]{pH-Wert definition}{}{$a_{\ce{H+}}$ Wasserstoffionen-\qtyRef{activity}}
|
||||
\eq{\pH = -\log_{10}(a_{\ce{H+}})}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{ph_rt}
|
||||
\desc{pH}{At room temperature \SI{25}{\celsius}}{}
|
||||
\desc[german]{pH-Wert}{Bei Raumtemperatur \SI{25}{\celsius}}{}
|
||||
\eq{
|
||||
\pH > 7 &\quad\tGT{basic} \\
|
||||
\pH < 7 &\quad\tGT{acidic} \\
|
||||
\pH = 7 &\quad\tGT{neutral}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{covalent_bond}
|
||||
\desc{Covalent bond}{}{}
|
||||
\desc[german]{Kolvalente Bindung}{}{}
|
||||
\ttxt{
|
||||
\eng{Bonds that involve sharing of electrons to form electron pairs between atoms.}
|
||||
\ger{Bindungen zwischen Atomen die durch geteilte Elektronen, welche Elektronenpaare bilden, gebildet werden.}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{grotthuss}
|
||||
\desc{Grotthuß-mechanism}{}{}
|
||||
\desc[german]{Grotthuß-Mechanismus}{}{}
|
||||
\ttxt{
|
||||
\eng{The mobility of protons in aqueous solutions is much higher than that of other ions because they can "move" by breaking and reforming covalent bonds of water molecules.}
|
||||
\ger{The Moblilität von Protononen in wässrigen Lösungen ist wesentlich größer als die anderer Ionen, da sie sich "bewegen" können indem die Wassertsoffbrückenbindungen gelöst und neu gebildet werden.}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
511
src/ch/el.tex
Normal file
511
src/ch/el.tex
Normal file
@ -0,0 +1,511 @@
|
||||
\Section[
|
||||
\eng{Electrochemistry}
|
||||
\ger{Elektrochemie}
|
||||
]{el}
|
||||
\begin{formula}{chemical_potential}
|
||||
\desc{Chemical potential}{of species $i$\\Energy involved when the particle number changes}{\QtyRef{gibbs_free_energy}, \QtyRef{amount}}
|
||||
\desc[german]{Chemisches Potential}{der Spezies $i$\\Involvierte Energie, wenn sich die Teilchenzahl ändert}{}
|
||||
\quantity{\mu}{\joule\per\mol;\joule}{is}
|
||||
\eq{
|
||||
\mu_i \equiv \pdv{G}{n_i}_{n_j\neq n_i,p,T}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{standard_chemical_potential}
|
||||
\desc{Standard chemical potential}{In equilibrium}{\QtyRef{chemical_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}, \QtyRef{activity}}
|
||||
\desc[german]{Standard chemisches Potential}{}{}
|
||||
\eq{\mu_i = \mu_i^\theta + RT \Ln{a_i}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{chemical_equilibrium}
|
||||
\desc{Chemical equilibrium}{}{\QtyRef{chemical_potential}, \QtyRef{stoichiometric_coefficient}}
|
||||
\desc[german]{Chemisches Gleichgewicht}{}{}
|
||||
\eq{\sum_\text{\GT{products}} \nu_i \mu_i = \sum_\text{\GT{educts}} \nu_i \mu_i}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{activity}
|
||||
\desc{Activity}{relative activity}{\QtyRef{chemical_potential}, \QtyRef{standard_chemical_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}}
|
||||
\desc[german]{Aktivität}{Relative Aktivität}{}
|
||||
\quantity{a}{}{s}
|
||||
\eq{a_i = \Exp{\frac{\mu_i-\mu_i^\theta}{RT}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{electrochemical_potential}
|
||||
\desc{Electrochemical potential}{Chemical potential with electrostatic contributions}{\QtyRef{chemical_potential}, $z$ valency (charge), \ConstRef{faraday}, \QtyRef{electric_scalar_potential} (Galvani Potential)}
|
||||
\desc[german]{Elektrochemisches Potential}{Chemisches Potential mit elektrostatischen Enegiebeiträgen}{\QtyRef{chemical_potential}, $z$ Ladungszahl, \ConstRef{faraday}, \QtyRef{electric_scalar_potential} (Galvanisches Potential)}
|
||||
\quantity{\muecp}{\joule\per\mol;\joule}{is}
|
||||
\eq{\muecp_i \equiv \mu_i + z_i F \phi}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Electrochemical cell}
|
||||
\ger{Elektrochemische Zelle}
|
||||
]{cell}
|
||||
\eng[galvanic]{galvanic}
|
||||
\ger[galvanic]{galvanisch}
|
||||
\eng[electrolytic]{electrolytic}
|
||||
\ger[electrolytic]{electrolytisch}
|
||||
|
||||
\begin{formula}{schematic}
|
||||
\desc{Schematic}{}{}
|
||||
\desc[german]{Aufbau}{}{}
|
||||
\begin{tikzpicture}
|
||||
\pgfmathsetmacro{\width}{3}
|
||||
\pgfmathsetmacro{\height}{4}
|
||||
\pgfmathsetmacro{\elWidth}{\width/9}
|
||||
|
||||
\draw[thick] (0,0) rectangle (\width,\height);
|
||||
\fill[bg-blue] (-2,-2) rectangle (2,0.5);
|
||||
|
||||
% Electrodes
|
||||
\draw[thick, red] (-1,2) -- (-1,-1.2); % Reference electrode
|
||||
\draw[thick, green] (0,2) -- (0,-1); % Counter electrode
|
||||
\draw[thick, gray] (1,2) -- (1,-1.5); % Working electrode
|
||||
|
||||
% Labels
|
||||
\node[left] at (-1,0) {Reference electrode};
|
||||
\node[left] at (0,-0.5) {Counter electrode};
|
||||
\node[right] at (1,-1) {Working electrode};
|
||||
\node[left] at (-2,-1.5) {Electrolyte};
|
||||
|
||||
% Potentiostat
|
||||
\draw[thick] (-2.5,3) rectangle (2.5,4);
|
||||
\node at (0,3.5) {Potentiostat};
|
||||
|
||||
% Wires
|
||||
\draw[thick] (-1,2) -- (-1,3);
|
||||
\draw[thick] (0,2) -- (0,3);
|
||||
\draw[thick] (1,2) -- (1,3);
|
||||
|
||||
% Ammeter and Voltmeter
|
||||
\draw[thick] (-1,2) to[ammeter] (-1,3);
|
||||
\draw[thick] (0,2) -- (0,3);
|
||||
\draw[thick] (1,2) to[voltmeter] (1,3);
|
||||
|
||||
% Connecting to potentiostat
|
||||
\draw[thick] (-1,3.8) -- (-1,4);
|
||||
\draw[thick] (1,3.8) -- (1,4);
|
||||
\end{tikzpicture}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{cell}
|
||||
\desc{Electrochemical cell types}{}{}
|
||||
\desc[german]{Arten der Elektrochemische Zelle}{}{}
|
||||
\ttxt{
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item Electrolytic cell: Uses electrical energy to force a chemical reaction
|
||||
\item Galvanic cell: Produces electrical energy through a chemical reaction
|
||||
\end{itemize}
|
||||
}
|
||||
\ger{
|
||||
\begin{itemize}
|
||||
\item Elektrolytische Zelle: Nutzt elektrische Energie um eine Reaktion zu erzwingen
|
||||
\item Galvanische Zelle: Produziert elektrische Energie durch eine chemische Reaktion
|
||||
\end{itemize}
|
||||
}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
% todo group together
|
||||
\begin{formula}{faradaic}
|
||||
\desc{Faradaic process}{}{}
|
||||
\desc[german]{Faradäischer Prozess}{}{}
|
||||
\ttxt{
|
||||
\eng{Charge transfers between the electrode bulk and the electrolyte.}
|
||||
\ger{Ladung wird zwischen Elektrode und dem Elektrolyten transferiert.}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{non-faradaic}
|
||||
\desc{Non-Faradaic (capacitive) process}{}{}
|
||||
\desc[german]{Nicht-Faradäischer (kapazitiver) Prozess}{}{}
|
||||
\ttxt{
|
||||
\eng{Charge is stored at the electrode-electrolyte interface.}
|
||||
\ger{Ladung lagert sich am Elektrode-Elektrolyt Interface an.}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\begin{formula}{electrode_potential}
|
||||
\desc{Electrode potential}{}{}
|
||||
\desc[german]{Elektrodenpotential}{}{}
|
||||
\quantity{E}{\volt}{s}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{standard_cell_potential}
|
||||
\desc{Standard cell potential}{}{$\Delta_\txR G^\theta$ standard \qtyRef{gibbs_free_energy} of reaction, $n$ number of electrons, \ConstRef{faraday}}
|
||||
\desc[german]{Standard Zellpotential}{}{$\Delta_\txR G^\theta$ Standard \qtyRef{gibbs_free_energy} der Reaktion, $n$ Anzahl der Elektronen, \ConstRef{faraday}}
|
||||
\eq{E^\theta_\text{rev} = \frac{-\Delta_\txR G^\theta}{nF}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\begin{formula}{nernst_equation}
|
||||
\desc{Nernst equation}{Electrode potential for a half-cell reaction}{\QtyRef{electrode_potential}, $E^\theta$ \secEqRef{standard_cell_potential}, \ConstRef{universal_gas}, \ConstRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \QtyRef{activity}, \QtyRef{stoichiometric_coefficient}}
|
||||
\desc[german]{Nernst-Gleichung}{Elektrodenpotential für eine Halbzellenreaktion}{}
|
||||
\eq{E = E^\theta + \frac{RT}{zF} \Ln{\frac{ \left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{oxidized}}{\left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{reduced}}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{cell_efficiency}
|
||||
\desc{Thermodynamic cell efficiency}{}{$P$ \fqEqRef{ed:el:power}}
|
||||
\desc[german]{Thermodynamische Zelleffizienz}{}{}
|
||||
\eq{
|
||||
\eta_\text{cell} &= \frac{P_\text{obtained}}{P_\text{maximum}} = \frac{E_\text{cell}}{E_\text{cell,rev}} & & \text{\gt{galvanic}} \\
|
||||
\eta_\text{cell} &= \frac{P_\text{minimum}}{P_\text{applied}} = \frac{E_\text{cell,rev}}{E_\text{cell}} & & \text{\gt{electrolytic}}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Ionic conduction in electrolytes}
|
||||
\ger{Ionische Leitung in Elektrolyten}
|
||||
]{ion_cond}
|
||||
\eng[z]{charge number}
|
||||
\ger[z]{Ladungszahl}
|
||||
\eng[of_i]{of ion $i$}
|
||||
\ger[of_i]{des Ions $i$}
|
||||
|
||||
\begin{formula}{diffusion}
|
||||
\desc{Diffusion}{caused by concentration gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{diffusion_constant} \gt{of_i}, \QtyRef{concentration} \gt{of_i}}
|
||||
\desc[german]{Diffusion}{durch Konzentrationsgradienten}{}
|
||||
\eq{ i_\text{diff} = \sum_i -z_i F D_i \left(\odv{c_i}{x}\right) }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{migration}
|
||||
\desc{Migration}{caused by potential gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, \QtyRef{mobility} \gt{of_i}, $\nabla\phi_\txs$ potential gradient in the solution}
|
||||
\desc[german]{Migration}{durch Potentialgradienten}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, \QtyRef{mobility} \gt{of_i}, $\nabla\phi_\txs$ Potentialgradient in der Lösung}
|
||||
\eq{ i_\text{mig} = \sum_i -z_i^2 F^2 \, c_i \, \mu_i \, \nabla\Phi_\txs }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{convection}
|
||||
\desc{Convection}{caused by pressure gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, $v_i^\text{flow}$ \qtyRef{velocity} \gt{of_i} in flowing electrolyte}
|
||||
\desc[german]{Convection}{durch Druckgradienten}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, $v_i^\text{flow}$ \qtyRef{velocity} \gt{of_i} im fliessenden Elektrolyt}
|
||||
\eq{ i_\text{conv} = \sum_i -z_i F \, c_i \, v_i^\text{flow} }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{ionic_conductivity}
|
||||
\desc{Ionic conductivity}{}{\ConstRef{faraday}, $z_i$, $c_i$, $\mu_i$ charge number, \qtyRef{concentration} and \qtyRef{mobility} of the positive (+) and negative (-) ions}
|
||||
\desc[german]{Ionische Leitfähigkeit}{}{\ConstRef{faraday}, $z_i$, $c_i$, $\mu_i$ Ladungszahl, \qtyRef{concentration} und \qtyRef{mobility} der positiv (+) und negativ geladenen Ionen}
|
||||
\quantity{\kappa}{\per\ohm\cm=\siemens\per\cm}{}
|
||||
\eq{\kappa = F^2 \left(z_+^2 \, c_+ \, \mu_+ + z_-^2 \, c_- \, \mu_-\right)}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{ionic_resistance}
|
||||
\desc{Ohmic resistance of ionic current flow}{}{$L$ \qtyRef{length}, $A$ \qtyRef{area}, \QtyRef{ionic_conductivity}}
|
||||
\desc[german]{Ohmscher Widerstand für Ionen-Strom}{}{}
|
||||
\eq{R_\Omega = \frac{L}{A\,\kappa}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{ionic_mobility}
|
||||
\desc{Ionic mobility}{}{$v_\pm$ steady state drift \qtyRef{velocity}, $\phi$ \qtyRef{electric_scalar_potential}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{charge}, \QtyRef{viscosity}, $r_\pm$ ion radius}
|
||||
\desc[german]{Ionische Moblilität}{}{}
|
||||
\quantity{u_\pm}{\cm^2\mol\per\joule\s}{}
|
||||
\eq{u_\pm = - \frac{v_\pm}{\nabla \phi \,z_\pm F} = \frac{e}{6\pi F \eta_\text{dyn} r_\pm}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{stokes_friction}
|
||||
\desc{Stokes's law}{Frictional force exerted on spherical objects moving in a viscous fluid at low Reynolds numbers}{$r$ particle radius, \QtyRef{viscosity}, $v$ particle \qtyRef{velocity}}
|
||||
\desc[german]{Gesetz von Stokes}{Reibungskraft auf ein sphärisches Objekt in einer Flüssigkeit bei niedriger Reynolds-Zahl}{$r$ Teilchenradius, \QtyRef{viscosity}, $v$ Teilchengeschwindigkeit}
|
||||
\eq{F_\txR = 6\pi\,r \eta v}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{transference}
|
||||
\desc{Transference number}{Ion transport number \\Fraction of the current carried by positive / negative ions}{$i_{+/-}$ current through positive/negative charges}
|
||||
\desc[german]{Überführungszahl}{Anteil der positiv / negativ geladenen Ionen am Gesamtstrom}{$i_{+/-}$ Strom durch positive / negative Ladungn}
|
||||
\eq{t_{+/-} = \frac{i_{+/-}}{i_+ + i_-}}
|
||||
\end{formula}
|
||||
|
||||
\eng[csalt]{electrolyte \qtyRef{concentration}}
|
||||
\eng[csalt]{\qtyRef{concentration} des Elektrolyts}
|
||||
\begin{formula}{molar_conductivity}
|
||||
\desc{Molar conductivity}{}{\QtyRef{ionic_conductivity}, $c_\text{salt}$ \gt{csalt}}
|
||||
\desc[german]{Molare Leitfähigkeit}{}{\QtyRef{ionic_conductivity}, $c_\text{salt}$ \gt{salt}}
|
||||
\quantity{\Lambda_\txM}{\siemens\cm^2\per\mol=\ampere\cm^2\per\volt\mol}{ievs}
|
||||
\eq{\Lambda_\txM = \frac{\kappa}{c_\text{salt}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{kohlrausch_law}
|
||||
\desc{Kohlrausch's law}{}{$\Lambda_\txM^0$ \qtyRef{molar_conductivity} at infinite dilution, $c_\text{salt}$ \gt{csalt}, $K$ \GT{constant}}
|
||||
\desc[german]{}{}{$\Lambda_\txM^0$ \qtyRef{molar_conductivity} bei unendlicher Verdünnung, $\text{salt}$ \gt{csalt} $K$ \GT{constant}}
|
||||
\eq{\Lambda_\txM = \Lambda_\txM^0 - K \sqrt{c_\text{salt}}}
|
||||
\end{formula}
|
||||
|
||||
% Electrolyte conductivity
|
||||
\begin{formula}{molality}
|
||||
\desc{Molality}{}{\QtyRef{amount} of the solute, \QtyRef{mass} of the solvent}
|
||||
\desc[german]{Molalität}{}{\QtyRef{amount} des gelösten Stoffs, \QtyRef{mass} des Lösungsmittels}
|
||||
\quantity{b}{\mol\per\kg}{}
|
||||
\eq{b = \frac{n}{m}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{molarity}
|
||||
\desc{Molarity}{\GT{see} \qtyRef{concentration}}{\QtyRef{amount} of the solute, \QtyRef{volume} of the solvent}
|
||||
\desc[german]{Molarität}{}{\QtyRef{amount} des gelösten Stoffs, \QtyRef{volume} des Lösungsmittels}
|
||||
\quantity{c}{\mol\per\litre}{}
|
||||
\eq{c = \frac{n}{V}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{ionic_strength}
|
||||
\desc{Ionic strength}{Measure of the electric field in a solution through solved ions}{\QtyRef{molality}, \QtyRef{molarity}, $z$ \qtyRef{charge_number}}
|
||||
\desc[german]{Ionenstärke}{Maß eienr Lösung für die elektrische Feldstärke durch gelöste Ionen}{}
|
||||
\quantity{I}{\mol\per\kg;\mol\per\litre}{}
|
||||
\eq{I_b &= \frac{1}{2} \sum_i b_i z_i^2 \\ I_c &= \frac{1}{2} \sum_i c_i z_i^2}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{debye_screening_length}
|
||||
\desc{Debye screening length}{}{\ConstRef{avogadro}, \ConstRef{charge}, \QtyRef{ionic_strength}, \QtyRef{permittivity}, \ConstRef{boltzmann}, \QtyRef{temperature}}
|
||||
\desc[german]{Debye-Länge / Abschirmlänge}{}{}
|
||||
\eq{\lambda_\txD = \sqrt{\frac{\epsilon \kB T}{2\NA e^2 I_C}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{mean_ionic_activity}
|
||||
\desc{Mean ionic activity coefficient}{Accounts for decreased reactivity because ions must divest themselves of their ion cloud before reacting}{}
|
||||
\desc[german]{Mittlerer ionischer Aktivitätskoeffizient}{Berücksichtigt dass Ionen sich erst von ihrer Ionenwolke lösen müssen, bevor sie reagieren können}{}
|
||||
\quantity{\gamma}{}{s}
|
||||
\eq{\gamma_\pm = \left(\gamma_+^{\nu_+} \, \gamma_-^{\nu_-}\right)^{\frac{1}{\nu_+ + \nu_-}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{debye_hueckel_law}
|
||||
\desc{Debye-Hückel limiting law}{For an infinitely dilute solution}{\QtyRef{mean_ionic_activity}, $A$ solvent dependant constant, $z$ \qtyRef{charge_number}, \QtyRef{ionic_strength} in [\si{\mol\per\kg}]}
|
||||
\desc[german]{Debye-Hückel Gesetz}{Für eine unendlich verdünnte Lösung}{}
|
||||
\eq{\Ln{\gamma_{\pm}} = -A \abs{z_+ \, z_-} \sqrt{I_b}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Kinetics}
|
||||
\ger{Kinetik}
|
||||
]{kin}
|
||||
\begin{formula}{transfer_coefficient}
|
||||
\desc{Transfer coefficient}{}{}
|
||||
\desc[german]{Durchtrittsfaktor}{Transferkoeffizient\\Anteil des Potentials der sich auf die freie Reaktionsenthalpie des anodischen Prozesses auswirkt}{}
|
||||
\eq{
|
||||
\alpha_\txA &= \alpha \\
|
||||
\alpha_\txC &= 1-\alpha
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{overpotential}
|
||||
\desc{Overpotential}{}{}
|
||||
\desc[german]{Überspannung}{}{}
|
||||
\ttxt{
|
||||
\eng{Potential deviation from the equilibrium cell potential}
|
||||
\ger{Abweichung der Spannung von der Zellspannung im Gleichgewicht}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{activation_overpotential}
|
||||
\desc{Activation verpotential}{}{$E_\text{electrode}$ potential at which the reaction starts $E_\text{ref}$ thermodynamic potential of the reaction}
|
||||
\desc[german]{Aktivierungsüberspannung}{}{$E_\text{electrode}$ Potential bei der die Reaktion beginnt, $E_\text{ref}$ thermodynamisches Potential der Reaktion}
|
||||
\eq{\eta_\text{act} = E_\text{electrode} - E_\text{ref}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{concentration_overpotential}
|
||||
\desc{Concentration overpotential}{Due to concentration gradient near the electrode, the ions need to \hyperref[f:ch:el:ion_cond:diffusion]{diffuse} to the electrode before reacting}{\ConstRef{universal_gas}, \QtyRef{temperature}, $\c_{0/\txS}$ ion concentration in the electrolyte / at the double layer, $z$ \qtyRef{charge_number}, \ConstRef{faraday}}
|
||||
\desc[german]{Konzentrationsüberspannung}{Durch einen Konzentrationsgradienten an der Elektrode müssen Ionen erst zur Elektrode \hyperref[f:ch:el:ion_cond:diffusion]{diffundieren}, bevor sie reagieren können}{}
|
||||
\eq{
|
||||
\eta_\text{conc,anodic} &= -\frac{RT}{\alpha \,zF} \ln \left(\frac{c_\text{red}^0}{c_\text{red}^\txS}\right) \\
|
||||
\eta_\text{conc,cathodic} &= -\frac{RT}{(1-\alpha) zF} \ln \left(\frac{c_\text{ox}^0}{c_\text{ox}^\txS}\right)
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{diffusion_overpotential}
|
||||
\desc{Diffusion overpotential}{}{}
|
||||
\desc[german]{Diffusionsüberspannung}{}{}
|
||||
\eq{\eta_\text{diff} = \frac{RT}{nF} \ln \left( \cfrac{\cfrac{c^\txs_\text{ox}}{c^0_\text{ox}}}{\cfrac{c^\txs_\text{red}}{c^0_\text{red}}} \right)}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{diffusion_layer}
|
||||
\desc{Cell layers}{}{}
|
||||
\desc[german]{Zellschichten}{}{}
|
||||
\begin{tikzpicture}
|
||||
\tikzset{
|
||||
label/.style={color=fg1,anchor=center,rotate=90},
|
||||
}
|
||||
\pgfmathsetmacro{\tkW}{8} % Total width
|
||||
\pgfmathsetmacro{\tkH}{5} % Total height
|
||||
\pgfmathsetmacro{\edW}{1} % electrode width
|
||||
\pgfmathsetmacro{\hhW}{1} % helmholtz width
|
||||
\pgfmathsetmacro{\ndW}{2} % nernst diffusion with
|
||||
\pgfmathsetmacro{\eyW}{\tkW-\edW-\hhW-\ndW} % electrolyte width
|
||||
\pgfmathsetmacro{\edX}{0} % electrode width
|
||||
\pgfmathsetmacro{\hhX}{\edW} % helmholtz width
|
||||
\pgfmathsetmacro{\ndX}{\edW+\hhW} % nernst diffusion with
|
||||
\pgfmathsetmacro{\eyX}{\tkW-\eyW} % electrolyte width
|
||||
|
||||
\draw[->] (0,0) -- (\tkW+0.2,0) node[anchor=north] {$x$};
|
||||
\draw[->] (0,0) -- (0,\tkH+0.2) node[anchor=east] {$c$};
|
||||
\path[fill=bg-orange] (\edX,0) rectangle (\edX+\edW,\tkH); \node[label] at (\edX+\edW/2,\tkH/2) {\GT{electrode}};
|
||||
\path[fill=bg-green!90!bg0] (\hhX,0) rectangle (\hhX+\hhW,\tkH); \node[label] at (\hhX+\hhW/2,\tkH/2) {\GT{helmholtz_layer}};
|
||||
\path[fill=bg-green!60!bg0] (\ndX,0) rectangle (\ndX+\ndW,\tkH); \node[label] at (\ndX+\ndW/2,\tkH/2) {\GT{nernst_layer}};
|
||||
\path[fill=bg-green!20!bg0] (\eyX,0) rectangle (\eyX+\eyW,\tkH); \node[label] at (\eyX+\eyW/2,\tkH/2) {\GT{elektrolyte}};
|
||||
\draw (\hhX,2) -- (\ndX,3) -- (\tkW,3);
|
||||
\tkYTick{2}{$c^\txS$};
|
||||
\tkYTick{3}{$c^0$};
|
||||
\end{tikzpicture}
|
||||
\end{formula}
|
||||
\Eng[c_surface]{surface \qtyRef{concentration}}
|
||||
\Eng[c_bulk]{bulk \qtyRef{concentration}}
|
||||
\Ger[c_surface]{Oberflächen-\qtyRef{concentration}}
|
||||
\Ger[c_bulk]{Bulk-\qtyRef{concentration}}
|
||||
|
||||
|
||||
\begin{formula}{diffusion_layer_thickness}
|
||||
\desc{Nerst Diffusion layer thickness}{}{$c^0$ \GT{c_bulk}, $c^\txs$ \GT{c_surface}}
|
||||
\desc[german]{Dicke der Nernstschen Diffusionsschicht}{}{}
|
||||
\eq{\delta_\txN = \frac{c^0 - c^\txs}{\odv{c}{x}_{x=0}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{roughness_factor}
|
||||
\desc{Roughness factor}{Surface area related to electrode geometry}{}
|
||||
\eq{\rfactor}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{butler_volmer}
|
||||
\desc{Butler-Volmer equation}{Reaction kinetics near the equilibrium potentential}
|
||||
{$j$ \qtyRef{current_density}, $j_0$ exchange current density, $\eta$ \fqEqRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txC/\txA}$ cathodic/anodic charge transfer coefficient}
|
||||
%Current through an electrode iof a unimolecular redox reaction with both anodic and cathodic reaction occuring on the same electrode
|
||||
\desc[german]{Butler-Volmer-Gleichung}{Reaktionskinetik in der Nähe des Gleichgewichtspotentials}
|
||||
{$j$ \qtyRef{current_density}, $j_0$ Austauschstromdichte, $\eta$ \fqEqRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txC/\txA}$ Ladungstransferkoeffizient an der Kathode/Anode}
|
||||
\begin{gather}
|
||||
j = j_0 \,\rfactor\, \left[ \Exp{\frac{(1-a_\txC) z F \eta}{RT}} - \Exp{-\frac{\alpha_\txC z F \eta}{RT}}\right]
|
||||
\intertext{\GT{with}}
|
||||
\alpha_\txA = 1 - \alpha_\txC
|
||||
\end{gather}
|
||||
\separateEntries
|
||||
\fig{img/ch_butler_volmer.pdf}
|
||||
\end{formula}
|
||||
|
||||
% \Subsubsection[
|
||||
% \eng{Tafel approximation}
|
||||
% \ger{Tafel Näherung}
|
||||
% ]{tafel}
|
||||
|
||||
% \begin{formula}{slope}
|
||||
% \desc{Tafel slope}{}{}
|
||||
% \desc[german]{Tafel Steigung}{}{}
|
||||
% \eq{}
|
||||
% \end{formula}
|
||||
|
||||
\begin{formula}{equation}
|
||||
\desc{Tafel approximation}{For slow kinetics: $\abs{\eta} > \SI{0.1}{\volt}$}{}
|
||||
\desc[german]{Tafel Näherung}{Für langsame Kinetik: $\abs{\eta} > \SI{0.1}{\volt}$}{}
|
||||
\eq{
|
||||
\Log{j} &\approx \Log{j_0} + \frac{\alpha_\txC zF \eta}{RT\ln(10)} && \eta \gg \SI{0.1}{\volt}\\
|
||||
\Log{\abs{j}} &\approx \Log{j_0} - \frac{(1-\alpha_\txC) zF \eta}{RT\ln(10)} && \eta \ll -\SI{0.1}{\volt}
|
||||
}
|
||||
\fig{img/ch_tafel.pdf}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Techniques}
|
||||
\ger{Techniken}
|
||||
]{tech}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Reference electrodes}
|
||||
\ger{Referenzelektroden}
|
||||
]{ref}
|
||||
\begin{ttext}
|
||||
\eng{Defined as reference for measuring half-cell potententials}
|
||||
\ger{Definiert als Referenz für Messungen von Potentialen von Halbzellen}
|
||||
\end{ttext}
|
||||
|
||||
\begin{formula}{she}
|
||||
\desc{Standard hydrogen elektrode (SHE)}{}{$p=\SI{e5}{\pascal}$, $a_{\ce{H+}}=\SI{1}{\mol\per\litre}$ (\Rightarrow $\pH=0$)}
|
||||
\desc[german]{Standardwasserstoffelektrode (SHE)}{}{}
|
||||
\ttxt{
|
||||
\eng{Potential of the reaction: \ce{2H^+ +2e^- <--> H2}}
|
||||
\ger{Potential der Reaktion: \ce{2H^+ +2e^- <--> H2}}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{rhe}
|
||||
\desc{Reversible hydrogen electrode (RHE)}{RHE Potential does not change with the pH value}{$E^0\equiv \SI{0}{\volt}$, \QtyRef{activity}, \QtyRef{pressure}, \GT{see} \fqEqRef{ch:el:cell:nernst_equation}}
|
||||
\desc[german]{Reversible Wasserstoffelektrode (RHE)}{Potential ändert sich nicht mit dem pH-Wert}{}
|
||||
\eq{
|
||||
E_\text{RHE} &= E^0 + \frac{RT}{F} \Ln{\frac{a_{\ce{H^+}}}{p_{\ce{H2}}}} \\
|
||||
&= \SI{0}{\volt} - \SI{0.059}{\volt}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Cyclic voltammetry}
|
||||
\ger{Zyklische Voltammetrie}
|
||||
]{cycl_v}
|
||||
\begin{formula}{duck}
|
||||
\desc{Cyclic voltammogram}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
\begin{tikzpicture}
|
||||
\pgfmathsetmacro{\Ax}{-2.3}
|
||||
\pgfmathsetmacro{\Ay}{ 0.0}
|
||||
\pgfmathsetmacro{\Bx}{ 0.0}
|
||||
\pgfmathsetmacro{\By}{ 1.0}
|
||||
\pgfmathsetmacro{\Cx}{ 0.4}
|
||||
\pgfmathsetmacro{\Cy}{ 1.5}
|
||||
\pgfmathsetmacro{\Dx}{ 2.0}
|
||||
\pgfmathsetmacro{\Dy}{ 0.5}
|
||||
\pgfmathsetmacro{\Ex}{ 0.0}
|
||||
\pgfmathsetmacro{\Ey}{-1.5}
|
||||
\pgfmathsetmacro{\Fx}{-0.4}
|
||||
\pgfmathsetmacro{\Fy}{-2.0}
|
||||
\pgfmathsetmacro{\Gx}{-2.3}
|
||||
\pgfmathsetmacro{\Gy}{-0.3}
|
||||
\begin{axis}[ymin=-3,ymax=3,xmax=3,xmin=-3,
|
||||
% equal axis,
|
||||
minor tick num=1,
|
||||
xlabel={$U$}, xlabel style={at={(axis description cs:0.5,+0.02)}},
|
||||
ylabel={$I$}, ylabel style={at={(axis description cs:0.1,0.5)}},
|
||||
anchor=center, at={(0,0)},
|
||||
axis equal image,clip=false,
|
||||
]
|
||||
% CV with beziers
|
||||
\draw[thick, fg-blue] (axis cs:\Ax,\Ay) coordinate (A) node[left] {A}
|
||||
..controls (axis cs:\Ax+1.8, \Ay+0.0) and (axis cs:\Bx-0.2, \By-0.4) .. (axis cs:\Bx,\By) coordinate (B) node[left] {B}
|
||||
..controls (axis cs:\Bx+0.1, \By+0.2) and (axis cs:\Cx-0.3, \Cy+0.0) .. (axis cs:\Cx,\Cy) coordinate (C) node[above] {C}
|
||||
..controls (axis cs:\Cx+0.5, \Cy+0.0) and (axis cs:\Dx-1.3, \Dy+0.1) .. (axis cs:\Dx,\Dy) coordinate (D) node[right] {D}
|
||||
..controls (axis cs:\Dx-2.0, \Dy-0.1) and (axis cs:\Ex+0.3, \Ey+0.8) .. (axis cs:\Ex,\Ey) coordinate (E) node[right] {E}
|
||||
..controls (axis cs:\Ex-0.1, \Ey-0.2) and (axis cs:\Fx+0.2, \Fy+0.0) .. (axis cs:\Fx,\Fy) coordinate (F) node[below] {F}
|
||||
..controls (axis cs:\Fx-0.2, \Fy+0.0) and (axis cs:\Gx+1.5, \Gy-0.2) .. (axis cs:\Gx,\Gy) coordinate (G) node[left] {G};
|
||||
\node[above] at (A) {\rightarrow};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{upd}
|
||||
\desc{Underpotential deposition (UPD)}{}{}
|
||||
\desc[german]{}{}{}
|
||||
\ttxt{Reversible deposition of metal onto a foreign metal electrode at potentials positive of the Nernst potential \TODO{clarify}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Rotating disk electrodes}
|
||||
% \ger{}
|
||||
]{rde}
|
||||
\begin{formula}{viscosity}
|
||||
\desc{Dynamic viscosity}{}{}
|
||||
\desc[german]{Dynamisch Viskosität}{}{}
|
||||
\quantity{\eta,\mu}{\pascal\s=\newton\s\per\m^2=\kg\per\m\s}{}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{kinematic_viscosity}
|
||||
\desc{Kinematic viscosity}{\qtyRef{viscosity} related to density of a fluid}{\QtyRef{viscosity}, \QtyRef{density}}
|
||||
\desc[german]{Kinematische Viskosität}{\qtyRef{viscosity} im Verhältnis zur Dichte der Flüssigkeit}{}
|
||||
\quantity{\nu}{\cm^2\per\s}{}
|
||||
\eq{\nu = \frac{\eta}{\rho}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{diffusion_layer_thickness}
|
||||
\desc{Diffusion layer thickness}{\TODO{Where does 1.61 come from}}{$D$ \qtyRef{diffusion_coefficient}, $\nu$ \qtyRef{kinematic_viscosity}, \QtyRef{angular_frequency}}
|
||||
\desc[german]{Diffusionsshichtdicke}{}{}
|
||||
\eq{\delta_\text{diff}= 1.61 D{^\frac{1}{3}} \nu^{\frac{1}{6}} \omega^{-\frac{1}{2}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{limiting_current}
|
||||
\desc{Limiting current}{}{$n$ \QtyRef{charge_number}, \ConstRef{faraday}, $c^0$ \GT{c_bulk}, $D$ \qtyRef{diffusion_coefficient}, $\delta_\text{diff}$ \secEqRef{diffusion_layer_thickness}, $\nu$ \qtyRef{kinematic_viscosity}, \QtyRef{angular_frequency}}
|
||||
% \desc[german]{Limitierender Strom}{}{}
|
||||
\eq{j^\infty = nFD \frac{c^0}{\delta_\text{diff}} = \frac{1}{1.61} nFD^{\frac{2}{3}} v^{\frac{-1}{6}} c^0 \sqrt{\omega}}
|
||||
\end{formula}
|
||||
|
107
src/ch/misc.tex
Normal file
107
src/ch/misc.tex
Normal file
@ -0,0 +1,107 @@
|
||||
\Section[
|
||||
\eng{Thermoelectricity}
|
||||
\ger{Thermoelektrizität}
|
||||
]{thermo}
|
||||
\begin{formula}{seebeck}
|
||||
\desc{Seebeck coefficient}{}{$V$ voltage, \QtyRef{temperature}}
|
||||
\desc[german]{Seebeck-Koeffizient}{}{}
|
||||
\quantity{S}{\micro\volt\per\kelvin}{s}
|
||||
\eq{S = -\frac{\Delta V}{\Delta T}}
|
||||
\end{formula}
|
||||
\begin{formula}{seebeck_effect}
|
||||
\desc{Seebeck effect}{Elecromotive force across two points of a material with a temperature difference}{\QtyRef{conductivity}, $V$ local voltage, \QtyRef{seebeck}, \QtyRef{temperature}}
|
||||
\desc[german]{Seebeck-Effekt}{}{}
|
||||
\eq{\vec{j} = \sigma(-\Grad V - S \Grad T)}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{thermal_conductivity}
|
||||
\desc{Thermal conductivity}{Conduction of heat, without mass transport}{\QtyRef{heat}, \QtyRef{length}, \QtyRef{area}, \QtyRef{temperature}}
|
||||
\desc[german]{Wärmeleitfähigkeit}{Leitung von Wärme, ohne Stofftransport}{}
|
||||
\quantity{\kappa,\lambda,k}{\watt\per\m\K=\kg\m\per\s^3\kelvin}{s}
|
||||
\eq{\kappa = \frac{\dot{Q} l}{A\,\Delta T}}
|
||||
\eq{\kappa_\text{tot} = \kappa_\text{lattice} + \kappa_\text{electric}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{wiedemann-franz}
|
||||
\desc{Wiedemann-Franz law}{}{Electric \QtyRef{thermal_conductivity}, $L$ in \si{\watt\ohm\per\kelvin} Lorentz number, \QtyRef{conductivity}}
|
||||
\desc[german]{Wiedemann-Franz Gesetz}{}{Elektrische \QtyRef{thermal_conductivity}, $L$ in \si{\watt\ohm\per\kelvin} Lorentzzahl, \QtyRef{conductivity}}
|
||||
\eq{\kappa = L\sigma T}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{zt}
|
||||
\desc{Thermoelectric figure of merit}{Dimensionless quantity for comparing different materials}{\QtyRef{seebeck}, \QtyRef{conductivity}, }
|
||||
\desc[german]{Thermoelektrische Gütezahl}{Dimensionsoser Wert zum Vergleichen von Materialien}{}
|
||||
\eq{zT = \frac{S^2\sigma}{\lambda} T}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{misc}
|
||||
\ger{misc}
|
||||
]{misc}
|
||||
|
||||
% TODO: hide
|
||||
\begin{formula}{stoichiometric_coefficient}
|
||||
\desc{Stoichiometric coefficient}{}{}
|
||||
\desc[german]{Stöchiometrischer Koeffizient}{}{}
|
||||
\quantity{\nu}{}{s}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{std_condition}
|
||||
\desc{Standard temperature and pressure}{}{}
|
||||
\desc[german]{Standardbedingungen}{}{}
|
||||
\eq{
|
||||
T &= \SI{273.15}{\kelvin} = \SI{0}{\celsius} \\
|
||||
p &= \SI{100000}{\pascal} = \SI{1.000}{\bar}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{ph}
|
||||
\desc{pH definition}{}{$a_{\ce{H+}}$ hyrdrogen ion \qtyRef{activity}}
|
||||
\desc[german]{pH-Wert definition}{}{$a_{\ce{H+}}$ Wasserstoffionen-\qtyRef{activity}}
|
||||
\eq{\pH = -\log_{10}(a_{\ce{H+}})}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{ph_rt}
|
||||
\desc{pH}{At room temperature \SI{25}{\celsius}}{}
|
||||
\desc[german]{pH-Wert}{Bei Raumtemperatur \SI{25}{\celsius}}{}
|
||||
\eq{
|
||||
\pH > 7 &\quad\tGT{basic} \\
|
||||
\pH < 7 &\quad\tGT{acidic} \\
|
||||
\pH = 7 &\quad\tGT{neutral}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{covalent_bond}
|
||||
\desc{Covalent bond}{}{}
|
||||
\desc[german]{Kolvalente Bindung}{}{}
|
||||
\ttxt{
|
||||
\eng{Bonds that involve sharing of electrons to form electron pairs between atoms.}
|
||||
\ger{Bindungen zwischen Atomen die durch geteilte Elektronen, welche Elektronenpaare bilden, gebildet werden.}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{grotthuss}
|
||||
\desc{Grotthuß-mechanism}{}{}
|
||||
\desc[german]{Grotthuß-Mechanismus}{}{}
|
||||
\ttxt{
|
||||
\eng{The mobility of protons in aqueous solutions is much higher than that of other ions because they can "move" by breaking and reforming covalent bonds of water molecules.}
|
||||
\ger{The Moblilität von Protononen in wässrigen Lösungen ist wesentlich größer als die anderer Ionen, da sie sich "bewegen" können indem die Wassertsoffbrückenbindungen gelöst und neu gebildet werden.}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Eng[cyanide]{Cyanide}
|
||||
\Ger[cyanide]{Zyanid}
|
||||
\Eng[ammonia]{Ammonia}
|
||||
\Ger[ammonia]{Ammoniak}
|
||||
|
||||
\begin{formula}{common_chemicals}
|
||||
\desc{Common chemicals}{}{}
|
||||
\desc[german]{Häufige Chemikalien}{}{}
|
||||
\begin{tabular}{l|c}
|
||||
\GT{name} & \GT{formula} \\ \hline\hline
|
||||
\GT{cyanide} & \ce{CN} \\ \hline
|
||||
\GT{ammonia} & \ce{NH3}
|
||||
\end{tabular}
|
||||
\end{formula}
|
||||
|
@ -6,11 +6,7 @@
|
||||
\eng{Bravais lattice}
|
||||
\ger{Bravais-Gitter}
|
||||
]{bravais}
|
||||
\eng[table2D]{In 2D, there are 5 different Bravais lattices}
|
||||
\ger[table2D]{In 2D gibt es 5 verschiedene Bravais-Gitter}
|
||||
|
||||
\eng[table3D]{In 3D, there are 14 different Bravais lattices}
|
||||
\ger[table3D]{In 3D gibt es 14 verschiedene Bravais-Gitter}
|
||||
|
||||
\Eng[lattice_system]{Lattice system}
|
||||
\Ger[lattice_system]{Gittersystem}
|
||||
@ -24,56 +20,43 @@
|
||||
\newcommand\bvimg[1]{\begin{center}\includegraphics[width=0.1\textwidth]{img/bravais/#1.pdf}\end{center}}
|
||||
\renewcommand\tabularxcolumn[1]{m{#1}}
|
||||
\newcolumntype{Z}{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}X}
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\expandafter\caption\expandafter{\gt{table2D}}
|
||||
\label{tab:bravais2}
|
||||
|
||||
|
||||
\begin{bigformula}{2d}
|
||||
\desc{2D}{In 2D, there are 5 different Bravais lattices}{}
|
||||
\desc[german]{2D}{In 2D gibt es 5 verschiedene Bravais-Gitter}{}
|
||||
\begin{adjustbox}{width=\textwidth}
|
||||
\begin{tabularx}{\textwidth}{||Z|c|Z|Z||}
|
||||
\hline
|
||||
\multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{2}{c||}{5 \gt{bravais_lattices}} \\ \cline{3-4}
|
||||
& & \GT{primitive} (p) & \GT{centered} (c) \\ \hline
|
||||
\GT{monoclinic} (m) & $\text{C}_\text{2}$ & \bvimg{mp} & \\ \hline
|
||||
\GT{orthorhombic} (o) & $\text{D}_\text{2}$ & \bvimg{op} & \bvimg{oc} \\ \hline
|
||||
\GT{tetragonal} (t) & $\text{D}_\text{4}$ & \bvimg{tp} & \\ \hline
|
||||
\GT{hexagonal} (h) & $\text{D}_\text{6}$ & \bvimg{hp} & \\ \hline
|
||||
\end{tabularx}
|
||||
\begin{tabularx}{\textwidth}{||Z|c|Z|Z||}
|
||||
\hline
|
||||
\multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{2}{c||}{5 \gt{bravais_lattices}} \\ \cline{3-4}
|
||||
& & \GT{primitive} (p) & \GT{centered} (c) \\ \hline
|
||||
\GT{monoclinic} (m) & $\text{C}_\text{2}$ & \bvimg{mp} & \\ \hline
|
||||
\GT{orthorhombic} (o) & $\text{D}_\text{2}$ & \bvimg{op} & \bvimg{oc} \\ \hline
|
||||
\GT{tetragonal} (t) & $\text{D}_\text{4}$ & \bvimg{tp} & \\ \hline
|
||||
\GT{hexagonal} (h) & $\text{D}_\text{6}$ & \bvimg{hp} & \\ \hline
|
||||
\end{tabularx}
|
||||
\end{adjustbox}
|
||||
\end{table}
|
||||
\end{bigformula}
|
||||
|
||||
|
||||
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\caption{\gt{table3D}}
|
||||
\label{tab:bravais3}
|
||||
|
||||
\begin{bigformula}{3d}
|
||||
\desc{3D}{In 3D, there are 14 different Bravais lattices}{}
|
||||
\desc[german]{3D}{In 3D gibt es 14 verschiedene Bravais-Gitter}{}
|
||||
% \newcolumntype{g}{>{\columncolor[]{0.8}}}
|
||||
\begin{adjustbox}{width=\textwidth}
|
||||
% \begin{tabularx}{\textwidth}{|c|}
|
||||
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
||||
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
||||
% \end{tabularx}
|
||||
% \begin{tabular}{|c|}
|
||||
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
||||
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
||||
% \end{tabular}
|
||||
% \\
|
||||
\begin{tabularx}{\textwidth}{||Z|Z|c|Z|Z|Z|Z||}
|
||||
\hline
|
||||
\multirow{2}{*}{\GT{crystal_family}} & \multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{4}{c||}{14 \gt{bravais_lattices}} \\ \cline{4-7}
|
||||
& & & \GT{primitive} (P) & \GT{base_centered} (S) & \GT{body_centered} (I) & \GT{face_centered} (F) \\ \hline
|
||||
\multicolumn{2}{||c|}{\GT{triclinic} (a)} & $\text{C}_\text{i}$ & \bvimg{tP} & & & \\ \hline
|
||||
\multicolumn{2}{||c|}{\GT{monoclinic} (m)} & $\text{C}_\text{2h}$ & \bvimg{mP} & \bvimg{mS} & & \\ \hline
|
||||
\multicolumn{2}{||c|}{\GT{orthorhombic} (o)} & $\text{D}_\text{2h}$ & \bvimg{oP} & \bvimg{oS} & \bvimg{oI} & \bvimg{oF} \\ \hline
|
||||
\multicolumn{2}{||c|}{\GT{tetragonal} (t)} & $\text{D}_\text{4h}$ & \bvimg{tP} & & \bvimg{tI} & \\ \hline
|
||||
\multirow{2}{*}{\GT{hexagonal} (h)} & \GT{rhombohedral} & $\text{D}_\text{3d}$ & \bvimg{hR} & & & \\ \cline{2-7}
|
||||
& \GT{hexagonal} & $\text{D}_\text{6h}$ & \bvimg{hP} & & & \\ \hline
|
||||
\multicolumn{2}{||c|}{\GT{cubic} (c)} & $\text{O}_\text{h}$ & \bvimg{cP} & & \bvimg{cI} & \bvimg{cF} \\ \hline
|
||||
\end{tabularx}
|
||||
\begin{tabularx}{\textwidth}{||Z|Z|c|Z|Z|Z|Z||}
|
||||
\hline
|
||||
\multirow{2}{*}{\GT{crystal_family}} & \multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{4}{c||}{14 \gt{bravais_lattices}} \\ \cline{4-7}
|
||||
& & & \GT{primitive} (P) & \GT{base_centered} (S) & \GT{body_centered} (I) & \GT{face_centered} (F) \\ \hline
|
||||
\multicolumn{2}{||c|}{\GT{triclinic} (a)} & $\text{C}_\text{i}$ & \bvimg{tP} & & & \\ \hline
|
||||
\multicolumn{2}{||c|}{\GT{monoclinic} (m)} & $\text{C}_\text{2h}$ & \bvimg{mP} & \bvimg{mS} & & \\ \hline
|
||||
\multicolumn{2}{||c|}{\GT{orthorhombic} (o)} & $\text{D}_\text{2h}$ & \bvimg{oP} & \bvimg{oS} & \bvimg{oI} & \bvimg{oF} \\ \hline
|
||||
\multicolumn{2}{||c|}{\GT{tetragonal} (t)} & $\text{D}_\text{4h}$ & \bvimg{tP} & & \bvimg{tI} & \\ \hline
|
||||
\multirow{2}{*}{\GT{hexagonal} (h)} & \GT{rhombohedral} & $\text{D}_\text{3d}$ & \bvimg{hR} & & & \\ \cline{2-7}
|
||||
& \GT{hexagonal} & $\text{D}_\text{6h}$ & \bvimg{hP} & & & \\ \hline
|
||||
\multicolumn{2}{||c|}{\GT{cubic} (c)} & $\text{O}_\text{h}$ & \bvimg{cP} & & \bvimg{cI} & \bvimg{cF} \\ \hline
|
||||
\end{tabularx}
|
||||
\end{adjustbox}
|
||||
\end{table}
|
||||
\end{bigformula}
|
||||
|
||||
\begin{formula}{lattice_constant}
|
||||
\desc{Lattice constant}{Parameter (length or angle) describing the smallest unit cell}{}
|
||||
|
@ -12,3 +12,17 @@
|
||||
\tau &= \frac{l}{L}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{stress}
|
||||
\desc{Stress}{Force per area}{\QtyRef{force}, \QtyRef{area}}
|
||||
\desc[german]{Spannung}{(Engl. "stress") Kraft pro Fläche}{}
|
||||
\quantity{\sigma}{\newton\per\m^2}{v}
|
||||
\eq{\ten{\sigma}_{ij} = \frac{F_i}{A_j}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{strain}
|
||||
\desc{Strain}{}{$\Delta x$ distance from reference position $x_0$}
|
||||
\desc[german]{Dehnung}{(Engl. "strain")}{$\Delta x$ Auslenkung aus der Referenzposition $x_0$}
|
||||
\quantity{\epsilon}{}{s}
|
||||
\eq{\epsilon = \frac{\Delta x}{x_0}}
|
||||
\end{formula}
|
||||
|
@ -13,54 +13,53 @@
|
||||
\eng{Raman spectroscopy}
|
||||
\ger{Raman Spektroskopie}
|
||||
]{raman}
|
||||
% \begin{minipagetable}{raman}
|
||||
% \entry{name}{
|
||||
% \eng{Raman spectroscopy}
|
||||
% \ger{Raman-Spektroskopie}
|
||||
% }
|
||||
% \entry{application}{
|
||||
% \eng{Vibrational modes, Crystal structure, Doping, Band Gaps, Layer thickness in \fqEqName{cm:misc:vdw_material}}
|
||||
% \ger{Vibrationsmoden, Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im \fqEqName{cm:misc:vdw_material}}
|
||||
% }
|
||||
% % \entry{how}{
|
||||
% % \eng{Monochromatic light (\fqEqRef{Laser}) shines on sample, inelastic scattering because of rotation-, vibration-, phonon and spinflip-processes, plot spectrum as shift of the laser light (in \si{\per\cm})}
|
||||
% % \ger{Monochromatisches Licht (\fqEqRef{Laser}) bestrahlt Probe, inelastische Streuung durch Rotations-, Schwingungs-, Phonon und Spin-Flip-Prozesse, plotte Spektrum als Verschiebung gegen das Laser Licht (in \si{\per\cm}) }
|
||||
% % }
|
||||
% \end{minipagetable}
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
|
||||
% TODO remove fqname from minipagetable?
|
||||
|
||||
\begin{bigformula}{raman}
|
||||
\desc{Raman spectroscopy}{}{}
|
||||
\desc[german]{Raman-Spektroskopie}{}{}
|
||||
\begin{minipagetable}{raman}
|
||||
\tentry{application}{
|
||||
\eng{Vibrational modes, Crystal structure, Doping, Band Gaps, Layer thickness in \fqEqRef{cm:misc:vdw_material}}
|
||||
\ger{Vibrationsmoden, Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im \fqEqRef{cm:misc:vdw_material}}
|
||||
}
|
||||
\tentry{how}{
|
||||
\eng{Monochromatic light (\fqEqRef{Laser}) shines on sample, inelastic scattering because of rotation-, vibration-, phonon and spinflip-processes, plot spectrum as shift of the laser light (in \si{\per\cm})}
|
||||
\ger{Monochromatisches Licht (\fqEqRef{Laser}) bestrahlt Probe, inelastische Streuung durch Rotations-, Schwingungs-, Phonon und Spin-Flip-Prozesse, plotte Spektrum als Verschiebung gegen das Laser Licht (in \si{\per\cm}) }
|
||||
}
|
||||
\end{minipagetable}
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
% \includegraphics[width=0.8\textwidth]{img/cm_amf.pdf}
|
||||
% \caption{\cite{Bian2021}}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\end{bigformula}
|
||||
|
||||
\expandafter\detokenize\expandafter{\fqname}
|
||||
\GT{cm:meas:raman:raman:application}
|
||||
|
||||
\separateEntries
|
||||
|
||||
% \begin{minipagetable}{pl}
|
||||
% \entry{name}{
|
||||
% \eng{Photoluminescence spectroscopy}
|
||||
% \ger{Photolumeszenz-Spektroskopie}
|
||||
% }
|
||||
% \entry{application}{
|
||||
% \eng{Crystal structure, Doping, Band Gaps, Layer thickness in \fqEqName{cm:misc:vdw_material}}
|
||||
% \ger{Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im \fqEqName{cm:misc:vdw_material}}
|
||||
% }
|
||||
% \entry{how}{
|
||||
% \eng{Monochromatic light (\fqEqRef{Laser}) shines on sample, electrons are excited, relax to the conduction band minimum and finally accross the band gap under photon emission}
|
||||
% \ger{Monochromatisches Licht (\fqEqRef{Laser}) bestrahlt Probe, Elektronen werden angeregt und relaxieren in das Leitungsband-Minimum und schließlich über die Bandlücke unter Photonemission}
|
||||
% }
|
||||
% \end{minipagetable}
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
\begin{bigformula}{pl}
|
||||
\desc{Photoluminescence spectroscopy}{}{}
|
||||
\desc[german]{Photolumeszenz-Spektroskopie}{}{}
|
||||
\begin{minipagetable}{pl}
|
||||
\tentry{application}{
|
||||
\eng{Crystal structure, Doping, Band Gaps, Layer thickness in \fqEqRef{cm:misc:vdw_material}}
|
||||
\ger{Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im \fqEqRef{cm:misc:vdw_material}}
|
||||
}
|
||||
\tentry{how}{
|
||||
\eng{Monochromatic light (\fqEqRef{Laser}) shines on sample, electrons are excited, relax to the conduction band minimum and finally accross the band gap under photon emission}
|
||||
\ger{Monochromatisches Licht (\fqEqRef{Laser}) bestrahlt Probe, Elektronen werden angeregt und relaxieren in das Leitungsband-Minimum und schließlich über die Bandlücke unter Photonemission}
|
||||
}
|
||||
\end{minipagetable}
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
% \includegraphics[width=0.8\textwidth]{img/cm_amf.pdf}
|
||||
% \caption{\cite{Bian2021}}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\end{bigformula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
@ -82,63 +81,63 @@
|
||||
\end{ttext}
|
||||
|
||||
|
||||
\begin{bigformula}{amf}
|
||||
\desc{Atomic force microscopy (AMF)}{}{}
|
||||
\desc[german]{Atomare Rasterkraftmikroskopie (AMF)}{}{}
|
||||
\begin{minipagetable}{amf}
|
||||
\entry{name}{
|
||||
\eng{Atomic force microscopy (AMF)}
|
||||
\ger{Atomare Rasterkraftmikroskopie (AMF)}
|
||||
}
|
||||
\entry{application}{
|
||||
\tentry{application}{
|
||||
\eng{Surface stuff}
|
||||
\ger{Oberflächenzeug}
|
||||
}
|
||||
\entry{how}{
|
||||
\tentry{how}{
|
||||
\eng{With needle}
|
||||
\ger{Mit Nadel}
|
||||
}
|
||||
\end{minipagetable}
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{img/cm_amf.pdf}
|
||||
\caption{\cite{Bian2021}}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\end{bigformula}
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{bigformula}{stm}
|
||||
\desc{Scanning tunneling microscopy (STM)}{}{}
|
||||
\desc[german]{Rastertunnelmikroskop (STM)}{}{}
|
||||
\begin{minipagetable}{stm}
|
||||
\entry{name}{
|
||||
\eng{Scanning tunneling microscopy (STM)}
|
||||
\ger{Rastertunnelmikroskop (STM)}
|
||||
}
|
||||
\entry{application}{
|
||||
\tentry{application}{
|
||||
\eng{Surface stuff}
|
||||
\ger{Oberflächenzeug}
|
||||
}
|
||||
\entry{how}{
|
||||
\tentry{how}{
|
||||
\eng{With TUnnel}
|
||||
\ger{Mit TUnnel}
|
||||
}
|
||||
\end{minipagetable}
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{img/cm_stm.pdf}
|
||||
\caption{\cite{Bian2021}}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\end{bigformula}
|
||||
|
||||
\Section[
|
||||
\eng{Fabrication techniques}
|
||||
\ger{Herstellungsmethoden}
|
||||
]{fab}
|
||||
]{fab}
|
||||
|
||||
\begin{bigformula}{cvd}
|
||||
\desc{Chemical vapor deposition (CVD)}{}{}
|
||||
\desc[german]{Chemische Gasphasenabscheidung (CVD)}{}{}
|
||||
\begin{minipagetable}{cvd}
|
||||
\entry{name}{
|
||||
\eng{Chemical vapor deposition (CVD)}
|
||||
\ger{Chemische Gasphasenabscheidung (CVD)}
|
||||
}
|
||||
\entry{how}{
|
||||
\tentry{how}{
|
||||
\eng{
|
||||
A substrate is exposed to volatile precursors, which react and/or decompose on the heated substrate surface to produce the desired deposit.
|
||||
By-products are removed by gas flow through the chamber.
|
||||
@ -148,7 +147,7 @@
|
||||
Nebenprodukte werden durch den Gasfluss durch die Kammer entfernt.
|
||||
}
|
||||
}
|
||||
\entry{application}{
|
||||
\tentry{application}{
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item Polysilicon \ce{Si}
|
||||
@ -167,10 +166,11 @@
|
||||
}
|
||||
}
|
||||
\end{minipagetable}
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/cm_cvd_english.pdf}
|
||||
\end{minipage}
|
||||
\end{bigformula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
@ -182,31 +182,31 @@
|
||||
\ger{Eine Art des Kristallwachstums, bei der mindestens eine kristallographische Ordnung der wachsenden Schicht der des Substrates entspricht.}
|
||||
\end{ttext}
|
||||
|
||||
\begin{minipagetable}{mbe}
|
||||
\entry{name}{
|
||||
\eng{Molecular Beam Epitaxy (MBE)}
|
||||
\ger{Molekularstrahlepitaxie (MBE)}
|
||||
}
|
||||
\entry{how}{
|
||||
\eng{In a ultra-high vacuum, the elements are heated until they slowly sublime. The gases then condensate on the substrate surface}
|
||||
\ger{Die Elemente werden in einem Ultrahochvakuum erhitzt, bis sie langsam sublimieren. Die entstandenen Gase kondensieren dann auf der Oberfläche des Substrats}
|
||||
}
|
||||
\entry{application}{
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item Gallium arsenide \ce{GaAs}
|
||||
\end{itemize}
|
||||
\TODO{Link to GaAs}
|
||||
\begin{bigformula}{mbe}
|
||||
\desc{Molecular Beam Epitaxy (MBE)}{}{}
|
||||
\desc[german]{Molekularstrahlepitaxie (MBE)}{}{}
|
||||
\begin{minipagetable}{mbe}
|
||||
\tentry{how}{
|
||||
\eng{In a ultra-high vacuum, the elements are heated until they slowly sublime. The gases then condensate on the substrate surface}
|
||||
\ger{Die Elemente werden in einem Ultrahochvakuum erhitzt, bis sie langsam sublimieren. Die entstandenen Gase kondensieren dann auf der Oberfläche des Substrats}
|
||||
}
|
||||
\ger{
|
||||
\begin{itemize}
|
||||
\item Galliumarsenid \ce{GaAs}
|
||||
\end{itemize}
|
||||
\tentry{application}{
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item Gallium arsenide \ce{GaAs}
|
||||
\end{itemize}
|
||||
\TODO{Link to GaAs}
|
||||
}
|
||||
\ger{
|
||||
\begin{itemize}
|
||||
\item Galliumarsenid \ce{GaAs}
|
||||
\end{itemize}
|
||||
}
|
||||
}
|
||||
}
|
||||
\end{minipagetable}
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/cm_mbe_english.pdf}
|
||||
\end{minipage}
|
||||
\end{minipagetable}
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/cm_mbe_english.pdf}
|
||||
\end{minipage}
|
||||
\end{bigformula}
|
||||
|
||||
|
@ -56,17 +56,17 @@
|
||||
\eq{\gamma_n = \oint_C \d \vec{R} \cdot A_n(\vec{R}) = \int_S \d\vec{S} \cdot \vec{\Omega}_n(\vec{R})}
|
||||
\end{formula}
|
||||
|
||||
\begin{ttext}[chern_number_desc]
|
||||
\eng{The Berry flux through any 2D closed surface is quantized by the \textbf{Chern number}.
|
||||
If there is time-reversal symmetry, the Chern-number is 0.
|
||||
}
|
||||
\ger{Der Berry-Fluß durch eine geschlossene 2D Fl[cher is quantisiert durch die \textbf{Chernzahl}
|
||||
Bei erhaltener Zeitumkehrungssymmetrie ist die Chernzahl 0.
|
||||
}
|
||||
\end{ttext}
|
||||
\begin{formula}{chern_number}
|
||||
\desc{Chern number}{Eg. number of Berry curvature monopoles in the Brillouin zone (then $\vec{R} = \vec{k}$)}{$\vec{S}$ closed surface in $\vec{R}$-space. A \textit{Chern insulator} is a 2D insulator with $C_n \neq 0$}
|
||||
\desc[german]{Chernuzahl}{Z.B. Anzahl der Berry-Krümmungs-Monopole in der Brilouinzone (dann ist $\vec{R} = \vec{k}$). Ein \textit{Chern-Isolator} ist ein 2D Isolator mit $C_n\neq0$}{$\vec{S}$ geschlossene Fläche im $\vec{R}$-Raum}
|
||||
\ttxt{
|
||||
\eng{The Berry flux through any 2D closed surface is quantized by the \textbf{Chern number}.
|
||||
If there is time-reversal symmetry, the Chern-number is 0.
|
||||
}
|
||||
\ger{Der Berry-Fluß durch eine geschlossene 2D Fl[cher is quantisiert durch die \textbf{Chernzahl}
|
||||
Bei erhaltener Zeitumkehrungssymmetrie ist die Chernzahl 0.
|
||||
}
|
||||
}
|
||||
\eq{C_n = \frac{1}{2\pi} \oint \d \vec{S}\ \cdot \vec{\Omega}_n(\vec{R})}
|
||||
\end{formula}
|
||||
|
||||
@ -76,10 +76,14 @@
|
||||
\eq{\vec{\sigma}_{xy} = \sum_n \frac{e^2}{h} \int_\text{\GT{occupied}} \d^2k\, \frac{\Omega_{xy}^n}{2\pi} = \sum_n C_n \frac{e^2}{h}}
|
||||
\end{formula}
|
||||
|
||||
\begin{ttext}
|
||||
\eng{A 2D insulator with a non-zero Chern number is called a \textbf{topological insulator}.}
|
||||
\ger{Ein 2D Isolator mit einer Chernzahl ungleich 0 wird \textbf{topologischer Isolator} genannt.}
|
||||
\end{ttext}
|
||||
\begin{formula}{topological_insulator}
|
||||
\desc{Topological insulator}{}{}
|
||||
\desc[german]{Topologischer Isolator}{}{}
|
||||
\ttxt{
|
||||
\eng{A 2D insulator with a non-zero Chern number is called a \textbf{topological insulator}.}
|
||||
\ger{Ein 2D Isolator mit einer Chernzahl ungleich 0 wird \textbf{topologischer Isolator} genannt.}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
|
429
src/comp/ad.tex
429
src/comp/ad.tex
@ -2,86 +2,373 @@
|
||||
\eng{Atomic dynamics}
|
||||
% \ger{}
|
||||
]{ad}
|
||||
\Subsection[
|
||||
\eng{Born-Oppenheimer Approximation}
|
||||
\ger{Born-Oppenheimer Näherung}
|
||||
]{bo}
|
||||
\begin{formula}{hamiltonian}
|
||||
\desc{Electron Hamiltonian}{}{$\hat{T}$ \fqEqRef{comp:elsth:kinetic_energy}, $\hat{V}$ \fqEqRef{comp:elsth:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}}
|
||||
\desc[german]{Hamiltonian der Elektronen}{}{}
|
||||
\eq{\hat{H}_\txe = \hat{T}_\txe + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe}}
|
||||
\begin{formula}{hamiltonian}
|
||||
\desc{Electron Hamiltonian}{}{$\hat{T}$ \fqEqRef{comp:est:kinetic_energy}, $\hat{V}$ \fqEqRef{comp:est:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}}
|
||||
\desc[german]{Hamiltonian der Elektronen}{}{}
|
||||
\eq{\hat{H}_\txe = \hat{T}_\txe + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe}}
|
||||
\end{formula}
|
||||
\begin{formula}{ansatz}
|
||||
\desc{Wave function ansatz}{}{$\psi_\text{en}^n$ eigenstate $n$ of \fqEqRef{comp:est:hamiltonian}, $\psi_\txe^i$ eigenstate $i$ of \fqEqRef{comp:ad:bo:hamiltonian}, $\vecr,\vecR$ electron/nucleus positions, $\sigma$ electron spin, $c^{ni}$ coefficients}
|
||||
\desc[german]{Wellenfunktion Ansatz}{}{}
|
||||
\eq{\psi_\text{en}^n\big(\{\vecr,\sigma\},\{\vecR\}\big) = \sum_i c^{ni}\big(\{\vecR\}\big)\, \psi_\txe^i\big(\{\vecr,\sigma\},\{\vecR\}\big)}
|
||||
\end{formula}
|
||||
\begin{formula}{equation}
|
||||
\desc{Equation}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
\eq{
|
||||
\label{eq:\fqname}
|
||||
\left[E_\txe^j\big(\{\vecR\}\big) + \hat{T}_\txn + V_{\txn \leftrightarrow \txn} - E^n \right]c^{nj} = -\sum_i \Lambda_{ij} c^{ni}\big(\{\vecR\}\big)
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{coupling_operator}
|
||||
\desc{Exact nonadiabtic coupling operator}{Electron-phonon couplings / electron-vibrational couplings}{$\psi^i_\txe$ electronic states, $\vecR$ nucleus position, $M$ nucleus \qtyRef{mass}}
|
||||
% \desc[german]{}{}{}
|
||||
\begin{multline}
|
||||
\Lambda_{ij} = \int \d^3r (\psi_\txe^j)^* \left(-\sum_I \frac{\hbar^2\nabla_{\vecR_I}^2}{2M_I}\right) \psi_\txe^i \\
|
||||
+ \sum_I \frac{1}{M_I} \int\d^3r \left[(\psi_\txe^j)^* (-i\hbar\nabla_{\vecR_I})\psi_\txe^i\right](-i\hbar\nabla_{\vecR_I})
|
||||
\end{multline}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Born-Oppenheimer Approximation}
|
||||
\ger{Born-Oppenheimer Näherung}
|
||||
]{bo}
|
||||
\begin{formula}{adiabatic_approx}
|
||||
\desc{Adiabatic approximation}{Electronic configuration remains the same when atoms move (\absRef{adiabatic_theorem})}{$\Lambda_{ij}$ \fqEqRef{comp:ad:coupling_operator}}
|
||||
\desc[german]{Adiabatische Näherung}{Elektronenkonfiguration bleibt gleich bei Bewegung der Atome gleichl (\absRef{adiabatic_theorem})}{}
|
||||
\eq{\Lambda_{ij} = 0 \quad \text{\GT{for} } i\neq j}
|
||||
\end{formula}
|
||||
\begin{formula}{approx}
|
||||
\desc{Born-Oppenheimer approximation}{Electrons are not influenced by the movement of the atoms}{\GT{see} \fqEqRef{comp:ad:equation}, $V_{\txn \leftrightarrow \txn} = \const$ absorbed into $E_\txe^j$}
|
||||
\desc[german]{Born-Oppenheimer Näherung}{Elektronen werden nicht durch die Bewegung der Atome beeinflusst}{}
|
||||
\begin{gather}
|
||||
\Lambda_{ij} = 0
|
||||
\shortintertext{\fqEqRef{comp:ad:bo:equation} \Rightarrow}
|
||||
\left[E_e^i\big(\{\vecR\}\big) + \hat{T}_\txn - E^n\right]c^{ni}\big(\{\vecR\}\big) = 0
|
||||
\end{gather}
|
||||
\end{formula}
|
||||
\begin{formula}{surface}
|
||||
\desc{Born-Oppenheimer surface}{Potential energy surface (PES)\\ The nuclei follow Newtons equations of motion on the BO surface if the system is in the electronic ground state}{$E_\txe^0, \psi_\txe^0$ lowest eigenvalue/eigenstate of \fqEqRef{comp:ad:bo:hamiltonian}}
|
||||
\desc[german]{Born-Oppenheimer Potentialhyperfläche}{Die Nukleonen Newtons klassichen Bewegungsgleichungen auf der BO Hyperfläche wenn das System im elektronischen Grundzustand ist}{$E_\txe^0, \psi_\txe^0$ niedrigster Eigenwert/Eigenzustand vom \fqEqRef{comp:ad:bo:hamiltonian}}
|
||||
\begin{gather}
|
||||
V_\text{BO}\big(\{\vecR\}\big) = E_\txe^0\big(\{\vecR\}\big) \\
|
||||
M_I \ddot{\vecR}_I(t) = - \Grad_{\vecR_I} V_\text{BO}\big(\{\vecR(t)\}\big)
|
||||
\end{gather}
|
||||
\end{formula}
|
||||
\begin{formula}{ansatz}
|
||||
\desc{Ansatz for \secEqRef{approx}}{Product of single electronic and single nuclear state}{}
|
||||
\desc[german]{Ansatz für \secEqRef{approx}}{Produkt aus einem einzelnen elektronischen Zustand und einem Nukleus-Zustand}{}
|
||||
\eq{
|
||||
\psi_\text{BO} = c^{n0} \big(\{\vecR\}\big) \,\psi_\txe^0 \big(\{\vecr,\sigma\},\{\vecR\}\big)
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{limitations}
|
||||
\desc{Limitations}{}{$\tau$ passage of time for electrons/nuclei, $L$ characteristic length scale of atomic dynamics, $\dot{\vec{R}}$ nuclear velocity, $\Delta E$ difference between two electronic states}
|
||||
\desc[german]{Limitationen}{}{}
|
||||
\ttxt{
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item Nuclei velocities must be small and electron energy state differences large
|
||||
\item Nuclei need spin for effects like spin-orbit coupling
|
||||
\item Nonadiabitc effects in photochemistry, proteins
|
||||
\end{itemize}
|
||||
Valid when Massey parameter $\xi \gg 1$
|
||||
}
|
||||
}
|
||||
\eq{
|
||||
\xi = \frac{\tau_\txn}{\tau_\txe} = \frac{L \Delta E}{\hbar \abs{\dot{\vecR}}}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Structure optimization}
|
||||
\ger{Strukturoptimierung}
|
||||
]{opt}
|
||||
\begin{formula}{forces}
|
||||
\desc{Forces}{}{}
|
||||
\desc[german]{Kräfte}{}{}
|
||||
\eq{\vec{F}_I = -\Grad_{\vecR_I} E \explOverEq{\fqEqRef{qm:se:hellmann_feynmann}} -\Braket{\psi(\vecR_I) | \left(\Grad_{\vecR_I} \hat{H}(\vecR_I)\right) | \psi(\vecR) }}
|
||||
\end{formula}
|
||||
\begin{formula}{ionic_cycle}
|
||||
\desc{Ionic cycle}{\fqEqRef{comp:est:dft:ks:scf} for geometry optimization}{}
|
||||
\desc[german]{}{}{}
|
||||
\ttxt{
|
||||
\eng{
|
||||
\begin{enumerate}
|
||||
\item Initial guess for $n(\vecr)$
|
||||
\begin{enumerate}
|
||||
\item Calculate effective potential $V_\text{eff}$
|
||||
\item Solve \fqEqRef{comp:est:dft:ks:equation}
|
||||
\item Calculate density $n(\vecr)$
|
||||
\item Repeat b-d until self consistent
|
||||
\end{enumerate}
|
||||
\item Calculate \secEqRef{forces}
|
||||
\item If $F\neq0$, get new geometry by interpolating $R$ and restart
|
||||
\end{enumerate}
|
||||
}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{transformation}
|
||||
\desc{Transformation of atomic positions under stress}{}{$\alpha,\beta=1,2,3$ position components, $R$ position, $R(0)$ zero-strain position, $\ten{\epsilon}$ \qtyRef{strain} tensor}
|
||||
\desc[german]{Transformation der Atompositionen unter Spannung}{}{$\alpha,\beta=1,2,3$ Positionskomponenten, $R$ Position, $R(0)$ Position ohne Dehnung, $\ten{\epsilon}$ \qtyRef{strain} Tensor}
|
||||
\eq{R_\alpha(\ten{\epsilon}_{\alpha\beta}) = \sum_\beta \big(\delta_{\alpha\beta} + \ten{\epsilon}_{\alpha\beta}\big)R_\beta(0)}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{stress_tensor}
|
||||
\desc{Stress tensor}{}{$\Omega$ unit cell volume, \ten{\epsilon} \qtyRef{strain} tensor}
|
||||
\desc[german]{Spannungstensor}{}{}
|
||||
\eq{\ten{\sigma}_{\alpha,\beta} = \frac{1}{\Omega} \pdv{E_\text{total}}{\ten{\epsilon}_{\alpha\beta}}_{\ten{\epsilon}=0}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{pulay_stress}
|
||||
\desc{Pulay stress}{}{}
|
||||
\desc[german]{Pulay-Spannung}{}{}
|
||||
\eq{
|
||||
N_\text{PW} \propto E_\text{cut}^\frac{3}{2} \propto \abs{\vec{G}_\text{max}}^3
|
||||
}
|
||||
\ttxt{\eng{
|
||||
Number of plane waves $N_\text{PW}$ depends on $E_\text{cut}$.
|
||||
If $G$ changes during optimization, $N_\text{PW}$ may change, thus the basis set can change.
|
||||
This typically leads to too small volumes.
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Lattice vibrations}
|
||||
\ger{Gitterschwingungen}
|
||||
]{latvib}
|
||||
\begin{formula}{force_constant_matrix}
|
||||
\desc{Force constant matrix}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
\eq{\Phi_{IJ}^{\mu\nu} = \pdv{V(\{\vecR\})}{R_I^\mu,R_J^\nu}_{\{\vecR_I\}=\{\vecR_I^0\}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{harmonic_approx}
|
||||
\desc{Harmonic approximation}{Hessian matrix, 2nd order Taylor expansion of the \fqEqRef{comp:ad:bo:surface} around every nucleus position $\vecR_I^0$}{$\Phi_{IJ}^{\mu\nu}$ \secEqRef{force_constant_matrix}, $s$ displacement}
|
||||
\desc[german]{Harmonische Näherung}{Hesse matrix, Taylor Entwicklung der \fqEqRef{comp:ad:bo:surface} in zweiter Oddnung um Atomposition $\vecR_I^0$}{}
|
||||
\eq{ V^\text{BO}(\{\vecR_I\}) \approx V^\text{BO}(\{\vecR_I^0\}) + \frac{1}{2} \sum_{I,J}^N \sum_{\mu,\nu}^3 s_I^\mu s_J^\nu \Phi_{IJ}^{\mu\nu} }
|
||||
\end{formula}
|
||||
|
||||
% solving difficult becaus we need to calculate (3N)^2 derivatives, Hellmann-Feynman cant be applied directly
|
||||
% -> DFPT
|
||||
|
||||
% finite-difference method
|
||||
\Subsubsection[
|
||||
\eng{Finite difference method}
|
||||
% \ger{}
|
||||
]{fin_diff}
|
||||
|
||||
\begin{formula}{approx}
|
||||
\desc{Approximation}{Assume forces in equilibrium structure vanish}{$\Delta s$ displacement of atom $J$}
|
||||
% \desc[german]{}{}{}
|
||||
\eq{\Phi_{IJ}^{\mu\nu} \approx \frac{\vecF_I^\mu(\vecR_1^0, \dots, \vecR_J^0+\Delta s_J^\nu,\dots, \vecR_N^0)}{\Delta s_J^\nu}}
|
||||
\end{formula}
|
||||
\begin{formula}{ansatz}
|
||||
\desc{Wave function ansatz}{}{$\psi_\text{en}^n$ eigenstate $n$ of \fqEqRef{comp:elst:hamiltonian}, $\psi_\txe^i$ eigenstate $i$ of \fqEqRef{comp:ad:bo:hamiltonian}, $\vecr,\vecR$ electron/nucleus positions, $\sigma$ electron spin, $c^{ni}$ coefficients}
|
||||
\desc[german]{Wellenfunktion Ansatz}{}{}
|
||||
\eq{\psi_\text{en}^n\big(\{\vecr,\sigma\},\{\vecR\}\big) = \sum_i c^{ni}\big(\{\vecR\}\big)\, \psi_\txe^i\big(\{\vecr,\sigma\},\{\vecR\}\big)}
|
||||
\begin{formula}{dynamical_matrix}
|
||||
\desc{Dynamical matrix}{Mass reduced \absRef[fourier transform]{fourier_transform} of the \fqEqRef{comp:ad:latvib:force_constant_matrix}}{$\vec{L}$ vector from origin to unit cell $n$, $\alpha/\beta$ atom index in th unit cell, $\vecq$ \qtyRef{wave_vector}, $\Phi$ \fqEqRef{comp:ad:latvib:force_constant_matrix}, $M$ \qtyRef{mass}}
|
||||
% \desc[german]{}{}{}
|
||||
\eq{D_{\alpha\beta}^{\mu\nu} = \frac{1}{\sqrt{M_\alpha M_\beta}} \sum_{n^\prime} \Phi_{\alpha\beta}^{\mu\nu}(n-n^\prime) \e^{\I \vec{q}(\vec{L}_n - \vec{L}_{n^\prime})}}
|
||||
\end{formula}
|
||||
\begin{formula}{equation}
|
||||
\desc{Equation}{}{}
|
||||
|
||||
\begin{formula}{eigenvalue_equation}
|
||||
\desc{Eigenvalue equation}{For a periodic crystal, reduces number of equations from $3N_p\times N$ to $3N_p$. Eigenvalues represent phonon band structure.}{$N_p$ number of atoms per unit cell, $\vecc$ displacement amplitudes, $\vecq$ \qtyRef{wave_vector}, $\mat{D}$ \secEqRef{dynamical_matrix}}
|
||||
\desc[german]{Eigenwertgleichung}{}{}
|
||||
\eq{\omega^2 \vecc(\vecq) = \mat{D}(\vecq) \vecc(\vecq) }
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Anharmonic approaches}
|
||||
\ger{Anharmonische Ansätze}
|
||||
]{anharmonic}
|
||||
|
||||
\begin{formula}{qha}
|
||||
\desc{Quasi-harmonic approximation}{}{}
|
||||
\desc[german]{}{}{}
|
||||
\ttxt{\eng{
|
||||
Include thermal expansion by assuming \fqEqRef{comp:ad:bo:surface} is volume dependant.
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{pertubative}
|
||||
\desc{Pertubative approaches}{}{}
|
||||
% \desc[german]{Störungs}{}{}
|
||||
\ttxt{\eng{
|
||||
Expand \fqEqRef{comp:ad:latvib:force_constant_matrix} to third order.
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Molecular Dynamics}
|
||||
\ger{Molekulardynamik}
|
||||
]{md} \abbrLink{md}{MD}
|
||||
\begin{formula}{desc}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
\ttxt{\eng{
|
||||
\begin{itemize}
|
||||
\item Exact (within previous approximations) approach to treat anharmonic effects in materials.
|
||||
\item Computes time-dependant observables.
|
||||
\item Assumes fully classical nuclei.
|
||||
\item Macroscropical observables from statistical ensembles
|
||||
\item System evolves in time (ehrenfest). Number of points to consider does NOT scale with system size.
|
||||
\item Exact because time dependance is studied explicitly, not via harmonic approx.
|
||||
\end{itemize}
|
||||
\TODO{cleanup}
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{procedure}
|
||||
\desc{MD simulation procedure}{}{}
|
||||
\desc[german]{Ablauf von MD Simulationen}{}{}
|
||||
\ttxt{\eng{
|
||||
\begin{enumerate}
|
||||
\item Initialize with optimized geometry, interaction potential, ensemble, integration scheme, temperature/pressure control
|
||||
\item Equilibrate to desired temperature/pressure (eg with statistical starting velocities)
|
||||
\item Production run, run MD long enough to calculate desired observables
|
||||
\end{enumerate}
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Ab-initio molecular dynamics}
|
||||
\ger{Ab-initio molecular dynamics}
|
||||
]{ab-initio}
|
||||
\begin{formula}{bomd}
|
||||
\abbrLabel{BOMD}
|
||||
\desc{Born-Oppenheimer MD (BOMD)}{}{}
|
||||
\desc[german]{Born-Oppenheimer MD (BOMD)}{}{}
|
||||
\ttxt{\eng{
|
||||
\begin{enumerate}
|
||||
\item Calculate electronic ground state of current nucleui configuration $\{\vecR(t)\}$ with \abbrRef{ksdft}
|
||||
\item \hyperref[f:comp:ad:opt:forces]{Calculate forces} from the \fqEqRef{comp:ad:bo:surface}
|
||||
\item Update positions and velocities
|
||||
\end{enumerate}
|
||||
\begin{itemize}
|
||||
\gooditem "ab-inito" - no empirical information required
|
||||
\baditem Many expensive \abbrRef{dft} calculations
|
||||
\end{itemize}
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{cpmd}
|
||||
\desc{Car-Parrinello MD (CPMD)}{}{$\mu$ electron orbital mass, $\varphi_i$ \abbrRef{ksdft} eigenststate, $\lambda_{ij}$ Lagrange multiplier}
|
||||
\desc[german]{Car-Parrinello MD (CPMD)}{}{}
|
||||
\ttxt{\eng{
|
||||
Evolve electronic wave function $\varphi$ (adiabatically) along with the nuclei \Rightarrow only one full \abbrRef{ksdft}
|
||||
}}
|
||||
\begin{gather}
|
||||
M_I \odv[2]{\vecR_I}{t} = -\Grad_{\vecR_I} E[\{\varphi_i\},\{\vecR_I\}] \\
|
||||
% not using pdv because of comma in parens
|
||||
% E[\{\varphi_i\}\{\vecR_I\}] = \Braket{\psi_0|H_\text{el}^\text{KS}|\psi_0}
|
||||
\mu \odv[2]{\varphi_i(\vecr,t)}{t} = - \frac{\partial}{\partial\varphi_i^*(\vecr,t)} E[\{\varphi_i\},\{\vecR_I\}] + \sum_j \lambda_{ij} \varphi_j(\vecr,t)
|
||||
\end{gather}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Force-field MD}
|
||||
\ger{Force-field MD}
|
||||
]{ff}
|
||||
|
||||
\begin{formula}{ffmd}
|
||||
\desc{Force field MD (FFMD)}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
\ttxt{\eng{
|
||||
\begin{itemize}
|
||||
\item Use empirical interaction potential instead of electronic structure
|
||||
\baditem Force fields need to be fitted for specific material \Rightarrorw not transferable
|
||||
\gooditem Faster than \abbrRef{bomd}
|
||||
\item Example: \absRef{lennard_jones}
|
||||
\end{itemize}
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Integration schemes}
|
||||
% \ger{}
|
||||
]{scheme}
|
||||
\begin{ttext}
|
||||
\eng{Procedures for updating positions and velocities to obey the equations of motion.}
|
||||
\end{ttext}
|
||||
|
||||
\begin{formula}{euler}
|
||||
\desc{Euler method}{First-order procedure for solving \abbrRef{ode}s with a given initial value.\\Taylor expansion of $\vecR/\vecv (t+\Delta t)$}{}
|
||||
\desc[german]{Euler-Verfahren}{Prozedur um gewöhnliche DGLs mit Anfangsbedingungen in erster Ordnung zu lösen.\\Taylor Entwicklung von $\vecR/\vecv (t+\Delta t)$}{}
|
||||
\eq{
|
||||
\vecR(t+\Delta t) &= \vecR(t) + \vecv(t) \Delta t + \Order{\Delta t^2} \\
|
||||
\vecv(t+\Delta t) &= \vecv(t) + \veca(t) \Delta t + \Order{\Delta t^2}
|
||||
}
|
||||
\ttxt{\eng{
|
||||
Cumulative error scales linearly $\Order{\Delta t}$. Not time reversible.
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{verlet}
|
||||
\desc{Verlet integration}{Preverses time reversibility, does not require velocity updates}{}
|
||||
\desc[german]{Verlet-Algorithmus}{Zeitumkehr-symmetrisch}{}
|
||||
\eq{
|
||||
\vecR(t+\Delta t) = 2\vecR(t) -\vecR(t-\Delta t) + \veca(t) \Delta t^2 + \Order{\Delta t^4}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{velocity-verlet}
|
||||
\desc{Velocity-Verlet integration}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
\eq{
|
||||
\label{eq:\fqname}
|
||||
\left[E_\txe^j\big(\{\vecR\}\big) + \hat{T}_\txn + V_{\txn \leftrightarrow \txn} - E^n \right]c^{nj} = -\sum_i \Lambda_{ij} c^{ni}\big(\{\vecR\}\big)
|
||||
\vecR(t+\Delta t) &= \vecR(t) + \vecv(t)\Delta t + \frac{1}{2} \veca(t) \Delta t^2 + \Order{\Delta t^4} \\
|
||||
\vecv(t+\Delta t) &= \vecv(t) + \frac{\veca(t) + \veca(t+\Delta t)}{2} \Delta t + \Order{\Delta t^4}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{coupling_operator}
|
||||
\desc{Exact nonadiabtic coupling operator}{Electron-phonon couplings / electron-vibrational couplings}{$\psi^i_\txe$ electronic states, $\vecR$ nucleus position, $M$ nucleus \qtyRef{mass}}
|
||||
|
||||
\TODO{leapfrog}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Thermostats and barostats}
|
||||
\ger{Thermostate und Barostate}
|
||||
]{stats}
|
||||
\begin{formula}{velocity_rescaling}
|
||||
\desc{Velocity rescaling}{Thermostat, keep temperature at $T_0$ by rescaling velocities. Does not allow temperature fluctuations and thus does not obey the \absRef{c_ensemble}}{$T$ target \qtyRef{temperature}, $M$ \qtyRef{mass} of nucleon $I$, $\vecv$ \qtyRef{velocity}, $f$ number of degrees of freedom, $\lambda$ velocity scaling parameter, \ConstRef{boltzmann}}
|
||||
% \desc[german]{}{}{}
|
||||
\begin{multline}
|
||||
\Lambda_{ij} = \int \d^3r (\psi_\txe^j)^* \left(-\sum_I \frac{\hbar^2\nabla_{\vecR_I}^2}{2M_I}\right) \psi_\txe^i \\
|
||||
+ \sum_I \frac{1}{M_I} \int\d^3r \left[(\psi_\txe^j)^* (-i\hbar\nabla_{\vecR_I})\psi_\txe^i\right](-i\hbar\nabla_{\vecR_I})
|
||||
\end{multline}
|
||||
\end{formula}
|
||||
\begin{formula}{adiabatic_approx}
|
||||
\desc{Adiabatic approximation}{Electronic configuration remains the same when atoms move}{$\Lambda_{ij}$ \fqEqRef{comp:ad:bo:coupling_operator}}
|
||||
\desc[german]{Adiabatische Näherung}{Elektronenkonfiguration bleibt gleich bei Bewegung der Atome gleich}{}
|
||||
\eq{\Lambda_{ij} = 0 \quad \text{\GT{for} } i\neq j}
|
||||
\end{formula}
|
||||
\begin{formula}{approx}
|
||||
\desc{Born-Oppenheimer approximation}{}{\GT{see} \fqEqRef{comp:ad:bo:equation}}
|
||||
\desc[german]{Born-Oppenheimer Näherung}{}{}
|
||||
\begin{gather}
|
||||
\Lambda_{ij} = 0
|
||||
\shortintertext{\fqEqRef{comp:ad:bo:equation} \Rightarrow}
|
||||
\left[E_e^i\big(\{\vecR\}\big) + \hat{T}_\txn - E^n\right]c^{ni}\big(\{\vecR\}\big) = 0
|
||||
\end{gather}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{surface}
|
||||
\desc{Born-Oppenheimer surface}{Potential energy surface (PES)\\ The nuclei follow Newtons equations of motion on the BO surface if the system is in the electronic ground state}{$E_\txe^0, \psi_\txe^0$ lowest eigenvalue/eigenstate of \fqEqRef{comp:ad:bo:hamiltonian}}
|
||||
\desc[german]{Born-Oppenheimer Potentialhyperfläche}{Die Nukleonen Newtons klassichen Bewegungsgleichungen auf der BO Hyperfläche wenn das System im elektronischen Grundzustand ist}{$E_\txe^0, \psi_\txe^0$ niedrigster Eigenwert/Eigenzustand vom \fqEqRef{comp:ad:bo:hamiltonian}}
|
||||
\begin{gather}
|
||||
V_\text{BO}\big(\{\vecR\}\big) = E_\txe^0\big(\{\vecR\}\big) \\
|
||||
M_I \ddot{\vecR}_I(t) = - \Grad_{\vecR_I} V_\text{BO}\big(\{\vecR(t)\}\big)
|
||||
\shortintertext{\GT{ansatz} \GT{for} \fqEqRef{comp:ad:bo:approx}}
|
||||
\psi_\text{BO} = c^{n0} \big(\{\vecR\}\big) \,\psi_\txe^0 \big(\{\vecr,\sigma\},\{\vecR\}\big)
|
||||
\end{gather}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{limitations}
|
||||
\desc{Limitations}{}{}
|
||||
\desc[german]{Limitationen}{}{}
|
||||
\ttxt{
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item Nuclei velocities must be small and electron energy state differences large
|
||||
\item Nuclei need spin for effects like spin-orbit coupling
|
||||
\item Nonadiabitc effects in photochemistry, proteins
|
||||
\end{itemize}
|
||||
}
|
||||
\eq{
|
||||
\Delta T(t) &= T_0 - T(t) \\
|
||||
&= \sum_I^N \frac{M_I\,(\lambda \vecv_I(t))^2}{f\kB} - \sum_I^N \frac{M_I\,\vecv_I(t)^2}{f\kB} \\
|
||||
&= (\lambda^2 - 1) T(t)
|
||||
}
|
||||
\end{formula}
|
||||
\TODO{geometry optization?, lattice vibrations (harmionic approx, dynamical matrix)}
|
||||
\eq{\lambda = \sqrt{\frac{T_0}{T(t)}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{berendsen}
|
||||
\desc{Berendsen thermostat}{Does not obey \absRef{c_ensemble} but efficiently brings system to target temperature}{}
|
||||
% \desc[german]{}{}{}
|
||||
\eq{\odv{T}{t} = \frac{T_0-T}{\tau}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Molecular Dynamics}
|
||||
\ger{Molekulardynamik}
|
||||
]{md}
|
||||
\begin{ttext}
|
||||
\eng{Statistical method}
|
||||
|
||||
\end{ttext}
|
||||
\begin{formula}{nose-hoover}
|
||||
\desc{Nosé-Hoover thermostat}{Control the temperature with by time stretching with an associated mass.\\Compliant with \absRef{c_ensemble}}{$s$ scaling factor, $Q$ associated "mass", $\mathcal{L}$ \absRef{lagrangian}, $g$ degrees of freedom}
|
||||
\desc[german]{Nosé-Hoover Thermostat}{}{}
|
||||
\begin{gather}
|
||||
\d\tilde{t} = \tilde{s}\d t \\
|
||||
\mathcal{L} = \sum_{I=1}^N \frac{1}{2} M_I \tilde{s}^2 v_i^2 - V(\tilde{\vecR}_1, \ldots, \tilde{\vecR}_I, \ldots, \tilde{\vecR}_N) + \frac{1}{2} Q \dot{\tilde{s}}^2 - g \kB T_0 \ln \tilde{s}
|
||||
\end{gather}
|
||||
\end{formula}
|
||||
|
||||
\TODO{ab-initio MD, force-field MD}
|
||||
\Subsubsection[
|
||||
\eng{Calculating observables}
|
||||
\ger{Berechnung von Observablen}
|
||||
]{obs}
|
||||
\begin{formula}{spectral_density}
|
||||
\desc{Spectral density}{Wiener-Khinchin theorem\\\absRef{fourier_transform} of \absRef{autocorrelation}}{$C$ \absRef{autocorrelation}}
|
||||
\desc[german]{Spektraldichte}{Wiener-Khinchin Theorem\\\absRef{fourier_transform} of \absRef{autocorrelation}}{}
|
||||
\eq{S(\omega) = \int_{-\infty}^\infty \d\tau C(\tau) \e^{-\I\omega t} }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{vdos} \abbrLabel{VDOS}
|
||||
\desc{Vibrational density of states (VDOS)}{}{$S_{v_i}$ velocity \secEqRef{spectral_density} of particle $I$}
|
||||
\desc[german]{Vibrationszustandsdicht (VDOS)}{}{}
|
||||
\eq{g(\omega) \sim \sum_{I=1}^N M_I S_{v_I}(\omega)}
|
||||
\end{formula}
|
||||
|
@ -1,183 +0,0 @@
|
||||
\Section[
|
||||
\eng{Electronic structure theory}
|
||||
% \ger{}
|
||||
]{elst}
|
||||
\begin{formula}{kinetic_energy}
|
||||
\desc{Kinetic energy}{of species $i$}{$i$ = nucleons/electrons, $N$ number of particles, $m$ \qtyRef{mass}}
|
||||
\desc[german]{Kinetische Energie}{von Spezies $i$}{$i$ = Nukleonen/Elektronen, $N$ Teilchenzahl, $m$ \qtyRef{mass}}
|
||||
\eq{\hat{T}_i &= -\sum_{n=1}^{N_i} \frac{\hbar^2}{2 m_i} \vec{\nabla}^2_n}
|
||||
\end{formula}
|
||||
\begin{formula}{potential_energy}
|
||||
\desc{Electrostatic potential}{between species $i$ and $j$}{$i,j$ = nucleons/electrons, $r$ particle position, $Z_i$ charge of species $i$, \ConstRef{charge}}
|
||||
\desc[german]{Elektrostatisches Potential}{zwischen Spezies $i$ und $j$}{}
|
||||
\eq{\hat{V}_{i \leftrightarrow j} &= -\sum_{k,l} \frac{Z_i Z_j e^2}{\abs{\vecr_k - \vecr_l}}}
|
||||
\end{formula}
|
||||
\begin{formula}{hamiltonian}
|
||||
\desc{Electronic structure Hamiltonian}{}{$\hat{T}$ \fqEqRef{comp:elsth:kinetic_energy}, $\hat{V}$ \fqEqRef{comp:elsth:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}}
|
||||
\eq{\hat{H} &= \hat{T}_\txe + \hat{T}_\txn + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe} + V_{\txn \leftrightarrow \txn}}
|
||||
\end{formula}
|
||||
\begin{formula}{mean_field}
|
||||
\desc{Mean field approximation}{Replaces 2-particle operator by 1-particle operator}{Example for Coulumb interaction between many electrons}
|
||||
\desc[german]{Molekularfeldnäherung}{Ersetzt 2-Teilchen Operator durch 1-Teilchen Operator}{Beispiel für Coulumb Wechselwirkung zwischen Elektronen}
|
||||
\eq{
|
||||
\frac{1}{2}\sum_{i\neq j} \frac{e^2}{\abs{\vec{r}_i - \vec{r}_j}} \approx \sum_{i} V_\text{eff}(\vec{r}_i)
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Tight-binding}
|
||||
\ger{Modell der stark gebundenen Elektronen / Tight-binding}
|
||||
]{tb}
|
||||
\begin{formula}{assumptions}
|
||||
\desc{Assumptions}{}{}
|
||||
\desc[german]{Annahmen}{}{}
|
||||
\ttxt{
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item Atomic wave functions are localized \Rightarrow Small overlap, interaction cutoff
|
||||
\end{itemize}
|
||||
}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{hamiltonian}
|
||||
\desc{Tight-binding Hamiltonian}{in second quantized form}{$\hat{a}_i^\dagger$, $\hat{a}_i$ \GT{creation_annihilation_ops} create/destory an electron on site $i$, $\epsilon_i$ on-site energy, $t_{i,j}$ hopping amplitude, usually $\epsilon$ and $t$ are determined from experiments or other methods}
|
||||
\desc[german]{Tight-binding Hamiltonian}{in zweiter Quantisierung}{$\hat{a}_i^\dagger$, $\hat{a}_i$ \GT{creation_annihilation_ops} erzeugen/vernichten ein Elektron auf Platz $i$, $\epsilon_i$ on-site Energie, $t_{i,j}$ hopping Amplitude, meist werden $\epsilon$ und $t$ aus experimentellen Daten oder anderen Methoden bestimmt}
|
||||
\eq{\hat{H} = \sum_i \epsilon_i \hat{a}_i^\dagger \hat{a}_i - \sum_{i,j} t_{i,j} \left(\hat{a}_i^\dagger \hat{a}_j + \hat{a}_j^\dagger \hat{a}_i\right)}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Density functional theory (DFT)}
|
||||
\ger{Dichtefunktionaltheorie (DFT)}
|
||||
]{dft}
|
||||
\Subsubsection[
|
||||
\eng{Hartree-Fock}
|
||||
\ger{Hartree-Fock}
|
||||
]{hf}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item \fqEqRef{comp:elst:mean_field} theory obeying the Pauli principle
|
||||
\item Self-interaction free: Self interaction is cancelled out by the Fock-term
|
||||
\end{itemize}
|
||||
}
|
||||
\end{ttext}
|
||||
\end{formula}
|
||||
\begin{formula}{equation}
|
||||
\desc{Hartree-Fock equation}{}{
|
||||
$\varphi_\xi$ single particle wavefunction of $\xi$th orbital,
|
||||
$\hat{T}$ kinetic electron energy,
|
||||
$\hat{V}_{\text{en}}$ electron-nucleus attraction,
|
||||
$\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential},
|
||||
}
|
||||
\desc[german]{Hartree-Fock Gleichung}{}{
|
||||
$\varphi_\xi$ ein-Teilchen Wellenfunktion des $\xi$-ten Orbitals,
|
||||
$\hat{T}$ kinetische Energie der Elektronen,
|
||||
$\hat{V}_{\text{en}}$ Electron-Kern Anziehung,
|
||||
$\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential}
|
||||
}
|
||||
\eq{
|
||||
\left(\hat{T} + \hat{V}_{\text{en}} + \hat{V}_{\text{HF}}^\xi\right)\varphi_\xi(x) = \epsilon_\xi \varphi_\xi(x)
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{potential}
|
||||
\desc{Hartree-Fock potential}{}{}
|
||||
\desc[german]{Hartree Fock Potential}{}{}
|
||||
\eq{
|
||||
V_{\text{HF}}^\xi(\vecr) =
|
||||
\sum_{\vartheta} \int \d x'
|
||||
\frac{e^2}{\abs{\vecr - \vecr'}}
|
||||
\left(
|
||||
\underbrace{\abs{\varphi_\xi(x')}^2}_{\text{Hartree-Term}}
|
||||
- \underbrace{\frac{\varphi_{\vartheta}^*(x') \varphi_{\xi}(x') \varphi_{\vartheta}(x)}{\varphi_\xi(x)}}_{\text{Fock-Term}}
|
||||
\right)
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{scf}
|
||||
\desc{Self-consistent field cycle}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
\ttxt{
|
||||
\eng{
|
||||
\begin{enumerate}
|
||||
\item Initial guess for $\psi$
|
||||
\item Solve SG for each particle
|
||||
\item Make new guess for $\psi$
|
||||
\end{enumerate}
|
||||
}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Hohenberg-Kohn Theorems}
|
||||
\ger{Hohenberg-Kohn Theoreme}
|
||||
]{hk}
|
||||
\begin{formula}{hk1}
|
||||
\desc{Hohenberg-Kohn theorem (HK1)}{}{}
|
||||
\desc[german]{Hohenberg-Kohn Theorem (HK1)}{}{}
|
||||
\ttxt{
|
||||
\eng{For any system of interacting electrons, the ground state electron density $n(\vecr)$ determines $\hat{V}_\text{ext}$ uniquely up to a trivial constant. }
|
||||
\ger{Die Elektronendichte des Grundzustandes $n(\vecr)$ bestimmt ein einzigartiges $\hat{V}_{\text{ext}}$ eines Systems aus interagierenden Elektronen bis auf eine Konstante.}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{hk2}
|
||||
\desc{Hohenberg-Kohn theorem (HK2)}{}{}
|
||||
\desc[german]{Hohenberg-Kohn Theorem (HK2)}{}{}
|
||||
\ttxt{
|
||||
\eng{Given the energy functional $E[n(\vecr)]$, the ground state density and energy can be obtained variationally. The density that minimizes the total energy is the ecxact ground state density. }
|
||||
\ger{Für ein Energiefunktional $E[n(\vecr)]$ kann die Grundzustandsdichte und Energie durch systematische Variation bestimmt werden. Die Dichte, welche die Gesamtenergie minimiert ist die exakte Grundzustandsichte. }
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Kohn-Sham DFT}
|
||||
\ger{Kohn-Sham DFT}
|
||||
]{ks}
|
||||
\begin{formula}{map}
|
||||
\desc{Kohn-Sham map}{}{}
|
||||
\desc[german]{Kohn-Sham Map}{}{}
|
||||
\ttxt{
|
||||
\eng{Maps fully interacting system of electrons to a system of non-interacting electrons with the same ground state density $n^\prime(\vecr) = n(\vecr)$}
|
||||
}
|
||||
\eq{n(\vecr) = \sum_{i=1}^N \abs{\phi_i(\vecr)}^2}
|
||||
\end{formula}
|
||||
\begin{formula}{functional}
|
||||
\desc{Kohn-Sham functional}{}{$T_\text{KS}$ kinetic enery, $V_\text{ext}$ external potential, $E_\txH$ \hyperref[f:comp:elst:dft:hf:potential]{Hartree term}, $E_\text{XC}$ exchange correlation functional}
|
||||
\desc[german]{Kohn-Sham Funktional}{}{}
|
||||
\eq{E_\text{KS}[n(\vecr)] = T_\text{KS}[n(\vecr)] + V_\text{ext}[n(\vecr)] + E_\text{H}[n(\vecr)] + E_\text{XC}[n(\vecr)] }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{equation}
|
||||
\desc{Kohn-Sham equation}{Solving it uses up a large portion of supercomputer resources}{$\phi_i^\text{KS}$ KS orbitals}
|
||||
\desc[german]{Kohn-Sham Gleichung}{Die Lösung der Gleichung macht einen großen Teil der Supercomputer Ressourcen aus}{}
|
||||
\begin{multline}
|
||||
\biggr\{
|
||||
-\frac{\hbar^2\nabla^2}{2m}
|
||||
+ v_\text{ext}(\vecr)
|
||||
+ e^2 \int\d^3 \vecr^\prime \frac{n(\vecr^\prime)}{\abs{\vecr-\vecr^\prime}} \\
|
||||
+ \pdv{E_\txX[n(\vecr)]}{n(\vecr)}
|
||||
+ \pdv{E_\txC[n(\vecr)]}{n(\vecr)}
|
||||
\biggr\} \phi_i^\text{KS}(\vecr) =\\
|
||||
= \epsilon_i^\text{KS} \phi_i^\text{KS}(\vecr)
|
||||
\end{multline}
|
||||
\end{formula}
|
||||
\begin{formula}{scf}
|
||||
\desc{Self-consistent field cycle for Kohn-Sham}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
\ttxt{
|
||||
\itemsep=\parsep
|
||||
\eng{
|
||||
\begin{enumerate}
|
||||
\item Initial guess for $n(\vecr)$
|
||||
\item Calculate effective potential $V_\text{eff}$
|
||||
\item Solve \fqEqRef{comp:elst:dft:ks:equation}
|
||||
\item Calculate density $n(\vecr)$
|
||||
\item Repeat 2-4 until self consistent
|
||||
\end{enumerate}
|
||||
}
|
||||
}
|
||||
\end{formula}
|
289
src/comp/est.tex
Normal file
289
src/comp/est.tex
Normal file
@ -0,0 +1,289 @@
|
||||
\Section[
|
||||
\eng{Electronic structure theory}
|
||||
% \ger{}
|
||||
]{est}
|
||||
|
||||
\begin{formula}{kinetic_energy}
|
||||
\desc{Kinetic energy}{of species $i$}{$i$ = nucleons/electrons, $N$ number of particles, $m$ \qtyRef{mass}}
|
||||
\desc[german]{Kinetische Energie}{von Spezies $i$}{$i$ = Nukleonen/Elektronen, $N$ Teilchenzahl, $m$ \qtyRef{mass}}
|
||||
\eq{\hat{T}_i &= -\sum_{n=1}^{N_i} \frac{\hbar^2}{2 m_i} \vec{\nabla}^2_n}
|
||||
\end{formula}
|
||||
\begin{formula}{potential_energy}
|
||||
\desc{Electrostatic potential}{between species $i$ and $j$}{$i,j$ = nucleons/electrons, $r$ particle position, $Z_i$ charge of species $i$, \ConstRef{charge}}
|
||||
\desc[german]{Elektrostatisches Potential}{zwischen Spezies $i$ und $j$}{}
|
||||
\eq{\hat{V}_{i \leftrightarrow j} &= -\sum_{k,l} \frac{Z_i Z_j e^2}{\abs{\vecr_k - \vecr_l}}}
|
||||
\end{formula}
|
||||
\begin{formula}{hamiltonian}
|
||||
\desc{Electronic structure Hamiltonian}{}{$\hat{T}$ \fqEqRef{comp:est:kinetic_energy}, $\hat{V}$ \fqEqRef{comp:est:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}}
|
||||
\eq{\hat{H} &= \hat{T}_\txe + \hat{T}_\txn + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe} + V_{\txn \leftrightarrow \txn}}
|
||||
\end{formula}
|
||||
\begin{formula}{mean_field}
|
||||
\desc{Mean field approximation}{Replaces 2-particle operator by 1-particle operator}{Example for Coulomb interaction between many electrons}
|
||||
\desc[german]{Molekularfeldnäherung}{Ersetzt 2-Teilchen Operator durch 1-Teilchen Operator}{Beispiel für Coulomb Wechselwirkung zwischen Elektronen}
|
||||
\eq{
|
||||
\frac{1}{2}\sum_{i\neq j} \frac{e^2}{\abs{\vec{r}_i - \vec{r}_j}} \approx \sum_{i} V_\text{eff}(\vec{r}_i)
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Tight-binding}
|
||||
\ger{Modell der stark gebundenen Elektronen / Tight-binding}
|
||||
]{tb}
|
||||
\begin{formula}{assumptions}
|
||||
\desc{Assumptions}{}{}
|
||||
\desc[german]{Annahmen}{}{}
|
||||
\ttxt{
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item Atomic wave functions are localized \Rightarrow Small overlap, interaction cutoff
|
||||
\end{itemize}
|
||||
}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{hamiltonian}
|
||||
\desc{Tight-binding Hamiltonian}{in second quantized form}{$\hat{a}_i^\dagger$, $\hat{a}_i$ \GT{creation_annihilation_ops} create/destory an electron on site $i$, $\epsilon_i$ on-site energy, $t_{i,j}$ hopping amplitude, usually $\epsilon$ and $t$ are determined from experiments or other methods}
|
||||
\desc[german]{Tight-binding Hamiltonian}{in zweiter Quantisierung}{$\hat{a}_i^\dagger$, $\hat{a}_i$ \GT{creation_annihilation_ops} erzeugen/vernichten ein Elektron auf Platz $i$, $\epsilon_i$ on-site Energie, $t_{i,j}$ hopping Amplitude, meist werden $\epsilon$ und $t$ aus experimentellen Daten oder anderen Methoden bestimmt}
|
||||
\eq{\hat{H} = \sum_i \epsilon_i \hat{a}_i^\dagger \hat{a}_i - \sum_{i,j} t_{i,j} \left(\hat{a}_i^\dagger \hat{a}_j + \hat{a}_j^\dagger \hat{a}_i\right)}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Density functional theory (DFT)}
|
||||
\ger{Dichtefunktionaltheorie (DFT)}
|
||||
]{dft}
|
||||
\abbrLink{dft}{DFT}
|
||||
\Subsubsection[
|
||||
\eng{Hartree-Fock}
|
||||
\ger{Hartree-Fock}
|
||||
]{hf}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item Assumes wave functions are \fqEqRef{qm:other:slater_det} \Rightarrow Approximation
|
||||
\item \fqEqRef{comp:est:mean_field} theory obeying the Pauli principle
|
||||
\item Self-interaction free: Self interaction is cancelled out by the Fock-term
|
||||
\end{itemize}
|
||||
}
|
||||
\end{ttext}
|
||||
\end{formula}
|
||||
\begin{formula}{equation}
|
||||
\desc{Hartree-Fock equation}{}{
|
||||
$\varphi_\xi$ single particle wavefunction of $\xi$th orbital,
|
||||
$\hat{T}$ kinetic electron energy,
|
||||
$\hat{V}_{\text{en}}$ electron-nucleus attraction,
|
||||
$\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential},
|
||||
}
|
||||
\desc[german]{Hartree-Fock Gleichung}{}{
|
||||
$\varphi_\xi$ ein-Teilchen Wellenfunktion des $\xi$-ten Orbitals,
|
||||
$\hat{T}$ kinetische Energie der Elektronen,
|
||||
$\hat{V}_{\text{en}}$ Electron-Kern Anziehung,
|
||||
$\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential}
|
||||
}
|
||||
\eq{
|
||||
\left(\hat{T} + \hat{V}_{\text{en}} + \hat{V}_{\text{HF}}^\xi\right)\varphi_\xi(x) = \epsilon_\xi \varphi_\xi(x)
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{potential}
|
||||
\desc{Hartree-Fock potential}{}{}
|
||||
\desc[german]{Hartree Fock Potential}{}{}
|
||||
\eq{
|
||||
V_{\text{HF}}^\xi(\vecr) =
|
||||
\sum_{\vartheta} \int \d x'
|
||||
\frac{e^2}{\abs{\vecr - \vecr'}}
|
||||
\left(
|
||||
\underbrace{\abs{\varphi_\xi(x')}^2}_{\text{Hartree-Term}}
|
||||
- \underbrace{\frac{\varphi_{\vartheta}^*(x') \varphi_{\xi}(x') \varphi_{\vartheta}(x)}{\varphi_\xi(x)}}_{\text{Fock-Term}}
|
||||
\right)
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{scf}
|
||||
\desc{Self-consistent field cycle}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
\ttxt{
|
||||
\eng{
|
||||
\begin{enumerate}
|
||||
\item Initial guess for $\psi$
|
||||
\item Solve SG for each particle
|
||||
\item Make new guess for $\psi$
|
||||
\end{enumerate}
|
||||
}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Hohenberg-Kohn Theorems}
|
||||
\ger{Hohenberg-Kohn Theoreme}
|
||||
]{hk}
|
||||
\begin{formula}{hk1}
|
||||
\desc{Hohenberg-Kohn theorem (HK1)}{}{}
|
||||
\desc[german]{Hohenberg-Kohn Theorem (HK1)}{}{}
|
||||
\ttxt{
|
||||
\eng{For any system of interacting electrons, the ground state electron density $n(\vecr)$ determines $\hat{V}_\text{ext}$ uniquely up to a trivial constant. }
|
||||
\ger{Die Elektronendichte des Grundzustandes $n(\vecr)$ bestimmt ein einzigartiges $\hat{V}_{\text{ext}}$ eines Systems aus interagierenden Elektronen bis auf eine Konstante.}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{hk2}
|
||||
\desc{Hohenberg-Kohn theorem (HK2)}{}{}
|
||||
\desc[german]{Hohenberg-Kohn Theorem (HK2)}{}{}
|
||||
\ttxt{
|
||||
\eng{Given the energy functional $E[n(\vecr)]$, the ground state density and energy can be obtained variationally. The density that minimizes the total energy is the ecxact ground state density. }
|
||||
\ger{Für ein Energiefunktional $E[n(\vecr)]$ kann die Grundzustandsdichte und Energie durch systematische Variation bestimmt werden. Die Dichte, welche die Gesamtenergie minimiert ist die exakte Grundzustandsichte. }
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{density}
|
||||
\desc{Ground state electron density}{}{}
|
||||
\desc[german]{Grundzustandselektronendichte}{}{}
|
||||
\eq{n(\vecr) = \Braket{\psi_0|\sum_{i=1}^N \delta(\vecr-\vecr_i)|\psi_0}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Kohn-Sham DFT}
|
||||
\ger{Kohn-Sham DFT}
|
||||
]{ks}
|
||||
\abbrLink{ksdft}{KS-DFT}
|
||||
\begin{formula}{map}
|
||||
\desc{Kohn-Sham map}{}{}
|
||||
\desc[german]{Kohn-Sham Map}{}{}
|
||||
\ttxt{
|
||||
\eng{Maps fully interacting system of electrons to a system of non-interacting electrons with the same ground state density $n^\prime(\vecr) = n(\vecr)$}
|
||||
}
|
||||
\eq{n(\vecr) = \sum_{i=1}^N \abs{\phi_i(\vecr)}^2}
|
||||
\end{formula}
|
||||
\begin{formula}{functional}
|
||||
\desc{Kohn-Sham functional}{}{$T_\text{KS}$ kinetic enery, $V_\text{ext}$ external potential, $E_\txH$ \hyperref[f:comp:est:dft:hf:potential]{Hartree term}, $E_\text{XC}$ \fqEqRef{comp:est:dft:xc:xc}}
|
||||
\desc[german]{Kohn-Sham Funktional}{}{}
|
||||
\eq{E_\text{KS}[n(\vecr)] = T_\text{KS}[n(\vecr)] + V_\text{ext}[n(\vecr)] + E_\text{H}[n(\vecr)] + E_\text{XC}[n(\vecr)] }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{equation}
|
||||
\desc{Kohn-Sham equation}{Exact single particle \abbrRef{schroedinger_equation} (though often exact $E_\text{XC}$ is not known)\\ Solving it uses up a large portion of supercomputer resources}{$\phi_i^\text{KS}$ KS orbitals, $\int\d^3r v_\text{ext}(\vecr)n(\vecr)=V_\text{ext}[n(\vecr)]$}
|
||||
\desc[german]{Kohn-Sham Gleichung}{Exakte Einteilchen-\abbrRef{schroedinger_equation} (allerdings ist das exakte $E_\text{XC}$ oft nicht bekannt)\\ Die Lösung der Gleichung macht einen großen Teil der Supercomputer Ressourcen aus}{}
|
||||
\begin{multline}
|
||||
\biggr\{
|
||||
-\frac{\hbar^2\nabla^2}{2m}
|
||||
+ v_\text{ext}(\vecr)
|
||||
+ e^2 \int\d^3 \vecr^\prime \frac{n(\vecr^\prime)}{\abs{\vecr-\vecr^\prime}} \\
|
||||
+ \pdv{E_\txX[n(\vecr)]}{n(\vecr)}
|
||||
+ \pdv{E_\txC[n(\vecr)]}{n(\vecr)}
|
||||
\biggr\} \phi_i^\text{KS}(\vecr) =\\
|
||||
= \epsilon_i^\text{KS} \phi_i^\text{KS}(\vecr)
|
||||
\end{multline}
|
||||
\end{formula}
|
||||
\begin{formula}{scf}
|
||||
\desc{Self-consistent field cycle for Kohn-Sham}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
\ttxt{
|
||||
\itemsep=\parsep
|
||||
\eng{
|
||||
\begin{enumerate}
|
||||
\item Initial guess for $n(\vecr)$
|
||||
\item Calculate effective potential $V_\text{eff}$
|
||||
\item Solve \fqEqRef{comp:est:dft:ks:equation}
|
||||
\item Calculate density $n(\vecr)$
|
||||
\item Repeat 2-4 until self consistent
|
||||
\end{enumerate}
|
||||
}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Exchange-Correlation functionals}
|
||||
\ger{Exchange-Correlation Funktionale}
|
||||
]{xc}
|
||||
\begin{formula}{xc}
|
||||
\desc{Exchange-Correlation functional}{}{}
|
||||
\desc[german]{Exchange-Correlation Funktional}{}{}
|
||||
\eq{ E_\text{XC}[n(\vecr)] = \Braket{\hat{T}} - T_\text{KS}[n(\vecr)] + \Braket{\hat{V}_\text{int}} - E_\txH[n(\vecr)] }
|
||||
\ttxt{\eng{
|
||||
Accounts for:
|
||||
\begin{itemize}
|
||||
\item Kinetic energy difference between interaction and non-interacting system
|
||||
\item Exchange energy due to Pauli principle
|
||||
\item Correlation energy due to many-body Coulomb interaction (not accounted for in mean field Hartree term $E_\txH$)
|
||||
\end{itemize}
|
||||
}}
|
||||
\end{formula}
|
||||
\begin{formula}{lda}
|
||||
\desc{Local density approximation (LDA)}{Simplest DFT functionals}{$\epsilon_\txX$ calculated exchange energy from \hyperref[f:comp:qmb:models:heg]{HEG model}, $\epsilon_\txC$ correlation energy calculated with \fqSecRef{comp:qmb:methods:qmonte-carlo}}
|
||||
\desc[german]{}{}{}
|
||||
\abbrLabel{LDA}
|
||||
\eq{E_\text{XC}^\text{LDA}[n(\vecr)] = \int \d^3r\,n(r) \Big[\epsilon_\txX[n(\vecr)] + \epsilon_\txC[n(\vecr)]\Big]}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{gga}
|
||||
\desc{Generalized gradient approximation (GGA)}{}{$\epsilon_\txX$ calculated exchange energy from \hyperref[f:comp:qmb:models:heg]{HEG model}, $F_\text{XC}$ function containing exchange-correlation energy dependency on $n$ and $\Grad n$}
|
||||
\desc[german]{}{}{}
|
||||
\abbrLabel{GGA}
|
||||
\eq{E_\text{XC}^\text{GGA}[n(\vecr)] = \int \d^3r\,n(r) \epsilon_\txX[n(\vecr)]\,F_\text{XC}[n(\vecr), \Grad n(\vecr)]}
|
||||
\end{formula}
|
||||
|
||||
\TODO{PBE}
|
||||
|
||||
\begin{formula}{hybrid}
|
||||
\desc{Hybrid functionals}{}{}
|
||||
\desc[german]{Hybride Funktionale}{}{$\alpha$ mixing paramter, $E_\txX$ exchange energy, $E_\txC$ correlation energy}
|
||||
\eq{\alpha E_\txX^\text{HF} + (1-\alpha) E_\txX^\text{GGA} + E_\txC^\text{GGA}}
|
||||
\ttxt{\eng{
|
||||
Include \hyperref[f:comp:dft:hf:potential]{Fock term} (exact exchange) in other functional, like \abbrRef{gga}. Computationally expensive
|
||||
}}
|
||||
|
||||
\end{formula}
|
||||
|
||||
|
||||
\begin{formula}{range-separated-hybrid}
|
||||
\desc{Range separated hyrid functionals (RSH)}{Here HSE as example}{$\alpha$ mixing paramter, $E_\txX$ exchange energy, $E_\txC$ correlation energy}
|
||||
% \desc[german]{}{}{}
|
||||
\begin{gather}
|
||||
\frac{1}{r} = \frac{\erf(\omega r)}{r} + \frac{\erfc{\omega r}}{r} \\
|
||||
E_\text{XC}^\text{HSE} = \alpha E_\text{X,SR}^\text{HF}(\omega) + (1-\alpha)E_\text{X,SR}^\text{GGA}(\omega) + E_\text{X,LR}^\text{GGA}(\omega) + E_\txC^\text{GGA}
|
||||
\end{gather}
|
||||
\separateEntries
|
||||
\ttxt{\eng{
|
||||
Use \abbrRef{gga} and \hyperref[comp:est:dft:hf:potential]{Fock} exchange for short ranges (SR) and only \abbrRef{GGA} for long ranges (LR).
|
||||
\abbrRef{GGA} correlation is always used. Useful when dielectric screening reduces long range interactions, saves computational cost.
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{comparison}
|
||||
\desc{Comparison of DFT functionals}{}{}
|
||||
\desc[german]{Vergleich von DFT Funktionalen}{}{}
|
||||
\begin{tabular}{l|c}
|
||||
\hyperref[f:comp:est:dft:hf:potential]{Hartree-Fock} & only exchange, no correlation \Rightarrow upper bound of GS energy \\
|
||||
\abbrRef{lda} & understimates e repulsion \Rightarrow Overbinding \\
|
||||
\abbrRef{gga} & underestimate band gap \\
|
||||
hybrid & underestimate band gap
|
||||
\end{tabular}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Basis sets}
|
||||
\ger{Basis-Sets}
|
||||
]{basis}
|
||||
\begin{formula}{plane_wave}
|
||||
\desc{Plane wave basis}{Plane wave ansatz in \fqEqRef{comp:est:dft:ks:equation}\\Good for periodic structures, allows computation parallelization over a sample points in the \abbrRef{brillouin_zone}}{}
|
||||
\desc[german]{Ebene Wellen als Basis}{}{}
|
||||
\eq{\sum_{\vecG^\prime} \left[\frac{\hbar^2 \abs{\vecG+\veck}^2}{2m} \delta_{\vecG,\vecG^\prime} + V_\text{eff}(\vecG-\vecG^\prime)\right] c_{i,\veck,\vecG^\prime} = \epsilon_{i,\veck} c_{i,\veck,\vecG}}
|
||||
\end{formula}
|
||||
\begin{formula}{plane_wave_cutoff}
|
||||
\desc{Plane wave cutoff}{Number of plane waves included in the calculation must be finite}{}
|
||||
% \desc[german]{}{}{}
|
||||
\eq{E_\text{cutoff} = \frac{\hbar^2 \abs{\veck+\vecG}^2}{2m}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Pseudo-Potential method}
|
||||
\ger{Pseudopotentialmethode}
|
||||
]{pseudo}
|
||||
\begin{formula}{ansatz}
|
||||
\desc{Ansatz}{}{}
|
||||
\desc[german]{Ansatz}{}{}
|
||||
\ttxt{\eng{
|
||||
Core electrons are absorbed into the potential since they do not contribute much to interesting properties.
|
||||
}}
|
||||
\end{formula}
|
@ -80,5 +80,5 @@
|
||||
\eng{Gradient descent}
|
||||
\ger{Gradientenverfahren}
|
||||
]{gd}
|
||||
\TODO{TODO}
|
||||
\TODO{in lecture 30 CMP}
|
||||
|
||||
|
@ -2,6 +2,28 @@
|
||||
\eng{Quantum many-body physics}
|
||||
\ger{Quanten-Vielteilchenphysik}
|
||||
]{qmb}
|
||||
\Subsection[
|
||||
\eng{Quantum many-body models}
|
||||
\ger{Quanten-Vielteilchenmodelle}
|
||||
]{models}
|
||||
\begin{formula}{heg}
|
||||
\desc{Homogeneous electron gas (HEG)}{Also "Jellium"}{}
|
||||
\desc[german]{}{}{}
|
||||
\ttxt{
|
||||
\eng{Both positive (nucleus) and negative (electron) charges are distributed uniformly.}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Methods}
|
||||
\ger{Methoden}
|
||||
]{methods}
|
||||
\Subsubsection[
|
||||
\eng{Quantum Monte-Carlo}
|
||||
\ger{Quantum Monte-Carlo}
|
||||
]{qmonte-carlo}
|
||||
|
||||
|
||||
\TODO{TODO}
|
||||
\Subsection[
|
||||
\eng{Importance sampling}
|
||||
|
@ -40,7 +40,7 @@
|
||||
\desc{Faraday constant}{Electric charge of one mol of single-charged ions}{\ConstRef{avogadro}, \ConstRef{boltzmann}}
|
||||
\desc[german]{Faraday-Konstante}{Elektrische Ladungs von einem Mol einfach geladener Ionen}{}
|
||||
\constant{F}{def}{
|
||||
\val{9.64853321233100184}{\coulomb\per\mol}
|
||||
\val{9.64853321233100184\xE{4}}{\coulomb\per\mol}
|
||||
\val{\NA\,e}{}
|
||||
}
|
||||
\end{formula}
|
||||
|
@ -98,19 +98,7 @@
|
||||
|
||||
|
||||
\TODO{sort}
|
||||
\begin{formula}{impedance_c}
|
||||
\desc{Impedance of a capacitor}{}{}
|
||||
\desc[german]{Impedanz eines Kondesnators}{}{}
|
||||
\eq{Z_{C} = \frac{1}{i\omega C}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{impedance_l}
|
||||
\desc{Impedance of an inductor}{}{}
|
||||
\desc[german]{Impedanz eines Induktors}{}{}
|
||||
\eq{Z_{L} = i\omega L}
|
||||
\end{formula}
|
||||
|
||||
\TODO{impedance addition for parallel / linear}
|
||||
|
||||
\Section[
|
||||
\eng{Dipole-stuff}
|
||||
@ -129,3 +117,25 @@
|
||||
\eq{P = \frac{\mu_0\omega^4 p_0^2}{12\pi c}}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{misc}
|
||||
\ger{misc}
|
||||
]{misc}
|
||||
\begin{formula}{impedance_r}
|
||||
\desc{Impedance of an ohmic resistor}{}{\QtyRef{resistance}}
|
||||
\desc[german]{Impedanz eines Ohmschen Widerstands}{}{}
|
||||
\eq{Z_{R} = R}
|
||||
\end{formula}
|
||||
\begin{formula}{impedance_c}
|
||||
\desc{Impedance of a capacitor}{}{\QtyRef{capacity}, \QtyRef{angular_velocity}}
|
||||
\desc[german]{Impedanz eines Kondensators}{}{}
|
||||
\eq{Z_{C} = \frac{1}{\I\omega C}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{impedance_l}
|
||||
\desc{Impedance of an inductor}{}{\QtyRef{inductance}, \QtyRef{angular_velocity}}
|
||||
\desc[german]{Impedanz eines Induktors}{}{}
|
||||
\eq{Z_{L} = \I\omega L}
|
||||
\end{formula}
|
||||
|
||||
\TODO{impedance addition for parallel / linear}
|
||||
|
127
src/main.tex
127
src/main.tex
@ -25,7 +25,7 @@
|
||||
\setlist{noitemsep} % no vertical space between items
|
||||
\setlist[1]{labelindent=\parindent} % < Usually a good idea
|
||||
\setlist[itemize]{leftmargin=*}
|
||||
\setlist[enumerate]{labelsep=*, leftmargin=1.5pc} % horizontal indent of items
|
||||
% \setlist[enumerate]{labelsep=*, leftmargin=1.5pc} % horizontal indent of items
|
||||
|
||||
\usepackage{titlesec} % colored titles
|
||||
\usepackage{array} % more array options
|
||||
@ -37,11 +37,14 @@
|
||||
\input{util/colorscheme.tex}
|
||||
\input{util/colors.tex} % after colorscheme
|
||||
% GRAPHICS
|
||||
\usepackage{pgfplots}
|
||||
\pgfplotsset{compat=1.18}
|
||||
\usepackage{tikz} % drawings
|
||||
\usetikzlibrary{decorations.pathmorphing}
|
||||
\usetikzlibrary{decorations.pathreplacing} % braces
|
||||
\usetikzlibrary{calc}
|
||||
\usetikzlibrary{patterns}
|
||||
\usetikzlibrary{patterns}
|
||||
\input{util/tikz_macros}
|
||||
% speed up compilation by externalizing figures
|
||||
% \usetikzlibrary{external}
|
||||
@ -90,113 +93,6 @@
|
||||
\newcommand{\TODO}[1]{{\color{fg-red}TODO:#1}}
|
||||
\newcommand{\ts}{\textsuperscript}
|
||||
|
||||
\newcommand\printFqName{\expandafter\detokenize\expandafter{\fqname}}
|
||||
|
||||
% "automate" sectioning
|
||||
% start <section>, get heading from translation, set label
|
||||
% fqname is the fully qualified name: the keys of all previous sections joined with a ':'
|
||||
% [1]: code to run after setting \fqname, but before the \part, \section etc
|
||||
% 2: key
|
||||
\newcommand{\Part}[2][desc]{
|
||||
\newpage
|
||||
\def\partName{#2}
|
||||
\def\sectionName{}
|
||||
\def\subsectionName{}
|
||||
\def\subsubsectionName{}
|
||||
\edef\fqname{\partName}
|
||||
#1
|
||||
\edef\fqnameText{\expandafter\GetTranslation\expandafter{\fqname}}
|
||||
\part{\fqnameText}
|
||||
\label{sec:\fqname}
|
||||
}
|
||||
\newcommand{\Section}[2][]{
|
||||
\def\sectionName{#2}
|
||||
\def\subsectionName{}
|
||||
\def\subsubsectionName{}
|
||||
\edef\fqname{\partName:\sectionName}
|
||||
#1
|
||||
% this is necessary so that \section takes the fully expanded string. Otherwise the pdf toc will have just the fqname
|
||||
\edef\fqnameText{\expandafter\GetTranslation\expandafter{\fqname}}
|
||||
\section{\fqnameText}
|
||||
\label{sec:\fqname}
|
||||
}
|
||||
% \newcommand{\Subsection}[1]{\Subsection{#1}{}}
|
||||
\newcommand{\Subsection}[2][]{
|
||||
\def\subsectionName{#2}
|
||||
\def\subsubsectionName{}
|
||||
\edef\fqname{\partName:\sectionName:\subsectionName}
|
||||
#1
|
||||
\edef\fqnameText{\expandafter\GetTranslation\expandafter{\fqname}}
|
||||
\subsection{\fqnameText}
|
||||
\label{sec:\fqname}
|
||||
}
|
||||
\newcommand{\Subsubsection}[2][]{
|
||||
\def\subsubsectionName{#2}
|
||||
\edef\fqname{\partName:\sectionName:\subsectionName:\subsubsectionName}
|
||||
#1
|
||||
\edef\fqnameText{\expandafter\GetTranslation\expandafter{\fqname}}
|
||||
\subsubsection{\fqnameText}
|
||||
\label{sec:\fqname}
|
||||
}
|
||||
\edef\fqname{NULL}
|
||||
|
||||
\newcommand\luaDoubleFieldValue[3]{%
|
||||
\directlua{
|
||||
if #1 \string~= nil and #1[#2] \string~= nil and #1[#2][#3] \string~= nil then
|
||||
tex.sprint(#1[#2][#3])
|
||||
return
|
||||
end
|
||||
luatexbase.module_warning('luaDoubleFieldValue', 'Invalid indices to `#1`: `#2` and `#3`');
|
||||
tex.sprint("???")
|
||||
}%
|
||||
}
|
||||
% REFERENCES
|
||||
% All xyzRef commands link to the key using the translated name
|
||||
% Uppercase (XyzRef) commands have different link texts, but the same link target
|
||||
% 1: key/fully qualified name (without qty/eq/sec/const/el... prefix)
|
||||
% Equations/Formulas
|
||||
% <name>
|
||||
% \newrobustcmd{\fqEqRef}[1]{%
|
||||
\newrobustcmd{\fqEqRef}[1]{%
|
||||
% \edef\fqeqrefname{\GT{#1}}
|
||||
% \hyperref[eq:#1]{\fqeqrefname}
|
||||
\hyperref[f:#1]{\GT{#1}}%
|
||||
}
|
||||
|
||||
% Section
|
||||
% <name>
|
||||
\newrobustcmd{\fqSecRef}[1]{%
|
||||
\hyperref[sec:#1]{\GT{#1}}%
|
||||
}
|
||||
% Quantities
|
||||
% <symbol>
|
||||
\newrobustcmd{\qtyRef}[1]{%
|
||||
\edef\tempname{\luaDoubleFieldValue{quantities}{"#1"}{"fqname"}}%
|
||||
\hyperref[qty:#1]{\expandafter\GT\expandafter{\tempname:#1}}%
|
||||
}
|
||||
% <symbol> <name>
|
||||
\newrobustcmd{\QtyRef}[1]{%
|
||||
$\luaDoubleFieldValue{quantities}{"#1"}{"symbol"}$ \qtyRef{#1}%
|
||||
}
|
||||
% Constants
|
||||
% <name>
|
||||
\newrobustcmd{\constRef}[1]{%
|
||||
\edef\tempname{\luaDoubleFieldValue{constants}{"#1"}{"fqname"}}%
|
||||
\hyperref[const:#1]{\expandafter\GT\expandafter{\tempname:#1}}%
|
||||
}
|
||||
% <symbol> <name>
|
||||
\newrobustcmd{\ConstRef}[1]{%
|
||||
$\luaDoubleFieldValue{constants}{"#1"}{"symbol"}$ \constRef{#1}%
|
||||
}
|
||||
% Element from periodic table
|
||||
% <symbol>
|
||||
\newrobustcmd{\elRef}[1]{%
|
||||
\hyperref[el:#1]{{\color{fg0}#1}}%
|
||||
}
|
||||
% <name>
|
||||
\newrobustcmd{\ElRef}[1]{%
|
||||
\hyperref[el:#1]{\GT{el:#1}}%
|
||||
}
|
||||
|
||||
% \usepackage{xstring}
|
||||
|
||||
@ -218,6 +114,7 @@
|
||||
\immediate\write\luaAuxFile{\noexpand\directlua{\detokenize{#1}}}
|
||||
\directlua{#1}
|
||||
}
|
||||
|
||||
% read
|
||||
\IfFileExists{\jobname.lua.aux}{%
|
||||
\input{\jobname.lua.aux}%
|
||||
@ -240,6 +137,8 @@
|
||||
}
|
||||
\AtEndDocument{\immediate\closeout\labelsFile}
|
||||
|
||||
|
||||
\input{util/fqname.tex}
|
||||
\input{circuit.tex}
|
||||
\input{util/macros.tex}
|
||||
\input{util/environments.tex} % requires util/translation.tex to be loaded first
|
||||
@ -284,7 +183,7 @@
|
||||
|
||||
\input{util/translations.tex}
|
||||
|
||||
% \InputOnly{ch}
|
||||
% \InputOnly{comp}
|
||||
|
||||
\Input{math/math}
|
||||
\Input{math/linalg}
|
||||
@ -314,6 +213,7 @@
|
||||
\Input{cm/misc}
|
||||
\Input{cm/techniques}
|
||||
\Input{cm/topo}
|
||||
\Input{cm/mat}
|
||||
|
||||
|
||||
\Input{particle}
|
||||
@ -322,18 +222,25 @@
|
||||
|
||||
\Input{comp/comp}
|
||||
\Input{comp/qmb}
|
||||
\Input{comp/elsth}
|
||||
\Input{comp/est}
|
||||
\Input{comp/ad}
|
||||
\Input{comp/ml}
|
||||
|
||||
\Input{ch/periodic_table} % only definitions
|
||||
\Input{ch/ch}
|
||||
\Input{ch/el}
|
||||
\Input{ch/misc}
|
||||
|
||||
\newpage
|
||||
\Part[
|
||||
\eng{Appendix}
|
||||
\ger{Anhang}
|
||||
]{appendix}
|
||||
\begin{formula}{world}
|
||||
\desc{World formula}{}{}
|
||||
\desc[german]{Weltformel}{}{}
|
||||
\eq{E = mc^2 +\text{AI}}
|
||||
\end{formula}
|
||||
\Input{quantities}
|
||||
\Input{constants}
|
||||
|
||||
|
@ -20,7 +20,7 @@
|
||||
\eng{Fourier series}
|
||||
\ger{Fourierreihe}
|
||||
]{series}
|
||||
\begin{formula}{series}
|
||||
\begin{formula}{series} \absLabel[fourier_series]
|
||||
\desc{Fourier series}{Complex representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
|
||||
\desc[german]{Fourierreihe}{Komplexe Darstellung}{}
|
||||
\eq{f(t) = \sum_{k=-\infty}^{\infty} c_k \Exp{\frac{2\pi \I kt}{T}}}
|
||||
@ -58,7 +58,7 @@
|
||||
\eng{Fourier transformation}
|
||||
\ger{Fouriertransformation}
|
||||
]{trafo}
|
||||
\begin{formula}{transform}
|
||||
\begin{formula}{transform} \absLabel[fourier_transform]
|
||||
\desc{Fourier transform}{}{$\hat{f}:\R^n \mapsto \C$, $\forall f\in L^1(\R^n)$}
|
||||
\desc[german]{Fouriertransformierte}{}{}
|
||||
\eq{\hat{f}(k) \coloneq \frac{1}{\sqrt{2\pi}^n} \int_{\R^n} \e^{-\I kx}f(x)\d x}
|
||||
|
@ -54,10 +54,10 @@
|
||||
\eq{p_X(x) = P(X = x)}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{autocorrelation}
|
||||
\desc{Autocorrelation}{Correlation of $f$ to itself at an earlier point in time, $C$ is a covariance function}{}
|
||||
\desc[german]{Autokorrelation}{Korrelation vonn $f$ zu sich selbst zu einem früheren Zeitpunkt. $C$ ist auch die Kovarianzfunktion}{}
|
||||
\eq{C_A(\tau) = \lim_{T \to \infty} \frac{1}{2T}\int_{-T}^{T} f(t+\tau) f(t) \d t) = \braket{f(t+\tau)\cdot f(t)}}
|
||||
\begin{formula}{autocorrelation} \absLabel
|
||||
\desc{Autocorrelation}{Correlation of $f$ to itself at an earlier point in time, $C$ is a covariance function}{$\tau$ lag-time}
|
||||
\desc[german]{Autokorrelation}{Korrelation vonn $f$ zu sich selbst zu einem früheren Zeitpunkt. $C$ ist auch die Kovarianzfunktion}{$\tau$ Zeitverschiebung}
|
||||
\eq{C_A(\tau) &= \lim_{T \to \infty} \frac{1}{2T}\int_{-T}^{T} f(t+\tau) f(t) \d t) \\ &= \braket{f(t+\tau)\cdot f(t)}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{binomial_coefficient}
|
||||
|
@ -66,7 +66,7 @@
|
||||
Zum Beispiel findet man für ein 2D Pendel die generalisierte Koordinate $q=\varphi$, mit $\vec{x} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \end{pmatrix}$.
|
||||
}
|
||||
\end{ttext}
|
||||
\begin{formula}{lagrangian}
|
||||
\begin{formula}{lagrangian} \absLabel
|
||||
\desc{Lagrange function}{}{$T$ kinetic energy, $V$ potential energy }
|
||||
\desc[german]{Lagrange-Funktion}{}{$T$ kinetische Energie, $V$ potentielle Energie}
|
||||
\eq{\lagrange = T - V}
|
||||
|
@ -11,6 +11,17 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{spin}
|
||||
\desc{Spin}{}{}
|
||||
\desc[german]{Spin}{}{}
|
||||
\quantity{\sigma}{}{v}
|
||||
\end{formula}
|
||||
|
||||
\begin{bigformula}{standard_model}
|
||||
\desc{Standard model}{}{}
|
||||
\desc[german]{Standartmodell}{}{}
|
||||
\centering
|
||||
|
||||
\tikzset{%
|
||||
label/.style = { black, midway, align=center },
|
||||
toplabel/.style = { label, above=.5em, anchor=south },
|
||||
@ -82,7 +93,7 @@
|
||||
\draw [->] (-0.7, 0.35) node [legend] {\qtyRef{mass}} -- (-0.5, 0.35);
|
||||
\draw [->] (-0.7, 0.20) node [legend] {\qtyRef{spin}} -- (-0.5, 0.20);
|
||||
\draw [->] (-0.7, 0.05) node [legend] {\qtyRef{charge}} -- (-0.5, 0.05);
|
||||
\draw [->] (-0.7,-0.10) node [legend] {\qtyRef{colors}} -- (-0.5,-0.10);
|
||||
\draw [->] (-0.7,-0.10) node [legend] {\GT{colors}} -- (-0.5,-0.10);
|
||||
|
||||
\draw [brace,draw=\colorQuarks] (-0.55, 0.5) -- (-0.55,-1.5) node[leftlabel,color=\colorQuarks] {\gt{quarks}};
|
||||
\draw [brace,draw=\colorLepton] (-0.55,-1.5) -- (-0.55,-3.5) node[leftlabel,color=\colorLepton] {\gt{leptons}};
|
||||
@ -99,3 +110,5 @@
|
||||
\node at (2,0.85) [generation] {\small III};
|
||||
\node at (1,1.05) [generation] {\small generation};
|
||||
\end{tikzpicture}
|
||||
|
||||
\end{bigformula}
|
||||
|
@ -206,9 +206,18 @@
|
||||
\begin{formula}{schroedinger_equation}
|
||||
\desc{Schrödinger equation}{}{}
|
||||
\desc[german]{Schrödingergleichung}{}{}
|
||||
\abbrLabel{SE}
|
||||
\eq{i\hbar\frac{\partial}{\partial t}\psi(x, t) = (- \frac{\hbar^2}{2m} \vec{\nabla}^2 + \vec{V}(x)) \psi(x)}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{hellmann_feynmann} \absLabel
|
||||
\desc{Hellmann-Feynman-Theorem}{Derivative of the energy to a parameter}{}
|
||||
\desc[german]{Hellmann-Feynman-Theorem}{Abletiung der Energie nach einem Parameter}{}
|
||||
\eq{
|
||||
\odv{E_\lambda}{\lambda} = \int \d^3r \psi^*_\lambda \odv{\hat{H}_\lambda}{\lambda} \psi_\lambda = \Braket{\psi(\lambda)|\odv{\hat{H}_{\lambda}}{\lambda}|\psi(\lambda)}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Time evolution}
|
||||
\ger{Zeitentwicklug}
|
||||
@ -232,13 +241,6 @@
|
||||
\eq{\dot{\rho} = \underbrace{-\frac{i}{\hbar} [\hat{H}, \rho]}_\text{reversible} + \underbrace{\sum_{n.m} h_{nm} \left(\hat{A}_n\rho \hat{A}_{m^\dagger} - \frac{1}{2}\left\{\hat{A}_m^\dagger \hat{A}_n,\rho \right\}\right)}_\text{irreversible}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{hellmann_feynmann}
|
||||
\desc{Hellmann-Feynman-Theorem}{Derivative of the energy to a parameter}{}
|
||||
\desc[german]{Hellmann-Feynman-Theorem}{Abletiung der Energie nach einem Parameter}{}
|
||||
\eq{
|
||||
\odv{E_\lambda}{\lambda} = \int \d^3r \psi^*_\lambda \odv{\hat{H}_\lambda}{\lambda} \psi_\lambda = \Braket{\psi(\lambda)|\odv{\hat{H}_{\lambda}}{\lambda}|\psi(\lambda)}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\TODO{unitary transformation of time dependent H}
|
||||
@ -292,14 +294,15 @@
|
||||
\end{formula}
|
||||
% \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time}
|
||||
|
||||
\Subsection[
|
||||
\ger{Korrespondenzprinzip}
|
||||
\eng{Correspondence principle}
|
||||
]{correspondence_principle}
|
||||
\begin{ttext}[desc]
|
||||
% TODO: wo gehört das hin?
|
||||
\begin{formula}{correspondence_principle}
|
||||
\desc{Correspondence principle}{}{}
|
||||
\desc[german]{Korrespondenzprinzip}{}{}
|
||||
\ttxt{
|
||||
\ger{Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenmechanik ableiten.}
|
||||
\eng{The classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.}
|
||||
\end{ttext}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
@ -308,8 +311,8 @@
|
||||
\ger{Störungstheorie}
|
||||
]{qm_pertubation}
|
||||
\begin{ttext}
|
||||
\eng[desc]{The following holds true if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.}
|
||||
\ger[desc]{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.}
|
||||
\eng{The following holds true if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.}
|
||||
\ger{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.}
|
||||
\end{ttext}
|
||||
\begin{formula}{pertubation_hamiltonian}
|
||||
\desc{Hamiltonian}{}{}
|
||||
@ -566,6 +569,15 @@
|
||||
\eq{\Delta\omega \coloneq \abs{\omega_0 - \omega_\text{L}} \ll \abs{\omega_0 + \omega_\text{L}} \approx 2\omega_0}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{adiabatic_theorem} \absLabel
|
||||
\desc{Adiabatic theorem}{}{}
|
||||
\desc[german]{Adiabatentheorem}{}{}
|
||||
\ttxt{
|
||||
\eng{A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.}
|
||||
\ger{Ein quantenmechanisches System bleibt in im derzeitigen Eigenzustand falls eine Störung langsam genug wirkt und der Eigenwert durch eine Lücke vom Rest des Spektrums getrennt ist.}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{slater_det}
|
||||
\desc{Slater determinant}{Construction of a fermionic (antisymmetric) many-particle wave function from single-particle wave functions}{}
|
||||
\desc[german]{Slater Determinante}{Konstruktion einer fermionischen (antisymmetrischen) Vielteilchen Wellenfunktion aus ein-Teilchen Wellenfunktionen}{}
|
||||
|
@ -124,7 +124,7 @@
|
||||
\end{formula}
|
||||
\begin{formula}{angular_frequency}
|
||||
\desc{Angular frequency}{}{\QtyRef{time_period}, \QtyRef{frequency}}
|
||||
\desc[german]{Winkelgeschwindigkeit}{}{}
|
||||
\desc[german]{Kreisfrequenz}{}{}
|
||||
\quantity{\omega}{\radian\per\s}{s}
|
||||
\eq{\omega = \frac{2\pi/T}{2\pi f}}
|
||||
\end{formula}
|
||||
|
@ -433,7 +433,7 @@
|
||||
\begin{formula}{rabi_oscillation}
|
||||
\desc{Rabi oscillations}{}{$\omega_{21}$ resonance frequency of the energy transition, $\Omega$ Rabi frequency}
|
||||
\desc[german]{Rabi-Oszillationen}{}{$\omega_{21}$ Resonanzfrequenz des Energieübergangs, $\Omega$ Rabi-Frequenz}
|
||||
\eq{\Omega_ TODO}
|
||||
\eq{\Omega_ \text{\TODO{TODO}}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
|
@ -346,24 +346,76 @@
|
||||
\eng{Ensembles}
|
||||
\ger{Ensembles}
|
||||
]{ensembles}
|
||||
\Eng[const_variables]{Constant variables}
|
||||
\Ger[const_variables]{Konstante Variablen}
|
||||
|
||||
\begin{bigformula}{nve} \absLabel[mc_ensemble]
|
||||
\desc{Microcanonical ensemble}{}{}
|
||||
\desc[german]{Mikrokanonisches Ensemble}{}{}
|
||||
\begin{minipagetable}{nve}
|
||||
\entry{const_variables} {$E$, $V,$ $N$ }
|
||||
\entry{partition_sum} {$\Omega = \sum_n 1$ }
|
||||
\entry{probability} {$p_n = \frac{1}{\Omega}$}
|
||||
\entry{td_pot} {$S = \kB\ln\Omega$ }
|
||||
\entry{pressure} {$p = T \pdv{S}{V}_{E,N}$}
|
||||
\entry{entropy} {$S = \kB = \ln\Omega$ }
|
||||
\end{minipagetable}
|
||||
\end{bigformula}
|
||||
|
||||
\begin{bigformula}{nvt} \absLabel[c_ensemble]
|
||||
\desc{Canonical ensemble}{}{}
|
||||
\desc[german]{Kanonisches Ensemble}{}{}
|
||||
\begin{minipagetable}{nvt}
|
||||
\entry{const_variables} {$T$, $V$, $N$ }
|
||||
\entry{partition_sum} {$Z = \sum_n \e^{-\beta E_n}$ }
|
||||
\entry{probability} {$p_n = \frac{\e^{-\beta E_n}}{Z}$}
|
||||
\entry{td_pot} {$F = - \kB T \ln Z$ }
|
||||
\entry{pressure} {$p = -\pdv{F}{V}_{T,N}$ }
|
||||
\entry{entropy} {$S = -\pdv{F}{T}_{V,N}$ }
|
||||
\end{minipagetable}
|
||||
\end{bigformula}
|
||||
|
||||
\begin{bigformula}{mvt} \absLabel[gc_ensemble]
|
||||
\desc{Grand canonical ensemble}{}{}
|
||||
\desc[german]{Grosskanonisches Ensemble}{}{}
|
||||
\begin{minipagetable}{mvt}
|
||||
\entry{const_variables} {$T$, $V$, $\mu$ }
|
||||
\entry{partition_sum} {$Z_\text{g} = \sum_{n} \e^{-\beta(E_n - \mu N_n)}$ }
|
||||
\entry{probability} {$p_n = \frac{\e^{-\beta (E_n - \mu N_n}}{Z_\text{g}}$}
|
||||
\entry{td_pot} {$ \Phi = - \kB T \ln Z$ }
|
||||
\entry{pressure} {$p = -\pdv{\Phi}{V}_{T,\mu} = -\frac{\Phi}{V}$ }
|
||||
\entry{entropy} {$S = -\pdv{\Phi}{T}_{V,\mu}$ }
|
||||
\end{minipagetable}
|
||||
\end{bigformula}
|
||||
|
||||
\begin{bigformula}{npt}
|
||||
\desc{Isobaric-isothermal}{Gibbs ensemble}{}
|
||||
% \desc[german]{Kanonisches Ensemble}{}{}
|
||||
\begin{minipagetable}{npt}
|
||||
\entry{const_variables} {$N$, $p$, $T$}
|
||||
\entry{partition_sum} {}
|
||||
\entry{probability} {$p_n ? \frac{\e^{-\beta(E_n + pV_n)}}{Z}$}
|
||||
\entry{td_pot} {}
|
||||
\entry{pressure} {}
|
||||
\entry{entropy} {}
|
||||
\end{minipagetable}
|
||||
\end{bigformula}
|
||||
|
||||
\begin{bigformula}{nph}
|
||||
\desc{Isonthalpic-isobaric ensemble}{Enthalpy ensemble}{}
|
||||
% \desc[german]{Kanonisches Ensemble}{}{}
|
||||
\begin{minipagetable}{nph}
|
||||
\entry{const_variables} {}
|
||||
\entry{partition_sum} {}
|
||||
\entry{probability} {}
|
||||
\entry{td_pot} {}
|
||||
\entry{pressure} {}
|
||||
\entry{entropy} {}
|
||||
\end{minipagetable}
|
||||
\end{bigformula}
|
||||
|
||||
\TODO{complete, link potentials}
|
||||
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\caption{caption}
|
||||
\label{tab:\fqname}
|
||||
|
||||
\begin{tabular}{l|c|c|c}
|
||||
& \gt{mk} & \gt{k} & \gt{gk} \\ \hline
|
||||
\GT{variables} & $E$, $V,$ $N$ & $T$, $V$, $N$ & $T$, $V$, $\mu$ \\ \hline
|
||||
\GT{partition_sum} & $\Omega = \sum_n 1$ & $Z = \sum_n \e^{-\beta E_n}$ & $Z_\text{g} = \sum_{n} \e^{-\beta(E_n - \mu N_n)}$ \\ \hline
|
||||
\GT{probability} & $p_n = \frac{1}{\Omega}$ & $p_n = \frac{\e^{-\beta E_n}}{Z}$ & $p_n = \frac{\e^{-\beta (E_n - \mu N_n}}{Z_\text{g}}$ \\ \hline
|
||||
\GT{td_pot} & $S = \kB\ln\Omega$ & $F = - \kB T \ln Z$ & $ \Phi = - \kB T \ln Z$ \\ \hline
|
||||
\GT{pressure} & $p = T \pdv{S}{V}_{E,N}$ &$p = -\pdv{F}{V}_{T,N}$ & $p = -\pdv{\Phi}{V}_{T,\mu} = -\frac{\Phi}{V}$ \\ \hline
|
||||
\GT{entropy} & $S = \kB = \ln\Omega$ & $S = -\pdv{F}{T}_{V,N}$ & $S = -\pdv{\Phi}{T}_{V,\mu}$ \\ \hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
\begin{formula}{ergodic_hypo}
|
||||
\desc{Ergodic hypothesis}{Over a long periode of time, all accessible microstates in the phase space are equiprobable}{$A$ Observable}
|
||||
@ -560,7 +612,7 @@
|
||||
% b - \frac{a}{\kB T}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{lennard_jones}
|
||||
\begin{formula}{lennard_jones} \absLabel
|
||||
\desc{Lennard-Jones potential}{Potential between two molecules. Attractive for $r > \sigma$, repulsive for $r < \sigma$.\\ In condensed matter: Attraction due to Landau Dispersion \TODO{verify} and repulsion due to Pauli exclusion principle.}{}
|
||||
\desc[german]{Lennard-Jones-Potential}{Potential zwischen zwei Molekülen. Attraktiv für $r > \sigma$, repulsiv für $r < \sigma$.\\ In Festkörpern: Anziehung durch Landau-Dispersion und Abstoßung durch Pauli-Prinzip.}{}
|
||||
\fig[0.7]{img/potential_lennard_jones.pdf}
|
||||
|
@ -1,28 +1,28 @@
|
||||
% This file was generated by scripts/formulasheet.py
|
||||
% This file was generated by scripts/formulary.py
|
||||
% Do not edit it directly, changes will be overwritten
|
||||
\definecolor{fg0}{HTML}{f9f5d7}
|
||||
\definecolor{bg0}{HTML}{1d2021}
|
||||
\definecolor{fg1}{HTML}{ebdbb2}
|
||||
\definecolor{fg2}{HTML}{d5c4a1}
|
||||
\definecolor{fg3}{HTML}{bdae93}
|
||||
\definecolor{fg4}{HTML}{a89984}
|
||||
\definecolor{bg1}{HTML}{3c3836}
|
||||
\definecolor{bg2}{HTML}{504945}
|
||||
\definecolor{bg3}{HTML}{665c54}
|
||||
\definecolor{bg4}{HTML}{7c6f64}
|
||||
\definecolor{fg-red}{HTML}{fb4934}
|
||||
\definecolor{fg-orange}{HTML}{f38019}
|
||||
\definecolor{fg-yellow}{HTML}{fabd2f}
|
||||
\definecolor{fg-green}{HTML}{b8bb26}
|
||||
\definecolor{fg-aqua}{HTML}{8ec07c}
|
||||
\definecolor{fg-blue}{HTML}{83a598}
|
||||
\definecolor{fg-purple}{HTML}{d3869b}
|
||||
\definecolor{fg-gray}{HTML}{a89984}
|
||||
\definecolor{bg-red}{HTML}{cc241d}
|
||||
\definecolor{bg-orange}{HTML}{d65d0e}
|
||||
\definecolor{bg-yellow}{HTML}{d79921}
|
||||
\definecolor{bg-green}{HTML}{98971a}
|
||||
\definecolor{bg-aqua}{HTML}{689d6a}
|
||||
\definecolor{bg-blue}{HTML}{458588}
|
||||
\definecolor{bg-purple}{HTML}{b16286}
|
||||
\definecolor{bg-gray}{HTML}{928374}
|
||||
\definecolor{fg0}{HTML}{1d2021}
|
||||
\definecolor{bg0}{HTML}{f9f5d7}
|
||||
\definecolor{fg1}{HTML}{3c3836}
|
||||
\definecolor{fg2}{HTML}{504945}
|
||||
\definecolor{fg3}{HTML}{665c54}
|
||||
\definecolor{fg4}{HTML}{7c6f64}
|
||||
\definecolor{bg1}{HTML}{ebdbb2}
|
||||
\definecolor{bg2}{HTML}{d5c4a1}
|
||||
\definecolor{bg3}{HTML}{bdae93}
|
||||
\definecolor{bg4}{HTML}{a89984}
|
||||
\definecolor{fg-red}{HTML}{9d0006}
|
||||
\definecolor{fg-orange}{HTML}{af3a03}
|
||||
\definecolor{fg-yellow}{HTML}{b57614}
|
||||
\definecolor{fg-green}{HTML}{79740e}
|
||||
\definecolor{fg-aqua}{HTML}{427b58}
|
||||
\definecolor{fg-blue}{HTML}{076678}
|
||||
\definecolor{fg-purple}{HTML}{8f3f71}
|
||||
\definecolor{fg-gray}{HTML}{7c6f64}
|
||||
\definecolor{bg-red}{HTML}{fb4934}
|
||||
\definecolor{bg-orange}{HTML}{f38019}
|
||||
\definecolor{bg-yellow}{HTML}{fabd2f}
|
||||
\definecolor{bg-green}{HTML}{b8bb26}
|
||||
\definecolor{bg-aqua}{HTML}{8ec07c}
|
||||
\definecolor{bg-blue}{HTML}{83a598}
|
||||
\definecolor{bg-purple}{HTML}{d3869b}
|
||||
\definecolor{bg-gray}{HTML}{a89984}
|
||||
|
@ -83,6 +83,19 @@
|
||||
\ifblank{##4}{}{\dt[#1_defs]{##1}{##4}}
|
||||
}
|
||||
\directlua{n_formulaEntries = 0}
|
||||
|
||||
% makes this formula referencable with \abbrRef{<name>}
|
||||
% [1]: label to use
|
||||
% 2: Abbreviation to use for references
|
||||
\newcommand{\abbrLabel}[2][#1]{
|
||||
\abbrLink[f:\fqname]{##1}{##2}
|
||||
}
|
||||
% makes this formula referencable with \absRef{<name>}
|
||||
% [1]: label to use
|
||||
\newcommand{\absLabel}[1][#1]{
|
||||
\absLink[f:\fqname]{##1}
|
||||
}
|
||||
|
||||
\newcommand{\newFormulaEntry}{
|
||||
\directlua{
|
||||
if n_formulaEntries > 0 then
|
||||
@ -229,11 +242,13 @@
|
||||
\par\noindent\ignorespaces
|
||||
% \textcolor{gray}{\hrule}
|
||||
% \vspace{0.5\baselineskip}
|
||||
\IfTranslationExists{\fqname:#1}{%
|
||||
\raggedright
|
||||
\GT{\fqname:#1}
|
||||
\textbf{
|
||||
\IfTranslationExists{\fqname:#1}{%
|
||||
\raggedright
|
||||
\GT{\fqname:#1}
|
||||
}{\detokenize{#1}}
|
||||
\IfTranslationExists{\fqname:#1_desc}{
|
||||
}
|
||||
\IfTranslationExists{\fqname:#1_desc}{
|
||||
: {\color{fg1} \GT{\fqname:#1_desc}}
|
||||
}{}
|
||||
\hfill
|
||||
@ -414,15 +429,24 @@
|
||||
entries = {}
|
||||
}
|
||||
|
||||
% Normal entry
|
||||
% 1: field name (translation key)
|
||||
% 2: entry text
|
||||
\newcommand{\entry}[2]{
|
||||
\directlua{
|
||||
table.insert(entries, {key = "\luaescapestring{##1}", value = [[\detokenize{##2}]]})
|
||||
}
|
||||
}
|
||||
% Translation entry
|
||||
% 1: field name (translation key)
|
||||
% 2: translation define statements (field content)
|
||||
\newcommand{\entry}[2]{
|
||||
\newcommand{\tentry}[2]{
|
||||
% temporarily set fqname so that the translation commands dont need an explicit key
|
||||
\edef\fqname{\tmpFqname:#2:##1}
|
||||
##2
|
||||
\edef\fqname{\tmpFqname}
|
||||
\directlua{
|
||||
table.insert(entries, "\luaescapestring{##1}")
|
||||
table.insert(entries, {key = "\luaescapestring{##1}", value = "\\gt{" .. table_name .. ":\luaescapestring{##1}}"})
|
||||
}
|
||||
}
|
||||
}{
|
||||
@ -436,8 +460,8 @@
|
||||
\begin{tabularx}{\textwidth}{|l|X|}
|
||||
\hline
|
||||
\directlua{
|
||||
for _, k in ipairs(entries) do
|
||||
tex.print("\\GT{" .. k .. "} & \\gt{"..table_name..":"..k .."}\\\\")
|
||||
for _, kv in ipairs(entries) do
|
||||
tex.print("\\GT{" .. kv.key .. "} & " .. kv.value .. "\\\\")
|
||||
end
|
||||
}
|
||||
\hline
|
||||
|
180
src/util/fqname.tex
Normal file
180
src/util/fqname.tex
Normal file
@ -0,0 +1,180 @@
|
||||
% Everything related to referencing stuff
|
||||
|
||||
\newcommand\printFqName{\expandafter\detokenize\expandafter{\fqname}}
|
||||
|
||||
% SECTIONING
|
||||
% start <section>, get heading from translation, set label
|
||||
% secFqname is the fully qualified name of sections: the keys of all previous sections joined with a ':'
|
||||
% fqname is secFqname:<key> where <key> is the key/id of some environment, like formula
|
||||
% [1]: code to run after setting \fqname, but before the \part, \section etc
|
||||
% 2: key
|
||||
\newcommand{\Part}[2][desc]{
|
||||
\newpage
|
||||
\def\partName{#2}
|
||||
\def\sectionName{}
|
||||
\def\subsectionName{}
|
||||
\def\subsubsectionName{}
|
||||
\edef\fqname{\partName}
|
||||
\edef\secFqname{\fqname}
|
||||
#1
|
||||
\edef\fqnameText{\expandafter\GetTranslation\expandafter{\fqname}}
|
||||
\part{\fqnameText}
|
||||
\label{sec:\fqname}
|
||||
}
|
||||
\newcommand{\Section}[2][]{
|
||||
\def\sectionName{#2}
|
||||
\def\subsectionName{}
|
||||
\def\subsubsectionName{}
|
||||
\edef\fqname{\partName:\sectionName}
|
||||
\edef\secFqname{\fqname}
|
||||
#1
|
||||
% this is necessary so that \section takes the fully expanded string. Otherwise the pdf toc will have just the fqname
|
||||
\edef\fqnameText{\expandafter\GetTranslation\expandafter{\fqname}}
|
||||
\section{\fqnameText}
|
||||
\label{sec:\fqname}
|
||||
}
|
||||
% \newcommand{\Subsection}[1]{\Subsection{#1}{}}
|
||||
\newcommand{\Subsection}[2][]{
|
||||
\def\subsectionName{#2}
|
||||
\def\subsubsectionName{}
|
||||
\edef\fqname{\partName:\sectionName:\subsectionName}
|
||||
\edef\secFqname{\fqname}
|
||||
#1
|
||||
\edef\fqnameText{\expandafter\GetTranslation\expandafter{\fqname}}
|
||||
\subsection{\fqnameText}
|
||||
\label{sec:\fqname}
|
||||
}
|
||||
\newcommand{\Subsubsection}[2][]{
|
||||
\def\subsubsectionName{#2}
|
||||
\edef\fqname{\partName:\sectionName:\subsectionName:\subsubsectionName}
|
||||
\edef\secFqname{\fqname}
|
||||
#1
|
||||
\edef\fqnameText{\expandafter\GetTranslation\expandafter{\fqname}}
|
||||
\subsubsection{\fqnameText}
|
||||
\label{sec:\fqname}
|
||||
}
|
||||
\edef\fqname{NULL}
|
||||
|
||||
\newcommand\luaDoubleFieldValue[3]{%
|
||||
\directlua{
|
||||
if #1 \string~= nil and #1[#2] \string~= nil and #1[#2][#3] \string~= nil then
|
||||
tex.sprint(#1[#2][#3])
|
||||
return
|
||||
end
|
||||
luatexbase.module_warning('luaDoubleFieldValue', 'Invalid indices to `#1`: `#2` and `#3`');
|
||||
tex.sprint("???")
|
||||
}%
|
||||
}
|
||||
% REFERENCES
|
||||
% All xyzRef commands link to the key using the translated name
|
||||
% Uppercase (XyzRef) commands have different link texts, but the same link target
|
||||
% 1: key/fully qualified name (without qty/eq/sec/const/el... prefix)
|
||||
|
||||
% Equations/Formulas
|
||||
% \newrobustcmd{\fqEqRef}[1]{%
|
||||
\newrobustcmd{\fqEqRef}[1]{%
|
||||
% \edef\fqeqrefname{\GT{#1}}
|
||||
% \hyperref[eq:#1]{\fqeqrefname}
|
||||
\hyperref[f:#1]{\GT{#1}}%
|
||||
}
|
||||
% Formula in the current section
|
||||
\newrobustcmd{\secEqRef}[1]{%
|
||||
% \edef\fqeqrefname{\GT{#1}}
|
||||
% \hyperref[eq:#1]{\fqeqrefname}
|
||||
\hyperref[f:\secFqname:#1]{\GT{\secFqname:#1}}%
|
||||
}
|
||||
|
||||
% Section
|
||||
% <name>
|
||||
\newrobustcmd{\fqSecRef}[1]{%
|
||||
\hyperref[sec:#1]{\GT{#1}}%
|
||||
}
|
||||
% Quantities
|
||||
% <symbol>
|
||||
\newrobustcmd{\qtyRef}[1]{%
|
||||
\edef\tempname{\luaDoubleFieldValue{quantities}{"#1"}{"fqname"}}%
|
||||
\hyperref[qty:#1]{\expandafter\GT\expandafter{\tempname:#1}}%
|
||||
}
|
||||
% <symbol> <name>
|
||||
\newrobustcmd{\QtyRef}[1]{%
|
||||
$\luaDoubleFieldValue{quantities}{"#1"}{"symbol"}$ \qtyRef{#1}%
|
||||
}
|
||||
% Constants
|
||||
% <name>
|
||||
\newrobustcmd{\constRef}[1]{%
|
||||
\edef\tempname{\luaDoubleFieldValue{constants}{"#1"}{"fqname"}}%
|
||||
\hyperref[const:#1]{\expandafter\GT\expandafter{\tempname:#1}}%
|
||||
}
|
||||
% <symbol> <name>
|
||||
\newrobustcmd{\ConstRef}[1]{%
|
||||
$\luaDoubleFieldValue{constants}{"#1"}{"symbol"}$ \constRef{#1}%
|
||||
}
|
||||
% Element from periodic table
|
||||
% <symbol>
|
||||
\newrobustcmd{\elRef}[1]{%
|
||||
\hyperref[el:#1]{{\color{fg0}#1}}%
|
||||
}
|
||||
% <name>
|
||||
\newrobustcmd{\ElRef}[1]{%
|
||||
\hyperref[el:#1]{\GT{el:#1}}%
|
||||
}
|
||||
|
||||
|
||||
|
||||
% "LABELS"
|
||||
% These currently do not place a label,
|
||||
% instead they provide an alternative way to reference an existing label
|
||||
\directLuaAux{
|
||||
if absLabels == nil then
|
||||
absLabels = {}
|
||||
end
|
||||
}
|
||||
% [1]: target (fqname to point to)
|
||||
% 2: key
|
||||
\newcommand{\absLink}[2][sec:\fqname]{
|
||||
\directLuaAuxExpand{
|
||||
absLabels["#2"] = [[#1]]
|
||||
}
|
||||
}
|
||||
\directLuaAux{
|
||||
if abbrLabels == nil then
|
||||
abbrLabels = {}
|
||||
end
|
||||
}
|
||||
% [1]: target (fqname to point to)
|
||||
% 2: key
|
||||
% 3: label (abbreviation)
|
||||
\newcommand{\abbrLink}[3][sec:\fqname]{
|
||||
\directLuaAuxExpand{
|
||||
abbrLabels["#2"] = {}
|
||||
abbrLabels["#2"]["abbr"] = [[#3]]
|
||||
abbrLabels["#2"]["fqname"] = [[#1]]
|
||||
}
|
||||
}
|
||||
% [1]:
|
||||
\newrobustcmd{\absRef}[2][\relax]{%
|
||||
\directlua{
|
||||
if absLabels["#2"] == nil then
|
||||
tex.sprint("\\detokenize{#2}???")
|
||||
else
|
||||
if "#1" == "" then %-- if [#1] is not given, use translation of key as text, else us given text
|
||||
tex.sprint("\\hyperref[" .. absLabels["#2"] .. "]{\\GT{" .. absLabels["#2"] .. "}}")
|
||||
else
|
||||
tex.sprint("\\hyperref[" .. absLabels["#2"] .. "]{\luaescapestring{#1}}")
|
||||
end
|
||||
end
|
||||
}
|
||||
}
|
||||
\newrobustcmd{\abbrRef}[1]{%
|
||||
\directlua{
|
||||
if abbrLabels["#1"] == nil then
|
||||
tex.sprint("\\detokenize{#1}???")
|
||||
else
|
||||
tex.sprint("\\hyperref[" .. abbrLabels["#1"]["fqname"] .. "]{" .. abbrLabels["#1"]["abbr"] .. "}")
|
||||
end
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
% use \newcommand instead of \def because we want to throw an error if a command gets redefined
|
||||
\newcommand\smartnewline[1]{\ifhmode\\\fi} % newline only if there in horizontal mode
|
||||
\def\gooditem{\item[{$\color{fg-red}\bullet$}]}
|
||||
\def\baditem{\item[{$\color{fg-green}\bullet$}]}
|
||||
\newcommand\gooditem{\item[{$\color{fg-green}\bullet$}]}
|
||||
\newcommand\baditem{\item[{$\color{fg-red}\bullet$}]}
|
||||
|
||||
% Functions with (optional) paranthesis
|
||||
% 1: The function (like \exp, \sin etc.)
|
||||
@ -24,11 +25,11 @@
|
||||
|
||||
% COMMON SYMBOLS WITH SUPER/SUBSCRIPTS, VECTOR ARROWS ETC.
|
||||
% \def\laplace{\Delta} % Laplace operator
|
||||
\def\laplace{\bigtriangleup} % Laplace operator
|
||||
\newcommand\laplace{\bigtriangleup} % Laplace operator
|
||||
% symbols
|
||||
\def\Grad{\vec{\nabla}}
|
||||
\def\Div {\vec{\nabla} \cdot}
|
||||
\def\Rot {\vec{\nabla} \times}
|
||||
\newcommand\Grad{\vec{\nabla}}
|
||||
\newcommand\Div {\vec{\nabla} \cdot}
|
||||
\newcommand\Rot {\vec{\nabla} \times}
|
||||
% symbols with parens
|
||||
\newcommand\GradS[1][\relax]{\CmdInParenthesis{\Grad}{#1}}
|
||||
\newcommand\DivS [1][\relax]{\CmdInParenthesis{\Div} {#1}}
|
||||
@ -37,100 +38,96 @@
|
||||
\newcommand\GradT[1][\relax]{\CmdWithParenthesis{\text{grad}\,}{#1}}
|
||||
\newcommand\DivT[1][\relax] {\CmdWithParenthesis{\text{div}\,} {#1}}
|
||||
\newcommand\RotT[1][\relax] {\CmdWithParenthesis{\text{rot}\,} {#1}}
|
||||
\def\vecr{\vec{r}}
|
||||
\def\vecR{\vec{R}}
|
||||
\def\veck{\vec{k}}
|
||||
\def\vecx{\vec{x}}
|
||||
\def\kB{k_\text{B}} % boltzmann
|
||||
\def\NA{N_\text{A}} % avogadro
|
||||
\def\EFermi{E_\text{F}} % fermi energy
|
||||
\def\Efermi{E_\text{F}} % fermi energy
|
||||
\def\Evalence{E_\text{v}} % val vand energy
|
||||
\def\Econd{E_\text{c}} % cond. band nergy
|
||||
\def\Egap{E_\text{gap}} % band gap energy
|
||||
\def\Evac{E_\text{vac}} % vacuum energy
|
||||
\def\masse{m_\text{e}} % electron mass
|
||||
\def\Four{\mathcal{F}} % Fourier transform
|
||||
\def\Lebesgue{\mathcal{L}} % Lebesgue
|
||||
\def\O{\mathcal{O}} % order
|
||||
\def\PhiB{\Phi_\text{B}} % mag. flux
|
||||
\def\PhiE{\Phi_\text{E}} % electric flux
|
||||
\def\nreal{n^{\prime}} % refraction real part
|
||||
\def\ncomplex{n^{\prime\prime}} % refraction index complex part
|
||||
\def\I{i} % complex unit
|
||||
\def\crit{\text{crit}} % crit (for subscripts)
|
||||
\def\muecp{\overline{\mu}} % electrochemical potential
|
||||
\def\pH{\text{pH}} % pH
|
||||
\def\rfactor{\text{rf}} % rf roughness_factor
|
||||
\newcommand\kB{k_\text{B}} % boltzmann
|
||||
\newcommand\NA{N_\text{A}} % avogadro
|
||||
\newcommand\EFermi{E_\text{F}} % fermi energy
|
||||
\newcommand\Efermi{E_\text{F}} % fermi energy
|
||||
\newcommand\Evalence{E_\text{v}} % val vand energy
|
||||
\newcommand\Econd{E_\text{c}} % cond. band nergy
|
||||
\newcommand\Egap{E_\text{gap}} % band gap energy
|
||||
\newcommand\Evac{E_\text{vac}} % vacuum energy
|
||||
\newcommand\masse{m_\text{e}} % electron mass
|
||||
\newcommand\Four{\mathcal{F}} % Fourier transform
|
||||
\newcommand\Lebesgue{\mathcal{L}} % Lebesgue
|
||||
% \newcommand\O{\mathcal{O}} % order
|
||||
\newcommand\PhiB{\Phi_\text{B}} % mag. flux
|
||||
\newcommand\PhiE{\Phi_\text{E}} % electric flux
|
||||
\newcommand\nreal{n^{\prime}} % refraction real part
|
||||
\newcommand\ncomplex{n^{\prime\prime}} % refraction index complex part
|
||||
\newcommand\I{i} % complex/imaginary unit
|
||||
\newcommand\crit{\text{crit}} % crit (for subscripts)
|
||||
\newcommand\muecp{\overline{\mu}} % electrochemical potential
|
||||
% \newcommand\pH{\text{pH}} % pH, already defined by one of the chem packages
|
||||
\newcommand\rfactor{\text{rf}} % rf roughness_factor
|
||||
|
||||
|
||||
% SYMBOLS
|
||||
\def\R{\mathbb{R}}
|
||||
\def\C{\mathbb{C}}
|
||||
\def\Z{\mathbb{Z}}
|
||||
\def\N{\mathbb{N}}
|
||||
\def\id{\mathbb{1}}
|
||||
\newcommand\R{\mathbb{R}}
|
||||
\newcommand\C{\mathbb{C}}
|
||||
\newcommand\Z{\mathbb{Z}}
|
||||
\newcommand\N{\mathbb{N}}
|
||||
\newcommand\id{\mathbb{1}}
|
||||
% caligraphic
|
||||
\def\E{\mathcal{E}} % electric field
|
||||
% upright
|
||||
\def\txA{\text{A}}
|
||||
\def\txB{\text{B}}
|
||||
\def\txC{\text{C}}
|
||||
\def\txD{\text{D}}
|
||||
\def\txE{\text{E}}
|
||||
\def\txF{\text{F}}
|
||||
\def\txG{\text{G}}
|
||||
\def\txH{\text{H}}
|
||||
\def\txI{\text{I}}
|
||||
\def\txJ{\text{J}}
|
||||
\def\txK{\text{K}}
|
||||
\def\txL{\text{L}}
|
||||
\def\txM{\text{M}}
|
||||
\def\txN{\text{N}}
|
||||
\def\txO{\text{O}}
|
||||
\def\txP{\text{P}}
|
||||
\def\txQ{\text{Q}}
|
||||
\def\txR{\text{R}}
|
||||
\def\txS{\text{S}}
|
||||
\def\txT{\text{T}}
|
||||
\def\txU{\text{U}}
|
||||
\def\txV{\text{V}}
|
||||
\def\txW{\text{W}}
|
||||
\def\txX{\text{X}}
|
||||
\def\txY{\text{Y}}
|
||||
\def\txZ{\text{Z}}
|
||||
|
||||
\def\txa{\text{a}}
|
||||
\def\txb{\text{b}}
|
||||
\def\txc{\text{c}}
|
||||
\def\txd{\text{d}}
|
||||
\def\txe{\text{e}}
|
||||
\def\txf{\text{f}}
|
||||
\def\txg{\text{g}}
|
||||
\def\txh{\text{h}}
|
||||
\def\txi{\text{i}}
|
||||
\def\txj{\text{j}}
|
||||
\def\txk{\text{k}}
|
||||
\def\txl{\text{l}}
|
||||
\def\txm{\text{m}}
|
||||
\def\txn{\text{n}}
|
||||
\def\txo{\text{o}}
|
||||
\def\txp{\text{p}}
|
||||
\def\txq{\text{q}}
|
||||
\def\txr{\text{r}}
|
||||
\def\txs{\text{s}}
|
||||
\def\txt{\text{t}}
|
||||
\def\txu{\text{u}}
|
||||
\def\txv{\text{v}}
|
||||
\def\txw{\text{w}}
|
||||
\def\txx{\text{x}}
|
||||
\def\txy{\text{y}}
|
||||
\def\txz{\text{z}}
|
||||
\newcommand\E{\mathcal{E}} % electric field
|
||||
% upright, vector
|
||||
\newcommand\txA{\text{A}} \newcommand\vecA{\vec{A}}
|
||||
\newcommand\txB{\text{B}} \newcommand\vecB{\vec{B}}
|
||||
\newcommand\txC{\text{C}} \newcommand\vecC{\vec{C}}
|
||||
\newcommand\txD{\text{D}} \newcommand\vecD{\vec{D}}
|
||||
\newcommand\txE{\text{E}} \newcommand\vecE{\vec{E}}
|
||||
\newcommand\txF{\text{F}} \newcommand\vecF{\vec{F}}
|
||||
\newcommand\txG{\text{G}} \newcommand\vecG{\vec{G}}
|
||||
\newcommand\txH{\text{H}} \newcommand\vecH{\vec{H}}
|
||||
\newcommand\txI{\text{I}} \newcommand\vecI{\vec{I}}
|
||||
\newcommand\txJ{\text{J}} \newcommand\vecJ{\vec{J}}
|
||||
\newcommand\txK{\text{K}} \newcommand\vecK{\vec{K}}
|
||||
\newcommand\txL{\text{L}} \newcommand\vecL{\vec{L}}
|
||||
\newcommand\txM{\text{M}} \newcommand\vecM{\vec{M}}
|
||||
\newcommand\txN{\text{N}} \newcommand\vecN{\vec{N}}
|
||||
\newcommand\txO{\text{O}} \newcommand\vecO{\vec{O}}
|
||||
\newcommand\txP{\text{P}} \newcommand\vecP{\vec{P}}
|
||||
\newcommand\txQ{\text{Q}} \newcommand\vecQ{\vec{Q}}
|
||||
\newcommand\txR{\text{R}} \newcommand\vecR{\vec{R}}
|
||||
\newcommand\txS{\text{S}} \newcommand\vecS{\vec{S}}
|
||||
\newcommand\txT{\text{T}} \newcommand\vecT{\vec{T}}
|
||||
\newcommand\txU{\text{U}} \newcommand\vecU{\vec{U}}
|
||||
\newcommand\txV{\text{V}} \newcommand\vecV{\vec{V}}
|
||||
\newcommand\txW{\text{W}} \newcommand\vecW{\vec{W}}
|
||||
\newcommand\txX{\text{X}} \newcommand\vecX{\vec{X}}
|
||||
\newcommand\txY{\text{Y}} \newcommand\vecY{\vec{Y}}
|
||||
\newcommand\txZ{\text{Z}} \newcommand\vecZ{\vec{Z}}
|
||||
|
||||
\newcommand\txa{\text{a}} \newcommand\veca{\vec{a}}
|
||||
\newcommand\txb{\text{b}} \newcommand\vecb{\vec{b}}
|
||||
\newcommand\txc{\text{c}} \newcommand\vecc{\vec{c}}
|
||||
\newcommand\txd{\text{d}} \newcommand\vecd{\vec{d}}
|
||||
\newcommand\txe{\text{e}} \newcommand\vece{\vec{e}}
|
||||
\newcommand\txf{\text{f}} \newcommand\vecf{\vec{f}}
|
||||
\newcommand\txg{\text{g}} \newcommand\vecg{\vec{g}}
|
||||
\newcommand\txh{\text{h}} \newcommand\vech{\vec{h}}
|
||||
\newcommand\txi{\text{i}} \newcommand\veci{\vec{i}}
|
||||
\newcommand\txj{\text{j}} \newcommand\vecj{\vec{j}}
|
||||
\newcommand\txk{\text{k}} \newcommand\veck{\vec{k}}
|
||||
\newcommand\txl{\text{l}} \newcommand\vecl{\vec{l}}
|
||||
\newcommand\txm{\text{m}} \newcommand\vecm{\vec{m}}
|
||||
\newcommand\txn{\text{n}} \newcommand\vecn{\vec{n}}
|
||||
\newcommand\txo{\text{o}} \newcommand\veco{\vec{o}}
|
||||
\newcommand\txp{\text{p}} \newcommand\vecp{\vec{p}}
|
||||
\newcommand\txq{\text{q}} \newcommand\vecq{\vec{q}}
|
||||
\newcommand\txr{\text{r}} \newcommand\vecr{\vec{r}}
|
||||
\newcommand\txs{\text{s}} \newcommand\vecs{\vec{s}}
|
||||
\newcommand\txt{\text{t}} \newcommand\vect{\vec{t}}
|
||||
\newcommand\txu{\text{u}} \newcommand\vecu{\vec{u}}
|
||||
\newcommand\txv{\text{v}} \newcommand\vecv{\vec{v}}
|
||||
\newcommand\txw{\text{w}} \newcommand\vecw{\vec{w}}
|
||||
\newcommand\txx{\text{x}} \newcommand\vecx{\vec{x}}
|
||||
\newcommand\txy{\text{y}} \newcommand\vecy{\vec{y}}
|
||||
\newcommand\txz{\text{z}} \newcommand\vecz{\vec{z}}
|
||||
|
||||
% SPACES
|
||||
\def\sdots{\,\dots\,}
|
||||
\def\qdots{\quad\dots\quad}
|
||||
\def\qRarrow{\quad\Rightarrow\quad}
|
||||
\newcommand\sdots{\,\dots\,}
|
||||
\newcommand\qdots{\quad\dots\quad}
|
||||
\newcommand\qRarrow{\quad\Rightarrow\quad}
|
||||
|
||||
% ANNOTATIONS
|
||||
% put an explanation above an equal sign
|
||||
@ -188,12 +185,12 @@
|
||||
\newcommand\Order[1]{\CmdWithParenthesis{\mathcal{O}}{#1}}
|
||||
|
||||
% VECTOR, MATRIX and TENSOR
|
||||
% use vecA to force an arrow
|
||||
\NewCommandCopy{\vecA}{\vec}
|
||||
% use vecAr to force an arrow
|
||||
\NewCommandCopy{\vecAr}{\vec}
|
||||
% extra {} assure they can b directly used after _
|
||||
%% arrow/underline
|
||||
\newcommand\mat[1]{{\ensuremath{\underline{#1}}}}
|
||||
\renewcommand\vec[1]{{\ensuremath{\vecA{#1}}}}
|
||||
\renewcommand\vec[1]{{\ensuremath{\vecAr{#1}}}}
|
||||
\newcommand\ten[1]{{\ensuremath{[#1]}}}
|
||||
\newcommand\complex[1]{{\ensuremath{\tilde{#1}}}}
|
||||
%% bold
|
||||
|
@ -54,10 +54,11 @@
|
||||
\vspace{0.5\baselineskip}
|
||||
\begingroup
|
||||
% label it only once
|
||||
% \detokenize{\label{el:#1}}
|
||||
\directlua{
|
||||
if elements["#1"]["labeled"] == nil then
|
||||
elements["#1"]["labeled"] = true
|
||||
tex.print("\\label{el:#1}")
|
||||
tex.print("\\phantomsection\\label{el:#1}")
|
||||
end
|
||||
}
|
||||
\NameWithDescription[\descwidth]{\elementName}{\elementName_desc}
|
||||
|
@ -103,3 +103,12 @@
|
||||
\draw[->] (0,0) -- (\tkW+0.2,0) node[anchor=north] {$x$};
|
||||
\draw[->] (0,0) -- (0,\tkH+0.2) node[anchor=east] {$E$};
|
||||
}
|
||||
|
||||
\newcommand\tkXTick[2]{
|
||||
\pgfmathsetmacro{\tickwidth}{0.1}
|
||||
\draw (#1, -\tickwidth/2) -- (#1, \tickwidth/2) node[anchor=north] {#2};
|
||||
}
|
||||
\newcommand\tkYTick[2]{
|
||||
\pgfmathsetmacro{\tickwidth}{0.1}
|
||||
\draw (-\tickwidth/2, #1) -- (\tickwidth/2,#1) node[anchor=east] {#2};
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user