add periodic table

This commit is contained in:
matth@ultra 2025-01-02 18:12:26 +01:00
parent 82556282f3
commit 7745922b1f
38 changed files with 37373 additions and 537 deletions

37
Makefile Normal file
View File

@ -0,0 +1,37 @@
# Makefile for lualatex
# Paths and filenames
SRC_DIR = src
OUT_DIR = out
MAIN_TEX = $(SRC_DIR)/main.tex
MAIN_PDF = $(OUT_DIR)/main.pdf
# LaTeX and Biber commands
LATEX = lualatex
BIBER = biber
LATEX_OPTS := -output-directory=$(OUT_DIR) -interaction=nonstopmode -shell-escape
.PHONY: default release clean
default: english
release: german english
# Default target
english:
sed -r -i 's/usepackage\[[^]]+\]\{babel\}/usepackage[english]{babel}/' $(MAIN_TEX)
-cd $(SRC_DIR) && latexmk -g
mv $(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_en_formula_collection.pdf
german:
sed -r -i 's/usepackage\[[^]]+\]\{babel\}/usepackage[german]{babel}/' $(MAIN_TEX)
-cd $(SRC_DIR) && latexmk -g
mv $(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_de_formelsammlung.pdf
# Clean auxiliary and output files
clean:
rm -r $(OUT_DIR)
# Phony targets
.PHONY: all clean biber

File diff suppressed because it is too large Load Diff

28402
scripts/elements.json Normal file

File diff suppressed because it is too large Load Diff

78
scripts/periodic_table.py Normal file
View File

@ -0,0 +1,78 @@
"""
Script to process the periodic table as json into latex stuff
Source for `elements.json` is this amazing project:
https://pse-info.de/de/data
Copyright Matthias Quintern 2024
"""
import json
import os
import re
outdir = "../src/ch"
def gen_periodic_table():
with open("elements.json") as file:
ptab = json.load(file)
# print(ptab["elements"][1])
s = "% This file was created by the periodic_table.py script.\n% Do not edit manually. Any changes might get lost.\n"
for i, el_key in enumerate(ptab):
el = ptab[el_key]
def get(*keys):
"""get keys or return empty string"""
val = el
for key in keys:
if not key in val: return ""
val = val[key]
return val
# print(i, el)
el_s = f"\\begin{{element}}{{{el['symbol']}}}{{{el['number']}}}{{{el['period']}}}{{{el['column']}}}"
# description
el_s += f"\n\t\\desc[english]{{{el['names']['en']}}}{{{get('appearance', 'en')}}}{{}}"
el_s += f"\n\t\\desc[german]{{{el['names']['de']}}}{{English: {get('names', 'en')}\\\\{get('appearance', 'de')}}}{{}}"
# simple properties
for field in ["crystal_structure", "set", "magnetic_ordering"]:
if field in el:
el_s += f"\n\t\\property{{{field}}}{{{el[field]}}}"
# mass
m = get("atomic_mass", "value")
if m:
assert(get("atomic_mass", "unit") == "u")
el_s += f"\n\t\\property{{{'atomic_mass'}}}{{{m}}}"
# refractive indices
temp = ""
add_refractive_index = lambda idx: f"\\GT{{{idx['label']}}}: ${idx['value']}$, "
idxs = get("optical", "refractive_index")
print(idxs)
if type(idxs) == list:
for idx in idxs: add_refractive_index(idx)
elif type(idxs) == dict: add_refractive_index(idxs)
elif type(idxs) == float: temp += f"${idxs}$, "
if temp:
el_s += f"\n\t\\property{{{'refractive_index'}}}{{{temp[:-2]}}}"
# electron configuration
match = re.fullmatch(r"([A-Z][a-z]*)? ?(.+?)", el["electron_config"])
if match:
el_s += f"\n\t\\property{{{'electron_config'}}}{{"
if match.groups()[0]:
el_s += f"\\elRef{{{match.groups()[0]}}} "
el_s += f"{match.groups()[1]}}}"
el_s += "\n\\end{element}"
print(el_s)
s += el_s + "\n"
# print(s)
return s
if __name__ == "__main__":
ptable = gen_periodic_table()
assert os.path.abspath(".").endswith("scripts"), "Please run from the `scripts` directory"
with open(f"{outdir}/periodic_table.tex", "w") as file:
file.write(ptable)

View File

@ -4,7 +4,7 @@ import numpy as np
import math
import scipy as scp
outdir = "../img/"
outdir = "../src/img/"
filetype = ".pdf"
skipasserts = False

30
src/.latexmkrc Normal file
View File

@ -0,0 +1,30 @@
# Specify the auxiliary and output directories
$aux_dir = '../.aux';
$out_dir = '../out';
# Set lualatex as the default engine
$pdf_mode = 1; # Enable PDF generation mode
$pdflatex = 'lualatex -interaction=nonstopmode -shell-escape'
# Additional options for compilation
# '-verbose',
# '-file-line-error',
# Quickfix-like filtering (warnings to ignore)
# @warnings_to_filter = (
# qr/Underfull \\hbox/,
# qr/Overfull \\hbox/,
# qr/LaTeX Warning: .+ float specifier changed to/,
# qr/LaTeX hooks Warning/,
# qr/Package siunitx Warning: Detected the "physics" package:/,
# qr/Package hyperref Warning: Token not allowed in a PDF string/
# );
# # Filter function for warnings
# sub filter_warnings {
# my $warning = shift;
# foreach my $filter (@warnings_to_filter) {
# return 0 if $warning =~ $filter;
# }
# return 1;
# }

View File

@ -179,3 +179,17 @@
]{mag_effects}
\TODO{all}
\\\TODO{Hunds rules}
\Subsection[
\eng{misc}
\ger{Sonstiges}
]{other}
\begin{formula}{auger_effect}
\desc{Auger-Meitner-Effekt}{Auger-Effect}{}
\desc[german]{Auger-Meitner-Effekt}{Auger-Effekt}{}
\ttxt{
\eng{An excited electron relaxes into a lower, unoccupied energy level. The released energy causes the emission of another electron in a higher energy level (Auger-Electron)}
\ger{Ein angeregtes Elektron fällt in ein unbesetztes, niedrigeres Energieniveau zurück. Durch die frei werdende Energie verlässt ein Elektron aus einer höheren Schale das Atom (Auger-Elektron).}
}
\end{formula}

29
src/ch/ch.tex Normal file
View File

@ -0,0 +1,29 @@
\Part[
\eng{Chemie}
\ger{Chemie}
]{ch}
\Section[
\eng{Periodic table}
\ger{Periodensystem}
]{ptable}
\drawPeriodicTable
\Section[
\eng{stuff}
\ger{stuff}
]{stuff}
\begin{formula}{covalent_bond}
\desc{Covalent bond}{}{}
\desc[german]{Kolvalente Bindung}{}{}
\ttxt{
\eng{Bonds that involve sharing of electrons to form electron pairs between atoms.}
\ger{Bindungen zwischen Atomen die durch geteilte Elektronen, welche Elektronenpaare bilden, gebildet werden.}
}
\end{formula}
\Section[
\eng{List of elements}
\ger{Liste der Elemente}
]{elements}
\printAllElements

1054
src/ch/periodic_table.tex Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,85 @@
\Section[
\eng{Charge transport}
\ger{Ladungstransport}
]{charge_transport}
\Subsection[
\eng{Drude model}
\ger{Drude-Modell}
]{drude}
\begin{ttext}
\eng{Classical model describing the transport properties of electrons in materials (metals):
The material is assumed to be an ion lattice and with freely moving electrons (electron gas). The electrons are
accelerated by an electric field and decelerated through collisions with the lattice ions.
The model disregards the Fermi-Dirac partition of the conducting electrons.
}
\ger{Ein klassisches Model zur Beschreibung der Transporteigenschaften von Elektronen in (v.a.) Metallen:
Der Festkörper wird als Ionenkristall mit frei beweglichen Elektronen (Elektronengas).
Die Elektronen werden durch ein Elektrisches Feld $E$ beschleunigt und durch Stöße mit den Gitterionen gebremst.
Das Modell vernachlässigt die Fermi-Dirac Verteilung der Leitungselektronen.
}
\end{ttext}
\begin{formula}{motion}
\desc{Equation of motion}{}{$v$ electron speed, $\vec{v}_\text{D}$ drift velocity, $\tau$ mean free time between collisions}
\desc[german]{Bewegungsgleichung}{}{$v$ Elektronengeschwindigkeit, $\vec{v}_\text{D}$ Driftgeschwindigkeit, $\tau$ Stoßzeit}
\eq{\masse \odv{\vec{v}}{t} + \frac{\masse}{\tau} \vec{v}_\text{D} = -e \vec{\E}}
\end{formula}
\begin{formula}{scattering_time}
\desc{Scattering time}{Momentum relaxation time}{}
\desc[german]{Streuzeit}{}{}
\ttxt{
\eng{$\tau$\\ the average time between scattering events weighted by the characteristic momentum change cause by the scattering process.}
}
\end{formula}
\begin{formula}{current_density}
\desc{Current density}{Ohm's law}{$n$ charge particle density}
\desc[german]{Stromdichte}{Ohmsches Gesetz}{$n$ Ladungsträgerdichte}
\eq{\vec{j} = -ne\vec{v}_\text{D} = ne\mu \vec{\E}}
\end{formula}
\begin{formula}{conductivity}
\desc{Drude-conductivity}{}{}
\desc[german]{Drude-Leitfähigkeit}{}{}
\eq{\sigma = \frac{\vec{j}}{\vec{\E}} = \frac{e^2 \tau n}{\masse} = n e \mu}
\end{formula}
\Subsection[
\eng{Sommerfeld model}
\ger{Sommerfeld-Modell}
]{sommerfeld}
\begin{ttext}
\eng{Assumes a gas of free fermions underlying the pauli-exclusion principle. Only electrons in an energy range of $\kB T$ around the Fermi energy $\EFermi$ participate in scattering processes.}
\ger{Annahme eines freien Fermionengases, welches dem Pauli-Prinzip unterliegt. Nur Elektronen in einem Energiebereich von $\kB T$ um die Fermi Energe $\EFermi$ nehmen an Streuprozessen teil.}
\end{ttext}
\begin{formula}{current_density}
\desc{Current density}{}{}
\desc[german]{Stromdichte}{}{}
\eq{\vec{j} = -en\braket{v} = -e n \frac{\hbar}{\masse}\braket{\vec{k}} = -e \frac{1}{V} \sum_{\vec{k},\sigma} \frac{\hbar \vec{k}}{\masse}}
\end{formula}
\TODO{The formula for the conductivity is the same as in the drude model?}
\Subsection[
\eng{Boltzmann-transport}
\ger{Boltzmann-Transport}
]{boltzmann}
\begin{ttext}
\eng{Semiclassical description using a probability distribution (\fqEqRef{stat:todo:fermi_dirac}) to describe the particles.}
\ger{Semiklassische Beschreibung, benutzt eine Wahrscheinlichkeitsverteilung (\fqEqRef{stat:todo:fermi_dirac}).}
\end{ttext}
\begin{formula}{boltzmann_transport}
\desc{Boltzmann Transport equation}{for charge transport}{$f$ \ref{stat:todo:fermi-dirac}}
\desc[german]{Boltzmann-Transportgleichung}{für Ladungstransport}{}
\eq{
\pdv{f(\vec{r},\vec{k},t)}{t} = -\vec{v} \cdot \Grad_{\vec{r}} f - \frac{e}{\hbar}(\vec{\mathcal{E}} + \vec{v} \times \vec{B}) \cdot \Grad_{\vec{k}} f + \left(\pdv{f(\vec{r},\vec{k},t)}{t}\right)_{\text{\GT{scatter}}}
}
\end{formula}
\Subsection[
\eng{misc}
\ger{misc}
]{misc}
\begin{formula}{tsu_esaki}
\desc{Tsu-Esaki tunneling current}{Describes the current $I_{\txL \leftrightarrow \txR}$ through a barrier}{$\mu_i$ \qtyRef{chemical_pot} at left/right side, $U_i$ voltage on left/right side. Electrons occupy region between $U_i$ and $\mu_i$}
\desc[german]{Tsu-Esaki Tunnelstrom}{Beschreibt den Strom $I_{\txL \leftrightarrow \txR}$ durch eine Barriere }{$\mu_i$ \qtyRef{chemical_pot} links/rechts, $U_i$ Spannung links/rechts. Elektronen besetzen Bereich zwischen $U_i$ und $\mu_i$}
\eq{
I_\text{T} = \frac{2e}{h} \int_{U_\txL}^\infty \left(f(E, \mu_\txL) -f(E, \mu_\txR)\right) T(E) \d E
}
\end{formula}

View File

@ -1,12 +1,12 @@
\Part[
\eng{Condensed matter physics}
\ger{Festkörperphysik}
]{cm}
]{cm}
\TODO{Bonds, hybridized orbitals, tight binding}
\Section[
\eng{Bravais lattice}
\ger{Bravais-Gitter}
]{bravais}
]{bravais}
% \begin{ttext}
% \eng{
@ -37,7 +37,7 @@
\newcolumntype{Z}{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}X}
\begin{table}[H]
\centering
\caption{\gt{bravais_table2}}
\expandafter\caption\expandafter{\gt{bravais_table2}}
\label{tab:bravais2}
\begin{adjustbox}{width=\textwidth}
@ -85,12 +85,70 @@
\end{tabularx}
\end{adjustbox}
\end{table}
\TODO{FCC, BCC, diamond/Zincblende wurtzize cell/lattice vectors}
\TODO{primitive unit cell: contains one lattice point}\\
family of plane that are equivalent due to crystal symmetry
\begin{quantity}{lattice_constant}{a}{}{s}
\desc{Lattice constant}{Parameter (length or angle) describing the smallest unit cell}{}
\desc[german]{Gitterkonstante}{Parameter (Länge oder Winkel) der die Einheitszelle beschreibt}{}
\end{quantity}
\begin{formula}{sc}
\desc{Simple cubic (SC)}{Reciprocal: Simple cubic}{\QtyRef{lattice_constant}}
\desc[german]{Einfach kubisch (SC)}{Reziprok: Einfach kubisch}{}
\eq{
\vec{a}_{1}=a \begin{pmatrix} 1\\0\\0 \end{pmatrix},\,
\vec{a}_{2}=a \begin{pmatrix} 0\\1\\0 \end{pmatrix},\,
\vec{a}_{3}=a \begin{pmatrix} 0\\0\\1 \end{pmatrix}
}
\end{formula}
\begin{formula}{bcc}
\desc{Body centered cubic (BCC)}{Reciprocal: \fqEqRef{cm:bravais:fcc}}{\QtyRef{lattice_constant}}
\desc[german]{Kubisch raumzentriert (BCC)}{Reziprok: \fqEqRef{cm:bravais:fcc}}{}
\eq{
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix},\,
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix},\,
\vec{a}_{3}=\frac{a}{2} \begin{pmatrix} 1\\1\\-1 \end{pmatrix}
}
\end{formula}
\begin{formula}{fcc}
\desc{Face centered cubic (FCC)}{Reciprocal: \fqEqRef{cm:bravais:bcc}}{\QtyRef{lattice_constant}}
\desc[german]{Kubisch flächenzentriert (FCC)}{Reziprok: \fqEqRef{cm:bravais:bcc}}{}
\eq{
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix},\,
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix},\,
\vec{a}_{3}=\frac{a}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix}
}
\end{formula}
\begin{formula}{diamond}
\desc{Diamond lattice}{}{}
\desc[german]{Diamantstruktur}{}{}
\ttxt{
\eng{\fqEqRef{cm:bravais:fcc} with basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
\ger{\fqEqRef{cm:bravais:fcc} mit Basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ und $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
}
\end{formula}
\begin{formula}{zincblende}
\desc{Zincblende lattice}{}{}
\desc[german]{Zinkblende-Struktur}{}{}
\ttxt{
\includegraphics[width=0.5\textwidth]{img/cm_zincblende.png}
\eng{Like \fqEqRef{cm:bravais:diamond} but with different species on each basis}
\ger{Wie \fqEqRef{cm:bravais:diamond} aber mit unterschiedlichen Spezies auf den Basen}
}
\end{formula}
\begin{formula}{wurtzite}
\desc{Wurtzite structure}{hP4}{}
\desc[german]{Wurtzite-Struktur}{hP4}{}
\ttxt{
\includegraphics[width=0.5\textwidth]{img/cm_wurtzite.png}
Placeholder
}
\end{formula}
\TODO{primitive unit cell: contains one lattice point}\\
\begin{formula}{miller}
\desc{Miller index}{}{}
\desc{Miller index}{}{Miller family: planes that are equivalent due to crystal symmetry}
\desc[german]{Millersche Indizes}{}{}
\eq{
(hkl) & \text{\GT{plane}}\\
@ -122,7 +180,7 @@ family of plane that are equivalent due to crystal symmetry
\Subsection[
\eng{Scattering processes}
\ger{Streuprozesse}
]{scatter}
]{scatter}
\begin{formula}{matthiessen}
\desc{Matthiessen's rule}{Approximation, only holds if the processes are independent of each other}{$\mu$ mobility, $\tau$ scattering time}
\desc[german]{Matthiessensche Regel}{Näherung, nur gültig wenn die einzelnen Streuprozesse von einander unabhängig sind}{$\mu$ Moblitiät, $\tau$ Streuzeit}
@ -169,7 +227,7 @@ family of plane that are equivalent due to crystal symmetry
\Subsection[
\eng{2D electron gas}
\ger{2D Elektronengas}
]{2deg}
]{2deg}
\begin{ttext}
\eng{Lower dimension gases can be obtained by restricting a 3D gas with infinetly high potential walls on a narrow area with the width $L$.}
@ -194,24 +252,72 @@ family of plane that are equivalent due to crystal symmetry
\Subsection[
\eng{1D electron gas / quantum wire}
\ger{1D Eleltronengas / Quantendraht}
]{1deg}
]{1deg}
\begin{formula}{energy}
\desc{Energy}{}{}
\desc[german]{Energie}{}{}
\eq{E_n = \frac{\hbar^2 k_x^2}{2\masse} + \frac{\hbar^2 \pi^2}{2\masse L_z^2} n_1^2 + \frac{\hbar^2 \pi^2}{2\masse L_y^2} n_2^2}
\end{formula}
\TODO{condunctance}
\Subsection[
\eng{0D electron gas / quantum dot}
\ger{0D Elektronengase / Quantenpunkt}
]{0deg}
]{0deg}
\TODO{TODO}
\Section[
\eng{Band theory}
\ger{Bändermodell}
]{band}
\Subsection[
\eng{Hybrid orbitals}
\ger{Hybridorbitale}
]{hybrid_orbitals}
\begin{ttext}
\eng{Hybrid orbitals are linear combinations of other atomic orbitals.}
\ger{Hybridorbitale werden durch Linearkombinationen von anderen atomorbitalen gebildet.}
\end{ttext}
% chemmacros package
\begin{formula}{sp3}
\desc{sp3 Orbital}{\GT{eg} \ce{CH4}}{}
\desc[german]{sp3 Orbital}{}{}
\eq{
1\text{s} + 3\text{p} = \text{sp3}
\orbital{sp3}
}
\end{formula}
\begin{formula}{sp2}
\desc{sp2 Orbital}{}{}
\desc[german]{sp2 Orbital}{}{}
\eq{
1\text{s} + 2\text{p} = \text{sp2}
\orbital{sp2}
}
\end{formula}
\begin{formula}{sp}
\desc{sp Orbital}{}{}
\desc[german]{sp Orbital}{}{}
\eq{
1\text{s} + 1\text{p} = \text{sp}
\orbital{sp}
}
\end{formula}
\Section[
\eng{\GT{misc}}
\ger{\GT{misc}}
]{misc}
\begin{formula}{exciton}
\desc{Exciton}{}{}
\desc[german]{Exziton}{}{}
\ttxt{
\eng{Quasi particle, excitation in condensed matter as bound electron-hole pair.}
\ger{Quasiteilchen, Anregung im Festkörper als gebundenes Elektron-Loch-Paar}
}
\end{formula}

141
src/cm/low_temp.tex Normal file
View File

@ -0,0 +1,141 @@
\def\L{\text{L}}
\def\gl{\text{GL}}
\def\GL{Ginzburg-Landau }
\def\Tcrit{T_\text{c}}
\def\Bcrit{B_\text{c}}
\def\ssc{\text{s}}
\def\ssn{\text{n}}
\Section[
\eng{Superconductivity}
\ger{Supraleitung}
]{sc}
\begin{ttext}
\eng{
Materials for which the electric resistance jumps to 0 under a critical temperature $\Tcrit$.
Below $\Tcrit$ they have perfect conductivity and perfect diamagnetism, up until a critical magnetic field $\Bcrit$.
\\\textbf{Type I}: Has a single critical magnetic field at which the superconuctor becomes a normal conductor.
\\\textbf{Type II}: Has two critical
}
\ger{
Materialien, bei denen der elektrische Widerstand beim unterschreiten einer kritischen Temperatur $\Tcrit$ auf 0 springt.
Sie verhalten sich dann wie ideale Leiter und ideale Diamagnete, bis zu einem kritischen Feld $\Bcrit$.
}
\end{ttext}
\begin{formula}{perfect_conductor}
\desc{Perfect conductor}{}{}
\desc[german]{Ideale Leiter}{}{}
\ttxt{
\eng{
In contrast to a superconductor, perfect conductors become diamagnetic only when the external magnetic field is turned on \textbf{after} the material was cooled below the critical temperature.
(\fqEqRef{ed:fields:mag:induction:lenz})
}
\ger{
Im Gegensatz zu einem Supraleiter werden ideale Leiter nur dann diamagnetisch, wenn das externe magnetische Feld \textbf{nach} dem Abkühlen unter die kritische Temperatur eingeschaltet wird.
(\fqEqRef{ed:fields:mag:induction:lenz})
}
}
\end{formula}
\begin{formula}{meissner_effect}
\desc{Meißner-Ochsenfeld effect}{Perfect diamagnetism}{}
\desc[german]{Meißner-Ochsenfeld Effekt}{Idealer Diamagnetismus}{}
\ttxt{
\eng{External magnetic field decays exponetially inside the superconductor below a critical temperature and a critical magnetic field.}
\ger{Externes Magnetfeld fällt im Supraleiter exponentiell unterhalb einer kritischen Temperatur und unterhalb einer kritischen Feldstärke ab.}
}
\end{formula}
\Subsection[
\eng{London equations}
\ger{London-Gleichungen}
]{london}
\begin{ttext}
\eng{
Quantitative description of the \fqEqRef{cm:sc:meissner_effect}.
}
\ger{
Quantitative Beschreibung des \fqEqRef{cm:sc:meissner_effect}s.
}
\end{ttext}
% \begin{formula}{coefficient}
% \desc{London-coefficient}{}{}
% \desc[german]{London-Koeffizient}{}{}
% \eq{\Lambda = \frac{m_\ssc}{n_\ssc q_\ssc^2}}
% \end{formula}
\begin{formula}{first}
% \vec{j} = \frac{nq\hbar}{m}\Grad S - \frac{nq^2}{m}\vec{A}
\desc{First London Equation}{}{$\vec{j}$ current density, $n_\ssc$, $m_\ssc$, $q_\ssc$ density, mass and charge of superconduticng particles}
\desc[german]{Erste London-Gleichun-}{}{$\vec{j}$ Stromdichte, $n_\ssc$, $m_\ssc$, $q_\ssc$ Dichte, Masse und Ladung der supraleitenden Teilchen}
\eq{
\pdv{\vec{j}_{\ssc}}{t} = \frac{n_\ssc q_\ssc^2}{m_\ssc}\vec{E} {\color{gray}- \Order{\vec{j}_\ssc^2}}
% \\{\color{gray} = \frac{q}{m}\Grad \left(\frac{1}{2} \TODO{FActor} \vec{j}^2\right)}
}
\end{formula}
\begin{formula}{second}
\desc{Second London Equation}{Describes the \fqEqRef{cm:sc:meissner_effect}}{$\vec{j}$ current density, $n_\ssc$, $m_\ssc$, $q_\ssc$ density, mass and charge of superconduticng particles}
\desc[german]{Zweite London-Gleichung}{Beschreibt den \fqEqRef{cm:sc:meissner_effect}}{$\vec{j}$ Stromdichte, $n_\ssc$, $m_\ssc$, $q_\ssc$ Dichte, Masse und Ladung der supraleitenden Teilchen}
\eq{
\Rot \vec{j_\ssc} = -\frac{n_\ssc q_\ssc^2}{m_\ssc} \vec{B}
}
\end{formula}
\begin{formula}{penetration_depth}
\desc{London penetration depth}{}{}
\desc[german]{London Eindringtiefe}{}{}
\eq{\lambda_\L = \sqrt{\frac{m_\ssc}{\mu_0 n_\ssc q_\ssc^2}}}
\end{formula}
\Subsection[
\eng{\GL Theory (GLAG)}
\ger{\GL Theorie (GLAG)}
]{gl}
\begin{ttext}
\eng{
}
\end{ttext}
\begin{formula}{coherence_length}
\desc{\GL Coherence Length}{}{}
\desc[german]{\GL Kohärenzlänge}{}{}
\eq{
\xi_\gl &= \frac{\hbar}{\sqrt{2m \abs{\alpha}}} \\
\xi_\gl(T) &= \xi_\gl(0) \frac{1}{\sqrt{1-\frac{T}{\Tcrit}}}
}
\end{formula}
\begin{formula}{penetration_depth}
\desc{\GL Penetration Depth / Field screening length}{}{}
\desc[german]{\GL Eindringtiefe}{}{}
\eq{
\lambda_\gl &= \sqrt{\frac{m_\ssc\beta}{\mu_0 \abs{\alpha} q_s^2}} \\
\lambda_\gl(T) &= \lambda_\gl(0) \frac{1}{\sqrt{1-\frac{T}{\Tcrit}}}
}
\end{formula}
\begin{formula}{first}
\desc{First Ginzburg-Landau Equation}{}{$\xi_\gl$ \fqEqRef{cm:sc:gl:coherence_length}, $\lambda_\gl$ \fqEqRef{cm:sc:gl:penetration_depth}}
\desc[german]{Erste Ginzburg-Landau Gleichung}{}{}
\eq{\alpha\Psi + \beta\abs{\Psi}^2 \Psi + \frac{1}{2m} (-i\hbar \Grad + 2e\vec{A})^2\Psi = 0}
\end{formula}
\begin{formula}{second}
\desc{Second Ginzburg-Landau Equation}{}{}
\desc[german]{Zweite Ginzburg-Landau Gleichung}{}{}
\eq{\vec{j_\ssc} = \frac{ie\hbar}{m}(\Psi^*\Grad\Psi - \Psi\Grad\Psi^*) - \frac{4e^2}{m}\abs{\Psi}^2 \vec{A}}
\end{formula}
\TODO{proximity effect}
\Subsection[
\eng{Microscopic theory}
\ger{Mikroskopische Theorie}
]{micro}
\Subsection[
\eng{BCS-Theory}
\ger{BCS-Theorie}
]{BCS}

58
src/cm/semiconductors.tex Normal file
View File

@ -0,0 +1,58 @@
\Section[
\eng{Semiconductors}
\ger{Halbleiter}
]{semic}
\begin{formula}{types}
\desc{Intrinsic/extrinsic}{}{$n,p$ \fqEqRef{cm:semic:charge_density_eq}}
\desc[german]{Intrinsisch/Extrinsisch}{}{}
\ttxt{
\eng{
Intrinsic: pure, electron density determiend only by thermal excitation and $n_i^2 = n_0 p_0$\\
Extrinsic: doped
}
\ger{
Intrirnsisch: Pur, Elektronendichte gegeben durch thermische Anregung und $n_i^2 = n_0 p_0$ \\
Extrinsisch: gedoped
}
}
\end{formula}
\begin{formula}{charge_density_eq}
\desc{Equilibrium charge densitites}{Holds when $\frac{\Econd-\EFermi}{\kB T}>3.6$ and $\frac{\EFermi-\Evalence}{\kB T} > 3.6$}{}
\desc[german]{Ladungsträgerdichte im Equilibrium}{Gilt wenn $\frac{\Econd-\EFermi}{\kB T}>3.6$ und $\frac{\EFermi-\Evalence}{\kB T} > 3.6$}{}
\eq{
n_0 &\approx N_\text{c}(T) \Exp{-\frac{E_\text{c} - \EFermi}{\kB T}} \\
p_0 &\approx N_\text{v}(T) \Exp{-\frac{\EFermi - E_\text{v}}{\kB T}}
}
\end{formula}
\begin{formula}{charge_density_intrinsic}
\desc{Intrinsic charge density}{}{}
\desc[german]{Intrinsische Ladungsträgerdichte}{}{}
\eq{
n_\text{i} \approx \sqrt{n_0 p_0} = \sqrt{N_\text{c}(T) N_\text{v}(T)} \Exp{-\frac{E_\text{gap}}{2\kB T}}
}
\end{formula}
\begin{formula}{mass_action}
\desc{Mass action law}{Charge densities at thermal equilibrium, independent of doping}{}
\desc[german]{Massenwirkungsgesetz}{Ladungsträgerdichten im Equilibrium, unabhängig der Dotierung }{}
\eq{np = n_i^2}
\end{formula}
\begin{tabular}{l|CCc}
& \Egap(\SI{0}{\kelvin}) [\si{\eV}] & \Egap(\SI{300}{\kelvin}) [\si{\eV}] & \\ \hline
\GT{diamond} & 5,48 & 5,47 & \GT{indirect} \\
Si & 1,17 & 1,12 & \GT{indirect} \\
Ge & 0,75 & 0,66 & \GT{indirect} \\
GaP & 2,32 & 2,26 & \GT{indirect} \\
GaAs & 1,52 & 1,43 & \GT{direct} \\
InSb & 0,24 & 0,18 & \GT{direct} \\
InP & 1,42 & 1,35 & \GT{direct} \\
CdS & 2.58 & 2.42 & \GT{direct}
\end{tabular}

154
src/cm/techniques.tex Normal file
View File

@ -0,0 +1,154 @@
\Section[
\eng{Measurement techniques}
\ger{Messtechniken}
]{meas}
\Subsection[
\eng{ARPES}
\ger{ARPES}
]{arpes}
what?
in?
how?
plot
\Subsection[
\eng{Scanning probe microscopy SPM}
\ger{Rastersondenmikroskopie (SPM)}
]{spm}
\begin{ttext}
\eng{Images of surfaces are taken by scanning the specimen with a physical probe.}
\ger{Bilder der Oberfläche einer Probe werden erstellt, indem die Probe mit einer Sonde abgetastet wird.}
\end{ttext}
\Eng[name]{Name}
\Ger[name]{Name}
\Eng[application]{Application}
\Ger[application]{Anwendung}
\begin{minipagetable}{amf}
\entry{name}{
\eng{Atomic force microscopy (AMF)}
\ger{Atomare Rasterkraftmikroskopie (AMF)}
}
\entry{application}{
\eng{Surface stuff}
\ger{Oberflächenzeug}
}
\entry{how}{
\eng{With needle}
\ger{Mit Nadel}
}
\end{minipagetable}
\begin{minipage}{0.5\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=0.8\textwidth]{img/cm_amf.pdf}
\caption{\cite{Bian2021}}
\end{figure}
\end{minipage}
\begin{minipagetable}{stm}
\entry{name}{
\eng{Scanning tunneling microscopy (STM)}
\ger{Rastertunnelmikroskop (STM)}
}
\entry{application}{
\eng{Surface stuff}
\ger{Oberflächenzeug}
}
\entry{how}{
\eng{With TUnnel}
\ger{Mit TUnnel}
}
\end{minipagetable}
\begin{minipage}{0.5\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=0.8\textwidth]{img/cm_stm.pdf}
\caption{\cite{Bian2021}}
\end{figure}
\end{minipage}
\Section[
\eng{Fabrication techniques}
\ger{Herstellungsmethoden}
]{fab}
\begin{minipagetable}{cvd}
\entry{name}{
\eng{Chemical vapor deposition (CVD)}
\ger{Chemische Gasphasenabscheidung (CVD)}
}
\entry{how}{
\eng{
A substrate is exposed to volatile precursors, which react and/or decompose on the heated substrate surface to produce the desired deposit.
By-products are removed by gas flow through the chamber.
}
\ger{
An der erhitzten Oberfläche eines Substrates wird aufgrund einer chemischen Reaktion mit einem Gas eine Feststoffkomponente abgeschieden.
Nebenprodukte werden durch den Gasfluss durch die Kammer entfernt.
}
}
\entry{application}{
\eng{
\begin{itemize}
\item Polysilicon \ce{Si}
\item Silicon dioxide \ce{SiO_2}
\item Graphene
\item Diamond
\end{itemize}
}
\ger{
\begin{itemize}
\item Poly-silicon \ce{Si}
\item Siliziumdioxid \ce{SiO_2}
\item Graphen
\item Diamant
\end{itemize}
}
}
\end{minipagetable}
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics[width=\textwidth]{img/cm_cvd_english.pdf}
\end{minipage}
\Subsection[
\eng{Epitaxy}
\ger{Epitaxie}
]{epitaxy}
\begin{ttext}
\eng{A type of crystal groth in which new layers are formed with well-defined orientations with respect to the crystalline seed layer.}
\ger{Eine Art des Kristallwachstums, bei der mindestens eine kristallographische Ordnung der wachsenden Schicht der des Substrates entspricht.}
\end{ttext}
\begin{minipagetable}{mbe}
\entry{name}{
\eng{Molecular Beam Epitaxy (MBE)}
\ger{Molekularstrahlepitaxie (MBE)}
}
\entry{how}{
\eng{In a ultra-high vacuum, the elements are heated until they slowly sublime. The gases then condensate on the substrate surface}
\ger{Die Elemente werden in einem Ultrahochvakuum erhitzt, bis sie langsam sublimieren. Die entstandenen Gase kondensieren dann auf der Oberfläche des Substrats}
}
\entry{application}{
\eng{
\begin{itemize}
\item Gallium arsenide \ce{GaAs}
\end{itemize}
\TODO{Link to GaAs}
}
\ger{
\begin{itemize}
\item Galliumarsenid \ce{GaAs}
\end{itemize}
}
}
\end{minipagetable}
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics[width=\textwidth]{img/cm_mbe_english.pdf}
\end{minipage}

View File

@ -6,5 +6,31 @@
\desc{Planck Constant}{}{}
\desc[german]{Plancksches Wirkumsquantum}{}{}
\val{6.62607015\cdot 10^{-34}}{\joule\s}
\val{4.135667969\dots\cdot 10^{-15}}{\eV\s}
\val{4.135667969\dots\xE{-15}}{\eV\s}
\end{constant}
\begin{constant}{universal_gas}{R}{def}
\desc{Universal gas constant}{Proportionality factor for ideal gases}{\ConstRef{avogadro}, \ConstRef{boltzmann}}
\desc[german]{Universelle Gaskonstante}{Proportionalitätskonstante für ideale Gase}{}
\val{8.31446261815324}{\joule\per\mol\kelvin}
\val{\NA \cdot \kB}{}
\end{constant}
\begin{constant}{avogadro}{\NA}{def}
\desc{Avogadro constant}{Number of molecules per mole}{}
\desc[german]{Avogadro-Konstante}{Anzahl der Moleküle pro mol}{}
\val{6.02214076 \xE{23}}{1\per\mole}
\end{constant}
\begin{constant}{boltzmann}{\kB}{def}
\desc{Boltzmann constant}{Temperature-Energy conversion factor}{}
\desc[german]{Boltzmann-Konstante}{Temperatur-Energie Umrechnungsfaktor}{}
\val{1.380649 \xE{-23}}{\joule\per\kelvin}
\end{constant}
\begin{constant}{faraday}{F}{def}
\desc{Faraday constant}{Electric charge of one mol of single-charged ions}{\ConstRef{avogadro}, \ConstRef{boltzmann}}
\desc[german]{Faraday-Konstante}{Elektrische Ladungs von einem Mol einfach geladener Ionen}{}
\val{9.64853321233100184}{\coulomb\per\mol}
\val{\NA\,e}{}
\end{constant}

View File

@ -5,33 +5,9 @@
]{ed}
\Section[
\eng{Maxwell-Equations}
\ger{Maxwell-Gleichungen}
]{Maxwell}
\begin{formula}{vacuum}
\desc{Vacuum}{microscopic formulation}{}
\desc[german]{Vakuum}{Mikroskopische Formulierung}{}
\eq{
\Div \vec{E} &= \frac{\rho_\text{el}}{\epsilon_0} \\
\Div \vec{B} &= 0 \\
\Rot \vec{E} &= - \odv{\vec{B}}{t} \\
\Rot \vec{B} &= \mu_0 \vec{j} + \frac{1}{c^2} \odv{\vec{E}}{t}
}
\end{formula}
\begin{formula}{material}
\desc{Matter}{Macroscopic formulation}{}
\desc[german]{Materie}{Makroskopische Formulierung}{}
\eq{
\Div \vec{D} &= \rho_\text{el} \\
\Div \vec{B} &= 0 \\
\Rot \vec{E} &= - \odv{\vec{B}}{t} \\
\Rot \vec{H} &= \vec{j} + \odv{\vec{D}}{t}
}
\end{formula}
\TODO{Polarization}
% pure electronic stuff in el
% pure magnetic stuff in mag
% electromagnetic stuff in em
\Section[
\eng{Electric field}
@ -40,47 +16,104 @@
\begin{formula}{gauss_law}
\desc{Gauss's law for electric fields}{Electric flux through a closed surface is proportional to the electric charge}{$S$ closed surface}
\desc[german]{Gaußsches Gesetz für elektrische Felder}{Der magnetische Fluss durch eine geschlossene Fläche ist proportional zur elektrischen Ladung}{$S$ geschlossene Fläche}
\eq{\PhiE = \iint_S \vec{E}\cdot\d\vec{S} = \frac{Q}{\varepsilon_0}}
\eq{\PhiE = \iint_S \vec{\E}\cdot\d\vec{S} = \frac{Q}{\varepsilon_0}}
\end{formula}
\begin{quantity}{permittivity}{\epsilon}{\ampere\s\per\volt\m=\farad\per\m=\coulomb\per\volt\m=C^2\per\newton\m^2=\ampere^2\s^4\per\kg\m^3}{}
\desc{Permittivity}{Electric polarizability of a dielectric material}{}
\desc[german]{Permitivität}{Dielektrische Konstante\\Elektrische Polarisierbarkeit eines dielektrischen Materials}{}
\end{quantity}
\begin{formula}{relative_permittivity}
\desc{Relative permittivity / Dielectric constant}{}{\QtyRef{permittivity}, \ConstRef{vacuum_permittivity}}
\desc[german]{Relative Permittivität / Dielectric constant}{}{}
\eq{
\epsilon(\omega)_\txr = \frac{\epsilon(\omega)}{\epsilon_0}
}
\end{formula}
\begin{constant}{vacuum_permittivity}{\epsilon_0}{exp}
\desc{Vacuum permittivity}{Electric constant}{}
\desc[german]{Vakuum Permittivität}{Elektrische Feldkonstante}{}
\val{8.8541878188(14)\E{-1}}{\ampere\s\per\volt\m}
\end{constant}
\begin{formula}{electric_susceptibility}
\desc{Electric susceptibility}{Describes how polarized a dielectric material becomes when an electric field is applied}{$\epsilon_\txr$ \fqEqRef{ed:el:relative_permittivity}}
\desc[german]{Elektrische Suszeptibilität}{Beschreibt wie stark ein dielektrisches Material polarisiert wird, wenn ein elektrisches Feld angelegt wird}{}
\eq{
\epsilon_\txr = 1 + \chi_\txe
}
\end{formula}
\begin{formula}{dielectric_polarization_density}
\desc{Dielectric polarization density}{}{\ConstRef{vacuum_permittivity}, $\fqEqRef{ed:el:electric_susceptibility}$, \QtyRef{electric_field}}
\desc[german]{Dielektrische Polarisationsdichte}{}{}
\eq{\vec{P} = \epsilon_0 \chi_\txe \vec{\E}}
\end{formula}
\Section[
\eng{Magnetic field}
\ger{Magnetfeld}
]{mag}
\begin{constant}{h_joule}{\hbar}{def}
\desc{Planck Constant}{}{}
\desc[german]{Plancksches Wirkumsquantum}{}{}
\val{6.62607015\cdot 10^{-34}}{\joule\s}
\val{4.135667969\dots\cdot 10^{-15}}{\eV\s}
\end{constant}
\Eng[magnetic_flux]{Magnetix flux density}
\Ger[magnetic_flux]{Magnetische Flussdichte}
\begin{quantity}{magnetic_flux}{\PhiB}{\weber=\volt\per\s=\kg\m^2\per\s^2\A}{scalar}
\desc{Magnetic flux}{}
\desc[german]{Magnetischer Fluss}{}
\desc{Magnetic flux}{Test desc}{Test def}
\desc[german]{Magnetischer Fluss}{Test desc}{Test def}
\end{quantity}
\begin{quantity}{magnetic_flux_density}{\vec{B}}{\tesla=\volt\s\per\m^2=\newton\per\ampere\m=\kg\per\ampere\s^2}{}
\desc{Magnetic flux density}{}
\desc[german]{Magnetische Flussdichte}{}
\desc{Magnetic flux density}{}{}
\desc[german]{Magnetische Flussdichte}{}{}
\end{quantity}
\begin{formula}{magnetic_flux_density}
\desc{\qtyRef{magnetic_flux_density}}{}{$\vec{H}$ \qtyRef{magnetic_field_density}, $\vec{M}$ \qtyRef{magnetization}, $\mu_0$ \constRef{vacuum_permeability}}
\desc[german]{}{}{}
\desc{\qtyRef{magnetic_flux_density}}{Defined by \fqEqRef{ed:mag:lorentz}}{$\vec{H}$ \qtyRef{magnetic_field_intensity}, $\vec{M}$ \qtyRef{magnetization}, \ConstRef{magnetic_vacuum_permeability}}
\desc[german]{}{Definiert über \fqEqRef{ed:mag:lorentz}}{}
\eq{\vec{B} = \mu_0 (\vec{H}+\vec{M})}
\end{formula}
\begin{quantity}{magnetic_permeability}{\mu}{\henry\per\m=\volt\s\per\ampere\m}{scalar}
\desc{Magnetic permeability}{}
\desc[german]{Magnetisch Permeabilität}{}
\begin{quantity}{magnetic_field_intensity}{\vec{H}}{\ampere\per\m}{vector}
\desc{Magnetic field intensity}{}{}
\desc[german]{Magnetische Feldstärke}{}{}
\end{quantity}
\begin{constant}{vacuum_permeability}{\mu_0}{exp}
\begin{formula}{magnetic_field_intensity}
\desc{\qtyRef{magnetic_field_intensity}}{}{}
\desc[german]{}{}{}
\eq{
\vec{H} \equiv \frac{1}{\mu_0}\vec{B} - \vec{M}
}
\end{formula}
\begin{formula}{lorentz}
\desc{Lorentz force law}{Force on charged particle}{}
\desc[german]{Lorentzkraft}{Kraft auf geladenes Teilchen}{}
\eq{
\vec{F} = q \vec{\E} + q \vec{v}\times\vec{B}
}
\end{formula}
\begin{quantity}{magnetic_permeability}{\mu}{\henry\per\m=\volt\s\per\ampere\m}{scalar}
\desc{Magnetic permeability}{}{}
\desc[german]{Magnetisch Permeabilität}{}{}
\end{quantity}
\begin{formula}{magnetic_permeability}
\desc{\qtyRef{magnetic_permeability}}{}{$B$ \qtyRef{magnetic_flux_density}, $H$ \qtyRef{magnetic_field_intensity}}
\desc[german]{}{}{}
\eq{\mu=\frac{B}{H}}
\end{formula}
\begin{constant}{magnetic_vacuum_permeability}{\mu_0}{exp}
\desc{Magnetic vauum permeability}{}{}
\desc[german]{Magnetische Vakuumpermeabilität}{}{}
\val{1.25663706127(20)}{\henry\per\m=\newton\per\ampere^2}
\end{constant}
\begin{formula}{relative_permeability}
\desc{Relative permeability}{}{}
\desc[german]{Realtive Permeabilität}{}{}
\eq{
\mu_\txr = \frac{\mu}{\mu_0}
}
\end{formula}
\begin{formula}{magnetic_flux}
\desc{Magnetic flux}{}{$\vec{A}$ \GT{area}}
@ -95,44 +128,114 @@
\end{formula}
\begin{quantity}{magnetization}{\vec{M}}{\ampere\per\m}{vector}
\desc{Magnetization}{Vector field describing the density of magnetic dipoles}
\desc[german]{Magnetisierung}{Vektorfeld, welches die Dichte von magnetischen Dipolen beschreibt.}
\desc{Magnetization}{Vector field describing the density of magnetic dipoles}{}
\desc[german]{Magnetisierung}{Vektorfeld, welches die Dichte von magnetischen Dipolen beschreibt.}{}
\end{quantity}
\begin{quantity}{magnetic_moment}{\vec{m}}{\ampere\m^2}{vector}
\desc{Magnetic moment}{Strength and direction of a magnetic dipole}
\desc[german]{Magnetisches Moment}{Stärke und Richtung eines magnetischen Dipols}
\end{quantity}
\begin{formula}{magnetization}
\desc{\qtyRef{magnetization}}{}{$m$ \qtyRef{magnetic_moment}, $V$ \qtyRef{volume}}
\desc[german]{}{}{}
\eq{\vec{M} = \odv{\vec{m}}{V} = \chi_\text{m} \cdot \vec{H}}
\eq{\vec{M} = \odv{\vec{m}}{V} = \chi_\txm \cdot \vec{H}}
\end{formula}
\begin{quantity}{magnetic_moment}{\vec{m}}{\ampere\m^2}{vector}
\desc{Magnetic moment}{Strength and direction of a magnetic dipole}{}
\desc[german]{Magnetisches Moment}{Stärke und Richtung eines magnetischen Dipols}{}
\end{quantity}
\begin{formula}{angular_torque}
\desc{Torque}{}{$m$ \qtyRef{magnetic_moment}}
\desc[german]{Drehmoment}{}{}
\eq{\vec{\tau} = \vec{m} \times \vec{B}}
\end{formula}
\begin{formula}{suceptibility}
\desc{Susceptibility}{}{}
\begin{formula}{magnetic_susceptibility}
\desc{Susceptibility}{}{$\mu_\txr$ \fqEqRef{ed:mag:relative_permeability}}
\desc[german]{Suszeptibilität}{}{}
\eq{\chi_\text{m} = \pdv{M}{B} = \frac{\mu}{\mu_0} - 1 }
\eq{\chi_\txm = \pdv{M}{B} = \mu_\txr - 1}
\end{formula}
\Subsection[
\eng{Magnetic materials}
\ger{Magnetische Materialien}
]{materials}
\begin{formula}{paramagnetism}
\desc{Paramagnetism}{Magnetic field strengthend in the material}{$\mu$ \fqEqRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fqEqRef{ed:mag:magnetic_susceptibility}}
\desc[german]{Paramagnetismus}{Magnetisches Feld wird im Material verstärkt}{}
\eq{\mu_\txr &> 1 \\ \chi_\txm &> 0}
\end{formula}
\begin{formula}{diamagnetism}
\desc{Diamagnetism}{Magnetic field expelled from material}{$\mu$ \fqEqRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fqEqRef{ed:mag:magnetic_susceptibility}}
\desc[german]{Diamagnetismus}{Magnetisches Feld wird aus dem Material gedrängt}{}
\eq{0 < \mu_\txr < 1 \\ -1 < \chi_\txm < 0}
\end{formula}
\begin{formula}{ferromagnetism}
\desc{Ferromagnetism}{Magnetic moments align to external magnetic field and stay aligned when the field is turned off (Remanescence)}{$\mu$ \fqEqRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fqEqRef{ed:mag:magnetic_susceptibility}}
\desc[german]{Ferromagnetismus}{Magnetische Momente werden am äußeren Feld ausgerichtet und behalten diese ausrichtung auch wenn das Feld abgeschaltet wird (Remanenz)}{}
\eq{
\mu_\txr \gg 1
}
\end{formula}
\Section[
\eng{Electromagnetism}
\ger{Elektromagnetismus}
]{em}
\begin{constant}{speed_of_light}{c}{exp}
\desc{Speed of light}{in the vacuum}{}
\desc[german]{Lightgeschwindigkeit}{in the vacuum}{}
\val{299792458}{\m\per\s}
\end{constant}
\begin{formula}{vacuum_relations}
\desc{Vacuum permittivity - permeability relation}{\TODO{Does this have a name?}}{\ConstRef{vacuum_permittivity}, \ConstRef{magnetic_vacuum_permeability}, \ConstRef{speed_of_light}}
\desc[german]{Vakuum Permittivität - Permeabilität Beziehung}{}{}
\eq{
\epsilon_0 \mu_0 = \frac{1}{c^2}
}
\end{formula}
\begin{formula}{poisson_equation}
\desc{Poisson equation for electrostatics}{}{\QtyRef{charge_density}, \QtyRef{permittivity}, $\phi$}
\desc[german]{Poisson Gleichung in der Elektrostatik}{}{}
\eq{\laplace \Phi(\vecr) = -\frac{\rho(\vecr)}{\epsilon}}
\end{formula}
\begin{formula}{poynting}
\desc{Poynting vector}{Directional energy flux or power flow of an electromagnetic field [$\si{\W\per\m^2}$]}{}
\desc[german]{Poynting-Vektor}{Gerichteter Energiefluss oder Leistungsfluss eines elektromgnetischen Feldes [$\si{\W\per\m^2}$]}{}
\eq{\vec{S} = \vec{E} \times \vec{H}}
\end{formula}
\begin{formula}{magnetic_permeability}
\desc{\qtyRef{magnetic_permeability}}{}{$B$ \qtyRef{magnetic_flux_density}, $H$ \qtyRef{magnetic_field_intensity}}
\desc[german]{}{}{}
\eq{\mu=\frac{B}{H}}
\end{formula}
\Subsection[
\eng{Maxwell-Equations}
\ger{Maxwell-Gleichungen}
]{Maxwell}
\begin{formula}{vacuum}
\desc{Vacuum}{microscopic formulation}{}
\desc[german]{Vakuum}{Mikroskopische Formulierung}{}
\eq{
\Div \vec{\E} &= \frac{\rho_\text{el}}{\epsilon_0} \\
\Div \vec{B} &= 0 \\
\Rot \vec{\E} &= - \odv{\vec{B}}{t} \\
\Rot \vec{B} &= \mu_0 \vec{j} + \frac{1}{c^2} \odv{\vec{\E}}{t}
}
\end{formula}
\begin{formula}{material}
\desc{Matter}{Macroscopic formulation}{}
\desc[german]{Materie}{Makroskopische Formulierung}{}
\eq{
\Div \vec{D} &= \rho_\text{el} \\
\Div \vec{B} &= 0 \\
\Rot \vec{\E} &= - \odv{\vec{B}}{t} \\
\Rot \vec{H} &= \vec{j} + \odv{\vec{D}}{t}
}
\end{formula}
\TODO{Polarization}
\Subsection[
\eng{Induction}
@ -157,15 +260,7 @@
}
\end{formula}
\Subsection[
\eng{Magnetic materials}
\ger{Magnetische Materialien}
]{materials}
\begin{formula}{paramagnetism}
\desc{Paramagnetism}{}{$\mu$ \fqEqRef{ed:mag:permeability}, $\chi$ \fqEqRef{ed:mag:susecptibility}}
\desc[german]{Paramagnetismus}{}{}
\eq{\mu &> 1 \\ \chi > 0}
\end{formula}
\Section[

BIN
src/img/cm_wurtzite.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

BIN
src/img/cm_zincblende.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 268 KiB

View File

@ -40,6 +40,7 @@
% SCIENCE PACKAGES
\usepackage{mathtools}
\usepackage{MnSymbol} % for >>> \ggg sign
\usepackage{chemmacros} % for orbitals
% \usepackage{esdiff} % derivatives
% esdiff breaks when taking \dot{q} has argument
\usepackage{derivative}
@ -108,31 +109,71 @@
\label{sec:\fqname}
}
% Make the translation of #1 a reference to a equation
% 1: key
% REFERENCES
% All xyzRef commands link to the key using the translated name
% Uppercase (XyzRef) commands have different link texts, but the same link target
% 1: key/fully qualified name (without qty/eq/sec/const/el... prefix)
% Equations/Formulas
% <name>
\newrobustcmd{\fqEqRef}[1]{%
% \edef\fqeqrefname{\GT{#1}}
% \hyperref[eq:#1]{\fqeqrefname}
\hyperref[eq:#1]{\GT{#1}}%
}
\newrobustcmd{\qtyRef}[1]{%
\hyperref[qty:#1]{\GT{#1}}%
}
\newrobustcmd{\constRef}[1]{%
\hyperref[const:#1]{\GT{#1}}%
}
% Make the translation of #1 a reference to a section
% 1: key
% Section
% <name>
\newrobustcmd{\fqSecRef}[1]{%
\hyperref[sec:#1]{\GT{#1}}%
}
% Quantities
% <symbol>
\newrobustcmd{\qtyRef}[1]{%
\hyperref[qty:#1]{\GT{qty:#1}}%
}
% <symbol> <name>
\newrobustcmd{\QtyRef}[1]{%
${\luavar{quantities["#1"]["symbol"]}}$ \hyperref[qty:#1]{\GT{qty:#1}}%
}
% Constants
% <name>
\newrobustcmd{\constRef}[1]{%
\hyperref[const:#1]{\GT{const:#1}}%
}
% <symbol> <name>
\newrobustcmd{\ConstRef}[1]{%
$\luavar{constants["#1"]["symbol"]}$ \hyperref[const:#1]{\GT{const:#1}}%
}
% Element from periodic table
% <symbol>
\newrobustcmd{\elRef}[1]{%
\hyperref[el:#1]{{\color{dark0_hard}#1}}%
}
% <name>
\newrobustcmd{\ElRef}[1]{%
\hyperref[el:#1]{\GT{el:#1}}%
}
% \usepackage{xstring}
% LUA sutff
\newcommand\luavar[1]{\directlua{tex.sprint(#1)}}
% Write directlua command to aux and run it as well
\newcommand\directLuaAux[1]{
\immediate\write\luaauxfile{\noexpand\directlua{\detokenize{#1}}}
\directlua{#1}
}
\newwrite\luaauxfile
\immediate\openout\luaauxfile=\jobname.lua.aux
\immediate\write\luaauxfile{\noexpand\def\noexpand\luaAuxLoaded{lua aux loaded}}%
\AtEndDocument{\immediate\closeout\luaauxfile}
\IfFileExists{\jobname.lua.aux}{%
\input{\jobname.lua.aux}
}{}
\input{circuit.tex}
\input{util/macros.tex}
\input{util/environments.tex} % requires util/translation.tex to be loaded first
\input{util/environments.tex} % requires util/translation.tex to be loaded first
\input{util/periodic_table.tex} % requires util/translation.tex to be loaded first
\def\inputOnlyFile{\relax}
\newcommand\Input[1]{
@ -159,9 +200,11 @@
\newwrite\translationsaux
\immediate\openout\translationsaux=\jobname.translations.aux
\immediate\write\translationsaux{\noexpand\def\noexpand\MYVAR{AUSM AUX}}%
\immediate\write\translationsaux{\noexpand\def\noexpand\translationsAuxLoaded{translations aux loaded}}%
\AtEndDocument{\immediate\closeout\translationsaux}
\makeatletter\let\percentchar\@percentchar\makeatother
\maketitle
\tableofcontents
\newpage
@ -169,10 +212,14 @@
\input{util/translations.tex}
% \include{maths/linalg}
% \include{maths/geometry}
\input{maths/analysis.tex}
% \include{maths/probability_theory}
\Part[
\eng{Mathematics}
\ger{Mathematik}
]{math}
% \include{math/linalg}
% \include{math/geometry}
% \input{math/calculus.tex}
% \include{math/probability_theory}
\include{mechanics}
@ -183,7 +230,7 @@
% \include{quantum_mechanics}
% \include{atom}
\include{condensed_matter}
\input{cm/cm.tex}
\input{cm/charge_transport.tex}
\input{cm/low_temp.tex}
\input{cm/semiconductors.tex}
@ -198,6 +245,9 @@
\include{quantities}
\include{constants}
\input{ch/periodic_table.tex} % only definitions
\input{ch/ch.tex}
\newpage
% \DT[english]{ttest}{TESTT EN}
% \DT[german]{ttest}{TESTT DE}
@ -235,6 +285,7 @@ Is defined? = \expandafter\IfTranslationExists\expandafter{\ttest:name}{yes}{no}
Link to quantity which is defined after the reference: \qtyRef{test}\\
\DT[qty:test]{english}{If you read this, then the translation for qty:test was expandend!}
Link to defined quantity: \qtyRef{mass}
\\ Link to element with name: \ElRef{H}
\begin{equation}
\label{qty:test}
E = mc^2
@ -246,9 +297,9 @@ Link to defined quantity: \qtyRef{mass}
\gt{relative_undefined_translation_with_underscors}\\
\GT{absolute_undefined_translation_with_&ampersand}
\paragraph{Aux files}
\noindent Lua Aux loaded? \luaAuxLoaded\\
Translations Aux loaded? \translationsAuxLoaded\\
\newpage
@ -261,4 +312,5 @@ Link to defined quantity: \qtyRef{mass}
\listoftables
% \bibliographystyle{plain}
% \bibliography{ref}
\end{document}

View File

@ -1,7 +1,7 @@
\Part[
\Section[
\eng{Calculus}
\ger{Analysis}
]{cal}
]{cal}
% \begin{formula}{shark}
% \desc{Shark-midnight formula}{\emoji{shark}-s}{}
@ -14,7 +14,7 @@
\Subsection[
\eng{Convolution}
\ger{Faltung / Konvolution}
]{conv}
]{conv}
\begin{ttext}
\eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.}
\ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}}
@ -59,11 +59,11 @@
\Subsection[
\eng{Fourier analysis}
\ger{Fourieranalyse}
]{fourier}
]{fourier}
\Subsubsection[
\eng{Fourier series}
\ger{Fourierreihe}
]{series}
]{series}
\begin{formula}{series}
\desc{Fourier series}{Complex representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
\desc[german]{Fourierreihe}{Komplexe Darstellung}{}
@ -102,7 +102,7 @@
\Subsubsection[
\eng{Fourier transformation}
\ger{Fouriertransformation}
]{trafo}
]{trafo}
\begin{formula}{transform}
\desc{Fourier transform}{}{$\hat{f}:\R^n \mapsto \C$, $\forall f\in L^1(\R^n)$}
\desc[german]{Fouriertransformierte}{}{}
@ -148,58 +148,58 @@
\end{formula}
\Section[
\eng{Logarithm}
\ger{Logarithmus}
]{log}
\begin{formula}{identities}
\desc{Logarithm identities}{}{}
\desc[german]{Logarithmus Identitäten}{Logarithmus Rechenregeln}{}
\eq{
\log(xy) &= \log(x) + \log(y) \\
\log \left(\frac{x}{y}\right) &= \log(x) - \log(y) \\
\log \left(x^d\right) &= d\log(x) \\
\log \left(\sqrt[y]{x}\right) &= \frac{\log(x)}{y} \\
x^{\log(y)} &= y^{\log(x)}
}
\end{formula}
\begin{formula}{intergral}
\desc{Integral of natural logarithm}{}{}
\desc[german]{Integral des natürluchen Logarithmus}{}{}
\eq{
\int \ln(x) \d x &= x \left(\ln(x) -1\right) \\
\int \ln(ax + b) \d x &= \frac{ax+b}{a} \left(\ln(ax + b) -1\right)
}
\end{formula}
\Subsection[
\eng{Logarithm}
\ger{Logarithmus}
]{log}
\begin{formula}{identities}
\desc{Logarithm identities}{}{}
\desc[german]{Logarithmus Identitäten}{Logarithmus Rechenregeln}{}
\eq{
\log(xy) &= \log(x) + \log(y) \\
\log \left(\frac{x}{y}\right) &= \log(x) - \log(y) \\
\log \left(x^d\right) &= d\log(x) \\
\log \left(\sqrt[y]{x}\right) &= \frac{\log(x)}{y} \\
x^{\log(y)} &= y^{\log(x)}
}
\end{formula}
\begin{formula}{intergral}
\desc{Integral of natural logarithm}{}{}
\desc[german]{Integral des natürluchen Logarithmus}{}{}
\eq{
\int \ln(x) \d x &= x \left(\ln(x) -1\right) \\
\int \ln(ax + b) \d x &= \frac{ax+b}{a} \left(\ln(ax + b) -1\right)
}
\end{formula}
\Section[
\eng{List of common integrals}
\ger{Liste nützlicher Integrale}
\Subection[
\eng{List of common integrals}
\ger{Liste nützlicher Integrale}
]{integrals}
% Put links to other integrals here
\fqEqRef{cal:log:integral}
% Put links to other integrals here
\fqEqRef{cal:log:integral}
\begin{formula}{spherical-coordinates}
\desc{Spherical coordinates}{}{}
\desc[german]{Kugelkoordinaten}{}{}
\eq{
x &= r \sin\phi,\cos\theta \\
y &= r \cos\phi,\cos\theta \\
z &= r \sin\theta
}
\end{formula}
\begin{formula}{spheical-coordinates-int}
\desc{Integration in spherical coordinates}{}{}
\desc[german]{Integration in Kugelkoordinaten}{}{}
\eq{\iiint\d x \d y \d z= \int_0^{\infty} \!\! \int_0^{2\pi} \!\! \int_0^\pi \d r \d\phi\d\theta \, r^2\sin\theta}
\end{formula}
\begin{formula}{spherical-coordinates}
\desc{Spherical coordinates}{}{}
\desc[german]{Kugelkoordinaten}{}{}
\eq{
x &= r \sin\phi,\cos\theta \\
y &= r \cos\phi,\cos\theta \\
z &= r \sin\theta
}
\end{formula}
\begin{formula}{spheical-coordinates-int}
\desc{Integration in spherical coordinates}{}{}
\desc[german]{Integration in Kugelkoordinaten}{}{}
\eq{\iiint\d x \d y \d z= \int_0^{\infty} \!\! \int_0^{2\pi} \!\! \int_0^\pi \d r \d\phi\d\theta \, r^2\sin\theta}
\end{formula}
\begin{formula}{riemann_zeta}
\desc{Riemann Zeta Function}{}{}
\desc[german]{Riemannsche Zeta-Funktion}{}{}
\eq{\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1-2^{(1-s)})\Gamma(s)} \int_0^\infty \d\eta \frac{\eta^{(s-1)}}{\e^\eta + 1}}
\end{formula}
\begin{formula}{riemann_zeta}
\desc{Riemann Zeta Function}{}{}
\desc[german]{Riemannsche Zeta-Funktion}{}{}
\eq{\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1-2^{(1-s)})\Gamma(s)} \int_0^\infty \d\eta \frac{\eta^{(s-1)}}{\e^\eta + 1}}
\end{formula}

View File

@ -1,50 +1,50 @@
\Part[
\Section[
\eng{Geometry}
\ger{Geometrie}
]{geo}
\Section[
\Subsection[
\eng{Trigonometry}
\ger{Trigonometrie}
]{trig}
]{trig}
\begin{formula}{exponential_function}
\desc{Exponential function}{}{}
\desc[german]{Exponentialfunktion}{}{}
\eq{\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}}
\end{formula}
\begin{formula}{exponential_function}
\desc{Exponential function}{}{}
\desc[german]{Exponentialfunktion}{}{}
\eq{\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}}
\end{formula}
\begin{formula}{sine}
\desc{Sine}{}{}
\desc[german]{Sinus}{}{}
\eq{\sin(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n+1)}}{(2n+1)!} \\
&= \frac{e^{ix}-e^{-ix}}{2i}}
\end{formula}
\begin{formula}{sine}
\desc{Sine}{}{}
\desc[german]{Sinus}{}{}
\eq{\sin(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n+1)}}{(2n+1)!} \\
&= \frac{e^{ix}-e^{-ix}}{2i}}
\end{formula}
\begin{formula}{cosine}
\desc{Cosine}{}{}
\desc[german]{Kosinus}{}{}
\eq{\cos(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n)}}{(2n)!} \\
&= \frac{e^{ix}+e^{-ix}}{2}}
\end{formula}
\begin{formula}{cosine}
\desc{Cosine}{}{}
\desc[german]{Kosinus}{}{}
\eq{\cos(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n)}}{(2n)!} \\
&= \frac{e^{ix}+e^{-ix}}{2}}
\end{formula}
\begin{formula}{hyperbolic_sine}
\desc{Hyperbolic sine}{}{}
\desc[german]{Sinus hyperbolicus}{}{}
\eq{\sinh(x) &= -i\sin{ix} \\ &= \frac{e^{x}-e^{-x}}{2}}
\end{formula}
\begin{formula}{hyperbolic_sine}
\desc{Hyperbolic sine}{}{}
\desc[german]{Sinus hyperbolicus}{}{}
\eq{\sinh(x) &= -i\sin{ix} \\ &= \frac{e^{x}-e^{-x}}{2}}
\end{formula}
\begin{formula}{hyperbolic_cosine}
\desc{Hyperbolic cosine}{}{}
\desc[german]{Kosinus hyperbolicus}{}{}
\eq{\cosh(x) &= \cos{ix} \\ &= \frac{e^{x}+e^{-x}}{2}}
\end{formula}
\begin{formula}{hyperbolic_cosine}
\desc{Hyperbolic cosine}{}{}
\desc[german]{Kosinus hyperbolicus}{}{}
\eq{\cosh(x) &= \cos{ix} \\ &= \frac{e^{x}+e^{-x}}{2}}
\end{formula}
\Subsection[
\eng{Various theorems}
\ger{Verschiedene Theoreme}
]{theorems}
\Subsection[
\eng{Various theorems}
\ger{Verschiedene Theoreme}
]{theorems}
\begin{formula}{sum}
\desc{}{}{}
\desc[german]{}{}{}
@ -78,10 +78,10 @@
\end{formula}
\Subsection[
\Subsubsection[
\eng{Table of values}
\ger{Wertetabelle}
]{value_table}
]{value_table}
\begingroup
\setlength{\tabcolsep}{0.9em} % horizontal
\renewcommand{\arraystretch}{2} % vertical

View File

@ -1,11 +1,9 @@
\def\id{\mathbb{1}}
\Part[
\Section[
\eng{Linear algebra}
\ger{Lineare Algebra}
]{linalg}
\Section[
\Subsection[
\eng{Determinant}
\ger{Determinante}
]{determinant}
@ -43,7 +41,7 @@
\end{formula}
\Section[
\Subsection[
]{zeug}
@ -95,7 +93,7 @@
\end{formula}
\Section[
\Subection[
\eng{Eigenvalues}
\ger{Eigenwerte}
]{eigen}

View File

@ -0,0 +1,241 @@
\Section[
\eng{Probability theory}
\ger{Wahrscheinlichkeitstheorie}
]{pt}
\begin{formula}{mean}
\desc{Mean}{Expectation value}{}
\desc[german]{Mittelwert}{Erwartungswert}{}
\eq{\braket{x} = \int w(x)\, x\, \d x}
\end{formula}
\begin{formula}{variance}
\desc{Variance}{Square of the \fqEqRef{math:pt:std-deviation}}{}
\desc[german]{Varianz}{Quadrat der\fqEqRef{math:pt:std-deviation}}{}
\eq{\sigma^2 = (\Delta \hat{x})^2 = \Braket{\hat{x}^2} - \braket{\hat{x}}^2 = \braket{(x - \braket{x})^2}}
\end{formula}
\begin{formula}{covariance}
\desc{Covariance}{}{}
\desc[german]{Kovarianz}{}{}
\eq{\cov(x,y) = \sigma(x,y) = \sigma_{XY} = \Braket{(x-\braket{x})\,(y-\braket{y})}}
\end{formula}
\begin{formula}{std-deviation}
\desc{Standard deviation}{}{}
\desc[german]{Standardabweichung}{}{}
\eq{\sigma = \sqrt{\sigma^2} = \sqrt{(\Delta x)^2}}
\end{formula}
\begin{formula}{median}
\desc{Median}{Value separating lower half from top half}{$x$ dataset with $n$ elements}
\desc[german]{Median}{Teilt die untere von der oberen Hälfte}{$x$ Reihe mit $n$ Elementen}
\eq{
\textrm{med}(x) = \left\{ \begin{array}{ll} x_{(n+1)/2} & \text{$n$ \GT{odd}} \\ \frac{x_{(n/2)}+x_{((n/2)+1)}}{2} & \text{$n$ \GT{even}} \end{array} \right.
}
\end{formula}
\begin{formula}{pdf}
\desc{Probability density function}{Random variable has density $f$. The integral gives the probability of $X$ taking a value $x\in[a,b]$.}{$f$ normalized: $\int_{-\infty}^\infty f(x) \d x= 1$}
\desc[german]{Wahrscheinlichkeitsdichtefunktion}{Zufallsvariable hat Dichte $f$. Das Integral gibt Wahrscheinlichkeit an, dass $X$ einen Wert $x\in[a,b]$ annimmt}{$f$ normalisiert $\int_{-\infty}^\infty f(x) \d x= 1$}
\eq{P([a,b]) := \int_a^b f(x) \d x}
\end{formula}
\begin{formula}{cdf}
\desc{Cumulative distribution function}{}{$f$ probability density function}
\desc[german]{Kumulative Verteilungsfunktion}{}{$f$ Wahrscheinlichkeitsdichtefunktion}
\eq{F(x) = \int_{-\infty}^x f(t) \d t}
\end{formula}
\begin{formula}{autocorrelation}
\desc{Autocorrelation}{Correlation of $f$ to itself at an earlier point in time, $C$ is a covariance function}{}
\desc[german]{Autokorrelation}{Korrelation vonn $f$ zu sich selbst zu einem früheren Zeitpunkt. $C$ ist auch die Kovarianzfunktion}{}
\eq{C_A(\tau) = \lim_{T \to \infty} \frac{1}{2T}\int_{-T}^{T} f(t+\tau) f(t) \d t) = \braket{f(t+\tau)\cdot f(t)}}
\end{formula}
\Subsection[
\eng{Distributions}
\ger{Verteilungen}
]{distributions}
\Subsubsection[
\eng{Gauß/Normal distribution}
\ger{Gauß/Normal-Verteilung}
]{normal}
\begin{minipage}{\distleftwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/distribution_gauss.pdf}
\end{figure}
\end{minipage}
\begin{distribution}
\disteq{parameters}{\mu \in \R,\quad \sigma^2 \in \R}
\disteq{support}{x \in \R}
\disteq{pdf}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}
\disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]}
\disteq{mean}{\mu}
\disteq{median}{\mu}
\disteq{variance}{\sigma^2}
\end{distribution}
\begin{formula}{standard_normal_distribution}
\desc{Density function of the standard normal distribution}{$\mu = 0$, $\sigma = 1$}{}
\desc[german]{Dichtefunktion der Standard-Normalverteilung}{$\mu = 0$, $\sigma = 1$}{}
\eq{\varphi(x) = \frac{1}{\sqrt{2\pi}} \e^{-\frac{1}{2}x^2}}
\end{formula}
\Subsubsection[
\eng{Cauchys / Lorentz distribution}
\ger{Cauchy / Lorentz-Verteilung}
]{cauchy}
\begin{minipage}{\distleftwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/distribution_cauchy.pdf}
\end{figure}
\end{minipage}
\begin{distribution}
\disteq{parameters}{x_0 \in \R,\quad \gamma \in \R}
\disteq{support}{x \in \R}
\disteq{pdf}{\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}}
\disteq{cdf}{\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}}
\disteq{mean}{\text{\GT{undefined}}}
\disteq{median}{x_0}
\disteq{variance}{\text{\GT{undefined}}}
\end{distribution}
\begin{ttext}
\eng{Also known as \textbf{Cauchy-Lorentz distribution}, \textbf{Lorentz(ian) function}, \textbf{Breit-Wigner distribution}.}
\ger{Auch bekannt als \textbf{Cauchy-Lorentz Verteilung}, \textbf{Lorentz Funktion}, \textbf{Breit-Wigner Verteilung}.}
\end{ttext}
\Subsubsection[
\eng{Binomial distribution}
\ger{Binomialverteilung}
]{binomial}
\begin{ttext}
\eng{For the number of trials going to infinity ($n\to\infty$), the binomial distribution converges to the \hyperref[sec:pb:distributions::poisson]{poisson distribution}}
\ger{Geht die Zahl der Versuche gegen unendlich ($n\to\infty$), konvergiert die Binomualverteilung gegen die \hyperref[sec:pb:distributions::poisson]{Poissonverteilung}}
\end{ttext}
\begin{minipage}{\distleftwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/distribution_binomial.pdf}
\end{figure}
\end{minipage}
\begin{distribution}
\disteq{parameters}{n \in \Z, \quad p \in [0,1],\quad q = 1 - p}
\disteq{support}{k \in \{0,\,1,\,\dots,\,n\}}
\disteq{pmf}{\binom{n}{k} p^k q^{n-k}}
% \disteq{cdf}{\text{regularized incomplete beta function}}
\disteq{mean}{np}
\disteq{median}{\floor{np} \text{ or } \ceil{np}}
\disteq{variance}{npq = np(1-p)}
\end{distribution}
\Subsubsection[
\eng{Poisson distribution}
\ger{Poissonverteilung}
]{poisson}
\begin{minipage}{\distleftwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/distribution_poisson.pdf}
\end{figure}
\end{minipage}
\begin{distribution}
\disteq{parameters}{\lambda \in (0,\infty)}
\disteq{support}{k \in \N}
\disteq{pmf}{\frac{\lambda^k \e^{-\lambda}}{k!}}
\disteq{cdf}{\e^{-\lambda} \sum_{j=0}^{\floor{k}} \frac{\lambda^j}{j!}}
\disteq{mean}{\lambda}
\disteq{median}{\approx\floor*{\lambda + \frac{1}{3} - \frac{1}{50\lambda}}}
\disteq{variance}{\lambda}
\end{distribution}
\Subsubsection[
\eng{Maxwell-Boltzmann distribution}
\ger{Maxwell-Boltzmann Verteilung}
]{maxwell-boltzmann}
\begin{minipage}{\distleftwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/distribution_maxwell-boltzmann.pdf}
\end{figure}
\end{minipage}
\begin{distribution}
\disteq{parameters}{a > 0}
\disteq{support}{x \in (0, \infty)}
\disteq{pdf}{\sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp\left(-\frac{x^2}{2a^2}\right)}
\disteq{cdf}{\erf \left(\frac{x}{\sqrt{2} a}\right) - \sqrt{\frac{2}{\pi}} \frac{x}{a} \exp\left({\frac{-x^2}{2a^2}}\right)}
\disteq{mean}{2a \frac{2}{\pi}}
\disteq{median}{}
\disteq{variance}{\frac{a^2(3\pi-8)}{\pi}}
\end{distribution}
% \begin{distribution}{maxwell-boltzmann}
% \distdesc{Maxwell-Boltzmann distribution}{}
% \distdesc[german]{Maxwell-Boltzmann Verteilung}{}
% \disteq{parameters}{}
% \disteq{pdf}{}
% \disteq{cdf}{}
% \disteq{mean}{}
% \disteq{median}{}
% \disteq{variance}{}
% \end{distribution}
\Subsection[
\eng{Central limit theorem}
\ger{Zentraler Grenzwertsatz}
]{cls}
\begin{ttext}
\eng{
Suppose $X_1, X_2, \dots$ is a sequence of independent and identically distributed random variables with $\braket{X_i} = \mu$ and $(\Delta X_i)^2 = \sigma^2 < \infty$.
As $N$ approaches infinity, the random variables $\sqrt{N}(\bar{X}_N - \mu)$ converge to a normal distribution $\mathcal{N}(0, \sigma^2)$.
\\ That means that the variance scales with $\frac{1}{\sqrt{N}}$ and statements become accurate for large $N$.
}
\ger{
Sei $X_1, X_2, \dots$ eine Reihe unabhängiger und gleichverteilter Zufallsvariablen mit $\braket{X_i} = \mu$ und $(\Delta X_i)^2 = \sigma^2 < \infty$.
Für $N$ gegen unendlich konvergieren die Zufallsvariablen $\sqrt{N}(\bar{X}_N - \mu)$ zu einer Normalverteilung $\mathcal{N}(0, \sigma^2)$.
\\ Das bedeutet, dass die Schwankung mit $\frac{1}{\sqrt{N}}$ wächst und Aussagen für große $N$ scharf werden.
}
\end{ttext}
\Subsection[
\eng{Propagation of uncertainty / error}
\ger{Fehlerfortpflanzung}
]{error}
\begin{formula}{generalised}
\desc{Generalized error propagation}{}{$V$ \fqEqRef{math:pt:covariance} matrix, $J$ \fqEqRef{math:cal:jacobi-matrix}}
\desc[german]{Generalisiertes Fehlerfortpflanzungsgesetz}{$V$ \fqEqRef{math:pt:covariance} Matrix, $J$ \fqEqRef{cal:jacobi-matrix}}{}
\eq{V_y = J(x) \cdot V_x \cdot J^{\T} (x)}
\end{formula}
\begin{formula}{uncorrelated}
\desc{Propagation of uncorrelated errors}{Linear approximation}{}
\desc[german]{Fortpflanzung unabhängiger fehlerbehaftete Größen}{Lineare Näherung}{}
\eq{u_y = \sqrt{ \sum_{i} \left(\pdv{y}{x_i}\cdot u_i\right)^2}}
\end{formula}
\begin{formula}{weight}
\desc{Weight}{Variance is a possible choice for a weight}{$\sigma$ \fqEqRef{math:pt:variance}}
\desc[german]{Gewicht}{Varianz ist eine mögliche Wahl für ein Gewicht}{}
\eq{w_i = \frac{1}{\sigma_i^2}}
\end{formula}
\begin{formula}{weighted-mean}
\desc{Weighted mean}{}{$w_i$ \fqEqRef{math:pt:error:weight}}
\desc[german]{Gewichteter Mittelwert}{}{}
\eq{\overline{x} = \frac{\sum_{i} (x_i w_i)}{\sum_i w_i}}
\end{formula}
\begin{formula}{weighted-mean-error}
\desc{Variance of weighted mean}{}{$w_i$ \fqEqRef{math:pt:error:weight}}
\desc[german]{Varianz des gewichteten Mittelwertes}{}{}
\eq{\sigma^2_{\overline{x}} = \frac{1}{\sum_i w_i}}
\end{formula}

View File

@ -1,241 +0,0 @@
\Part[
\eng{Probability theory}
\ger{Wahrscheinlichkeitstheorie}
]{pt}
\begin{formula}{mean}
\desc{Mean}{Expectation value}{}
\desc[german]{Mittelwert}{Erwartungswert}{}
\eq{\braket{x} = \int w(x)\, x\, \d x}
\end{formula}
\begin{formula}{variance}
\desc{Variance}{Square of the \fqEqRef{pt:std-deviation}}{}
\desc[german]{Varianz}{Quadrat der\fqEqRef{pt:std-deviation}}{}
\eq{\sigma^2 = (\Delta \hat{x})^2 = \Braket{\hat{x}^2} - \braket{\hat{x}}^2 = \braket{(x - \braket{x})^2}}
\end{formula}
\begin{formula}{covariance}
\desc{Covariance}{}{}
\desc[german]{Kovarianz}{}{}
\eq{\cov(x,y) = \sigma(x,y) = \sigma_{XY} = \Braket{(x-\braket{x})\,(y-\braket{y})}}
\end{formula}
\begin{formula}{std-deviation}
\desc{Standard deviation}{}{}
\desc[german]{Standardabweichung}{}{}
\eq{\sigma = \sqrt{\sigma^2} = \sqrt{(\Delta x)^2}}
\end{formula}
\begin{formula}{median}
\desc{Median}{Value separating lower half from top half}{$x$ dataset with $n$ elements}
\desc[german]{Median}{Teilt die untere von der oberen Hälfte}{$x$ Reihe mit $n$ Elementen}
\eq{
\textrm{med}(x) = \left\{ \begin{array}{ll} x_{(n+1)/2} & \text{$n$ \GT{odd}} \\ \frac{x_{(n/2)}+x_{((n/2)+1)}}{2} & \text{$n$ \GT{even}} \end{array} \right.
}
\end{formula}
\begin{formula}{pdf}
\desc{Probability density function}{Random variable has density $f$. The integral gives the probability of $X$ taking a value $x\in[a,b]$.}{$f$ normalized: $\int_{-\infty}^\infty f(x) \d x= 1$}
\desc[german]{Wahrscheinlichkeitsdichtefunktion}{Zufallsvariable hat Dichte $f$. Das Integral gibt Wahrscheinlichkeit an, dass $X$ einen Wert $x\in[a,b]$ annimmt}{$f$ normalisiert $\int_{-\infty}^\infty f(x) \d x= 1$}
\eq{P([a,b]) := \int_a^b f(x) \d x}
\end{formula}
\begin{formula}{cdf}
\desc{Cumulative distribution function}{}{$f$ probability density function}
\desc[german]{Kumulative Verteilungsfunktion}{}{$f$ Wahrscheinlichkeitsdichtefunktion}
\eq{F(x) = \int_{-\infty}^x f(t) \d t}
\end{formula}
\begin{formula}{autocorrelation}
\desc{Autocorrelation}{Correlation of $f$ to itself at an earlier point in time, $C$ is a covariance function}{}
\desc[german]{Autokorrelation}{Korrelation vonn $f$ zu sich selbst zu einem früheren Zeitpunkt. $C$ ist auch die Kovarianzfunktion}{}
\eq{C_A(\tau) = \lim_{T \to \infty} \frac{1}{2T}\int_{-T}^{T} f(t+\tau) f(t) \d t) = \braket{f(t+\tau)\cdot f(t)}}
\end{formula}
\Section[
\eng{Distributions}
\ger{Verteilungen}
]{distributions}
\Subsubsection[
\eng{Gauß/Normal distribution}
\ger{Gauß/Normal-Verteilung}
]{normal}
\begin{minipage}{\distleftwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/distribution_gauss.pdf}
\end{figure}
\end{minipage}
\begin{distribution}
\disteq{parameters}{\mu \in \R,\quad \sigma^2 \in \R}
\disteq{support}{x \in \R}
\disteq{pdf}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}
\disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]}
\disteq{mean}{\mu}
\disteq{median}{\mu}
\disteq{variance}{\sigma^2}
\end{distribution}
\begin{formula}{standard_normal_distribution}
\desc{Density function of the standard normal distribution}{$\mu = 0$, $\sigma = 1$}{}
\desc[german]{Dichtefunktion der Standard-Normalverteilung}{$\mu = 0$, $\sigma = 1$}{}
\eq{\varphi(x) = \frac{1}{\sqrt{2\pi}} \e^{-\frac{1}{2}x^2}}
\end{formula}
\Subsubsection[
\eng{Cauchys / Lorentz distribution}
\ger{Cauchy / Lorentz-Verteilung}
]{cauchy}
\begin{minipage}{\distleftwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/distribution_cauchy.pdf}
\end{figure}
\end{minipage}
\begin{distribution}
\disteq{parameters}{x_0 \in \R,\quad \gamma \in \R}
\disteq{support}{x \in \R}
\disteq{pdf}{\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}}
\disteq{cdf}{\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}}
\disteq{mean}{\text{\GT{undefined}}}
\disteq{median}{x_0}
\disteq{variance}{\text{\GT{undefined}}}
\end{distribution}
\begin{ttext}
\eng{Also known as \textbf{Cauchy-Lorentz distribution}, \textbf{Lorentz(ian) function}, \textbf{Breit-Wigner distribution}.}
\ger{Auch bekannt als \textbf{Cauchy-Lorentz Verteilung}, \textbf{Lorentz Funktion}, \textbf{Breit-Wigner Verteilung}.}
\end{ttext}
\Subsubsection[
\eng{Binomial distribution}
\ger{Binomialverteilung}
]{binomial}
\begin{ttext}
\eng{For the number of trials going to infinity ($n\to\infty$), the binomial distribution converges to the \hyperref[sec:pb:distributions::poisson]{poisson distribution}}
\ger{Geht die Zahl der Versuche gegen unendlich ($n\to\infty$), konvergiert die Binomualverteilung gegen die \hyperref[sec:pb:distributions::poisson]{Poissonverteilung}}
\end{ttext}
\begin{minipage}{\distleftwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/distribution_binomial.pdf}
\end{figure}
\end{minipage}
\begin{distribution}
\disteq{parameters}{n \in \Z, \quad p \in [0,1],\quad q = 1 - p}
\disteq{support}{k \in \{0,\,1,\,\dots,\,n\}}
\disteq{pmf}{\binom{n}{k} p^k q^{n-k}}
% \disteq{cdf}{\text{regularized incomplete beta function}}
\disteq{mean}{np}
\disteq{median}{\floor{np} \text{ or } \ceil{np}}
\disteq{variance}{npq = np(1-p)}
\end{distribution}
\Subsubsection[
\eng{Poisson distribution}
\ger{Poissonverteilung}
]{poisson}
\begin{minipage}{\distleftwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/distribution_poisson.pdf}
\end{figure}
\end{minipage}
\begin{distribution}
\disteq{parameters}{\lambda \in (0,\infty)}
\disteq{support}{k \in \N}
\disteq{pmf}{\frac{\lambda^k \e^{-\lambda}}{k!}}
\disteq{cdf}{\e^{-\lambda} \sum_{j=0}^{\floor{k}} \frac{\lambda^j}{j!}}
\disteq{mean}{\lambda}
\disteq{median}{\approx\floor*{\lambda + \frac{1}{3} - \frac{1}{50\lambda}}}
\disteq{variance}{\lambda}
\end{distribution}
\Subsubsection[
\eng{Maxwell-Boltzmann distribution}
\ger{Maxwell-Boltzmann Verteilung}
]{maxwell-boltzmann}
\begin{minipage}{\distleftwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{img/distribution_maxwell-boltzmann.pdf}
\end{figure}
\end{minipage}
\begin{distribution}
\disteq{parameters}{a > 0}
\disteq{support}{x \in (0, \infty)}
\disteq{pdf}{\sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp\left(-\frac{x^2}{2a^2}\right)}
\disteq{cdf}{\erf \left(\frac{x}{\sqrt{2} a}\right) - \sqrt{\frac{2}{\pi}} \frac{x}{a} \exp\left({\frac{-x^2}{2a^2}}\right)}
\disteq{mean}{2a \frac{2}{\pi}}
\disteq{median}{}
\disteq{variance}{\frac{a^2(3\pi-8)}{\pi}}
\end{distribution}
% \begin{distribution}{maxwell-boltzmann}
% \distdesc{Maxwell-Boltzmann distribution}{}
% \distdesc[german]{Maxwell-Boltzmann Verteilung}{}
% \disteq{parameters}{}
% \disteq{pdf}{}
% \disteq{cdf}{}
% \disteq{mean}{}
% \disteq{median}{}
% \disteq{variance}{}
% \end{distribution}
\Subsection[
\eng{Central limit theorem}
\ger{Zentraler Grenzwertsatz}
]{cls}
\begin{ttext}
\eng{
Suppose $X_1, X_2, \dots$ is a sequence of independent and identically distributed random variables with $\braket{X_i} = \mu$ and $(\Delta X_i)^2 = \sigma^2 < \infty$.
As $N$ approaches infinity, the random variables $\sqrt{N}(\bar{X}_N - \mu)$ converge to a normal distribution $\mathcal{N}(0, \sigma^2)$.
\\ That means that the variance scales with $\frac{1}{\sqrt{N}}$ and statements become accurate for large $N$.
}
\ger{
Sei $X_1, X_2, \dots$ eine Reihe unabhängiger und gleichverteilter Zufallsvariablen mit $\braket{X_i} = \mu$ und $(\Delta X_i)^2 = \sigma^2 < \infty$.
Für $N$ gegen unendlich konvergieren die Zufallsvariablen $\sqrt{N}(\bar{X}_N - \mu)$ zu einer Normalverteilung $\mathcal{N}(0, \sigma^2)$.
\\ Das bedeutet, dass die Schwankung mit $\frac{1}{\sqrt{N}}$ wächst und Aussagen für große $N$ scharf werden.
}
\end{ttext}
\Section[
\eng{Propagation of uncertainty / error}
\ger{Fehlerfortpflanzung}
]{error}
\begin{formula}{generalised}
\desc{Generalized error propagation}{}{$V$ \fqEqRef{pt:covariance} matrix, $J$ \fqEqRef{ana:jacobi-matrix}}
\desc[german]{Generalisiertes Fehlerfortpflanzungsgesetz}{$V$ \fqEqRef{pt:covariance} Matrix, $J$ \fqEqRef{ana:jacobi-matrix}}{}
\eq{V_y = J(x) \cdot V_x \cdot J^{\T} (x)}
\end{formula}
\begin{formula}{uncorrelated}
\desc{Propagation of uncorrelated errors}{Linear approximation}{}
\desc[german]{Fortpflanzung unabhängiger fehlerbehaftete Größen}{Lineare Näherung}{}
\eq{u_y = \sqrt{ \sum_{i} \left(\pdv{y}{x_i}\cdot u_i\right)^2}}
\end{formula}
\begin{formula}{weight}
\desc{Weight}{Variance is a possible choice for a weight}{$\sigma$ \fqEqRef{pt:variance}}
\desc[german]{Gewicht}{Varianz ist eine mögliche Wahl für ein Gewicht}{}
\eq{w_i = \frac{1}{\sigma_i^2}}
\end{formula}
\begin{formula}{weighted-mean}
\desc{Weighted mean}{}{$w_i$ \fqEqRef{pt:error:weight}}
\desc[german]{Gewichteter Mittelwert}{}{}
\eq{\overline{x} = \frac{\sum_{i} (x_i w_i)}{\sum_i w_i}}
\end{formula}
\begin{formula}{weighted-mean-error}
\desc{Variance of weighted mean}{}{$w_i$ \fqEqRef{pt:error:weight}}
\desc[german]{Varianz des gewichteten Mittelwertes}{}{}
\eq{\sigma^2_{\overline{x}} = \frac{1}{\sum_i w_i}}
\end{formula}

View File

@ -6,72 +6,72 @@
\paragraph{\GT{si_base_units}}
\begin{quantity}{time}{t}{\second}{}
\desc{Time}{}
\desc[german]{Zeit}{}
\desc{Time}{}{}
\desc[german]{Zeit}{}{}
\end{quantity}
\begin{quantity}{Length}{l}{\m}{e}
\desc{Length}{}
\desc[german]{Länge}{}
\desc{Length}{}{}
\desc[german]{Länge}{}{}
\end{quantity}
\begin{quantity}{mass}{m}{\kg}{es}
\desc{Mass}{}
\desc[german]{Masse}{}
\desc{Mass}{}{}
\desc[german]{Masse}{}{}
\end{quantity}
\begin{quantity}{temperature}{T}{\kelvin}{is}
\desc{Temperature}{}
\desc[german]{Temperatur}{}
\desc{Temperature}{}{}
\desc[german]{Temperatur}{}{}
\end{quantity}
\begin{quantity}{current}{I}{\ampere}{es}
\desc{Electric current}{}
\desc[german]{Elektrischer Strom}{}
\desc{Electric current}{}{}
\desc[german]{Elektrischer Strom}{}{}
\end{quantity}
\begin{quantity}{amount}{n}{\mol}{es}
\desc{Amount of substance}{}
\desc[german]{Stoffmenge}{}
\desc{Amount of substance}{}{}
\desc[german]{Stoffmenge}{}{}
\end{quantity}
\begin{quantity}{luminous_intensity}{I_\text{V}}{\candela}{s}
\desc{Luminous intensity}{}
\desc[german]{Lichtstärke}{}
\desc{Luminous intensity}{}{}
\desc[german]{Lichtstärke}{}{}
\end{quantity}
\paragraph{\GT{other}}
\begin{quantity}{volume}{V}{\m^d}{}
\desc{Volume}{$d$ dimensional Volume}
\desc[german]{Volumen}{$d$ dimensionales Volumen}
\desc{Volume}{$d$ dimensional Volume}{}
\desc[german]{Volumen}{$d$ dimensionales Volumen}{}
\end{quantity}
\begin{quantity}{force}{\vec{F}}{\newton=\kg\m\per\second^2}{ev}
\desc{Force}{}
\desc[german]{Kraft}{}
\desc{Force}{}{}
\desc[german]{Kraft}{}{}
\end{quantity}
\begin{quantity}{spring_constant}{k}{\newton\per\m=\kg\per\second^2}{s}
\desc{Spring constant}{}
\desc[german]{Federkonstante}{}
\desc{Spring constant}{}{}
\desc[german]{Federkonstante}{}{}
\end{quantity}
\begin{quantity}{velocity}{\vec{v}}{\m\per\s}{v}
\desc{Velocity}{}
\desc[german]{Geschwindigkeit}{}
\desc{Velocity}{}{}
\desc[german]{Geschwindigkeit}{}{}
\end{quantity}
\begin{quantity}{torque}{\tau}{\newton\m=\kg\m^2\per\s^2}{v}
\desc{Torque}{}
\desc[german]{Drehmoment}{}
\desc{Torque}{}{}
\desc[german]{Drehmoment}{}{}
\end{quantity}
\begin{quantity}{heat_capacity}{C}{\joule\per\kelvin}{}
\desc{Heat capacity}{}
\desc[german]{Wärmekapazität}{}
\desc{Heat capacity}{}{}
\desc[german]{Wärmekapazität}{}{}
\end{quantity}
\begin{quantity}{charge}{q}{\coulomb=\ampere\s}{}
\desc{Charge}{}
\desc[german]{Ladung}{}
\desc{Charge}{}{}
\desc[german]{Ladung}{}{}
\end{quantity}

View File

@ -1,8 +1,11 @@
\Part{Topo}
\Part[
\eng{Topological Materials}
\ger{Topologische Materialien}
]{topo}
\Section[
\eng{Berry phase / Geometric phase}
\ger{Berry-Phase / Geometrische Phase}
]{berry_phase}
]{berry_phase}
\begin{ttext}[desc]
\eng{

View File

@ -25,7 +25,7 @@
% [1]: minipage width
% 2: fqname of name
% 3: fqname of a translation that holds the explanation
\newcommand{\NameWithExplanation}[3][\descwidth]{
\newcommand{\NameWithDescription}[3][\descwidth]{
\begin{minipage}{#1}
\IfTranslationExists{#2}{
\raggedright
@ -45,6 +45,7 @@
\begin{minipage}{#1}
% \vspace{-\baselineskip} % remove the space that comes from starting a new paragraph
#2
\smartnewline
\noindent\IfTranslationExists{#3}{
\begingroup
\color{dark1}
@ -65,7 +66,7 @@
\par\noindent\ignorespaces
% \textcolor{gray}{\hrule}
\vspace{0.5\baselineskip}
\NameWithExplanation[\descwidth]{#1}{#1_desc}
\NameWithDescription[\descwidth]{#1}{#1_desc}
\hfill
\ContentBoxWithExplanation[\eqwidth]{#2}{#1_defs}
\textcolor{dark3}{\hrule}
@ -107,7 +108,6 @@
}
}
\newcommand\luaexpr[1]{\directlua{tex.sprint(#1)}}
% [1]: width
% 2: fqname
% 3: file path
@ -117,7 +117,7 @@
% \textcolor{gray}{\hrule}
\vspace{0.5\baselineskip}
\begin{minipage}{#1\textwidth}
\NameWithExplanation[\textwidth]{\fqname:#2}{#2_desc}
\NameWithDescription[\textwidth]{\fqname:#2}{#2_desc}
% TODO: why is this ignored
\vspace{1.0cm}
% TODO: fix box is too large without 0.9
@ -129,7 +129,7 @@
}{#2_defs}
\end{minipage}
\hfill
\begin{minipage}{\luaexpr{1.0-#1}\textwidth}
\begin{minipage}{\luavar{1.0-#1}\textwidth}
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{#3}
@ -138,7 +138,6 @@
\end{minipage}
\textcolor{dark3}{\hrule}
\vspace{0.5\baselineskip}
}
% 1: key
@ -255,7 +254,42 @@
% % \addquantity{\expandafter\gt\expandafter{\qtyname}}%
% % \noindent\textbf{My Environment \themyenv: #1}\par%
% }
\directLuaAux{
if constants == nil then
constants = {}
end
}
\newcommand\printConstant[1]{
\edef\constName{const:#1}
\NameLeftContentRight{\constName}{
\begingroup % for label
Symbol: $\luavar{constants["#1"]["symbol"]}$
% \\Unit: $\directlua{split_and_print_units(constants["#1"]["units"])}$
\directlua{
tex.print("\\\\\\GT{const:"..constants["#1"]["exp_or_def"].."}")
}
\directlua{
%--tex.sprint("Hier steht Luatext" .. ":", #constVals)
for i, pair in ipairs(constants["#1"]["values"]) do
tex.sprint("\\\\\\hspace*{1cm}${", pair["value"], "}\\,\\si{", pair["unit"], "}$")
%--tex.sprint("VALUE ", i, v)
end
}
% label it only once
\directlua{
if constants["#1"]["labeled"] == nil then
constants["#1"]["labeled"] = true
tex.print("\\label{const:#1}")
end
}
\endgroup
}
}
\newcounter{constant}
% 1: key - must expand to a valid lua string!
% 2: symbol
% 3: either exp or def; experimentally or defined constant
\newenvironment{constant}[3]{
% [1]: language
% 2: name
@ -267,89 +301,76 @@
\ifblank{##3}{}{\DT[const:#1_desc]{##1}{##3}}
\ifblank{##4}{}{\DT[const:#1_defs]{##1}{##4}}
}
\directlua{
constVals = {}
constUnits = {}
\directLuaAux{
constants["#1"] = {};
constants["#1"]["symbol"] = [[\detokenize{#2}]];
constants["#1"]["exp_or_def"] = [[\detokenize{#3}]];
constants["#1"]["values"] = {} -- array of {value, unit};
}
% 1: equation for align environment
% 1: value
% 2: unit
\newcommand{\val}[2]{
\directlua{
%--table.insert(constVals, "LOL")
table.insert(constVals, [[##1]])
table.insert(constUnits, [[##2]])
%--table.insert(constUnits, "\luaescapestring{##2}")
\directLuaAux{
table.insert(constants["#1"]["values"], { value = [[\detokenize{##1}]], unit = [[\detokenize{##2}]] })
}
\def\constValue{##1}
\def\constUnit{##2}
}
\edef\constName{const:#1}
\edef\constDesc{const:#1_desc}
\def\constSymbol{#2}
\edef\constExpOrDef{\GT{const:#3}}
\edef\lastConstName{#1}
}{
\NameLeftContentRight{\constName}{
\begingroup % for label
Symbol: $\constSymbol$
\IfTranslationExists{\constDesc}{
\\Description: \GT{\constDesc}
}{}
% TODO manage multiple values
% \\Value: $\constValue\,\si{\constUnit}$
\\\constExpOrDef:
\directlua{
%--tex.sprint("Hier steht Luatext" .. ":", #constVals)
for i, v in ipairs(constVals) do
tex.sprint("\\\\\\hspace*{1cm}${", constVals[i], "}\\,\\si{", constUnits[i], "}$")
%--tex.sprint("VALUE ", i, v)
end
}
\label{\constName}
\endgroup
}
\expandafter\printConstant{\lastConstName}
\ignorespacesafterend
}
% 1: key
\directLuaAux{
if quantities == nil then
quantities = {}
end
}
\newcommand\printQuantity[1]{
\edef\qtyName{qty:#1}
\NameLeftContentRight{\qtyName}{
\begingroup % for label
Symbol: $\luavar{quantities["#1"]["symbol"]}$
\\Unit: $\directlua{split_and_print_units(quantities["#1"]["units"])}$
% label it only once
\directlua{
if quantities["#1"]["labeled"] == nil then
quantities["#1"]["labeled"] = true
tex.print("\\label{qty:#1}")
end
}
\endgroup
}
}
% 1: key - must expand to a valid lua string!
% 2: symbol
% 3: units
% 4: comment key to translation
\newenvironment{quantity}[4]{
% language, name, description
\newcommand{\desc}[3][english]{
% language, name, description, definitions
\newcommand{\desc}[4][english]{
\ifblank{##2}{}{\DT[qty:#1]{##1}{##2}}
\ifblank{##3}{}{\DT[qty:#1_desc]{##1}{##3}}
\ifblank{##4}{}{\DT[qty:#1_defs]{##1}{##4}}
}
% TODO put these in long term key - value storage for generating a full table and global referenes \qtyRef
% for references, there needs to be a label somwhere
\edef\qtyname{qty:#1}
\edef\qtydesc{qty:#1_desc}
\def\qtysymbol{#2}
\def\qtyunits{#3}
\edef\qtycomment{#4}
% Unit: $\directlua{split_and_print_units([[\m\per\kg]])}$
\directLuaAux{
quantities["#1"] = {}
quantities["#1"]["symbol"] = [[\detokenize{#2}]]
quantities["#1"]["units"] = [[\detokenize{#3}]]
quantities["#1"]["comment"] = [[\detokenize{#4}]]
}
\def\lastQtyName{#1}
}
{
\NameLeftContentRight{\qtyname}{
\begingroup
Symbol: $\qtysymbol$
\IfTranslationExists{\qtydesc}{
\\Description: \GT{\qtydesc}
}{}
\\Unit: $\directlua{split_and_print_units([[\qtyunits]])}$
\expandafter\IfTranslationExists\expandafter\qtycomment{
\\Comment: \GT\qtycomment
}{}%{\\No comment \color{gray}}
\label{\qtyname}
\endgroup
}
\expandafter\printQuantity{\lastQtyName}
\ignorespacesafterend
% for TOC
\refstepcounter{quantity}%
% \addquantity{\expandafter\gt\expandafter{\qtyname}}%
% \noindent\textbf{My Environment \themyenv: #1}\par%
}
\newcounter{quantity}
\newcommand{\listofquantities}{%

View File

@ -1,3 +1,4 @@
\newcommand\smartnewline[1]{\ifhmode\\\fi} % newline only if there in horizontal mode
\def\gooditem{\item[{$\color{neutral_red}\bullet$}]}
\def\baditem{\item[{$\color{neutral_green}\bullet$}]}
@ -10,12 +11,15 @@
\overset{\substack{\mathrlap{\text{\hspace{-1em}#2}}\\\downarrow}}{#1}}
% COMMON SYMBOLS WITH SUPER/SUBSCRIPTS, VECTOR ARROWS ETC.
% \def\laplace{\Delta} % Laplace operator
\def\laplace{\bigtriangleup} % Laplace operator
\def\Grad{\vec{\nabla}}
\def\Div{\vec{\nabla} \cdot}
\def\Rot{\vec{\nabla} \times}
\def\vecr{\vec{r}}
\def\vecx{\vec{x}}
\def\kB{k_\text{B}}
\def\kB{k_\text{B}} % boltzmann
\def\NA{N_\text{A}} % avogadro
\def\EFermi{E_\text{F}}
\def\Evalence{E_\text{v}}
\def\Econd{E_\text{c}}
@ -33,8 +37,9 @@
\def\C{\mathbb{C}}
\def\Z{\mathbb{Z}}
\def\N{\mathbb{N}}
\def\id{\mathbb{1}}
% caligraphic
\def\calE{\mathcal{E}}
\def\E{\mathcal{E}} % electric field
% upright
\def\txA{\text{A}}
\def\txB{\text{B}}
@ -114,6 +119,8 @@
% diff, for integrals and stuff
% \DeclareMathOperator{\dd}{d}
\renewcommand*\d{\mathop{}\!\mathrm{d}}
% times 10^{x}
\newcommand\xE[1]{\cdot 10^{#1}}
% functions with paranthesis
\newcommand\CmdWithParenthesis[2]{
#1\left(#2\right)

162
src/util/periodic_table.tex Normal file
View File

@ -0,0 +1,162 @@
% Store info about elements in a lua table
% Print as list or as periodic table
% The data is taken from https://pse-info.de/de/data as json and parsed by the scripts/periodic_table.py
% INFO
\directLuaAux{
if elements == nil then
elements = {} %-- Symbol: {symbol, atomic_number, properties, ... }
elementsOrder = {} %-- Number: Symbol
end
}
% 1: symbol
% 2: nr
% 3: period
% 4: column
\newenvironment{element}[4]{
% [1]: language
% 2: name
% 3: description
% 4: definitions/links
\newcommand{\desc}[4][english]{
% language, name, description, definitions
\ifblank{##2}{}{\DT[el:#1]{##1}{##2}}
\ifblank{##3}{}{\DT[el:#1_desc]{##1}{##3}}
\ifblank{##4}{}{\DT[el:#1_defs]{##1}{##4}}
}
\directLuaAux{
elementsOrder[#2] = "#1";
elements["#1"] = {};
elements["#1"]["symbol"] = [[\detokenize{#1}]];
elements["#1"]["atomic_number"] = [[\detokenize{#2}]];
elements["#1"]["period"] = [[\detokenize{#3}]];
elements["#1"]["column"] = [[\detokenize{#4}]];
elements["#1"]["properties"] = {};
}
% 1: key
% 2: value
\newcommand{\property}[2]{
\directlua{ %-- writing to aux is only needed for references for now
elements["#1"]["properties"]["##1"] = "\luaescapestring{\detokenize{##2}}" %-- cant use [[ ]] because electron_config ends with ]
}
}
\edef\lastElementName{#1}
}{
% \expandafter\printElement{\lastElementName}
\ignorespacesafterend
}
% LIST
\newcommand\printElement[1]{
\edef\elementName{el:#1}
\NameLeftContentRight{\elementName}{
\begingroup % for label
\directlua{
tex.sprint("Symbol: \\ce{"..elements["#1"]["symbol"].."}")
tex.sprint("\\\\Number: "..elements["#1"]["atomic_number"])
}
\directlua{
%--tex.sprint("Hier steht Luatext" .. ":", #elementVals)
for key, value in pairs(elements["#1"]["properties"]) do
tex.sprint("\\\\\\hspace*{1cm}{\\GT{", key, "}: ", value, "}")
%--tex.sprint("VALUE ", i, v)
end
}
% label it only once
\directlua{
if elements["#1"]["labeled"] == nil then
elements["#1"]["labeled"] = true
tex.print("\\label{el:#1}")
end
}
\endgroup
}
}
\newcommand{\printAllElements}{
\directlua{
%-- tex.sprint("\\printElement{"..val.."}")
for key, val in ipairs(elementsOrder) do
%-- tex.sprint(key, val);
tex.sprint("\\printElement{"..val.."}")
end
}
}
% PERIODIC TABLE
\directlua{
category2color = {
metal = "neutral_blue",
metalloid = "bright_orange",
transitionmetal = "bright_blue",
lanthanoide = "neutral_orange",
alkalimetal = "bright_red",
alkalineearthmetal = "bright_purple",
nonmetal = "bright_aqua",
halogen = "bright_yellow",
noblegas = "neutral_purple"
}
}
\directlua{
function getColor(cat)
local color = category2color[cat]
if color == nil then
return "light3"
else
return color
end
end
}
\newcommand{\drawPeriodicTable}{
\def\ptableUnit{0.90cm}
\begin{tikzpicture}[
element/.style={anchor=north west, draw, minimum width=\ptableUnit, minimum height=\ptableUnit, align=center},
element_annotation/.style={anchor=north west, font=\tiny, inner sep=1pt},
x=\ptableUnit,
y=\ptableUnit
]
\directlua{
for k, v in pairs(elements) do
local column = tonumber(v.column)
local period = tonumber(v.period)
if 5 < period and 4 <= column and column <= 17 then
period = period + 3
elseif column > 17 then
column = column - 14
end
tex.print("\\node[element,fill=".. getColor(v.properties.set) .."] at (".. column ..", -".. period ..") {\\elRef{".. v.symbol .."}};")
tex.print("\\node[element_annotation] at (".. column ..", -".. period ..") {".. v.atomic_number .."};")
if v.properties.atomic_mass \string~= nil then
tex.print("\\node[element_annotation,anchor=south west] at (".. column ..", -".. period+1 ..") {".. string.format("\percentchar .3f", v.properties.atomic_mass) .."};")
end
end
}
\draw[ultra thick,faded_purple] (4,-6) -- (4,-11);
% color legend for categories
\directlua{
local x0 = 4
local y0 = -1
local x = 0
local y = 0
local ystep = 0.4
for set, color in pairs(category2color) do
%-- tex.print("\\draw[fill=".. color .."] ("..x0+x..","..y0+y..") rectangle ("..x0+x..","..y0+y..")()")
tex.print("\\node[anchor=west, align=left] at ("..x0+x..","..y0-y..") {{\\color{".. color .."}\\blacksquare} \\GT{".. set .."}};")
y = y + 1*ystep
if y > 4*ystep then
y = 0
x = x+4
end
end
}
% period numbers
\directlua{
for i = 1, 7 do
tex.print("\\node[anchor=east,align=right] at (1,".. -i-0.5 ..") {".. i .."};")
end
}
\end{tikzpicture}
}

View File

@ -21,15 +21,16 @@
\def\tempiftranslation{\IfTranslation{english}}%
\expandafter\tempiftranslation\expandafter{#1}%
}
\newcommand{\iftranslation}[3]{%
\IfTranslationExists{\fqname:#1}{#2}{#3}%
\newcommand{\iftranslation}[1]{%
\IfTranslation{english}{\fqname:#1}
% \expandafter\IfTranslationExists\expandafter{\fqname:#1}
}
\newcommand{\gt}[1]{%
\iftranslation{#1}{%
\expandafter\GetTranslation\expandafter{\fqname:#1}%
}{%
\fqname:\detokenize{#1}%
\detokenize{\fqname}:\detokenize{#1}%
}%
}
\newrobustcmd{\GT}[1]{%\expandafter\GetTranslation\expandafter{#1}}

View File

@ -46,3 +46,17 @@
\Eng[const:def]{Defined value}
\Ger[const:def]{Definierter Wert}
% PERIODIC TABLE
\Eng[symbol]{Symbol}
\Ger[symbol]{Symbol}
\Eng[atomic_number]{Number}
\Ger[atomic_number]{Ordnungszahl}
\Eng[electron_config]{Electronic configuration}
\Ger[electron_config]{Elektronenkonfiguration}
\Eng[crystal_structure]{Crystal structure}
\Ger[crystal_structure]{Kristallstruktur}