142 lines
5.4 KiB
TeX
142 lines
5.4 KiB
TeX
% TODO move
|
|
\Section[
|
|
\eng{Hall-Effect}
|
|
\ger{Hall-Effekt}
|
|
]{hall}
|
|
|
|
\begin{formula}{cyclotron}
|
|
\desc{Cyclontron frequency}{}{}
|
|
\desc[german]{Zyklotronfrequenz}{}{}
|
|
\eq{\omega_\text{c} = \frac{e B}{\masse}}
|
|
\end{formula}
|
|
\TODO{Move}
|
|
|
|
|
|
\Subsection[
|
|
\eng{Classical Hall-Effect}
|
|
\ger{Klassischer Hall-Effekt}
|
|
]{classic}
|
|
\begin{ttext}
|
|
\eng{Current flowing in $x$ direction in a conductor ($l \times b \times d$) with a magnetic field $B$ in $z$ direction leads to a hall voltage $U_\text{H}$ in $y$ direction.}
|
|
\ger{Fließt in einem Leiter ($l \times b \times d$) ein Strom in $x$ Richtung, während der Leiter von einem Magnetfeld $B$ in $z$-Richtung durchdrungen, wird eine Hallspannung $U_\text{H}$ in $y$-Richtung induziert.}
|
|
\end{ttext}
|
|
\begin{formula}{voltage}
|
|
\desc{Hall voltage}{}{$n$ charge carrier density}
|
|
\desc[german]{Hallspannung}{}{$n$ Ladungsträgerdichte}
|
|
\eq{U_\text{H} = \frac{I B}{ne d}}
|
|
\end{formula}
|
|
|
|
\begin{formula}{coefficient}
|
|
\desc{Hall coefficient}{Sometimes $R_\txH$}{}
|
|
\desc[german]{Hall-Koeffizient}{Manchmal $R_\txH$}{}
|
|
\eq{A_\text{H} := -\frac{E_y}{j_x B_z} \explOverEq{\GT{metals}} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}}
|
|
\end{formula}
|
|
|
|
\begin{formula}{resistivity}
|
|
\desc{Resistivity}{}{}
|
|
\desc[german]{Spezifischer Widerstand}{}{}
|
|
\eq{\rho_{xx} &= \frac{\masse}{ne^2\tau} \\ \rho_{xy} &= \frac{B}{ne}}
|
|
\end{formula}
|
|
|
|
|
|
\Subsection[
|
|
\eng{Integer quantum hall effect}
|
|
\ger{Ganzahliger Quantenhalleffekt}
|
|
]{quantum}
|
|
|
|
\begin{formula}{conductivity}
|
|
\desc{Conductivity tensor}{}{}
|
|
\desc[german]{Leitfähigkeitstensor}{}{}
|
|
\eq{\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
|
\end{formula}
|
|
|
|
\begin{formula}{resistivity_tensor}
|
|
\desc{Resistivity tensor}{}{}
|
|
\desc[german]{Spezifischer Widerstands-tensor}{}{}
|
|
\eq{
|
|
\rho = \sigma^{-1}
|
|
% \sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
|
}
|
|
\end{formula}
|
|
|
|
\begin{formula}{resistivity}
|
|
\desc{Resistivity}{}{$\nu \in \mathbb{Z}$ filing factor}
|
|
\desc[german]{Spezifischer Hallwiderstand}{}{$\nu \in \mathbb{Z}$ Füllfaktor}
|
|
\eq{\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}}
|
|
\end{formula}
|
|
|
|
% \begin{formula}{qhe}
|
|
% \desc{Integer quantum hall effect}{}{}
|
|
% \desc[german]{Ganzahliger Quanten-Hall-Effekt}{}{}
|
|
% \fig{img/qhe-klitzing.jpeg}
|
|
% \end{formula}
|
|
|
|
\begin{formula}{fqhe}
|
|
\desc{Fractional quantum hall effect}{}{$\nu$ fraction of two numbers without shared divisors}
|
|
\desc[german]{Fraktionaler Quantum-Hall-Effekt}{}{$\nu$ Bruch aus Zahlen ohne gemeinsamen Teiler}
|
|
\eq{\nu = \frac{1}{3},\frac{2}{5},\frac{3}{7},\frac{2}{3}...}
|
|
\end{formula}
|
|
|
|
\begin{ttext}
|
|
\eng{
|
|
\begin{itemize}
|
|
\item \textbf{Integer} (QHE): filling factor $\nu$ is an integer
|
|
\item \textbf{Fractional} (FQHE): filling factor $\nu$ is a fraction
|
|
\item \textbf{Spin} (QSHE): spin currents instead of charge currents
|
|
\item \textbf{Anomalous} (QAHE): symmetry breaking by internal effects instead of external magnetic fields
|
|
\end{itemize}
|
|
}
|
|
\ger{
|
|
\begin{itemize}
|
|
\item \textbf{Integer} (QHE): Füllfaktor $\nu$ ist ganzzahlig
|
|
\item \textbf{Fractional} (FQHE): Füllfaktor $\nu$ ist ein Bruch
|
|
\item \textbf{Spin} (QSHE): Spin Ströme anstatt Ladungsströme
|
|
\item \textbf{Anomalous} (QAHE): Symmetriebruch durch interne Effekte anstatt druch ein externes Magnetfeld
|
|
\end{itemize}
|
|
}
|
|
\end{ttext}
|
|
|
|
|
|
\TODO{sort}
|
|
|
|
|
|
\Section[
|
|
\eng{Dipole-stuff}
|
|
\ger{Dipol-zeug}
|
|
]{dipole}
|
|
|
|
\begin{formula}{poynting}
|
|
\desc{Dipole radiation Poynting vector}{}{}
|
|
\desc[german]{Dipolsrahlung Poynting-Vektor}{}{}
|
|
\eq{\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right)\frac{\sin^2\theta}{r^2} \vec{r}}
|
|
\end{formula}
|
|
|
|
\begin{formula}{power}
|
|
\desc{Time-average power}{}{}
|
|
\desc[german]{Zeitlich mittlere Leistung}{}{}
|
|
\eq{P = \frac{\mu_0\omega^4 p_0^2}{12\pi c}}
|
|
\end{formula}
|
|
|
|
\Section[
|
|
\eng{misc}
|
|
\ger{misc}
|
|
]{misc}
|
|
\begin{formula}{impedance_r}
|
|
\desc{Impedance of an ohmic resistor}{}{\QtyRef{resistance}}
|
|
\desc[german]{Impedanz eines Ohmschen Widerstands}{}{}
|
|
\eq{Z_{R} = R}
|
|
\end{formula}
|
|
\begin{formula}{impedance_c}
|
|
\desc{Impedance of a capacitor}{}{\QtyRef{capacity}, \QtyRef{angular_velocity}}
|
|
\desc[german]{Impedanz eines Kondensators}{}{}
|
|
\eq{Z_{C} = \frac{1}{\I\omega C}}
|
|
\end{formula}
|
|
|
|
\begin{formula}{impedance_l}
|
|
\desc{Impedance of an inductor}{}{\QtyRef{inductance}, \QtyRef{angular_velocity}}
|
|
\desc[german]{Impedanz eines Induktors}{}{}
|
|
\eq{Z_{L} = \I\omega L}
|
|
\end{formula}
|
|
|
|
\TODO{impedance addition for parallel / linear}
|