Changed folder names

This commit is contained in:
matthias@arch 2022-09-05 01:00:33 +02:00
parent 8012ca41c1
commit da13e33f8d
17 changed files with 2051 additions and 3 deletions

View File

@ -1,7 +1,7 @@
# Maintainer: Matthias Quintern <matthiasqui@protonmail.com>
pkgname=gz-cpp-util
pkgver=1.0
pkgrel=1
pkgrel=2
pkgdesc="Utility library for c++"
arch=('any')
url="https://github.com/MatthiasQuintern/gz-cpp-util"

View File

@ -1,4 +1,5 @@
# gz-cpp-util
cpp-20 utility library for my projects
## Features
- Extensive logger using variadic templates to log almost anything
@ -23,7 +24,7 @@
- Include the wanted header: `#include <gz-util/*dir*/*header.hpp*>`
### Documentation
The documentation for this library can be generated using **doxygen**.
Install doxygen and run `make docs`.
Install doxygen and run `make docs`, then open `docs/html/index.html`.
## Changelog

374
generate_vec.py Normal file
View File

@ -0,0 +1,374 @@
"""
A python script to generate a c++ vector library for math
Should work with vectors with 2-9 components
2022 Matthias Quintern
"""
from os import path
#
# SETTINGS
#
vectors = [2, 3, 4] # , 5, 6, 7, 8, 9]
letters_ = {
2: [ "x", "y" ],
3: [ "x", "y", "z" ],
4: [ "x", "y", "z", "w"],
}
# \t or x-spaces
tab = "\t"
# float, double, long double
float_type = "float"
# string or None
namespace = "gz"
types = {
"float": "f",
"double": "d",
"int": "i",
"unsigned int": "u",
}
filename = "vec.hpp"
# for genstring
templateStr = "@"
#
# HELPERS
#
def classname(n):
return "vec" + str(n)
def letters(n, i):
if n in letters_:
return letters_[n][i]
else:
return f"x{i}"
def genstring(n: int, template: str, sep=", ", offset=0):
"""
Generate a string from a template for each vector component
eg genstring(3, "@ + ") -> x + y + z
"""
s = ""
for i in range(n):
s += template.replace(templateStr, letters(n, i + offset)) + sep
s.removesuffix(sep)
return s[0:len(s)-len(sep)]
def transformString(s: str, depth: int):
"""Add tabs after all but the last line break and before the first char"""
return depth * tab + s.replace("\n", "\n" + depth * tab, s.count("\n") - 1)
def getPossiblities(i, a, depth=0):
"""
get all possibilites to get i by addition of numbers lower than i
eg i=3 -> 3, 2+1, 1+2, 1+1+1
"""
if i == 0:
return
if i == 1:
a.append(str(1))
return
for j in range(1, i):
b = []
# print("\t" * depth + "gp: i="+str(i)+" j="+str(j))
getPossiblities(i-j, b, depth+1)
for poss in b:
# print("\t"*depth + f"{i}-{j} returned", b)
a.append(str(j) + poss)
a.append(str(i))
#
# GENERATORS
#
def genConstructors(n):
constructors = []
s = "/// Default constructor\n"
s += classname(n) + "() : " + genstring(n, "@(0)") + " {};\n"
constructors.append(s)
s = "/// Create vector from scalar, all components will have value n\n"
s += "template<typename N>\n"
s += "(const N n) : " + genstring(n, "@(static_cast<T>(n))") + " {};\n";
a = []
getPossiblities(n, a)
for possiblity in a:
n_count = 0
v_count = 0
i = 0
comment = "/// Create a " + classname(n) + " from "
templates = "template<"
args = classname(n) + "("
init = " : "
for nstr in possiblity:
c = int(nstr)
if c == 1:
comment += "n "
templates += f"typename N{n_count}, "
args += f"N{n_count} n{n_count}, "
init += letters(n, i) + f"(static_cast<T>(n{n_count})), "
n_count += 1
i += 1
else:
comment += f"vec{c} "
args += "const " + classname(c) + f"<V{v_count}>& v{v_count}, "
templates += f"typename V{v_count}, "
for j in range(c):
init += letters(n, i) + "(static_cast<T>(v" + str(v_count) + "." + letters(n, j) + ")), "
i += 1
v_count += 1
templates = templates.removesuffix(", ") + ">"
args = args.removesuffix(", ") + ")"
init = init.removesuffix(", ") + " {};"
s = comment + "\n" + templates + "\n" + args + init + "\n"
constructors.append(s)
return constructors
def genValues(n):
s = genstring(n, "T @;\n", "")
return s
def genAssignment(n):
s = "/// component-wise assignment\n"
s += "template<typename V>\n"
s += "void operator=(const " + classname(n) + "<V>& other) {\n"
s += genstring(n, f"\t@ = static_cast<T>(other.@);\n", "") + "};\n\n"
s += "template<typename N>\n"
s += "void operator=(const N& other) {\n"
s += genstring(n, f"\t@ = static_cast<T>(other);\n", "") + "};\n\n"
return s
def genArithmeticVectorial(n):
operators = []
for op in ["+", "-", "*", "/", "%"]:
s = "/// component-wise " + op + "\n"
s += "template<typename V>\n"
s += classname(n) + "<T> operator" + op + "(const " + classname(n) + "<V>& other) const { return "
s += classname(n) + "<T>(" + genstring(n, f"@ {op} static_cast<T>(other.@)") + "); };\n"
operators.append(s)
operators.append("\n")
for op in ["+=", "-=", "*=", "/=", "%="]:
s = "/// component-wise assignment" + op + "\n"
s += "template<typename V>\n"
s += "void operator" + op + "(const " + classname(n) + "<V>& other) {\n"
s += genstring(n, f"\t@ {op} static_cast<T>(other.@);\n", "") + "};\n"
operators.append(s)
operators.append("\n")
return operators
def genArithmeticScalar(n):
operators = []
for op in ["+", "-", "*", "/", "%"]:
s = "/// component-wise " + op + "\n"
s += "template<typename N>\n"
s += classname(n) + "<T> operator" + op + "(const N& other) const { return "
s += classname(n) + "<T>(" + genstring(n, f"@ {op} static_cast<T>(other.@)") + "); };\n"
operators.append(s)
operators.append("\n")
for op in ["+=", "-=", "*=", "/=", "%="]:
s = "/// component-wise assignment" + op + "\n"
s += "template<typename N>\n"
s += "void operator" + op + "(const N& other) {\n"
s += genstring(n, f"\t@ {op} static_cast<T>(other.@);\n", "") + "};\n"
operators.append(s)
operators.append("\n")
return operators
def genComparisonVectorial(n):
operators = []
for op in ["==", "<", ">"]:
s = "/// component-wise comparison " + op + " (and)\n"
s += "template<typename N>\n"
s += "bool operator" + op + "(const " + classname(n) + "<N>& other) const { return "
s += genstring(n, f"@ {op} other.@", " and ") + "; };\n"
operators.append(s)
operators.append("\n")
for op, antiop in { "!=": "==", "<=": ">", ">=": "<" }.items():
s = "/// component-wise comparison " + op + " (and)\n"
s += "template<typename N>\n"
s += "bool operator" + op + "(const " + classname(n) + "<N>& other) const { return "
s += genstring(n, f"@ {antiop} other.@", " and ") + "; };\n"
operators.append(s)
operators.append("\n")
return operators
def genComparisonScalar(n):
operators = []
for op in ["==", "<", ">"]:
s = "/// component-wise comparison " + op + " (and)\n"
s += "template<typename N>\n"
s += "bool operator" + op + "(const N& other) const { return "
s += genstring(n, f"@ {op} other.@", " and ") + "; };\n"
operators.append(s)
operators.append("\n")
for op, antiop in { "!=": "==", "<=": ">", ">=": "<" }.items():
s = "/// component-wise comparison " + op + " (and)\n"
s += "template<typename N>\n"
s += "bool operator" + op + "(const N& other) const { return "
s += genstring(n, f"@ {antiop} other.@", " and ") + "; };\n"
operators.append(s)
return operators
def genIterator(n):
s = """struct Iterator {
public:
using value_type = T;
Iterator() : ptr(nullptr) {};
Iterator(T* ptr) : ptr(ptr) {};
T& operator*() { return *ptr; };
Iterator& operator=(const Iterator& other) {
ptr = other.ptr;
return *this;
};
Iterator& operator++() { ptr += sizeof(T); return *this; };
Iterator operator++(int) { auto copy = *this; ptr += sizeof(T); return copy; };
friend int operator-(Iterator lhs, Iterator rhs) {
return lhs.ptr - rhs.ptr;
};
bool operator==(const Iterator& other) const { return ptr == other.ptr; };
// bool operator!=(const Iterator& other) const { return ptr != other.ptr; };
private:
T* ptr;
};
"""
s += "const Iterator cbegin() const { return Iterator(&" + letters(n, 0) + "); };\n"
s += "const Iterator cend() const { return Iterator(&" + letters(n, n-1) + "); };\n"
s += "const Iterator begin() const { return Iterator(&" + letters(n, 0) + "); };\n"
s += "const Iterator end() const { return Iterator(&" + letters(n, n-1) + "); };\n\n"
return s
def genFunctional(n):
s = "/// Returns the absolute value of the vector\n"
s += "inline " + float_type + " abs() const { return std::sqrt(" + genstring(n, f"static_cast<{float_type}>(@ * @)", " + ") + "); };"
if n == 2:
s += "/// Returns x/y\n"
s += "inline " + float_type + " ratio() const { return static_cast<" + float_type + ">(x) / y; };"
s += "/// Returns y/x\n"
s += "inline " + float_type + " inverseRatio() const { return static_cast<" + float_type + ">(y) / x; };"
s += "/// Returns the min of the components\n"
s += "inline T min() const { return std::min_element(cbegin(), cend()); };\n"
s += "/// Returns the max of the components\n"
s += "inline T max() const { return std::max_element(cbegin(), cend()); };\n"
s += "/// Scalar product\n"
s += "template<typename V>\n"
s += "inline " + classname(n) + "<T> dot(const " + classname(n) + "<V>& other) { return " + classname(n) + "<T>("
s += genstring(n, "@ * static_cast<T>(other.@)", " + ") + "); };\n"
return s
def genUtility(n):
s = "std::string to_string() const { return \"(\" + " + genstring(n, "std::to_string(@)", " + \", \" + ") + " + \")\"; };\n"
return s
def genUsing(n):
global types
s = ""
for t, c in types.items():
s += f"using {classname(n)}{c} = {classname(n)}<{t}>;\n"
return s
def generateFile(vectors):
depth = 0
s = "#pragma once\n\n#include <string>\n#include <cmath>\n#include <algorithm>\n\n"
if namespace:
s += "namespace " + namespace + " {\n"
depth = 1
for v in vectors:
s += generateVector(v, depth)
s += "\n"
for v in vectors:
s += transformString(genUsing(v), depth)
s += "\n"
if namespace:
depth -= 1
s += transformString("} // namespace " + namespace + "\n", depth)
for i in range(1, 5):
s = s.replace("\n" + i * tab + "\n", "\n\n")
return s
def generateVector(n, depth):
s = transformString("""/**
* @brief Class containing $ numbers
*/
template<typename T>
class vec$ {
public:
""".replace("$", str(n)), depth)
depth += 1
s += transformString("// Constructors\n", depth)
for c in genConstructors(n):
s += transformString(c, depth + 1)
s += transformString("// Values\n", depth)
s += transformString(genValues(n), depth + 1)
s += transformString("// Assignment\n", depth)
s += transformString(genAssignment(n), depth + 1)
s += transformString("// Arithmetic\n", depth - 1)
s += transformString("// Vectorial\n", depth)
for o in genArithmeticVectorial(n):
s += transformString(o, depth + 1)
s += transformString("// Scalar\n", depth)
for o in genArithmeticScalar(n):
s += transformString(o, depth + 1)
s += transformString("// Comparison\n", depth - 1)
s += transformString("// Vectorial\n", depth)
for o in genComparisonVectorial(n):
s += transformString(o, depth + 1)
s += transformString("// Scalar\n", depth)
for o in genComparisonScalar(n):
s += transformString(o, depth + 1)
s += transformString("// Functional\n", depth - 1)
s += transformString(genFunctional(n), depth + 1)
s += transformString("// Utility\n", depth - 1)
s += transformString(genUtility(n), depth + 1)
s += transformString(genIterator(n), depth + 1)
s += transformString("}; // vec" + str(n) + "\n", depth - 1)
return s
def write_file(s):
global filename
if path.exists(filename):
answer = input("File " + filename + "already exists. Overwrite? (y/n): ")
if answer not in "yY":
return
with open(filename, "w") as file:
file.write(s)
if __name__ == "__main__":
write_file(generateFile(vectors))

View File

@ -0,0 +1,345 @@
#pragma once
#define LOG_MULTITHREAD
#include <iostream>
#include <string>
#include <concepts>
#include <ranges>
#include <unordered_map>
#ifdef LOG_MULTITHREAD
#include <mutex>
#endif
namespace gz {
inline const char* boolToString(bool b) {
return b ? "true" : "false";
}
const int logLength = 100;
constexpr unsigned int TIMESTAMP_CHAR_COUNT = 22;
constexpr unsigned int POSTPREFIX_CHAR_COUNT = 2;
//
// CONCEPTS
//
/// is std::string or convertible to std::string
template<typename T>
concept Stringy = std::same_as<T, std::string> || std::convertible_to<T, std::string_view>;
/// has .to_string() member
template<typename T>
concept HasToString = !Stringy<T> && requires(T t) { { t.to_string() }-> Stringy; };
/// works with std::to_string(), except bool
template<typename T>
concept WorksToString = !std::same_as<T, bool> && !Stringy<T> && !HasToString<T> && requires(T t) { { std::to_string(t) } -> Stringy; };
/// string-like, has .to_string() member, works with std::to_string() or bool
template<typename T>
concept PrintableNoPtr = Stringy<T> || HasToString<T> || WorksToString<T> || std::same_as<T, bool>;
template<typename T>
concept Printable = PrintableNoPtr<T> || requires(T t) { { *(t.get()) } -> PrintableNoPtr; };
/// Type having printable .x and .y members
template<typename T>
concept Vector2Printable = !Printable<T> &&
requires(T t) { { t.x } -> Printable; { t.y } -> Printable; };
/// Pair having printable elements
template<typename T>
concept PairPrintable = !Vector2Printable<T> && !Printable<T> &&
requires(T p) { { p.first } -> Printable; } && (requires(T p){ { p.second } -> Printable; } || requires(T p){ { p.second } -> Vector2Printable; });
/// Container having printable elements
template<typename T>
concept ContainerPrintable = !Printable<T> && !Vector2Printable<T> && !PairPrintable<T> &&
std::ranges::forward_range<T> && (Printable<std::ranges::range_reference_t<T>> || Vector2Printable<std::ranges::range_reference_t<T>>);
/// Container having printable pairs
template<typename T>
concept MapPrintable = !Printable<T> && !Vector2Printable<T> && !ContainerPrintable<T> &&
std::ranges::forward_range<T> && PairPrintable<std::ranges::range_reference_t<T>>;
template<typename T>
concept LogableNotPointer = Printable<T> || Vector2Printable<T> || PairPrintable<T> || ContainerPrintable<T> || MapPrintable<T>;
template<typename T>
concept LogableSmartPointer = requires(T t) { { *(t.get()) } -> LogableNotPointer; };
//
// COLORS
//
/// Colors to be used in Log::clog
enum Color {
RESET, BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE, BBLACK, BRED, BGREEN, BYELLOW, BBLUE, BMAGENTA, BCYAN, BWHITE
};
extern const char* COLORS[];
//
// LOG
//
/**
* @brief Define types that can be logged with Log
* @details
* As of now you can log type T with instance t:
* -# Any string-like type
* -# Any type that works with std::to_string()
* -# Any type that has a to_string() member that returns a string
* -# Any type with t.x and t.y, provided t.x and t.y satisfy one of 1-3
* -# Any type with t.first, t.second provided t.first satisfies one of 1-3 and t.second satisfies 1-4
* -# Any type that has a forward_iterator which references any one of 1-5
*
* 1-6 include for example:
* - int, float, bool...
* - std::vector<std::string>, std::list<unsigned int>
* - std::map<A, vec2<float>> if A.to_string() returns a string
* - ...
*/
template<typename T>
concept Logable = LogableNotPointer<T> || LogableSmartPointer<T>;
template<typename T>
class vec2; // defined in gz_math.hpp
/**
* @brief Manages printing messages to stdout and to logfiles.
* @details
* @subsection log_threads Thread safety
* Log can use a static mutex for thread safety. To use this feature, you have to #define LOG_MULTITHREAD at the top of log.hpp.
* Note that log uses the default std::cout buffer, so you should make sure it is not being used while logging something.
*/
class Log {
public:
/**
* @brief Creates a log object, which can print messages to stdout and/or write them to a log file
* @details By creating multiple instances with different parameters, logs can be easily turned on/off for different usages.
*
* @param logfile: Name of the file in the logs folder
* @param showLog: Wether to print the messages to stdout
* @param storeLog: Wether to save the messages to the logfile
* @param prefix: A prefix that comes between the timestamp and the message. ": " is automatically appended to the prefix
* @param prefixColor: The color of the prefix
*
* @note Colors will only be shown when written to stdout, not in the logfile.
*/
Log(std::string logfile="log.log", bool showLog=true, bool storeLog=true, std::string&& prefix="", Color prefixColor=RESET);
~Log();
/**
* @brief Logs a message
* @details Depending on the settings of the log instance, the message will be printed to stdout and/or written to the logfile.
* The current date and time is placed before the message.
* The message will look like this:
* <time>: <prefix>: <message>
* where time will be white, prefix in prefixColor and message white.
* @param args Any number of arguments that satisfy concept Logable
*
*/
template<Logable... Args>
void log(Args&&... args) {
#ifdef LOG_MULTITHREAD
mtx.lock();
#endif
logArray[iter] = getTime();
logArray[iter] += prefix;
vlog(" ", std::forward<Args>(args)...);
logArray[iter] += "\n";
std::cout << std::string_view(logArray[iter].c_str(), TIMESTAMP_CHAR_COUNT - 1) <<
COLORS[prefixColor] << prefix << COLORS[RESET] <<
std::string_view(logArray[iter].begin() + prefixLength, logArray[iter].end());
if (++iter >= logLength) {
iter = 0;
writeLog();
}
#ifdef LOG_MULTITHREAD
mtx.unlock();
#endif
}
/**
* @brief Logs a message. Overload for convenience, same behavior as log()
*/
template<Logable... Args>
void operator() (Args&&... args) {
log(std::forward<Args>(args)...);
}
/**
* @brief Log an error
* @details Prints the message with a red "Error: " prefix.
* The message will look like this:
* <time>: <prefix>: Error: <message>
* where time will be white, prefix in prefixColor, Error in red and message white.
* @param args Any number of arguments that satisfy concept Logable
*/
template<Logable... Args>
void error(Args&&... args) {
clog(RED, "Error", WHITE, std::forward<Args>(args)...);
}
/**
* @brief Log a warnign
* @details Prints the message with a yellow "Warning: " prefix.
* The message will look like this:
* <time>: <prefix>: Warning: <message>
* where time will be white, prefix in prefixColor, Warning in yellow and message white.
* @param args Any number of arguments that satisfy concept Logable
*/
template<Logable... Args>
void warning(Args&&... args) {
clog(YELLOW, "Warning", WHITE, std::forward<Args>(args)...);
}
/**
* @brief Log a message in a certain color and with a colored type
* @details
* The message will look like this:
* <time>: <prefix>: <type>: <message>
* where time will be white, prefix in prefixColor, type in typeColor and message in messageColor
* @param args Any number of arguments that satisfy concept Logable
*/
template<Logable... Args>
void clog(Color typeColor, std::string&& type, Color messageColor, Args&&... args) {
#ifdef LOG_MULTITHREAD
mtx.lock();
#endif
logArray[iter] = getTime();
logArray[iter] += prefix + ": " + type + ": ";
vlog(" ", std::forward<Args>(args)...);
logArray[iter] += "\n";
std::cout << std::string_view(logArray[iter].c_str(), TIMESTAMP_CHAR_COUNT - 1) <<
COLORS[prefixColor] << prefix << COLORS[typeColor] <<
std::string_view(logArray[iter].begin() + prefixLength + POSTPREFIX_CHAR_COUNT, logArray[iter].begin() + prefixLength + type.size() + 2 * POSTPREFIX_CHAR_COUNT) <<
COLORS[messageColor] << std::string_view(logArray[iter].begin() + prefixLength + type.size() + 2 * POSTPREFIX_CHAR_COUNT, logArray[iter].end()) << COLORS[RESET];
if (++iter >= logLength) {
iter = 0;
writeLog();
}
#ifdef LOG_MULTITHREAD
mtx.unlock();
#endif
}
private:
template<Stringy T, Logable... Args>
void vlog(const char* appendChars, T&& t, Args&&... args) {
logArray[iter] += t;
logArray[iter] += appendChars;
vlog(" ", std::forward< Args>(args)...);
}
template<HasToString T, Logable... Args>
void vlog(const char* appendChars, T&& t, Args&&... args) {
logArray[iter] += t.to_string();
logArray[iter] += appendChars;
vlog(" ", std::forward< Args>(args)...);
}
template<WorksToString T, Logable... Args>
void vlog(const char* appendChars, T&& t, Args&&... args) {
logArray[iter] += std::to_string(t);
logArray[iter] += appendChars;
vlog(" ", std::forward< Args>(args)...);
}
template<typename T, Logable... Args>
requires(std::same_as<T, bool>)
void vlog(const char* appendChars, T&& b, Args&&... args) {
logArray[iter] += boolToString(b);
logArray[iter] += appendChars;
vlog(" ", std::forward< Args>(args)...);
}
template<Vector2Printable V, Logable... Args>
void vlog(const char* appendChars, V&& v, Args&&... args) {
logArray[iter] += "(";
vlog("", v.x);
logArray[iter] += ", ";
vlog("", v.y);
logArray[iter] += ")";
logArray[iter] += appendChars;
vlog(" ", std::forward< Args>(args)...);
}
template<PairPrintable P, Logable... Args>
void vlog(const char* appendChars, P&& p, Args&&... args) {
logArray[iter] += "(";
vlog("", p.first);
logArray[iter] += ", ";
vlog("" ,p.second);
logArray[iter] += ")";
logArray[iter] += appendChars;
vlog(" ", std::forward< Args>(args)...);
}
template<ContainerPrintable T, Logable... Args>
void vlog(const char* appendChars, T&& t, Args&&... args) {;
logArray[iter] += "[";
for (auto it = t.begin(); it != t.end(); it++) {
vlog(", ", *it);
}
logArray[iter] += "]";
logArray[iter] += appendChars;
vlog(" ", std::forward< Args>(args)...);
}
template<MapPrintable T, Logable... Args>
void vlog(const char* appendChars, T&& t, Args&&... args) {
logArray[iter] += "{";
for (const auto& [k, v] : t) {
vlog(": ", k);
vlog(", ", v);
}
logArray[iter] += "}";
logArray[iter] += appendChars;
vlog(" ", std::forward<Args>(args)...);
}
/// Log any logable element that is stored in a pointer
template<LogableSmartPointer T, Logable... Args>
void vlog(const char* appendChars, T&& t, Args&&... args) {
vlog("", *t);
vlog(" ", std::forward<Args>(args)...);
}
void vlog(const char* appendChars) {};
private:
std::array<std::string, logLength> logArray;
size_t iter;
std::string logFile;
bool showLog;
bool storeLog;
void writeLog();
Color prefixColor;
std::string prefix;
std::string::size_type prefixLength;
char time[TIMESTAMP_CHAR_COUNT];
char* getTime();
#ifdef LOG_MULTITHREAD
static std::mutex mtx;
#endif
};
extern Log genLog;
extern Log gameLog;
extern Log engLog;
}
/**
* @file
* @brief A logger capable of logging lots of different types and containers to stdout and/or a logfile.
*/

View File

@ -856,7 +856,7 @@ WARN_LOGFILE =
# spaces. See also FILE_PATTERNS and EXTENSION_MAPPING
# Note: If this tag is empty the current directory is searched.
INPUT = . Container Math Util
INPUT = . container math util
# This tag can be used to specify the character encoding of the source files
# that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses

213
src/container/queue.hpp Normal file
View File

@ -0,0 +1,213 @@
/* #include "util.hpp" */
#include <iostream>
#include <vector>
#include <iterator>
#include <algorithm>
#include <concepts>
#include <thread>
namespace gz::util {
// from util.hpp
template<std::unsigned_integral I, std::unsigned_integral S>
inline void incrementIndex(I& i, const S containerSize) {
if (i < containerSize - 1) { i++; }
else { i = 0; }
}
template<std::unsigned_integral I, std::unsigned_integral S>
inline void decrementIndex(I& i, const S containerSize) {
if (i > 0) { i--; }
else { i = containerSize - 1; }
}
template<std::unsigned_integral I, std::unsigned_integral S>
inline I getIncrementedIndex(const I i, const S containerSize) {
if (i < containerSize - 1) { return i + 1; }
else { return 0; }
}
template<std::unsigned_integral I, std::unsigned_integral S>
inline I getDecrementedIndex(const I i, const S containerSize) {
if (i > 0) { return i - 1; }
else { return containerSize - 1; }
}
/// Make wrap incices around: i = size + 2 -> i = 2, i = -2 -> i = size - 2
template<std::integral I, std::unsigned_integral S>
size_t getValidIndex(const I i, const S containerSize) {
if (i < 0) {
return containerSize - (-i) % containerSize - 1;
}
else if (i >= static_cast<int>(containerSize)) {
return i % containerSize;
}
return i;
}
/**
* @brief A thread-safe queue with a dynamic size up until a maximum size
* @details
* Elements are ordered by the time they were put in the queue: You can only insert an element at the front and you can only get the element from the end.
*
* The queue uses a ringbuffer (which itself uses a vector) for data storage. Reallocations happen when an element is inserted into a queue with n < maxSize elements and the size of the ringbuffer is n.
* The queue will then increase the size of the ringbuffer by 10% (at least 3 elements, but the size will never be greater than maxSize).
*
* Note that "n elements" means n elements that were inserted and not accessed through get(). Elements might still by in memory after they have been get().
*
* The queue is thread safe, IF: the end of the queue is only processed by a single thread. Data races can occur when multiple threads try to retrieve elements (or clear() the queue),
* since the information from hasElement() might not be valid anymore until getCopy() gets called. Putting elements into the queue can be done by multiple threads.
*/
template<std::swappable T>
class Queue {
public:
/**
* @brief Create a new queue
* @param size The size the queue can grow to without reallocating memory.
* @param maxSize The maximum size of the queue. If more than maxSize elements are inserted, the oldest elements are discarded until size == maxSize.
*/
Queue(size_t size=10, size_t maxSize=-1);
void push_back(T& t);
void push_back(T&& t) { push_back(t); };
void emplace_back(T&& t);
/**
* @brief Check if the contains has an element that can be retrieved by get()
*/
bool hasElement();
/**
* @brief Get a reference to the oldest element
* @returns Reference to the oldest element.
* @note The reference is at least valid until the next call to push_back/emplace_back. If you are in a multithreaded environment, it is probably better to use getCopy().
* @warning Leads to undefined behavior when there is no element to get. Always check hasElement() first.
*/
T& getRef();
/**
* @brief Get a copy of the oldest element
* @returns Copy of the oldest element.
* @warning Leads to undefined behavior when there is no element to get. Always check hasElement() first.
*/
T getCopy();
/**
* @brief Remove all elements
*/
void clear();
std::vector<T>& getInternalBuffer() { return buffer; }
private:
/**
* @brief Resize the queue (if possible)
* @details
* After calling this, readIndex and writeIndex will be valid so that a push_back or emplace_back can be performed.
*/
void resize();
size_t writeIndex; ///< Points to the element that was last written
size_t readIndex; ///< Points to the element that was last read
std::vector<T> buffer;
size_t vectorCapacity;
size_t maxSize;
std::mutex mtx;
};
template<std::swappable T>
Queue<T>::Queue(size_t capacity, size_t maxSize)
: vectorCapacity(capacity), maxSize(maxSize) {
buffer.reserve(capacity);
/* buffer.resize(2); */
writeIndex = capacity - 1;
readIndex = capacity - 1;
}
template<std::swappable T>
void Queue<T>::resize() {
// if vector is at maxSize, "loose" the oldest element
if (buffer.size() == maxSize) {
incrementIndex(readIndex, buffer.size());
return;
}
// if not at end of vector rotate so that oldest element is first
if (writeIndex != vectorCapacity - 1) {
// if not at end, reserve more space and move elements
std::rotate(buffer.begin(), buffer.begin() + readIndex, buffer.end());
readIndex = 0;
writeIndex = vectorCapacity - 1;
}
// reserve 10% more space (at least space for 3 more elements).
buffer.reserve(std::min(std::max(static_cast<size_t>(1.1 * vectorCapacity), vectorCapacity + 3), maxSize));
vectorCapacity = buffer.capacity();
}
template<std::swappable T>
void Queue<T>::push_back(T& t) {
mtx.lock();
// check if this would write into oldest element
if (readIndex == getIncrementedIndex(writeIndex, vectorCapacity)) { resize(); }
util::incrementIndex(writeIndex, vectorCapacity);
if (buffer.size() < vectorCapacity) {
buffer.push_back(t);
}
else {
buffer[writeIndex] = t;
}
mtx.unlock();
/* std::cout << "queue after pushback. ri: " << readIndex << " - wi: " << writeIndex << " - size: " << buffer.size() << " - cap: " << vectorCapacity << "\n"; */
}
template<std::swappable T>
void Queue<T>::emplace_back(T&& t) {
mtx.lock();
if (readIndex == getIncrementedIndex(writeIndex, vectorCapacity)) { resize(); }
util::incrementIndex(writeIndex, vectorCapacity);
if (buffer.size() < vectorCapacity) {
buffer.emplace_back(std::move(t));
}
else {
buffer[writeIndex] = std::move(t);
}
mtx.unlock();
}
template<std::swappable T>
bool Queue<T>::hasElement() {
mtx.lock();
bool hasElement = writeIndex != readIndex;
mtx.unlock();
return hasElement;
}
template<std::swappable T>
T& Queue<T>::getRef() {
mtx.lock();
incrementIndex(readIndex, vectorCapacity);
size_t i = readIndex;
T& element = buffer[i];
mtx.unlock();
return buffer[i];
}
template<std::swappable T>
T Queue<T>::getCopy() {
mtx.lock();
incrementIndex(readIndex, vectorCapacity);
size_t i = readIndex;
mtx.unlock();
return std::move(buffer[i]); /// @todo could this in some stupid edge case lead to a data race?
}
template<std::swappable T>
void Queue<T>::clear() {
mtx.lock();
writeIndex = 0;
readIndex = 0;
mtx.unlock();
}
}

View File

@ -0,0 +1,222 @@
#pragma once
/* #include "log.hpp" */
#include "util.hpp"
#include <vector>
#include <iterator>
#include <algorithm>
#include <concepts>
namespace gz {
/**
* @brief A fixed size buffer that can store data continuously without needing to move data or reallocate memory
* @details
* A buffer with size n will store the n newest elements that were inserted. If the number of inserted elements is < n, the buffers size will also be < n.
*
* The buffer can be @ref RingBuffer::resize() "resized", which potentially leads to a reallocation of memory.
*
* @subsection ringbuffer_iteration Iteration
* The RingBuffer has its own bidirectional iterator. The normal direction is from newest to oldest element.
* @code
* RingBuffer<int> rb(4);
* for (int i = 0; i < 7; i++) { rb.push_back(i); }
* for (auto it = rb.begin(); it != rb.end(); it++) {
* std::cout << *it << " ";
* }
* @endcode
* will produce @code 6 5 4 3 @endcode
*
* If the buffer is empty, all iterators point to the separator element (end() == rend() == begin() == rbegin()).
*
* @subsection ringbuffer_technical_details Technical Details
* A buffer with size n will store its objects in a std::vector with size n+1, where the additional element serves as a separator between the newest and the oldest element.
* It is technically the real oldest element and could be accessed using end() or rend(), which will always point to this element (meaning end() == rend()), giving you a n+1 sized buffer.
* However, this element will be default initialized until n+1 elements have been inserted into the buffer, so it is not advisable to use this extra element.
*
* The RingBuffer satisfies concept std::ranges::bidirectional_range and RingBuffer::Iterator satisfies std::bidirectional_iterator
*
* The writeIndex will always point to the element that was last written.
*
*/
template<std::swappable T>
class RingBuffer {
public:
RingBuffer(size_t size=10);
/**
* @brief Bidirectonal iterator for the RingBuffer
* @todo make a const and non-const version, since const here is all over the place
*/
struct Iterator {
public:
Iterator(const RingBuffer<T>& b, size_t index) : b(b), ptr(const_cast<T*>(&b.buffer.at(index))) {}
Iterator(const Iterator& other) : b(other.b), ptr(other.ptr) {}
// Needed for std::input_iterator
using value_type = T;
T& operator*() const { return *ptr; }
Iterator& operator=(const Iterator& other) {
b = other.b;
ptr = other.ptr;
return this;
}
Iterator& operator++() {
if (ptr == &*b.buffer.begin()) { ptr = const_cast<T*>(&*b.buffer.rbegin()); }
else { ptr--; }
return *this;
}
Iterator operator++(int) {
auto copy = *this;
if (ptr == &*b.buffer.begin()) { ptr = const_cast<T*>(&*b.buffer.rbegin()); }
else { ptr--; }
return copy;
}
friend int operator-(Iterator lhs, Iterator rhs) {
return lhs.getCurrentIndex() - rhs.getCurrentIndex();
}
// Needed for std::forward_iterator
/// @warning Default constructor has to be defined for std::forward_iterator but can not be used, since reference to RingBuffer<T> can not be initialized! Your compiler should (hopefully) not allow it.
Iterator() : ptr(nullptr) {};
bool operator==(const Iterator& other) const {
return this->ptr == other.ptr;
}
// Needed for std::bidirectional_iterator
Iterator& operator--() {
if (ptr == &*b.buffer.rbegin()) { ptr = const_cast<T*>(&*b.buffer.begin()); }
else { ptr++; }
return *this;
}
Iterator operator--(int) {
auto copy = *this;
if (ptr == &*b.buffer.rbegin()) { ptr = const_cast<T*>(&*b.buffer.begin()); }
else { ptr++; }
return copy;
}
// Not needed )
/* friend Iterator operator+(Iterator lhs, int i) { */
/* return Iterator(lhs.b, &lhs.b.buffer[lhs.getValidIndex(lhs.getCurrentIndex() + i)]); */
/* } */
/* friend Iterator operator-(Iterator lhs, int i) { */
/* return Iterator(lhs.b, &lhs.b.buffer[lhs.getValidIndex(lhs.getCurrentIndex() - i)]); */
/* } */
/* friend Iterator operator+(int i, Iterator rhs) { */
/* return Iterator(rhs.b, &rhs.b.buffer[rhs.getValidIndex(rhs.getCurrentIndex() + i)]); */
/* } */
/* Iterator& operator+=(int i) { */
/* ptr = &b.buffer[getValidIndex(getCurrentIndex() + i)]; */
/* return this; */
/* } */
/* Iterator& operator-=(int i) { */
/* ptr = &b.buffer[getValidIndex(getCurrentIndex() - i)]; */
/* return this; */
/* } */
/* bool operator!=(const Iterator& other) const { */
/* return this->ptr != other.ptr; */
/* } */
/// Get the index of the vector that ptr points to
std::string to_string() const {
return "Element: " + std::to_string(*ptr) + ", Index: " + std::to_string(getCurrentIndex()) + ", Pointer: " + std::to_string(reinterpret_cast<long>(ptr));
}
private:
size_t getCurrentIndex() const {
return reinterpret_cast<long>(ptr - &*b.buffer.begin());
}
T* ptr;
const RingBuffer<T>& b;
};
void push_back(T& t);
void push_back(T&& t) { push_back(t); };
void emplace_back(T&& t);
/**
* @brief Return an iterator pointing to the newest object
*/
const Iterator cbegin() const { return Iterator(*this, writeIndex); }
/**
* @brief Return an iterator poiting to the element preceeding the oldest element
*/
const Iterator cend() const { return Iterator(*this, util::getIncrementedIndex(writeIndex, buffer.size())); }
/**
* @brief Return an iterator pointing to the oldest object
*/
const Iterator crbegin() const { return Iterator(*this, util::getIncrementedIndex(writeIndex + 1, buffer.size())); }
/**
* @brief Return an iterator pointing to the element following the newest element
*/
const Iterator crend() const { return Iterator(*this, util::getIncrementedIndex(writeIndex, buffer.size())); }
const Iterator begin() { return Iterator(*this, writeIndex); }
const Iterator end() { return Iterator(*this, util::getIncrementedIndex(writeIndex, buffer.size())); }
const Iterator rbegin() { return Iterator(*this, util::getIncrementedIndex(writeIndex + 1, buffer.size())); }
const Iterator rend() { return Iterator(*this, util::getIncrementedIndex(writeIndex, buffer.size())); }
/**
* @brief Resize the buffer to contain max size elements
* @details
* If the current size is greater than size, the buffer is reduced to the newest elements that fit size. \n
* If the current size is smaller than size, the buffer size remains but it will be able to grow during element insertion until size is reached.
*/
void resize(const size_t size);
size_t capacity() const { return vectorCapacity - 1; }
size_t size() const { return buffer.size() - 1; }
private:
size_t writeIndex; ///< Points to the element that was last written
std::vector<T> buffer;
size_t vectorCapacity;
};
template<std::swappable T>
RingBuffer<T>::RingBuffer(size_t capacity) {
buffer.reserve(capacity + 1);
buffer.resize(1);
vectorCapacity = capacity + 1;
writeIndex = 0;
}
template<std::swappable T>
void RingBuffer<T>::resize(size_t size) {
if (size + 1 > buffer.capacity()) { // when growing
// point writeIndex to separator
util::incrementIndex(writeIndex, buffer.size());
// separator element becomes first element -> vector grows while inserting elements
std::rotate(buffer.begin(), buffer.begin() + writeIndex, buffer.end());
buffer.reserve(size + 1);
writeIndex = buffer.size() - 1;
}
else if (size + 1 < buffer.size()) { // when shrinking
// point writeIndex to separator
util::incrementIndex(writeIndex, buffer.size());
// separator becomes last element in smaller vector -> resize cuts oldest elements
std::rotate(buffer.begin(), buffer.begin() + util::getValidIndex(static_cast<int>(writeIndex - size), buffer.size()), buffer.end());
buffer.resize(size + 1);
writeIndex = util::getValidIndex(static_cast<int>(buffer.size() - 2), buffer.size());
}
vectorCapacity = size + 1;
}
template<std::swappable T>
void RingBuffer<T>::push_back(T& t) {
util::incrementIndex(writeIndex, vectorCapacity);
if (buffer.size() < vectorCapacity) {
buffer.push_back(t);
}
else {
buffer[writeIndex] = t;
}
}
template<std::swappable T>
void RingBuffer<T>::emplace_back(T&& t) {
util::incrementIndex(writeIndex, vectorCapacity);
if (buffer.size() < vectorCapacity) {
buffer.emplace_back(std::move(t));
}
else {
buffer[writeIndex] = std::move(t);
}
}
}

715
src/math/vec.hpp Normal file
View File

@ -0,0 +1,715 @@
#pragma once
#include<string>
#include <cmath>
#include <algorithm>
namespace gz {
/**
* @brief Class containing 2 numbers
*/
template<typename T>
class vec2 {
public:
// Constructors
/// Default constructor
vec2() : x(0), y(0) {};
/// Create a vec2 from n n
template<typename N0, typename N1>
vec2(N0 n0, N1 n1) : x(static_cast<T>(n0)), y(static_cast<T>(n1)) {};
/// Create a vec2 from vec2
template<typename V0>
vec2(const vec2<V0>& v0) : x(static_cast<T>(v0.x)), y(static_cast<T>(v0.y)) {};
// Values
T x;
T y;
// Assignment
/// component-wise assignment
template<typename V>
void operator=(const vec2<V>& other) {
x = static_cast<T>(other.x);
y = static_cast<T>(other.y);
};
template<typename N>
void operator=(const N& other) {
x = static_cast<T>(other);
y = static_cast<T>(other);
};
// Arithmetic
// Vectorial
/// component-wise +
template<typename V>
vec2<T> operator+(const vec2<V>& other) const { return vec2<T>(x + static_cast<T>(other.x), y + static_cast<T>(other.y)); };
/// component-wise -
template<typename V>
vec2<T> operator-(const vec2<V>& other) const { return vec2<T>(x - static_cast<T>(other.x), y - static_cast<T>(other.y)); };
/// component-wise *
template<typename V>
vec2<T> operator*(const vec2<V>& other) const { return vec2<T>(x * static_cast<T>(other.x), y * static_cast<T>(other.y)); };
/// component-wise /
template<typename V>
vec2<T> operator/(const vec2<V>& other) const { return vec2<T>(x / static_cast<T>(other.x), y / static_cast<T>(other.y)); };
/// component-wise %
template<typename V>
vec2<T> operator%(const vec2<V>& other) const { return vec2<T>(x % static_cast<T>(other.x), y % static_cast<T>(other.y)); };
/// component-wise assignment+=
template<typename V>
void operator+=(const vec2<V>& other) {
x += static_cast<T>(other.x);
y += static_cast<T>(other.y);
};
/// component-wise assignment-=
template<typename V>
void operator-=(const vec2<V>& other) {
x -= static_cast<T>(other.x);
y -= static_cast<T>(other.y);
};
/// component-wise assignment*=
template<typename V>
void operator*=(const vec2<V>& other) {
x *= static_cast<T>(other.x);
y *= static_cast<T>(other.y);
};
/// component-wise assignment/=
template<typename V>
void operator/=(const vec2<V>& other) {
x /= static_cast<T>(other.x);
y /= static_cast<T>(other.y);
};
/// component-wise assignment%=
template<typename V>
void operator%=(const vec2<V>& other) {
x %= static_cast<T>(other.x);
y %= static_cast<T>(other.y);
};
// Scalar
/// component-wise +
template<typename N>
vec2<T> operator+(const N& other) const { return vec2<T>(x + static_cast<T>(other.x), y + static_cast<T>(other.y)); };
/// component-wise -
template<typename N>
vec2<T> operator-(const N& other) const { return vec2<T>(x - static_cast<T>(other.x), y - static_cast<T>(other.y)); };
/// component-wise *
template<typename N>
vec2<T> operator*(const N& other) const { return vec2<T>(x * static_cast<T>(other.x), y * static_cast<T>(other.y)); };
/// component-wise /
template<typename N>
vec2<T> operator/(const N& other) const { return vec2<T>(x / static_cast<T>(other.x), y / static_cast<T>(other.y)); };
/// component-wise %
template<typename N>
vec2<T> operator%(const N& other) const { return vec2<T>(x % static_cast<T>(other.x), y % static_cast<T>(other.y)); };
/// component-wise assignment+=
template<typename N>
void operator+=(const N& other) {
x += static_cast<T>(other.x);
y += static_cast<T>(other.y);
};
/// component-wise assignment-=
template<typename N>
void operator-=(const N& other) {
x -= static_cast<T>(other.x);
y -= static_cast<T>(other.y);
};
/// component-wise assignment*=
template<typename N>
void operator*=(const N& other) {
x *= static_cast<T>(other.x);
y *= static_cast<T>(other.y);
};
/// component-wise assignment/=
template<typename N>
void operator/=(const N& other) {
x /= static_cast<T>(other.x);
y /= static_cast<T>(other.y);
};
/// component-wise assignment%=
template<typename N>
void operator%=(const N& other) {
x %= static_cast<T>(other.x);
y %= static_cast<T>(other.y);
};
// Comparison
// Vectorial
/// component-wise comparison == (and)
template<typename N>
bool operator==(const vec2<N>& other) const { return x == other.x and y == other.y; };
/// component-wise comparison < (and)
template<typename N>
bool operator<(const vec2<N>& other) const { return x < other.x and y < other.y; };
/// component-wise comparison > (and)
template<typename N>
bool operator>(const vec2<N>& other) const { return x > other.x and y > other.y; };
/// component-wise comparison != (and)
template<typename N>
bool operator!=(const vec2<N>& other) const { return x == other.x and y == other.y; };
/// component-wise comparison <= (and)
template<typename N>
bool operator<=(const vec2<N>& other) const { return x > other.x and y > other.y; };
/// component-wise comparison >= (and)
template<typename N>
bool operator>=(const vec2<N>& other) const { return x < other.x and y < other.y; };
// Scalar
/// component-wise comparison == (and)
template<typename N>
bool operator==(const N& other) const { return x == other.x and y == other.y; };
/// component-wise comparison < (and)
template<typename N>
bool operator<(const N& other) const { return x < other.x and y < other.y; };
/// component-wise comparison > (and)
template<typename N>
bool operator>(const N& other) const { return x > other.x and y > other.y; };
/// component-wise comparison != (and)
template<typename N>
bool operator!=(const N& other) const { return x == other.x and y == other.y; };
/// component-wise comparison <= (and)
template<typename N>
bool operator<=(const N& other) const { return x > other.x and y > other.y; };
/// component-wise comparison >= (and)
template<typename N>
bool operator>=(const N& other) const { return x < other.x and y < other.y; };
// Functional
/// Returns the absolute value of the vector
inline float abs() const { return std::sqrt(static_cast<float>(x * x) + static_cast<float>(y * y)); };/// Returns x/y
inline float ratio() const { return static_cast<float>(x) / y; };/// Returns y/x
inline float inverseRatio() const { return static_cast<float>(y) / x; };/// Returns the min of the components
inline T min() const { return std::min_element(cbegin(), cend()); };
/// Returns the max of the components
inline T max() const { return std::max_element(cbegin(), cend()); };
/// Scalar product
template<typename V>
inline vec2<T> dot(const vec2<V>& other) { return vec2<T>(x * static_cast<T>(other.x) + y * static_cast<T>(other.y)); };
// Utility
std::string to_string() const { return "(" + std::to_string(x) + ", " + std::to_string(y) + ")"; };
struct Iterator {
public:
using value_type = T;
Iterator() : ptr(nullptr) {};
Iterator(T* ptr) : ptr(ptr) {};
T& operator*() { return *ptr; };
Iterator& operator=(const Iterator& other) {
ptr = other.ptr;
return *this;
};
Iterator& operator++() { ptr += sizeof(T); return *this; };
Iterator operator++(int) { auto copy = *this; ptr += sizeof(T); return copy; };
friend int operator-(Iterator lhs, Iterator rhs) {
return lhs.ptr - rhs.ptr;
};
bool operator==(const Iterator& other) const { return ptr == other.ptr; };
// bool operator!=(const Iterator& other) const { return ptr != other.ptr; };
private:
T* ptr;
};
const Iterator cbegin() const { return Iterator(&x); };
const Iterator cend() const { return Iterator(&y); };
const Iterator begin() const { return Iterator(&x); };
const Iterator end() const { return Iterator(&y); };
}; // vec2
/**
* @brief Class containing 3 numbers
*/
template<typename T>
class vec3 {
public:
// Constructors
/// Default constructor
vec3() : x(0), y(0), z(0) {};
/// Create a vec3 from n n n
template<typename N0, typename N1, typename N2>
vec3(N0 n0, N1 n1, N2 n2) : x(static_cast<T>(n0)), y(static_cast<T>(n1)), z(static_cast<T>(n2)) {};
/// Create a vec3 from n vec2
template<typename N0, typename V0>
vec3(N0 n0, const vec2<V0>& v0) : x(static_cast<T>(n0)), y(static_cast<T>(v0.x)), z(static_cast<T>(v0.y)) {};
/// Create a vec3 from vec2 n
template<typename V0, typename N0>
vec3(const vec2<V0>& v0, N0 n0) : x(static_cast<T>(v0.x)), y(static_cast<T>(v0.y)), z(static_cast<T>(n0)) {};
/// Create a vec3 from vec3
template<typename V0>
vec3(const vec3<V0>& v0) : x(static_cast<T>(v0.x)), y(static_cast<T>(v0.y)), z(static_cast<T>(v0.z)) {};
// Values
T x;
T y;
T z;
// Assignment
/// component-wise assignment
template<typename V>
void operator=(const vec3<V>& other) {
x = static_cast<T>(other.x);
y = static_cast<T>(other.y);
z = static_cast<T>(other.z);
};
template<typename N>
void operator=(const N& other) {
x = static_cast<T>(other);
y = static_cast<T>(other);
z = static_cast<T>(other);
};
// Arithmetic
// Vectorial
/// component-wise +
template<typename V>
vec3<T> operator+(const vec3<V>& other) const { return vec3<T>(x + static_cast<T>(other.x), y + static_cast<T>(other.y), z + static_cast<T>(other.z)); };
/// component-wise -
template<typename V>
vec3<T> operator-(const vec3<V>& other) const { return vec3<T>(x - static_cast<T>(other.x), y - static_cast<T>(other.y), z - static_cast<T>(other.z)); };
/// component-wise *
template<typename V>
vec3<T> operator*(const vec3<V>& other) const { return vec3<T>(x * static_cast<T>(other.x), y * static_cast<T>(other.y), z * static_cast<T>(other.z)); };
/// component-wise /
template<typename V>
vec3<T> operator/(const vec3<V>& other) const { return vec3<T>(x / static_cast<T>(other.x), y / static_cast<T>(other.y), z / static_cast<T>(other.z)); };
/// component-wise %
template<typename V>
vec3<T> operator%(const vec3<V>& other) const { return vec3<T>(x % static_cast<T>(other.x), y % static_cast<T>(other.y), z % static_cast<T>(other.z)); };
/// component-wise assignment+=
template<typename V>
void operator+=(const vec3<V>& other) {
x += static_cast<T>(other.x);
y += static_cast<T>(other.y);
z += static_cast<T>(other.z);
};
/// component-wise assignment-=
template<typename V>
void operator-=(const vec3<V>& other) {
x -= static_cast<T>(other.x);
y -= static_cast<T>(other.y);
z -= static_cast<T>(other.z);
};
/// component-wise assignment*=
template<typename V>
void operator*=(const vec3<V>& other) {
x *= static_cast<T>(other.x);
y *= static_cast<T>(other.y);
z *= static_cast<T>(other.z);
};
/// component-wise assignment/=
template<typename V>
void operator/=(const vec3<V>& other) {
x /= static_cast<T>(other.x);
y /= static_cast<T>(other.y);
z /= static_cast<T>(other.z);
};
/// component-wise assignment%=
template<typename V>
void operator%=(const vec3<V>& other) {
x %= static_cast<T>(other.x);
y %= static_cast<T>(other.y);
z %= static_cast<T>(other.z);
};
// Scalar
/// component-wise +
template<typename N>
vec3<T> operator+(const N& other) const { return vec3<T>(x + static_cast<T>(other.x), y + static_cast<T>(other.y), z + static_cast<T>(other.z)); };
/// component-wise -
template<typename N>
vec3<T> operator-(const N& other) const { return vec3<T>(x - static_cast<T>(other.x), y - static_cast<T>(other.y), z - static_cast<T>(other.z)); };
/// component-wise *
template<typename N>
vec3<T> operator*(const N& other) const { return vec3<T>(x * static_cast<T>(other.x), y * static_cast<T>(other.y), z * static_cast<T>(other.z)); };
/// component-wise /
template<typename N>
vec3<T> operator/(const N& other) const { return vec3<T>(x / static_cast<T>(other.x), y / static_cast<T>(other.y), z / static_cast<T>(other.z)); };
/// component-wise %
template<typename N>
vec3<T> operator%(const N& other) const { return vec3<T>(x % static_cast<T>(other.x), y % static_cast<T>(other.y), z % static_cast<T>(other.z)); };
/// component-wise assignment+=
template<typename N>
void operator+=(const N& other) {
x += static_cast<T>(other.x);
y += static_cast<T>(other.y);
z += static_cast<T>(other.z);
};
/// component-wise assignment-=
template<typename N>
void operator-=(const N& other) {
x -= static_cast<T>(other.x);
y -= static_cast<T>(other.y);
z -= static_cast<T>(other.z);
};
/// component-wise assignment*=
template<typename N>
void operator*=(const N& other) {
x *= static_cast<T>(other.x);
y *= static_cast<T>(other.y);
z *= static_cast<T>(other.z);
};
/// component-wise assignment/=
template<typename N>
void operator/=(const N& other) {
x /= static_cast<T>(other.x);
y /= static_cast<T>(other.y);
z /= static_cast<T>(other.z);
};
/// component-wise assignment%=
template<typename N>
void operator%=(const N& other) {
x %= static_cast<T>(other.x);
y %= static_cast<T>(other.y);
z %= static_cast<T>(other.z);
};
// Comparison
// Vectorial
/// component-wise comparison == (and)
template<typename N>
bool operator==(const vec3<N>& other) const { return x == other.x and y == other.y and z == other.z; };
/// component-wise comparison < (and)
template<typename N>
bool operator<(const vec3<N>& other) const { return x < other.x and y < other.y and z < other.z; };
/// component-wise comparison > (and)
template<typename N>
bool operator>(const vec3<N>& other) const { return x > other.x and y > other.y and z > other.z; };
/// component-wise comparison != (and)
template<typename N>
bool operator!=(const vec3<N>& other) const { return x == other.x and y == other.y and z == other.z; };
/// component-wise comparison <= (and)
template<typename N>
bool operator<=(const vec3<N>& other) const { return x > other.x and y > other.y and z > other.z; };
/// component-wise comparison >= (and)
template<typename N>
bool operator>=(const vec3<N>& other) const { return x < other.x and y < other.y and z < other.z; };
// Scalar
/// component-wise comparison == (and)
template<typename N>
bool operator==(const N& other) const { return x == other.x and y == other.y and z == other.z; };
/// component-wise comparison < (and)
template<typename N>
bool operator<(const N& other) const { return x < other.x and y < other.y and z < other.z; };
/// component-wise comparison > (and)
template<typename N>
bool operator>(const N& other) const { return x > other.x and y > other.y and z > other.z; };
/// component-wise comparison != (and)
template<typename N>
bool operator!=(const N& other) const { return x == other.x and y == other.y and z == other.z; };
/// component-wise comparison <= (and)
template<typename N>
bool operator<=(const N& other) const { return x > other.x and y > other.y and z > other.z; };
/// component-wise comparison >= (and)
template<typename N>
bool operator>=(const N& other) const { return x < other.x and y < other.y and z < other.z; };
// Functional
/// Returns the absolute value of the vector
inline float abs() const { return std::sqrt(static_cast<float>(x * x) + static_cast<float>(y * y) + static_cast<float>(z * z)); };/// Returns the min of the components
inline T min() const { return std::min_element(cbegin(), cend()); };
/// Returns the max of the components
inline T max() const { return std::max_element(cbegin(), cend()); };
/// Scalar product
template<typename V>
inline vec3<T> dot(const vec3<V>& other) { return vec3<T>(x * static_cast<T>(other.x) + y * static_cast<T>(other.y) + z * static_cast<T>(other.z)); };
// Utility
std::string to_string() const { return "(" + std::to_string(x) + ", " + std::to_string(y) + ", " + std::to_string(z) + ")"; };
struct Iterator {
public:
using value_type = T;
Iterator() : ptr(nullptr) {};
Iterator(T* ptr) : ptr(ptr) {};
T& operator*() { return *ptr; };
Iterator& operator=(const Iterator& other) {
ptr = other.ptr;
return *this;
};
Iterator& operator++() { ptr += sizeof(T); return *this; };
Iterator operator++(int) { auto copy = *this; ptr += sizeof(T); return copy; };
friend int operator-(Iterator lhs, Iterator rhs) {
return lhs.ptr - rhs.ptr;
};
bool operator==(const Iterator& other) const { return ptr == other.ptr; };
// bool operator!=(const Iterator& other) const { return ptr != other.ptr; };
private:
T* ptr;
};
const Iterator cbegin() const { return Iterator(&x); };
const Iterator cend() const { return Iterator(&z); };
const Iterator begin() const { return Iterator(&x); };
const Iterator end() const { return Iterator(&z); };
}; // vec3
/**
* @brief Class containing 4 numbers
*/
template<typename T>
class vec4 {
public:
// Constructors
/// Default constructor
vec4() : x(0), y(0), z(0), w(0) {};
/// Create a vec4 from n n n n
template<typename N0, typename N1, typename N2, typename N3>
vec4(N0 n0, N1 n1, N2 n2, N3 n3) : x(static_cast<T>(n0)), y(static_cast<T>(n1)), z(static_cast<T>(n2)), w(static_cast<T>(n3)) {};
/// Create a vec4 from n n vec2
template<typename N0, typename N1, typename V0>
vec4(N0 n0, N1 n1, const vec2<V0>& v0) : x(static_cast<T>(n0)), y(static_cast<T>(n1)), z(static_cast<T>(v0.x)), w(static_cast<T>(v0.y)) {};
/// Create a vec4 from n vec2 n
template<typename N0, typename V0, typename N1>
vec4(N0 n0, const vec2<V0>& v0, N1 n1) : x(static_cast<T>(n0)), y(static_cast<T>(v0.x)), z(static_cast<T>(v0.y)), w(static_cast<T>(n1)) {};
/// Create a vec4 from n vec3
template<typename N0, typename V0>
vec4(N0 n0, const vec3<V0>& v0) : x(static_cast<T>(n0)), y(static_cast<T>(v0.x)), z(static_cast<T>(v0.y)), w(static_cast<T>(v0.z)) {};
/// Create a vec4 from vec2 n n
template<typename V0, typename N0, typename N1>
vec4(const vec2<V0>& v0, N0 n0, N1 n1) : x(static_cast<T>(v0.x)), y(static_cast<T>(v0.y)), z(static_cast<T>(n0)), w(static_cast<T>(n1)) {};
/// Create a vec4 from vec2 vec2
template<typename V0, typename V1>
vec4(const vec2<V0>& v0, const vec2<V1>& v1) : x(static_cast<T>(v0.x)), y(static_cast<T>(v0.y)), z(static_cast<T>(v1.x)), w(static_cast<T>(v1.y)) {};
/// Create a vec4 from vec3 n
template<typename V0, typename N0>
vec4(const vec3<V0>& v0, N0 n0) : x(static_cast<T>(v0.x)), y(static_cast<T>(v0.y)), z(static_cast<T>(v0.z)), w(static_cast<T>(n0)) {};
/// Create a vec4 from vec4
template<typename V0>
vec4(const vec4<V0>& v0) : x(static_cast<T>(v0.x)), y(static_cast<T>(v0.y)), z(static_cast<T>(v0.z)), w(static_cast<T>(v0.w)) {};
// Values
T x;
T y;
T z;
T w;
// Assignment
/// component-wise assignment
template<typename V>
void operator=(const vec4<V>& other) {
x = static_cast<T>(other.x);
y = static_cast<T>(other.y);
z = static_cast<T>(other.z);
w = static_cast<T>(other.w);
};
template<typename N>
void operator=(const N& other) {
x = static_cast<T>(other);
y = static_cast<T>(other);
z = static_cast<T>(other);
w = static_cast<T>(other);
};
// Arithmetic
// Vectorial
/// component-wise +
template<typename V>
vec4<T> operator+(const vec4<V>& other) const { return vec4<T>(x + static_cast<T>(other.x), y + static_cast<T>(other.y), z + static_cast<T>(other.z), w + static_cast<T>(other.w)); };
/// component-wise -
template<typename V>
vec4<T> operator-(const vec4<V>& other) const { return vec4<T>(x - static_cast<T>(other.x), y - static_cast<T>(other.y), z - static_cast<T>(other.z), w - static_cast<T>(other.w)); };
/// component-wise *
template<typename V>
vec4<T> operator*(const vec4<V>& other) const { return vec4<T>(x * static_cast<T>(other.x), y * static_cast<T>(other.y), z * static_cast<T>(other.z), w * static_cast<T>(other.w)); };
/// component-wise /
template<typename V>
vec4<T> operator/(const vec4<V>& other) const { return vec4<T>(x / static_cast<T>(other.x), y / static_cast<T>(other.y), z / static_cast<T>(other.z), w / static_cast<T>(other.w)); };
/// component-wise %
template<typename V>
vec4<T> operator%(const vec4<V>& other) const { return vec4<T>(x % static_cast<T>(other.x), y % static_cast<T>(other.y), z % static_cast<T>(other.z), w % static_cast<T>(other.w)); };
/// component-wise assignment+=
template<typename V>
void operator+=(const vec4<V>& other) {
x += static_cast<T>(other.x);
y += static_cast<T>(other.y);
z += static_cast<T>(other.z);
w += static_cast<T>(other.w);
};
/// component-wise assignment-=
template<typename V>
void operator-=(const vec4<V>& other) {
x -= static_cast<T>(other.x);
y -= static_cast<T>(other.y);
z -= static_cast<T>(other.z);
w -= static_cast<T>(other.w);
};
/// component-wise assignment*=
template<typename V>
void operator*=(const vec4<V>& other) {
x *= static_cast<T>(other.x);
y *= static_cast<T>(other.y);
z *= static_cast<T>(other.z);
w *= static_cast<T>(other.w);
};
/// component-wise assignment/=
template<typename V>
void operator/=(const vec4<V>& other) {
x /= static_cast<T>(other.x);
y /= static_cast<T>(other.y);
z /= static_cast<T>(other.z);
w /= static_cast<T>(other.w);
};
/// component-wise assignment%=
template<typename V>
void operator%=(const vec4<V>& other) {
x %= static_cast<T>(other.x);
y %= static_cast<T>(other.y);
z %= static_cast<T>(other.z);
w %= static_cast<T>(other.w);
};
// Scalar
/// component-wise +
template<typename N>
vec4<T> operator+(const N& other) const { return vec4<T>(x + static_cast<T>(other.x), y + static_cast<T>(other.y), z + static_cast<T>(other.z), w + static_cast<T>(other.w)); };
/// component-wise -
template<typename N>
vec4<T> operator-(const N& other) const { return vec4<T>(x - static_cast<T>(other.x), y - static_cast<T>(other.y), z - static_cast<T>(other.z), w - static_cast<T>(other.w)); };
/// component-wise *
template<typename N>
vec4<T> operator*(const N& other) const { return vec4<T>(x * static_cast<T>(other.x), y * static_cast<T>(other.y), z * static_cast<T>(other.z), w * static_cast<T>(other.w)); };
/// component-wise /
template<typename N>
vec4<T> operator/(const N& other) const { return vec4<T>(x / static_cast<T>(other.x), y / static_cast<T>(other.y), z / static_cast<T>(other.z), w / static_cast<T>(other.w)); };
/// component-wise %
template<typename N>
vec4<T> operator%(const N& other) const { return vec4<T>(x % static_cast<T>(other.x), y % static_cast<T>(other.y), z % static_cast<T>(other.z), w % static_cast<T>(other.w)); };
/// component-wise assignment+=
template<typename N>
void operator+=(const N& other) {
x += static_cast<T>(other.x);
y += static_cast<T>(other.y);
z += static_cast<T>(other.z);
w += static_cast<T>(other.w);
};
/// component-wise assignment-=
template<typename N>
void operator-=(const N& other) {
x -= static_cast<T>(other.x);
y -= static_cast<T>(other.y);
z -= static_cast<T>(other.z);
w -= static_cast<T>(other.w);
};
/// component-wise assignment*=
template<typename N>
void operator*=(const N& other) {
x *= static_cast<T>(other.x);
y *= static_cast<T>(other.y);
z *= static_cast<T>(other.z);
w *= static_cast<T>(other.w);
};
/// component-wise assignment/=
template<typename N>
void operator/=(const N& other) {
x /= static_cast<T>(other.x);
y /= static_cast<T>(other.y);
z /= static_cast<T>(other.z);
w /= static_cast<T>(other.w);
};
/// component-wise assignment%=
template<typename N>
void operator%=(const N& other) {
x %= static_cast<T>(other.x);
y %= static_cast<T>(other.y);
z %= static_cast<T>(other.z);
w %= static_cast<T>(other.w);
};
// Comparison
// Vectorial
/// component-wise comparison == (and)
template<typename N>
bool operator==(const vec4<N>& other) const { return x == other.x and y == other.y and z == other.z and w == other.w; };
/// component-wise comparison < (and)
template<typename N>
bool operator<(const vec4<N>& other) const { return x < other.x and y < other.y and z < other.z and w < other.w; };
/// component-wise comparison > (and)
template<typename N>
bool operator>(const vec4<N>& other) const { return x > other.x and y > other.y and z > other.z and w > other.w; };
/// component-wise comparison != (and)
template<typename N>
bool operator!=(const vec4<N>& other) const { return x == other.x and y == other.y and z == other.z and w == other.w; };
/// component-wise comparison <= (and)
template<typename N>
bool operator<=(const vec4<N>& other) const { return x > other.x and y > other.y and z > other.z and w > other.w; };
/// component-wise comparison >= (and)
template<typename N>
bool operator>=(const vec4<N>& other) const { return x < other.x and y < other.y and z < other.z and w < other.w; };
// Scalar
/// component-wise comparison == (and)
template<typename N>
bool operator==(const N& other) const { return x == other.x and y == other.y and z == other.z and w == other.w; };
/// component-wise comparison < (and)
template<typename N>
bool operator<(const N& other) const { return x < other.x and y < other.y and z < other.z and w < other.w; };
/// component-wise comparison > (and)
template<typename N>
bool operator>(const N& other) const { return x > other.x and y > other.y and z > other.z and w > other.w; };
/// component-wise comparison != (and)
template<typename N>
bool operator!=(const N& other) const { return x == other.x and y == other.y and z == other.z and w == other.w; };
/// component-wise comparison <= (and)
template<typename N>
bool operator<=(const N& other) const { return x > other.x and y > other.y and z > other.z and w > other.w; };
/// component-wise comparison >= (and)
template<typename N>
bool operator>=(const N& other) const { return x < other.x and y < other.y and z < other.z and w < other.w; };
// Functional
/// Returns the absolute value of the vector
inline float abs() const { return std::sqrt(static_cast<float>(x * x) + static_cast<float>(y * y) + static_cast<float>(z * z) + static_cast<float>(w * w)); };/// Returns the min of the components
inline T min() const { return std::min_element(cbegin(), cend()); };
/// Returns the max of the components
inline T max() const { return std::max_element(cbegin(), cend()); };
/// Scalar product
template<typename V>
inline vec4<T> dot(const vec4<V>& other) { return vec4<T>(x * static_cast<T>(other.x) + y * static_cast<T>(other.y) + z * static_cast<T>(other.z) + w * static_cast<T>(other.w)); };
// Utility
std::string to_string() const { return "(" + std::to_string(x) + ", " + std::to_string(y) + ", " + std::to_string(z) + ", " + std::to_string(w) + ")"; };
struct Iterator {
public:
using value_type = T;
Iterator() : ptr(nullptr) {};
Iterator(T* ptr) : ptr(ptr) {};
T& operator*() { return *ptr; };
Iterator& operator=(const Iterator& other) {
ptr = other.ptr;
return *this;
};
Iterator& operator++() { ptr += sizeof(T); return *this; };
Iterator operator++(int) { auto copy = *this; ptr += sizeof(T); return copy; };
friend int operator-(Iterator lhs, Iterator rhs) {
return lhs.ptr - rhs.ptr;
};
bool operator==(const Iterator& other) const { return ptr == other.ptr; };
// bool operator!=(const Iterator& other) const { return ptr != other.ptr; };
private:
T* ptr;
};
const Iterator cbegin() const { return Iterator(&x); };
const Iterator cend() const { return Iterator(&w); };
const Iterator begin() const { return Iterator(&x); };
const Iterator end() const { return Iterator(&w); };
}; // vec4
using vec2f = vec2<float>;
using vec2d = vec2<double>;
using vec2i = vec2<int>;
using vec2u = vec2<unsigned int>;
using vec3f = vec3<float>;
using vec3d = vec3<double>;
using vec3i = vec3<int>;
using vec3u = vec3<unsigned int>;
using vec4f = vec4<float>;
using vec4d = vec4<double>;
using vec4i = vec4<int>;
using vec4u = vec4<unsigned int>;
} // namespace gz

49
src/util/gz_regex.hpp Normal file
View File

@ -0,0 +1,49 @@
#pragma once
#include <regex>
#include <string_view>
namespace gz::re {
struct types {
/// convertible with std::stoi
static const std::regex intT;
/// convertible with std::stoul
static const std::regex uintT;
/// convertible with std::stof
static const std::regex floatT;
};
/**
* @name Regex compability with std::string_view
*/
/// @{
using svmatch = std::match_results<std::string_view::const_iterator>;
using svsub_match = std::sub_match<std::string_view::const_iterator>;
inline std::string_view get_sv(const svsub_match& m) {
return std::string_view(m.first, m.length());
}
/// @details Code taken from u/deleted :) https://www.reddit.com/r/cpp/comments/aqt7a0/status_of_string_view_and_regex/
inline bool regex_match(std::string_view sv, svmatch& m, const std::regex& e, std::regex_constants::match_flag_type flags=std::regex_constants::match_default) {
return std::regex_match(sv.begin(), sv.end(), m, e, flags);
}
/// @details Code taken from u/deleted :) https://www.reddit.com/r/cpp/comments/aqt7a0/status_of_string_view_and_regex/
inline bool regex_match(std::string_view sv, const std::regex& e, std::regex_constants::match_flag_type flags = std::regex_constants::match_default) {
return std::regex_match(sv.begin(), sv.end(), e, flags);
}
inline bool regex_search(std::string_view sv, svmatch& m, const std::regex& e, std::regex_constants::match_flag_type flags=std::regex_constants::match_default) {
return std::regex_search(sv.begin(), sv.end(), m, e, flags);
}
inline bool regex_search(std::string_view sv, const std::regex& e, std::regex_constants::match_flag_type flags = std::regex_constants::match_default) {
return std::regex_search(sv.begin(), sv.end(), e, flags);
}
/// @}
}
/**
* @file
* @brief Utility for using regex with std::string_view and some regular expressions
*/

129
src/util/util.hpp Normal file
View File

@ -0,0 +1,129 @@
#pragma once
#include <string>
#include <vector>
#include <unordered_map>
#include <variant>
namespace gz::util {
//
// Type conversion
//
enum Type {
UINT, INT, DOUBLE, FLOAT, STRING, BOOL,
};
bool isInt(std::string& s);
bool isInt(std::string_view& s);
int getInt(std::string& s, int fallback=0);
inline int getInt(std::string&& s, int fallback=0) { return getInt(s, fallback); }
/**
* @todo Find a way to convert string_view to int without creating a string from it
*/
inline int getInt(std::string_view s, int fallback=0) { return getInt(std::string(s), fallback); }
bool isUInt(std::string& s);
bool isUInt(std::string_view& s);
unsigned int getUnsignedInt(std::string& s, unsigned int fallback=0);
inline unsigned int getUnsignedInt(std::string&& s, unsigned int fallback=0) { return getUnsignedInt(s, fallback); }
inline unsigned int getUnsignedInt(std::string_view s, unsigned int fallback=0) { return getUnsignedInt(std::string(s), fallback); }
double getDouble(std::string& s, double fallback=0);
inline double getDouble(std::string&& s, double fallback=0) { return getDouble(s, fallback); }
inline double getDouble(std::string_view s, double fallback=0) { return getDouble(std::string(s), fallback); }
bool isFloat(std::string& s);
bool isFloat(std::string_view& s);
float getFloat(std::string& s, float fallback=0);
inline float getFloat(std::string&& s, float fallback=0) { return getDouble(s, fallback); }
inline float getFloat(std::string_view s, float fallback=0) { return getDouble(std::string(s), fallback); }
bool getBool(std::string& s, bool fallback=false);
inline bool getBool(std::string&& s, bool fallback=false) { return getBool(s, fallback); }
inline bool getBool(std::string_view s, bool fallback=false) { return getBool(std::string(s), fallback); }
/**
* @brief Returns the string or fallback if string is empty.
*/
std::string getString(std::string s, std::string fallback="none");
/**
* @brief Converts the given string to the requested type and puts returns it in a variant
* @details
* Tries to convert the string to the specified type.
* If that fails a default value is returned.
* This is either 1 for int or double or "none" for strings.
*
* @param value String which should be converted
* @param type Datatype: 0 = int, 1 = double, 2 = string (default when wrong numer is given)
*
* @returns Variant containing the value in the given datatype.
* @warning Make sure to use the correct type when extracting the value from the returned variant!
*/
std::variant<std::string, int, double, bool> getVariant(std::string value, Type type=STRING, bool bFallback=false, int iFallback=0, double dFallback=0, const char* sFallback="none");
//
// INDEX UTILITY
//
template<std::unsigned_integral I, std::unsigned_integral S>
inline void incrementIndex(I& i, const S containerSize) {
if (i < containerSize - 1) { i++; }
else { i = 0; }
}
template<std::unsigned_integral I, std::unsigned_integral S>
inline void decrementIndex(I& i, const S containerSize) {
if (i > 0) { i--; }
else { i = containerSize - 1; }
}
template<std::unsigned_integral I, std::unsigned_integral S>
inline I getIncrementedIndex(const I i, const S containerSize) {
if (i < containerSize - 1) { return i + 1; }
else { return 0; }
}
template<std::unsigned_integral I, std::unsigned_integral S>
inline I getDecrementedIndex(const I i, const S containerSize) {
if (i > 0) { return i - 1; }
else { return containerSize - 1; }
}
/// Make wrap incices around: i = size + 2 -> i = 2, i = -2 -> i = size - 2
template<std::integral I, std::unsigned_integral S>
size_t getValidIndex(const I i, const S containerSize) {
if (i < 0) {
return containerSize - (-i) % containerSize - 1;
}
else if (i >= static_cast<int>(containerSize)) {
return i % containerSize;
}
return i;
}
//
// STRING
//
std::vector<std::string> splitStringInVector(std::string& s, char separator = '|');
/**
* @name Map with string type as key, works with strings, string_view and char*
* @{
*/
struct string_hash
{
using hash_type = std::hash<std::string_view>;
using is_transparent = void;
size_t operator()(const char* str) const { return hash_type{}(str); }
size_t operator()(std::string_view str) const { return hash_type{}(str); }
size_t operator()(std::string const& str) const { return hash_type{}(str); }
};
template<typename T>
using string_map = std::unordered_map<std::string, T, util::string_hash, std::equal_to<>>;
} // namespace gz::util
#undef umap
/**
* @file
* @brief Various utilites
*/