% TODO move \Section[ \eng{Hall-Effect} \ger{Hall-Effekt} ]{hall} \begin{formula}{cyclotron} \desc{Cyclontron frequency}{}{} \desc[german]{Zyklotronfrequenz}{}{} \eq{\omega_\text{c} = \frac{e B}{\masse}} \end{formula} \TODO{Move} \Subsection[ \eng{Classical Hall-Effect} \ger{Klassischer Hall-Effekt} ]{classic} \begin{ttext} \eng{Current flowing in $x$ direction in a conductor ($l \times b \times d$) with a magnetic field $B$ in $z$ direction leads to a hall voltage $U_\text{H}$ in $y$ direction.} \ger{Fließt in einem Leiter ($l \times b \times d$) ein Strom in $x$ Richtung, während der Leiter von einem Magnetfeld $B$ in $z$-Richtung durchdrungen, wird eine Hallspannung $U_\text{H}$ in $y$-Richtung induziert.} \end{ttext} \begin{formula}{voltage} \desc{Hall voltage}{}{$n$ charge carrier density} \desc[german]{Hallspannung}{}{$n$ Ladungsträgerdichte} \eq{U_\text{H} = \frac{I B}{ne d}} \end{formula} \begin{formula}{coefficient} \desc{Hall coefficient}{Sometimes $R_\txH$}{} \desc[german]{Hall-Koeffizient}{Manchmal $R_\txH$}{} \eq{A_\text{H} := -\frac{E_y}{j_x B_z} \explOverEq{\GT{metals}} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}} \end{formula} \begin{formula}{resistivity} \desc{Resistivity}{}{} \desc[german]{Spezifischer Widerstand}{}{} \eq{\rho_{xx} &= \frac{\masse}{ne^2\tau} \\ \rho_{xy} &= \frac{B}{ne}} \end{formula} \Subsection[ \eng{Integer quantum hall effect} \ger{Ganzahliger Quantenhalleffekt} ]{quantum} \begin{formula}{conductivity} \desc{Conductivity tensor}{}{} \desc[german]{Leitfähigkeitstensor}{}{} \eq{\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} } \end{formula} \begin{formula}{resistivity_tensor} \desc{Resistivity tensor}{}{} \desc[german]{Spezifischer Widerstands-tensor}{}{} \eq{ \rho = \sigma^{-1} % \sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} } } \end{formula} \begin{formula}{resistivity} \desc{Resistivity}{}{$\nu \in \mathbb{Z}$ filing factor} \desc[german]{Spezifischer Hallwiderstand}{}{$\nu \in \mathbb{Z}$ Füllfaktor} \eq{\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}} \end{formula} % \begin{formula}{qhe} % \desc{Integer quantum hall effect}{}{} % \desc[german]{Ganzahliger Quanten-Hall-Effekt}{}{} % \fig{img/qhe-klitzing.jpeg} % \end{formula} \begin{formula}{fqhe} \desc{Fractional quantum hall effect}{}{$\nu$ fraction of two numbers without shared divisors} \desc[german]{Fraktionaler Quantum-Hall-Effekt}{}{$\nu$ Bruch aus Zahlen ohne gemeinsamen Teiler} \eq{\nu = \frac{1}{3},\frac{2}{5},\frac{3}{7},\frac{2}{3}...} \end{formula} \begin{ttext} \eng{ \begin{itemize} \item \textbf{Integer} (QHE): filling factor $\nu$ is an integer \item \textbf{Fractional} (FQHE): filling factor $\nu$ is a fraction \item \textbf{Spin} (QSHE): spin currents instead of charge currents \item \textbf{Anomalous} (QAHE): symmetry breaking by internal effects instead of external magnetic fields \end{itemize} } \ger{ \begin{itemize} \item \textbf{Integer} (QHE): Füllfaktor $\nu$ ist ganzzahlig \item \textbf{Fractional} (FQHE): Füllfaktor $\nu$ ist ein Bruch \item \textbf{Spin} (QSHE): Spin Ströme anstatt Ladungsströme \item \textbf{Anomalous} (QAHE): Symmetriebruch durch interne Effekte anstatt druch ein externes Magnetfeld \end{itemize} } \end{ttext} \TODO{sort} \Section[ \eng{Dipole-stuff} \ger{Dipol-zeug} ]{dipole} \begin{formula}{poynting} \desc{Dipole radiation Poynting vector}{}{} \desc[german]{Dipolsrahlung Poynting-Vektor}{}{} \eq{\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right)\frac{\sin^2\theta}{r^2} \vec{r}} \end{formula} \begin{formula}{power} \desc{Time-average power}{}{} \desc[german]{Zeitlich mittlere Leistung}{}{} \eq{P = \frac{\mu_0\omega^4 p_0^2}{12\pi c}} \end{formula} \Section[ \eng{misc} \ger{misc} ]{misc} \begin{formula}{impedance_r} \desc{Impedance of an ohmic resistor}{}{\QtyRef{resistance}} \desc[german]{Impedanz eines Ohmschen Widerstands}{}{} \eq{Z_{R} = R} \end{formula} \begin{formula}{impedance_c} \desc{Impedance of a capacitor}{}{\QtyRef{capacity}, \QtyRef{angular_velocity}} \desc[german]{Impedanz eines Kondensators}{}{} \eq{Z_{C} = \frac{1}{\I\omega C}} \end{formula} \begin{formula}{impedance_l} \desc{Impedance of an inductor}{}{\QtyRef{inductance}, \QtyRef{angular_velocity}} \desc[german]{Impedanz eines Induktors}{}{} \eq{Z_{L} = \I\omega L} \end{formula} \TODO{impedance addition for parallel / linear}