progress
6
.gitignore
vendored
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
.aux
|
||||||
|
out
|
||||||
|
*.virtual_documents*
|
||||||
|
*ipynb_checkpoints*
|
||||||
|
*__pycache__*
|
||||||
|
**.pdf
|
125
src/analysis.tex
Normal file
@ -0,0 +1,125 @@
|
|||||||
|
\Part[
|
||||||
|
\eng{Calculus}
|
||||||
|
\ger{Analysis}
|
||||||
|
]{cal}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Convolution}
|
||||||
|
\ger{Faltung / Konvolution}
|
||||||
|
]{conv}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.}
|
||||||
|
\ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{def}
|
||||||
|
\desc{Definition}{}{}
|
||||||
|
\desc[german]{Definition}{}{}
|
||||||
|
\eq{(f*g)(t) = f(t) * g(t) = int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{notation}
|
||||||
|
\desc{Notation}{}{}
|
||||||
|
\desc[german]{Notation}{}{}
|
||||||
|
\eq{
|
||||||
|
f(t) * g(t-t_0) &= (f*g)(t-t_0) \\
|
||||||
|
f(t-t_0) * g(t-t_0) &= (f*g)(t-2t_0)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{commutativity}
|
||||||
|
\desc{Commutativity}{}{}
|
||||||
|
\desc[german]{Kommutativität}{}{}
|
||||||
|
\eq{f * g = g * f}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{associativity}
|
||||||
|
\desc{Associativity}{}{}
|
||||||
|
\desc[german]{Assoziativität]}{}{}
|
||||||
|
\eq{(f*g)*h = f*(g*h)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{distributivity}
|
||||||
|
\desc{Distributivity}{}{}
|
||||||
|
\desc[german]{Distributivität}{}{}
|
||||||
|
\eq{f * (g + h) = f*g + f*h}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{complex_conjugate}
|
||||||
|
\desc{Complex conjugate}{}{}
|
||||||
|
\desc[german]{Komplexe konjugation}{}{}
|
||||||
|
\eq{(f*g)^* = f^* * g^*}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Fourier analysis}
|
||||||
|
\ger{Fourieranalyse}
|
||||||
|
]{fourier}
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Fourier series}
|
||||||
|
\ger{Fourierreihe}
|
||||||
|
]{series}
|
||||||
|
\begin{formula}{series}
|
||||||
|
\desc{Fourier series}{Complex representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
|
||||||
|
\desc[german]{Fourierreihe}{Komplexe Darstellung}{}
|
||||||
|
\eq{f(t) = \sum_{k=-\infty}^{\infty} c_k \Exp{\frac{2\pi \I kt}{T}}}
|
||||||
|
\end{formula}
|
||||||
|
\Eng[real]{real}
|
||||||
|
\Ger[real]{reellwertig}
|
||||||
|
\begin{formula}{coefficient}
|
||||||
|
\desc{Fourier coefficients}{Complex representation}{}
|
||||||
|
\desc[german]{Fourierkoeffizienten}{Komplexe Darstellung}{}
|
||||||
|
\eq{
|
||||||
|
c_k &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Exp{-\frac{2\pi \I}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\
|
||||||
|
c_{-k} &= \overline{c_k} \quad \text{\GT{if} $f$ \GT{real}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{series_sincos}
|
||||||
|
\desc{Fourier series}{Sine and cosine representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
|
||||||
|
\desc[german]{Fourierreihe}{Sinus und Kosinus Darstellung}{}
|
||||||
|
\eq{f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \Cos{\frac{2\pi}{T}kt} + b_k\Sin{\frac{2\pi}{T}kt}\right)}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{coefficient}
|
||||||
|
\desc{Fourier coefficients}{Sine and cosine representation\\If $f$ has point symmetry: $a_{k>0}=0$, if $f$ has axial symmetry: $b_k=0$}{}
|
||||||
|
\desc[german]{Fourierkoeffizienten}{Sinus und Kosinus Darstellung\\Wenn $f$ punktsymmetrisch: $a_{k>0}=0$, wenn $f$ achsensymmetrisch: $b_k=0$}{}
|
||||||
|
\eq{
|
||||||
|
a_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Cos{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\
|
||||||
|
b_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Sin{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge1\\
|
||||||
|
a_k &= c_k + c_{-k} \quad\text{\GT{for}}\,k\ge0\\
|
||||||
|
b_k &= \I(c_k - c_{-k}) \quad\text{\GT{for}}\,k\ge1
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{cleanup}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Fourier transformation}
|
||||||
|
\ger{Fouriertransformation}
|
||||||
|
]{trafo}
|
||||||
|
\begin{formula}{transform}
|
||||||
|
\desc{Fourier transform}{}{$\hat{f}:\R^n \mapsto \C$, $\forall f\in L^1(\R^n)$}
|
||||||
|
\desc[german]{Fouriertransformierte}{}{}
|
||||||
|
\eq{\hat{f}(k) \coloneq \frac{1}{\sqrt{2\pi}^n} \int_{\R^n} \e^{-\I kx}f(x)\d x}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Eng[linear_in]{linear in}
|
||||||
|
\Ger[linear_in]{linear in}
|
||||||
|
\GT{for} $f\in L^1(\R^n)$:
|
||||||
|
\begin{enumerate}[i)]
|
||||||
|
\item $f \mapsto \hat{f}$ \GT{linear_in} $f$
|
||||||
|
\item $g(x) = f(x-h) \qRarrow \hat{g}(k) = \e^{-\I kn}\hat{f}(k)$
|
||||||
|
\item $g(x) = \e^{ih\cdot x}f(x) \qRarrow \hat{g}(k) = \hat{f}(k-h)$
|
||||||
|
\item $g(\lambda) = f\left(\frac{x}{\lambda}\right) \qRarrow \hat{g}(k)\lambda^n \hat{f}(\lambda k)$
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{List of common integrals}
|
||||||
|
\ger{Liste nützlicher Integrale}
|
||||||
|
]{integrals}
|
||||||
|
|
||||||
|
\begin{formula}{riemann_zeta}
|
||||||
|
\desc{Riemann Zeta Function}{}{}
|
||||||
|
\desc[german]{Riemannsche Zeta-Funktion}{}{}
|
||||||
|
\eq{\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1-2^{(1-s)})\Gamma(s)} \int_0^\infty \d\eta \frac{\eta^{(s-1)}}{\e^\eta + 1}}
|
||||||
|
\end{formula}
|
||||||
|
|
31
src/atom.tex
@ -1,7 +1,6 @@
|
|||||||
\def\masse{m_\textrm{e}}
|
\def\vecr{{\vec{r}}}
|
||||||
\def\grad{\vec{\nabla}}
|
\kef\abohr{a_\textrm{B}}
|
||||||
\def\vecr{\vec{r}}
|
|
||||||
\def\abohr{a_\textrm{B}}
|
|
||||||
\Section[
|
\Section[
|
||||||
\eng{Hydrogen Atom}
|
\eng{Hydrogen Atom}
|
||||||
\ger{Wasserstoffatom}
|
\ger{Wasserstoffatom}
|
||||||
@ -23,9 +22,8 @@
|
|||||||
\desc[german]{Hamiltonian}{}{}
|
\desc[german]{Hamiltonian}{}{}
|
||||||
% \eq{V(\vecr) = \frac{Z\,e^2}{4\pi\epsilon_0 r}}
|
% \eq{V(\vecr) = \frac{Z\,e^2}{4\pi\epsilon_0 r}}
|
||||||
\eq{
|
\eq{
|
||||||
|
\hat{H} &= -\frac{\hbar^2}{2\mu} {\Grad_\vecr}^2 - V(\vecr) \\
|
||||||
% \hat{H} &= -\frac{\hbar^2}{2\mu} {\grad_\vecr}^2 - V(\vecr)
|
&= \frac{\hat{p}_r^2}{2\mu} + \frac{\hat{L}^2}{2\mu r} + V(r)
|
||||||
% &= \frac{\hat{p}_r^2}{2\mu} + \frac{\hat{L}^2}{2\mu r} + V(r)
|
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -67,7 +65,7 @@
|
|||||||
\eng{Darwin term}
|
\eng{Darwin term}
|
||||||
\ger{Darwin-Term}
|
\ger{Darwin-Term}
|
||||||
]{darwin}
|
]{darwin}
|
||||||
\begin{ttext}{desc}
|
\begin{ttext}[desc]
|
||||||
\eng{Relativisitc correction: Because of the electrons zitterbewegung, it is not entirely localised. \TODO{fact check}}
|
\eng{Relativisitc correction: Because of the electrons zitterbewegung, it is not entirely localised. \TODO{fact check}}
|
||||||
\ger{Relativistische Korrektur: Elektronen führen eine Zitterbewegung aus und sind nicht vollständig lokalisiert.}
|
\ger{Relativistische Korrektur: Elektronen führen eine Zitterbewegung aus und sind nicht vollständig lokalisiert.}
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
@ -87,7 +85,7 @@
|
|||||||
\eng{Spin-orbit coupling (LS-coupling)}
|
\eng{Spin-orbit coupling (LS-coupling)}
|
||||||
\ger{Spin-Bahn-Kopplung (LS-Kopplung)}
|
\ger{Spin-Bahn-Kopplung (LS-Kopplung)}
|
||||||
]{ls_coupling}
|
]{ls_coupling}
|
||||||
\begin{ttext}{desc}
|
\begin{ttext}[desc]
|
||||||
\eng{The interaction of the electron spin with the electrostatic field of the nuclei lead to energy shifts.}
|
\eng{The interaction of the electron spin with the electrostatic field of the nuclei lead to energy shifts.}
|
||||||
\ger{The Wechselwirkung zwischen dem Elektronenspin und dem elektrostatischen Feld des Kerns führt zu Energieverschiebungen.}
|
\ger{The Wechselwirkung zwischen dem Elektronenspin und dem elektrostatischen Feld des Kerns führt zu Energieverschiebungen.}
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
@ -95,7 +93,7 @@
|
|||||||
\begin{formula}{energy_shift}
|
\begin{formula}{energy_shift}
|
||||||
\desc{Energy shift}{}{}
|
\desc{Energy shift}{}{}
|
||||||
\desc[german]{Energieverschiebung}{}{}
|
\desc[german]{Energieverschiebung}{}{}
|
||||||
\eq{\Delta E_\text{LS} = \frac{\mu_0 Z e^2}{8\pi m^2 e\,r^3} \braket{\vec{S} \cdot \vec{L}}}
|
\eq{\Delta E_\text{LS} = \frac{\mu_0 Z e^2}{8\pi \masse^2\,r^3} \braket{\vec{S} \cdot \vec{L}}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{sl}
|
\begin{formula}{sl}
|
||||||
\desc{\TODO{name}}{}{}
|
\desc{\TODO{name}}{}{}
|
||||||
@ -108,7 +106,7 @@
|
|||||||
\eng{Fine-structure}
|
\eng{Fine-structure}
|
||||||
\ger{Feinstruktur}
|
\ger{Feinstruktur}
|
||||||
]{fine_structure}
|
]{fine_structure}
|
||||||
\begin{ttext}{desc}
|
\begin{ttext}[desc]
|
||||||
\eng{The fine-structure combines relativistic corrections \ref{sec:qm:h:corrections:darwin} and the spin-orbit coupling \ref{sec:qm:h:corrections:ls_coupling}.}
|
\eng{The fine-structure combines relativistic corrections \ref{sec:qm:h:corrections:darwin} and the spin-orbit coupling \ref{sec:qm:h:corrections:ls_coupling}.}
|
||||||
\ger{Die Feinstruktur vereint relativistische Korrekturen \ref{sec:qm:h:corrections:darwin} und die Spin-Orbit-Kupplung \ref{sec:qm:h:corrections:ls_coupling}.}
|
\ger{Die Feinstruktur vereint relativistische Korrekturen \ref{sec:qm:h:corrections:darwin} und die Spin-Orbit-Kupplung \ref{sec:qm:h:corrections:ls_coupling}.}
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
@ -122,8 +120,8 @@
|
|||||||
\Subsubsection[
|
\Subsubsection[
|
||||||
\eng{Lamb-shift}
|
\eng{Lamb-shift}
|
||||||
\ger{Lamb-Shift}
|
\ger{Lamb-Shift}
|
||||||
]{lamb_shift}
|
]{lamb_shift}
|
||||||
\begin{ttext}{desc}
|
\begin{ttext}[desc]
|
||||||
\eng{The interaction of the electron with virtual photons emitted/absorbed by the nucleus leads to a (very small) shift in the energy level.}
|
\eng{The interaction of the electron with virtual photons emitted/absorbed by the nucleus leads to a (very small) shift in the energy level.}
|
||||||
\ger{The Wechselwirkung zwischen dem Elektron und vom Kern absorbierten/emittierten virtuellen Photonen führt zu einer (sehr kleinen) Energieverschiebung.}
|
\ger{The Wechselwirkung zwischen dem Elektron und vom Kern absorbierten/emittierten virtuellen Photonen führt zu einer (sehr kleinen) Energieverschiebung.}
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
@ -136,11 +134,10 @@
|
|||||||
\Subsubsection[
|
\Subsubsection[
|
||||||
\eng{Hyperfine structure}
|
\eng{Hyperfine structure}
|
||||||
\ger{Hyperfeinstruktur}
|
\ger{Hyperfeinstruktur}
|
||||||
]{hyperfine_structure}
|
]{hyperfine_structure}
|
||||||
\begin{ttext}{desc}
|
\begin{ttext}[desc]
|
||||||
\eng{Interaction of the nucleus spin with the magnetic field created by the electron leads to energy shifts. (Lifts degenaracy) }
|
\eng{Interaction of the nucleus spin with the magnetic field created by the electron leads to energy shifts. (Lifts degeneracy) }
|
||||||
\ger{Wechselwirkung von Kernspin mit dem vom Elektron erzeugten Magnetfeld spaltet Energieniveaus}
|
\ger{Wechselwirkung von Kernspin mit dem vom Elektron erzeugten Magnetfeld spaltet Energieniveaus}
|
||||||
|
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
\begin{formula}{nuclear_spin}
|
\begin{formula}{nuclear_spin}
|
||||||
\desc{Nuclear spin}{}{}
|
\desc{Nuclear spin}{}{}
|
||||||
|
55
src/calculus.tex
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
\Part[
|
||||||
|
\eng{Analysis}
|
||||||
|
\ger{Analysis}
|
||||||
|
]{ana}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Convolution}
|
||||||
|
\ger{Faltung / Konvolution}
|
||||||
|
]{conv}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.}
|
||||||
|
\ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{def}
|
||||||
|
\desc{Definition}{}{}
|
||||||
|
\desc[german]{Definition}{}{}
|
||||||
|
\eq{(f*g)(t) = f(t) * g(t) = int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{notation}
|
||||||
|
\desc{Notation}{}{}
|
||||||
|
\desc[german]{Notation}{}{}
|
||||||
|
\eq{
|
||||||
|
f(t) * g(t-t_0) &= (f*g)(t-t_0) \\
|
||||||
|
f(t-t_0) * g(t-t_0) &= (f*g)(t-2t_0)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{commutativity}
|
||||||
|
\desc{Commutativity}{}{}
|
||||||
|
\desc[german]{Kommutativität}{}{}
|
||||||
|
\eq{f * g = g * f}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{associativity}
|
||||||
|
\desc{Associativity}{}{}
|
||||||
|
\desc[german]{Assoziativität]}{}{}
|
||||||
|
\eq{(f*g)*h = f*(g*h)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{distributivity}
|
||||||
|
\desc{Distributivity}{}{}
|
||||||
|
\desc[german]{Distributivität}{}{}
|
||||||
|
\eq{f * (g + h) = f*g + f*h}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{complex_conjugate}
|
||||||
|
\desc{Complex conjugate}{}{}
|
||||||
|
\desc[german]{Komplexe konjugation}{}{}
|
||||||
|
\eq{(f*g)^* = f^* * g^*}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Fourier analysis}
|
||||||
|
\ger{Fourieranalyse}
|
||||||
|
]{fourier}
|
||||||
|
|
79
src/circuit.tex
Normal file
@ -0,0 +1,79 @@
|
|||||||
|
|
||||||
|
% Josephson junction
|
||||||
|
\makeatletter
|
||||||
|
\pgfcircdeclarebipolescaled{instruments}
|
||||||
|
{
|
||||||
|
% put the node text above and centered
|
||||||
|
\anchor{text}{\pgfextracty{\pgf@circ@res@up}{\northeast}
|
||||||
|
\pgfpoint{-.5\wd\pgfnodeparttextbox}{
|
||||||
|
\dimexpr.5\dp\pgfnodeparttextbox+.5\ht\pgfnodeparttextbox+\pgf@circ@res@up\relax
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{\ctikzvalof{bipoles/oscope/height}}
|
||||||
|
{josephson}
|
||||||
|
{\ctikzvalof{bipoles/oscope/height}}
|
||||||
|
{\ctikzvalof{bipoles/oscope/width}}
|
||||||
|
{
|
||||||
|
% ?
|
||||||
|
\pgf@circ@setlinewidth{bipoles}{\pgfstartlinewidth}
|
||||||
|
\pgfextracty{\pgf@circ@res@up}{\northeast}
|
||||||
|
\pgfextractx{\pgf@circ@res@right}{\northeast}
|
||||||
|
\pgfextractx{\pgf@circ@res@left}{\southwest}
|
||||||
|
\pgfextracty{\pgf@circ@res@down}{\southwest}
|
||||||
|
\pgfmathsetlength{\pgf@circ@res@step}{0.25*\pgf@circ@res@up}
|
||||||
|
|
||||||
|
% \pgfscope % box
|
||||||
|
% \pgfpathrectanglecorners{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@down}}{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@up}}
|
||||||
|
% \pgf@circ@draworfill
|
||||||
|
% \endpgfscope
|
||||||
|
\pgfscope % cross
|
||||||
|
\pgfpathmoveto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@up}}%
|
||||||
|
\pgfpathlineto{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@down}}%
|
||||||
|
\pgfpathmoveto{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@up}}%
|
||||||
|
\pgfpathlineto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@down}}%
|
||||||
|
\pgfusepath{draw}
|
||||||
|
\endpgfscope
|
||||||
|
}
|
||||||
|
\def\pgf@circ@josephson@path#1{\pgf@circ@bipole@path{josephson}{#1}}
|
||||||
|
\tikzset{josephson/.style = {\circuitikzbasekey, /tikz/to path=\pgf@circ@josephson@path, l=#1}}
|
||||||
|
|
||||||
|
|
||||||
|
\pgfcircdeclarebipolescaled{instruments}
|
||||||
|
{
|
||||||
|
% put the node text above and centered
|
||||||
|
\anchor{text}{\pgfextracty{\pgf@circ@res@up}{\northeast}
|
||||||
|
\pgfpoint{-.5\wd\pgfnodeparttextbox}{
|
||||||
|
\dimexpr.5\dp\pgfnodeparttextbox+.5\ht\pgfnodeparttextbox+\pgf@circ@res@up\relax
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{\ctikzvalof{bipoles/oscope/height}}
|
||||||
|
{josephsoncap}
|
||||||
|
{\ctikzvalof{bipoles/oscope/height}}
|
||||||
|
{\ctikzvalof{bipoles/oscope/width}}
|
||||||
|
{
|
||||||
|
% ?
|
||||||
|
\pgf@circ@setlinewidth{bipoles}{\pgfstartlinewidth}
|
||||||
|
\pgfextracty{\pgf@circ@res@up}{\northeast}
|
||||||
|
\pgfextractx{\pgf@circ@res@right}{\northeast}
|
||||||
|
\pgfextractx{\pgf@circ@res@left}{\southwest}
|
||||||
|
\pgfextracty{\pgf@circ@res@down}{\southwest}
|
||||||
|
\pgfmathsetlength{\pgf@circ@res@step}{0.25*\pgf@circ@res@up}
|
||||||
|
|
||||||
|
\pgfscope % box
|
||||||
|
\pgfpathrectanglecorners{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@down}}{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@up}}
|
||||||
|
\pgf@circ@draworfill
|
||||||
|
\endpgfscope
|
||||||
|
\pgfscope % cross
|
||||||
|
\pgfpathmoveto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@up}}%
|
||||||
|
\pgfpathlineto{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@down}}%
|
||||||
|
\pgfpathmoveto{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@up}}%
|
||||||
|
\pgfpathlineto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@down}}%
|
||||||
|
\pgfusepath{draw}
|
||||||
|
\endpgfscope
|
||||||
|
}
|
||||||
|
\def\pgf@circ@josephsoncap@path#1{\pgf@circ@bipole@path{josephsoncap}{#1}}
|
||||||
|
\tikzset{josephsoncap/.style = {\circuitikzbasekey, /tikz/to path=\pgf@circ@josephsoncap@path, l=#1}}
|
||||||
|
|
||||||
|
|
231
src/condensed_matter.tex
Normal file
@ -0,0 +1,231 @@
|
|||||||
|
\Part[
|
||||||
|
\eng{Condensed matter physics}
|
||||||
|
\ger{Festkörperphysik}
|
||||||
|
]{cm}
|
||||||
|
\Section[
|
||||||
|
\eng{Bravais lattice}
|
||||||
|
\ger{Bravais-Gitter}
|
||||||
|
]{bravais}
|
||||||
|
|
||||||
|
% \begin{ttext}
|
||||||
|
% \eng{
|
||||||
|
|
||||||
|
% }
|
||||||
|
% \ger{
|
||||||
|
|
||||||
|
% }
|
||||||
|
% \end{ttext}
|
||||||
|
|
||||||
|
\eng[bravais_table2]{In 2D, there are 5 different Bravais lattices}
|
||||||
|
\ger[bravais_table2]{In 2D gibt es 5 verschiedene Bravais-Gitter}
|
||||||
|
|
||||||
|
\eng[bravais_table3]{In 3D, there are 14 different Bravais lattices}
|
||||||
|
\ger[bravais_table3]{In 3D gibt es 14 verschiedene Bravais-Gitter}
|
||||||
|
|
||||||
|
\Eng[lattice_system]{Lattice system}
|
||||||
|
\Ger[lattice_system]{Gittersystem}
|
||||||
|
\Eng[crystal_family]{Crystal system}
|
||||||
|
\Ger[crystal_family]{Kristall-system}
|
||||||
|
\Eng[point_group]{Point group}
|
||||||
|
\Ger[point_group]{Punktgruppe}
|
||||||
|
\eng[bravais_lattices]{Bravais lattices}
|
||||||
|
\ger[bravais_lattices]{Bravais Gitter}
|
||||||
|
|
||||||
|
\newcommand\bvimg[1]{\begin{center}\includegraphics[width=0.1\textwidth]{img/bravais/#1.pdf}\end{center}}
|
||||||
|
\renewcommand\tabularxcolumn[1]{m{#1}}
|
||||||
|
\newcolumntype{Z}{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}X}
|
||||||
|
\begin{table}[H]
|
||||||
|
\centering
|
||||||
|
\caption{\gt{bravais_table2}}
|
||||||
|
\label{tab:bravais2}
|
||||||
|
|
||||||
|
\begin{adjustbox}{width=\textwidth}
|
||||||
|
\begin{tabularx}{\textwidth}{||Z|c|Z|Z||}
|
||||||
|
\hline
|
||||||
|
\multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{2}{c||}{5 \gt{bravais_lattices}} \\ \cline{3-4}
|
||||||
|
& & \GT{primitive} (p) & \GT{centered} (c) \\ \hline
|
||||||
|
\GT{monoclinic} (m) & $\text{C}_\text{2}$ & \bvimg{mp} & \\ \hline
|
||||||
|
\GT{orthorhombic} (o) & $\text{D}_\text{2}$ & \bvimg{op} & \bvimg{oc} \\ \hline
|
||||||
|
\GT{tetragonal} (t) & $\text{D}_\text{4}$ & \bvimg{tp} & \\ \hline
|
||||||
|
\GT{hexagonal} (h) & $\text{D}_\text{6}$ & \bvimg{hp} & \\ \hline
|
||||||
|
\end{tabularx}
|
||||||
|
\end{adjustbox}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{table}[H]
|
||||||
|
\centering
|
||||||
|
\caption{\gt{bravais_table3}}
|
||||||
|
\label{tab:bravais3}
|
||||||
|
|
||||||
|
% \newcolumntype{g}{>{\columncolor[]{0.8}}}
|
||||||
|
\begin{adjustbox}{width=\textwidth}
|
||||||
|
% \begin{tabularx}{\textwidth}{|c|}
|
||||||
|
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
||||||
|
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
||||||
|
% \end{tabularx}
|
||||||
|
% \begin{tabular}{|c|}
|
||||||
|
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
||||||
|
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
||||||
|
% \end{tabular}
|
||||||
|
% \\
|
||||||
|
\begin{tabularx}{\textwidth}{||Z|Z|c|Z|Z|Z|Z||}
|
||||||
|
\hline
|
||||||
|
\multirow{2}{*}{\GT{crystal_family}} & \multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{4}{c||}{14 \gt{bravais_lattices}} \\ \cline{4-7}
|
||||||
|
& & & \GT{primitive} (P) & \GT{base_centered} (S) & \GT{body_centered} (I) & \GT{face_centered} (F) \\ \hline
|
||||||
|
\multicolumn{2}{||c|}{\GT{triclinic} (a)} & $\text{C}_\text{i}$ & \bvimg{tP} & & & \\ \hline
|
||||||
|
\multicolumn{2}{||c|}{\GT{monoclinic} (m)} & $\text{C}_\text{2h}$ & \bvimg{mP} & \bvimg{mS} & & \\ \hline
|
||||||
|
\multicolumn{2}{||c|}{\GT{orthorhombic} (o)} & $\text{D}_\text{2h}$ & \bvimg{oP} & \bvimg{oS} & \bvimg{oI} & \bvimg{oF} \\ \hline
|
||||||
|
\multicolumn{2}{||c|}{\GT{tetragonal} (t)} & $\text{D}_\text{4h}$ & \bvimg{tP} & & \bvimg{tI} & \\ \hline
|
||||||
|
\multirow{2}{*}{\GT{hexagonal} (h)} & \GT{rhombohedral} & $\text{D}_\text{3d}$ & \bvimg{hR} & & & \\ \cline{2-7}
|
||||||
|
& \GT{hexagonal} & $\text{D}_\text{6h}$ & \bvimg{hP} & & & \\ \hline
|
||||||
|
\multicolumn{2}{||c|}{\GT{cubic} (c)} & $\text{O}_\text{h}$ & \bvimg{cP} & & \bvimg{cI} & \bvimg{cF} \\ \hline
|
||||||
|
\end{tabularx}
|
||||||
|
\end{adjustbox}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Reciprocal lattice}
|
||||||
|
\ger{Reziprokes Gitter}
|
||||||
|
]{reci}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{The reciprokal lattice is made up of all the wave vectors $\vec{k}$ that ressemble standing waves with the periodicity of the Bravais lattice.}
|
||||||
|
\ger{Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren $\vec{k}$, die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{vectors}
|
||||||
|
\desc{Reciprocal lattice vectors}{}{$a_i$ real-space lattice vectors, $V_c$ volume of the primitive lattice cell}
|
||||||
|
\desc[german]{Reziproke Gittervektoren}{}{$a_i$ Bravais-Gitter Vektoren, $V_c$ Volumen der primitiven Gitterzelle}
|
||||||
|
\eq{
|
||||||
|
\vec{b_1} &= \frac{2\pi}{V_c} \vec{a_2} \times \vec{a_3} \\
|
||||||
|
\vec{b_2} &= \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1} \\
|
||||||
|
\vec{b_3} &= \frac{2\pi}{V_c} \vec{a_1} \times \vec{a_2}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Free electron gas}
|
||||||
|
\ger{Freies Elektronengase}
|
||||||
|
]{free_e_gas}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Assumptions: electrons can move freely and independent of each other.}
|
||||||
|
\ger{Annahmen: Elektronen bewegen sich frei und unabhänig voneinander.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{drift_velocity}
|
||||||
|
\desc{Drift velocity}{Velocity component induced by an external force (eg. electric field)}{$v_\text{th}$ thermal velocity}
|
||||||
|
\desc[german]{Driftgeschwindgkeit}{Geschwindigkeitskomponente durch eine externe Kraft (z.B. ein elektrisches Feld)}{$v_\text{th}$ thermische Geschwindigkeit}
|
||||||
|
\eq{\vec{v}_\text{D} = \vec{v} - \vec{v}_\text{th}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{mean_free_time}
|
||||||
|
\desc{Mean free time}{}{}
|
||||||
|
\desc[german]{Streuzeit}{}{}
|
||||||
|
\eq{\tau}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{mean_free_path}
|
||||||
|
\desc{Mean free path}{}{}
|
||||||
|
\desc[german]{Mittlere freie Weglänge}{}{}
|
||||||
|
\eq{\ell = \braket{v} \tau}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{mobility}
|
||||||
|
\desc{Electrical mobility}{}{$q$ charge, $m$ mass}
|
||||||
|
\desc[german]{Beweglichkeit}{}{$q$ Ladung, $m$ Masse}
|
||||||
|
\eq{\mu = \frac{q \tau}{m}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Drude model}
|
||||||
|
\ger{Drude-Modell}
|
||||||
|
]{drude}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Classical model describing the transport properties of electrons in materials (metals):
|
||||||
|
The material is assumed to be an ion lattice and with freely moving electrons (electron gas). The electrons are
|
||||||
|
accelerated by an electric field and decelerated through collisions with the lattice ions.
|
||||||
|
The model disregards the Fermi-Dirac partition of the conducting electrons.
|
||||||
|
}
|
||||||
|
\ger{Ein klassisches Model zur Beschreibung der Transporteigenschaften von Elektronen in (v.a.) Metallen:
|
||||||
|
Der Festkörper wird als Ionenkristall mit frei beweglichen Elektronen (Elektronengas).
|
||||||
|
Die Elektronen werden durch ein Elektrisches Feld $E$ beschleunigt und durch Stöße mit den Gitterionen gebremst.
|
||||||
|
Das Modell vernachlässigt die Fermi-Dirac Verteilung der Leitungselektronen.
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{motion}
|
||||||
|
\desc{Equation of motion}{}{$v$ electron speed, $\vec{v}_\text{D}$ drift velocity, $\tau$ mean free time between collisions}
|
||||||
|
\desc[german]{Bewegungsgleichung}{}{$v$ Elektronengeschwindigkeit, $\vec{v}_\text{D}$ Driftgeschwindigkeit, $\tau$ Stoßzeit}
|
||||||
|
\eq{\masse \odv{\vec{v}}{t} + \frac{\masse}{\tau} \vec{v}_\text{D} = -e \vec{E}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{current_density}
|
||||||
|
\desc{Current density}{Ohm's law}{$n$ charge particle density}
|
||||||
|
\desc[german]{Stromdichte}{Ohmsches Gesetz}{$n$ Ladungsträgerdichte}
|
||||||
|
\eq{\vec{j} = -ne\vec{v}_\text{D} = ne\mu \vec{E}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{conductivity}
|
||||||
|
\desc{Drude-conductivity}{}{}
|
||||||
|
\desc[german]{Drude-Leitfähigkeit}{}{}
|
||||||
|
\eq{\sigma = \frac{\vec{j}}{\vec{E}} = \frac{e^2 \tau n}{\masse} = n e \mu}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Sommerfeld model}
|
||||||
|
\ger{Sommerfeld-Modell}
|
||||||
|
]{sommerfeld}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Assumes a gas of free fermions underlying the pauli-exclusion principle. Only electrons in an energy range of $\kB T$ around the Fermi energy $\EFermi$ participate in scattering processes.}
|
||||||
|
\ger{Annahme eines freien Fermionengases, welches dem Pauli-Prinzip unterliegt. Nur Elektronen in einem Energiebereich von $\kB T$ um die Fermi Energe $\EFermi$ nehmen an Streuprozessen teil.}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{current_density}
|
||||||
|
\desc{Current density}{}{}
|
||||||
|
\desc[german]{Stromdichte}{}{}
|
||||||
|
\eq{\vec{j} = -en\braket{v} = -e n \frac{\hbar}{\masse}\braket{\vec{k}} = -e \frac{1}{V} \sum_{\vec{k},\sigma} \frac{\hbar \vec{k}}{\masse}}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{The formula for the conductivity is the same as in the drude model?}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{2D electron gas}
|
||||||
|
\ger{2D Elektronengas}
|
||||||
|
]{2deg}
|
||||||
|
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Lower dimension gases can be obtained by restricting a 3D gas with infinetly high potential walls on a narrow area with the width $L$.}
|
||||||
|
\ger{
|
||||||
|
Niederdimensionale Elektronengase erhält man, wenn ein 3D Gas durch unendlich hohe Potentialwände auf einem schmalen Bereich mit Breite $L$ eingeschränkt wird.
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{confinement_energy}
|
||||||
|
\desc{Confinement energy}{Raises ground state energy}{}
|
||||||
|
\desc[german]{Confinement Energie}{Erhöht die Grundzustandsenergie}{}
|
||||||
|
\eq{\Delta E = \frac{\hbar^2 \pi^2}{2\masse L^2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Eng[plain_wave]{plain wave}
|
||||||
|
\Ger[plain_wave]{ebene Welle}
|
||||||
|
\begin{formula}{energy}
|
||||||
|
\desc{Energy}{}{}
|
||||||
|
\desc[german]{Energie}{}{}
|
||||||
|
\eq{E_n = \underbrace{\frac{\hbar^2 k_\parallel^2}{2\masse}}_\text{$x$-$y$: \GT{plain_wave}} + \underbrace{\frac{\hbar^2 \pi^2}{2\masse L^2} n^2}_\text{$z$}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{1D electron gas / quantum wire}
|
||||||
|
\ger{1D Eleltronengas / Quantendraht}
|
||||||
|
]{1deg}
|
||||||
|
|
||||||
|
\begin{formula}{energy}
|
||||||
|
\desc{Energy}{}{}
|
||||||
|
\desc[german]{Energie}{}{}
|
||||||
|
\eq{E_n = \frac{\hbar^2 k_x^2}{2\masse} + \frac{\hbar^2 \pi^2}{2\masse L_z^2} n_1^2 + \frac{\hbar^2 \pi^2}{2\masse L_y^2} n_2^2}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{0D electron gas / quantum dot}
|
||||||
|
\ger{0D Elektronengase / Quantenpunkt}
|
||||||
|
]{0deg}
|
||||||
|
|
||||||
|
\TODO{TODO}
|
||||||
|
|
222
src/electrodynamics.tex
Normal file
@ -0,0 +1,222 @@
|
|||||||
|
\def\PhiB{\Phi_\text{B}}
|
||||||
|
\def\PhiE{\Phi_\text{E}}
|
||||||
|
|
||||||
|
\Part[
|
||||||
|
\eng{Electrodynamics}
|
||||||
|
\ger{Elektrodynamik}
|
||||||
|
]{ed}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Maxwell-Equations}
|
||||||
|
\ger{Maxwell-Gleichungen}
|
||||||
|
]{Maxwell}
|
||||||
|
\begin{formula}{vacuum}
|
||||||
|
\desc{Vacuum}{microscopic formulation}{}
|
||||||
|
\desc[german]{Vakuum}{Mikroskopische Formulierung}{}
|
||||||
|
\eq{
|
||||||
|
\Div \vec{E} &= \frac{\rho_\text{el}}{\epsilon_0} \\
|
||||||
|
\Div \vec{B} &= 0 \\
|
||||||
|
\Rot \vec{E} &= - \odv{\vec{B}}{t} \\
|
||||||
|
\Rot \vec{B} &= \mu_0 \vec{j} + \frac{1}{c^2} \odv{\vec{E}}{t}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{material}
|
||||||
|
\desc{Matter}{Macroscopic formulation}{}
|
||||||
|
\desc[german]{Materie}{Makroskopische Formulierung}{}
|
||||||
|
\eq{
|
||||||
|
\Div \vec{D} &= \rho_\text{el} \\
|
||||||
|
\Div \vec{B} &= 0 \\
|
||||||
|
\Rot \vec{E} &= - \odv{\vec{B}}{t} \\
|
||||||
|
\Rot \vec{H} &= \vec{j} + \odv{\vec{D}}{t}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Fields}
|
||||||
|
\ger{Felder}
|
||||||
|
]{fields}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Electric field}
|
||||||
|
\ger{Elektrisches Feld}
|
||||||
|
]{mag}
|
||||||
|
\begin{formula}{gauss_law}
|
||||||
|
\desc{Gauss's law for electric fields}{Electric flux through a closed surface is proportional to the electric charge}{$S$ closed surface}
|
||||||
|
\desc[german]{Gaußsches Gesetz für elektrische Felder}{Der magnetische Fluss durch eine geschlossene Fläche ist proportional zur elektrischen Ladung}{$S$ geschlossene Fläche}
|
||||||
|
\eq{\PhiE = \iint_S \vec{E}\cdot\d\vec{S} = \frac{Q}{\varepsilon_0}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Magnetic field}
|
||||||
|
\ger{Magnetfeld}
|
||||||
|
]{mag}
|
||||||
|
|
||||||
|
\Eng[magnetic_flux]{Magnetix flux density}
|
||||||
|
\Ger[magnetic_flux]{Magnetische Flussdichte}
|
||||||
|
|
||||||
|
% \begin{quantity}{mag_flux}{\Phi}{\Wb}{\kg\m^2\per\s^2\A^1}{scalar}
|
||||||
|
% \sign{}
|
||||||
|
% \desc{Magnetic flux density}{}
|
||||||
|
% \desc[german]{Magnetische Feldstärke}{}
|
||||||
|
% \end{quantity}
|
||||||
|
|
||||||
|
\begin{formula}{magnetic_flux}
|
||||||
|
\desc{Magnetic flux}{}{}
|
||||||
|
\desc[german]{Magnetischer Fluss}{}{}
|
||||||
|
\eq{\PhiB = \iint_A \vec{B}\cdot\d\vec{A}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{gauss_law}
|
||||||
|
\desc{Gauss's law for magnetism}{Magnetic flux through a closed surface is $0$ \Rightarrow there are no magnetic monopoles}{$S$ closed surface}
|
||||||
|
\desc[german]{Gaußsches Gesetz für Magnetismus}{Der magnetische Fluss durch eine geschlossene Fläche ist $0$ \Rightarrow es gibt keine magnetischen Monopole}{$S$ geschlossene Fläche}
|
||||||
|
\eq{\PhiB = \iint_S \vec{B}\cdot\d\vec{S} = 0}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{name}
|
||||||
|
\desc{}{}{}
|
||||||
|
\desc[german]{}{}{}
|
||||||
|
\eq{}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{magnetization}
|
||||||
|
\desc{Magnetization}{}{$m$ mag. moment, $V$ volume}
|
||||||
|
\desc[german]{Magnetisierung}{}{$m$ mag. Moment, $V$ Volumen}
|
||||||
|
\eq{\vec{M} = \odv{\vec{m}}{V} = \chi_\text{m} \cdot \vec{H}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{angular_torque}
|
||||||
|
\desc{Torque}{}{$m$ mag. moment}
|
||||||
|
\desc[german]{Drehmoment}{}{$m$ mag. Moment}
|
||||||
|
\eq{\vec{\tau} = \vec{m} \times \vec{B}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{suceptibility}
|
||||||
|
\desc{Susceptibility}{}{}
|
||||||
|
\desc[german]{Suszeptibilität}{}{}
|
||||||
|
\eq{\chi_\text{m} = \pdv{M}{B} = \frac{\mu}{\mu_0} - 1 }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{poynting}
|
||||||
|
\desc{Poynting vector}{Directional energy flux or power flow of an electromagnetic field [$\si{\W\per\m^2}$]}{}
|
||||||
|
\desc[german]{Poynting-Vektor}{Gerichteter Energiefluss oder Leistungsfluss eines elektromgnetischen Feldes [$\si{\W\per\m^2}$]}{}
|
||||||
|
\eq{\vec{S} = \vec{E} \times \vec{H}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Induction}
|
||||||
|
\ger{Unduktion}
|
||||||
|
]{induction}
|
||||||
|
\begin{formula}{farady_law}
|
||||||
|
\desc{Faraday's law of induction}{}{}
|
||||||
|
\desc[german]{Faradaysche Induktionsgesetz}{}{}
|
||||||
|
\eq{U_\text{ind} = -\odv{}{t} \PhiB = - \odv{}{t} \iint_A\vec{B} \cdot \d\vec{A}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Hall-Effect}
|
||||||
|
\ger{Hall-Effekt}
|
||||||
|
]{hall}
|
||||||
|
|
||||||
|
\begin{formula}{cyclotron}
|
||||||
|
\desc{Cyclontron frequency}{}{}
|
||||||
|
\desc[german]{Zyklotronfrequenz}{}{}
|
||||||
|
\eq{\omega_\text{c} = \frac{e B}{\masse}}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{Move}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Classical Hall-Effect}
|
||||||
|
\ger{Klassischer Hall-Effekt}
|
||||||
|
]{classic}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Current flowing in $x$ direction in a conductor ($l \times b \times d$) with a magnetic field $B$ in $z$ direction leads to a hall voltage $U_\text{H}$ in $y$ direction.}
|
||||||
|
\ger{Fließt in einem Leiter ($l \times b \times d$) ein Strom in $x$ Richtung, während der Leiter von einem Magnetfeld $B$ in $z$-Richtung durchdrungen, wird eine Hallspannung $U_\text{H}$ in $y$-Richtung induziert.}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{voltage}
|
||||||
|
\desc{Hall voltage}{}{$n$ charge carrier density}
|
||||||
|
\desc[german]{Hallspannung}{}{$n$ Ladungsträgerdichte}
|
||||||
|
\eq{U_\text{H} = \frac{I B}{ne d}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{coefficient}
|
||||||
|
\desc{Hall coefficient}{}{}
|
||||||
|
\desc[german]{Hall-Koeffizient}{}{}
|
||||||
|
\eq{R_\text{H} = -\frac{Eg}{j_x Bg} = \frac{1}{ne} = \frac{\rho_{xy}}{B_z}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{resistivity}
|
||||||
|
\desc{Resistivity}{}{}
|
||||||
|
\desc[german]{Spezifischer Widerstand}{}{}
|
||||||
|
\eq{\rho_{xx} &= \frac{\masse}{ne^2\tau} \\ \rho_{xy} &= \frac{B}{ne}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Integer quantum hall effect}
|
||||||
|
\ger{Ganzahliger Quantenhalleffekt}
|
||||||
|
]{quantum}
|
||||||
|
|
||||||
|
\begin{formula}{conductivity}
|
||||||
|
\desc{Conductivity tensor}{}{}
|
||||||
|
\desc[german]{Leitfähigkeitstensor}{}{}
|
||||||
|
\eq{\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{resistivity}
|
||||||
|
\desc{Resistivity tensor}{}{}
|
||||||
|
\desc[german]{Spezifischer Widerstands-tensor}{}{}
|
||||||
|
\eq{
|
||||||
|
\rho = \sigma^{-1}
|
||||||
|
% \sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{resistivity}
|
||||||
|
\desc{Resistivity}{}{$\nu \in \mathbb{Z}$}
|
||||||
|
\desc[german]{Spezifischer Hallwiderstand}{}{$\nu \in \mathbb{Z}$}
|
||||||
|
\eq{\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
% \begin{formula}{qhe}
|
||||||
|
% \desc{Integer quantum hall effect}{}{}
|
||||||
|
% \desc[german]{Ganzahliger Quanten-Hall-Effekt}{}{}
|
||||||
|
% \fig{img/qhe-klitzing.jpeg}
|
||||||
|
% \end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\TODO{sort}
|
||||||
|
\begin{formula}{impedance_c}
|
||||||
|
\desc{Impedance of a capacitor}{}{}
|
||||||
|
\desc[german]{Impedanz eines Kondesnators}{}{}
|
||||||
|
\eq{Z_{C} = \frac{1}{i\omega C}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{impedance_l}
|
||||||
|
\desc{Impedance of an inductor}{}{}
|
||||||
|
\desc[german]{Impedanz eines Induktors}{}{}
|
||||||
|
\eq{Z_{L} = i\omega L}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\TODO{impedance addition for parallel / linear}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Dipole-stuff}
|
||||||
|
\ger{Dipol-zeug}
|
||||||
|
]{dipole}
|
||||||
|
|
||||||
|
\begin{formula}{poynting}
|
||||||
|
\desc{Dipole radiation Poynting vector}{}{}
|
||||||
|
\desc[german]{Dipolsrahlung Poynting-Vektor}{}{}
|
||||||
|
\eq{\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right)\frac{\sin^2\theta}{r^2} \vec{r}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{power}
|
||||||
|
\desc{Time-average power}{}{}
|
||||||
|
\desc[german]{Zeitlich mittlere Leistung}{}{}
|
||||||
|
\eq{P = \frac{\mu_0\omega^4 p_0^2}{12\pi c}}
|
||||||
|
\end{formula}
|
213
src/environments.tex
Normal file
@ -0,0 +1,213 @@
|
|||||||
|
\def\descwidth{0.3\textwidth}
|
||||||
|
\def\eqwidth{0.6\textwidth}
|
||||||
|
|
||||||
|
% [1]: minipage width
|
||||||
|
% 2: fqname of name
|
||||||
|
% 3: fqname of a translation that holds the explanation
|
||||||
|
\newcommand{\NameWithExplanation}[3][\descwidth]{
|
||||||
|
\begin{minipage}{#1}
|
||||||
|
\iftranslation{#2}{
|
||||||
|
\raggedright
|
||||||
|
\gt{#2}
|
||||||
|
}{}
|
||||||
|
\iftranslation{#3}{
|
||||||
|
\\ {\color{darkgray} \gt{#3}}
|
||||||
|
}{}
|
||||||
|
\end{minipage}
|
||||||
|
}
|
||||||
|
|
||||||
|
% [1]: minipage width
|
||||||
|
% 2: content
|
||||||
|
% 3: fqname of a translation that holds the explanation
|
||||||
|
\newcommand{\ContentBoxWithExplanation}[3][\eqwidth]{
|
||||||
|
\fbox{
|
||||||
|
\begin{minipage}{#1}
|
||||||
|
% \vspace{-\baselineskip} % remove the space that comes from starting a new paragraph
|
||||||
|
#2
|
||||||
|
\noindent\iftranslation{#3}{
|
||||||
|
\begingroup
|
||||||
|
\color{darkgray}
|
||||||
|
\gt{#3}
|
||||||
|
% \edef\temp{\GT{#1_defs}}
|
||||||
|
% \expandafter\StrSubstitute\expandafter{\temp}{:}{\\}
|
||||||
|
\endgroup
|
||||||
|
}{}
|
||||||
|
% \vspace{-\baselineskip} % remove the space that comes from starting a new paragraph
|
||||||
|
\end{minipage}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
% 1: fqname, optional with #1_defs and #1_desc defined
|
||||||
|
% 2: content
|
||||||
|
\newcommand{\NameLeftContentRight}[2]{
|
||||||
|
\par\noindent\ignorespaces
|
||||||
|
% \textcolor{gray}{\hrule}
|
||||||
|
\vspace{0.5\baselineskip}
|
||||||
|
\NameWithExplanation[\descwidth]{#1}{#1_desc}
|
||||||
|
\hfill
|
||||||
|
\ContentBoxWithExplanation[\eqwidth]{#2}{#1_defs}
|
||||||
|
\textcolor{lightgray}{\hrule}
|
||||||
|
\vspace{0.5\baselineskip}
|
||||||
|
% \par
|
||||||
|
% \hrule
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand{\insertEquation}[2]{
|
||||||
|
\NameLeftContentRight{#1}{
|
||||||
|
\begin{align}
|
||||||
|
\label{eq:\fqname:#1}
|
||||||
|
#2
|
||||||
|
\end{align}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand{\insertFLAlign}[2]{ % eq name, #cols, eq
|
||||||
|
\NameLeftContentRight{#1}{%
|
||||||
|
\begin{flalign}%
|
||||||
|
% dont place label when one is provided
|
||||||
|
% \IfSubStringInString{label}\unexpanded{#3}{}{
|
||||||
|
% \label{eq:#1}
|
||||||
|
% }
|
||||||
|
#2%
|
||||||
|
\end{flalign}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand{\insertAlignedAt}[3]{ % eq name, #cols, eq
|
||||||
|
\NameLeftContentRight{#1}{%
|
||||||
|
\begin{alignat}{#2}%
|
||||||
|
% dont place label when one is provided
|
||||||
|
% \IfSubStringInString{label}\unexpanded{#3}{}{
|
||||||
|
% \label{eq:#1}
|
||||||
|
% }
|
||||||
|
#3%
|
||||||
|
\end{alignat}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand\luaexpr[1]{\directlua{tex.sprint(#1)}}
|
||||||
|
% 1: fqname
|
||||||
|
% 2: file path
|
||||||
|
% 3: equation
|
||||||
|
\newcommand{\insertEquationWithFigure}[4][0.55]{
|
||||||
|
\par\noindent\ignorespaces
|
||||||
|
% \textcolor{gray}{\hrule}
|
||||||
|
\vspace{0.5\baselineskip}
|
||||||
|
\begin{minipage}{#1\textwidth}
|
||||||
|
\NameWithExplanation[\textwidth]{#2}{#2_desc}
|
||||||
|
% TODO: why is this ignored
|
||||||
|
\vspace{1.0cm}
|
||||||
|
% TODO: fix box is too large without 0.9
|
||||||
|
\ContentBoxWithExplanation[0.90\textwidth]{
|
||||||
|
\begin{align}
|
||||||
|
\label{eq:\fqname:#2}
|
||||||
|
#4
|
||||||
|
\end{align}
|
||||||
|
}{#2_defs}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}{\luaexpr{1.0-#1}\textwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{#3}
|
||||||
|
\label{fig:\fqname:#2}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\textcolor{lightgray}{\hrule}
|
||||||
|
\vspace{0.5\baselineskip}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
\newenvironment{formula}[1]{
|
||||||
|
% key
|
||||||
|
\newcommand{\desc}[4][english]{
|
||||||
|
% language, name, description, definitions
|
||||||
|
\dt[#1]{##1}{##2}
|
||||||
|
\ifblank{##3}{}{\dt[#1_desc]{##1}{##3}}
|
||||||
|
\ifblank{##4}{}{\dt[#1_defs]{##1}{##4}}
|
||||||
|
}
|
||||||
|
\newcommand{\eq}[1]{
|
||||||
|
\insertEquation{#1}{##1}
|
||||||
|
}
|
||||||
|
\newcommand{\eqAlignedAt}[2]{
|
||||||
|
\insertAlignedAt{#1}{##1}{##2}
|
||||||
|
}
|
||||||
|
\newcommand{\eqFLAlign}[1]{
|
||||||
|
\insertFLAlign{#1}{##1}
|
||||||
|
}
|
||||||
|
\newcommand{\figeq}[2]{
|
||||||
|
\insertEquationWithFigure{#1}{##1}{##2}
|
||||||
|
}
|
||||||
|
\newcommand{\content}[1]{
|
||||||
|
\NameLeftContentRight{#1}{##1}
|
||||||
|
}
|
||||||
|
}{\ignorespacesafterend}
|
||||||
|
|
||||||
|
|
||||||
|
\newenvironment{quantity}[5]{
|
||||||
|
% key, symbol, si unit, si base units, comment (key to translation)
|
||||||
|
\newcommand{\desc}[3][english]{
|
||||||
|
% language, name, description
|
||||||
|
\DT[qty:#1]{}{##1}{##2}
|
||||||
|
\ifblank{##3}{}{\DT[qty:#1_desc]{##1}{##3}}
|
||||||
|
}
|
||||||
|
\newcommand{\eq}[1]{
|
||||||
|
\insertEquation{#1}{##1}
|
||||||
|
}
|
||||||
|
\newcommand{\eqAlignedAt}[2]{
|
||||||
|
\insertAlignedAt{#1}{##1}{##2}
|
||||||
|
}
|
||||||
|
\newcommand{\eqFLAlign}[1]{
|
||||||
|
\insertFLAlign{#1}{##1}
|
||||||
|
}
|
||||||
|
|
||||||
|
\edef\qtyname{#1}
|
||||||
|
\edef\qtysign{#2}
|
||||||
|
\edef\qtyunit{#3}
|
||||||
|
\edef\qtybaseunits{#4}
|
||||||
|
\edef\qtycomment{#5}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
Quantity: \expandafter\GT\expandafter{qty:\qtyname}: \GT{qty:\qtyname_desc} \\
|
||||||
|
$\qtysign$ $[\SI{\qtyunit}] = [\SI{\qtybaseunits}]$ - \qtycomment \\
|
||||||
|
\ignorespacesafterend
|
||||||
|
}
|
||||||
|
\def\distrightwidth{0.45\textwidth}
|
||||||
|
\def\distleftwidth{0.45\textwidth}
|
||||||
|
|
||||||
|
% Table for distributions
|
||||||
|
% create entries for parameters using \disteq
|
||||||
|
\newenvironment{distribution}[0]{
|
||||||
|
% 1: param name (translation key)
|
||||||
|
% 2: math
|
||||||
|
\newcommand{\disteq}[2]{
|
||||||
|
% add links to some names
|
||||||
|
\directlua{
|
||||||
|
local cases = {
|
||||||
|
pdf = "eq:pt:distributions:pdf",
|
||||||
|
pmf = "eq:pt:distributions:pdf",
|
||||||
|
cdf = "eq:pt:distributions:cdf",
|
||||||
|
mean = "eq:pt:mean",
|
||||||
|
variance = "eq:pt:variance"
|
||||||
|
}
|
||||||
|
if cases["\luaescapestring{#1}"] \string~= nil then
|
||||||
|
tex.sprint("\\hyperref["..cases["\luaescapestring{#1}"].."]{\\GT{#1}}")
|
||||||
|
else
|
||||||
|
tex.sprint("\\GT{#1}")
|
||||||
|
end
|
||||||
|
}
|
||||||
|
& #2 \\ \hline
|
||||||
|
}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}{\distrightwidth}
|
||||||
|
\begingroup
|
||||||
|
\setlength{\tabcolsep}{0.9em} % horizontal
|
||||||
|
\renewcommand{\arraystretch}{2} % vertical
|
||||||
|
\begin{tabular}{|l|>{$\displaystyle}c<{$}|}
|
||||||
|
\hline
|
||||||
|
}{
|
||||||
|
\end{tabular}
|
||||||
|
\endgroup
|
||||||
|
\end{minipage}
|
||||||
|
}
|
@ -1,8 +1,7 @@
|
|||||||
|
|
||||||
\Part[
|
\Part[
|
||||||
\eng{Analysis}
|
\eng{Geometry}
|
||||||
\ger{Analysis}
|
\ger{Geometrie}
|
||||||
]{ana}
|
]{geo}
|
||||||
|
|
||||||
\Section[
|
\Section[
|
||||||
\eng{Trigonometry}
|
\eng{Trigonometry}
|
||||||
@ -18,14 +17,14 @@
|
|||||||
\begin{formula}{sine}
|
\begin{formula}{sine}
|
||||||
\desc{Sine}{}{}
|
\desc{Sine}{}{}
|
||||||
\desc[german]{Sinus}{}{}
|
\desc[german]{Sinus}{}{}
|
||||||
\eq{\sin(x) &= \sum_{n=0}^{\infty} \frac{x^{(2n+1)}}{(2n+1)!} \\
|
\eq{\sin(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n+1)}}{(2n+1)!} \\
|
||||||
&= \frac{e^{ix}-e^{-ix}}{2i}}
|
&= \frac{e^{ix}-e^{-ix}}{2i}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{cosine}
|
\begin{formula}{cosine}
|
||||||
\desc{Cosine}{}{}
|
\desc{Cosine}{}{}
|
||||||
\desc[german]{Kosinus}{}{}
|
\desc[german]{Kosinus}{}{}
|
||||||
\eq{\cos(x) &= \sum_{n=0}^{\infty} \frac{x^{(2n)}}{(2n)!} \\
|
\eq{\cos(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n)}}{(2n)!} \\
|
||||||
&= \frac{e^{ix}+e^{-ix}}{2}}
|
&= \frac{e^{ix}+e^{-ix}}{2}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -72,6 +71,12 @@
|
|||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{name}
|
||||||
|
\desc{}{}{$\tan\theta = b$}
|
||||||
|
\desc[german]{}{}{$\tan\theta = b$}
|
||||||
|
\eq{\cos x + b\sin x = \sqrt{1 + b^2}\cos(x-\theta)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Table of values}
|
\eng{Table of values}
|
760
src/img/bravais2/aP.svg
Normal file
801
src/img/bravais2/cF.svg
Normal file
801
src/img/bravais2/cI.svg
Normal file
772
src/img/bravais2/cP.svg
Normal file
743
src/img/bravais2/hP.svg
Normal file
768
src/img/bravais2/hR.svg
Normal file
772
src/img/bravais2/mP.svg
Normal file
762
src/img/bravais2/mS.svg
Normal file
760
src/img/bravais2/oF.svg
Normal file
759
src/img/bravais2/oI.svg
Normal file
769
src/img/bravais2/oP.svg
Normal file
766
src/img/bravais2/oS.svg
Normal file
760
src/img/bravais2/tI.svg
Normal file
750
src/img/bravais2/tP.svg
Normal file
BIN
src/img/qhe-klitzing.jpeg
Normal file
After Width: | Height: | Size: 260 KiB |
118
src/linalg.tex
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
\def\id{\mathbb{1}}
|
||||||
|
|
||||||
|
\Part[
|
||||||
|
\eng{Linear algebra}
|
||||||
|
\ger{Lineare Algebra}
|
||||||
|
]{linalg}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Determinant}
|
||||||
|
\ger{Determinante}
|
||||||
|
]{determinant}
|
||||||
|
\begin{formula}{2x2}
|
||||||
|
\desc{2x2 matrix}{}{}
|
||||||
|
\desc[german]{2x2 Matrix}{}{}
|
||||||
|
\eq{\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a\,d -c\,b}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{3x3}
|
||||||
|
\desc{3x3 matrix (Rule of Sarrus)}{}{}
|
||||||
|
\desc[german]{3x3 Matrix (Regel von Sarrus)}{}{}
|
||||||
|
\eq{\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} =
|
||||||
|
a\,e\,i + b\,f\,g + c\,d\,h - g\,e\,c - h\,f\,a-i\,d\,b}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{leibniz}
|
||||||
|
\desc{Leibniz formla}{}{}
|
||||||
|
\desc[german]{Leibniz-Formel}{}{}
|
||||||
|
\eq{\det(A) = \sum_{\sigma \in S_n}\Big(\sgn(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}\Big)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{product}
|
||||||
|
\desc{Product}{}{}
|
||||||
|
\desc[german]{Produkt}{}{}
|
||||||
|
\eq{\det(A \, B) = \det(A) \det(B)}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{inverse}
|
||||||
|
\desc{Inverse}{}{}
|
||||||
|
\desc[german]{Inverse}{}{}
|
||||||
|
\eq{\det(A^{-1}) = \det(A)^{-1}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{transposed}
|
||||||
|
\desc{Transposed}{}{}
|
||||||
|
\desc[german]{Transponiert}{}{}
|
||||||
|
\eq{\det(A^{\T}) = \det(A)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
|
||||||
|
]{zeug}
|
||||||
|
|
||||||
|
\begin{formula}{unitary}
|
||||||
|
\desc{Unitary matrix}{}{}
|
||||||
|
\desc[german]{Unitäre Matrix}{}{}
|
||||||
|
\eq{U ^\dagger U = \id}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{svd}
|
||||||
|
\desc{Singular value decomposition}{Factorization of complex matrices through rotating \rightarrow rescaling \rightarrow rotation.}{$A$: $m\times n$ matrix, $U$: $m\times m$ unitary matrix, $\Lambda$: $m\times n$ rectangular diagonal matrix with non-negative numbers on the diagonal, $V$: $n\times n$ unitary matrix}
|
||||||
|
\desc[german]{Singulärwertzerlegung}{Faktorisierung einer reellen oder komplexen Matrix durch Rotation \rightarrow Skalierung \rightarrow Rotation.}{}
|
||||||
|
\eq{A = U \Lambda V}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{rotation2}
|
||||||
|
\desc{2D rotation matrix}{}{}
|
||||||
|
\desc[german]{2D Rotationsmatrix}{}{}
|
||||||
|
\eq{R = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{rotation3}
|
||||||
|
\desc{3D rotation matrices}{}{}
|
||||||
|
\desc[german]{3D Rotationsmatrizen}{}{}
|
||||||
|
\eq{
|
||||||
|
R_x &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} \\
|
||||||
|
R_y &= \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \\
|
||||||
|
R_z &= \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{rotation_properties}
|
||||||
|
\desc{Properites of rotation matrices}{}{$n$ dimension, SO($n$) special othogonal group}
|
||||||
|
\desc[german]{Eigenschaften von Rotationsmatrizen}{}{$n$ Dimension, SO($n$) spezielle orthognale Gruppe}
|
||||||
|
\eq{
|
||||||
|
R^{\T} = R^{-1} \\
|
||||||
|
\det R = 1 \\
|
||||||
|
R \in \text{SO($n$)}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Eigenvalues}
|
||||||
|
\ger{Eigenwerte}
|
||||||
|
]{eigen}
|
||||||
|
\begin{formula}{values}
|
||||||
|
\desc{Eigenvalue equation}{}{$\lambda$ eigenvalue, $v$ eigenvector}
|
||||||
|
\desc[german]{Eigenwert-Gleichung}{}{$\lambda$ Eigenwert, $v$ Eigenvektor}
|
||||||
|
\eq{A v = \lambda v}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{charac_poly}
|
||||||
|
\desc{Characteristic polynomial}{Zeros are the eigenvalues of $A$}{}
|
||||||
|
\desc[german]{Charakteristisches Polynom}{Nullstellen sind die Eigenwerte von $A$}{}
|
||||||
|
\eq{\chi_A = \det(A - \lambda \id) \overset{!}{=} 0}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{kramer}
|
||||||
|
\desc{Kramer's theorem}{If $H$ is invariant under $T$ and $\ket{\psi}$ is an eigenstate of $H$, then $T\ket{\psi}$ is also am eigenstate of $H$}{}
|
||||||
|
\desc[german]{Kramers-Theorem}{Wenn $H$ invariant unter $T$ ist und $\ket{\psi}$ ein Eigenzustand von $H$ ist, dann ist $T \ket{\psi}$ auch ein Eigenzustand von $H$}{}
|
||||||
|
\eq{T H T^\dagger = H \quad\wedge\quad H \ket{\psi} = E \ket{\psi} \quad\Rightarrow\quad H T \ket{\psi} = E T \ket{\psi}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{eigendecomp}
|
||||||
|
\desc{Eigendecomposition}{}{$A$ diagonalizable, columns of $V$ are eigenvectors $v_i$, $\Lambda$ diagonal matrix with eigenvalues $\lambda_i$ on the diagonal}
|
||||||
|
\desc[german]{Eigenwertzerlegung}{}{$A$ diagonalisierbar, Spalten von $V$ sind die Eigenvektoren $v_i$, $\Lambda$ Diagonalmatrix mit Eigenwerten $\lambda_$ auf der Diagonalen}
|
||||||
|
\eq{A = V \Lambda V^{-1}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\TODO{Jordan stuff, blockdiagonal matrices, permutations, skalar product lapacescher entwicklungssatz maybe, cramers rule}
|
||||||
|
|
47
src/macros.tex
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
\def\Grad{\vec{\nabla}}
|
||||||
|
\def\Div{\vec{\nabla} \cdot}
|
||||||
|
\def\Rot{\vec{\nabla} \times}
|
||||||
|
\def\vecr{\vec{r}}
|
||||||
|
|
||||||
|
\def\kB{k_\text{B}}
|
||||||
|
\def\EFermi{E_\text{F}}
|
||||||
|
|
||||||
|
\def\masse{m_\textrm{e}}
|
||||||
|
|
||||||
|
\def\R{\mathbb{R}}
|
||||||
|
\def\C{\mathbb{C}}
|
||||||
|
\def\Z{\mathbb{Z}}
|
||||||
|
\def\N{\mathbb{N}}
|
||||||
|
|
||||||
|
\def\Four{\mathcal{F}} % Fourier transform
|
||||||
|
\def\Lebesgue{\mathcal{L}} % Lebesgue
|
||||||
|
\def\Order{\mathcal{O}}
|
||||||
|
|
||||||
|
% complex, may be changed later to idot or upright...
|
||||||
|
\def\I{i}
|
||||||
|
|
||||||
|
\def\sdots{\,\dots\,}
|
||||||
|
\def\qdots{\quad\dots\quad}
|
||||||
|
\def\qRarrow{\quad\Rightarrow\quad}
|
||||||
|
|
||||||
|
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
|
||||||
|
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
|
||||||
|
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
|
||||||
|
|
||||||
|
\DeclareMathOperator{\e}{e}
|
||||||
|
\DeclareMathOperator{\T}{T} % transposed
|
||||||
|
\DeclareMathOperator{\sgn}{sgn}
|
||||||
|
\DeclareMathOperator{\tr}{tr}
|
||||||
|
\DeclareMathOperator{\const}{const}
|
||||||
|
\DeclareMathOperator{\erf}{erf}
|
||||||
|
% diff, for integrals and stuff
|
||||||
|
% \DeclareMathOperator{\dd}{d}
|
||||||
|
\renewcommand*\d{\mathop{}\!\mathrm{d}}
|
||||||
|
|
||||||
|
% functions with paranthesis
|
||||||
|
\newcommand\CmdWithParenthesis[2]{
|
||||||
|
#1\left(#2\right)
|
||||||
|
}
|
||||||
|
\newcommand\Exp[1]{\CmdWithParenthesis{\exp}{#1}}
|
||||||
|
\newcommand\Sin[1]{\CmdWithParenthesis{\sin}{#1}}
|
||||||
|
\newcommand\Cos[1]{\CmdWithParenthesis{\cos}{#1}}
|
178
src/main.tex
@ -3,17 +3,30 @@
|
|||||||
\usepackage[german]{babel}
|
\usepackage[german]{babel}
|
||||||
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
|
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
|
||||||
\usepackage{mathtools}
|
\usepackage{mathtools}
|
||||||
|
\usepackage{MnSymbol} % for >>> \ggg sign
|
||||||
% \usepackage{esdiff} % derivatives
|
% \usepackage{esdiff} % derivatives
|
||||||
% esdiff breaks when taking \dot{q} has argument
|
% esdiff breaks when taking \dot{q} has argument
|
||||||
\usepackage{derivative}
|
\usepackage{derivative}
|
||||||
|
\usepackage{bbold} % \mathbb font
|
||||||
\usepackage{braket}
|
\usepackage{braket}
|
||||||
\usepackage{graphicx}
|
\usepackage{graphicx}
|
||||||
\usepackage{etoolbox}
|
\usepackage{etoolbox}
|
||||||
|
\usepackage{expl3} % switch case and other stuff
|
||||||
\usepackage{substr}
|
\usepackage{substr}
|
||||||
\usepackage{xcolor}
|
\usepackage{xcolor}
|
||||||
\usepackage{float}
|
\usepackage{float}
|
||||||
|
\usepackage{tikz} % drawings
|
||||||
|
\usetikzlibrary{decorations.pathmorphing}
|
||||||
|
\usetikzlibrary{calc}
|
||||||
|
\usepackage{circuitikz}
|
||||||
\usepackage[hidelinks]{hyperref}
|
\usepackage[hidelinks]{hyperref}
|
||||||
\usepackage{subcaption}
|
\usepackage{subcaption}
|
||||||
|
\usepackage[shortlabels]{enumitem} % easily change enum symbols to i), a. etc
|
||||||
|
\usepackage{colortbl} % color table
|
||||||
|
\usepackage{tabularx} % bravais table
|
||||||
|
\usepackage{adjustbox}
|
||||||
|
\usepackage{multirow} % for superconducting qubit table
|
||||||
|
\usepackage{hhline} % for superconducting qubit table
|
||||||
\hypersetup{colorlinks = true, % Colours links instead of ugly boxes
|
\hypersetup{colorlinks = true, % Colours links instead of ugly boxes
|
||||||
urlcolor = blue, % Colour for external hyperlinks
|
urlcolor = blue, % Colour for external hyperlinks
|
||||||
linkcolor = cyan, % Colour of internal links
|
linkcolor = cyan, % Colour of internal links
|
||||||
@ -26,13 +39,11 @@
|
|||||||
\sisetup{per-mode = power}
|
\sisetup{per-mode = power}
|
||||||
\sisetup{exponent-product=\ensuremath{\cdot}}
|
\sisetup{exponent-product=\ensuremath{\cdot}}
|
||||||
|
|
||||||
\DeclarePairedDelimiter\abs{\lvert}{\rvert}
|
|
||||||
\DeclareMathOperator{\e}{e}
|
|
||||||
\DeclareMathOperator{\d}{d}
|
|
||||||
|
|
||||||
\usepackage{translations}
|
\usepackage{translations}
|
||||||
|
|
||||||
\newcommand{\TODO}[1]{{\color{red}TODO:#1}}
|
\newcommand{\TODO}[1]{{\color{red}TODO:#1}}
|
||||||
|
\newcommand{\ts}{\textsuperscript}
|
||||||
|
|
||||||
% put an explanation above an equal sign
|
% put an explanation above an equal sign
|
||||||
% [1]: equality sign (or anything else)
|
% [1]: equality sign (or anything else)
|
||||||
@ -42,6 +53,7 @@
|
|||||||
\newcommand{\explOverEq}[2][=]{%
|
\newcommand{\explOverEq}[2][=]{%
|
||||||
\overset{\substack{\mathrlap{\text{\hspace{-1em}#2}}\\\downarrow}}{#1}}
|
\overset{\substack{\mathrlap{\text{\hspace{-1em}#2}}\\\downarrow}}{#1}}
|
||||||
|
|
||||||
|
|
||||||
%
|
%
|
||||||
% TRANSLATION COMMANDS
|
% TRANSLATION COMMANDS
|
||||||
%
|
%
|
||||||
@ -91,14 +103,14 @@
|
|||||||
\newcommand{\ger}[2][\fqname]{\dt[#1]{german}{#2}}
|
\newcommand{\ger}[2][\fqname]{\dt[#1]{german}{#2}}
|
||||||
\newcommand{\eng}[2][\fqname]{\dt[#1]{english}{#2}}
|
\newcommand{\eng}[2][\fqname]{\dt[#1]{english}{#2}}
|
||||||
|
|
||||||
\newcommand{\GER}[2][\fqname]{\DT[#1]{german}{#2}}
|
\newcommand{\Ger}[2][\fqname]{\DT[#1]{german}{#2}}
|
||||||
\newcommand{\ENG}[2][\fqname]{\DT[#1]{english}{#2}}
|
\newcommand{\Eng}[2][\fqname]{\DT[#1]{english}{#2}}
|
||||||
|
|
||||||
% use this to define text in different languages for the key <env arg>
|
% use this to define text in different languages for the key <env arg>
|
||||||
% the translation for <env arg> when the environment ends.
|
% the translation for <env arg> when the environment ends.
|
||||||
% (temporarily change fqname to the \fqname:<env arg> to allow
|
% (temporarily change fqname to the \fqname:<env arg> to allow
|
||||||
% the use of \eng and \ger without the key parameter)
|
% the use of \eng and \ger without the key parameter)
|
||||||
\newenvironment{ttext}[1]{
|
\newenvironment{ttext}[1][desc]{
|
||||||
\edef\realfqname{\fqname}
|
\edef\realfqname{\fqname}
|
||||||
\edef\fqname{\fqname:#1}
|
\edef\fqname{\fqname:#1}
|
||||||
}{
|
}{
|
||||||
@ -148,101 +160,27 @@
|
|||||||
\label{sec:\fqname}
|
\label{sec:\fqname}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
\newcommand{\fqEqRef}[1]{
|
||||||
|
\hyperref[eq:#1]{\GT{#1}}
|
||||||
|
}
|
||||||
|
\newcommand{\fqSecRef}[1]{
|
||||||
|
\hyperref[sec:#1]{\GT{#1}}
|
||||||
|
}
|
||||||
|
|
||||||
\usepackage{xstring}
|
\usepackage{xstring}
|
||||||
|
|
||||||
\newcommand{\insertEquationLine}[2]{
|
|
||||||
\par\noindent\ignorespaces
|
|
||||||
% \textcolor{gray}{\hrule}
|
|
||||||
\vspace{0.5\baselineskip}
|
|
||||||
% \fbox{
|
|
||||||
\begin{minipage}{0.3\textwidth}
|
|
||||||
\iftranslation{#1}{
|
|
||||||
\raggedright
|
|
||||||
\gt{#1}
|
|
||||||
}{}
|
|
||||||
\iftranslation{#1_desc}{
|
|
||||||
\\ {\color{darkgray} \gt{#1_desc}}
|
|
||||||
}{}
|
|
||||||
\end{minipage}
|
|
||||||
% }
|
|
||||||
\hfill
|
|
||||||
\fbox{
|
|
||||||
\begin{minipage}{0.6\textwidth}
|
|
||||||
% \vspace{-\baselineskip} % remove the space that comes from starting a new paragraph
|
|
||||||
#2 %
|
|
||||||
\noindent\iftranslation{#1_defs}{
|
|
||||||
\begingroup
|
|
||||||
\color{darkgray}
|
|
||||||
\gt{#1_defs}
|
|
||||||
% \edef\temp{\GT{#1_defs}}
|
|
||||||
% \expandafter\StrSubstitute\expandafter{\temp}{:}{\\}
|
|
||||||
\endgroup
|
|
||||||
}{}
|
|
||||||
% \vspace{-\baselineskip} % remove the space that comes from starting a new paragraph
|
|
||||||
\end{minipage}
|
|
||||||
}
|
|
||||||
\textcolor{lightgray}{\hrule}
|
|
||||||
\vspace{0.5\baselineskip}
|
|
||||||
% \par
|
|
||||||
% \hrule
|
|
||||||
}
|
|
||||||
|
|
||||||
\newcommand{\insertEquation}[2]{
|
\input{circuit.tex}
|
||||||
\insertEquationLine{#1}{
|
|
||||||
\begin{align}
|
|
||||||
\label{eq:\fqname:#1}
|
|
||||||
#2
|
|
||||||
\end{align}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
\newcommand{\insertFLAlign}[2]{ % eq name, #cols, eq
|
% some translations
|
||||||
\insertEquationLine{#1}{%
|
|
||||||
\begin{flalign}%
|
|
||||||
% dont place label when one is provided
|
|
||||||
% \IfSubStringInString{label}\unexpanded{#3}{}{
|
|
||||||
% \label{eq:#1}
|
|
||||||
% }
|
|
||||||
#2%
|
|
||||||
\end{flalign}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
\newcommand{\insertAlignedAt}[3]{ % eq name, #cols, eq
|
|
||||||
\insertEquationLine{#1}{%
|
|
||||||
\begin{alignat}{#2}%
|
|
||||||
% dont place label when one is provided
|
|
||||||
% \IfSubStringInString{label}\unexpanded{#3}{}{
|
|
||||||
% \label{eq:#1}
|
|
||||||
% }
|
|
||||||
#3%
|
|
||||||
\end{alignat}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
\newenvironment{formula}[1]{
|
|
||||||
% key
|
|
||||||
\newcommand{\desc}[4][english]{
|
|
||||||
% language, name, description, definitions
|
|
||||||
\dt[#1]{##1}{##2}
|
|
||||||
\ifblank{##3}{}{\dt[#1_desc]{##1}{##3}}
|
|
||||||
\ifblank{##4}{}{\dt[#1_defs]{##1}{##4}}
|
|
||||||
}
|
|
||||||
\newcommand{\eq}[1]{
|
|
||||||
\insertEquation{#1}{##1}
|
|
||||||
}
|
|
||||||
\newcommand{\eqAlignedAt}[2]{
|
|
||||||
\insertAlignedAt{#1}{##1}{##2}
|
|
||||||
}
|
|
||||||
\newcommand{\eqFLAlign}[1]{
|
|
||||||
\insertFLAlign{#1}{##1}
|
|
||||||
}
|
|
||||||
}{\ignorespacesafterend}
|
|
||||||
|
|
||||||
\title{Formelsammlung}
|
\title{Formelsammlung}
|
||||||
\author{Matthias Quintern}
|
\author{Matthias Quintern}
|
||||||
\date{\today}
|
\date{\today}
|
||||||
|
|
||||||
|
\input{macros.tex}
|
||||||
|
\input{environments.tex}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
\maketitle
|
\maketitle
|
||||||
@ -250,55 +188,29 @@
|
|||||||
\newpage
|
\newpage
|
||||||
\setcounter{page}{1}
|
\setcounter{page}{1}
|
||||||
|
|
||||||
% \nuwcommand{\eq}[4][desc]{
|
|
||||||
% \vspace*{0.1cm}
|
|
||||||
% \begin{minipage}{0.3\textwidth}
|
|
||||||
% \raggedright
|
|
||||||
% .#2 \\
|
|
||||||
% \ifstrequal{#1}{desc}{}{
|
|
||||||
% {\color{gray}#1}
|
|
||||||
% }
|
|
||||||
% \end{minipage}
|
|
||||||
% \begin{minipage}{0.7\textwidth}
|
|
||||||
% \begin{align}
|
|
||||||
% \label{eq:#4}
|
|
||||||
% #3
|
|
||||||
% \end{align}
|
|
||||||
% \end{minipage}
|
|
||||||
% \newline
|
|
||||||
% }
|
|
||||||
|
|
||||||
|
|
||||||
% \newcommand{\eqd}[5][desc]{
|
|
||||||
% \vspace*{0.1cm}
|
|
||||||
% \begin{minipage}{0.3\textwidth}
|
|
||||||
% \raggedright
|
|
||||||
% .#2 \\
|
|
||||||
% \ifstrequal{#1}{desc}{}{
|
|
||||||
% {\color{gray}#1}
|
|
||||||
% }
|
|
||||||
% \end{minipage}
|
|
||||||
% \begin{minipage}{0.7\textwidth}
|
|
||||||
% \begin{align}
|
|
||||||
% \label{eq:#5}
|
|
||||||
% #3
|
|
||||||
% \end{align}
|
|
||||||
% {\color{gray}with: #4}
|
|
||||||
% \end{minipage}
|
|
||||||
% \newline
|
|
||||||
% }
|
|
||||||
\IfSubStringInString{lol}{lol\frac{asdsd}{lol} & l}{YES!}{
|
|
||||||
NO!
|
|
||||||
}
|
|
||||||
\input{translations.tex}
|
\input{translations.tex}
|
||||||
|
|
||||||
\input{trigonometry.tex}
|
\input{linalg.tex}
|
||||||
|
|
||||||
|
\input{geometry.tex}
|
||||||
|
|
||||||
|
\input{analysis.tex}
|
||||||
|
|
||||||
|
\input{probability_theory.tex}
|
||||||
|
|
||||||
\input{mechanics.tex}
|
\input{mechanics.tex}
|
||||||
|
|
||||||
|
\input{statistical_mechanics.tex}
|
||||||
|
|
||||||
|
\input{electrodynamics.tex}
|
||||||
|
|
||||||
\input{quantum_mechanics.tex}
|
\input{quantum_mechanics.tex}
|
||||||
\input{atom.tex}
|
\input{atom.tex}
|
||||||
|
|
||||||
|
\input{condensed_matter.tex}
|
||||||
|
|
||||||
|
\input{topo.tex}
|
||||||
|
|
||||||
\input{quantum_computing.tex}
|
\input{quantum_computing.tex}
|
||||||
|
|
||||||
\input{many-body-simulations.tex}
|
\input{many-body-simulations.tex}
|
||||||
|
@ -8,7 +8,7 @@
|
|||||||
\eng{Lagrange formalism}
|
\eng{Lagrange formalism}
|
||||||
\ger{Lagrange Formalismus}
|
\ger{Lagrange Formalismus}
|
||||||
]{lagrange}
|
]{lagrange}
|
||||||
\begin{ttext}{desc}
|
\begin{ttext}[desc]
|
||||||
\eng{The Lagrange formalism is often the most simple approach the get the equations of motion,
|
\eng{The Lagrange formalism is often the most simple approach the get the equations of motion,
|
||||||
because with suitable generalied coordinates obtaining the Lagrange function is often relatively easy.
|
because with suitable generalied coordinates obtaining the Lagrange function is often relatively easy.
|
||||||
}
|
}
|
||||||
@ -16,7 +16,7 @@
|
|||||||
da das Aufstellen der Lagrange-Funktion mit geeigneten generalisierten Koordinaten oft relativ einfach ist.
|
da das Aufstellen der Lagrange-Funktion mit geeigneten generalisierten Koordinaten oft relativ einfach ist.
|
||||||
}
|
}
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
\begin{ttext}{generalized_coords}
|
\begin{ttext}[generalized_coords]
|
||||||
\eng{
|
\eng{
|
||||||
The generalized coordinates are choosen so that the cronstraints are automatically fullfilled.
|
The generalized coordinates are choosen so that the cronstraints are automatically fullfilled.
|
||||||
For example, the generalized coordinate for a 2D pendelum is $q=\varphi$, with $\vec{x} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \end{pmatrix}$.
|
For example, the generalized coordinate for a 2D pendelum is $q=\varphi$, with $\vec{x} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \end{pmatrix}$.
|
||||||
|
198
src/probability_theory.tex
Normal file
@ -0,0 +1,198 @@
|
|||||||
|
\Part[
|
||||||
|
\eng{Probability theory}
|
||||||
|
\ger{Wahrscheinlichkeitstheorie}
|
||||||
|
]{pt}
|
||||||
|
|
||||||
|
\begin{formula}{mean}
|
||||||
|
\desc{Mean}{}{}
|
||||||
|
\desc[german]{Mittelwert}{}{}
|
||||||
|
\eq{\braket{x} = \int w(x)\, x\, \d x}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{variance}
|
||||||
|
\desc{Variance}{}{}
|
||||||
|
\desc[german]{Varianz}{}{}
|
||||||
|
\eq{\sigma^2 = (\Delta \hat{x})^2 = \braket{\hat{x}^2} - \braket{\hat{x}}^2 = \braket{(x - \braket{x})^2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{std_deviation}
|
||||||
|
\desc{Standard deviation}{}{}
|
||||||
|
\desc[german]{Standardabweichung}{}{}
|
||||||
|
\eq{\sigma = \sqrt{(\Delta x)^2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{median}
|
||||||
|
\desc{Median}{Value separating lower half from top half}{$x$ dataset with $n$ elements}
|
||||||
|
\desc[german]{Median}{Teilt die untere von der oberen Hälfte}{$x$ Reihe mit $n$ Elementen}
|
||||||
|
\eq{
|
||||||
|
\textrm{med}(x) = \left\{ \begin{array}{ll} x_{(n+1)/2} & \text{$n$ \GT{odd}} \\ \frac{x_{(n/2)}+x_{((n/2)+1)}}{2} & \text{$n$ \GT{even}} \end{array} \right
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{pdf}
|
||||||
|
\desc{Probability density function}{Random variable has density $f$. The integral gives the probability of $X$ taking a value $x\in[a,b]$.}{$f$ normalized: $\int_{-\infty}^\infty f(x) \d x= 1$}
|
||||||
|
\desc[german]{Wahrscheinlichkeitsdichtefunktion}{Zufallsvariable hat Dichte $f$. Das Integral gibt Wahrscheinlichkeit an, dass $X$ einen Wert $x\in[a,b]$ annimmt}{$f$ normalisiert $\int_{-\infty}^\infty f(x) \d x= 1$}
|
||||||
|
\eq{P([a,b]) := \int_a^b f(x) \d x}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{cdf}
|
||||||
|
\desc{Cumulative distribution function}{}{$f$ probability density function}
|
||||||
|
\desc[german]{Kumulative Verteilungsfunktion}{}{$f$ Wahrscheinlichkeitsdichtefunktion}
|
||||||
|
\eq{F(x) = \int_{-\infty}^x f(t) \d t}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Distributions}
|
||||||
|
\ger{Verteilungen}
|
||||||
|
]{distributions}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Gauß/Normal distribution}
|
||||||
|
\ger{Gauß/Normal-Verteilung}
|
||||||
|
]{normal}
|
||||||
|
\begin{minipage}{\distleftwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/distribution_gauss.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{distribution}
|
||||||
|
\disteq{parameters}{\mu \in \R,\quad \sigma^2 \in \R}
|
||||||
|
\disteq{support}{x \in \R}
|
||||||
|
\disteq{pdf}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}
|
||||||
|
\disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]}
|
||||||
|
\disteq{mean}{\mu}
|
||||||
|
\disteq{median}{\mu}
|
||||||
|
\disteq{variance}{\sigma^2}
|
||||||
|
\end{distribution}
|
||||||
|
|
||||||
|
\begin{formula}{standard_normal_distribution}
|
||||||
|
\desc{Density function of the standard normal distribution}{$\mu = 0$, $\sigma = 1$}{}
|
||||||
|
\desc[german]{Dichtefunktion der Standard-Normalverteilung}{$\mu = 0$, $\sigma = 1$}{}
|
||||||
|
\eq{\varphi(x) = \frac{1}{\sqrt{2\pi}} \e^{-\frac{1}{2}x^2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Cauchys / Lorentz distribution}
|
||||||
|
\ger{Cauchy / Lorentz-Verteilung}
|
||||||
|
]{cauchy}
|
||||||
|
\begin{minipage}{\distleftwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/distribution_cauchy.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{distribution}
|
||||||
|
\disteq{parameters}{x_0 \in \R,\quad \gamma \in \R}
|
||||||
|
\disteq{support}{x \in \R}
|
||||||
|
\disteq{pdf}{\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}}
|
||||||
|
\disteq{cdf}{\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}}
|
||||||
|
\disteq{mean}{\text{\GT{undefined}}}
|
||||||
|
\disteq{median}{x_0}
|
||||||
|
\disteq{variance}{\text{\GT{undefined}}}
|
||||||
|
\end{distribution}
|
||||||
|
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Also known as \textbf{Cauchy-Lorentz distribution}, \textbf{Lorentz(ian) function}, \textbf{Breit-Wigner distribution}.}
|
||||||
|
\ger{Auch bekannt als \textbf{Cauchy-Lorentz Verteilung}, \textbf{Lorentz Funktion}, \textbf{Breit-Wigner Verteilung}.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Binomial distribution}
|
||||||
|
\ger{Binomialverteilung}
|
||||||
|
]{binomial}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{For the number of trials going to infinity ($n\to\infty$), the binomial distribution converges to the \hyperref[sec:pb:distributions::poisson]{poisson distribution}}
|
||||||
|
\ger{Geht die Zahl der Versuche gegen unendlich ($n\to\infty$), konvergiert die Binomualverteilung gegen die \hyperref[sec:pb:distributions::poisson]{Poissonverteilung}}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{minipage}{\distleftwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/distribution_binomial.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{distribution}
|
||||||
|
\disteq{parameters}{n \in \Z, \quad p \in [0,1],\quad q = 1 - p}
|
||||||
|
\disteq{support}{k \in \{0,\,1,\,\dots,\,n\}}
|
||||||
|
\disteq{pmf}{\binom{n}{k} p^k q^{n-k}}
|
||||||
|
% \disteq{cdf}{\text{regularized incomplete beta function}}
|
||||||
|
\disteq{mean}{np}
|
||||||
|
\disteq{median}{\floor{np} \text{ or } \ceil{np}}
|
||||||
|
\disteq{variance}{npq = np(1-p)}
|
||||||
|
\end{distribution}
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Poisson distribution}
|
||||||
|
\ger{Poissonverteilung}
|
||||||
|
]{poisson}
|
||||||
|
\begin{minipage}{\distleftwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/distribution_poisson.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{distribution}
|
||||||
|
\disteq{parameters}{\lambda \in (0,\infty)}
|
||||||
|
\disteq{support}{k \in \N}
|
||||||
|
\disteq{pmf}{\frac{\lambda^k \e^{-\lambda}}{k!}}
|
||||||
|
\disteq{cdf}{\e^{-\lambda} \sum_{j=0}^{\floor{k}} \frac{\lambda^j}{j!}}
|
||||||
|
\disteq{mean}{\lambda}
|
||||||
|
\disteq{median}{\approx\floor*{\lambda + \frac{1}{3} - \frac{1}{50\lambda}}}
|
||||||
|
\disteq{variance}{\lambda}
|
||||||
|
\end{distribution}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Maxwell-Boltzmann distribution}
|
||||||
|
\ger{Maxwell-Boltzmann Verteilung}
|
||||||
|
]{maxwell-boltzmann}
|
||||||
|
\begin{minipage}{\distleftwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/distribution_maxwell-boltzmann.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{distribution}
|
||||||
|
\disteq{parameters}{a > 0}
|
||||||
|
\disteq{support}{x \in (0, \infty)}
|
||||||
|
\disteq{pdf}{\sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp\left(-\frac{x^2}{2a^2}\right)}
|
||||||
|
\disteq{cdf}{\erf \left(\frac{x}{\sqrt{2} a}\right) - \sqrt{\frac{2}{\pi}} \frac{x}{a} \exp\left({\frac{-x^2}{2a^2}}\right)}
|
||||||
|
\disteq{mean}{2a \frac{2}{\pi}}
|
||||||
|
\disteq{median}{}
|
||||||
|
\disteq{variance}{\frac{a^2(3\pi-8)}{\pi}}
|
||||||
|
\end{distribution}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% \begin{distribution}{maxwell-boltzmann}
|
||||||
|
% \distdesc{Maxwell-Boltzmann distribution}{}
|
||||||
|
% \distdesc[german]{Maxwell-Boltzmann Verteilung}{}
|
||||||
|
% \disteq{parameters}{}
|
||||||
|
% \disteq{pdf}{}
|
||||||
|
% \disteq{cdf}{}
|
||||||
|
% \disteq{mean}{}
|
||||||
|
% \disteq{median}{}
|
||||||
|
% \disteq{variance}{}
|
||||||
|
% \end{distribution}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Central limit theorem}
|
||||||
|
\ger{Zentraler Grenzwertsatz}
|
||||||
|
]{cls}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
Suppose $X_1, X_2, \dots$ is a sequence of independent and identically distributed random variables with $\braket{X_i} = \mu$ and $(\Delta X_i)^2 = \sigma^2 < \infty$.
|
||||||
|
As $N$ approaches infinity, the random variables $\sqrt{N}(\bar{X}_N - \mu)$ converge to a normal distribution $\mathcal{N}(0, \sigma^2)$.
|
||||||
|
\\ That means that the variance scales with $\frac{1}{\sqrt{N}}$ and statements become accurate for large $N$.
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Sei $X_1, X_2, \dots$ eine Reihe unabhängiger und gleichverteilter Zufallsvariablen mit $\braket{X_i} = \mu$ und $(\Delta X_i)^2 = \sigma^2 < \infty$.
|
||||||
|
Für $N$ gegen unendlich konvergieren die Zufallsvariablen $\sqrt{N}(\bar{X}_N - \mu)$ zu einer Normalverteilung $\mathcal{N}(0, \sigma^2)$.
|
||||||
|
\\ Das bedeutet, dass die Schwankung mit $\frac{1}{\sqrt{N}}$ wächst und Aussagen für große $N$ scharf werden.
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
|
@ -1,7 +1,7 @@
|
|||||||
\Part[
|
\Part[
|
||||||
\eng{Quantum Computing}
|
\eng{Quantum Computing}
|
||||||
\ger{Quantencomputing}
|
\ger{Quantencomputing}
|
||||||
]{qubit}
|
]{qc}
|
||||||
|
|
||||||
\Section[
|
\Section[
|
||||||
\eng{Qubits}
|
\eng{Qubits}
|
||||||
@ -36,38 +36,396 @@
|
|||||||
% \item \gt{bitphaseflip}: $\hat{Y} = \sigma_y = \sigmaymatrix$
|
% \item \gt{bitphaseflip}: $\hat{Y} = \sigma_y = \sigmaymatrix$
|
||||||
% \item \gt{phaseflip}: $\hat{Z} = \sigma_z = \sigmazmatrix$ \item \gt{hadamard}: $\hat{H} = \frac{1}{\sqrt{2}}(\hat{X}-\hat{Z}) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
|
% \item \gt{phaseflip}: $\hat{Z} = \sigma_z = \sigmazmatrix$ \item \gt{hadamard}: $\hat{H} = \frac{1}{\sqrt{2}}(\hat{X}-\hat{Z}) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
|
||||||
% \end{itemize}
|
% \end{itemize}
|
||||||
|
|
||||||
\Section[
|
\Section[
|
||||||
\eng{Josephson Junction}
|
\eng{Superconducting qubits}
|
||||||
\ger{Josephson-Kontakt}
|
\ger{Supraleitende qubits}
|
||||||
]{josephson_junction}
|
]{scq}
|
||||||
\begin{ttext}{desc}
|
|
||||||
\eng{When two superconductors are separated by a thin isolator, Cooper pairs can tunnel through the insulator}
|
\Subsection[
|
||||||
\ger{Wenn zwei Supraleiter durch einen dünnen Isolator getrennt sind, können Cooper-Paare durch den Isolator tunneln.}
|
\eng{Building blocks}
|
||||||
\end{ttext}
|
\ger{Bauelemente}
|
||||||
|
]{elements}
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Josephson Junction}
|
||||||
|
\ger{Josephson-Kontakt}
|
||||||
|
]{josephson_junction}
|
||||||
|
\begin{ttext}[desc]
|
||||||
|
\eng{When two superconductors are separated by a thin isolator, Cooper pairs can tunnel through the insulator. The Josephson junction is a non-linear inductor.}
|
||||||
|
\ger{Wenn zwei Supraleiter durch einen dünnen Isolator getrennt sind, können Cooper-Paare durch den Isolator tunneln. Der Josephson-Kontakt ist ein nicht-linearer Induktor.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{hamiltonian}
|
||||||
|
\desc{Josephson-Hamiltonian}{}{}
|
||||||
|
\desc[german]{Josephson-Hamiltonian}{}{}
|
||||||
|
\eq{
|
||||||
|
\hat{H}_\text{J} &= - \frac{E_\text{J}}{2} \sum_n [\ket{n}\bra{n+1} + \ket{n+1}\bra{n}]
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{1st_josephson_relation}
|
||||||
|
\desc{1. Josephson relation}{Dissipationless supercurrent accros junction at zero applied voltage}{$I_\text{C}=\frac{2e}{\hbar}E_\text{J}$ critical current, $\delta$ phase difference accross junction}
|
||||||
|
\desc[german]{1. Josephson Gleichung}{Dissipationsloser Suprastrom durch die Kreuzung ohne angelegte Spannung}{$I_\text{C}=\frac{2e}{\hbar}E_\text{J}$ kritischer Strom, $\delta$ Phasendifferenz zwischen den Supraleitern}
|
||||||
|
\eq{\hat{I}\ket{\delta} = I_\text{C}\sin\delta \ket{\delta}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{2nd_josephson_relation}
|
||||||
|
\desc{2. Josephson relation}{superconducting phase change is proportional to applied voltage}{$\varphi_0=\frac{\hbar}{2e}$ reduced flux quantum}
|
||||||
|
\desc[german]{2. Josephson Gleichung}{Supraleitende Phasendifferenz is proportional zur angelegten Spannung}{$\varphi_0=\frac{\hbar}{2e}$ reduziertes Flussquantum}
|
||||||
|
\eq{\odv{\hat{\delta}}{t}=\frac{1}{i\hbar}[\hat{H},\hat{\delta}] = -\frac{2eU}{i\hbar}[\hat{n},\hat{\delta}] = \frac{1}{\varphi_0} U}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{SQUID}
|
||||||
|
\ger{SQUID}
|
||||||
|
]{squid}
|
||||||
|
\ctikzsubcircuitdef{squidloop}{n, s, nw, ne, se, sw}{
|
||||||
|
% start at top
|
||||||
|
coordinate(#1-n)
|
||||||
|
(#1-n)
|
||||||
|
to ++(-1, 0) coordinate(#1-nw)
|
||||||
|
to[josephsoncap=$\phi_1$] ++(0,-2) coordinate(#1-sw)
|
||||||
|
to ++(1,0) coordinate(#1-s) to ++(1,0) coordinate(#1-se)
|
||||||
|
to[josephsoncap=$\phi_2$] ++(0,2) coordinate(#1-ne)
|
||||||
|
to ++(-1,0)
|
||||||
|
(#1-s) % leave at bottom
|
||||||
|
}
|
||||||
|
\begin{formula}{circuit}
|
||||||
|
\desc{SQUID}{Superconducting quantum interference device, consists of parallel \hyperref{sec:qc:scq:josephson_junction}{josephson junctions}, can be used to measure extremely weak magnetic fields}{}
|
||||||
|
\desc[german]{SQUID}{Superconducting quantum interference device, besteht aus parralelen \hyperref{sec:qc:scq:josephson_junction}{Josephson Junctions} und kann zur Messung extrem schwacher Magnetfelder genutzt werden}{}
|
||||||
|
\content{
|
||||||
|
\centering
|
||||||
|
\begin{circuitikz}
|
||||||
|
\draw (0, 0) \squidloop{loop}{};
|
||||||
|
\end{circuitikz}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{hamiltonian}
|
||||||
|
\desc{Hamiltonian}{}{$\hat{\phi}$ phase difference across the junction}
|
||||||
|
\desc[german]{Hamiltonian}{}{$\hat{\phi}$ Phasendifferenz an einer Junction}
|
||||||
|
\eq{\hat{H} &= -E_{\text{J}1} \cos\hat{\phi}_{1} - E_{\text{J}2} \cos\hat{\phi}_{2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Josephson Qubit??}
|
||||||
|
\ger{TODO}
|
||||||
|
]{josephson_qubit}
|
||||||
|
\begin{circuitikz}
|
||||||
|
\draw (0,0) to[capacitor] (0,2);
|
||||||
|
\draw (0,0) to (2,0);
|
||||||
|
\draw (0,2) to (2,2);
|
||||||
|
\draw (2,0) to[josephson] (2,2);
|
||||||
|
|
||||||
|
\draw[->] (3,1) -- (4,1);
|
||||||
|
\draw (5,0) to[josephsoncap=$C_\text{J}$] (5,2);
|
||||||
|
\end{circuitikz}
|
||||||
|
\TODO{Include schaltplan}
|
||||||
|
|
||||||
|
\begin{circuitikz}
|
||||||
|
\draw (0,0) to[sV=$V_\text{g}$] (0,2);
|
||||||
|
\draw (0,2) to[capacitor=$C_\text{g}$] (2,2);
|
||||||
|
\draw (2,2) to (4,2);
|
||||||
|
\draw (2,0) to[josephsoncap=$C_\text{J}$] (2,2);
|
||||||
|
\draw (4,0) to[capacitor=$C_C$] (4,2);
|
||||||
|
\draw (0,0) to (2,0);
|
||||||
|
\draw (2,0) to (4,0);
|
||||||
|
\end{circuitikz}
|
||||||
|
|
||||||
|
\begin{formula}{charging_energy}
|
||||||
|
\desc{Charging energy / electrostatic energy}{}{}
|
||||||
|
\desc[german]{Ladeenergie?}{}{}
|
||||||
|
\eq{E_\text{C} = \frac{(2e)^2}{C}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{josephson_energy}
|
||||||
|
\desc{Josephson energy}{}{}
|
||||||
|
\desc[german]{Josephson-Energie?}{}{}
|
||||||
|
\eq{E_\text{J} = \frac{I_0 \phi_0}{2\pi}}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{Was ist I0}
|
||||||
|
|
||||||
|
\begin{formula}{inductive_energy}
|
||||||
|
\desc{Inductive energy}{}{}
|
||||||
|
\desc[german]{Induktive Energie}{}{}
|
||||||
|
\eq{E_\text{L} = \frac{\varphi_0^2}{L}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{gate_charge}
|
||||||
|
\desc{Gate charge}{or offset charge}{}
|
||||||
|
\desc[german]{Gate Ladung}{auch Offset charge}{}
|
||||||
|
\eq{n_\text{g}=\frac{C_g V_\text{g}}{2e}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{anharmonicity}
|
||||||
|
\desc{Anharmonicity}{}{}
|
||||||
|
\desc[german]{Anharmonizität}{}{}
|
||||||
|
\eq{\alpha \coloneq \omega_{1\leftrightarrow 2} - \omega_{0\leftrightarrow 1}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{table}[h!]
|
||||||
|
\centering
|
||||||
|
\begin{tabular}{ p{1cm} |p{1cm}||p{2.8cm}|p{2cm}|p{2cm}|p{2cm}|}
|
||||||
|
\multicolumn{1}{c}{}& \multicolumn{1}{c}{} &\multicolumn{4}{c}{$E_L/(E_J-E_L)$} \\
|
||||||
|
\cline{3-6}
|
||||||
|
\multicolumn{1}{c}{} & & $0$ & $\ll$ 1 & $\sim 1$ & $\gg 1$\\
|
||||||
|
\hhline{~|=====|}
|
||||||
|
\multirow{4}{*}{$E_J/E_C$} & $\ll 1$ & cooper-pair box & & & \\
|
||||||
|
\cline{2-6}
|
||||||
|
& $\sim 1$ & quantronium & fluxonium & &\\
|
||||||
|
\cline{2-6}
|
||||||
|
& $\gg 1$ &transmon & & & flux qubit\\
|
||||||
|
\cline{2-6}
|
||||||
|
& $\ggg 1$ & & & phase qubit & \\
|
||||||
|
\cline{2-6}
|
||||||
|
\end{tabular}
|
||||||
|
\caption{``periodic table'' of superconducting quantum circuits}
|
||||||
|
\label{Juncatalog}
|
||||||
|
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Cooper Pair Box (CPB) qubit}
|
||||||
|
\ger{Cooper Paar Box (QPB) Qubit}
|
||||||
|
]{cpb}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
= voltage bias junction\\= charge qubit?
|
||||||
|
\begin{itemize}
|
||||||
|
\item large anharmonicity
|
||||||
|
\item sensitive to charge noise
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\ger{}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{circuitikz}
|
||||||
|
\draw (0,0) to[sV=$V_\text{g}$] (0,2);
|
||||||
|
% \draw (0,0) to (2,0);
|
||||||
|
\draw (0,2) to[capacitor=$C_\text{g}$] (2,2);
|
||||||
|
\draw (2,0) to[josephsoncap=$C_\text{J}$] (2,2);
|
||||||
|
\draw (0,0) to (2,0);
|
||||||
|
\end{circuitikz}
|
||||||
|
|
||||||
|
|
||||||
|
\TODO{maybe include graphic from page 48, intro to qed circuits}
|
||||||
|
|
||||||
|
\begin{formula}{hamiltonian}
|
||||||
|
\desc{Hamiltonian}{}{}
|
||||||
|
\desc[german]{Hamiltonian}{}{}
|
||||||
|
\eq{\hat{H} &= 4 E_C(\hat{n} - n_\text{g})^2 - E_\text{J} \cos\hat{\phi} \\
|
||||||
|
&=\sum_n \left[4 E_C (n-n_\text{g})^2 \ket{n}\bra{n} - \frac{E_\text{J}}{2}\ket{n}\bra{n+1}+\ket{n+1}\bra{n}\right] }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Transmon qubit}
|
||||||
|
\ger{Transmon Qubit}
|
||||||
|
]{transmon}
|
||||||
|
\begin{formula}{circuit}
|
||||||
|
\desc{Transmon qubit}{
|
||||||
|
Josephson junction with a shunt \textbf{capacitance}.
|
||||||
|
\begin{itemize}
|
||||||
|
\item charge noise insensitive
|
||||||
|
\item small anharmonicity
|
||||||
|
\end{itemize}
|
||||||
|
}{}
|
||||||
|
\desc[ger]{Transmon Qubit}{
|
||||||
|
Josephson-Kontakt mit einem parallelen \textbf{kapzitiven Element}.
|
||||||
|
\begin{itemize}
|
||||||
|
\item Charge noise resilient
|
||||||
|
\item Geringe Anharmonizität $\alpha$
|
||||||
|
\end{itemize}
|
||||||
|
}{}
|
||||||
|
\content{
|
||||||
|
\centering
|
||||||
|
\begin{circuitikz}
|
||||||
|
\draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
||||||
|
to[capacitor=$C_\text{g}$] ++(2,0)
|
||||||
|
to[capacitor=$C_C$] ++(0,-3)
|
||||||
|
to ++(-2,0);
|
||||||
|
\draw (2,3) to ++(2,0) to ++(0,-0.5) to[josephsoncap=$C_\text{J}$] ++(-0,-2) to ++(0,-0.5) to ++(-2,0);
|
||||||
|
\end{circuitikz}
|
||||||
|
\\\TODO{Ist beim Transmon noch die Voltage source dran?}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{hamiltonian}
|
||||||
|
\desc{Hamiltonian}{}{}
|
||||||
|
\desc[german]{Hamiltonian}{}{}
|
||||||
|
\eq{\hat{H} &= 4 E_C\hat{n}^2 - E_\text{J} \cos\hat{\phi}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Tunable Transmon qubit}
|
||||||
|
\ger{Tunable Transmon Qubit}
|
||||||
|
]{tunable}
|
||||||
|
\begin{formula}{circuit}
|
||||||
|
\desc{Frequency tunable transmon}{By using a \fqSecRef{qc:scq:elements:squid} instead of a \fqSecRef{qc:scq:elements:josephson_junction}, the qubit is frequency tunable through an external field}{}
|
||||||
|
\desc[german]{}{Durch Nutzung eines \fqSecRef{qc:scq:elements:squid} anstatt eines \fqSecRef{qc:scq:elements:josephson_junction}s, ist die Frequenz des Qubits durch ein externes Magnetfeld einstellbar}{}
|
||||||
|
\content{
|
||||||
|
\centering
|
||||||
|
\begin{circuitikz}
|
||||||
|
\draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
||||||
|
to[capacitor=$C_\text{g}$] ++(2,0)
|
||||||
|
to[capacitor=$C_C$] ++(0,-3)
|
||||||
|
to ++(-2,0);
|
||||||
|
\draw (2,3) to ++(3,0) to ++(0,-0.5) \squidloop{loop}{SQUID} to ++(0,-0.5) to ++(-3,0);
|
||||||
|
\end{circuitikz}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{energy}
|
||||||
|
\desc{Josephson energy}{}{$d=(E_\text{J1}-E_\text{J2})/(E_\text{J1}+E_\text{J2})$ asymmetry}
|
||||||
|
\desc[german]{Josephson Energie}{}{$d=(E_\text{J1}-E_\text{J2})/(E_\text{J1}+E_\text{J2})$ Asymmetrie}
|
||||||
|
\eq{E_\text{J,eff}(\Phi_\text{ext}) = (E_\text{J1}+E_\text{J2}) \sqrt{\cos^2\left(\pi\frac{\Phi_\text{ext}}{\Phi_0}\right) + d^2 \sin \left(\pi\frac{\Phi_\text{ext}}{\Phi_0}\right)}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{hamiltonian}
|
||||||
|
\desc{Hamiltonian}{}{}
|
||||||
|
\desc[german]{Hamiltonian}{}{}
|
||||||
|
\eq{\hat{H} = 4E_C \hat{n}^2 - \frac{1}{2} E_\text{J,eff}(\Phi_\text{ext}) \sum_{n}\left[\ket{n}\bra{n+1} + \ket{n+1}\bra{n}\right]}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Flux qubit}
|
||||||
|
\ger{Flux Qubit}
|
||||||
|
]{flux}
|
||||||
|
\TODO{TODO}
|
||||||
|
\begin{formula}{circuit}
|
||||||
|
\desc{Flux qubit / Persistent current qubit}{}{}
|
||||||
|
\desc[german]{Flux Qubit / Persistent current qubit}{}{}
|
||||||
|
\content{
|
||||||
|
\centering
|
||||||
|
\begin{circuitikz}
|
||||||
|
\draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
||||||
|
to ++(2,0) coordinate(top1);
|
||||||
|
\draw[color=gray] (top1) to[capacitor=$C_C$] ++(0,-3);
|
||||||
|
\draw (top1) to ++(2,0) coordinate(top2) to ++(0,-0.5)
|
||||||
|
to[josephsoncap=$C_\text{J}$] ++(-0,-2) to ++(0,-0.5) to ++(-2,0) to ++(-2,0);
|
||||||
|
\draw (top2) to ++(2,0) to[cute inductor=$E_L$] ++(0,-3) to ++(-2,0);
|
||||||
|
\node at (5,0.5) {$\Phi_\text{ext}$};
|
||||||
|
\end{circuitikz}
|
||||||
|
\\\TODO{Ist beim Fluxonium noch die Voltage source dran?}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Fluxonium qubit}
|
||||||
|
\ger{Fluxonium Qubit}
|
||||||
|
]{fluxonium}
|
||||||
|
\begin{formula}{circuit}
|
||||||
|
\desc{Fluxonium qubit}{
|
||||||
|
Josephson junction with a shunt \textbf{inductance}. Instead of having to tunnel, cooper pairs can move to the island via the inductance.
|
||||||
|
The inductance consists of many parallel Josephson Junctions to avoid parasitic capacitances.
|
||||||
|
}{}
|
||||||
|
\desc[german]{Fluxonium Qubit}{
|
||||||
|
Josephson-Kontakt mit einem parallelen \textbf{induktiven Element}.
|
||||||
|
Anstatt zu tunneln, können die Cooper-Paare über das induktive Element auf die Insel gelangen.
|
||||||
|
Das induktive Element besteht aus sehr vielen parallelen Josephson-Kontakten um parisitische Kapazitäten zu vermeiden.
|
||||||
|
}{}
|
||||||
|
\content{
|
||||||
|
\centering
|
||||||
|
\begin{circuitikz}
|
||||||
|
\draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
||||||
|
to ++(2,0) coordinate(top1);
|
||||||
|
\draw[color=gray] (top1) to[capacitor=$C_C$] ++(0,-3);
|
||||||
|
\draw (top1) to ++(2,0) coordinate(top2) to ++(0,-0.5)
|
||||||
|
to[josephsoncap=$C_\text{J}$] ++(-0,-2) to ++(0,-0.5) to ++(-2,0) to ++(-2,0);
|
||||||
|
\draw (top2) to ++(2,0) to[cute inductor=$E_L$] ++(0,-3) to ++(-2,0);
|
||||||
|
\node at (5,0.5) {$\Phi_\text{ext}$};
|
||||||
|
\end{circuitikz}
|
||||||
|
\\\TODO{Ist beim Fluxonium noch die Voltage source dran?}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\def\temp{$E_\text{C} = \frac{(2e)^2}{2C}, E_\text{L} = \frac{\varphi_0^2}{2L}, \delta_\text{s} = \frac{\varphi_\text{s}}{\varphi_0}$}
|
||||||
|
\begin{formula}{hamiltonian}
|
||||||
|
\desc{Hamiltonian}{}{\temp}
|
||||||
|
\desc[german]{Hamiltonian}{}{\temp}
|
||||||
|
\eq{\hat{H} = 4E_\text{C} \hat{n}^2 - E_\text{J} \cos \hat{\delta} + E_\text{L}(\hat{\delta} - \delta_\text{s})^2}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\textwidth]{img/qubit_flux_onium.pdf}
|
||||||
|
\caption{img/}
|
||||||
|
\label{fig:img-}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Two-level system}
|
||||||
|
\ger{Zwei-Niveau System}
|
||||||
|
]{stuff}
|
||||||
|
|
||||||
|
\begin{formula}{resonance_frequency}
|
||||||
|
\desc{Resonance frequency}{}{}
|
||||||
|
\desc[german]{Ressonanzfrequenz}{}{}
|
||||||
|
\eq{\omega_{21} = \frac{E_2 - E_1}{\hbar}}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{sollte das nicht 10 sein?}
|
||||||
|
|
||||||
|
\begin{formula}{rabi_oscillation}
|
||||||
|
\desc{Rabi oscillations}{}{$\omega_{21}$ resonance frequency of the energy transition, $\Omega$ Rabi frequency}
|
||||||
|
\desc[german]{Rabi-Oszillationen}{}{$\omega_{21}$ Resonanzfrequenz des Energieübergangs, $\Omega$ Rabi-Frequenz}
|
||||||
|
\eq{\Omega_ TODO}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Ramsey interferometry}
|
||||||
|
\ger{Ramsey Interferometrie}
|
||||||
|
]{ramsey}
|
||||||
|
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{$\ket{0} \xrightarrow{\frac{\pi}{2}\,\text{pulse}}$ precession in $xy$ plane for time $\tau$ $\xrightarrow{\frac{\pi}{2}\,\text{pulse}}$ measurement}
|
||||||
|
\ger{q}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Noise and decoherence}
|
||||||
|
\ger{Noise und Dekohärenz}
|
||||||
|
]{noise}
|
||||||
|
\begin{formula}{long}
|
||||||
|
\desc{Longitudinal relaxation rate}{$\Gamma_{1\downarrow}$: $\ket{1}\rightarrow \ket{0}$ \\ $\Gamma_{1\uparrow}$: $\ket{0}\rightarrow \ket{1}$}{}
|
||||||
|
\desc[german]{Longitudinale Relaxationsrate}{$\Gamma_{1\downarrow}$: $\ket{1}\rightarrow \ket{0}$ \\ $\Gamma_{1\uparrow}$: $\ket{0}\rightarrow \ket{1}$}{}
|
||||||
|
\eq{\Gamma_1 = \frac{1}{T_1} = \Gamma_{1\uparrow} + \Gamma_{1\downarrow}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{ttext}[long]
|
||||||
|
\eng{$\Gamma_{1\uparrow}$ is supressed because of detailed balance}
|
||||||
|
\ger{$\Gamma_{1\uparrow}$ ist unterdrückt wegen detailed balance}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{dephasing}
|
||||||
|
\desc{Pure dephasing rate}{}{}
|
||||||
|
\desc[german]{Reine Phasenverschiebung}{}{}
|
||||||
|
\eq{\Gamma_\phi}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{trans}
|
||||||
|
\desc{Transversal relaxation rate}{}{}
|
||||||
|
\desc[german]{Transversale Relaxationsrate}{}{}
|
||||||
|
\eq{\Gamma_2 = \frac{1}{T_2} = \frac{\Gamma_1}{2} + \Gamma_\phi}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{bloch_redfield}
|
||||||
|
\desc{Bloch-Redfield density matrix}{2-level System weakly coupled to noise sources with short correlation time}{}
|
||||||
|
\desc[german]{Bloch-Redfield Dichtematrix}{2-Niveau System schwach an Noise Quellen mit kurzer Korrelationszeit gekoppelt}{}
|
||||||
|
\eq{\rho_\text{BR} = \begin{pmatrix} 1+(\abs{\alpha}^2-1)\e^{-\Gamma_1 t} & \alpha \beta^* \e^{-\Gamma_2 t} \\
|
||||||
|
\alpha^*\beta \e^{-\Gamma_2 t} & \abs{\beta}^2 \e^{-\Gamma_1 t} \end{pmatrix} }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\textwidth]{img/qubit_transmon.pdf}
|
||||||
|
\caption{Transmon and so TODO}
|
||||||
|
\label{fig:img-qubit_transmon-pdf}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{formula}{hamiltonian}
|
|
||||||
\desc{Josephson-Hamiltonian}{}{}
|
|
||||||
\desc[german]{Josephson-Hamiltonian}{}{}
|
|
||||||
\eq{
|
|
||||||
\hat{H}_\text{J} &= - \frac{E_\text{J}}{2} \sum_n [\ket{n}\bra{n+1} + \ket{n+1}\bra{n}]
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{1st_josephson_relation}
|
|
||||||
\desc{1. Josephson relation}{Dissipationless supercurrent accros junction at zero applied voltage}{$I_\text{C}=\frac{2e}{\hbar}E_\text{J}$ critical current, $\delta$ phase difference accross junction}
|
|
||||||
\desc[german]{1. Josephson Gleichung}{Dissipationsloser Suprastrom durch die Kreuzung ohne angelegte Spannung}{$I_\text{C}=\frac{2e}{\hbar}E_\text{J}$ kritischer Strom, $\delta$ Phasendifferenz zwischen den Supraleitern}
|
|
||||||
\eq{\hat{I}\ket{\delta} = I_\text{C}\sin\delta \ket{\delta}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{2nd_josephson_relation}
|
|
||||||
\desc{2. Josephson relation}{superconducting phase change is proportional to applied voltage}{$\varphi_0=\frac{\hbar}{2e}$ reduced flux quantum}
|
|
||||||
\desc[german]{2. Josephson Gleichung}{Supraleitende Phasendifferenz is proportional zur angelegten Spannung}{$\varphi_0=\frac{\hbar}{2e}$ reduziertes Flussquantum}
|
|
||||||
\eq{\odv{\hat{\delta}}{t}=\frac{1}{i\hbar}[\hat{H},\hat{\delta}] = -\frac{2eU}{i\hbar}[\hat{n},\hat{\delta}] = \frac{1}{\varphi_0} U}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{Cooper Pair Box (CPB) qubit}
|
|
||||||
\ger{Cooper Paar Box (QPB) Qubit}
|
|
||||||
]{cpb}
|
|
||||||
|
|
||||||
|
@ -17,10 +17,10 @@
|
|||||||
\eng{Operators}
|
\eng{Operators}
|
||||||
\ger{Operatoren}
|
\ger{Operatoren}
|
||||||
]{op}
|
]{op}
|
||||||
\GER[row_vector]{Zeilenvektor}
|
\Ger[row_vector]{Zeilenvektor}
|
||||||
\GER[column_vector]{Spaltenvektor}
|
\Ger[column_vector]{Spaltenvektor}
|
||||||
\ENG[column_vector]{Column vector}
|
\Eng[column_vector]{Column vector}
|
||||||
\ENG[row_vector]{Row vector}
|
\Eng[row_vector]{Row vector}
|
||||||
\begin{formula}{dirac_notation}
|
\begin{formula}{dirac_notation}
|
||||||
\desc{Dirac notation}{}{}
|
\desc{Dirac notation}{}{}
|
||||||
\desc[german]{Dirac-Notation}{}{}
|
\desc[german]{Dirac-Notation}{}{}
|
||||||
@ -75,12 +75,6 @@
|
|||||||
\eq{\Delta \hat{A} = \hat{A} - \braket{\hat{A}}}
|
\eq{\Delta \hat{A} = \hat{A} - \braket{\hat{A}}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{variance}
|
|
||||||
\desc{Variance}{}{}
|
|
||||||
\desc[german]{Varianz}{}{}
|
|
||||||
\eq{\sigma^2 = \braket{(\Delta \hat{A})^2} = \braket{\hat{A}^2} - \braket{\hat{A}}^2}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{generalized_uncertainty}
|
\begin{formula}{generalized_uncertainty}
|
||||||
\desc{Generalized uncertainty principle}{}{}
|
\desc{Generalized uncertainty principle}{}{}
|
||||||
\desc[german]{Allgemeine Unschärferelation}{}{}
|
\desc[german]{Allgemeine Unschärferelation}{}{}
|
||||||
@ -116,25 +110,38 @@
|
|||||||
\begin{formula}{commutator}
|
\begin{formula}{commutator}
|
||||||
\desc{Commutator}{}{}
|
\desc{Commutator}{}{}
|
||||||
\desc[german]{Kommutator}{}{}
|
\desc[german]{Kommutator}{}{}
|
||||||
\eq{[a,b] = ab - ba}
|
\eq{[A,B] = AB - BA}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{anticommutator}
|
\begin{formula}{anticommutator}
|
||||||
\desc{Anticommutator}{}{}
|
\desc{Anticommutator}{}{}
|
||||||
\desc[german]{Antikommmutator}{}{}
|
\desc[german]{Antikommmutator}{}{}
|
||||||
\eq{\{a,b\} = ab + ba}
|
\eq{\{A,B\} = AB + BA}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{commutation_relations}\
|
\begin{formula}{commutation_relations}\
|
||||||
\desc{Commutation relations}{}{}
|
\desc{Commutation relations}{}{}
|
||||||
\desc[german]{Kommutatorrelationen}{}{}
|
\desc[german]{Kommutatorrelationen}{}{}
|
||||||
\eq{[a, bc] = \{a, b\}c - b\{a,c\}}
|
\eq{[A, BC] = [A, B]C - B[A,C]}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{add some more?}
|
||||||
|
|
||||||
|
\begin{formula}{function}
|
||||||
|
\desc{Commutator involving a function}{}{given $[A,[A,B]] = 0$}
|
||||||
|
\desc[german]{Kommutator mit einer Funktion}{}{falls $[A,[A,B]] = 0$}
|
||||||
|
\eq{[f(A) , B] = [A,B]\,\pdv{f}{A}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{jacobi_identity}
|
\begin{formula}{jacobi_identity}
|
||||||
\desc{Jacobi identity}{}{}
|
\desc{Jacobi identity}{}{}
|
||||||
\desc[german]{Jakobi-Identität}{}{}
|
\desc[german]{Jakobi-Identität}{}{}
|
||||||
\eq{[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0}
|
\eq{[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{hadamard_lemma}
|
||||||
|
\desc{Hadamard's Lemma}{}{}
|
||||||
|
\desc[german]{Lemma von Hadamard}{}{}
|
||||||
|
\eq{\e^A B \e^{-A} = B + [A,B] + \frac{1}{2!} [A, [A,B]] + \frac{1}{3!} [A, [A, [A, B]]] + \dots}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{canon_comm_relation}
|
\begin{formula}{canon_comm_relation}
|
||||||
@ -147,39 +154,44 @@
|
|||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Schrödinger equation}
|
||||||
|
\ger{Schrödingergleichung}
|
||||||
|
]{schroedinger_equation}
|
||||||
|
\begin{formula}{energy_operator}
|
||||||
|
\desc{Energy operator}{}{}
|
||||||
|
\desc[german]{Energieoperator}{}{}
|
||||||
|
\eq{E = i\hbar \frac{\partial}{\partial t}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{momentum_operator}
|
||||||
|
\desc{Momentum operator}{}{}
|
||||||
|
\desc[german]{Impulsoperator}{}{}
|
||||||
|
\eq{\vec{p} = -i\hbar \vec{\nabla_x}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{space_operator}
|
||||||
|
\desc{Space operator}{}{}
|
||||||
|
\desc[german]{Ortsoperator}{}{}
|
||||||
|
\eq{\vec{x} = i\hbar \vec{\nabla_p}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{stationary_schroedinger_equation}
|
||||||
|
\desc{Stationary Schrödingerequation}{}{}
|
||||||
|
\desc[german]{Stationäre Schrödingergleichung}{}{}
|
||||||
|
\eq{\hat{H}\ket{\psi} = E\ket{\psi}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{schroedinger_equation}
|
||||||
|
\desc{Schrödinger equation}{}{}
|
||||||
|
\desc[german]{Schrödingergleichung}{}{}
|
||||||
|
\eq{i\hbar\frac{\partial}{\partial t}\psi(x, t) = (- \frac{\hbar^2}{2m} \vec{\nabla}^2 + \vec{V}(x)) \psi(x)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Schrödinger equation}
|
\eng{Time evolution}
|
||||||
\ger{Schrödingergleichung}
|
\ger{Zeitentwicklug}
|
||||||
]{schroedinger_equation}
|
]{time}
|
||||||
\begin{formula}{energy_operator}
|
|
||||||
\desc{Energy operator}{}{}
|
|
||||||
\desc[german]{Energieoperator}{}{}
|
|
||||||
\eq{E = i\hbar \frac{\partial}{\partial t}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{momentum_operator}
|
|
||||||
\desc{Momentum operator}{}{}
|
|
||||||
\desc[german]{Impulsoperator}{}{}
|
|
||||||
\eq{\vec{p} = -i\hbar \vec{\nabla_x}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{space_operator}
|
|
||||||
\desc{Space operator}{}{}
|
|
||||||
\desc[german]{Ortsoperator}{}{}
|
|
||||||
\eq{\vec{x} = i\hbar \vec{\nabla_p}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{stationary_schroedinger_equation}
|
|
||||||
\desc{Stationary Schrödingerequation}{}{}
|
|
||||||
\desc[german]{Stationäre Schrödingergleichung}{}{}
|
|
||||||
\eq{\hat{H}\ket{\psi} = E\ket{\psi}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{schroedinger_equation}
|
|
||||||
\desc{Schrödinger equation}{}{}
|
|
||||||
\desc[german]{Schrödingergleichung}{}{}
|
|
||||||
\eq{i\hbar\frac{\partial}{\partial t}\psi(x, t) = (- \frac{\hbar^2}{2m} \vec{\nabla}^2 + \vec{V}(x)) \psi(x)}
|
|
||||||
\end{formula}
|
|
||||||
The time evolution of the Hamiltonian is given by:
|
The time evolution of the Hamiltonian is given by:
|
||||||
\begin{formula}{time_evolution_op}
|
\begin{formula}{time_evolution_op}
|
||||||
\desc{Time evolution operator}{}{$U$ unitary}
|
\desc{Time evolution operator}{}{$U$ unitary}
|
||||||
@ -187,6 +199,21 @@
|
|||||||
\eq{\ket{\psi(t)} = \hat{U}(t, t_0) \ket{\psi(t_0)}}
|
\eq{\ket{\psi(t)} = \hat{U}(t, t_0) \ket{\psi(t_0)}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{von_neumann}
|
||||||
|
\desc{Von-Neumann Equation}{Time evolution of the density operator in the Schrödinger picture. Qm analog to the Liouville equation \ref{eq:mech:liouville:todo}}{}
|
||||||
|
\desc[german]{Von-Neumann Gleichung}{Zeitentwicklung des Dichteoperators im Schödingerbild. Qm. Analogon zur Liouville-Gleichung \ref{eq:mech:liouville:todo}}{}
|
||||||
|
\eq{\pdv{\hat{\rho}}{t} = - \frac{i}{\hbar}[\hat{H}, \hat{\rho}]}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{lindblad}
|
||||||
|
\desc{Lindblad master equation}{Generalization of von-Neummann equation for open quantum systems}{$h$ positive semidifnite matrix, $\hat{A}$ arbitrary operator}
|
||||||
|
\desc[german]{Lindblad-Mastergleichung}{Verallgemeinerung der von-Neumman Gleichung für offene Quantensysteme}{$h$ positiv-semifinite Matrix, $\hat{A}$ beliebiger Operator}
|
||||||
|
\eq{\dot{\rho} = \underbrace{-\frac{i}{\hbar} [\hat{H}, \rho]}_\text{reversible} + \underbrace{\sum_{n.m} h_{nm} \left(\hat{A}_n\rho \hat{A}_{m^\dagger} - \frac{1}{2}\left\{\hat{A}_m^\dagger \hat{A}_n,\rho \right\}\right)}_\text{irreversible}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\TODO{unitary transformation of time dependent H}
|
||||||
|
|
||||||
\Subsubsection[
|
\Subsubsection[
|
||||||
\eng{Schrödinger- and Heisenberg-pictures}
|
\eng{Schrödinger- and Heisenberg-pictures}
|
||||||
\ger{Schrödinger- und Heisenberg-Bild}
|
\ger{Schrödinger- und Heisenberg-Bild}
|
||||||
@ -217,20 +244,10 @@
|
|||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\Subsubsection[
|
|
||||||
\ger{Korrespondenzprinzip}
|
|
||||||
\eng{Correspondence principle}
|
|
||||||
]{correspondence_principle}
|
|
||||||
\begin{ttext}{desc}
|
|
||||||
\ger{Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenmechanik ableiten.}
|
|
||||||
\eng{The classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.}
|
|
||||||
\end{ttext}
|
|
||||||
|
|
||||||
|
|
||||||
\Subsubsection[
|
\Subsubsection[
|
||||||
\eng{Ehrenfest theorem}
|
\eng{Ehrenfest theorem}
|
||||||
\ger{Ehrenfest-Theorem}
|
\ger{Ehrenfest-Theorem}
|
||||||
]{ehrenfest_theorem}
|
]{ehrenfest_theorem}
|
||||||
\GT{see_also} \ref{sec:qm:basics:schroedinger_equation:correspondence_principle}
|
\GT{see_also} \ref{sec:qm:basics:schroedinger_equation:correspondence_principle}
|
||||||
\begin{formula}{ehrenfest_theorem}
|
\begin{formula}{ehrenfest_theorem}
|
||||||
\desc{Ehrenfesttheorem}{applies to both pictures}{}
|
\desc{Ehrenfesttheorem}{applies to both pictures}{}
|
||||||
@ -244,15 +261,27 @@
|
|||||||
\desc[german]{}{Beispiel für $x$}{}
|
\desc[german]{}{Beispiel für $x$}{}
|
||||||
\eq{m\odv[2]{}{t}\braket{x} = -\braket{\nabla V(x)} = \braket{F(x)}}
|
\eq{m\odv[2]{}{t}\braket{x} = -\braket{\nabla V(x)} = \braket{F(x)}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
% \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time}
|
% \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\ger{Korrespondenzprinzip}
|
||||||
|
\eng{Correspondence principle}
|
||||||
|
]{correspondence_principle}
|
||||||
|
\begin{ttext}[desc]
|
||||||
|
\ger{Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenmechanik ableiten.}
|
||||||
|
\eng{The classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\Section[
|
\Section[
|
||||||
\eng{Pertubation theory}
|
\eng{Pertubation theory}
|
||||||
\ger{Störungstheorie}
|
\ger{Störungstheorie}
|
||||||
]{qm_pertubation}
|
]{qm_pertubation}
|
||||||
\eng[desc]{The following holds true if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.}
|
\begin{ttext}
|
||||||
\ger[desc]{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.}
|
\eng[desc]{The following holds true if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.}
|
||||||
\gt{desc}
|
\ger[desc]{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.}
|
||||||
|
\end{ttext}
|
||||||
\begin{formula}{pertubation_hamiltonian}
|
\begin{formula}{pertubation_hamiltonian}
|
||||||
\desc{Hamiltonian}{}{}
|
\desc{Hamiltonian}{}{}
|
||||||
\desc[german]{Hamiltonian}{}{}
|
\desc[german]{Hamiltonian}{}{}
|
||||||
@ -289,6 +318,12 @@
|
|||||||
% \eq{\ket{\psi_n^{(1)}} = \sum_{k\neq n}\frac{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}{E_n^{(0)} - E_k^{(0)}}\ket{\psi_k^{(0)}}}
|
% \eq{\ket{\psi_n^{(1)}} = \sum_{k\neq n}\frac{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}{E_n^{(0)} - E_k^{(0)}}\ket{\psi_k^{(0)}}}
|
||||||
% \end{formula}
|
% \end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{golden_rule}
|
||||||
|
\desc{Fermi\'s golden rule}{Transition rate from initial state $\ket{i}$ under a pertubation $H^1$ to final state $\ket{f}$}{}
|
||||||
|
\desc[german]{Fermis goldene Regel}{Übergangsrate des initial Zustandes $\ket{i}$ unter einer Störung $H^1$ zum Endzustand $\ket{f}$}{}
|
||||||
|
\eq{\Gamma_{i\to f} = \frac{2\pi}{\hbar} \abs*{\braket{f | H^1 | i}}^2\,\rho(E_f)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
\Section[
|
\Section[
|
||||||
\eng{Harmonic oscillator}
|
\eng{Harmonic oscillator}
|
||||||
@ -404,3 +439,64 @@
|
|||||||
\eq{\delta = \frac{2 e}{\hbar} \oint \vec{A}\cdot \d\vec{s} = \frac{2 e}{\hbar} \Phi}
|
\eq{\delta = \frac{2 e}{\hbar} \oint \vec{A}\cdot \d\vec{s} = \frac{2 e}{\hbar} \Phi}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\TODO{replace with loop intergral symbol and add more info}
|
\TODO{replace with loop intergral symbol and add more info}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Symmetries}
|
||||||
|
\ger{Symmetrien}
|
||||||
|
]{symmetry}
|
||||||
|
\begin{ttext}[desc]
|
||||||
|
\eng{Most symmetry operators are unitary \ref{sec:linalg:unitary} because the norm of a state must be invariant under transformations of space, time and spin.}
|
||||||
|
\ger{Die meisten Symmetrieoperatoren sind unitär \ref{sec:linalg:unitary}, da die Norm eines Zustands invariant unter Raum-, Zeit- und Spin-Transformationen sein muss.}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{invariance}
|
||||||
|
\desc{Invariance}{$\hat{H}$ is invariant under a symmetrie described by $\hat{U}$ if this holds}{}
|
||||||
|
\desc[german]{Invarianz}{$\hat{H}$ is invariant unter der von $\hat{U}$ beschriebenen Symmetrie wenn gilt:}{}
|
||||||
|
\eq{\hat{U}\hat{H}\hat{U}^\dagger = \hat{H} \Leftrightarrow [\hat{U}, \hat{H}] = 0}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Time-reversal symmetry}
|
||||||
|
\ger{Zeitumkehrungssymmetrie}
|
||||||
|
]{time_reversal}
|
||||||
|
|
||||||
|
\begin{formula}{time}
|
||||||
|
\desc{Time-reversal symmetry}{}{}
|
||||||
|
\desc[german]{Zeitumkehrungssymmetrie}{}{}
|
||||||
|
\eq{T: t \to -t}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{antiunitary}
|
||||||
|
\desc{Anti-unitary}{}{}
|
||||||
|
\desc[german]{Antiunitär}{}{}
|
||||||
|
\eq{T^2 = -1}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Two-level systems (TLS)}
|
||||||
|
\ger{Zwei-Niveau System (TLS)}
|
||||||
|
]{tls}
|
||||||
|
\begin{formula}{james_cummings}
|
||||||
|
\desc{James-Cummings Hamiltonian}{TLS interacting with optical cavity}{$\hat{E} = E_\text{ZPF}(\hat{a} + \hat{a}^\dagger)$ field operator with bosonic ladder operators, $\hat{S} = \hat{\sigma}^\dagger + \hat{\sigma}$ polarization operator with ladder operators of the TLS}
|
||||||
|
\desc[german]{James-Cummings Hamiltonian}{TLS interagiert mit resonantem Lichtfeld}{$\hat{E} = E_\text{ZPF}(\hat{a} + \hat{a}^\dagger)$ Feldoperator mit bosonischen Leiteroperatoren, $\hat{S} = \hat{\sigma}^\dagger + \hat{\sigma}$ Polarisationsoperator mit Leiteroperatoren des TLS}
|
||||||
|
\eq{H &= \underbrace{\hbar\omega_c \hat{a}^\dagger \hat{a}}_\text{\GT{field}}
|
||||||
|
+ \underbrace{\hbar\omega_\text{a} \frac{\hat{\sigma}_z}{2}}_\text{\GT{atom}}
|
||||||
|
+ \underbrace{\frac{\hbar\Omega}{2} \hat{E} \hat{S}}_\text{int} \\
|
||||||
|
\shortintertext{\GT{after} \hyperref[eq:qm:other:RWS]{RWA}:} \\
|
||||||
|
&= \hbar\omega_c \hat{a}^\dagger \hat{a}
|
||||||
|
+ \hbar\omega_\text{a} \hat{\sigma}^\dagger \hat{\sigma}
|
||||||
|
+ \frac{\hbar\Omega}{2} (\hat{a}\hat{\sigma^\dagger} + \hat{a}^\dagger \hat{\sigma})
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Other}
|
||||||
|
\ger{Sonstiges}
|
||||||
|
]{other}
|
||||||
|
\begin{formula}{RWS}
|
||||||
|
\desc{Rotating Wave Approximation (RWS)}{Rapidly oscilating terms are neglected}{$\omega_\text{L}$ light frequency, $\omega_0$ transition frequency}
|
||||||
|
\desc[german]{Rotating Wave Approximation / Drehwellennäherung (RWS)}{Schnell oscillierende Terme werden vernachlässigt}{$\omega_\text{L}$ Frequenz des Lichtes, $\omega_0$ Übergangsfrequenz}
|
||||||
|
\eq{\Delta\omega \coloneq \abs{\omega_0 - \omega_\text{L}} \ll \abs{\omega_0 + \omega_\text{L}} \approx 2\omega_0}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
2
src/scripts/bloch_sphere.py
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
import qutip as qt
|
||||||
|
|
189
src/scripts/crystal_lattices-Copy1.ipynb
Normal file
441
src/scripts/crystal_lattices.ipynb
Normal file
106
src/scripts/distributions.py
Normal file
@ -0,0 +1,106 @@
|
|||||||
|
from numpy import fmax
|
||||||
|
from plot import *
|
||||||
|
|
||||||
|
|
||||||
|
def get_fig():
|
||||||
|
fig, ax = plt.subplots(figsize=size_half_half)
|
||||||
|
ax.grid()
|
||||||
|
ax.set_xlabel(f"$x$")
|
||||||
|
ax.set_ylabel("PDF")
|
||||||
|
return fig, ax
|
||||||
|
|
||||||
|
# GAUSS / NORMAL
|
||||||
|
def fgauss(x, mu, sigma_sqr):
|
||||||
|
return 1 / (np.sqrt(2 * np.pi * sigma_sqr)) * np.exp(-(x - mu)**2 / (2 * sigma_sqr))
|
||||||
|
|
||||||
|
def gauss():
|
||||||
|
fig, ax = get_fig()
|
||||||
|
x = np.linspace(-5, 5, 300)
|
||||||
|
for mu, sigma_sqr in [(0, 1), (0, 0.2), (0, 5), (-2, 2)]:
|
||||||
|
y = fgauss(x, mu, sigma_sqr)
|
||||||
|
label = texvar("mu", mu) + ", " + texvar("sigma^2", sigma_sqr)
|
||||||
|
ax.plot(x, y, label=label)
|
||||||
|
ax.legend()
|
||||||
|
return fig
|
||||||
|
export(gauss(), "distribution_gauss")
|
||||||
|
|
||||||
|
# CAUCHY / LORENTZ
|
||||||
|
def fcauchy(x, x_0, gamma):
|
||||||
|
return 1 / (np.pi * gamma * (1 + ((x - x_0)/gamma)**2))
|
||||||
|
|
||||||
|
def cauchy():
|
||||||
|
fig, ax = get_fig()
|
||||||
|
x = np.linspace(-5, 5, 300)
|
||||||
|
for x_0, gamma in [(0, 1), (0, 0.5), (0, 2), (-2, 1)]:
|
||||||
|
y = fcauchy(x, x_0, gamma)
|
||||||
|
label = f"$x_0 = {x_0}$ , {texvar('gamma', gamma)}"
|
||||||
|
ax.plot(x, y, label=label)
|
||||||
|
ax.legend()
|
||||||
|
return fig
|
||||||
|
export(cauchy(), "distribution_cauchy")
|
||||||
|
|
||||||
|
# MAXWELL-BOLTZMANN
|
||||||
|
def fmaxwell(x, a):
|
||||||
|
return np.sqrt(2/np.pi) * x**2 / a**3 * np.exp(-x**2 /(2*a**2))
|
||||||
|
|
||||||
|
def maxwell():
|
||||||
|
fig, ax = get_fig()
|
||||||
|
x = np.linspace(0, 20, 300)
|
||||||
|
for a in [1, 2, 5]:
|
||||||
|
y = fmaxwell(x, a)
|
||||||
|
label = f"$a = {a}$"
|
||||||
|
ax.plot(x, y, label=label)
|
||||||
|
ax.legend()
|
||||||
|
return fig
|
||||||
|
|
||||||
|
export(maxwell(), "distribution_maxwell-boltzmann")
|
||||||
|
|
||||||
|
|
||||||
|
# POISSON
|
||||||
|
def fpoisson(k, l):
|
||||||
|
return l**k * np.exp(-l) / scp.special.factorial(k)
|
||||||
|
|
||||||
|
def poisson():
|
||||||
|
fig, ax = get_fig()
|
||||||
|
k = np.arange(0, 21, dtype=int)
|
||||||
|
for l in [1, 4, 10]:
|
||||||
|
y = fpoisson(k, l)
|
||||||
|
label = texvar("lambda", l)
|
||||||
|
ax.plot(k, y, color="#555")
|
||||||
|
ax.scatter(k, y, label=label)
|
||||||
|
ax.set_xlabel(f"$k$")
|
||||||
|
ax.set_ylabel(f"PMF")
|
||||||
|
ax.legend()
|
||||||
|
return fig
|
||||||
|
|
||||||
|
export(poisson(), "distribution_poisson")
|
||||||
|
|
||||||
|
# BINOMIAL
|
||||||
|
def binom(n, k):
|
||||||
|
return scp.special.factorial(n) / (
|
||||||
|
scp.special.factorial(k) *
|
||||||
|
scp.special.factorial((n-k))
|
||||||
|
)
|
||||||
|
def fbinomial(k, n, p):
|
||||||
|
return binom(n, k) * p**k * (1-p)**(n-k)
|
||||||
|
|
||||||
|
def binomial():
|
||||||
|
fig, ax = get_fig()
|
||||||
|
n = 20
|
||||||
|
k = np.arange(0, n+1, dtype=int)
|
||||||
|
for p in [0.3, 0.5, 0.7]:
|
||||||
|
y = fbinomial(k, n, p)
|
||||||
|
label = f"$n={n}$, $p={p}$"
|
||||||
|
ax.plot(k, y, color="#555")
|
||||||
|
ax.scatter(k, y, label=label)
|
||||||
|
ax.set_xlabel(f"$k$")
|
||||||
|
ax.set_ylabel(f"PMF")
|
||||||
|
ax.legend()
|
||||||
|
return fig
|
||||||
|
|
||||||
|
export(binomial(), "distribution_binomial")
|
||||||
|
|
||||||
|
# FERMI-DIRAC
|
||||||
|
|
||||||
|
# BOSE-EINSTEIN
|
||||||
|
|
34
src/scripts/plot.py
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
import os
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
import scipy as scp
|
||||||
|
|
||||||
|
outdir = "../img/"
|
||||||
|
filetype = ".pdf"
|
||||||
|
skipasserts = False
|
||||||
|
|
||||||
|
full = 8
|
||||||
|
size_half_half = (full/2, full/2)
|
||||||
|
size_third_half = (full/3, full/2)
|
||||||
|
size_half_third = (full/2, full/3)
|
||||||
|
|
||||||
|
def texvar(var, val, math=True):
|
||||||
|
s = "$" if math else ""
|
||||||
|
s += f"\\{var} = {val}"
|
||||||
|
if math: s += "$"
|
||||||
|
return s
|
||||||
|
|
||||||
|
def export(fig, name):
|
||||||
|
if not skipasserts:
|
||||||
|
assert os.path.abspath(".").endswith("scripts"), "Please run from the `scripts` directory"
|
||||||
|
filename = os.path.join(outdir, name + filetype)
|
||||||
|
fig.savefig(filename, bbox_inches="tight")
|
||||||
|
|
||||||
|
|
||||||
|
@np.vectorize
|
||||||
|
def smooth_step(x: float, left_edge: float, right_edge: float):
|
||||||
|
x = (x - left_edge) / (right_edge - left_edge)
|
||||||
|
if x <= 0: return 0.
|
||||||
|
elif x >= 1: return 1.
|
||||||
|
else: return 3*(x**2) - 2*(x**3)
|
90
src/scripts/qubits.py
Normal file
@ -0,0 +1,90 @@
|
|||||||
|
from plot import *
|
||||||
|
import scqubits as scq
|
||||||
|
import qutip as qt
|
||||||
|
|
||||||
|
# flux = scq.FluxQubit()
|
||||||
|
fluxonium = scq.Fluxonium(EJ=9, EC=3, EL=0.5, flux=1, cutoff=100)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def _plot_transmon_n_wavefunctions(qubit: scq.Transmon, fig_ax, which=[0,1]):
|
||||||
|
fig, ax = fig_ax
|
||||||
|
ax.set_ylabel(r"$|\psi_i(n)|^2$")
|
||||||
|
ax.set_xlabel(r"$n$")
|
||||||
|
colors = "brgy"
|
||||||
|
for i in which:
|
||||||
|
wf = qubit.numberbasis_wavefunction(which=i)
|
||||||
|
x = wf.basis_labels
|
||||||
|
y = wf.amplitudes
|
||||||
|
offset = (len(which)/2 - i) * 0.2
|
||||||
|
ax.bar(x-offset, y, width=0.2, align='center', label=f"$i={i}$")
|
||||||
|
xlim = (-4, 4)
|
||||||
|
ax.set_xlim(*xlim)
|
||||||
|
ax.set_xticks(np.arange(xlim[0], xlim[1]+1))
|
||||||
|
|
||||||
|
def _plot_transmon(qubit: scq.Transmon, ngs, fig, axs):
|
||||||
|
_,_ = qubit.plot_evals_vs_paramvals("ng", ngs, fig_ax=(fig, axs[0]), evals_count=5, subtract_ground=False)
|
||||||
|
_,_ = qubit.plot_wavefunction(fig_ax=(fig, axs[1]), which=[0, 1, 2], mode="abs_sqr")
|
||||||
|
_plot_transmon_n_wavefunctions(qubit, (fig, axs[2]), which=[0, 1, 2])
|
||||||
|
qubit.ng = 0.5
|
||||||
|
_plot_transmon_n_wavefunctions(qubit, (fig, axs[3]), which=[0, 1, 2])
|
||||||
|
qubit.ng = 0
|
||||||
|
|
||||||
|
|
||||||
|
def transmon_cpb():
|
||||||
|
EC = 1
|
||||||
|
qubit = scq.Transmon(EJ=30, EC=EC, ng=0, ncut=30)
|
||||||
|
ngs = np.linspace(-2, 2, 200)
|
||||||
|
fig, axs = plt.subplots(4, 3, squeeze=True, figsize=(full,full))
|
||||||
|
axs = axs.T
|
||||||
|
qubit.ng = 0
|
||||||
|
qubit.EJ = 0.1 * EC
|
||||||
|
title = lambda x: f"$E_J/E_C = {x}$"
|
||||||
|
_plot_transmon(qubit, ngs, fig, axs[0])
|
||||||
|
axs[0][0].set_title("Cooper-Pair-Box\n"+title(qubit.EJ))
|
||||||
|
|
||||||
|
qubit.EJ = EC
|
||||||
|
_plot_transmon(qubit, ngs, fig, axs[1])
|
||||||
|
axs[1][0].set_title("Quantronium\n"+title(qubit.EJ))
|
||||||
|
|
||||||
|
qubit.EJ = 20 * EC
|
||||||
|
_plot_transmon(qubit, ngs, fig, axs[2])
|
||||||
|
axs[2][0].set_title("Transmon\n"+title(qubit.EJ))
|
||||||
|
|
||||||
|
for ax in axs[1:,:].flatten(): ax.set_ylabel("")
|
||||||
|
for ax in axs[:,0].flatten():
|
||||||
|
ax.set_xticks([-2, -1, -0.5, 0, 0.5, 1, 2])
|
||||||
|
ax.set_xticklabels(["-2", "-1", "", "0", "", "1", "2"])
|
||||||
|
ylim = ax.get_ylim()
|
||||||
|
ax.vlines([-1, -0.5], ymin=ylim[0], ymax=ylim[1], color="#aaa", linestyle="dotted")
|
||||||
|
axs[0][2].legend()
|
||||||
|
fig.tight_layout()
|
||||||
|
return fig
|
||||||
|
|
||||||
|
export(transmon_cpb(), "qubit_transmon")
|
||||||
|
|
||||||
|
|
||||||
|
def flux_onium():
|
||||||
|
fig, axs = plt.subplots(1, 2, squeeze=True, figsize=(full,full))
|
||||||
|
fluxs = np.linspace(-2, 2, 101)
|
||||||
|
EJ = 35.0
|
||||||
|
alpha = 0.6
|
||||||
|
fluxqubit = scq.FluxQubit(EJ1 = EJ,
|
||||||
|
EJ2 = EJ,
|
||||||
|
EJ3 = alpha*EJ,
|
||||||
|
ECJ1 = 1.0,
|
||||||
|
ECJ2 = 1.0,
|
||||||
|
ECJ3 = 1.0/alpha,
|
||||||
|
ECg1 = 50.0,
|
||||||
|
ECg2 = 50.0,
|
||||||
|
ng1 = 0.0,
|
||||||
|
ng2 = 0.0,
|
||||||
|
flux = 0.5,
|
||||||
|
ncut = 10)
|
||||||
|
fluxqubit.plot_evals_vs_paramvals("flux", fluxs, evals_count=5, subtract_ground=True, fig_ax=(fig, axs[0]))
|
||||||
|
|
||||||
|
fluxonium = scq.Fluxonium(EJ=9, EC=3, EL=0.5, flux=1, cutoff=100)
|
||||||
|
fluxonium.plot_evals_vs_paramvals("flux", fluxs, evals_count=5, subtract_ground=True, fig_ax=(fig, axs[1]))
|
||||||
|
return fig
|
||||||
|
|
||||||
|
export(flux_onium(), "qubit_flux_onium")
|
5
src/scripts/requirements.txt
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
numpy
|
||||||
|
matplotlib
|
||||||
|
scqubits
|
||||||
|
qutip
|
||||||
|
|
120
src/scripts/stat-mech.py
Normal file
@ -0,0 +1,120 @@
|
|||||||
|
from plot import *
|
||||||
|
|
||||||
|
def flennard_jones(r, epsilon, sigma):
|
||||||
|
return 4 * epsilon * ((sigma/r)**12 - (sigma/r)**6)
|
||||||
|
|
||||||
|
def lennard_jones():
|
||||||
|
fig, ax = plt.subplots(figsize=size_half_half)
|
||||||
|
ax.grid()
|
||||||
|
ax.set_xlabel(r"$r$")
|
||||||
|
ax.set_ylabel(r"$V(r)$")
|
||||||
|
|
||||||
|
r = np.linspace(0.5, 4, 300)
|
||||||
|
for epsilon, sigma in [(1, 1), (1, 2)]:
|
||||||
|
y = flennard_jones(r, epsilon, sigma)
|
||||||
|
label = texvar("epsilon", epsilon) + ", " + texvar("sigma", sigma)
|
||||||
|
ax.plot(r, y, label=label)
|
||||||
|
ax.legend()
|
||||||
|
ax.set_ylim(-1.1, 1.1)
|
||||||
|
return fig
|
||||||
|
export(lennard_jones(), "potential_lennard_jones")
|
||||||
|
|
||||||
|
# BOLTZMANN / FERMI-DIRAC / BOSE-EINSTEN DISTRIBUTIONS
|
||||||
|
def fboltzmann(x):
|
||||||
|
return 1 / np.exp(x)
|
||||||
|
def fbose_einstein(x):
|
||||||
|
return 1 / (np.exp(x) -1)
|
||||||
|
def ffermi_dirac(x):
|
||||||
|
return 1 / (np.exp(x) + 1)
|
||||||
|
|
||||||
|
|
||||||
|
def id_qgas():
|
||||||
|
fig, ax = plt.subplots(figsize=size_half_half)
|
||||||
|
ax.grid()
|
||||||
|
ax.set_xlabel(r"$\beta(\epsilon-\mu)$")
|
||||||
|
ax.set_ylabel(r"$\langle n(\epsilon)\rangle$")
|
||||||
|
x = np.linspace(-4, 4, 300)
|
||||||
|
xbe = np.linspace(0.01, 4, 300)
|
||||||
|
yb = fboltzmann(x)
|
||||||
|
ybe = fbose_einstein(xbe)
|
||||||
|
yfd = ffermi_dirac(x)
|
||||||
|
ax.vlines([0], ymin=-10, ymax=10, color="black", linestyle="dashed")
|
||||||
|
ax.plot(xbe, ybe, label="Bose-Einstein")
|
||||||
|
ax.plot(x, yb, label="Boltzmann")
|
||||||
|
ax.plot(x, yfd, label="Fermi-Dirac")
|
||||||
|
ax.legend()
|
||||||
|
ax.set_ylim(-0.1, 4)
|
||||||
|
return fig
|
||||||
|
export(id_qgas(), "td_id_qgas_distributions")
|
||||||
|
|
||||||
|
@np.vectorize
|
||||||
|
def fstep(x):
|
||||||
|
return 1 if x >= 0 else 0
|
||||||
|
|
||||||
|
def fermi_occupation():
|
||||||
|
fig, ax = plt.subplots(figsize=size_half_third)
|
||||||
|
# ax.grid()
|
||||||
|
# ax.set_xlabel(r"$\beta(\epsilon-\mu)$")
|
||||||
|
ax.set_xticks([0])
|
||||||
|
ax.set_xticklabels([r"$\epsilon=\mu$"])
|
||||||
|
ax.set_ylabel(r"$\langle n(\epsilon)\rangle$")
|
||||||
|
x = np.linspace(-4, 4, 300)
|
||||||
|
ystep = fstep(-x)
|
||||||
|
yfd = ffermi_dirac(x)
|
||||||
|
ax.vlines([0], ymin=-10, ymax=10, color="black", linestyle="dashed")
|
||||||
|
ax.plot(x, ystep, label="$T = 0$")
|
||||||
|
ax.plot(x, yfd, label=r"$T > 0$")
|
||||||
|
ax.legend()
|
||||||
|
ax.set_ylim(-0.1, 1.1)
|
||||||
|
return fig
|
||||||
|
export(fermi_occupation(), "td_fermi_occupation")
|
||||||
|
|
||||||
|
def fermi_heat_capacity():
|
||||||
|
fig, ax = plt.subplots(figsize=size_half_third)
|
||||||
|
# ax.grid()
|
||||||
|
# ax.set_xlabel(r"$\beta(\epsilon-\mu)$")
|
||||||
|
x = np.linspace(0, 4, 100)
|
||||||
|
T_F = 1
|
||||||
|
a = np.pi**2 / (2 * T_F)
|
||||||
|
|
||||||
|
def linear(x):
|
||||||
|
return x * a
|
||||||
|
X_32 = 3/2 /(np.pi**2 / (2 * T_F))
|
||||||
|
|
||||||
|
|
||||||
|
low_temp_Cv = linear(x)
|
||||||
|
ax.plot(x, low_temp_Cv, color="orange", linestyle="dashed", label=r"${\pi^2}/{2}\,{T}/{T_\text{F}}$")
|
||||||
|
ax.hlines([3/2], xmin=0, xmax=10, color="blue", linestyle="dashed", label="Petit-Dulong")
|
||||||
|
@np.vectorize
|
||||||
|
def unphysical_f(x):
|
||||||
|
# exponential
|
||||||
|
# find ṕoint where unshifted exponential has slope of the linear
|
||||||
|
# f = 3/2 - exp(-A*x)
|
||||||
|
# f' = A exp(-A*x) = a
|
||||||
|
# x = -log(a/A) / A
|
||||||
|
A = 5
|
||||||
|
x_unshifted = -np.log(a/A) / A
|
||||||
|
# shift so that this the exponential intersects the linear at this point
|
||||||
|
y_intersect = 3/2 - np.exp(-A*x_unshifted)
|
||||||
|
# find intersect x value of linear
|
||||||
|
# x = y/a
|
||||||
|
x_intersect = y_intersect / a
|
||||||
|
# shift exp so that x_intersect becomes x_unshifted
|
||||||
|
if x > x_intersect: return 3/2 - np.exp(-A * (x-(x_intersect - x_unshifted)))
|
||||||
|
else: return a * x
|
||||||
|
# ax.plot(x, smoothing, label="smooth")
|
||||||
|
y = unphysical_f(x)
|
||||||
|
ax.plot(x, y, color="black")
|
||||||
|
ax.legend(loc="lower right")
|
||||||
|
|
||||||
|
|
||||||
|
ax.set_xticks([0, T_F])
|
||||||
|
ax.set_xticklabels(["0", r"$T_F$"])
|
||||||
|
ax.set_yticks([0, 3/2])
|
||||||
|
ax.set_yticklabels(["0", r"$3/2$"])
|
||||||
|
ax.set_ylabel(r"${C_V}/{N k_\text{B}}$")
|
||||||
|
ax.set_xlim(0, 1.4 * T_F)
|
||||||
|
ax.set_ylim(0, 2)
|
||||||
|
return fig
|
||||||
|
export(fermi_heat_capacity(), "td_fermi_heat_capacity")
|
||||||
|
|
757
src/statistical_mechanics.tex
Normal file
@ -0,0 +1,757 @@
|
|||||||
|
\Part[
|
||||||
|
\eng{Statistichal Mechanics}
|
||||||
|
\ger{Statistische Mechanik}
|
||||||
|
]{stat}
|
||||||
|
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
\textbf{Intensive quantities:} Additive for subsystems (system size dependent): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$\\
|
||||||
|
\textbf{Extensive quantities:} Independent of system size, ratio of two intensive quantities
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
\textbf{Intensive Größen:} Additiv für Subsysteme (Systemgrößenabhänig): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$\\
|
||||||
|
\textbf{Extensive Größen:} Unabhängig der Systemgröße, Verhältnis zweier intensiver Größen
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{liouville}
|
||||||
|
\desc{Liouville equation}{}{$\{\}$ poisson bracket}
|
||||||
|
\desc[german]{Liouville-Gleichung}{}{$\{\}$ Poisson-Klammer}
|
||||||
|
\eq{\pdv{\rho}{t} = - \sum_{i=1}^{N} \left(\pdv{\rho}{q_i} \pdv{H}{p_i} - \pdv{\rho}{p_i} \pdv{H}{q_i} \right) = \{H, \rho\}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Entropy}
|
||||||
|
\ger{Entropie}
|
||||||
|
]{entropy}
|
||||||
|
|
||||||
|
\begin{formula}{properties}
|
||||||
|
\desc{Positive-definite and additive}{}{}
|
||||||
|
\desc[german]{Positiv Definit und Additiv}{}{}
|
||||||
|
\eq{
|
||||||
|
S &\ge 0 \\
|
||||||
|
S(E_1, E_2) &= S_1 + S_2
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{von_neumann}
|
||||||
|
\desc{Von-Neumann}{}{$\rho$ density matrix}
|
||||||
|
\desc[german]{Von-Neumann}{}{$\rho$ Dichtematrix}
|
||||||
|
\eq{S = - \kB \braket{\log \rho} = - \kB \tr(\rho \log\rho)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{gibbs}
|
||||||
|
\desc{Gibbs}{}{$p_n$ probability for micro state $n$}
|
||||||
|
\desc[german]{Gibbs}{}{$p_n$ Wahrscheinlichkeit für Mikrozustand $n$}
|
||||||
|
\eq{S = - \kB \sum_n p_n \log p_n}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{boltzmann}
|
||||||
|
\desc{Boltzmann}{}{$\Omega$ \#micro states}
|
||||||
|
\desc[german]{Boltzmann}{}{$\Omega$ \#Mikrozustände}
|
||||||
|
\eq{S = \kB \log\Omega}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{temp}
|
||||||
|
\desc{Temperature}{}{}
|
||||||
|
\desc[german]{Temperatur}{}{}
|
||||||
|
\eq{\frac{1}{T} \coloneq \pdv{S}{E}_V}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{pressure}
|
||||||
|
\desc{Pressure}{}{}
|
||||||
|
\desc[german]{Druck}{}{}
|
||||||
|
\eq{p = T \pdv{S}{V}_E}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Part[
|
||||||
|
\eng{Thermodynamics}
|
||||||
|
\ger{Thermodynamik}
|
||||||
|
]{td}
|
||||||
|
|
||||||
|
\begin{formula}{therm_wavelength}
|
||||||
|
\desc{Thermal wavelength}{}{}
|
||||||
|
\desc[german]{Thermische Wellenlänge}{}{}
|
||||||
|
\eq{\lambda = \frac{\hbar}{\sqrt{2\pi m \kB T}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Processes}
|
||||||
|
\ger{Prozesse}
|
||||||
|
]{process}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
\begin{itemize}
|
||||||
|
\item \textbf{isobaric}: constant pressure $p = \const$
|
||||||
|
\item \textbf{isochoric}: constant volume $V = \const$
|
||||||
|
\item \textbf{isothermal}: constant temperature $T = \const$
|
||||||
|
\item \textbf{isentropic}: constant entropy $S = \const$
|
||||||
|
\item \textbf{isenthalpic}: constant entalphy $H = \const$
|
||||||
|
\item \textbf{adiabatic}: no heat transfer $\Delta Q=0$
|
||||||
|
\item \textbf{quasistatic}: happens so slow, the system always stays in td. equilibrium
|
||||||
|
\item \textbf{reversivle}: reversible processes are always quasistatic and no entropie is created $\Delta S = 0$
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
\begin{itemize}
|
||||||
|
\item \textbf{isobar}: konstanter Druck $p = \const$
|
||||||
|
\item \textbf{isochor}: konstantes Volumen $V = \const$
|
||||||
|
\item \textbf{isotherm}: konstante Temperatur $T = \const$
|
||||||
|
\item \textbf{isentrop}: konstante Entropie $S = \const$
|
||||||
|
\item \textbf{isenthalp}: konstante Entalphie $H = \const$
|
||||||
|
\item \textbf{adiabatisch}: kein Wärmeübertrag $\Delta Q=0$
|
||||||
|
\item \textbf{quasistatsch}: läuft so langsam ab, dass das System durchgehend im t.d Equilibrium bleibt
|
||||||
|
\item \textbf{reversibel}: reversible Prozesse sind immer quasistatisch und es wird keine Entropie erzeugt $Delta S = 0$
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Irreversible gas expansion (Gay-Lussac experiment)}
|
||||||
|
\ger{Irreversible Gasexpansion (Gay-Lussac-Versuch)}
|
||||||
|
]{gay}
|
||||||
|
|
||||||
|
\begin{minipage}{0.6\textwidth}
|
||||||
|
\vfill
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
A classical gas in a system with volume $V_1$ is separated from another system with volume $V_2$.
|
||||||
|
In the Gay-Lussac experiment, the separation is removed and the gas flows into $V_2$.
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Ein klassisches Gas in einem System mit Volumen $V_1$ ist getrennt von einem zweiten System mit Volumen $V_2$.
|
||||||
|
Beim Gay-Lussac Versuch wird die Trennwand entfern und das Gas fließt in das Volumen $V_2$.
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
\vfill
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}{0.3\textwidth}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{img/td_gay_lussac.pdf}
|
||||||
|
\end{figure}
|
||||||
|
\end{minipage}
|
||||||
|
|
||||||
|
\begin{formula}{entropy}
|
||||||
|
\desc{Entropy change}{}{}
|
||||||
|
\desc[german]{Entropieänderung}{}{}
|
||||||
|
\eq{\Delta S=N\kB \ln \left(\frac{V_1 + V_2}{V_1}\right) > 0}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\TODO{Reversible}
|
||||||
|
|
||||||
|
\TODO{Quasistatischer T-Ausgleich}
|
||||||
|
|
||||||
|
\TODO{Joule-Thompson Prozess}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Phase transitions}
|
||||||
|
\ger{Phasenübergänge}
|
||||||
|
]{phases}
|
||||||
|
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
A phase transition is a discontinuity in the free energy $F$ or Gibbs energy $G$ or in one of their derivatives.
|
||||||
|
The degree of the phase transition is the degree of the derivative which exhibits the discontinuity.
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Ein Phasenübergang ist eine Unstetigkeit in the Freien Energie $F$ oder in der Gibbs-Energie $G$ oder in ihrer Ableitungen.
|
||||||
|
Die Ordnung des Phasenübergangs ist die Ordnung der Ableitung, in welcher die Unstetigkeit auftritt.
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{latent_heat}
|
||||||
|
\desc{Latent heat}{Heat required to bring substance from phase 1 to phase 2}{$\Delta S$ entropy change of the phase transition}
|
||||||
|
\desc[german]{Latente Wärme}{Für den Phasenübergang von Phase 1 nach Phase 2 benötigte Wärme}{$\Delta S$ Entropieänderung des Phasenübergangs}
|
||||||
|
\eq{Q_\text{L} = T \Delta S}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{clausis_clapeyron}
|
||||||
|
\desc{Clausius-Clapyeron equation}{Slope of the coexistence curve}{$\Delta V$ Volume change of the phase transition}
|
||||||
|
\desc[german]{Clausius-Clapeyron Gleichung}{Steigung der Phasengrenzlinie}{$\Delta V$ Volumenänderung des Phasenübergangs}
|
||||||
|
\eq{\odv{p}{T} = \frac{Q_\text{L}}{T\Delta V}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{coexistence}
|
||||||
|
\desc{Phase transition}{At the coexistence curve}{}
|
||||||
|
\desc[german]{Phasenübergang}{Im Koexistenzbereich}{}
|
||||||
|
\eq{G_1 = G_2 \\ \shortintertext{\GT{and_therefore}} \mu_1 = \mu_2}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{gibbs_phase_rule}
|
||||||
|
\desc{Gibbs rule / Phase rule}{}{$c$ \#components, $f$ \#degrees of freedom, $p$ \#phases}
|
||||||
|
\desc[german]{Gibbsche Phasenregel}{}{$c$ \#Komponenten, $f$ \#Freiheitsgrade, $p$ \#Phasen}
|
||||||
|
\eq{f = c - p + 2}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Osmosis}
|
||||||
|
\ger{Osmose}
|
||||||
|
]{osmosis}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
Osmosis is the spontaneous net movement or diffusion of solvent molecules
|
||||||
|
through a selectively-permeable membrane, which allows through the solvent molecules, but not the solute molecules.
|
||||||
|
The direction of the diffusion is from a region of high water potential
|
||||||
|
(region of lower solute concentration) to a region of low water potential
|
||||||
|
(region of higher solute concentration), in the direction that tends to equalize the solute concentrations on the two sides.
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Osmosis ist die spontane Passage oder Diffusion Lösungsmittelmolekülen durch eine semi-permeable Membran
|
||||||
|
die für das Lösungsmittel, jedoch nicht die darin gelösten Stoffe durchlässig ist.
|
||||||
|
Die Richtung der Diffusion ist vom Gebiet mit hohem chemischen Potential (niedrigere Konzentration des gelösten Stoffes)
|
||||||
|
in das mit niedrigem chemischem Potential (höherere Konzentraion des gelösten Stoffes), sodass die Konzentration des gelösten Stoffes ausgeglichen wird.
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{osmosis}
|
||||||
|
\desc{Osmotic pressure}{}{$N_c$ \#dissolved particles}
|
||||||
|
\desc[german]{Osmotischer Druck / Van-\'t-hoffsches Gesetz}{}{$N_c$ \#gelöster Teilchen}
|
||||||
|
\eq{p_\text{osm} = \kB T \frac{N_c}{V}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Material properties}
|
||||||
|
\ger{Materialeigenschaften}
|
||||||
|
]{}
|
||||||
|
\begin{formula}{heat_cap}
|
||||||
|
\desc{Heat capacity}{}{$Q$ heat}
|
||||||
|
\desc[german]{Wärmekapazität}{}{$Q$ Wärme}
|
||||||
|
\eq{c = \frac{Q}{\Delta T}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{heat_cap_V}
|
||||||
|
\desc{Isochoric heat capacity}{}{$U$ internal energy}
|
||||||
|
\desc[german]{Isochore Wärmekapazität}{}{$U$ innere Energie}
|
||||||
|
\eq{c_v = \pdv{Q}{T}_V = \pdv{U}{T}_V}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{heat_cap_p}
|
||||||
|
\desc{Isobaric heat capacity}{}{$H$ enthalpy}
|
||||||
|
\desc[german]{Isobare Wärmekapazität}{}{$H$ Enthalpie}
|
||||||
|
\eq{c_p = \pdv{Q}{T}_P = \pdv{H}{T}_P}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{bulk_modules}
|
||||||
|
\desc{Bulk modules}{}{$p$ pressure, $V$ initial volume}
|
||||||
|
\desc[german]{Kompressionsmodul}{}{$p$ Druck, $V$ Anfangsvolumen}
|
||||||
|
\eq{K = -V \odv{p}{V} }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{compressibility}
|
||||||
|
\desc{Compressibility}{}{}
|
||||||
|
\desc[german]{Kompressibilität}{}{}
|
||||||
|
\eq{\kappa = -\frac{1}{V} \pdv{V}{p} }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{compressibility_T}
|
||||||
|
\desc{Isothermal compressibility}{}{}
|
||||||
|
\desc[german]{Isotherme Kompressibilität}{}{}
|
||||||
|
\eq{\kappa_T = -\frac{1}{V} \pdv{V}{p}_{T} = \frac{1}{K}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{compressibility_S}
|
||||||
|
\desc{Adiabatic compressibility}{}{}
|
||||||
|
\desc[german]{Adiabatische Kompressibilität}{}{}
|
||||||
|
\eq{\kappa_S = -\frac{1}{V} \pdv{V}{p}_{S}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{therm_expansion}
|
||||||
|
\desc{Thermal expansion coefficient}{}{}
|
||||||
|
\desc[german]{Thermaler Ausdehnungskoeffizient}{}{}
|
||||||
|
\eq{\alpha = \frac{1}{V} \pdv{V}{T}_{p,N}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Laws of thermodynamics}
|
||||||
|
\ger{Hauptsätze der Thermodynamik}
|
||||||
|
]{laws}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Zeroeth law}
|
||||||
|
\ger{Nullter Hauptsatz}
|
||||||
|
]{law0}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.}
|
||||||
|
\ger{Wenn sich zwei Siesteme jeweils im thermischen Gleichgewicht mit einem dritten befinden, befinden sie sich auch untereinander im thermischen Gleichgewicht.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\Eng[teq]{th. eq.}
|
||||||
|
\Ger[teq]{th. GGW.}
|
||||||
|
\def\ggwarrow{\overset{\GT{teq}}{\leftrightarrow}}
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:\fqname}
|
||||||
|
A \ggwarrow C \quad\wedge\quad B \ggwarrow C \quad\Rightarrow\quad A \ggwarrow B
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{First law}
|
||||||
|
\ger{Erster Hauptsatz}
|
||||||
|
]{law1}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{In a process without transfer of matter, the change in internal energy, $\Delta U$, of a thermodynamic system is equal to the energy gained as heat, $Q$, less the thermodynamic work, W, done by the system on its surroundings.}
|
||||||
|
\ger{In einem abgeschlossenem System ist die Änderung der inneren Energie $U$ gleich der gewonnenen Wärme $Q$ minus der vom System an der Umgebung verrichteten Arbeit $W$.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{internal_energy}
|
||||||
|
\desc{Internal energy change}{}{}
|
||||||
|
\desc[german]{Änderung der inneren Energie}{}{}
|
||||||
|
\eq{
|
||||||
|
\Delta U &= \delta Q - \delta W \\
|
||||||
|
\d U &= T \d S - p \d V
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Second law}
|
||||||
|
\ger{Zweiter Hauptsatz}
|
||||||
|
]{law2}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
\textbf{Clausius}: Heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at the same time.\\
|
||||||
|
\textbf{Kelvin}: It is impossible for a self-acting machine, unaided by any external agency, to convey heat from one body to another at a higher temperature.
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
\textbf{Clausius}: Es gibt keine Zustansänderung, deren einziges Ergebnis die Übertragung von Wärme von einem Körper niederer Temperatur auf einen Körper höherer Temperatur ist.\\
|
||||||
|
\textbf{Kelvin}: Es ist unmöglich, eine periodisch arbeitende Maschine zu konstruieren, die weiter nichts bewirkt als Hebung einer Last und Abkühlung eines Wärmereservoirs.
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
\Subsection[
|
||||||
|
\eng{Third law}
|
||||||
|
\ger{Dritter Hauptsatz}
|
||||||
|
]{law3}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{It is impussible to cool a system to absolute zero.}
|
||||||
|
\ger{Es ist unmöglich, ein System bis zum absoluten Nullpunkt abzukühlen.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{3d_law}
|
||||||
|
\desc{Entropy density}{}{$s = \frac{S}{N}$}
|
||||||
|
\desc[german]{Entropiedichte}{}{$s = \frac{S}{N}$}
|
||||||
|
\eq{
|
||||||
|
\lim_{T\to 0} s(T) &= 0 \\
|
||||||
|
\shortintertext{\GT{and_therefore_also}} \\
|
||||||
|
\lim_{T\to 0} c_V &= 0
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Ensembles}
|
||||||
|
\ger{Ensembles}
|
||||||
|
]{ensembles}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{table}[H]
|
||||||
|
\centering
|
||||||
|
\caption{caption}
|
||||||
|
\label{tab:\fqname}
|
||||||
|
|
||||||
|
\begin{tabular}{l|c|c|c}
|
||||||
|
& \gt{mk} & \gt{k} & \gt{gk} \\ \hline
|
||||||
|
\GT{variables} & $E$, $V,$ $N$ & $T$, $V$, $N$ & $T$, $V$, $\mu$ \\ \hline
|
||||||
|
\GT{partition_sum} & $\Omega = \sum_n 1$ & $Z = \sum_n \e^{-\beta E_n}$ & $Z_\text{g} = \sum_{n} \e^{-\beta(E_n - \mu N_n)}$ \\ \hline
|
||||||
|
\GT{probability} & $p_n = \frac{1}{\Omega}$ & $p_n = \frac{\e^{-\beta E_n}}{Z}$ & $p_n = \frac{\e^{-\beta (E_n - \mu N_n}}{Z_\text{g}}$ \\ \hline
|
||||||
|
\GT{td_pot} & $S = \kB\ln\Omega$ & $F = - \kB T \ln Z$ & $ \Phi = - \kB T \ln Z$ \\ \hline
|
||||||
|
\GT{pressure} & $p = T \pdv{S}{V}_{E,N}$ &$p = -\pdv{F}{V}_{T,N}$ & $p = -\pdv{\Phi}{V}_{T,\mu} = -\frac{\Phi}{V}$ \\ \hline
|
||||||
|
\GT{entropy} & $S = \kB = \ln\Omega$ & $S = -\pdv{F}{T}_{V,N}$ & $S = -\pdv{\Phi}{T}_{V,\mu}$ \\ \hline
|
||||||
|
\end{tabular}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
\begin{formula}{ergodic_hypo}
|
||||||
|
\desc{Ergodic hypothesis}{Over a long periode of time, all accessible microstates in the phase space are equiprobable}{$A$ Observable}
|
||||||
|
\desc[german]{Ergodenhypothese}{Innerhalb einer langen Zeitspanne sind alle energetisch erreichbaren Mikrozustände im Phasenraum gleich wahrscheinlich}{$A$ Messgröße}
|
||||||
|
\eq{\braket{A}_\text{\GT{time}} = \braket{A}_\text{\GT{ensemble}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Potentials}
|
||||||
|
\ger{Potentiale}
|
||||||
|
]{pots}
|
||||||
|
\begin{formula}{internal_energy}
|
||||||
|
\desc{Internal energy}{}{}
|
||||||
|
\desc[german]{Innere Energie}{}{}
|
||||||
|
\eq{\d U(S,V,N) = T\d S -p\d V + \mu\d N}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{enthalpy}
|
||||||
|
\desc{Enthalpy}{}{}
|
||||||
|
\desc[german]{Enthalpie}{}{}
|
||||||
|
\eq{\d H(S,p,N) = T\d S +V\d p + \mu\d N}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{gibbs_energy}
|
||||||
|
\desc{Gibbs energy}{}{}
|
||||||
|
\desc[german]{Gibbsche Energie}{}{}
|
||||||
|
\eq{\d G(T,p,N) = -S\d T + V\d p + \mu\d N}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{free_energy}
|
||||||
|
\desc{Free energy / Helmholtz energy }{}{}
|
||||||
|
\desc[german]{Freie Energie / Helmholtz Energie}{}{}
|
||||||
|
\eq{\d F(T,V,N) = -S\d T -p\d V + \mu\d N}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{grand_canon_pot}
|
||||||
|
\desc{Grand canonical potential}{}{}
|
||||||
|
\desc[german]{Großkanonisches Potential}{}{}
|
||||||
|
\eq{\d \Phi(T,V,\mu) = -S\d T -p\d V - N\d\mu}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\TODO{Maxwell Relationen, TD Quadrat}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Ideal gas}
|
||||||
|
\ger{Ideales Gas}
|
||||||
|
]{id_gas}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{The ideal gas consists of non-interacting, undifferentiable particles.}
|
||||||
|
\ger{Das ideale Gas besteht aus nicht-wechselwirkenden, ununterscheidbaren Teilchen.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{phase_space_vol}
|
||||||
|
\desc{Phase space volume}{$3N$ sphere}{$N$ \#particles, $h^{3N}$ volume of a microstate, $N!$ particles are undifferentiable}
|
||||||
|
\desc[german]{}{$3N$ Kugel}{$N$ \#Teilchen, $h^{3N}$ Volumen eines Mikrozustandes, $N!$ Teilchen sind ununterscheidbar}
|
||||||
|
\eq{
|
||||||
|
\Omega(E) &= \int_V\d^3q_1 \sdots \int_V\d^3q_N \int \d^3p_1 \sdots \int\d^3p_N \frac{1}{N!\,h^{3N}} \Theta\left(E - \sum_{i} \frac{\vec{p_i}^2}{2m}\right) \\
|
||||||
|
&= \left(\frac{V}{N}\right)^N \left(\frac{4\pi m E}{3 h^2 N}\right)^{\frac{3N}{2}} \e^\frac{5N}{2}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{entropy}
|
||||||
|
\desc{Entropy}{}{}
|
||||||
|
\desc[german]{Entropie}{}{}
|
||||||
|
\eq{
|
||||||
|
S = \frac{5}{2} N\kB + N\kB\ln\left(\frac{V}{N}\left(\frac{2\pi m E}{3 h^2 N}\right)^{\frac{3}{2}}\right)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{id_gas_eq}
|
||||||
|
\desc{Ideal gas equation}{}{}
|
||||||
|
\desc[german]{Ideale Gasgleichung}{Thermische Zustandsgleichung idealer Gase}{}
|
||||||
|
\eq{pV &= nRT \\ &= N\kB T}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{equation_of_state}
|
||||||
|
\desc{Equation of state}{}{}
|
||||||
|
\desc[german]{Kalorische Zustangsgleichung}{}{}
|
||||||
|
\eq{U = \frac{3}{2} N\kB T}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
% \Subsubsection[
|
||||||
|
% \eng{Equipartitiontheorem}
|
||||||
|
% \ger{Äquipartitionstheorem}
|
||||||
|
% ]{equipart}
|
||||||
|
\begin{formula}{equipart}
|
||||||
|
\desc{Equipartitiontheorem}{Each degree of freedom contributes $U_\text{D}$ (for classical particle systems)}{}
|
||||||
|
\desc[german]{Äquipartitionstheorem}{Jedem Freiheitsgrad steht die Energie $U_\text{D}$ zur Verfügung}{}
|
||||||
|
\eq{U_\text{D} = \frac{1}{2} \kB T}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{maxwell_velocity}
|
||||||
|
\desc{Maxwell velocity distribution}{See also \ref{sec:pt:distributions::maxwell-boltzmann}}{}
|
||||||
|
\desc[german]{Maxwellsche Geschwindigkeitsverteilung}{Siehe auch \ref{sec:pt:distributions::maxwell-boltzmann}}{}
|
||||||
|
\eq{w(v) \d v = 4\pi \left(\frac{\beta m}{2\pi}\right)^\frac{3}{2} v^2 \e^{-\frac{\beta m v^2}{2}} \d v}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{avg_velocity}
|
||||||
|
\desc{Average quadratic velocity}{per particle in a 3D gas}{}
|
||||||
|
\desc[german]{Mittlere quadratosche Geschwindigkeit}{pro Teilchen im 3D-Gas}{}
|
||||||
|
\eq{\braket{v^2} = \int_0^\infty \d v\,v^2 w(v) = \frac{3\kB T}{m}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Molecule gas}
|
||||||
|
\ger{Molekülgas}
|
||||||
|
]{molecule_gas}
|
||||||
|
|
||||||
|
\begin{formula}{desc}
|
||||||
|
\desc{Molecule gas}{2 particles of mass $M$ connected by a ``spring'' with distance $L$}{}
|
||||||
|
\desc[german]{Molekülgas}{2 Teilchen der Masse $M$ sind verbunden durch eine ``Feder'' mit Länge $L$}{}
|
||||||
|
\content{
|
||||||
|
% \begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\tikzstyle{spring}=[thick,decorate,decoration={coil,aspect=0.8,amplitude=5,pre length=0.1cm,post length=0.1cm,segment length=10}]
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\def\radius{0.5}
|
||||||
|
\coordinate (left) at (-3, 0);
|
||||||
|
\coordinate (right) at (3, 0);
|
||||||
|
\draw (left) circle (\radius);
|
||||||
|
\draw[spring] ($(left) + (\radius,0)$) -- ($(right) - (\radius,0)$);
|
||||||
|
\draw (right) circle (\radius);
|
||||||
|
\end{tikzpicture}
|
||||||
|
% \end{figure}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{translation}
|
||||||
|
\desc{Translation}{}{$n_i \in \N_0$, $i=x,\,y,\,z$}
|
||||||
|
\desc[german]{Translation}{}{$n_i \in \N_0$, $i=x,\,y,\,z$}
|
||||||
|
\eq{p_i &= \frac{2\pi\hbar}{L}n_i \\
|
||||||
|
E_\text{kin} &= \frac{\vec{p}_r^2}{2M}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{vibration}
|
||||||
|
\desc{Vibration}{}{$n \in \N_0$}
|
||||||
|
\desc[german]{Schwingungen}{}{$n \in \N_0$}
|
||||||
|
\eq{E_\text{vib} = \hbar \omega \left(n+\frac{1}{2}\right)}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{rotation}
|
||||||
|
\desc{Rotation}{}{$j\in \N_0$}
|
||||||
|
\desc[german]{Rotation}{}{$j\in \N_0$}
|
||||||
|
\eq{E_\text{rot} = \frac{\hbar^2}{2I}j(j+1)}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{Diagram für verschiedene Temperaturen, Weiler Skript p.83}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Real gas}
|
||||||
|
\ger{Reales Gas}
|
||||||
|
]{real_gas}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Virial expansion}
|
||||||
|
\ger{Virialentwicklung}
|
||||||
|
]{virial}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Expansion of the pressure $p$ in a power series of the density $\rho$.}
|
||||||
|
\ger{Entwicklung desw Drucks $p$ in eine Potenzreihe der Dichte $\rho$.}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{series}
|
||||||
|
\desc{Virial expansion}{The 2\ts{nd} and 3\ts{d} virial coefficient are tabelated for many substances}{$B$ and $C$ 2\ts{nd} and 3\ts{d} virial coefficient, $\rho = \frac{N}{V}$}
|
||||||
|
\desc[german]{Virialentwicklung}{Der zweite und dritte Virialkoeffizient ist für viele Substanzen tabelliert}{$B$ und $C$ 2. und 3. Virialkoeffizient, $\rho = \frac{N}{V}$}
|
||||||
|
\eq{p = \kB T \rho\,[1 + B(T) \rho + C(T) \rho^2 + \dots]}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{mayer_function}
|
||||||
|
\desc{Mayer function}{}{$V(i,j)$ pair potential}
|
||||||
|
\desc[german]{Mayer-Funktion}{}{$V(i,j)$ Paarpotential}
|
||||||
|
\eq{f(\vec{r}) = \e^{-\beta V(i,j)} - 1}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{second_coefficient}
|
||||||
|
\desc{Second virial coefficient}{Depends on pair potential between two molecules}{}
|
||||||
|
\desc[german]{Zweiter Virialkoeffizient}{Hängt vom Paarpotential zweier Moleküle ab}{}
|
||||||
|
\eq{B = -\frac{1}{2} \int_V \d^3 \vec{r} f(\vec{r})}
|
||||||
|
% b - \frac{a}{\kB T}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{lennard_jones}
|
||||||
|
\desc{Lennard-Jones potential}{Potential between two molecules. Attractive for $r > \sigma$, repulsive for $r < \sigma$}{}
|
||||||
|
\desc[german]{Lennard-Jones-Potential}{Potential zwischen zwei Molekülen. Attraktiv für $r > \sigma$, repulsiv für $r < \sigma$}{}
|
||||||
|
\figeq{img/potential_lennard_jones.pdf}{V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6}\right]}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Van der Waals equation}
|
||||||
|
\ger{Van der Waals Gleichung}
|
||||||
|
]{vdw}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Assumes a hard-core potential with a weak attraction.}
|
||||||
|
\ger{Annahme eines Harte-Kugeln Potentials mit einer schwachen Anziehung}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{partition_sum}
|
||||||
|
\desc{Partition sum}{}{$a$ internal pressure}
|
||||||
|
\desc[german]{Zustandssumme}{}{$a$ Kohäsionsdruck}
|
||||||
|
\eq{Z_N = \frac{(V-V_0)^N}{\lambda^{3N}N!} \e^{\frac{\beta N^2 a}{V}}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{equation}
|
||||||
|
\desc{Van der Waals equation}{}{$b$ co-volume?}
|
||||||
|
\desc[german]{Van der Waals-Gleichung}{}{$b$ Kovolumen}
|
||||||
|
\eq{p = \frac{N \kB T}{V-b} - \frac{N^2 a}{V^2}}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{sometimes N is included in a, b}
|
||||||
|
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Ideal quantum gas}
|
||||||
|
\ger{Ideales Quantengas}
|
||||||
|
]{id_qgas}
|
||||||
|
\def\bosfer{$\pm$: {$\text{bos} \atop \text{fer}$}}
|
||||||
|
|
||||||
|
\begin{formula}{fugacity}
|
||||||
|
\desc{Fugacity}{}{}
|
||||||
|
\desc[german]{Fugazität}{}{}
|
||||||
|
\eq{z = \e^{\mu\beta} = \e^\frac{\mu}{\kB T}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{occupation}
|
||||||
|
\desc{Occupation number}{}{$r$ states}
|
||||||
|
\desc[german]{Besetzungszahl}{}{$r$ Zustände}
|
||||||
|
\eq{\sum_{r} n_r = N}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{undiff_particles}
|
||||||
|
\desc{Undifferentiable particles}{}{$p_i$ state}
|
||||||
|
\desc[german]{Ununterscheidbare Teilchen}{}{$p_i$ Zustand}
|
||||||
|
\eq{\ket{p_1,p_2,\dots,p_N} = \ket{p_1}\ket{p_2}\dots \ket{p_N}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{parity}
|
||||||
|
\desc{Applying the parity operator}{yields a \textit{symmetric} (Bosons) and a \textit{antisymmetic} (Fermions) solution}{$\hat{P}_{12}$ parity operator swaps $1$ and $2$, \bosfer}
|
||||||
|
\desc[german]{Anwenden des Paritätsoperators}{gibt eine \textit{symmetrische} (Bosonen) und eine \textit{antisymmetrische} (Fermionen) Lösung}{$\hat{O}_{12}$ Paritätsoperator tauscht $1$ und $2$, \bosfer}
|
||||||
|
\eq{\hat{P}_{12} \psi(p_i(\vec{r}_1),\,p_j(\vec{r}_2)) = \pm \psi(p_i(\vec{r}_1),\,p_j(\vec{r}_2))}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{spin_degeneracy_factor}
|
||||||
|
\desc{Spin degeneracy factor}{}{$s$ spin}
|
||||||
|
\desc[german]{Spinentartungsfaktor}{}{$s$ Spin}
|
||||||
|
\eq{g_s = 2s+1}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{dos}
|
||||||
|
\desc{Density of states}{}{$g_s$ \fqEqRef{td:id_qgas:spin_degeneracy_factor}}
|
||||||
|
\desc[german]{Zustandsdichte}{}{$g_s$ \fqEqRef{td:id_qgas:spin_degeneracy_factor}}
|
||||||
|
\eq{g(\epsilon) = g_s \frac{V}{4\pi} \left(\frac{2m}{\hbar^2}\right)^\frac{3}{2} \sqrt{\epsilon}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{occupation_number_per_e}
|
||||||
|
\desc{Occupation number per energy}{}{\fqEqRef{td:id_qgas:dos}, \bosfer}
|
||||||
|
\desc[german]{Besetzungszahl pro Energie}{}{\fqEqRef{td:id_qgas:dos}, \bosfer}
|
||||||
|
\eq{n(\epsilon)\, \d\epsilon &= \frac{g(\epsilon)}{\e^{\beta(\epsilon - \mu)} \mp 1}\,\d\epsilon}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{occupation_number}
|
||||||
|
\desc{Occupation number}{}{\bosfer}
|
||||||
|
\desc[german]{Besetzungszahl}{}{\bosfer}
|
||||||
|
\figeq{img/td_id_qgas_distributions.pdf}{%
|
||||||
|
\braket{n(\epsilon)} &= \frac{1}{\e^{\beta(\epsilon - \mu)} \mp 1} \\
|
||||||
|
\shortintertext{\GT{for} $\epsilon - \mu \gg \kB T$}
|
||||||
|
&= \frac{1}{\e^{\beta(\epsilon - \mu)}}
|
||||||
|
}
|
||||||
|
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{particle_number}
|
||||||
|
\desc{Number of particles}{}{}
|
||||||
|
\desc[german]{Teilchenzahl}{}{}
|
||||||
|
\eq{\braket{N} = \int_0^\infty n(\epsilon) \d\epsilon}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{energy}
|
||||||
|
\desc{Energy}{Equal to the classical ideal gas}{}
|
||||||
|
\desc[german]{Energie}{Gleich wie beim klassischen idealen Gas}{}
|
||||||
|
\eq{\braket{E} = \int_0^\infty \epsilon n(\epsilon)\,\d\epsilon = \frac{3}{2} pV}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{equation_of_state}
|
||||||
|
\desc{Equation of state}{Bosons: decreased pressure, they like to cluster\\Fermions: increased pressure because of the Pauli principle}{\bosfer, $v = \frac{V}{N}$ specific volume}
|
||||||
|
\desc[german]{Zustandsgleichung}{Bosonen: verringerter Druck da sie clustern\\Fermionen: erhöhter Druck durch das Pauli-Prinzip}{\bosfer, $v = \frac{V}{N}$ spezifisches Volumen}
|
||||||
|
\eq{
|
||||||
|
pV &= \kB T \ln Z_g \\
|
||||||
|
\shortintertext{\GT{after} \GT{td:real_gas:virial}}
|
||||||
|
&= N \kB T \left[1 \mp \frac{\lambda^3}{2^{5/2} g v} + \Order\left(\left(\frac{\lambda^3}{v}\right)^2\right)\right]
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{relevance}
|
||||||
|
\desc{Relevance of qm. corrections}{Corrections become relevant when the particle distance is in the order of the thermal wavelength}{}
|
||||||
|
\desc[german]{Relevanz der qm. Korrekturen}{Korrekturen werden relevant, wenn der Teilchenabstand in der Größenordnung der thermischen Wellenlänge ist}{}
|
||||||
|
\eq{\left(\frac{V}{N}\right)^\frac{1}{3} \sim \frac{\lambda}{g_s^\frac{1}{3}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{generalized_zeta}
|
||||||
|
\desc{Generalized zeta function}{}{}
|
||||||
|
\desc[german]{Verallgemeinerte Zeta-Funktion}{}{}
|
||||||
|
\eq{\left \begin{array}{l}g_\nu(z)\\f_\nu(z)\end{array}\right\} \coloneq \frac{1}{\Gamma(\nu)} \int_0^\infty \d x\, \frac{x^{\nu-1}}{\e^x z^{-1} \mp 1}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Bosons}
|
||||||
|
\ger{Bosonen}
|
||||||
|
]{bos}
|
||||||
|
\begin{formula}{partition_sum}
|
||||||
|
\desc{Partition sum}{}{$p \in\N_0$}
|
||||||
|
\desc[german]{Zustandssumme}{}{$p \in\N_0$}
|
||||||
|
\eq{Z_\text{g} = \prod_{p} \frac{1}{1-\e^{-\beta(\epsilon_p - \mu)}}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{occupation}
|
||||||
|
\desc{Occupation number}{Bose-Einstein distribution}{}
|
||||||
|
\desc[german]{Besetzungszahl}{Bose-Einstein Verteilung}{}
|
||||||
|
\eq{\braket{n_p} = \frac{1}{\e^{\beta(\epsilon-\mu)}-1}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Fermions}
|
||||||
|
\ger{Fermionen}
|
||||||
|
]{fer}
|
||||||
|
\begin{formula}{partition_sum}
|
||||||
|
\desc{Partition sum}{}{$p = 0,\,1$}
|
||||||
|
\desc[german]{Zustandssumme}{}{$p = 0,\,1$}
|
||||||
|
\eq{Z_\text{g} = \prod_{p} \left(1+\e^{-\beta(\epsilon_p - \mu)\right)}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{occupation}
|
||||||
|
\desc{Occupation number}{Fermi-Dirac distribution. At $T=0$ \textit{Fermi edge} at $\epsilon=\mu$}{}
|
||||||
|
\desc[german]{Besetzungszahl}{Fermi-Dirac Verteilung}{Bei $T=0$ \textit{Fermi-Kante} bei $\epsilon=\mu$}
|
||||||
|
\figeq{img/td_fermi_occupation.pdf}{\braket{n_p} = \frac{1}{\e^{\beta(\epsilon-\mu)}+1}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{slater_determinant}
|
||||||
|
\desc{Slater determinant}{}{}
|
||||||
|
\desc[german]{Slater-Determinante}{}{}
|
||||||
|
\eq{
|
||||||
|
\psi(\vecr_1,\vecr_2,\dots,\vecr_N) = \frac{1}{\sqrt{N!}}
|
||||||
|
\begin{vmatrix}
|
||||||
|
p_1(\vecr_1) & p_2(\vecr_1) & \dots & p_N(\vecr_1) \\
|
||||||
|
p_1(\vecr_2) & p_2(\vecr_2) & \dots & p_N(\vecr_2) \\
|
||||||
|
\vdots & \vdots & \ddots & \vdots \\
|
||||||
|
p_1(\vecr_N) & p_2(\vecr_N) & \dots & p_N(\vecr_N) \\
|
||||||
|
\end{vmatrix}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{fermi_energy}
|
||||||
|
\desc{Fermi energy}{}{}
|
||||||
|
\desc[german]{Fermienergie}{}{}
|
||||||
|
\eq{\epsilon_\text{F} \coloneq \mu(T = 0)}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{fermi_temperature}
|
||||||
|
\desc{Fermi temperature}{}{}
|
||||||
|
\desc[german]{Fermi Temperatur}{}{}
|
||||||
|
\eq{T_\text{F} \coloneq \frac{\epsilon_\text{F}}{\kB}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{fermi_impulse}
|
||||||
|
\desc{Fermi impulse}{Radius of the \textit{Fermi sphere} in impulse space. States with $p_\text{F}$ are in the \textit{Fermi surface}}{}
|
||||||
|
\desc[german]{Fermi-Impuls}{Radius der \textit{Fermi-Kugel} im Impulsraum. Zustände mit $P_\text{F}$ sind auf der \textit{Fermi-Fläche}}{}
|
||||||
|
\eq{p_\text{F} = \hbar k_\text{F} = (2mE_\text{F})^\frac{1}{2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{specific_density}
|
||||||
|
\desc{Specific density}{}{$f$ \fqEqRef{td:id_qgas:generalized_zeta}, $g$ degeneracy factor, $z$ \fqEqRef{td:id_qgas:fugacity}}
|
||||||
|
\desc[german]{Spezifische Dichte}{}{$f$ \fqEqRef{td:id_qgas:generalized_zeta}, $g$ Entartungsfaktor, $z$ \fqEqRef{td:id_qgas:fugacity}}
|
||||||
|
\eq{v = \frac{N}{V} = \frac{g}{\lambda^3}f_{3/2}(z)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Strong degeneracy}
|
||||||
|
\ger{Starke Entartung}
|
||||||
|
]{degenerate}
|
||||||
|
\eng[low_temps]{for low temperatures $T \ll T_\text{F}$}
|
||||||
|
\ger[low_temps]{für geringe Temperaturen $T\ll T_\text{F}$}
|
||||||
|
|
||||||
|
\begin{formula}{sommerfeld}
|
||||||
|
\desc{Sommerfeld expansion}{\gt{low_temps}}{}
|
||||||
|
\desc[german]{Sommerfeld-Entwicklung}{\gt{low_temps}}{}
|
||||||
|
\eq{f_\nu(z) = \frac{(\ln z)^\nu}{\Gamma(\nu+1)} \left(1+\frac{\pi^6}{6}\frac{\nu(\nu-1)}{(\ln z)^2} + \dots\right)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{energy_density}
|
||||||
|
\desc{Energy density}{}{}
|
||||||
|
\desc[german]{Energiedichte}{}{}
|
||||||
|
\eq{
|
||||||
|
\frac{E}{V} &= \frac{3}{2}\frac{g}{\lambda^3} \kB T f_{5/2}(z) \\
|
||||||
|
\shortintertext{\GT{td:id_qgas:fer:degenerate:sommerfeld}}
|
||||||
|
&\approx \frac{3}{5} \frac{N}{V} E_\text{F} \left(1+\frac{5\pi^2}{12}\left(\frac{\kB T}{E_\text{F}}\right)^2 \right)
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{heat_cap}
|
||||||
|
\desc{Heat capacity}{\gt{low_temps}}{differs from \fqEqRef{td:TODO:petit_dulong}}
|
||||||
|
\desc[german]{Wärmecapacity}{\gt{low_temps}}{weicht ab vom \fqEqRef{td:TODO:petit_dulong}}
|
||||||
|
\figeq{img/td_fermi_heat_capacity.pdf}{C_V = \pdv{E}{T}_V = N\kB \frac{\pi}{2} \left(\frac{T}{T_\text{F}}\right)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\TODO{Entartung und Sommerfeld}
|
||||||
|
\TODO{DULONG-PETIT Gesetz}
|
||||||
|
|
118
src/svgs/bravais/aP.svg
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
version="1.0"
|
||||||
|
width="128.84"
|
||||||
|
height="149"
|
||||||
|
id="svg2379">
|
||||||
|
<metadata
|
||||||
|
id="metadata28">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<defs
|
||||||
|
id="defs2381" />
|
||||||
|
<g
|
||||||
|
id="g3834"
|
||||||
|
transform="translate(0,-20.24516)">
|
||||||
|
<path
|
||||||
|
d="m 30.887018,149.77222 c -1.03411,1.63194 -3.19786,2.11714 -4.82981,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19787,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3625" />
|
||||||
|
<path
|
||||||
|
d="m 87.298547,111.34523 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3635" />
|
||||||
|
<path
|
||||||
|
d="m 101.18139,147.87377 0.0312,-0.28125 -0.125,-0.28125 -16.218753,-34.375 -0.25,-0.5 -0.53125,0 -71.872778,0 -0.71875,0 -0.15625,0.71875 1.59375,1.03125 70.591528,0 15.875,33.625 1.781253,0.0625 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3637" />
|
||||||
|
<path
|
||||||
|
d="M 101.53774,29.289095 84.826867,112.84347"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3639" />
|
||||||
|
<path
|
||||||
|
d="m 54.251248,128.39012 c -0.87218,1.18166 -1.89909,2.63411 -3.08073,4.35734 -0.17585,1.34343 -0.26377,2.29297 -0.26377,2.84862 0,0.46423 0.05275,0.79657 0.15826,0.99702 0.1055,0.20046 0.28134,0.30069 0.52752,0.30069 0.19694,0 0.42025,-0.0826 0.66996,-0.24794 0.24968,-0.16528 0.51872,-0.42025 0.80711,-0.7649 l 0.61193,0.56972 c -0.59084,0.63303 -1.1043,1.06736 -1.54037,1.30298 -0.4361,0.23563 -0.88625,0.35344 -1.35046,0.35344 -0.93548,0 -1.40322,-0.68226 -1.40321,-2.04679 -10e-6,-0.30244 0.02109,-0.63654 0.0633,-1.00229 l -0.1055,0 c -0.72447,1.08318 -1.41025,1.86216 -2.05734,2.33693 -0.6471,0.47477 -1.33992,0.71215 -2.07844,0.71215 -0.51346,0 -0.94603,-0.1477 -1.29771,-0.44312 -0.35168,-0.29541 -0.61193,-0.68753 -0.78073,-1.17637 -0.16881,-0.48884 -0.25322,-1.02164 -0.25321,-1.5984 -1e-5,-1.25901 0.23914,-2.45297 0.71743,-3.58188 0.47828,-1.12889 1.14296,-2.01513 1.99403,-2.65871 0.85107,-0.64357 1.80764,-0.96536 2.86973,-0.96537 0.78776,1e-5 1.40496,0.24619 1.8516,0.73853 0.44663,0.49237 0.69457,1.21331 0.74381,2.16285 l 0.09496,-0.0105 1.38211,-2.72202 1.82522,0 -0.1055,0.53807 z m -4.58945,4.43119 c 0.11956,-0.73149 0.17935,-1.37858 0.17936,-1.94128 -1e-5,-0.80183 -0.11782,-1.39617 -0.35344,-1.78303 -0.23564,-0.38684 -0.60314,-0.58026 -1.10252,-0.58027 -0.64711,1e-5 -1.24848,0.28838 -1.80413,0.86513 -0.55567,0.57677 -1.00054,1.3575 -1.33464,2.34221 -0.3341,0.98471 -0.50115,1.99404 -0.50114,3.02798 -1e-5,0.7104 0.1055,1.23792 0.31651,1.58257 0.21101,0.34465 0.52752,0.51697 0.94954,0.51697 0.60489,0 1.22737,-0.3552 1.86743,-1.0656 0.64006,-0.71039 1.2344,-1.69862 1.78303,-2.96468 l 0,0 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:21.60733986px;font-family:'Bitstream Vera Sans';fill:#008000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="text3655" />
|
||||||
|
<path
|
||||||
|
d="m 99.807978,111.96663 c 1.674002,0.59083 2.511002,1.69159 2.511012,3.30229 -1e-5,0.82997 -0.18464,1.60719 -0.5539,2.33165 -0.36927,0.72447 -0.91086,1.29947 -1.62477,1.725 -0.713922,0.42554 -1.535102,0.6383 -2.463532,0.6383 -0.59787,0 -1.12363,-0.0475 -1.5773,-0.14243 -0.45367,-0.0949 -0.92316,-0.25848 -1.40848,-0.49059 l -1.1289,5.00091 -1.71973,0 3.12294,-13.9477 c 0.28134,-1.25198 0.66116,-2.28944 1.13945,-3.11239 0.47828,-0.82292 1.07614,-1.45771 1.79358,-1.90436 0.71742,-0.44662 1.56146,-0.66993 2.532112,-0.66995 1.08317,2e-5 1.92017,0.24092 2.51101,0.72271 0.59081,0.48181 0.88622,1.16584 0.88624,2.05206 -2e-5,0.35873 -0.051,0.74734 -0.15299,1.16583 -0.102,0.41851 -0.30421,0.82998 -0.60665,1.2344 -0.30245,0.40444 -0.72271,0.77899 -1.26078,1.12362 -0.53808,0.34466 -1.19748,0.64007 -1.978212,0.88624 l -0.0211,0.0844 z m -1.76193,-0.46422 c 0.75963,-0.0563 1.44541,-0.27431 2.057342,-0.65413 0.61192,-0.37981 1.09197,-0.87744 1.44014,-1.49289 0.34816,-0.61543 0.52224,-1.2889 0.52225,-2.02042 -1e-5,-0.58377 -0.14596,-1.03041 -0.43784,-1.3399 -0.29191,-0.30947 -0.72624,-0.46421 -1.30299,-0.46422 -0.893282,1e-5 -1.638842,0.43082 -2.236692,1.29243 -0.59787,0.86163 -1.08671,2.16813 -1.46652,3.91949 l -1.42431,6.61514 c -0.03517,0.16178 -0.05276,0.29893 -0.05275,0.41147 -1e-5,0.18991 0.04395,0.35168 0.13188,0.48532 0.08792,0.13364 0.21804,0.26552 0.39037,0.39564 0.17232,0.13013 0.39563,0.24266 0.66995,0.33762 0.27431,0.0949 0.62247,0.14243 1.0445,0.14243 0.56971,0 1.08844,-0.17584 1.55619,-0.52752 0.46773,-0.35169 0.83523,-0.85107 1.102522,-1.49817 0.26727,-0.64709 0.40091,-1.38562 0.40092,-2.2156 -1e-5,-0.79479 -0.21981,-1.41727 -0.659412,-1.86743 -0.43961,-0.45014 -1.06736,-0.70687 -1.88325,-0.77018 l 0.1477,-0.74908 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:21.60733986px;font-family:'Bitstream Vera Sans';fill:#008000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="text3659" />
|
||||||
|
<path
|
||||||
|
d="m 67.417288,42.19988 c -0.68228,0.82294 -1.68105,2.17692 -2.996332,4.06192 -1.3153,1.88502 -2.54267,3.75597 -3.68211,5.61285 -0.23212,1.46299 -0.52753,2.84159 -0.88624,4.13578 l -1.57202,0 -0.30597,-0.49587 c 0.28135,-1.10429 0.78425,-2.32111 1.50872,-3.65046 0.0633,-1.32936 0.09495,-2.68685 0.09495,-4.07248 0,-1.17461 -0.02462,-2.08547 -0.07385,-2.73257 -0.04924,-0.64709 -0.12133,-1.13416 -0.21628,-1.46124 -0.09496,-0.32705 -0.2075,-0.55213 -0.33762,-0.67523 -0.13012,-0.12308 -0.29014,-0.18462 -0.48004,-0.18463 -0.39389,1e-5 -0.84756,0.28487 -1.36101,0.85459 l -0.59083,-0.59083 c 0.33762,-0.30244 0.59962,-0.53103 0.78601,-0.68578 0.18639,-0.15473 0.37982,-0.29188 0.58028,-0.41147 0.20045,-0.11956 0.40795,-0.21275 0.62247,-0.27958 0.21453,-0.06681 0.45543,-0.10022 0.72271,-0.10023 0.68929,10e-6 1.1922,0.26377 1.50872,0.79128 0.3165,0.52753 0.47476,1.39619 0.47477,2.60597 -1e-5,1.4208 -0.06683,2.96116 -0.20046,4.6211 l 0.09495,0 c 1.70917,-2.86972 3.12293,-5.48623 4.24129,-7.84954 l 2.205042,0 -0.13715,0.50642 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:21.60733986px;font-family:'Bitstream Vera Sans';fill:#008000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="text3663" />
|
||||||
|
<path
|
||||||
|
d="M 56.708034,64.811168 C 57.822096,59.638758 48.072922,50.59773 39.875089,53.376386"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#008000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="path3679" />
|
||||||
|
<path
|
||||||
|
d="m 31.093168,134.80633 c 6.2069,0.3183 15.75597,7.55968 14.32361,13.84615"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#008000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="path3681" />
|
||||||
|
<path
|
||||||
|
d="m 92.943568,130.50925 c 1.51194,-2.54642 7.320962,-4.37666 10.265262,-3.34218"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#008000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="path3683" />
|
||||||
|
<path
|
||||||
|
d="M 44.700598,65.814285 27.989728,149.36866"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3601" />
|
||||||
|
<path
|
||||||
|
d="m 12.169569,116.96466 c -1.91792,0.23278 -3.6634203,-1.13487 -3.8962103,-3.05279 -0.23278,-1.91793 1.13487,-3.66343 3.0528003,-3.89621 1.91792,-0.23278 3.66343,1.13487 3.89621,3.05279 0.232779,1.91793 -1.13487,3.66343 -3.0528,3.89621 z"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3623" />
|
||||||
|
<path
|
||||||
|
d="m 27.604528,30.791705 -16.718749,82.593755 -0.03125,0.28125 0.125,0.28125 16.218749,34.375 0.25,0.5 0.53125,0 71.872779,0 0.718753,0 0.15625,-0.71875 16.71874,-82.125005 -1.71875,-0.34375 -16.593743,81.437505 -70.591529,0 -15.874999,-33.625 16.656249,-82.312505 -1.71875,-0.34375 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3599" />
|
||||||
|
<path
|
||||||
|
d="m 102.52285,145.76617 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.702473,1.00016 -4.924833,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.702473,-1.00016 4.924833,0.49599 z"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3627" />
|
||||||
|
<path
|
||||||
|
d="m 27.073278,30.572955 0.59375,1.25 16.71875,34.375 0.25,0.5 0.53125,0 71.872772,0 1.40625,0 -0.59375,-1.25 -16.24999,-34.375 -0.21875,-0.5 -0.5625,0 -72.341532,0 -1.40625,0 z m 2.8125,1.75 70.404032,0 15.37499,32.625 -69.904022,0 -15.875,-32.625 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path2430" />
|
||||||
|
<path
|
||||||
|
d="m 103.71885,33.273545 c -1.03411,1.63194 -3.19786,2.11714 -4.829813,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.197873,-2.11714 4.829813,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3609" />
|
||||||
|
<path
|
||||||
|
d="m 115.21905,68.711575 c -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3611" />
|
||||||
|
<path
|
||||||
|
d="m 42.270438,63.994755 c 1.02487,-1.63776 3.18585,-2.13517 4.82361,-1.11029 1.63776,1.02488 2.13517,3.18586 1.11029,4.82362 -1.02488,1.63775 -3.18586,2.13516 -4.82361,1.11029 -1.63776,-1.02488 -2.13517,-3.18586 -1.11029,-4.82362 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3613" />
|
||||||
|
<path
|
||||||
|
d="m 30.286708,28.530015 c 1.63776,1.02487 2.13517,3.18585 1.11029,4.82361 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3615" />
|
||||||
|
<path
|
||||||
|
id="text6151"
|
||||||
|
d="m 13.730502,127.95675 0.74708,-0.53595 0.51971,0.12993 -1.1937,5.14837 c -0.11911,0.5143 -0.17866,0.91491 -0.17865,1.20183 -1e-5,0.21655 0.0352,0.37354 0.10556,0.47099 0.0704,0.0974 0.18135,0.14617 0.33294,0.14616 0.1624,1e-5 0.33564,-0.0663 0.51971,-0.19895 0.18406,-0.13263 0.44391,-0.38572 0.77956,-0.75926 l 0.46287,0.45475 c -0.48724,0.51971 -0.90273,0.88919 -1.24649,1.10844 -0.34377,0.21925 -0.71596,0.32888 -1.11656,0.32888 -0.33566,0 -0.60363,-0.11098 -0.80393,-0.33294 -0.20031,-0.22196 -0.30046,-0.517 -0.30046,-0.88513 0,-0.29775 0.0622,-0.61445 0.18677,-0.9501 l -0.10556,-0.0325 c -0.51972,0.75791 -1.01236,1.31281 -1.47793,1.6647 -0.46557,0.35188 -0.95821,0.52783 -1.4779204,0.52783 -0.5955,0 -1.05702,-0.22467 -1.38454,-0.674 -0.32753,-0.44933 -0.49129,-1.08002 -0.49129,-1.89207 0,-0.93114 0.18271,-1.82575 0.54813,-2.68381 0.36542,-0.85806 0.86754,-1.53476 1.50635,-2.03012 0.6388104,-0.49534 1.3507004,-0.74301 2.1356804,-0.74302 0.35188,1e-5 0.68076,0.0393 0.98664,0.11775 0.30586,0.0785 0.62121,0.2179 0.94603,0.4182 l 0,0 z m -0.7146,2.4199 c 0.0487,-0.22196 0.0812,-0.41414 0.0974,-0.57656 0.0162,-0.1624 0.0243,-0.33834 0.0244,-0.52783 -1e-5,-0.41684 -0.0893,-0.72271 -0.26798,-0.91761 -0.17865,-0.19488 -0.48182,-0.29233 -0.90949,-0.29233 -0.55761,0 -1.05837,0.22467 -1.50229,0.67399 -0.44392,0.44934 -0.7903904,1.05161 -1.0394104,1.80681 -0.24903,0.7552 -0.37355,1.50905 -0.37355,2.26155 0,0.56302 0.0772,0.98393 0.23144,1.26273 0.15428,0.2788 0.41278,0.4182 0.7755004,0.4182 0.3573,0 0.70783,-0.15429 1.0516,-0.46286 0.34376,-0.30858 0.69836,-0.74844 1.06378,-1.31958 0.36542,-0.57114 0.62392,-1.23025 0.77551,-1.97733 l 0.0731,-0.34918 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="text6155"
|
||||||
|
d="m 60.643355,161.06234 -0.74708,0.52783 -0.51971,-0.12993 2.1032,-9.28169 c 0.12451,-0.55218 0.18677,-0.95279 0.18677,-1.20182 0,-0.22737 -0.069,-0.38707 -0.20707,-0.47911 -0.13805,-0.092 -0.38572,-0.14345 -0.74302,-0.15429 l 0.0975,-0.42227 2.05447,-0.0731 0.47099,0 -1.4292,5.68433 0.10557,0.0325 c 0.52512,-0.70377 1.01776,-1.21265 1.47792,-1.52665 0.46015,-0.31398 0.92031,-0.47098 1.38048,-0.47099 0.59008,1e-5 1.04889,0.22468 1.37642,0.674 0.32752,0.44934 0.49128,1.08274 0.49129,1.90019 -1e-5,0.89326 -0.18001,1.77162 -0.54002,2.63509 -0.36001,0.86348 -0.85942,1.5483 -1.49822,2.05448 -0.63881,0.50617 -1.35342,0.75926 -2.1438,0.75926 -0.72002,0 -1.35883,-0.17594 -1.91643,-0.52783 l 0,0 z m 0.7146,-2.42802 c -0.0812,0.37896 -0.12181,0.74709 -0.1218,1.10439 -10e-6,0.42768 0.0934,0.73625 0.28015,0.92573 0.18677,0.18948 0.4967,0.28422 0.9298,0.28422 0.22195,0 0.43308,-0.0365 0.63339,-0.10963 0.2003,-0.0731 0.40467,-0.19354 0.6131,-0.36136 0.20842,-0.16782 0.40601,-0.38843 0.59279,-0.66182 0.18677,-0.27339 0.35865,-0.61039 0.51565,-1.011 0.15699,-0.4006 0.2788,-0.82963 0.36542,-1.28709 0.0866,-0.45745 0.12992,-0.8946 0.12993,-1.31146 -1e-5,-0.56301 -0.0799,-0.98527 -0.23955,-1.26679 -0.15971,-0.2815 -0.41551,-0.42226 -0.76739,-0.42226 -0.25986,0 -0.51565,0.0826 -0.76738,0.24767 -0.25174,0.16512 -0.5319,0.43851 -0.84047,0.82017 -0.30858,0.38167 -0.56032,0.7728 -0.7552,1.17341 -0.1949,0.40061 -0.36001,0.9122 -0.49535,1.53476 l -0.0731,0.34106 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="text6159"
|
||||||
|
d="m 117.12161,104.95435 c -0.0108,-0.41143 -0.0447,-0.70918 -0.10151,-0.89325 -0.0568,-0.18406 -0.14888,-0.32211 -0.27609,-0.41415 -0.12723,-0.092 -0.30723,-0.13804 -0.54001,-0.13804 -0.54679,0 -1.03807,0.2179 -1.47387,0.65369 -0.4358,0.43581 -0.79175,1.05296 -1.06784,1.85147 -0.2761,0.79852 -0.41415,1.5659 -0.41414,2.30215 0,0.55219 0.10827,0.96227 0.32482,1.23025 0.21654,0.26797 0.54136,0.40196 0.97445,0.40196 0.49264,0 0.91896,-0.0934 1.27897,-0.28016 0.36001,-0.18676 0.74031,-0.48045 1.14093,-0.88107 l 0.49535,0.49535 c -0.50889,0.56302 -1.02183,0.97446 -1.53883,1.23431 -0.51701,0.25986 -1.07326,0.38979 -1.66876,0.38979 -0.78498,0 -1.38048,-0.23279 -1.7865,-0.69836 -0.40602,-0.46558 -0.60903,-1.14228 -0.60903,-2.03012 0,-0.57925 0.10827,-1.21536 0.32482,-1.90831 0.21654,-0.69294 0.53324,-1.30197 0.95009,-1.8271 0.41685,-0.52512 0.90408,-0.9176 1.46168,-1.17747 0.55761,-0.25984 1.15311,-0.38977 1.78651,-0.38978 0.72,10e-6 1.38318,0.0812 1.98951,0.24361 l -0.3979,1.83523 -0.85265,0 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 16 KiB |
161
src/svgs/bravais/cF.svg
Normal file
@ -0,0 +1,161 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
<svg
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
version="1.0"
|
||||||
|
width="109.35"
|
||||||
|
height="127.29"
|
||||||
|
id="svg2379">
|
||||||
|
<defs
|
||||||
|
id="defs2381">
|
||||||
|
<marker
|
||||||
|
refX="0"
|
||||||
|
refY="0"
|
||||||
|
orient="auto"
|
||||||
|
style="overflow:visible"
|
||||||
|
id="Dot_m">
|
||||||
|
<path
|
||||||
|
d="M -2.5,-1 C -2.5,1.76 -4.74,4 -7.5,4 C -10.26,4 -12.5,1.76 -12.5,-1 C -12.5,-3.76 -10.26,-6 -7.5,-6 C -4.74,-6 -2.5,-3.76 -2.5,-1 z "
|
||||||
|
transform="matrix(0.4,0,0,0.4,2.96,0.4)"
|
||||||
|
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3527" />
|
||||||
|
</marker>
|
||||||
|
</defs>
|
||||||
|
<path
|
||||||
|
d="M 79.318833,79.287988 L 23.359268,112.91507"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path7042" />
|
||||||
|
<path
|
||||||
|
d="M 6.6740766,79.031293 L 94.720549,112.40168"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path7044" />
|
||||||
|
<path
|
||||||
|
d="M 53.341456,93.145311 C 54.979216,94.170181 55.476626,96.331161 54.451746,97.968921 C 53.426866,99.606681 51.265886,100.10409 49.628126,99.079211 C 47.990376,98.054331 47.492966,95.893351 48.517836,94.255601 C 49.542716,92.617841 51.703696,92.120431 53.341456,93.145311 z "
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path7046" />
|
||||||
|
<path
|
||||||
|
d="M 80.345615,6.6432316 L 95.233939,112.91507"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path7030" />
|
||||||
|
<path
|
||||||
|
d="M 79.832224,78.261207 L 94.977244,41.040395"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path7032" />
|
||||||
|
<path
|
||||||
|
d="M 89.309179,56.535933 C 90.946939,57.560803 91.444349,59.721783 90.419469,61.359543 C 89.394589,62.997303 87.233609,63.494713 85.595849,62.469833 C 83.958099,61.444953 83.460689,59.283973 84.485559,57.646223 C 85.510439,56.008463 87.671419,55.511053 89.309179,56.535933 z "
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path7034" />
|
||||||
|
<path
|
||||||
|
d="M 8.2142478,6.3865367 L 80.217267,78.389551"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:0.99476318"
|
||||||
|
id="path7012" />
|
||||||
|
<path
|
||||||
|
d="M 7.7008578,78.261211 L 79.575529,6.3865367"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:0.99476318"
|
||||||
|
id="path7014" />
|
||||||
|
<path
|
||||||
|
d="M 45.55169,39.127289 C 47.18945,40.152159 47.68686,42.313139 46.66198,43.950899 C 45.6371,45.588659 43.47612,46.086069 41.83836,45.061189 C 40.20061,44.036309 39.7032,41.875329 40.72807,40.237579 C 41.75295,38.599819 43.91393,38.102409 45.55169,39.127289 z "
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path7016" />
|
||||||
|
<path
|
||||||
|
d="M 82.52376,75.911 C 83.74613,77.40714 83.52392,79.61347 82.02777,80.83583 C 80.53163,82.05819 78.3253,81.83599 77.10294,80.33984 C 75.88058,78.84369 76.10278,76.63737 77.59893,75.41501 C 79.09508,74.19265 81.3014,74.41485 82.52376,75.911 z "
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3635" />
|
||||||
|
<path
|
||||||
|
d="M 96.406606,112.43954 L 96.437856,112.15829 L 96.312856,111.87704 L 80.0941,77.50204 L 79.8441,77.00204 L 79.31285,77.00204 L 7.4400724,77.00204 L 6.7213224,77.00204 L 6.5650724,77.72079 L 8.1588224,78.75204 L 78.75035,78.75204 L 94.625356,112.37704 L 96.406606,112.43954 z "
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3637" />
|
||||||
|
<path
|
||||||
|
d="M 79.761675,7.65961 L 80.05208,77.40924"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3639" />
|
||||||
|
<path
|
||||||
|
d="M 7.3947824,81.53043 C 5.4768624,81.76321 3.7313623,80.39556 3.4985723,78.47764 C 3.2657923,76.55971 4.6334424,74.81421 6.5513724,74.58143 C 8.4692924,74.34865 10.214802,75.7163 10.447582,77.63422 C 10.680361,79.55215 9.3127124,81.29765 7.3947824,81.53043 z "
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3623" />
|
||||||
|
<path
|
||||||
|
d="M 6.1335694,3.932944 L 6.1109924,77.95123 L 6.0797424,78.23248 L 6.2047424,78.51373 L 22.423491,112.88873 L 22.673491,113.38873 L 23.204741,113.38873 L 95.077526,113.38873 L 95.796276,113.38873 L 95.952526,112.66998 L 95.975086,39.120443 L 94.256336,38.776693 L 94.358776,111.63873 L 23.767241,111.63873 L 7.8922424,78.01373 L 7.8523194,4.276694 L 6.1335694,3.932944 z "
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3599" />
|
||||||
|
<path
|
||||||
|
d="M 26.112231,114.33799 C 25.078121,115.96993 22.914371,116.45513 21.282421,115.42102 C 19.650481,114.38691 19.165281,112.22316 20.199391,110.59121 C 21.233501,108.95927 23.397261,108.47407 25.029201,109.50818 C 26.661141,110.54229 27.146341,112.70605 26.112231,114.33799 z "
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3625" />
|
||||||
|
<path
|
||||||
|
d="M 5.7936324,5.671368 L 6.3873824,6.921368 L 23.106132,41.296368 L 23.356132,41.796368 L 23.887382,41.796368 L 95.760156,41.796368 L 97.166406,41.796368 L 96.572656,40.546368 L 80.322664,6.171368 L 80.103914,5.671368 L 79.541414,5.671368 L 7.1998824,5.671368 L 5.7936324,5.671368 z M 8.6061324,7.421368 L 79.010164,7.421368 L 94.385156,40.046368 L 24.481132,40.046368 L 8.6061324,7.421368 z "
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path2430" />
|
||||||
|
<path
|
||||||
|
d="M 97.748062,110.33194 C 98.970432,111.82808 98.748222,114.03441 97.252072,115.25677 C 95.755932,116.47913 93.549601,116.25693 92.327241,114.76078 C 91.104876,113.26463 91.327081,111.05831 92.823231,109.83595 C 94.319382,108.61359 96.525702,108.83579 97.748062,110.33194 z "
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3627" />
|
||||||
|
<path
|
||||||
|
d="M 93.164678,43.80999 C 91.532738,42.77588 91.047533,40.61213 92.081648,38.98018 C 93.115758,37.34824 95.279506,36.86304 96.911456,37.89715 C 98.543396,38.93126 99.028596,41.09502 97.994486,42.72696 C 96.960376,44.3589 94.796616,44.8441 93.164678,43.80999 z "
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3611" />
|
||||||
|
<path
|
||||||
|
d="M 20.188884,39.093172 C 21.213754,37.455412 23.374734,36.958002 25.012494,37.982882 C 26.650254,39.007762 27.147664,41.168742 26.122784,42.806502 C 25.097904,44.444252 22.936924,44.941662 21.299174,43.916792 C 19.661414,42.891912 19.164004,40.730932 20.188884,39.093172 z "
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3613" />
|
||||||
|
<path
|
||||||
|
d="M 82.770183,8.371958 C 81.736073,10.003898 79.572323,10.489098 77.94037,9.454988 C 76.30843,8.420878 75.82323,6.257128 76.85734,4.625178 C 77.89145,2.993238 80.055213,2.508038 81.687153,3.542148 C 83.319093,4.576258 83.804293,6.740018 82.770183,8.371958 z "
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3609" />
|
||||||
|
<path
|
||||||
|
d="M 8.8294514,3.628428 C 10.467211,4.653298 10.964621,6.814278 9.9397414,8.452038 C 8.9148614,10.089798 6.7538814,10.587208 5.1161214,9.562328 C 3.4783713,8.537448 2.9809613,6.376468 4.0058314,4.738718 C 5.0307114,3.100958 7.1916914,2.603548 8.8294514,3.628428 z "
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3615" />
|
||||||
|
<path
|
||||||
|
d="M 23.285226,40.929899 L 23.575631,114.1444"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path6134" />
|
||||||
|
<path
|
||||||
|
d="M 9.1240302,91.780491 L 9.8711129,91.24454 L 10.390823,91.374468 L 9.1971144,96.522842 C 9.0780073,97.03714 9.0184573,97.437749 9.0184641,97.724671 C 9.0184573,97.941218 9.0536459,98.098213 9.1240302,98.195658 C 9.1944005,98.293104 9.3053801,98.341827 9.4569692,98.341826 C 9.619371,98.341827 9.7926074,98.27551 9.9766789,98.142875 C 10.160735,98.010242 10.420589,97.757154 10.756243,97.383611 L 11.21911,97.838357 C 10.731873,98.358068 10.316377,98.727548 9.9726187,98.946801 C 9.6288449,99.166053 9.2566573,99.275679 8.8560549,99.275679 C 8.5204026,99.275679 8.2524276,99.1647 8.0521289,98.94274 C 7.8518184,98.720781 7.7516661,98.425738 7.7516717,98.05761 C 7.7516661,97.759861 7.813923,97.443163 7.9384424,97.107515 L 7.8328764,97.075034 C 7.3131615,97.832945 6.8205205,98.387843 6.3549519,98.739729 C 5.8893749,99.091616 5.3967339,99.267559 4.8770274,99.267559 C 4.2815246,99.267559 3.820012,99.042893 3.4924883,98.59356 C 3.1649619,98.144229 3.0011993,97.51354 3.0012002,96.701492 C 3.0011993,95.770349 3.1839096,94.875745 3.5493315,94.017679 C 3.9147507,93.159622 4.4168655,92.482918 5.0556776,91.987563 C 5.6944839,91.492222 6.4063772,91.244548 7.1913597,91.24454 C 7.5432411,91.244548 7.8721196,91.283797 8.1779961,91.362287 C 8.4838606,91.440793 8.799205,91.580194 9.1240302,91.780491 L 9.1240302,91.780491 z M 8.4094293,94.200389 C 8.4581458,93.978435 8.4906276,93.786251 8.5068749,93.623836 C 8.5231095,93.461433 8.5312299,93.28549 8.5312363,93.096006 C 8.5312299,92.679162 8.4419049,92.373292 8.263261,92.178394 C 8.0846048,91.98351 7.7814411,91.886064 7.353769,91.886057 C 6.7961591,91.886064 6.2953977,92.11073 5.8514831,92.560056 C 5.4075612,93.009394 5.0610884,93.611661 4.8120637,94.366859 C 4.5630337,95.122066 4.4385201,95.875915 4.4385224,96.628408 C 4.4385201,97.191429 4.5156644,97.612339 4.6699556,97.89114 C 4.8242417,98.169944 5.0827429,98.309345 5.4454599,98.309344 C 5.8027567,98.309345 6.1532897,98.155056 6.49706,97.846478 C 6.8408216,97.537902 7.1954149,97.098044 7.5608408,96.526902 C 7.9262559,95.955766 8.1847571,95.296656 8.3363452,94.549569 L 8.4094293,94.200389 z "
|
||||||
|
style="font-size:16.6307106px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"
|
||||||
|
id="text6151" />
|
||||||
|
<path
|
||||||
|
d="M 61.642295,116.79625 L 62.389378,116.2603 L 62.909088,116.39022 L 61.71538,121.5386 C 61.596273,122.05289 61.536723,122.4535 61.536729,122.74043 C 61.536723,122.95697 61.571911,123.11397 61.642295,123.21141 C 61.712666,123.30886 61.823645,123.35758 61.975234,123.35758 C 62.137636,123.35758 62.310873,123.29126 62.494944,123.15863 C 62.679,123.026 62.938855,122.77291 63.274509,122.39937 L 63.737375,122.85411 C 63.250139,123.37382 62.834642,123.7433 62.490884,123.96256 C 62.14711,124.18181 61.774923,124.29143 61.37432,124.29143 C 61.038668,124.29143 60.770693,124.18045 60.570394,123.9585 C 60.370084,123.73654 60.269931,123.44149 60.269937,123.07336 C 60.269931,122.77562 60.332188,122.45892 60.456708,122.12327 L 60.351142,122.09079 C 59.831427,122.8487 59.338786,123.4036 58.873217,123.75548 C 58.40764,124.10737 57.914999,124.28331 57.395293,124.28331 C 56.79979,124.28331 56.338277,124.05865 56.010754,123.60932 C 55.683227,123.15998 55.519465,122.52929 55.519465,121.71725 C 55.519465,120.7861 55.702175,119.8915 56.067597,119.03343 C 56.433016,118.17538 56.935131,117.49867 57.573943,117.00332 C 58.212749,116.50798 58.924642,116.2603 59.709625,116.2603 C 60.061506,116.2603 60.390385,116.29955 60.696261,116.37804 C 61.002126,116.45655 61.31747,116.59595 61.642295,116.79625 L 61.642295,116.79625 z M 60.927695,119.21614 C 60.976411,118.99419 61.008893,118.80201 61.02514,118.63959 C 61.041375,118.47719 61.049495,118.30124 61.049502,118.11176 C 61.049495,117.69492 60.96017,117.38905 60.781526,117.19415 C 60.60287,116.99926 60.299706,116.90182 59.872034,116.90181 C 59.314424,116.90182 58.813663,117.12648 58.369748,117.57581 C 57.925826,118.02515 57.579354,118.62742 57.330329,119.38261 C 57.081299,120.13782 56.956785,120.89167 56.956788,121.64416 C 56.956785,122.20718 57.03393,122.62809 57.188221,122.90689 C 57.342507,123.1857 57.601008,123.3251 57.963725,123.3251 C 58.321022,123.3251 58.671555,123.17081 59.015325,122.86223 C 59.359087,122.55366 59.71368,122.1138 60.079106,121.54266 C 60.444521,120.97152 60.703022,120.31241 60.85461,119.56532 L 60.927695,119.21614 z "
|
||||||
|
style="font-size:16.6307106px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"
|
||||||
|
id="text6155" />
|
||||||
|
<path
|
||||||
|
d="M 104.25372,73.220364 L 105.0008,72.684413 L 105.52051,72.81434 L 104.3268,77.962715 C 104.20769,78.477013 104.14814,78.877622 104.14815,79.164543 C 104.14814,79.38109 104.18333,79.538086 104.25372,79.63553 C 104.32409,79.732977 104.43506,79.7817 104.58665,79.781699 C 104.74906,79.7817 104.92229,79.715382 105.10636,79.582747 C 105.29042,79.450114 105.55027,79.197027 105.88593,78.823484 L 106.34879,79.27823 C 105.86156,79.79794 105.44606,80.167421 105.1023,80.386673 C 104.75853,80.605926 104.38634,80.715552 103.98574,80.715552 C 103.65009,80.715552 103.38211,80.604572 103.18181,80.382613 C 102.9815,80.160654 102.88135,79.865611 102.88136,79.497482 C 102.88135,79.199734 102.94361,78.883036 103.06813,78.547388 L 102.96256,78.514906 C 102.44285,79.272818 101.95021,79.827715 101.48464,80.179601 C 101.01906,80.531488 100.52642,80.707432 100.00671,80.707432 C 99.41121,80.707432 98.949697,80.482766 98.622173,80.033433 C 98.294647,79.584102 98.130884,78.953413 98.130885,78.141365 C 98.130884,77.210222 98.313595,76.315618 98.679016,75.457552 C 99.044436,74.599495 99.54655,73.922791 100.18536,73.427436 C 100.82417,72.932095 101.53606,72.684421 102.32104,72.684413 C 102.67293,72.684421 103.0018,72.72367 103.30768,72.80216 C 103.61355,72.880665 103.92889,73.020066 104.25372,73.220364 L 104.25372,73.220364 z M 103.53911,75.640262 C 103.58783,75.418308 103.62031,75.226124 103.63656,75.063709 C 103.65279,74.901305 103.66091,74.725362 103.66092,74.535879 C 103.66091,74.119035 103.57159,73.813164 103.39295,73.618266 C 103.21429,73.423382 102.91113,73.325937 102.48345,73.32593 C 101.92584,73.325937 101.42508,73.550603 100.98117,73.999928 C 100.53725,74.449267 100.19077,75.051534 99.941749,75.806732 C 99.692719,76.561939 99.568205,77.315788 99.568207,78.068281 C 99.568205,78.631302 99.645349,79.052212 99.799641,79.331013 C 99.953927,79.609817 100.21243,79.749218 100.57514,79.749217 C 100.93244,79.749218 101.28297,79.594929 101.62674,79.28635 C 101.97051,78.977774 102.3251,78.537916 102.69053,77.966775 C 103.05594,77.395639 103.31444,76.736529 103.46603,75.989442 L 103.53911,75.640262 z "
|
||||||
|
style="font-size:16.6307106px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"
|
||||||
|
id="text6887" />
|
||||||
|
<path
|
||||||
|
d="M 23.615963,41.040396 L 95.618982,113.04341"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path7006" />
|
||||||
|
<path
|
||||||
|
d="M 23.102573,112.91507 L 94.977244,41.040396"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path7008" />
|
||||||
|
<path
|
||||||
|
d="M 60.953405,73.781148 C 62.591165,74.806018 63.088575,76.966998 62.063695,78.604758 C 61.038815,80.242518 58.877835,80.739928 57.240075,79.715048 C 55.602325,78.690168 55.104915,76.529188 56.129785,74.891438 C 57.154665,73.253678 59.315645,72.756268 60.953405,73.781148 z "
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path7010" />
|
||||||
|
<path
|
||||||
|
d="M 7.4441624,6.6432316 L 23.102573,112.91507"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path7018" />
|
||||||
|
<path
|
||||||
|
d="M 6.9307719,78.261207 L 22.845878,41.040395"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path7020" />
|
||||||
|
<path
|
||||||
|
d="M 16.921118,56.535933 C 18.558878,57.560803 19.056288,59.721783 18.031408,61.359543 C 17.006528,62.997303 14.845548,63.494713 13.207788,62.469833 C 11.570038,61.444953 11.072628,59.283973 12.097498,57.646223 C 13.122378,56.008463 15.283358,55.511053 16.921118,56.535933 z "
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path7022" />
|
||||||
|
<path
|
||||||
|
d="M 79.318833,6.8999268 L 23.359268,40.527005"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path7036" />
|
||||||
|
<path
|
||||||
|
d="M 6.6740766,6.6432315 L 94.720549,40.013615"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path7038" />
|
||||||
|
<path
|
||||||
|
d="M 53.341456,20.757249 C 54.979216,21.782119 55.476626,23.943099 54.451746,25.580859 C 53.426866,27.218619 51.265886,27.716029 49.628126,26.691149 C 47.990376,25.666269 47.492966,23.505289 48.517836,21.867539 C 49.542716,20.229779 51.703696,19.732369 53.341456,20.757249 z "
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path7040" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 19 KiB |
149
src/svgs/bravais/cI.svg
Normal file
@ -0,0 +1,149 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://web.resource.org/cc/"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
version="1.0"
|
||||||
|
width="109.35"
|
||||||
|
height="127.29"
|
||||||
|
id="svg2379"
|
||||||
|
sodipodi:version="0.32"
|
||||||
|
inkscape:version="0.45pre1"
|
||||||
|
sodipodi:docname="Cubic-body-centered.svg"
|
||||||
|
inkscape:output_extension="org.inkscape.output.svg.inkscape"
|
||||||
|
sodipodi:docbase="C:\Documents and Settings\Ed\My Documents\Wikipedia"
|
||||||
|
sodipodi:modified="true">
|
||||||
|
<metadata
|
||||||
|
id="metadata7266">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<sodipodi:namedview
|
||||||
|
inkscape:window-height="573"
|
||||||
|
inkscape:window-width="744"
|
||||||
|
inkscape:pageshadow="2"
|
||||||
|
inkscape:pageopacity="0.0"
|
||||||
|
guidetolerance="10.0"
|
||||||
|
gridtolerance="10.0"
|
||||||
|
objecttolerance="10.0"
|
||||||
|
borderopacity="1.0"
|
||||||
|
bordercolor="#666666"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
id="base"
|
||||||
|
inkscape:zoom="2.9617409"
|
||||||
|
inkscape:cx="54.674999"
|
||||||
|
inkscape:cy="63.645"
|
||||||
|
inkscape:window-x="154"
|
||||||
|
inkscape:window-y="196"
|
||||||
|
inkscape:current-layer="svg2379" />
|
||||||
|
<defs
|
||||||
|
id="defs2381">
|
||||||
|
<marker
|
||||||
|
refX="0"
|
||||||
|
refY="0"
|
||||||
|
orient="auto"
|
||||||
|
style="overflow:visible"
|
||||||
|
id="Dot_m">
|
||||||
|
<path
|
||||||
|
d="M -2.5,-1 C -2.5,1.76 -4.74,4 -7.5,4 C -10.26,4 -12.5,1.76 -12.5,-1 C -12.5,-3.76 -10.26,-6 -7.5,-6 C -4.74,-6 -2.5,-3.76 -2.5,-1 z "
|
||||||
|
transform="matrix(0.4,0,0,0.4,2.96,0.4)"
|
||||||
|
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3527" />
|
||||||
|
</marker>
|
||||||
|
</defs>
|
||||||
|
<path
|
||||||
|
id="path6912"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="M 7.4441624,6.8999268 L 94.977244,112.65837" />
|
||||||
|
<path
|
||||||
|
id="path6914"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="M 23.615963,112.65837 L 79.832224,6.6432316" />
|
||||||
|
<path
|
||||||
|
id="path6916"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="M 7.4441624,78.004512 L 94.977244,41.810481" />
|
||||||
|
<path
|
||||||
|
id="path6918"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="M 23.359268,41.297091 L 78.805443,77.491122" />
|
||||||
|
<path
|
||||||
|
id="path3635"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="M 82.52376,75.911 C 83.74613,77.40714 83.52392,79.61347 82.02777,80.83583 C 80.53163,82.05819 78.3253,81.83599 77.10294,80.33984 C 75.88058,78.84369 76.10278,76.63737 77.59893,75.41501 C 79.09508,74.19265 81.3014,74.41485 82.52376,75.911 z " />
|
||||||
|
<path
|
||||||
|
id="path3637"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 96.406606,112.43954 L 96.437856,112.15829 L 96.312856,111.87704 L 80.0941,77.50204 L 79.8441,77.00204 L 79.31285,77.00204 L 7.4400724,77.00204 L 6.7213224,77.00204 L 6.5650724,77.72079 L 8.1588224,78.75204 L 78.75035,78.75204 L 94.625356,112.37704 L 96.406606,112.43954 z " />
|
||||||
|
<path
|
||||||
|
id="path3639"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 79.761675,7.65961 L 80.05208,77.40924" />
|
||||||
|
<path
|
||||||
|
id="path3623"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="M 7.3947824,81.53043 C 5.4768624,81.76321 3.7313623,80.39556 3.4985723,78.47764 C 3.2657923,76.55971 4.6334424,74.81421 6.5513724,74.58143 C 8.4692924,74.34865 10.214802,75.7163 10.447582,77.63422 C 10.680361,79.55215 9.3127124,81.29765 7.3947824,81.53043 z " />
|
||||||
|
<path
|
||||||
|
id="path3599"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 6.1335694,3.932944 L 6.1109924,77.95123 L 6.0797424,78.23248 L 6.2047424,78.51373 L 22.423491,112.88873 L 22.673491,113.38873 L 23.204741,113.38873 L 95.077526,113.38873 L 95.796276,113.38873 L 95.952526,112.66998 L 95.975086,39.120443 L 94.256336,38.776693 L 94.358776,111.63873 L 23.767241,111.63873 L 7.8922424,78.01373 L 7.8523194,4.276694 L 6.1335694,3.932944 z " />
|
||||||
|
<path
|
||||||
|
id="path3625"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="M 26.112231,114.33799 C 25.078121,115.96993 22.914371,116.45513 21.282421,115.42102 C 19.650481,114.38691 19.165281,112.22316 20.199391,110.59121 C 21.233501,108.95927 23.397261,108.47407 25.029201,109.50818 C 26.661141,110.54229 27.146341,112.70605 26.112231,114.33799 z " />
|
||||||
|
<path
|
||||||
|
id="path2430"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 5.7936324,5.671368 L 6.3873824,6.921368 L 23.106132,41.296368 L 23.356132,41.796368 L 23.887382,41.796368 L 95.760156,41.796368 L 97.166406,41.796368 L 96.572656,40.546368 L 80.322664,6.171368 L 80.103914,5.671368 L 79.541414,5.671368 L 7.1998824,5.671368 L 5.7936324,5.671368 z M 8.6061324,7.421368 L 79.010164,7.421368 L 94.385156,40.046368 L 24.481132,40.046368 L 8.6061324,7.421368 z " />
|
||||||
|
<path
|
||||||
|
id="path3627"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="M 97.748066,110.33194 C 98.970436,111.82808 98.748226,114.03441 97.252076,115.25677 C 95.755936,116.47913 93.549605,116.25693 92.327245,114.76078 C 91.10488,113.26463 91.327085,111.05831 92.823235,109.83595 C 94.319386,108.61359 96.525706,108.83579 97.748066,110.33194 z " />
|
||||||
|
<path
|
||||||
|
id="path3611"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="M 93.164678,43.80999 C 91.532738,42.77588 91.047533,40.61213 92.081648,38.98018 C 93.115758,37.34824 95.279506,36.86304 96.911456,37.89715 C 98.543396,38.93126 99.028596,41.09502 97.994486,42.72696 C 96.960376,44.3589 94.796616,44.8441 93.164678,43.80999 z " />
|
||||||
|
<path
|
||||||
|
id="path3613"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="M 20.188884,39.093168 C 21.213754,37.455408 23.374734,36.957998 25.012494,37.982878 C 26.650254,39.007758 27.147664,41.168738 26.122784,42.806498 C 25.097904,44.444248 22.936924,44.941658 21.299174,43.916788 C 19.661414,42.891908 19.164004,40.730928 20.188884,39.093168 z " />
|
||||||
|
<path
|
||||||
|
id="path3609"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="M 82.770183,8.371958 C 81.736073,10.003898 79.572323,10.489098 77.94037,9.454988 C 76.30843,8.420878 75.82323,6.257128 76.85734,4.625178 C 77.89145,2.993238 80.055213,2.508038 81.687153,3.542148 C 83.319093,4.576258 83.804293,6.740018 82.770183,8.371958 z " />
|
||||||
|
<path
|
||||||
|
id="path3615"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="M 8.8294514,3.628428 C 10.467211,4.653298 10.964621,6.814278 9.9397414,8.452038 C 8.9148614,10.089798 6.7538814,10.587208 5.1161214,9.562328 C 3.4783713,8.537448 2.9809613,6.376468 4.0058314,4.738718 C 5.0307114,3.100958 7.1916914,2.603548 8.8294514,3.628428 z " />
|
||||||
|
<path
|
||||||
|
id="path6134"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 23.285226,40.929899 L 23.575631,114.1444" />
|
||||||
|
<path
|
||||||
|
style="font-size:16.6307106px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"
|
||||||
|
d="M 9.1240302,91.780491 L 9.8711129,91.24454 L 10.390823,91.374468 L 9.1971144,96.522842 C 9.0780073,97.03714 9.0184573,97.437749 9.0184641,97.724671 C 9.0184573,97.941218 9.0536459,98.098213 9.1240302,98.195658 C 9.1944005,98.293104 9.3053801,98.341827 9.4569692,98.341826 C 9.619371,98.341827 9.7926074,98.27551 9.9766789,98.142875 C 10.160735,98.010242 10.420589,97.757154 10.756243,97.383611 L 11.21911,97.838357 C 10.731873,98.358068 10.316377,98.727548 9.9726187,98.946801 C 9.6288449,99.166053 9.2566573,99.275679 8.8560549,99.275679 C 8.5204026,99.275679 8.2524276,99.1647 8.0521289,98.94274 C 7.8518184,98.720781 7.7516661,98.425738 7.7516717,98.05761 C 7.7516661,97.759861 7.813923,97.443163 7.9384424,97.107515 L 7.8328764,97.075034 C 7.3131615,97.832945 6.8205205,98.387843 6.3549519,98.739729 C 5.8893749,99.091616 5.3967339,99.267559 4.8770274,99.267559 C 4.2815246,99.267559 3.820012,99.042893 3.4924883,98.59356 C 3.1649619,98.144229 3.0011993,97.51354 3.0012002,96.701492 C 3.0011993,95.770349 3.1839096,94.875745 3.5493315,94.017679 C 3.9147507,93.159622 4.4168655,92.482918 5.0556776,91.987563 C 5.6944839,91.492222 6.4063772,91.244548 7.1913597,91.24454 C 7.5432411,91.244548 7.8721196,91.283797 8.1779961,91.362287 C 8.4838606,91.440793 8.799205,91.580194 9.1240302,91.780491 L 9.1240302,91.780491 z M 8.4094293,94.200389 C 8.4581458,93.978435 8.4906276,93.786251 8.5068749,93.623836 C 8.5231095,93.461433 8.5312299,93.28549 8.5312363,93.096006 C 8.5312299,92.679162 8.4419049,92.373292 8.263261,92.178394 C 8.0846048,91.98351 7.7814411,91.886064 7.353769,91.886057 C 6.7961591,91.886064 6.2953977,92.11073 5.8514831,92.560056 C 5.4075612,93.009394 5.0610884,93.611661 4.8120637,94.366859 C 4.5630337,95.122066 4.4385201,95.875915 4.4385224,96.628408 C 4.4385201,97.191429 4.5156644,97.612339 4.6699556,97.89114 C 4.8242417,98.169944 5.0827429,98.309345 5.4454599,98.309344 C 5.8027567,98.309345 6.1532897,98.155056 6.49706,97.846478 C 6.8408216,97.537902 7.1954149,97.098044 7.5608408,96.526902 C 7.9262559,95.955766 8.1847571,95.296656 8.3363452,94.549569 L 8.4094293,94.200389 z "
|
||||||
|
id="text6151" />
|
||||||
|
<path
|
||||||
|
style="font-size:16.6307106px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"
|
||||||
|
d="M 61.642295,116.79625 L 62.389378,116.2603 L 62.909088,116.39022 L 61.71538,121.5386 C 61.596273,122.05289 61.536723,122.4535 61.536729,122.74043 C 61.536723,122.95697 61.571911,123.11397 61.642295,123.21141 C 61.712666,123.30886 61.823645,123.35758 61.975234,123.35758 C 62.137636,123.35758 62.310873,123.29126 62.494944,123.15863 C 62.679,123.026 62.938855,122.77291 63.274509,122.39937 L 63.737375,122.85411 C 63.250139,123.37382 62.834642,123.7433 62.490884,123.96256 C 62.14711,124.18181 61.774923,124.29143 61.37432,124.29143 C 61.038668,124.29143 60.770693,124.18045 60.570394,123.9585 C 60.370084,123.73654 60.269931,123.44149 60.269937,123.07336 C 60.269931,122.77562 60.332188,122.45892 60.456708,122.12327 L 60.351142,122.09079 C 59.831427,122.8487 59.338786,123.4036 58.873217,123.75548 C 58.40764,124.10737 57.914999,124.28331 57.395293,124.28331 C 56.79979,124.28331 56.338277,124.05865 56.010754,123.60932 C 55.683227,123.15998 55.519465,122.52929 55.519465,121.71725 C 55.519465,120.7861 55.702175,119.8915 56.067597,119.03343 C 56.433016,118.17538 56.935131,117.49867 57.573943,117.00332 C 58.212749,116.50798 58.924642,116.2603 59.709625,116.2603 C 60.061506,116.2603 60.390385,116.29955 60.696261,116.37804 C 61.002126,116.45655 61.31747,116.59595 61.642295,116.79625 L 61.642295,116.79625 z M 60.927695,119.21614 C 60.976411,118.99419 61.008893,118.80201 61.02514,118.63959 C 61.041375,118.47719 61.049495,118.30124 61.049502,118.11176 C 61.049495,117.69492 60.96017,117.38905 60.781526,117.19415 C 60.60287,116.99926 60.299706,116.90182 59.872034,116.90181 C 59.314424,116.90182 58.813663,117.12648 58.369748,117.57581 C 57.925826,118.02515 57.579354,118.62742 57.330329,119.38261 C 57.081299,120.13782 56.956785,120.89167 56.956788,121.64416 C 56.956785,122.20718 57.03393,122.62809 57.188221,122.90689 C 57.342507,123.1857 57.601008,123.3251 57.963725,123.3251 C 58.321022,123.3251 58.671555,123.17081 59.015325,122.86223 C 59.359087,122.55366 59.71368,122.1138 60.079106,121.54266 C 60.444521,120.97152 60.703022,120.31241 60.85461,119.56532 L 60.927695,119.21614 z "
|
||||||
|
id="text6155" />
|
||||||
|
<path
|
||||||
|
style="font-size:16.6307106px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"
|
||||||
|
d="M 104.25372,73.220364 L 105.0008,72.684413 L 105.52051,72.81434 L 104.3268,77.962715 C 104.20769,78.477013 104.14814,78.877622 104.14815,79.164543 C 104.14814,79.38109 104.18333,79.538086 104.25372,79.63553 C 104.32409,79.732977 104.43506,79.7817 104.58665,79.781699 C 104.74906,79.7817 104.92229,79.715382 105.10636,79.582747 C 105.29042,79.450114 105.55027,79.197027 105.88593,78.823484 L 106.34879,79.27823 C 105.86156,79.79794 105.44606,80.167421 105.1023,80.386673 C 104.75853,80.605926 104.38634,80.715552 103.98574,80.715552 C 103.65009,80.715552 103.38211,80.604572 103.18181,80.382613 C 102.9815,80.160654 102.88135,79.865611 102.88136,79.497482 C 102.88135,79.199734 102.94361,78.883036 103.06813,78.547388 L 102.96256,78.514906 C 102.44285,79.272818 101.95021,79.827715 101.48464,80.179601 C 101.01906,80.531488 100.52642,80.707432 100.00671,80.707432 C 99.41121,80.707432 98.949697,80.482766 98.622173,80.033433 C 98.294647,79.584102 98.130884,78.953413 98.130885,78.141365 C 98.130884,77.210222 98.313595,76.315618 98.679016,75.457552 C 99.044436,74.599495 99.54655,73.922791 100.18536,73.427436 C 100.82417,72.932095 101.53606,72.684421 102.32104,72.684413 C 102.67293,72.684421 103.0018,72.72367 103.30768,72.80216 C 103.61355,72.880665 103.92889,73.020066 104.25372,73.220364 L 104.25372,73.220364 z M 103.53911,75.640262 C 103.58783,75.418308 103.62031,75.226124 103.63656,75.063709 C 103.65279,74.901305 103.66091,74.725362 103.66092,74.535879 C 103.66091,74.119035 103.57159,73.813164 103.39295,73.618266 C 103.21429,73.423382 102.91113,73.325937 102.48345,73.32593 C 101.92584,73.325937 101.42508,73.550603 100.98117,73.999928 C 100.53725,74.449267 100.19077,75.051534 99.941749,75.806732 C 99.692719,76.561939 99.568205,77.315788 99.568207,78.068281 C 99.568205,78.631302 99.645349,79.052212 99.799641,79.331013 C 99.953927,79.609817 100.21243,79.749218 100.57514,79.749217 C 100.93244,79.749218 101.28297,79.594929 101.62674,79.28635 C 101.97051,78.977774 102.3251,78.537916 102.69053,77.966775 C 103.05594,77.395639 103.31444,76.736529 103.46603,75.989442 L 103.53911,75.640262 z "
|
||||||
|
id="text6887" />
|
||||||
|
<path
|
||||||
|
id="path6939"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="M 53.71598,57.240331 C 54.93835,58.736471 54.71614,60.942801 53.21999,62.165161 C 51.72385,63.38752 49.51752,63.165317 48.29516,61.669171 C 47.0728,60.173021 47.295,57.966701 48.79115,56.744341 C 50.2873,55.521981 52.49362,55.744181 53.71598,57.240331 z " />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 16 KiB |
34
src/svgs/bravais/cP.svg
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
<svg xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://web.resource.org/cc/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" version="1.0" width="109.35" height="127.29" id="svg2379" sodipodi:version="0.32" inkscape:version="0.45pre1" sodipodi:docname="Cubic.svg" inkscape:output_extension="org.inkscape.output.svg.inkscape" sodipodi:docbase="C:\Documents and Settings\Ed\My Documents\Wikipedia" sodipodi:modified="true">
|
||||||
|
<metadata id="metadata7379">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<sodipodi:namedview inkscape:window-height="573" inkscape:window-width="744" inkscape:pageshadow="2" inkscape:pageopacity="0.0" guidetolerance="10.0" gridtolerance="10.0" objecttolerance="10.0" borderopacity="1.0" bordercolor="#666666" pagecolor="#ffffff" id="base" inkscape:zoom="2.9617409" inkscape:cx="54.674999" inkscape:cy="63.645" inkscape:window-x="22" inkscape:window-y="28" inkscape:current-layer="svg2379"/>
|
||||||
|
<defs id="defs2381">
|
||||||
|
<marker refX="0" refY="0" orient="auto" style="overflow:visible" id="Dot_m">
|
||||||
|
<path d="M -2.5,-1 C -2.5,1.76 -4.74,4 -7.5,4 C -10.26,4 -12.5,1.76 -12.5,-1 C -12.5,-3.76 -10.26,-6 -7.5,-6 C -4.74,-6 -2.5,-3.76 -2.5,-1 z " transform="matrix(0.4,0,0,0.4,2.96,0.4)" style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;marker-start:none;marker-end:none" id="path3527"/>
|
||||||
|
</marker>
|
||||||
|
</defs>
|
||||||
|
<path d="M 82.52376,75.911003 C 83.74613,77.407143 83.52392,79.613473 82.02777,80.835833 C 80.53163,82.058193 78.3253,81.835993 77.10294,80.339843 C 75.88058,78.843693 76.10278,76.637373 77.59893,75.415013 C 79.09508,74.192653 81.3014,74.414853 82.52376,75.911003 z " style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none" id="path3635"/>
|
||||||
|
<path d="M 96.406605,112.43954 L 96.437855,112.15829 L 96.312855,111.87704 L 80.0941,77.502043 L 79.8441,77.002043 L 79.31285,77.002043 L 7.4400724,77.002043 L 6.7213223,77.002043 L 6.5650723,77.720793 L 8.1588224,78.752043 L 78.75035,78.752043 L 94.625355,112.37704 L 96.406605,112.43954 z " style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" id="path3637"/>
|
||||||
|
<path d="M 79.761675,7.65961 L 80.05208,77.409243" style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" id="path3639"/>
|
||||||
|
<path d="M 7.3947824,81.530433 C 5.4768623,81.763213 3.7313623,80.395563 3.4985723,78.477643 C 3.2657923,76.559713 4.6334423,74.814213 6.5513723,74.581433 C 8.4692924,74.348653 10.214802,75.716303 10.447582,77.634223 C 10.680361,79.552153 9.3127124,81.297653 7.3947824,81.530433 z " style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none" id="path3623"/>
|
||||||
|
<path d="M 6.1335693,3.932944 L 6.1109923,77.951233 L 6.0797423,78.232483 L 6.2047423,78.513733 L 22.423491,112.88873 L 22.673491,113.38873 L 23.204741,113.38873 L 95.077525,113.38873 L 95.796275,113.38873 L 95.952525,112.66998 L 95.975085,39.120443 L 94.256335,38.776693 L 94.358775,111.63873 L 23.767241,111.63873 L 7.8922424,78.013733 L 7.8523194,4.276694 L 6.1335693,3.932944 z " style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" id="path3599"/>
|
||||||
|
<path d="M 26.112231,114.33799 C 25.078121,115.96993 22.914371,116.45513 21.282421,115.42102 C 19.650481,114.38691 19.165281,112.22316 20.199391,110.59121 C 21.233501,108.95927 23.397261,108.47407 25.029201,109.50818 C 26.661141,110.54229 27.146341,112.70605 26.112231,114.33799 z " style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none" id="path3625"/>
|
||||||
|
<path d="M 5.7936323,5.671368 L 6.3873823,6.921368 L 23.106132,41.296368 L 23.356132,41.796368 L 23.887382,41.796368 L 95.760155,41.796368 L 97.166406,41.796368 L 96.572655,40.546368 L 80.322664,6.171368 L 80.103914,5.671368 L 79.541414,5.671368 L 7.1998824,5.671368 L 5.7936323,5.671368 z M 8.6061324,7.421368 L 79.010164,7.421368 L 94.385155,40.046368 L 24.481132,40.046368 L 8.6061324,7.421368 z " style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" id="path2430"/>
|
||||||
|
<path d="M 97.748066,110.33194 C 98.970436,111.82808 98.748226,114.03441 97.252076,115.25677 C 95.755935,116.47913 93.549605,116.25693 92.327245,114.76078 C 91.10488,113.26463 91.327085,111.05831 92.823235,109.83595 C 94.319385,108.61359 96.525705,108.83579 97.748066,110.33194 z " style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none" id="path3627"/>
|
||||||
|
<path d="M 93.164677,43.80999 C 91.532737,42.77588 91.047532,40.61213 92.081647,38.98018 C 93.115757,37.34824 95.279507,36.86304 96.911457,37.89715 C 98.543396,38.93126 99.028596,41.09502 97.994486,42.72696 C 96.960377,44.3589 94.796617,44.8441 93.164677,43.80999 z " style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none" id="path3611"/>
|
||||||
|
<path d="M 20.188884,39.093168 C 21.213754,37.455408 23.374734,36.957998 25.012494,37.982878 C 26.650254,39.007758 27.147664,41.168738 26.122784,42.806498 C 25.097904,44.444248 22.936924,44.941658 21.299174,43.916788 C 19.661414,42.891908 19.164004,40.730928 20.188884,39.093168 z " style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none" id="path3613"/>
|
||||||
|
<path d="M 82.770183,8.371958 C 81.736073,10.003898 79.572323,10.489098 77.94037,9.454988 C 76.30843,8.420878 75.82323,6.257128 76.85734,4.625178 C 77.89145,2.993238 80.055213,2.508038 81.687153,3.542148 C 83.319093,4.576258 83.804293,6.740018 82.770183,8.371958 z " style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none" id="path3609"/>
|
||||||
|
<path d="M 8.8294514,3.628428 C 10.467211,4.653298 10.964621,6.814278 9.9397414,8.452038 C 8.9148614,10.089798 6.7538813,10.587208 5.1161213,9.562328 C 3.4783713,8.537448 2.9809613,6.376468 4.0058313,4.738718 C 5.0307113,3.100958 7.1916914,2.603548 8.8294514,3.628428 z " style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none" id="path3615"/>
|
||||||
|
<path d="M 23.285226,40.929899 L 23.575631,114.1444" style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" id="path6134"/>
|
||||||
|
<path style="font-size:16.6307106px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans" d="M 9.1240299,91.780483 L 9.8711126,91.244533 L 10.390822,91.37446 L 9.1971141,96.522834 C 9.078007,97.037133 9.018457,97.437742 9.0184639,97.724663 C 9.018457,97.94121 9.0536457,98.098205 9.1240299,98.19565 C 9.1944003,98.293096 9.3053798,98.341819 9.456969,98.341818 C 9.6193708,98.341819 9.7926072,98.275502 9.9766787,98.142867 C 10.160735,98.010234 10.420589,97.757146 10.756243,97.383604 L 11.21911,97.83835 C 10.731873,98.35806 10.316377,98.727541 9.9726184,98.946793 C 9.6288446,99.166045 9.2566571,99.275672 8.8560546,99.275672 C 8.5204024,99.275672 8.2524273,99.164692 8.0521287,98.942733 C 7.8518182,98.720774 7.7516659,98.425731 7.7516715,98.057602 C 7.7516659,97.759853 7.8139227,97.443155 7.9384422,97.107508 L 7.8328761,97.075026 C 7.3131613,97.832937 6.8205203,98.387835 6.3549517,98.739721 C 5.8893746,99.091608 5.3967336,99.267551 4.8770272,99.267551 C 4.2815243,99.267551 3.8200118,99.042885 3.492488,98.593553 C 3.1649616,98.144221 3.0011991,97.513533 3.0012,96.701485 C 3.0011991,95.770341 3.1839094,94.875738 3.5493313,94.017671 C 3.9147504,93.159615 4.4168653,92.48291 5.0556774,91.987555 C 5.6944837,91.492215 6.406377,91.244541 7.1913595,91.244533 C 7.5432409,91.244541 7.8721193,91.283789 8.1779959,91.362279 C 8.4838603,91.440785 8.7992047,91.580186 9.1240299,91.780483 L 9.1240299,91.780483 z M 8.4094291,94.200382 C 8.4581456,93.978427 8.4906274,93.786243 8.5068747,93.623829 C 8.5231092,93.461425 8.5312297,93.285482 8.5312361,93.095999 C 8.5312297,92.679154 8.4419047,92.373284 8.2632607,92.178386 C 8.0846046,91.983502 7.7814409,91.886057 7.3537688,91.886049 C 6.7961589,91.886057 6.2953974,92.110723 5.8514829,92.560048 C 5.4075609,93.009386 5.0610881,93.611654 4.8120635,94.366851 C 4.5630335,95.122058 4.4385198,95.875907 4.4385221,96.6284 C 4.4385198,97.191421 4.5156642,97.612332 4.6699553,97.891133 C 4.8242415,98.169936 5.0827427,98.309337 5.4454597,98.309337 C 5.8027564,98.309337 6.1532895,98.155049 6.4970598,97.84647 C 6.8408214,97.537894 7.1954147,97.098036 7.5608406,96.526895 C 7.9262557,95.955759 8.1847569,95.296648 8.3363449,94.549562 L 8.4094291,94.200382 z " id="text6151"/>
|
||||||
|
<path style="font-size:16.6307106px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans" d="M 61.642295,116.79625 L 62.389378,116.2603 L 62.909088,116.39022 L 61.71538,121.5386 C 61.596273,122.05289 61.536723,122.4535 61.536729,122.74043 C 61.536723,122.95697 61.571911,123.11397 61.642295,123.21141 C 61.712666,123.30886 61.823645,123.35758 61.975234,123.35758 C 62.137636,123.35758 62.310873,123.29126 62.494944,123.15863 C 62.679,123.026 62.938855,122.77291 63.274509,122.39937 L 63.737375,122.85411 C 63.250139,123.37382 62.834642,123.7433 62.490884,123.96256 C 62.14711,124.18181 61.774923,124.29143 61.37432,124.29143 C 61.038668,124.29143 60.770693,124.18045 60.570394,123.9585 C 60.370084,123.73654 60.269931,123.44149 60.269937,123.07336 C 60.269931,122.77562 60.332188,122.45892 60.456708,122.12327 L 60.351142,122.09079 C 59.831427,122.8487 59.338786,123.4036 58.873217,123.75548 C 58.40764,124.10737 57.914999,124.28331 57.395293,124.28331 C 56.79979,124.28331 56.338277,124.05865 56.010754,123.60932 C 55.683227,123.15998 55.519465,122.52929 55.519465,121.71725 C 55.519465,120.7861 55.702175,119.8915 56.067597,119.03343 C 56.433016,118.17538 56.935131,117.49867 57.573943,117.00332 C 58.212749,116.50798 58.924642,116.2603 59.709625,116.2603 C 60.061506,116.2603 60.390385,116.29955 60.696261,116.37804 C 61.002126,116.45655 61.31747,116.59595 61.642295,116.79625 L 61.642295,116.79625 z M 60.927695,119.21614 C 60.976411,118.99419 61.008893,118.80201 61.02514,118.63959 C 61.041375,118.47719 61.049495,118.30124 61.049502,118.11176 C 61.049495,117.69492 60.96017,117.38905 60.781526,117.19415 C 60.60287,116.99926 60.299706,116.90182 59.872034,116.90181 C 59.314424,116.90182 58.813663,117.12648 58.369748,117.57581 C 57.925826,118.02515 57.579354,118.62742 57.330329,119.38261 C 57.081299,120.13782 56.956785,120.89167 56.956788,121.64416 C 56.956785,122.20718 57.03393,122.62809 57.188221,122.90689 C 57.342507,123.1857 57.601008,123.3251 57.963725,123.3251 C 58.321022,123.3251 58.671555,123.17081 59.015325,122.86223 C 59.359087,122.55366 59.71368,122.1138 60.079106,121.54266 C 60.444521,120.97152 60.703022,120.31241 60.85461,119.56532 L 60.927695,119.21614 z " id="text6155"/>
|
||||||
|
<path style="font-size:16.6307106px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans" d="M 104.25372,73.220348 L 105.0008,72.684398 L 105.52051,72.814325 L 104.3268,77.9627 C 104.20769,78.476998 104.14814,78.877607 104.14815,79.164528 C 104.14814,79.381075 104.18333,79.538071 104.25372,79.635515 C 104.32409,79.732962 104.43506,79.781684 104.58665,79.781683 C 104.74906,79.781684 104.92229,79.715367 105.10636,79.582732 C 105.29042,79.450099 105.55027,79.197011 105.88593,78.823469 L 106.34879,79.278215 C 105.86156,79.797925 105.44606,80.167406 105.1023,80.386658 C 104.75853,80.605911 104.38634,80.715537 103.98574,80.715537 C 103.65009,80.715537 103.38211,80.604557 103.18181,80.382598 C 102.9815,80.160639 102.88135,79.865596 102.88136,79.497467 C 102.88135,79.199718 102.94361,78.88302 103.06813,78.547373 L 102.96256,78.514891 C 102.44285,79.272802 101.95021,79.8277 101.48464,80.179586 C 101.01906,80.531473 100.52642,80.707416 100.00671,80.707416 C 99.41121,80.707416 98.949697,80.48275 98.622173,80.033418 C 98.294647,79.584087 98.130884,78.953398 98.130885,78.14135 C 98.130884,77.210207 98.313595,76.315603 98.679016,75.457536 C 99.044436,74.59948 99.54655,73.922775 100.18536,73.42742 C 100.82417,72.93208 101.53606,72.684406 102.32104,72.684398 C 102.67293,72.684406 103.0018,72.723655 103.30768,72.802145 C 103.61355,72.88065 103.92889,73.020051 104.25372,73.220348 L 104.25372,73.220348 z M 103.53911,75.640247 C 103.58783,75.418293 103.62031,75.226108 103.63656,75.063694 C 103.65279,74.90129 103.66091,74.725347 103.66092,74.535864 C 103.66091,74.11902 103.57159,73.813149 103.39295,73.618251 C 103.21429,73.423367 102.91113,73.325922 102.48345,73.325914 C 101.92584,73.325922 101.42508,73.550588 100.98117,73.999913 C 100.53725,74.449251 100.19077,75.051519 99.941749,75.806716 C 99.692719,76.561923 99.568205,77.315772 99.568207,78.068266 C 99.568205,78.631286 99.645349,79.052197 99.799641,79.330998 C 99.953927,79.609801 100.21243,79.749202 100.57514,79.749202 C 100.93244,79.749202 101.28297,79.594914 101.62674,79.286335 C 101.97051,78.977759 102.3251,78.537901 102.69053,77.96676 C 103.05594,77.395624 103.31444,76.736513 103.46603,75.989427 L 103.53911,75.640247 z " id="text6887"/>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 14 KiB |
6
src/svgs/bravais/fix.sh
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
mkdir -p out
|
||||||
|
for file in bravais/*; do
|
||||||
|
link=https:$(grep "Original file" "$file" | grep -Po '(?<=href=")[^"]+')
|
||||||
|
wget "$link" -O "$file"
|
||||||
|
sleep 1
|
||||||
|
done
|
344
src/svgs/bravais/hP.svg
Normal file
@ -0,0 +1,344 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
width="159.69142"
|
||||||
|
height="206.43748"
|
||||||
|
id="svg5822"
|
||||||
|
version="1.1"
|
||||||
|
inkscape:version="0.48.2 r9819"
|
||||||
|
sodipodi:docname="Hexagonal_latticeFRONT.svg"
|
||||||
|
inkscape:export-filename="C:\Users\boris.averkiev\Desktop\Hexagonal_latticeFRONT.png"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-ydpi="90">
|
||||||
|
<defs
|
||||||
|
id="defs5824" />
|
||||||
|
<sodipodi:namedview
|
||||||
|
id="base"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
bordercolor="#666666"
|
||||||
|
borderopacity="1.0"
|
||||||
|
inkscape:pageopacity="0.0"
|
||||||
|
inkscape:pageshadow="2"
|
||||||
|
inkscape:zoom="3.959798"
|
||||||
|
inkscape:cx="137.21018"
|
||||||
|
inkscape:cy="71.074123"
|
||||||
|
inkscape:document-units="px"
|
||||||
|
inkscape:current-layer="layer1"
|
||||||
|
showgrid="false"
|
||||||
|
showborder="true"
|
||||||
|
fit-margin-top="2"
|
||||||
|
fit-margin-right="2"
|
||||||
|
fit-margin-bottom="2"
|
||||||
|
fit-margin-left="0"
|
||||||
|
inkscape:window-width="1920"
|
||||||
|
inkscape:window-height="1018"
|
||||||
|
inkscape:window-x="-8"
|
||||||
|
inkscape:window-y="-8"
|
||||||
|
inkscape:window-maximized="1"
|
||||||
|
objecttolerance="10000">
|
||||||
|
<inkscape:grid
|
||||||
|
type="xygrid"
|
||||||
|
id="grid6611"
|
||||||
|
empspacing="5"
|
||||||
|
visible="true"
|
||||||
|
enabled="true"
|
||||||
|
snapvisiblegridlinesonly="true" />
|
||||||
|
</sodipodi:namedview>
|
||||||
|
<metadata
|
||||||
|
id="metadata5827">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<g
|
||||||
|
inkscape:label="Layer 1"
|
||||||
|
inkscape:groupmode="layer"
|
||||||
|
id="layer1"
|
||||||
|
transform="translate(341.70286,-162.83772)">
|
||||||
|
<g
|
||||||
|
id="g6613">
|
||||||
|
<path
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path4676-5-7"
|
||||||
|
d="m -303.07177,353.92594 87.60809,-49.45849"
|
||||||
|
style="fill:none;stroke:#c0c0c0;stroke-width:0.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<path
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path4494-5-7-7-1"
|
||||||
|
d="m -286.81168,304.11458 -44.11047,25.1549 27.65845,25.15489 72.00738,0.11922 43.99126,-25.27411 -27.77768,-25.27411 z"
|
||||||
|
style="fill:none;stroke:#c0c0c0;stroke-width:0.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<rect
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-filename="C:\Users\boris.averkiev\Desktop\Boris\Symmetry\HexagonalR.png"
|
||||||
|
y="187.1553"
|
||||||
|
x="-287.10526"
|
||||||
|
height="116.92113"
|
||||||
|
width="71.870331"
|
||||||
|
id="rect3970-3-5-8-1-6-6-9-2-5-9"
|
||||||
|
style="fill:#000000;fill-opacity:0;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:0.75;stroke-linejoin:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<rect
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-filename="C:\Users\boris.averkiev\Desktop\Boris\Symmetry\HexagonalR.png"
|
||||||
|
transform="matrix(0.73824792,0.67452947,0,1,0,0)"
|
||||||
|
y="449.30716"
|
||||||
|
x="-388.95496"
|
||||||
|
height="116.85934"
|
||||||
|
width="37.620148"
|
||||||
|
id="rect3990-21-8-1-7-3-7-1-7-2-6"
|
||||||
|
style="fill:#000000;fill-opacity:0;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:0.87289125;stroke-linejoin:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<rect
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-filename="C:\Users\boris.averkiev\Desktop\Boris\Symmetry\HexagonalR.png"
|
||||||
|
y="212.47849"
|
||||||
|
x="-259.40768"
|
||||||
|
height="116.92113"
|
||||||
|
width="71.870331"
|
||||||
|
id="rect3970-3-5-8-1-6-6-9-2-6-7-4"
|
||||||
|
style="fill:#000000;fill-opacity:0;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:0.75;stroke-linejoin:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<path
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path4782-0"
|
||||||
|
d="m -259.62191,329.06061 27.49707,25.13667"
|
||||||
|
style="fill:none;stroke:#787878;stroke-width:1.73457289;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<rect
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-filename="C:\Users\boris.averkiev\Desktop\Boris\Symmetry\HexagonalR.png"
|
||||||
|
y="212.47849"
|
||||||
|
x="-331.16013"
|
||||||
|
height="116.92113"
|
||||||
|
width="71.870331"
|
||||||
|
id="rect3970-3-5-8-1-6-6-9-0-3-6"
|
||||||
|
style="fill:#000000;fill-opacity:0;fill-rule:evenodd;stroke:#787878;stroke-width:1.75;stroke-linejoin:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<path
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path4494-5-4-8"
|
||||||
|
d="m -286.81168,187.22282 -44.11047,25.1549 27.65845,25.15489 72.00738,0.11922 43.99126,-25.27411 -27.77768,-25.27411 z"
|
||||||
|
style="fill:none;stroke:#c0c0c0;stroke-width:0.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<path
|
||||||
|
d="m -288.83488,190.22993 c -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82982,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19788,2.11714 -4.82982,1.08303 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path3611-42-3-4-8"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
d="m -284.29873,301.83266 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70248,1.00016 -4.92484,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70248,-1.00016 4.92484,0.49599 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path6883-1-1-7-4"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<rect
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-filename="C:\Users\boris.averkiev\Desktop\Boris\Symmetry\HexagonalR.png"
|
||||||
|
transform="matrix(0.73824792,0.67452947,0,1,0,0)"
|
||||||
|
y="383.59375"
|
||||||
|
x="-291.53369"
|
||||||
|
height="116.85934"
|
||||||
|
width="37.620148"
|
||||||
|
id="rect3990-21-8-1-7-3-7-1-7-7-1-1"
|
||||||
|
style="fill:#000000;fill-opacity:0;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:0.87289125;stroke-linejoin:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<path
|
||||||
|
d="m -217.08242,190.22993 c -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82982,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19788,2.11714 -4.82982,1.08303 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path3611-42-3-5-7-4"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
d="m -212.54627,301.83266 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70248,1.00016 -4.92484,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70248,-1.00016 4.92484,0.49599 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path6883-1-1-8-7-3"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
d="m -233.49388,240.46955 c -1.63195,-1.03411 -2.11715,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path3611-5-4-5-8-9"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
d="m -332.91476,215.55309 c -1.63194,-1.03411 -2.11715,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path3611-27-3-0-1-8"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
d="m -233.54154,357.24313 c -1.63195,-1.03411 -2.11715,-3.19786 -1.08304,-4.82981 1.03412,-1.63194 3.19787,-2.11714 4.82982,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path3611-1-2-0-2-8"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
d="m -189.38484,215.55309 c -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82982,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19788,2.11714 -4.82982,1.08303 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path3611-42-3-5-6-0-0"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
d="m -184.84869,327.15583 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70248,1.00016 -4.92484,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70248,-1.00016 4.92484,0.49599 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path6883-1-1-8-0-9-8"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path4676-7"
|
||||||
|
d="m -303.07048,237.38954 87.36709,-49.9328"
|
||||||
|
style="fill:none;stroke:#c0c0c0;stroke-width:0.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<rect
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-filename="C:\Users\boris.averkiev\Desktop\Boris\Symmetry\HexagonalR.png"
|
||||||
|
transform="matrix(0.73824792,0.67452947,0,1,0,0)"
|
||||||
|
y="514.7702"
|
||||||
|
x="-448.46152"
|
||||||
|
height="116.85934"
|
||||||
|
width="37.620148"
|
||||||
|
id="rect3990-21-8-1-7-3-7-1-7-4-5-1-8"
|
||||||
|
style="fill:#000000;fill-opacity:0;fill-rule:evenodd;stroke:#000000;stroke-width:2.03674626;stroke-linejoin:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<path
|
||||||
|
d="m -332.96241,332.32667 c -1.63194,-1.03411 -2.11715,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63193,1.03411 2.11713,3.19787 1.08302,4.82981 -1.0341,1.63194 -3.19786,2.11714 -4.8298,1.08303 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path3611-3-3-6-6-3"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
d="m -305.24507,357.24313 c -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path3611-2-4-1-0-8"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
d="m -305.19742,240.46955 c -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path3611-6-1-9-8-3"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-filename="C:\Users\boris.averkiev\Desktop\Boris\Symmetry\HexagonalR.png"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
id="path4381-2-6-0-7"
|
||||||
|
d="m -331.28242,212.4927 71.87031,0 27.7837,25.16613"
|
||||||
|
style="fill:none;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<rect
|
||||||
|
inkscape:export-ydpi="90"
|
||||||
|
inkscape:export-xdpi="90"
|
||||||
|
inkscape:export-filename="C:\Users\boris.averkiev\Desktop\Boris\Symmetry\HexagonalR.png"
|
||||||
|
y="237.58266"
|
||||||
|
x="-303.37643"
|
||||||
|
height="116.92113"
|
||||||
|
width="71.870331"
|
||||||
|
id="rect3970-1-2-7-9-2-4-9-9-8-9-1"
|
||||||
|
style="fill:#000000;fill-opacity:0;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linejoin:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||||
|
<path
|
||||||
|
d="m -256.60114,327.15583 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70248,1.00016 -4.92484,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70248,-1.00016 4.92484,0.49599 z"
|
||||||
|
style="fill:#787878;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path6883-1-1-3-3-0"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
d="m -261.13729,215.55309 c -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82982,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19788,2.11714 -4.82982,1.08303 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.75;marker-start:none;marker-end:none"
|
||||||
|
id="path3611-42-3-0-6-7"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
id="text6159-1-0"
|
||||||
|
d="m -334.95494,273.1733 c -0.0139,-0.5276 -0.0574,-0.90943 -0.13017,-1.14547 -0.0729,-0.23602 -0.19093,-0.41306 -0.35405,-0.53109 -0.16316,-0.11798 -0.39399,-0.17701 -0.6925,-0.17703 -0.70119,2e-5 -1.33119,0.27944 -1.89005,0.83829 -0.55886,0.55885 -1.01532,1.35029 -1.36937,2.37429 -0.35406,1.02398 -0.53109,2.00804 -0.53109,2.95221 0,0.70811 0.13885,1.23398 0.41654,1.57763 0.27769,0.34364 0.69423,0.51547 1.24962,0.51547 0.63174,0 1.17845,-0.11979 1.64011,-0.35928 0.46167,-0.23949 0.94935,-0.61611 1.46309,-1.12985 l 0.63523,0.63521 c -0.65259,0.72201 -1.31036,1.24963 -1.97335,1.58286 -0.663,0.33323 -1.37631,0.49986 -2.13997,0.49986 -1.00664,0 -1.77028,-0.29854 -2.29095,-0.89557 -0.52067,-0.59704 -0.78102,-1.46483 -0.78101,-2.60337 -1e-5,-0.74283 0.13885,-1.55854 0.41653,-2.44716 0.27769,-0.8886 0.68382,-1.66963 1.21838,-2.34304 0.53455,-0.67339 1.15937,-1.17671 1.87442,-1.50994 0.71505,-0.33323 1.47871,-0.49985 2.29096,-0.49985 0.92331,0 1.77376,0.10419 2.55129,0.3124 l -0.51025,2.35343 -1.09341,0 z"
|
||||||
|
style="font-size:16.6307106px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;font-family:Bitstream Vera Sans"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
id="text3663"
|
||||||
|
style="font-size:21.6072998px;font-style:normal;font-weight:normal;fill:#008000;fill-opacity:1;stroke:none;font-family:Bitstream Vera Sans"
|
||||||
|
d="m -287.79801,216.3069 c -0.68228,0.82294 -1.68105,2.17692 -2.99633,4.06192 -1.3153,1.88502 -2.54267,3.75597 -3.68211,5.61285 -0.23212,1.46299 -0.52753,2.84159 -0.88624,4.13578 l -1.57202,0 -0.30597,-0.49587 c 0.28135,-1.10429 0.78425,-2.32111 1.50872,-3.65046 0.0633,-1.32936 0.0949,-2.68685 0.0949,-4.07248 0,-1.17461 -0.0246,-2.08547 -0.0738,-2.73257 -0.0492,-0.64709 -0.12133,-1.13416 -0.21628,-1.46124 -0.095,-0.32705 -0.2075,-0.55213 -0.33762,-0.67523 -0.13012,-0.12308 -0.29014,-0.18462 -0.48004,-0.18463 -0.39389,1e-5 -0.84756,0.28487 -1.36101,0.85459 l -0.59083,-0.59083 c 0.33762,-0.30244 0.59962,-0.53103 0.78601,-0.68578 0.18639,-0.15473 0.37982,-0.29188 0.58028,-0.41147 0.20045,-0.11956 0.40795,-0.21275 0.62247,-0.27958 0.21453,-0.0668 0.45543,-0.10022 0.72271,-0.10023 0.68929,10e-6 1.1922,0.26377 1.50872,0.79128 0.3165,0.52753 0.47476,1.39619 0.47477,2.60597 -10e-6,1.4208 -0.0668,2.96116 -0.20046,4.6211 l 0.095,0 c 1.70917,-2.86972 3.12293,-5.48623 4.24129,-7.84954 l 2.20504,0 -0.13715,0.50642 z"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
id="text3671"
|
||||||
|
style="font-size:21.6072998px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;font-family:Bitstream Vera Sans"
|
||||||
|
d="m -264.08634,357.53713 0.97064,-0.69633 0.67523,0.16881 -1.55092,6.68899 c -0.15475,0.6682 -0.23212,1.18868 -0.23211,1.56147 -10e-6,0.28134 0.0457,0.48532 0.13716,0.61192 0.0914,0.12661 0.23561,0.18991 0.43256,0.18991 0.211,0 0.43608,-0.0862 0.67523,-0.25849 0.23914,-0.17232 0.57675,-0.50114 1.01285,-0.98646 l 0.60137,0.59082 c -0.63303,0.67523 -1.17287,1.15528 -1.61949,1.44014 -0.44665,0.28486 -0.93021,0.42729 -1.45069,0.42729 -0.43609,0 -0.78426,-0.14419 -1.04449,-0.43257 -0.26026,-0.28837 -0.39038,-0.67171 -0.39037,-1.15 -10e-6,-0.38684 0.0809,-0.79831 0.24266,-1.2344 l -0.13716,-0.0422 c -0.67523,0.98471 -1.31529,1.70566 -1.92018,2.16284 -0.6049,0.45719 -1.24496,0.68578 -1.92018,0.68578 -0.77371,0 -1.37332,-0.29189 -1.79886,-0.87569 -0.42553,-0.58379 -0.6383,-1.4032 -0.6383,-2.45825 0,-1.20978 0.23738,-2.37209 0.71216,-3.48693 0.47476,-1.11482 1.12713,-1.99403 1.95711,-2.63761 0.82996,-0.64357 1.75488,-0.96536 2.77477,-0.96537 0.45718,10e-6 0.88447,0.051 1.28188,0.15298 0.39739,0.102 0.8071,0.28311 1.22913,0.54335 l 0,0 z m -0.92844,3.14404 c 0.0633,-0.28838 0.10549,-0.53807 0.1266,-0.74909 0.0211,-0.211 0.0316,-0.43959 0.0317,-0.68578 -1e-5,-0.54158 -0.11606,-0.93898 -0.34816,-1.1922 -0.23212,-0.2532 -0.626,-0.37981 -1.18165,-0.37981 -0.72448,0 -1.37509,0.2919 -1.95184,0.87568 -0.57676,0.5838 -1.02691,1.36629 -1.35046,2.34748 -0.32355,0.9812 -0.48532,1.96063 -0.48532,2.9383 0,0.7315 0.10023,1.27837 0.30069,1.6406 0.20045,0.36223 0.53631,0.54335 1.00757,0.54335 0.46421,0 0.91964,-0.20046 1.36628,-0.60138 0.44663,-0.40091 0.90734,-0.9724 1.38211,-1.71445 0.47477,-0.74204 0.81062,-1.59839 1.00757,-2.56903 l 0.095,-0.45367 z"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
id="text3671-3"
|
||||||
|
style="font-size:21.6072998px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;font-family:Bitstream Vera Sans"
|
||||||
|
d="m -320.87205,343.42999 0.97064,-0.69633 0.67523,0.16881 -1.55092,6.68899 c -0.15475,0.6682 -0.23212,1.18868 -0.23211,1.56147 -1e-5,0.28134 0.0457,0.48532 0.13716,0.61192 0.0914,0.12661 0.23561,0.18991 0.43256,0.18991 0.211,0 0.43608,-0.0862 0.67523,-0.25849 0.23914,-0.17232 0.57675,-0.50114 1.01285,-0.98646 l 0.60137,0.59082 c -0.63303,0.67523 -1.17287,1.15528 -1.61949,1.44014 -0.44665,0.28486 -0.93021,0.42729 -1.45069,0.42729 -0.43609,0 -0.78426,-0.14419 -1.04449,-0.43257 -0.26026,-0.28837 -0.39038,-0.67171 -0.39037,-1.15 -10e-6,-0.38684 0.0809,-0.79831 0.24266,-1.2344 l -0.13716,-0.0422 c -0.67523,0.98471 -1.31529,1.70566 -1.92018,2.16284 -0.6049,0.45719 -1.24496,0.68578 -1.92018,0.68578 -0.77371,0 -1.37332,-0.29189 -1.79886,-0.87569 -0.42553,-0.58379 -0.6383,-1.4032 -0.6383,-2.45825 0,-1.20978 0.23738,-2.37209 0.71216,-3.48693 0.47476,-1.11482 1.12713,-1.99403 1.95711,-2.63761 0.82996,-0.64357 1.75488,-0.96536 2.77477,-0.96537 0.45718,1e-5 0.88447,0.051 1.28188,0.15298 0.39739,0.102 0.8071,0.28311 1.22913,0.54335 l 0,0 z m -0.92844,3.14404 c 0.0633,-0.28838 0.10549,-0.53807 0.1266,-0.74909 0.0211,-0.211 0.0316,-0.43959 0.0317,-0.68578 -10e-6,-0.54158 -0.11606,-0.93898 -0.34816,-1.1922 -0.23212,-0.2532 -0.626,-0.37981 -1.18165,-0.37981 -0.72448,0 -1.37509,0.2919 -1.95184,0.87568 -0.57676,0.5838 -1.02691,1.36629 -1.35046,2.34748 -0.32355,0.9812 -0.48532,1.96063 -0.48532,2.9383 0,0.7315 0.10023,1.27837 0.30069,1.6406 0.20045,0.36223 0.53631,0.54335 1.00757,0.54335 0.46421,0 0.91964,-0.20046 1.36628,-0.60138 0.44663,-0.40091 0.90734,-0.9724 1.38211,-1.71445 0.47477,-0.74204 0.81062,-1.59839 1.00757,-2.56903 l 0.095,-0.45367 z"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<text
|
||||||
|
sodipodi:linespacing="125%"
|
||||||
|
id="text6506"
|
||||||
|
y="186.18213"
|
||||||
|
x="-268.77371"
|
||||||
|
style="font-size:40px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
|
||||||
|
xml:space="preserve"><tspan
|
||||||
|
y="186.18213"
|
||||||
|
x="-268.77371"
|
||||||
|
id="tspan6508"
|
||||||
|
sodipodi:role="line"> </tspan></text>
|
||||||
|
<g
|
||||||
|
id="g3071"
|
||||||
|
transform="translate(-351.80734,137.9601)">
|
||||||
|
<path
|
||||||
|
id="path3648"
|
||||||
|
style="font-size:21.60733986px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;font-family:Bitstream Vera Sans"
|
||||||
|
d="m 44.744808,32.195188 c -0.68227,0.82295 -1.68105,2.17692 -2.99633,4.06193 -1.3153,1.88502 -2.54267,3.75596 -3.68211,5.61284 -0.23212,1.463 -0.52753,2.84159 -0.88624,4.13578 l -1.57202,0 -0.30596,-0.49587 c 0.28134,-1.10428 0.78425,-2.3211 1.50871,-3.65046 0.0633,-1.32935 0.09495,-2.68685 0.09496,-4.07247 -10e-6,-1.17462 -0.02462,-2.08547 -0.07386,-2.73257 -0.04923,-0.64709 -0.12133,-1.13417 -0.21628,-1.46124 -0.09496,-0.32706 -0.20749,-0.55213 -0.33761,-0.67523 -0.13013,-0.12308 -0.29014,-0.18463 -0.48005,-0.18463 -0.39389,0 -0.84755,0.28487 -1.36101,0.85458 l -0.59082,-0.59082 c 0.33761,-0.30244 0.59961,-0.53103 0.786,-0.68578 0.18639,-0.15473 0.37982,-0.29189 0.58028,-0.41147 0.20046,-0.11956 0.40795,-0.21276 0.62248,-0.27959 0.21452,-0.06681 0.45542,-0.10022 0.7227,-0.10023 0.6893,10e-6 1.1922,0.26377 1.50872,0.79129 0.31651,0.52753 0.47476,1.39618 0.47477,2.60596 -10e-6,1.4208 -0.06683,2.96117 -0.20046,4.6211 l 0.09495,0 c 1.70917,-2.86972 3.12293,-5.48623 4.24129,-7.84954 l 2.20505,0 z m 55.933932,1.31881 c -0.61192,10e-6 -1.15175,-0.13715 -1.61948,-0.41147 -0.46774,-0.2743 -0.82822,-0.65236 -1.08142,-1.13417 -0.25322,-0.4818 -0.37982,-1.02515 -0.37982,-1.63005 0,-0.59785 0.1354,-1.13768 0.40619,-1.61949 0.2708,-0.4818 0.64884,-0.85458 1.13418,-1.11835 0.48532,-0.26375 1.03394,-0.39563 1.64587,-0.39565 0.60489,2e-5 1.14472,0.13366 1.61948,0.40092 0.47477,0.26729 0.84403,0.64008 1.1078,1.11835 0.26376,0.4783 0.39564,1.01989 0.39564,1.62477 0,0.59787 -0.13892,1.1377 -0.41674,1.6195 -0.27783,0.48181 -0.66293,0.85987 -1.15527,1.13417 -0.49235,0.27432 -1.04449,0.41148 -1.65643,0.41147 z m 0.0633,-5.26468 c -0.39389,10e-6 -0.74556,0.08969 -1.05504,0.26904 -0.30948,0.17937 -0.54864,0.4273 -0.71743,0.7438 -0.16881,0.31653 -0.25321,0.67876 -0.25321,1.0867 0,0.40796 0.0826,0.77195 0.24793,1.09197 0.16529,0.32004 0.40444,0.56974 0.71744,0.74909 0.31299,0.17936 0.66643,0.26904 1.06032,0.26903 0.40091,1e-5 0.75787,-0.08967 1.07087,-0.26903 0.31298,-0.17935 0.55388,-0.42905 0.72269,-0.74909 0.16881,-0.32002 0.25321,-0.68401 0.25322,-1.09197 -1e-5,-0.40794 -0.0844,-0.77017 -0.25322,-1.0867 -0.16881,-0.3165 -0.40971,-0.56443 -0.72269,-0.7438 -0.313,-0.17935 -0.66996,-0.26903 -1.07088,-0.26904 z"
|
||||||
|
inkscape:connector-curvature="0"
|
||||||
|
sodipodi:nodetypes="cscccccccccscccccccccccccscccccscccccscccccccscccsc" />
|
||||||
|
<path
|
||||||
|
sodipodi:nodetypes="ccccc"
|
||||||
|
style="font-size:21.60733986px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;font-family:Bitstream Vera Sans"
|
||||||
|
d="m 49.287466,36.990665 12.99816,0 0,1.40322 -12.99816,0 z"
|
||||||
|
id="path3616"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<path
|
||||||
|
sodipodi:nodetypes="ccccc"
|
||||||
|
style="font-size:21.60733986px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;font-family:Bitstream Vera Sans"
|
||||||
|
d="m 62.285626,34.015445 -12.99816,0 0,-1.403219 12.99816,0 z"
|
||||||
|
id="path3614"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
</g>
|
||||||
|
<text
|
||||||
|
sodipodi:linespacing="50%"
|
||||||
|
id="text6447"
|
||||||
|
y="179.21272"
|
||||||
|
x="-277.12753"
|
||||||
|
style="font-size:20px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;text-align:start;line-height:50%;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans;-inkscape-font-specification:Sans"
|
||||||
|
xml:space="preserve"><tspan
|
||||||
|
y="179.21272"
|
||||||
|
x="-277.12753"
|
||||||
|
id="tspan6552"
|
||||||
|
sodipodi:role="line">2</tspan></text>
|
||||||
|
<text
|
||||||
|
sodipodi:linespacing="50%"
|
||||||
|
id="text6447-2"
|
||||||
|
y="179.21272"
|
||||||
|
x="-286.54437"
|
||||||
|
style="font-size:20px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;text-align:start;line-height:50%;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans;-inkscape-font-specification:Sans"
|
||||||
|
xml:space="preserve"><tspan
|
||||||
|
y="179.21272"
|
||||||
|
x="-286.54437"
|
||||||
|
id="tspan6550"
|
||||||
|
sodipodi:role="line">1</tspan></text>
|
||||||
|
<path
|
||||||
|
sodipodi:nodetypes="cc"
|
||||||
|
id="path3679"
|
||||||
|
style="fill:none;stroke:#008000;stroke-width:0.90500176px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m -310.3294,230.08219 c 8.74424,-1.87897 16.13724,0.20365 16.05546,6.68904"
|
||||||
|
inkscape:connector-curvature="0" />
|
||||||
|
<text
|
||||||
|
sodipodi:linespacing="50%"
|
||||||
|
id="text6447-26"
|
||||||
|
y="179.21272"
|
||||||
|
x="-266.78006"
|
||||||
|
style="font-size:20px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;text-align:start;line-height:50%;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans;-inkscape-font-specification:Sans"
|
||||||
|
xml:space="preserve"><tspan
|
||||||
|
y="179.21272"
|
||||||
|
x="-266.78006"
|
||||||
|
id="tspan6609"
|
||||||
|
sodipodi:role="line">0</tspan></text>
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 26 KiB |
181
src/svgs/bravais/hR.svg
Normal file
@ -0,0 +1,181 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
version="1.0"
|
||||||
|
width="138.73"
|
||||||
|
height="140.7"
|
||||||
|
id="svg2379">
|
||||||
|
<metadata
|
||||||
|
id="metadata2413">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<defs
|
||||||
|
id="defs2381" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:20px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
x="29.852833"
|
||||||
|
y="-1.1848152"
|
||||||
|
id="text2417"><tspan
|
||||||
|
id="tspan2419"
|
||||||
|
x="29.852833"
|
||||||
|
y="-1.1848152" /></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
x="26.834007"
|
||||||
|
y="-5.5453405"
|
||||||
|
id="text2421"><tspan
|
||||||
|
id="tspan2423"
|
||||||
|
x="26.834007"
|
||||||
|
y="-5.5453405" /></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:20px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
x="29.181984"
|
||||||
|
y="-1.855664"
|
||||||
|
id="text2425"><tspan
|
||||||
|
id="tspan2427"
|
||||||
|
x="29.181984"
|
||||||
|
y="-1.855664" /></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:14px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
x="25.492308"
|
||||||
|
y="-3.8682163"
|
||||||
|
id="text2429"><tspan
|
||||||
|
id="tspan2431"
|
||||||
|
x="25.492308"
|
||||||
|
y="-3.8682163" /></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:14px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
x="27.504858"
|
||||||
|
y="-3.1973655"
|
||||||
|
id="text2433"><tspan
|
||||||
|
id="tspan2435"
|
||||||
|
x="27.504858"
|
||||||
|
y="-3.1973655" /></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:14px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
x="50.313763"
|
||||||
|
y="-8.8995924"
|
||||||
|
id="text2441"><tspan
|
||||||
|
id="tspan2443"
|
||||||
|
x="50.313763"
|
||||||
|
y="-8.8995924" /></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:14px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
x="50.649189"
|
||||||
|
y="-6.5516176"
|
||||||
|
id="text2445"><tspan
|
||||||
|
id="tspan2447"
|
||||||
|
x="50.649189"
|
||||||
|
y="-6.5516176" /></text>
|
||||||
|
<g
|
||||||
|
transform="translate(0,-24.999997)"
|
||||||
|
id="g3435">
|
||||||
|
<path
|
||||||
|
id="path3625"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 29.44295,149.77138 c -1.03411,1.63194 -3.19786,2.11714 -4.82981,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19787,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path3635"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 99.9192,111.34439 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3637"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 113.80204,147.87293 0.0312,-0.28125 -0.125,-0.28125 -16.21875,-34.375 -0.25,-0.5 h -0.53125 -85.9375 -0.71875 l -0.15625,0.71875 1.59375,1.03125 h 84.65625 l 15.875,33.625 1.78125,0.0625 z" />
|
||||||
|
<path
|
||||||
|
id="path3639"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 114.15839,29.28826 97.44752,112.84263" />
|
||||||
|
<path
|
||||||
|
id="text3655"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:21.6072998px;font-family:'Bitstream Vera Sans';fill:#008000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 52.80718,128.38928 c -0.87218,1.18166 -1.89909,2.63411 -3.08073,4.35734 -0.17585,1.34343 -0.26377,2.29297 -0.26377,2.84862 0,0.46423 0.05275,0.79657 0.15826,0.99702 0.1055,0.20046 0.28134,0.30069 0.52752,0.30069 0.19694,0 0.42025,-0.0826 0.66996,-0.24794 0.24968,-0.16528 0.51872,-0.42025 0.80711,-0.7649 l 0.61193,0.56972 c -0.59084,0.63303 -1.1043,1.06736 -1.54037,1.30298 -0.4361,0.23563 -0.88625,0.35344 -1.35046,0.35344 -0.93548,0 -1.40322,-0.68226 -1.40321,-2.04679 -1e-5,-0.30244 0.02109,-0.63654 0.0633,-1.00229 h -0.1055 c -0.72447,1.08318 -1.41025,1.86216 -2.05734,2.33693 -0.6471,0.47477 -1.33992,0.71215 -2.07844,0.71215 -0.51346,0 -0.94603,-0.1477 -1.29771,-0.44312 -0.35168,-0.29541 -0.61193,-0.68753 -0.78073,-1.17637 -0.16881,-0.48884 -0.25322,-1.02164 -0.25321,-1.5984 -1e-5,-1.25901 0.23914,-2.45297 0.71743,-3.58188 0.47828,-1.12889 1.14296,-2.01513 1.99403,-2.65871 0.85107,-0.64357 1.80764,-0.96536 2.86973,-0.96537 0.78776,1e-5 1.40496,0.24619 1.8516,0.73853 0.44663,0.49237 0.69457,1.21331 0.74381,2.16285 l 0.09496,-0.0105 1.38211,-2.72202 h 1.82522 l -0.1055,0.53807 z m -4.58945,4.43119 c 0.11956,-0.73149 0.17935,-1.37858 0.17936,-1.94128 -10e-6,-0.80183 -0.11782,-1.39617 -0.35344,-1.78303 -0.23564,-0.38684 -0.60314,-0.58026 -1.10252,-0.58027 -0.64711,10e-6 -1.24848,0.28838 -1.80413,0.86513 -0.55567,0.57677 -1.00054,1.3575 -1.33464,2.34221 -0.3341,0.98471 -0.50115,1.99404 -0.50114,3.02798 -1e-5,0.7104 0.1055,1.23792 0.31651,1.58257 0.21101,0.34465 0.52752,0.51697 0.94954,0.51697 0.60489,0 1.22737,-0.3552 1.86743,-1.0656 0.64006,-0.71039 1.2344,-1.69862 1.78303,-2.96468 z" />
|
||||||
|
<path
|
||||||
|
id="text3667"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:21.6072998px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 10.95383,126.17275 0.97064,-0.69633 0.67523,0.1688 -1.55092,6.689 c -0.15475,0.66819 -0.23212,1.18868 -0.23211,1.56146 -10e-6,0.28135 0.04571,0.48533 0.13716,0.61193 0.09142,0.12661 0.23561,0.18991 0.43256,0.18991 0.211,0 0.43608,-0.0862 0.67523,-0.25849 0.23914,-0.17232 0.57675,-0.50114 1.01285,-0.98647 l 0.60137,0.59083 c -0.63303,0.67523 -1.17287,1.15528 -1.61949,1.44014 -0.44665,0.28486 -0.93021,0.42729 -1.45069,0.42729 -0.43609,0 -0.78426,-0.14419 -1.0445,-0.43257 -0.26025,-0.28838 -0.39037,-0.67171 -0.39036,-1.15 -10e-6,-0.38685 0.08088,-0.79831 0.24266,-1.2344 l -0.13716,-0.0422 c -0.67523,0.98471 -1.31529,1.70566 -1.92018,2.16284 -0.6049,0.45719 -1.24496,0.68578 -1.92018,0.68578 -0.77371,0 -1.37332,-0.2919 -1.79886,-0.87569 -0.42553,-0.58379 -0.6383,-1.40321 -0.6383,-2.45825 0,-1.20979 0.23738,-2.37209 0.71216,-3.48693 0.47476,-1.11482 1.12713,-1.99403 1.95711,-2.63762 0.82996,-0.64356 1.75488,-0.96535 2.77477,-0.96536 0.45718,10e-6 0.88447,0.051 1.28188,0.15298 0.39739,0.102 0.8071,0.28311 1.22913,0.54335 z m -0.92844,3.14403 c 0.06329,-0.28837 0.10549,-0.53806 0.1266,-0.74908 0.02109,-0.211 0.03164,-0.43959 0.03165,-0.68578 -10e-6,-0.54158 -0.11606,-0.93898 -0.34816,-1.1922 -0.23212,-0.2532 -0.626,-0.37981 -1.18165,-0.37982 -0.72448,1e-5 -1.37509,0.29191 -1.95184,0.87569 -0.57676,0.5838 -1.02691,1.36629 -1.35046,2.34748 -0.32355,0.9812 -0.48532,1.96063 -0.48532,2.9383 0,0.7315 0.10023,1.27837 0.30069,1.6406 0.20045,0.36223 0.53631,0.54335 1.00757,0.54335 0.46421,0 0.91964,-0.20046 1.36628,-0.60138 0.44663,-0.40091 0.90733,-0.9724 1.38211,-1.71445 0.47477,-0.74204 0.81062,-1.59839 1.00757,-2.56904 z" />
|
||||||
|
<path
|
||||||
|
id="text3671"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:21.6072998px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 72.07635,152.96367 0.97064,-0.69633 0.67523,0.16881 -1.55092,6.68899 c -0.15475,0.6682 -0.23212,1.18868 -0.23211,1.56147 -1e-5,0.28134 0.04571,0.48532 0.13716,0.61192 0.09142,0.12661 0.23561,0.18991 0.43256,0.18991 0.211,0 0.43608,-0.0862 0.67523,-0.25849 0.23914,-0.17232 0.57675,-0.50114 1.01285,-0.98646 l 0.60137,0.59082 c -0.63303,0.67523 -1.17287,1.15528 -1.61949,1.44014 -0.44665,0.28486 -0.93021,0.42729 -1.45069,0.42729 -0.43609,0 -0.78426,-0.14419 -1.04449,-0.43257 -0.26026,-0.28837 -0.39038,-0.67171 -0.39037,-1.15 -10e-6,-0.38684 0.08088,-0.79831 0.24266,-1.2344 l -0.13716,-0.0422 c -0.67523,0.98471 -1.31529,1.70566 -1.92018,2.16284 -0.6049,0.45719 -1.24496,0.68578 -1.92018,0.68578 -0.77371,0 -1.37332,-0.29189 -1.79886,-0.87569 -0.42553,-0.58379 -0.6383,-1.4032 -0.6383,-2.45825 0,-1.20978 0.23738,-2.37209 0.71216,-3.48693 0.47476,-1.11482 1.12713,-1.99403 1.95711,-2.63761 0.82996,-0.64357 1.75488,-0.96536 2.77477,-0.96537 0.45718,1e-5 0.88447,0.051 1.28188,0.15298 0.39739,0.102 0.8071,0.28311 1.22913,0.54335 z m -0.92844,3.14404 c 0.06329,-0.28838 0.10549,-0.53807 0.1266,-0.74909 0.02109,-0.211 0.03164,-0.43959 0.03165,-0.68578 -1e-5,-0.54158 -0.11606,-0.93898 -0.34816,-1.1922 -0.23212,-0.2532 -0.626,-0.37981 -1.18165,-0.37981 -0.72448,0 -1.37509,0.2919 -1.95184,0.87568 -0.57676,0.5838 -1.02691,1.36629 -1.35046,2.34748 -0.32355,0.9812 -0.48532,1.96063 -0.48532,2.9383 0,0.7315 0.10023,1.27837 0.30069,1.6406 0.20045,0.36223 0.53631,0.54335 1.00757,0.54335 0.46421,0 0.91964,-0.20046 1.36628,-0.60138 0.44663,-0.40091 0.90734,-0.9724 1.38211,-1.71445 0.47477,-0.74204 0.81062,-1.59839 1.00757,-2.56903 z" />
|
||||||
|
<path
|
||||||
|
id="text3675"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:21.6072998px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 133.00833,102.34616 0.97064,-0.69633 0.67523,0.16881 -1.55092,6.68899 c -0.15475,0.6682 -0.23211,1.18869 -0.23211,1.56147 0,0.28135 0.0457,0.48532 0.13716,0.61193 0.0914,0.1266 0.23562,0.18991 0.43257,0.18991 0.211,0 0.43607,-0.0862 0.67523,-0.25849 0.23913,-0.17232 0.57675,-0.50115 1.01284,-0.98647 l 0.60138,0.59083 c -0.63304,0.67523 -1.17287,1.15527 -1.6195,1.44013 -0.44664,0.28487 -0.93021,0.4273 -1.45069,0.4273 -0.43609,0 -0.78425,-0.14419 -1.04449,-0.43257 -0.26025,-0.28838 -0.39037,-0.67171 -0.39037,-1.15 0,-0.38685 0.0809,-0.79832 0.24266,-1.2344 l -0.13715,-0.0422 c -0.67524,0.98471 -1.3153,1.70566 -1.92019,2.16285 -0.60489,0.45718 -1.24495,0.68578 -1.92018,0.68578 -0.7737,0 -1.37332,-0.2919 -1.79885,-0.87569 -0.42554,-0.58379 -0.63831,-1.40321 -0.63831,-2.45826 0,-1.20978 0.23739,-2.37209 0.71216,-3.48692 0.47477,-1.11483 1.12714,-1.99403 1.95711,-2.63762 0.82996,-0.64357 1.75489,-0.96536 2.77477,-0.96537 0.45718,1e-5 0.88447,0.051 1.28188,0.15299 0.39739,0.10199 0.8071,0.28311 1.22913,0.54334 v 0 z m -0.92844,3.14404 c 0.0633,-0.28837 0.1055,-0.53807 0.12661,-0.74908 0.0211,-0.211 0.0316,-0.4396 0.0316,-0.68578 -1e-5,-0.54158 -0.11607,-0.93898 -0.34817,-1.1922 -0.23212,-0.2532 -0.626,-0.37981 -1.18165,-0.37982 -0.72447,10e-6 -1.37508,0.29191 -1.95184,0.87569 -0.57676,0.5838 -1.02691,1.36629 -1.35045,2.34748 -0.32355,0.98119 -0.48533,1.96063 -0.48532,2.9383 -1e-5,0.7315 0.10022,1.27836 0.30068,1.64059 0.20046,0.36224 0.53631,0.54335 1.00757,0.54335 0.46422,0 0.91965,-0.20045 1.36629,-0.60137 0.44663,-0.40092 0.90733,-0.9724 1.38211,-1.71445 0.47476,-0.74205 0.81062,-1.59839 1.00757,-2.56904 z" />
|
||||||
|
<path
|
||||||
|
id="path3679"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#008000;stroke-width:0.90500176px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 39.930572,56.005132 c 7.91231,-0.983294 13.819682,0.375205 16.05644,9.100349" />
|
||||||
|
<path
|
||||||
|
id="path3681"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#008000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 29.6491,134.80549 c 6.2069,0.3183 15.75597,7.55968 14.32361,13.84615" />
|
||||||
|
<path
|
||||||
|
id="path3683"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#008000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 105.56422,130.50841 c 1.51194,-2.54642 7.32096,-4.37666 10.26526,-3.34218" />
|
||||||
|
<path
|
||||||
|
id="path3601"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 43.25653,65.81345 26.54566,149.36782" />
|
||||||
|
<path
|
||||||
|
id="path3623"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 10.7255,116.96382 c -1.91792,0.23278 -3.66342,-1.13487 -3.89621,-3.05279 -0.23278,-1.91793 1.13487,-3.66343 3.0528,-3.89621 1.91792,-0.23278 3.66343,1.13487 3.89621,3.05279 0.23278,1.91793 -1.13487,3.66343 -3.0528,3.89621 z" />
|
||||||
|
<path
|
||||||
|
id="path3599"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 26.16046,30.79087 -16.71875,82.59375 -0.03125,0.28125 0.125,0.28125 16.21875,34.375 0.25,0.5 h 0.53125 85.9375 0.71875 l 0.15625,-0.71875 16.71875,-82.125 -1.71875,-0.34375 -16.59375,81.4375 H 27.09796 l -15.875,-33.625 16.65625,-82.3125 z" />
|
||||||
|
<path
|
||||||
|
id="path3627"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 115.1435,145.76533 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path2430"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 25.62921,30.57212 0.59375,1.25 16.71875,34.375 0.25,0.5 h 0.53125 85.9375 1.40625 l -0.59375,-1.25 -16.25,-34.375 -0.21875,-0.5 h -0.5625 -86.40625 z m 2.8125,1.75 h 84.46875 l 15.375,32.625 H 44.31671 Z" />
|
||||||
|
<path
|
||||||
|
id="path3609"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 116.3395,33.27271 c -1.03411,1.63194 -3.19786,2.11714 -4.82981,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19787,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path3611"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 127.83971,68.71074 c -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z" />
|
||||||
|
<path
|
||||||
|
id="path3613"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 40.82637,63.99392 c 1.02487,-1.63776 3.18585,-2.13517 4.82361,-1.11029 1.63776,1.02488 2.13517,3.18586 1.11029,4.82362 -1.02488,1.63775 -3.18586,2.13516 -4.82361,1.11029 -1.63776,-1.02488 -2.13517,-3.18586 -1.11029,-4.82362 z" />
|
||||||
|
<path
|
||||||
|
id="path3615"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 28.84264,28.52918 c 1.63776,1.02487 2.13517,3.18585 1.11029,4.82361 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z" />
|
||||||
|
<path
|
||||||
|
d="m 116.20252,113.29515 c -0.87218,1.18166 -1.89909,2.63411 -3.08073,4.35734 -0.17585,1.34343 -0.26377,2.29297 -0.26377,2.84862 0,0.46423 0.0528,0.79657 0.15826,0.99702 0.1055,0.20046 0.28134,0.30069 0.52752,0.30069 0.19694,0 0.42025,-0.0826 0.66996,-0.24794 0.24968,-0.16528 0.51872,-0.42025 0.80711,-0.7649 l 0.61193,0.56972 c -0.59084,0.63303 -1.1043,1.06736 -1.54037,1.30298 -0.4361,0.23563 -0.88625,0.35344 -1.35046,0.35344 -0.93548,0 -1.40322,-0.68226 -1.40321,-2.04679 -10e-6,-0.30244 0.0211,-0.63654 0.0633,-1.00229 h -0.1055 c -0.72447,1.08318 -1.41025,1.86216 -2.05734,2.33693 -0.6471,0.47477 -1.33992,0.71215 -2.07844,0.71215 -0.51346,0 -0.94603,-0.1477 -1.29771,-0.44312 -0.35168,-0.29541 -0.61193,-0.68753 -0.78073,-1.17637 -0.16881,-0.48884 -0.25322,-1.02164 -0.25321,-1.5984 -1e-5,-1.25901 0.23914,-2.45297 0.71743,-3.58188 0.47828,-1.12889 1.14296,-2.01513 1.99403,-2.65871 0.85107,-0.64357 1.80764,-0.96536 2.86973,-0.96537 0.78776,1e-5 1.40496,0.24619 1.8516,0.73853 0.44663,0.49237 0.69457,1.21331 0.74381,2.16285 l 0.095,-0.0105 1.38211,-2.72202 h 1.82522 l -0.1055,0.53807 z m -4.58945,4.43119 c 0.11956,-0.73149 0.17935,-1.37858 0.17936,-1.94128 -10e-6,-0.80183 -0.11782,-1.39617 -0.35344,-1.78303 -0.23564,-0.38684 -0.60314,-0.58026 -1.10252,-0.58027 -0.64711,10e-6 -1.24848,0.28838 -1.80413,0.86513 -0.55567,0.57677 -1.00054,1.3575 -1.33464,2.34221 -0.3341,0.98471 -0.50115,1.99404 -0.50114,3.02798 -1e-5,0.7104 0.1055,1.23792 0.31651,1.58257 0.21101,0.34465 0.52752,0.51697 0.94954,0.51697 0.60489,0 1.22737,-0.3552 1.86743,-1.0656 0.64006,-0.71039 1.2344,-1.69862 1.78303,-2.96468 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:21.6072998px;font-family:'Bitstream Vera Sans';fill:#008000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="path3404" />
|
||||||
|
<path
|
||||||
|
id="path3406"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:21.6072998px;font-family:'Bitstream Vera Sans';fill:#008000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 63.876204,45.53928 c -0.87218,1.18166 -1.89909,2.63411 -3.08073,4.35734 -0.17585,1.34343 -0.26377,2.29297 -0.26377,2.84862 0,0.46423 0.0528,0.79657 0.15826,0.99702 0.1055,0.20046 0.28134,0.30069 0.52752,0.30069 0.19694,0 0.42025,-0.0826 0.66996,-0.24794 0.24968,-0.16528 0.51872,-0.42025 0.80711,-0.7649 l 0.61193,0.56972 c -0.59084,0.63303 -1.1043,1.06736 -1.54037,1.30298 -0.4361,0.23563 -0.88625,0.35344 -1.35046,0.35344 -0.93548,0 -1.40322,-0.68226 -1.40321,-2.04679 -1e-5,-0.30244 0.0211,-0.63654 0.0633,-1.00229 h -0.1055 c -0.72447,1.08318 -1.41025,1.86216 -2.05734,2.33693 -0.6471,0.47477 -1.33992,0.71215 -2.07844,0.71215 -0.51346,0 -0.94603,-0.1477 -1.29771,-0.44312 -0.35168,-0.29541 -0.61193,-0.68753 -0.78073,-1.17637 -0.16881,-0.48884 -0.25322,-1.02164 -0.25321,-1.5984 -1e-5,-1.25901 0.23914,-2.45297 0.71743,-3.58188 0.47828,-1.12889 1.14296,-2.01513 1.99403,-2.65871 0.85107,-0.64357 1.80764,-0.96536 2.86973,-0.96537 0.78776,1e-5 1.40496,0.24619 1.8516,0.73853 0.44663,0.49237 0.69457,1.21331 0.74381,2.16285 l 0.095,-0.0105 1.38211,-2.72202 h 1.82522 l -0.1055,0.53807 z m -4.58945,4.43119 c 0.11956,-0.73149 0.17935,-1.37858 0.17936,-1.94128 -10e-6,-0.80183 -0.11782,-1.39617 -0.35344,-1.78303 -0.23564,-0.38684 -0.60314,-0.58026 -1.10252,-0.58027 -0.64711,1e-5 -1.24848,0.28838 -1.80413,0.86513 -0.55567,0.57677 -1.00054,1.3575 -1.33464,2.34221 -0.3341,0.98471 -0.50115,1.99404 -0.50114,3.02798 -10e-6,0.7104 0.1055,1.23792 0.31651,1.58257 0.21101,0.34465 0.52752,0.51697 0.94954,0.51697 0.60489,0 1.22737,-0.3552 1.86743,-1.0656 0.64006,-0.71039 1.2344,-1.69862 1.78303,-2.96468 z" />
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 20 KiB |
635
src/svgs/bravais/hp.svg
Normal file
@ -0,0 +1,635 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||||
|
width="290"
|
||||||
|
height="280"
|
||||||
|
id="svg6244"
|
||||||
|
version="1.0">
|
||||||
|
<defs
|
||||||
|
id="defs6246">
|
||||||
|
<marker
|
||||||
|
orient="auto"
|
||||||
|
refY="0"
|
||||||
|
refX="0"
|
||||||
|
id="Arrow1Lend"
|
||||||
|
style="overflow:visible">
|
||||||
|
<path
|
||||||
|
id="path7384"
|
||||||
|
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||||
|
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;marker-start:none"
|
||||||
|
transform="matrix(-0.8,0,0,-0.8,-10,0)" />
|
||||||
|
</marker>
|
||||||
|
<linearGradient
|
||||||
|
id="linearGradient12908">
|
||||||
|
<stop
|
||||||
|
style="stop-color: rgb(254, 254, 254); stop-opacity: 1;"
|
||||||
|
offset="0"
|
||||||
|
id="stop12910" />
|
||||||
|
<stop
|
||||||
|
id="stop19774"
|
||||||
|
offset="0.5"
|
||||||
|
style="stop-color: rgb(143, 216, 141); stop-opacity: 1;" />
|
||||||
|
<stop
|
||||||
|
style="stop-color: rgb(15, 176, 12); stop-opacity: 1;"
|
||||||
|
offset="1"
|
||||||
|
id="stop12912" />
|
||||||
|
</linearGradient>
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-96.566751,-943.6387)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4330"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-129.2915,-814.0722)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4332"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-10.659813,-943.4041)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4334"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-43.38455,-813.8375)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4336"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-182.46765,-943.3606)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4338"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-215.19238,-813.794)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4340"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-63.84101,-1070.4388)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4342"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,22.060867,-1070.204)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4344"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-149.7429,-1070.1606)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4346"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,75.238057,-942.8207)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4348"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,42.513317,-813.2542)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4350"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,107.96276,-1069.6206)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4352"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4354"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,129.62615,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4356"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-67.54057,-341.33367)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4358"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-1.272793,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4360"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,63.358554,-341.33367)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4362"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,260.52512,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4364"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,194.26078,-341.28622)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4366"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-2.912313,-455.86264)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4368"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,127.98664,-455.86264)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4370"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,258.88889,-455.8152)" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4372"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4374"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4376"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4378"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4380"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4382"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4384"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4386"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4388"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
</defs>
|
||||||
|
<metadata
|
||||||
|
id="metadata6249">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.63867"
|
||||||
|
cx="-96.56675"
|
||||||
|
id="path19605"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4330);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-814.0722"
|
||||||
|
cx="-129.2915"
|
||||||
|
id="path19607"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4332);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.40411"
|
||||||
|
cx="-10.659813"
|
||||||
|
id="path19609"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4334);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.83752"
|
||||||
|
cx="-43.384548"
|
||||||
|
id="path19611"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4336);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.3606"
|
||||||
|
cx="-182.46765"
|
||||||
|
id="path19613"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4338);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.79401"
|
||||||
|
cx="-215.19238"
|
||||||
|
id="path19615"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4340);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.4388"
|
||||||
|
cx="-63.841011"
|
||||||
|
id="path19617"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4342);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.204"
|
||||||
|
cx="22.060867"
|
||||||
|
id="path19619"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4344);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.1606"
|
||||||
|
cx="-149.7429"
|
||||||
|
id="path19621"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4346);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-942.82068"
|
||||||
|
cx="75.23806"
|
||||||
|
id="path19725"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4348);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.25421"
|
||||||
|
cx="42.513317"
|
||||||
|
id="path19727"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4350);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1069.6206"
|
||||||
|
cx="107.96276"
|
||||||
|
id="path19729"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4352);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6305"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4372);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6307"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4374);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6277"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4376);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6279"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4378);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path6259"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4380);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path21752"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4382);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6351"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4384);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6357"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4386);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path6363"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4388);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="129.62614"
|
||||||
|
id="path17337"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4354);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.33368"
|
||||||
|
cx="-67.540573"
|
||||||
|
id="path17339"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4356);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="-1.2727931"
|
||||||
|
id="path17341"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4358);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.33368"
|
||||||
|
cx="63.358555"
|
||||||
|
id="path17389"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4360);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="260.52512"
|
||||||
|
id="path17395"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4362);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.28622"
|
||||||
|
cx="194.26077"
|
||||||
|
id="path17407"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4364);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.86264"
|
||||||
|
cx="-2.912313"
|
||||||
|
id="path17415"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4366);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.86264"
|
||||||
|
cx="127.98664"
|
||||||
|
id="path17425"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4368);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.81519"
|
||||||
|
cx="258.88889"
|
||||||
|
id="path17429"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4370);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse3754"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="77.740959"
|
||||||
|
cy="15.662822" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none"
|
||||||
|
x="104.70869"
|
||||||
|
y="197.15358"
|
||||||
|
id="text17349"
|
||||||
|
transform="scale(1.0000332,0.9999668)"><tspan
|
||||||
|
id="tspan17351"
|
||||||
|
x="104.70869"
|
||||||
|
y="197.15358"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start">120°</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none"
|
||||||
|
x="131.88246"
|
||||||
|
y="275.87363"
|
||||||
|
id="text17353"
|
||||||
|
transform="scale(1.0000332,0.9999668)"><tspan
|
||||||
|
id="tspan17355"
|
||||||
|
x="131.88246"
|
||||||
|
y="275.87363">a</tspan></text>
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:17.3889px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:none;stroke:#000000;stroke-width:2.00001;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
id="path19627-5"
|
||||||
|
d="m 55.499031,209.71261 c 12.83658,-9.95856 29.57234,-11.13959 43.43245,-3.06499 13.860109,8.07461 22.548799,24.06738 22.548799,41.50425" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none"
|
||||||
|
x="26.367887"
|
||||||
|
y="212.28114"
|
||||||
|
id="text243"
|
||||||
|
transform="scale(1.0000332,0.9999668)"><tspan
|
||||||
|
id="tspan241"
|
||||||
|
x="26.367887"
|
||||||
|
y="212.28114">a</tspan></text>
|
||||||
|
<path
|
||||||
|
d="m 276.60941,132.63971 -65.827,115.89674 H 79.128511 l -65.827,-115.89674 65.827,-115.896726 H 210.78241 Z"
|
||||||
|
id="path3133"
|
||||||
|
style="opacity:0.98;fill:none;fill-opacity:0.316062;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:12, 12;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="rect1033"
|
||||||
|
style="fill:none;stroke:#000000"
|
||||||
|
d="M 14.369531,134.27008 H 145.14304 l 65.68675,113.99716 H 80.056278 Z" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:none;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||||
|
d="M 78.857601,247.99052 14.136081,135.96319"
|
||||||
|
id="path17345" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:none;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||||
|
d="m 78.888031,248.03125 129.385679,-0.0331"
|
||||||
|
id="path17343" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1036"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="210.86145"
|
||||||
|
cy="15.663053" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1038"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="143.42772"
|
||||||
|
cy="133.75943" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1042"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="275.5"
|
||||||
|
cy="133.75943" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1044"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="14.500004"
|
||||||
|
cy="133.75943" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1046"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="210.86145"
|
||||||
|
cy="248.71124" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1048"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="77.740585"
|
||||||
|
cy="248.71124" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 30 KiB |
110
src/svgs/bravais/mP.svg
Normal file
@ -0,0 +1,110 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
id="svg2379"
|
||||||
|
height="143.13"
|
||||||
|
width="113.51"
|
||||||
|
version="1.0">
|
||||||
|
<metadata
|
||||||
|
id="metadata3574">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<defs
|
||||||
|
id="defs2381" />
|
||||||
|
<g
|
||||||
|
transform="translate(0,-35.000025)"
|
||||||
|
id="g4206">
|
||||||
|
<path
|
||||||
|
d="m 25.639398,163.00032 c -1.03411,1.63194 -3.19786,2.11714 -4.82981,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19787,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3625" />
|
||||||
|
<path
|
||||||
|
d="m 82.050927,124.57333 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3635" />
|
||||||
|
<path
|
||||||
|
d="m 95.93377,161.10187 0.03125,-0.28125 -0.125,-0.28125 -16.218753,-34.375 -0.25,-0.5 h -0.53125 -71.8727779 -0.71875 l -0.15625,0.71875 1.59375,1.03125 H 78.277517 l 15.875,33.625 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3637" />
|
||||||
|
<path
|
||||||
|
d="M 90.576327,42.517201 79.579247,126.07157"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3639" />
|
||||||
|
<path
|
||||||
|
d="m 94.560358,125.19473 c 1.674002,0.59083 2.511002,1.69159 2.511012,3.30229 -1e-5,0.82997 -0.18464,1.60719 -0.5539,2.33165 -0.36927,0.72447 -0.91086,1.29947 -1.62477,1.725 -0.713922,0.42554 -1.535102,0.6383 -2.463532,0.6383 -0.59787,0 -1.12363,-0.0475 -1.5773,-0.14243 -0.45367,-0.095 -0.92316,-0.25848 -1.40848,-0.49059 l -1.1289,5.00091 h -1.71973 l 3.12294,-13.9477 c 0.28134,-1.25198 0.66116,-2.28944 1.13945,-3.11239 0.47828,-0.82292 1.07614,-1.45771 1.79358,-1.90436 0.71742,-0.44662 1.56146,-0.66993 2.532112,-0.66995 1.08317,2e-5 1.92017,0.24092 2.51101,0.72271 0.59081,0.48181 0.88622,1.16584 0.88624,2.05206 -2e-5,0.35873 -0.05101,0.74734 -0.15299,1.16583 -0.102,0.41851 -0.30421,0.82998 -0.60665,1.2344 -0.30245,0.40444 -0.72271,0.77899 -1.26078,1.12362 -0.53808,0.34466 -1.19748,0.64007 -1.978212,0.88624 l -0.0211,0.0844 z m -1.76193,-0.46422 c 0.75963,-0.0563 1.44541,-0.27431 2.057342,-0.65413 0.61192,-0.37981 1.09197,-0.87744 1.44014,-1.49289 0.34816,-0.61543 0.52224,-1.2889 0.52225,-2.02042 -1e-5,-0.58377 -0.14596,-1.03041 -0.43784,-1.3399 -0.29191,-0.30947 -0.72624,-0.46421 -1.30299,-0.46422 -0.893282,1e-5 -1.638842,0.43082 -2.236692,1.29243 -0.59787,0.86163 -1.08671,2.16813 -1.46652,3.91949 l -1.42431,6.61514 c -0.03517,0.16178 -0.05276,0.29893 -0.05275,0.41147 -1e-5,0.18991 0.04395,0.35168 0.13188,0.48532 0.08792,0.13364 0.21804,0.26552 0.39037,0.39564 0.17232,0.13013 0.39563,0.24266 0.66995,0.33762 0.27431,0.095 0.62247,0.14243 1.0445,0.14243 0.56971,0 1.08844,-0.17584 1.55619,-0.52752 0.46773,-0.35169 0.83523,-0.85107 1.102522,-1.49817 0.26727,-0.64709 0.40091,-1.38562 0.40092,-2.2156 -10e-6,-0.79479 -0.21981,-1.41727 -0.659412,-1.86743 -0.43961,-0.45014 -1.06736,-0.70687 -1.88325,-0.77018 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:21.60733986px;font-family:'Bitstream Vera Sans';fill:#008000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="text3659" />
|
||||||
|
<path
|
||||||
|
d="m 87.695948,143.73735 c 1.51194,-2.54642 7.320962,-4.37666 10.265262,-3.34218"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#008000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="path3683" />
|
||||||
|
<path
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#008000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 25.576438,146.75197 h 16.168975 l -2.515174,13.6538"
|
||||||
|
id="path3385" />
|
||||||
|
<path
|
||||||
|
d="M 35.057753,79.042391 22.742108,162.59676"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3601" />
|
||||||
|
<path
|
||||||
|
d="m 6.9219491,130.19276 c -1.91792,0.23278 -3.6634203,-1.13487 -3.8962103,-3.05279 -0.23278,-1.91793 1.13487,-3.66343 3.0528003,-3.89621 1.91792,-0.23278 3.66343,1.13487 3.89621,3.05279 0.2327789,1.91793 -1.13487,3.66343 -3.0528,3.89621 z"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3623" />
|
||||||
|
<path
|
||||||
|
d="m 17.52216,44.019811 -11.8840009,82.593749 -0.03125,0.28125 0.125,0.28125 16.2187489,34.375 0.25,0.5 h 0.53125 71.872779 0.718753 l 0.15625,-0.71875 11.88399,-82.124999 -1.71875,-0.34375 -11.758993,81.437499 H 23.294408 L 7.4194091,126.67606 19.24091,44.363561 Z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3599" />
|
||||||
|
<path
|
||||||
|
d="m 97.27523,158.99427 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.702473,1.00016 -4.924833,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.702473,-1.00016 4.924833,0.49599 z"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3627" />
|
||||||
|
<path
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#008000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 30.433797,68.6325 h 13.465759 l 4.014611,9.749768"
|
||||||
|
id="path3387" />
|
||||||
|
<path
|
||||||
|
d="m 16.99091,43.801061 0.59375,1.25 16.71875,34.375 0.25,0.5 h 0.53125 71.87277 1.40625 l -0.59375,-1.25 -16.249988,-34.375 -0.21875,-0.5 h -0.5625 -72.341532 z m 2.8125,1.75 h 70.404032 l 15.374988,32.625 H 35.67841 Z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path2430" />
|
||||||
|
<path
|
||||||
|
d="m 93.636482,46.501651 c -1.03411,1.63194 -3.19786,2.11714 -4.829813,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.197873,-2.11714 4.829813,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3609" />
|
||||||
|
<path
|
||||||
|
d="m 105.13668,81.939681 c -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3611" />
|
||||||
|
<path
|
||||||
|
d="m 32.18807,77.222861 c 1.02487,-1.63776 3.18585,-2.13517 4.82361,-1.11029 1.63776,1.02488 2.13517,3.18586 1.11029,4.82362 -1.02488,1.63775 -3.18586,2.13516 -4.82361,1.11029 -1.63776,-1.02488 -2.13517,-3.18586 -1.11029,-4.82362 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3613" />
|
||||||
|
<path
|
||||||
|
d="m 20.20434,41.758121 c 1.63776,1.02487 2.13517,3.18585 1.11029,4.82361 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3615" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 8.1305224,141.41236 0.74708,-0.53595 0.51971,0.12993 -1.1937,5.14837 c -0.11911,0.5143 -0.17866,0.91491 -0.17865,1.20183 -10e-6,0.21655 0.0352,0.37354 0.10556,0.47099 0.0704,0.0974 0.18135,0.14617 0.33294,0.14616 0.1624,1e-5 0.33564,-0.0663 0.51971,-0.19895 0.18406,-0.13263 0.44391,-0.38572 0.77956,-0.75926 l 0.4628696,0.45475 c -0.4872396,0.51971 -0.9027296,0.88919 -1.2464896,1.10844 -0.34377,0.21925 -0.71596,0.32888 -1.11656,0.32888 -0.33566,0 -0.60363,-0.11098 -0.80393,-0.33294 -0.20031,-0.22196 -0.30046,-0.517 -0.30046,-0.88513 0,-0.29775 0.0622,-0.61445 0.18677,-0.9501 l -0.10556,-0.0325 c -0.51972,0.75791 -1.01236,1.31281 -1.47793,1.6647 -0.46557,0.35188 -0.95821,0.52783 -1.47792,0.52783 -0.5955,0 -1.05702,-0.22467 -1.38454,-0.674 -0.32753,-0.44933 -0.49129,-1.08002 -0.49129,-1.89207 0,-0.93114 0.18271,-1.82575 0.54813,-2.68381 0.36542,-0.85806 0.86754,-1.53476 1.50635,-2.03012 0.63881,-0.49534 1.3507,-0.74301 2.13568,-0.74302 0.35188,1e-5 0.68076,0.0393 0.98664,0.11775 0.30586,0.0785 0.62121,0.2179 0.94603,0.4182 v 0 z m -0.7146,2.4199 c 0.0487,-0.22196 0.0812,-0.41414 0.0974,-0.57656 0.0162,-0.1624 0.0243,-0.33834 0.0244,-0.52783 -10e-6,-0.41684 -0.0893,-0.72271 -0.26798,-0.91761 -0.17865,-0.19488 -0.48182,-0.29233 -0.90949,-0.29233 -0.55761,0 -1.05837,0.22467 -1.50229,0.67399 -0.44392,0.44934 -0.79039,1.05161 -1.03941,1.80681 -0.24903,0.7552 -0.37355,1.50905 -0.37355,2.26155 0,0.56302 0.0772,0.98393 0.23144,1.26273 0.15428,0.2788 0.41278,0.4182 0.7755,0.4182 0.3573,0 0.70783,-0.15429 1.0516,-0.46286 0.34376,-0.30858 0.69836,-0.74844 1.06378,-1.31958 0.36542,-0.57114 0.62392,-1.23025 0.77551,-1.97733 l 0.0731,-0.34918 z"
|
||||||
|
id="text6151" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 56.046493,174.51795 -0.74708,0.52783 -0.51971,-0.12993 2.1032,-9.28169 c 0.12451,-0.55218 0.18677,-0.95279 0.18677,-1.20182 0,-0.22737 -0.069,-0.38707 -0.20707,-0.47911 -0.13805,-0.092 -0.38572,-0.14345 -0.74302,-0.15429 l 0.0975,-0.42227 2.05447,-0.0731 h 0.47099 l -1.4292,5.68433 0.10557,0.0325 c 0.52512,-0.70377 1.01776,-1.21265 1.47792,-1.52665 0.46015,-0.31398 0.92031,-0.47098 1.38048,-0.47099 0.59008,1e-5 1.04889,0.22468 1.37642,0.674 0.32752,0.44934 0.49128,1.08274 0.49129,1.90019 -1e-5,0.89326 -0.18001,1.77162 -0.54002,2.63509 -0.36001,0.86348 -0.85942,1.5483 -1.49822,2.05448 -0.63881,0.50617 -1.35342,0.75926 -2.1438,0.75926 -0.72002,0 -1.35883,-0.17594 -1.91643,-0.52783 v 0 z m 0.7146,-2.42802 c -0.0812,0.37896 -0.12181,0.74709 -0.1218,1.10439 -1e-5,0.42768 0.0934,0.73625 0.28015,0.92573 0.18677,0.18948 0.4967,0.28422 0.9298,0.28422 0.22195,0 0.43308,-0.0365 0.63339,-0.10963 0.2003,-0.0731 0.40467,-0.19354 0.6131,-0.36136 0.20842,-0.16782 0.40601,-0.38843 0.59279,-0.66182 0.18677,-0.27339 0.35865,-0.61039 0.51565,-1.011 0.15699,-0.4006 0.2788,-0.82963 0.36542,-1.28709 0.0866,-0.45745 0.12992,-0.8946 0.12993,-1.31146 -10e-6,-0.56301 -0.0799,-0.98527 -0.23955,-1.26679 -0.15971,-0.2815 -0.41551,-0.42226 -0.76739,-0.42226 -0.25986,0 -0.51565,0.0826 -0.76738,0.24767 -0.25174,0.16512 -0.5319,0.43851 -0.84047,0.82017 -0.30858,0.38167 -0.56032,0.7728 -0.7552,1.17341 -0.1949,0.40061 -0.36001,0.9122 -0.49535,1.53476 l -0.0731,0.34106 z"
|
||||||
|
id="text6155" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 108.84665,118.40996 c -0.0108,-0.41143 -0.0447,-0.70918 -0.10151,-0.89325 -0.0568,-0.18406 -0.14888,-0.32211 -0.27609,-0.41415 -0.12723,-0.092 -0.30723,-0.13804 -0.54001,-0.13804 -0.54679,0 -1.03807,0.2179 -1.47387,0.65369 -0.4358,0.43581 -0.79175,1.05296 -1.06784,1.85147 -0.2761,0.79852 -0.41415,1.5659 -0.41414,2.30215 0,0.55219 0.10827,0.96227 0.32482,1.23025 0.21654,0.26797 0.54136,0.40196 0.97445,0.40196 0.49264,0 0.91896,-0.0934 1.27897,-0.28016 0.36001,-0.18676 0.74031,-0.48045 1.14093,-0.88107 l 0.49535,0.49535 c -0.50889,0.56302 -1.02183,0.97446 -1.53883,1.23431 -0.51701,0.25986 -1.07326,0.38979 -1.66876,0.38979 -0.78498,0 -1.38048,-0.23279 -1.7865,-0.69836 -0.40602,-0.46558 -0.60903,-1.14228 -0.60903,-2.03012 0,-0.57925 0.10827,-1.21536 0.32482,-1.90831 0.21654,-0.69294 0.53324,-1.30197 0.95009,-1.8271 0.41685,-0.52512 0.90408,-0.9176 1.46168,-1.17747 0.55761,-0.25984 1.15311,-0.38977 1.78651,-0.38978 0.72,1e-5 1.38318,0.0812 1.98951,0.24361 l -0.3979,1.83523 z"
|
||||||
|
id="text6159" />
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 13 KiB |
134
src/svgs/bravais/mS.svg
Normal file
@ -0,0 +1,134 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
id="svg2379"
|
||||||
|
height="143.13"
|
||||||
|
width="113.51"
|
||||||
|
version="1.0">
|
||||||
|
<metadata
|
||||||
|
id="metadata3827">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<defs
|
||||||
|
id="defs2381" />
|
||||||
|
<g
|
||||||
|
transform="translate(0,-35.000005)"
|
||||||
|
id="g5233">
|
||||||
|
<path
|
||||||
|
d="m 53.695402,141.1985 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path6131" />
|
||||||
|
<path
|
||||||
|
d="m 8.417783,127.72523 84.943108,31.75801"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path6101" />
|
||||||
|
<path
|
||||||
|
d="M 23.087317,160.42875 78.882671,126.39709"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path6103" />
|
||||||
|
<path
|
||||||
|
d="m 25.639398,163.00004 c -1.03411,1.63194 -3.19786,2.11714 -4.82981,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19787,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3625" />
|
||||||
|
<path
|
||||||
|
d="m 82.050927,124.57305 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3635" />
|
||||||
|
<path
|
||||||
|
d="m 95.93377,161.10159 0.03125,-0.28125 -0.125,-0.28125 -16.218753,-34.375 -0.25,-0.5 h -0.53125 -71.8727779 -0.71875 l -0.15625,0.71875 1.59375,1.03125 H 78.277517 l 15.875,33.625 z"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3637" />
|
||||||
|
<path
|
||||||
|
d="M 90.576327,42.516917 79.579247,126.07129"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3639" />
|
||||||
|
<path
|
||||||
|
d="m 94.560358,125.19445 c 1.674002,0.59083 2.511002,1.69159 2.511012,3.30229 -1e-5,0.82997 -0.18464,1.60719 -0.5539,2.33165 -0.36927,0.72447 -0.91086,1.29947 -1.62477,1.725 -0.713922,0.42554 -1.535102,0.6383 -2.463532,0.6383 -0.59787,0 -1.12363,-0.0475 -1.5773,-0.14243 -0.45367,-0.095 -0.92316,-0.25848 -1.40848,-0.49059 l -1.1289,5.00091 h -1.71973 l 3.12294,-13.9477 c 0.28134,-1.25198 0.66116,-2.28944 1.13945,-3.11239 0.47828,-0.82292 1.07614,-1.45771 1.79358,-1.90436 0.71742,-0.44662 1.56146,-0.66993 2.532112,-0.66995 1.08317,2e-5 1.92017,0.24092 2.51101,0.72271 0.59081,0.48181 0.88622,1.16584 0.88624,2.05206 -2e-5,0.35873 -0.05101,0.74734 -0.15299,1.16583 -0.102,0.41851 -0.30421,0.82998 -0.60665,1.2344 -0.30245,0.40444 -0.72271,0.77899 -1.26078,1.12362 -0.53808,0.34466 -1.19748,0.64007 -1.978212,0.88624 l -0.0211,0.0844 z m -1.76193,-0.46422 c 0.75963,-0.0563 1.44541,-0.27431 2.057342,-0.65413 0.61192,-0.37981 1.09197,-0.87744 1.44014,-1.49289 0.34816,-0.61543 0.52224,-1.2889 0.52225,-2.02042 -1e-5,-0.58377 -0.14596,-1.03041 -0.43784,-1.3399 -0.29191,-0.30947 -0.72624,-0.46421 -1.30299,-0.46422 -0.893282,1e-5 -1.638842,0.43082 -2.236692,1.29243 -0.59787,0.86163 -1.08671,2.16813 -1.46652,3.91949 l -1.42431,6.61514 c -0.03517,0.16178 -0.05276,0.29893 -0.05275,0.41147 -1e-5,0.18991 0.04395,0.35168 0.13188,0.48532 0.08792,0.13364 0.21804,0.26552 0.39037,0.39564 0.17232,0.13013 0.39563,0.24266 0.66995,0.33762 0.27431,0.095 0.62247,0.14243 1.0445,0.14243 0.56971,0 1.08844,-0.17584 1.55619,-0.52752 0.46773,-0.35169 0.83523,-0.85107 1.102522,-1.49817 0.26727,-0.64709 0.40091,-1.38562 0.40092,-2.2156 -10e-6,-0.79479 -0.21981,-1.41727 -0.659412,-1.86743 -0.43961,-0.45014 -1.06736,-0.70687 -1.88325,-0.77018 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:21.60733986px;font-family:'Bitstream Vera Sans';fill:#008000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="text3659" />
|
||||||
|
<path
|
||||||
|
d="m 87.695948,143.73707 c 1.51194,-2.54642 7.320962,-4.37666 10.265262,-3.34218"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#008000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
id="path3683" />
|
||||||
|
<path
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#008000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 25.576,147.02162 h 16.16897 l -2.51517,13.6538"
|
||||||
|
id="path3385" />
|
||||||
|
<path
|
||||||
|
d="M 35.057753,79.042107 22.742108,162.59648"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3601" />
|
||||||
|
<path
|
||||||
|
d="m 6.9219491,130.19248 c -1.91792,0.23278 -3.6634203,-1.13487 -3.8962103,-3.05279 -0.23278,-1.91793 1.13487,-3.66343 3.0528003,-3.89621 1.91792,-0.23278 3.66343,1.13487 3.89621,3.05279 0.2327789,1.91793 -1.13487,3.66343 -3.0528,3.89621 z"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3623" />
|
||||||
|
<path
|
||||||
|
d="m 17.52216,44.019527 -11.8840009,82.593753 -0.03125,0.28125 0.125,0.28125 16.2187489,34.375 0.25,0.5 h 0.53125 71.872779 0.718753 l 0.15625,-0.71875 11.88399,-82.125003 -1.71875,-0.34375 -11.758993,81.437503 H 23.294408 L 7.4194091,126.67578 19.24091,44.363277 Z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path3599" />
|
||||||
|
<path
|
||||||
|
d="m 97.27523,158.99399 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.702473,1.00016 -4.924833,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.702473,-1.00016 4.924833,0.49599 z"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3627" />
|
||||||
|
<path
|
||||||
|
d="M 20.470522,46.034459 105.41363,77.792465"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path6056" />
|
||||||
|
<path
|
||||||
|
d="M 35.140056,78.737979 90.93541,44.706319"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path6058" />
|
||||||
|
<path
|
||||||
|
d="m 64.654866,58.886805 c 1.63776,1.02487 2.13517,3.18585 1.11029,4.82361 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path6105" />
|
||||||
|
<path
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#008000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 30.434,68.632862 h 13.46576 l 4.01461,9.749768"
|
||||||
|
id="path3387" />
|
||||||
|
<path
|
||||||
|
d="m 16.99091,43.800777 0.59375,1.25 16.71875,34.375 0.25,0.5 h 0.53125 71.87277 1.40625 l -0.59375,-1.25 -16.249988,-34.375 -0.21875,-0.5 h -0.5625 -72.341532 z m 2.8125,1.75 h 70.404032 l 15.374988,32.625 H 35.67841 Z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
id="path2430" />
|
||||||
|
<path
|
||||||
|
d="m 105.13668,81.939397 c -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3611" />
|
||||||
|
<path
|
||||||
|
d="m 32.18807,77.222577 c 1.02487,-1.63776 3.18585,-2.13517 4.82361,-1.11029 1.63776,1.02488 2.13517,3.18586 1.11029,4.82362 -1.02488,1.63775 -3.18586,2.13516 -4.82361,1.11029 -1.63776,-1.02488 -2.13517,-3.18586 -1.11029,-4.82362 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3613" />
|
||||||
|
<path
|
||||||
|
d="m 93.63648,46.501367 c -1.03411,1.63194 -3.19786,2.11714 -4.829813,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.197873,-2.11714 4.829813,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3609" />
|
||||||
|
<path
|
||||||
|
d="m 20.20434,41.757837 c 1.63776,1.02487 2.13517,3.18585 1.11029,4.82361 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
id="path3615" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 8.13083,141.41281 0.74708,-0.53595 0.51971,0.12993 -1.1937,5.14837 c -0.11911,0.5143 -0.17866,0.91491 -0.17865,1.20183 -1e-5,0.21655 0.0352,0.37354 0.10556,0.47099 0.0704,0.0974 0.18135,0.14617 0.33294,0.14616 0.1624,1e-5 0.33564,-0.0663 0.51971,-0.19895 0.18406,-0.13263 0.44391,-0.38572 0.77956,-0.75926 l 0.46287,0.45475 c -0.48724,0.51971 -0.90273,0.88919 -1.24649,1.10844 -0.34377,0.21925 -0.71596,0.32888 -1.11656,0.32888 -0.33566,0 -0.60363,-0.11098 -0.80393,-0.33294 -0.20031,-0.22196 -0.30046,-0.517 -0.30046,-0.88513 0,-0.29775 0.0622,-0.61445 0.18677,-0.9501 l -0.10556,-0.0325 c -0.51972,0.75791 -1.01236,1.31281 -1.47793,1.6647 -0.46557,0.35188 -0.95821,0.52783 -1.47792,0.52783 -0.5955,0 -1.05702,-0.22467 -1.38454,-0.674 -0.32753,-0.44933 -0.49129,-1.08002 -0.49129,-1.89207 0,-0.93114 0.18271,-1.82575 0.54813,-2.68381 0.36542,-0.85806 0.86754,-1.53476 1.50635,-2.03012 0.63881,-0.49534 1.3507,-0.74301 2.13568,-0.74302 0.35188,1e-5 0.68076,0.0393 0.98664,0.11775 0.30586,0.0785 0.62121,0.2179 0.94603,0.4182 v 0 z m -0.7146,2.4199 c 0.0487,-0.22196 0.0812,-0.41414 0.0974,-0.57656 0.0162,-0.1624 0.0243,-0.33834 0.0244,-0.52783 -10e-6,-0.41684 -0.0893,-0.72271 -0.26798,-0.91761 -0.17865,-0.19488 -0.48182,-0.29233 -0.90949,-0.29233 -0.55761,0 -1.05837,0.22467 -1.50229,0.67399 -0.44392,0.44934 -0.79039,1.05161 -1.03941,1.80681 -0.24903,0.7552 -0.37355,1.50905 -0.37355,2.26155 0,0.56302 0.0772,0.98393 0.23144,1.26273 0.15428,0.2788 0.41278,0.4182 0.7755,0.4182 0.3573,0 0.70783,-0.15429 1.0516,-0.46286 0.34376,-0.30858 0.69836,-0.74844 1.06378,-1.31958 0.36542,-0.57114 0.62392,-1.23025 0.77551,-1.97733 l 0.0731,-0.34918 z"
|
||||||
|
id="text6151" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 56.04679,174.51817 -0.74708,0.52783 -0.51971,-0.12993 2.1032,-9.28169 c 0.12451,-0.55218 0.18677,-0.95279 0.18677,-1.20182 0,-0.22737 -0.069,-0.38707 -0.20707,-0.47911 -0.13805,-0.092 -0.38572,-0.14345 -0.74302,-0.15429 l 0.0975,-0.42227 2.05447,-0.0731 h 0.47099 l -1.4292,5.68433 0.10557,0.0325 c 0.52512,-0.70377 1.01776,-1.21265 1.47792,-1.52665 0.46015,-0.31398 0.92031,-0.47098 1.38048,-0.47099 0.59008,1e-5 1.04889,0.22468 1.37642,0.674 0.32752,0.44934 0.49128,1.08274 0.49129,1.90019 -10e-6,0.89326 -0.18001,1.77162 -0.54002,2.63509 -0.36001,0.86348 -0.85942,1.5483 -1.49822,2.05448 -0.63881,0.50617 -1.35342,0.75926 -2.1438,0.75926 -0.72002,0 -1.35883,-0.17594 -1.91643,-0.52783 v 0 z m 0.7146,-2.42802 c -0.0812,0.37896 -0.12181,0.74709 -0.1218,1.10439 -10e-6,0.42768 0.0934,0.73625 0.28015,0.92573 0.18677,0.18948 0.4967,0.28422 0.9298,0.28422 0.22195,0 0.43308,-0.0365 0.63339,-0.10963 0.2003,-0.0731 0.40467,-0.19354 0.6131,-0.36136 0.20842,-0.16782 0.40601,-0.38843 0.59279,-0.66182 0.18677,-0.27339 0.35865,-0.61039 0.51565,-1.011 0.15699,-0.4006 0.2788,-0.82963 0.36542,-1.28709 0.0866,-0.45745 0.12992,-0.8946 0.12993,-1.31146 -1e-5,-0.56301 -0.0799,-0.98527 -0.23955,-1.26679 -0.15971,-0.2815 -0.41551,-0.42226 -0.76739,-0.42226 -0.25986,0 -0.51565,0.0826 -0.76738,0.24767 -0.25174,0.16512 -0.5319,0.43851 -0.84047,0.82017 -0.30858,0.38167 -0.56032,0.7728 -0.7552,1.17341 -0.1949,0.40061 -0.36001,0.9122 -0.49535,1.53476 l -0.0731,0.34106 z"
|
||||||
|
id="text6155" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 108.84706,118.4097 c -0.0108,-0.41143 -0.0447,-0.70918 -0.10151,-0.89325 -0.0568,-0.18406 -0.14888,-0.32211 -0.27609,-0.41415 -0.12723,-0.092 -0.30723,-0.13804 -0.54001,-0.13804 -0.54679,0 -1.03807,0.2179 -1.47387,0.65369 -0.4358,0.43581 -0.79175,1.05296 -1.06784,1.85147 -0.2761,0.79852 -0.41415,1.5659 -0.41414,2.30215 0,0.55219 0.10827,0.96227 0.32482,1.23025 0.21654,0.26797 0.54136,0.40196 0.97445,0.40196 0.49264,0 0.91896,-0.0934 1.27897,-0.28016 0.36001,-0.18676 0.74031,-0.48045 1.14093,-0.88107 l 0.49535,0.49535 c -0.50889,0.56302 -1.02183,0.97446 -1.53883,1.23431 -0.51701,0.25986 -1.07326,0.38979 -1.66876,0.38979 -0.78498,0 -1.38048,-0.23279 -1.7865,-0.69836 -0.40602,-0.46558 -0.60903,-1.14228 -0.60903,-2.03012 0,-0.57925 0.10827,-1.21536 0.32482,-1.90831 0.21654,-0.69294 0.53324,-1.30197 0.95009,-1.8271 0.41685,-0.52512 0.90408,-0.9176 1.46168,-1.17747 0.55761,-0.25984 1.15311,-0.38977 1.78651,-0.38978 0.72,1e-5 1.38318,0.0812 1.98951,0.24361 l -0.3979,1.83523 z"
|
||||||
|
id="text6159" />
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 15 KiB |
614
src/svgs/bravais/mp.svg
Normal file
@ -0,0 +1,614 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||||
|
width="140"
|
||||||
|
height="170"
|
||||||
|
id="svg6244"
|
||||||
|
version="1.0">
|
||||||
|
<defs
|
||||||
|
id="defs6246">
|
||||||
|
<marker
|
||||||
|
orient="auto"
|
||||||
|
refY="0"
|
||||||
|
refX="0"
|
||||||
|
id="Arrow1Lend"
|
||||||
|
style="overflow:visible">
|
||||||
|
<path
|
||||||
|
id="path7384"
|
||||||
|
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||||
|
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;marker-start:none"
|
||||||
|
transform="matrix(-0.8,0,0,-0.8,-10,0)" />
|
||||||
|
</marker>
|
||||||
|
<linearGradient
|
||||||
|
id="linearGradient12908">
|
||||||
|
<stop
|
||||||
|
style="stop-color: rgb(254, 254, 254); stop-opacity: 1;"
|
||||||
|
offset="0"
|
||||||
|
id="stop12910" />
|
||||||
|
<stop
|
||||||
|
id="stop19774"
|
||||||
|
offset="0.5"
|
||||||
|
style="stop-color: rgb(143, 216, 141); stop-opacity: 1;" />
|
||||||
|
<stop
|
||||||
|
style="stop-color: rgb(15, 176, 12); stop-opacity: 1;"
|
||||||
|
offset="1"
|
||||||
|
id="stop12912" />
|
||||||
|
</linearGradient>
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-96.566751,-943.6387)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4330"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-129.2915,-814.0722)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4332"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-10.659813,-943.4041)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4334"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-43.38455,-813.8375)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4336"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-182.46765,-943.3606)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4338"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-215.19238,-813.794)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4340"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-63.84101,-1070.4388)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4342"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,22.060867,-1070.204)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4344"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-149.7429,-1070.1606)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4346"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,75.238057,-942.8207)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4348"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,42.513317,-813.2542)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4350"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,107.96276,-1069.6206)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4352"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4354"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,129.62615,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4356"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-67.54057,-341.33367)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4358"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-1.272793,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4360"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,63.358554,-341.33367)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4362"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,260.52512,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4364"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,194.26078,-341.28622)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4366"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-2.912313,-455.86264)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4368"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,127.98664,-455.86264)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4370"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,258.88889,-455.8152)" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4372"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4374"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4376"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4378"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4380"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4382"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4384"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4386"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4388"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
</defs>
|
||||||
|
<metadata
|
||||||
|
id="metadata6249">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.63867"
|
||||||
|
cx="-96.56675"
|
||||||
|
id="path19605"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4330);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-814.0722"
|
||||||
|
cx="-129.2915"
|
||||||
|
id="path19607"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4332);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.40411"
|
||||||
|
cx="-10.659813"
|
||||||
|
id="path19609"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4334);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.83752"
|
||||||
|
cx="-43.384548"
|
||||||
|
id="path19611"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4336);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.3606"
|
||||||
|
cx="-182.46765"
|
||||||
|
id="path19613"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4338);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.79401"
|
||||||
|
cx="-215.19238"
|
||||||
|
id="path19615"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4340);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.4388"
|
||||||
|
cx="-63.841011"
|
||||||
|
id="path19617"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4342);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.204"
|
||||||
|
cx="22.060867"
|
||||||
|
id="path19619"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4344);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.1606"
|
||||||
|
cx="-149.7429"
|
||||||
|
id="path19621"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4346);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-942.82068"
|
||||||
|
cx="75.23806"
|
||||||
|
id="path19725"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4348);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.25421"
|
||||||
|
cx="42.513317"
|
||||||
|
id="path19727"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4350);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1069.6206"
|
||||||
|
cx="107.96276"
|
||||||
|
id="path19729"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4352);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6305"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4372);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6307"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4374);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6277"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4376);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6279"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4378);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path6259"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4380);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path21752"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4382);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6351"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4384);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6357"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4386);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path6363"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4388);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="129.62614"
|
||||||
|
id="path17337"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4354);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.33368"
|
||||||
|
cx="-67.540573"
|
||||||
|
id="path17339"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4356);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="-1.2727931"
|
||||||
|
id="path17341"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4358);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.33368"
|
||||||
|
cx="63.358555"
|
||||||
|
id="path17389"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4360);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="260.52512"
|
||||||
|
id="path17395"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4362);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.28622"
|
||||||
|
cx="194.26077"
|
||||||
|
id="path17407"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4364);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.86264"
|
||||||
|
cx="-2.912313"
|
||||||
|
id="path17415"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4366);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.86264"
|
||||||
|
cx="127.98664"
|
||||||
|
id="path17425"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4368);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.81519"
|
||||||
|
cx="258.88889"
|
||||||
|
id="path17429"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4370);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:none;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||||
|
d="m 11.380816,142.76846 82.965825,-0.17771"
|
||||||
|
id="path19623" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:none;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||||
|
d="M 11.355546,142.73279 43.329483,16.229367"
|
||||||
|
id="path19625" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:17.3889px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:none;stroke:#000000;stroke-width:2.00001;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
id="path19627"
|
||||||
|
d="m 22.288053,97.443897 a 41.996302,46.827696 0 0 1 31.45202,45.327663" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none"
|
||||||
|
x="51.696911"
|
||||||
|
y="102.57731"
|
||||||
|
id="text19629"
|
||||||
|
transform="scale(1.0000332,0.9999668)"><tspan
|
||||||
|
id="tspan19631"
|
||||||
|
x="51.696911"
|
||||||
|
y="102.57731"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start">θ</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none"
|
||||||
|
x="42.358044"
|
||||||
|
y="167.96715"
|
||||||
|
id="text19633"
|
||||||
|
transform="scale(1.0000332,0.9999668)"><tspan
|
||||||
|
id="tspan19635"
|
||||||
|
x="42.358044"
|
||||||
|
y="167.96715">a</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none"
|
||||||
|
x="3.0743835"
|
||||||
|
y="78.490334"
|
||||||
|
id="text19641"
|
||||||
|
transform="scale(1.0000332,0.9999668)"><tspan
|
||||||
|
id="tspan19643"
|
||||||
|
x="3.0743835"
|
||||||
|
y="78.490334">b</tspan></text>
|
||||||
|
<rect
|
||||||
|
transform="matrix(1,0,-0.24063707,0.97061517,0,0)"
|
||||||
|
y="13.204535"
|
||||||
|
x="46.348911"
|
||||||
|
height="134.55579"
|
||||||
|
width="85.324142"
|
||||||
|
id="rect3919"
|
||||||
|
style="opacity:0.98;fill:none;fill-opacity:0.316062;fill-rule:nonzero;stroke:#000000;stroke-width:1.01502;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse3754"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="43.597301"
|
||||||
|
cy="13.565715" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1290"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="127.78419"
|
||||||
|
cy="13.565715" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1294"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="12.215805"
|
||||||
|
cy="143.31615" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1296"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="96.402695"
|
||||||
|
cy="143.31615" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 29 KiB |
162
src/svgs/bravais/oF.svg
Normal file
@ -0,0 +1,162 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
id="svg2379"
|
||||||
|
height="142.21001"
|
||||||
|
width="107.62"
|
||||||
|
version="1.0">
|
||||||
|
<metadata
|
||||||
|
id="metadata8075">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<defs
|
||||||
|
id="defs2381" />
|
||||||
|
<path
|
||||||
|
id="path6385"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 7.652532,8.0993883 79.586331,89.790163" />
|
||||||
|
<path
|
||||||
|
id="path6387"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 79.586331,8.0993883 7.652532,89.790163" />
|
||||||
|
<path
|
||||||
|
id="path6389"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 45.455062,45.797445 c 1.63776,1.02487 2.13517,3.18585 1.11029,4.823611 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.185861 -1.11029,-4.823611 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z" />
|
||||||
|
<path
|
||||||
|
id="path6367"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 79.968958,8.4820153 95.656649,124.60918" />
|
||||||
|
<path
|
||||||
|
id="path6369"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 95.847962,41.005275 80.542898,90.364103" />
|
||||||
|
<path
|
||||||
|
id="path6371"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 89.618011,63.268951 c 1.63776,1.02487 2.13517,3.18585 1.11029,4.82361 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z" />
|
||||||
|
<path
|
||||||
|
id="path6342"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 23.818505,123.84393 80.447241,91.129363" />
|
||||||
|
<path
|
||||||
|
id="path6344"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 7.1742483,90.555423 96.134932,123.84393" />
|
||||||
|
<path
|
||||||
|
id="path6346"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 53.817581,104.48867 c 1.637761,1.02487 2.135171,3.18585 1.11029,4.82361 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z" />
|
||||||
|
<path
|
||||||
|
id="path3635"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 82.521602,87.910343 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3637"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 96.404447,124.43888 0.03125,-0.28125 -0.125,-0.28125 -16.218755,-34.374997 -0.25,-0.5 h -0.53125 -71.8727782 -0.71875 l -0.15625,0.71875 1.59375,1.03125 H 78.748192 l 15.875005,33.624997 z" />
|
||||||
|
<path
|
||||||
|
id="path3639"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 79.759517,5.8542083 80.049922,89.408583" />
|
||||||
|
<path
|
||||||
|
id="path3623"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 7.3926238,93.529773 c -1.91792,0.23278 -3.66342,-1.13487 -3.89621,-3.05279 -0.23278,-1.91793 1.13487,-3.66343 3.0528,-3.89621 1.91792,-0.23278 3.6634302,1.13487 3.8962102,3.05279 0.232779,1.91793 -1.1348702,3.66343 -3.0528002,3.89621 z" />
|
||||||
|
<path
|
||||||
|
id="path3599"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 6.1314108,7.3568183 -0.022577,82.5937547 -0.03125,0.28125 0.125,0.28125 16.2187492,34.374997 0.25,0.5 h 0.53125 71.872784 0.71875 l 0.15625,-0.71875 0.02256,-82.125002 -1.71875,-0.34375 0.10244,81.437502 H 23.765083 L 7.8900838,90.013073 7.8501608,7.7005683 Z" />
|
||||||
|
<path
|
||||||
|
id="path3625"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 26.110073,126.33733 c -1.03411,1.63194 -3.19786,2.11714 -4.82981,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19787,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path2430"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 5.7914738,7.1380683 0.59375,1.25 16.7187502,34.3749997 0.25,0.5 h 0.53125 71.872773 1.40625 l -0.59375,-1.25 -16.249991,-34.3749997 -0.21875,-0.5 h -0.5625 -72.3415322 z m 2.8125,1.75 H 79.008006 L 94.382997,41.513068 H 24.478974 Z" />
|
||||||
|
<path
|
||||||
|
id="path3627"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 97.745907,122.33128 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.222365,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3611"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 93.162513,45.276684 c -1.63194,-1.03411 -2.117145,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z" />
|
||||||
|
<path
|
||||||
|
id="path3613"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 20.186726,40.559868 c 1.02487,-1.63776 3.18585,-2.13517 4.82361,-1.11029 1.63776,1.02488 2.13517,3.18586 1.11029,4.82362 -1.02488,1.63775 -3.18586,2.13516 -4.82361,1.11029 -1.63776,-1.02488 -2.13517,-3.18586 -1.11029,-4.82362 z" />
|
||||||
|
<path
|
||||||
|
id="path3609"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 82.768025,9.8386583 c -1.03411,1.6319397 -3.19786,2.1171397 -4.829813,1.0830297 -1.63194,-1.0341097 -2.11714,-3.1978597 -1.08303,-4.8298097 1.03411,-1.63194 3.197873,-2.11714 4.829813,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path3615"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 8.8272928,5.0951283 c 1.6377602,1.02487 2.1351702,3.18585 1.11029,4.82361 -1.02488,1.6377597 -3.18586,2.1351697 -4.82362,1.1102897 -1.63775,-1.02488 -2.13516,-3.1858597 -1.11029,-4.8236097 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z" />
|
||||||
|
<path
|
||||||
|
id="path6134"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 23.283068,42.589375 0.290405,83.554365" />
|
||||||
|
<path
|
||||||
|
id="text6151"
|
||||||
|
d="m 9.1218715,103.77982 0.7470827,-0.53595 0.5197098,0.12993 -1.1937083,5.14837 c -0.1191071,0.5143 -0.1786571,0.91491 -0.1786502,1.20183 -6.9e-6,0.21655 0.035182,0.37354 0.105566,0.47099 0.07037,0.0974 0.1813499,0.14617 0.3329391,0.14616 0.1624018,1e-5 0.3356382,-0.0663 0.5197097,-0.19895 0.1840557,-0.13263 0.4439107,-0.38572 0.7795647,-0.75926 l 0.462866,0.45475 c -0.487236,0.51971 -0.902733,0.88919 -1.246491,1.10844 -0.3437738,0.21925 -0.7159613,0.32888 -1.1165638,0.32888 -0.3356522,0 -0.6036273,-0.11098 -0.8039259,-0.33294 -0.2003105,-0.22196 -0.3004628,-0.517 -0.3004572,-0.88513 -5.6e-6,-0.29775 0.062251,-0.61445 0.1867707,-0.9501 l -0.1055661,-0.0325 c -0.5197148,0.75791 -1.0123558,1.31281 -1.4779244,1.6647 -0.4655771,0.35188 -0.9582181,0.52783 -1.4779245,0.52783 -0.5955029,0 -1.0570154,-0.22467 -1.3845392,-0.674 -0.3275264,-0.44933 -0.4912889,-1.08002 -0.491288,-1.89207 -9e-7,-0.93114 0.1827094,-1.82575 0.5481313,-2.68381 0.3654191,-0.85806 0.867534,-1.53476 1.5063461,-2.03012 0.6388063,-0.49534 1.3506996,-0.74301 2.1356821,-0.74302 0.3518814,1e-5 0.6807598,0.0393 0.9866364,0.11775 0.3058644,0.0785 0.6212088,0.2179 0.946034,0.4182 z m -0.7146008,2.4199 c 0.048716,-0.22196 0.081198,-0.41414 0.097446,-0.57656 0.016234,-0.1624 0.024355,-0.33834 0.024361,-0.52783 -6.4e-6,-0.41684 -0.089331,-0.72271 -0.2679754,-0.91761 -0.1786561,-0.19488 -0.4818198,-0.29233 -0.909492,-0.29233 -0.5576098,0 -1.0583713,0.22467 -1.5022858,0.67399 -0.443922,0.44934 -0.7903948,1.05161 -1.0394194,1.80681 -0.24903,0.7552 -0.3735437,1.50905 -0.3735414,2.26155 -2.3e-6,0.56302 0.077142,0.98393 0.2314332,1.26273 0.1542862,0.2788 0.4127874,0.4182 0.7755044,0.4182 0.3572967,0 0.7078298,-0.15429 1.0516001,-0.46286 0.3437616,-0.30858 0.6983549,-0.74844 1.0637808,-1.31958 0.3654151,-0.57114 0.6239163,-1.23025 0.7755043,-1.97733 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="text6155"
|
||||||
|
d="m 56.678533,138.68196 -0.747083,0.52783 -0.51971,-0.12993 2.103201,-9.28169 c 0.12451,-0.55218 0.186767,-0.95279 0.18677,-1.20182 -3e-6,-0.22737 -0.06903,-0.38707 -0.207072,-0.47911 -0.13805,-0.092 -0.385724,-0.14345 -0.743022,-0.15429 l 0.09745,-0.42227 2.054478,-0.0731 h 0.470987 l -1.429202,5.68433 0.105566,0.0325 c 0.52512,-0.70377 1.017761,-1.21265 1.477925,-1.52665 0.460154,-0.31398 0.920313,-0.47098 1.380479,-0.47099 0.59008,1e-5 1.048886,0.22468 1.376418,0.674 0.327518,0.44934 0.49128,1.08274 0.491288,1.90019 -8e-6,0.89326 -0.180011,1.77162 -0.540011,2.63509 -0.360014,0.86348 -0.859422,1.5483 -1.498225,2.05448 -0.638815,0.50617 -1.353416,0.75926 -2.143803,0.75926 -0.720017,0 -1.358827,-0.17594 -1.916429,-0.52783 z m 0.714601,-2.42802 c -0.08121,0.37896 -0.12181,0.74709 -0.121807,1.10439 -3e-6,0.42768 0.09338,0.73625 0.280156,0.92573 0.186767,0.18948 0.496698,0.28422 0.929793,0.28422 0.221955,0 0.433087,-0.0365 0.633396,-0.10963 0.2003,-0.0731 0.404665,-0.19354 0.613095,-0.36136 0.20842,-0.16782 0.406018,-0.38843 0.592794,-0.66182 0.186765,-0.27339 0.358648,-0.61039 0.515649,-1.011 0.15699,-0.4006 0.278797,-0.82963 0.365421,-1.28709 0.08661,-0.45745 0.129921,-0.8946 0.129928,-1.31146 -7e-6,-0.56301 -0.07986,-0.98527 -0.239554,-1.26679 -0.159709,-0.2815 -0.415503,-0.42226 -0.767384,-0.42226 -0.25986,0 -0.515655,0.0826 -0.767384,0.24767 -0.251739,0.16512 -0.531895,0.43851 -0.840468,0.82017 -0.308581,0.38167 -0.560315,0.7728 -0.755203,1.17341 -0.194894,0.40061 -0.36001,0.9122 -0.495348,1.53476 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="text6159"
|
||||||
|
d="m 103.37041,81.496038 c -0.0108,-0.41143 -0.0447,-0.709181 -0.10151,-0.893251 -0.0568,-0.184057 -0.14888,-0.322105 -0.27609,-0.414144 -0.12723,-0.09202 -0.30723,-0.13804 -0.54001,-0.138047 -0.54679,7e-6 -1.03807,0.217906 -1.47387,0.653697 -0.4358,0.435804 -0.79175,1.052959 -1.067839,1.851466 -0.276098,0.798516 -0.414146,1.565899 -0.414144,2.302151 -2e-6,0.552193 0.108271,0.962273 0.324819,1.230253 0.216544,0.26797 0.541364,0.40196 0.974454,0.40196 0.49264,0 0.91896,-0.0934 1.27897,-0.28016 0.36001,-0.18676 0.74031,-0.48045 1.14093,-0.88107 l 0.49535,0.49535 c -0.50889,0.56302 -1.02183,0.97446 -1.53883,1.23431 -0.51701,0.25986 -1.07326,0.38979 -1.66876,0.38979 -0.784976,0 -1.380476,-0.23279 -1.786497,-0.69836 -0.406025,-0.46558 -0.609036,-1.14228 -0.609035,-2.030121 -1e-6,-0.579256 0.108272,-1.215359 0.324818,-1.908309 0.216545,-0.692941 0.533243,-1.301975 0.950095,-1.827104 0.416848,-0.525117 0.904079,-0.917605 1.461679,-1.177467 0.55761,-0.259847 1.15311,-0.389775 1.78651,-0.389783 0.72,8e-6 1.38318,0.08121 1.98951,0.243614 l -0.3979,1.835225 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="path6295"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 23.340222,41.579216 79.968958,8.8646423" />
|
||||||
|
<path
|
||||||
|
id="path6297"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 6.6959654,8.2907023 95.656649,41.579216" />
|
||||||
|
<path
|
||||||
|
id="path6340"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 53.339298,22.223954 c 1.637761,1.02487 2.135171,3.18585 1.11029,4.82361 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z" />
|
||||||
|
<path
|
||||||
|
id="path6348"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 7.2699053,8.4820153 22.957596,124.60918" />
|
||||||
|
<path
|
||||||
|
id="path6350"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 23.148909,41.005275 7.8438452,90.364103" />
|
||||||
|
<path
|
||||||
|
id="path6352"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 16.918958,63.268951 c 1.63776,1.02487 2.13517,3.18585 1.11029,4.82361 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z" />
|
||||||
|
<path
|
||||||
|
id="path6376"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 23.148909,42.727095 95.082708,124.41787" />
|
||||||
|
<path
|
||||||
|
id="path6378"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 95.082708,42.727095 23.148909,124.41787" />
|
||||||
|
<path
|
||||||
|
id="path6383"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 60.951439,80.425152 c 1.63776,1.02487 2.13517,3.18585 1.11029,4.823611 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.185861 -1.11029,-4.823611 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 16 KiB |
110
src/svgs/bravais/oI.svg
Normal file
@ -0,0 +1,110 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
id="svg2379"
|
||||||
|
height="142.21001"
|
||||||
|
width="107.62"
|
||||||
|
version="1.0">
|
||||||
|
<metadata
|
||||||
|
id="metadata7949">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<defs
|
||||||
|
id="defs2381" />
|
||||||
|
<path
|
||||||
|
id="path6391"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="M 23.914162,124.99181 79.203705,8.2907023" />
|
||||||
|
<path
|
||||||
|
id="path6393"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="M 8.0351585,7.7167623 95.082708,124.99181" />
|
||||||
|
<path
|
||||||
|
id="path6395"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="M 7.078592,90.172793 95.082708,42.535782" />
|
||||||
|
<path
|
||||||
|
id="path6397"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="M 79.586331,89.981483 23.340222,42.344469" />
|
||||||
|
<path
|
||||||
|
id="path3635"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 82.521602,87.910343 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3637"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 96.404447,124.43888 0.03125,-0.28125 -0.125,-0.28125 -16.218755,-34.374997 -0.25,-0.5 h -0.53125 -71.8727782 -0.71875 l -0.15625,0.71875 1.59375,1.03125 H 78.748192 l 15.875005,33.624997 z" />
|
||||||
|
<path
|
||||||
|
id="path3639"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 79.759517,5.8542083 80.049922,89.408583" />
|
||||||
|
<path
|
||||||
|
id="path3623"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 7.3926238,93.529773 c -1.91792,0.23278 -3.66342,-1.13487 -3.89621,-3.05279 -0.23278,-1.91793 1.13487,-3.66343 3.0528,-3.89621 1.91792,-0.23278 3.6634302,1.13487 3.8962102,3.05279 0.232779,1.91793 -1.1348702,3.66343 -3.0528002,3.89621 z" />
|
||||||
|
<path
|
||||||
|
id="path3599"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 6.1314108,7.3568183 -0.022577,82.5937547 -0.03125,0.28125 0.125,0.28125 16.2187492,34.374997 0.25,0.5 h 0.53125 71.872784 0.71875 l 0.15625,-0.71875 0.02256,-82.125002 -1.71875,-0.34375 0.10244,81.437502 H 23.765083 L 7.8900838,90.013073 7.8501608,7.7005683 Z" />
|
||||||
|
<path
|
||||||
|
id="path3625"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 26.110073,126.33733 c -1.03411,1.63194 -3.19786,2.11714 -4.82981,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19787,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path2430"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 5.7914738,7.1380683 0.59375,1.25 16.7187502,34.3749997 0.25,0.5 h 0.53125 71.872773 1.40625 l -0.59375,-1.25 -16.249991,-34.3749997 -0.21875,-0.5 h -0.5625 -72.3415322 z m 2.8125,1.75 H 79.008006 L 94.382997,41.513068 H 24.478974 Z" />
|
||||||
|
<path
|
||||||
|
id="path3627"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 97.745907,122.33128 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.222365,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3611"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 93.162515,45.276684 c -1.63194,-1.03411 -2.117145,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z" />
|
||||||
|
<path
|
||||||
|
id="path3613"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 20.186726,40.559868 c 1.02487,-1.63776 3.18585,-2.13517 4.82361,-1.11029 1.63776,1.02488 2.13517,3.18586 1.11029,4.82362 -1.02488,1.63775 -3.18586,2.13516 -4.82361,1.11029 -1.63776,-1.02488 -2.13517,-3.18586 -1.11029,-4.82362 z" />
|
||||||
|
<path
|
||||||
|
id="path3609"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 82.768025,9.8386583 c -1.03411,1.6319397 -3.19786,2.1171397 -4.829813,1.0830297 -1.63194,-1.0341097 -2.11714,-3.1978597 -1.08303,-4.8298097 1.03411,-1.63194 3.197873,-2.11714 4.829813,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path3615"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 8.8272928,5.0951283 c 1.6377602,1.02487 2.1351702,3.18585 1.11029,4.82361 -1.02488,1.6377597 -3.18586,2.1351697 -4.82362,1.1102897 -1.63775,-1.02488 -2.13516,-3.1858597 -1.11029,-4.8236097 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z" />
|
||||||
|
<path
|
||||||
|
id="path6134"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 23.283068,42.589375 0.290405,83.554365" />
|
||||||
|
<path
|
||||||
|
id="text6151"
|
||||||
|
d="m 9.1218715,103.77982 0.7470827,-0.53595 0.5197098,0.12993 -1.1937083,5.14837 c -0.1191071,0.5143 -0.1786571,0.91491 -0.1786502,1.20183 -6.9e-6,0.21655 0.035182,0.37354 0.105566,0.47099 0.07037,0.0974 0.1813499,0.14617 0.3329391,0.14616 0.1624018,1e-5 0.3356382,-0.0663 0.5197097,-0.19895 0.1840557,-0.13263 0.4439107,-0.38572 0.7795647,-0.75926 l 0.462866,0.45475 c -0.487236,0.51971 -0.902733,0.88919 -1.246491,1.10844 -0.3437738,0.21925 -0.7159613,0.32888 -1.1165638,0.32888 -0.3356522,0 -0.6036273,-0.11098 -0.8039259,-0.33294 -0.2003105,-0.22196 -0.3004628,-0.517 -0.3004572,-0.88513 -5.6e-6,-0.29775 0.062251,-0.61445 0.1867707,-0.9501 l -0.1055661,-0.0325 c -0.5197148,0.75791 -1.0123558,1.31281 -1.4779244,1.6647 -0.4655771,0.35188 -0.9582181,0.52783 -1.4779245,0.52783 -0.5955029,0 -1.0570154,-0.22467 -1.3845392,-0.674 -0.3275264,-0.44933 -0.4912889,-1.08002 -0.491288,-1.89207 -9e-7,-0.93114 0.1827094,-1.82575 0.5481313,-2.68381 0.3654191,-0.85806 0.867534,-1.53476 1.5063461,-2.03012 0.6388063,-0.49534 1.3506996,-0.74301 2.1356821,-0.74302 0.3518814,1e-5 0.6807598,0.0393 0.9866364,0.11775 0.3058644,0.0785 0.6212088,0.2179 0.946034,0.4182 z m -0.7146008,2.4199 c 0.048716,-0.22196 0.081198,-0.41414 0.097446,-0.57656 0.016234,-0.1624 0.024355,-0.33834 0.024361,-0.52783 -6.4e-6,-0.41684 -0.089331,-0.72271 -0.2679754,-0.91761 -0.1786561,-0.19488 -0.4818198,-0.29233 -0.909492,-0.29233 -0.5576098,0 -1.0583713,0.22467 -1.5022858,0.67399 -0.443922,0.44934 -0.7903948,1.05161 -1.0394194,1.80681 -0.24903,0.7552 -0.3735437,1.50905 -0.3735414,2.26155 -2.3e-6,0.56302 0.077142,0.98393 0.2314332,1.26273 0.1542862,0.2788 0.4127874,0.4182 0.7755044,0.4182 0.3572967,0 0.7078298,-0.15429 1.0516001,-0.46286 0.3437616,-0.30858 0.6983549,-0.74844 1.0637808,-1.31958 0.3654151,-0.57114 0.6239163,-1.23025 0.7755043,-1.97733 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="text6155"
|
||||||
|
d="m 56.678533,138.68196 -0.747083,0.52783 -0.51971,-0.12993 2.103201,-9.28169 c 0.12451,-0.55218 0.186767,-0.95279 0.18677,-1.20182 -3e-6,-0.22737 -0.06903,-0.38707 -0.207072,-0.47911 -0.13805,-0.092 -0.385724,-0.14345 -0.743022,-0.15429 l 0.09745,-0.42227 2.054478,-0.0731 h 0.470987 l -1.429202,5.68433 0.105566,0.0325 c 0.52512,-0.70377 1.017761,-1.21265 1.477925,-1.52665 0.460154,-0.31398 0.920313,-0.47098 1.380479,-0.47099 0.59008,1e-5 1.048886,0.22468 1.376418,0.674 0.327518,0.44934 0.49128,1.08274 0.491288,1.90019 -8e-6,0.89326 -0.180011,1.77162 -0.540011,2.63509 -0.360014,0.86348 -0.859422,1.5483 -1.498225,2.05448 -0.638815,0.50617 -1.353416,0.75926 -2.143803,0.75926 -0.720017,0 -1.358827,-0.17594 -1.916429,-0.52783 z m 0.714601,-2.42802 c -0.08121,0.37896 -0.12181,0.74709 -0.121807,1.10439 -3e-6,0.42768 0.09338,0.73625 0.280156,0.92573 0.186767,0.18948 0.496698,0.28422 0.929793,0.28422 0.221955,0 0.433087,-0.0365 0.633396,-0.10963 0.2003,-0.0731 0.404665,-0.19354 0.613095,-0.36136 0.20842,-0.16782 0.406018,-0.38843 0.592794,-0.66182 0.186765,-0.27339 0.358648,-0.61039 0.515649,-1.011 0.15699,-0.4006 0.278797,-0.82963 0.365421,-1.28709 0.08661,-0.45745 0.129921,-0.8946 0.129928,-1.31146 -7e-6,-0.56301 -0.07986,-0.98527 -0.239554,-1.26679 -0.159709,-0.2815 -0.415503,-0.42226 -0.767384,-0.42226 -0.25986,0 -0.515655,0.0826 -0.767384,0.24767 -0.251739,0.16512 -0.531895,0.43851 -0.840468,0.82017 -0.308581,0.38167 -0.560315,0.7728 -0.755203,1.17341 -0.194894,0.40061 -0.36001,0.9122 -0.495348,1.53476 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="text6159"
|
||||||
|
d="m 103.37041,81.496038 c -0.0108,-0.41143 -0.0447,-0.709181 -0.10151,-0.893251 -0.0568,-0.184057 -0.14888,-0.322105 -0.27609,-0.414144 -0.12723,-0.09202 -0.30723,-0.13804 -0.54001,-0.138047 -0.54679,7e-6 -1.03807,0.217906 -1.47387,0.653697 -0.4358,0.435804 -0.79175,1.052959 -1.067839,1.851466 -0.276098,0.798516 -0.414146,1.565899 -0.414144,2.302151 -2e-6,0.552193 0.108271,0.962273 0.324819,1.230253 0.216544,0.26797 0.541364,0.40196 0.974454,0.40196 0.49264,0 0.91896,-0.0934 1.27897,-0.28016 0.36001,-0.18676 0.74031,-0.48045 1.14093,-0.88107 l 0.49535,0.49535 c -0.50889,0.56302 -1.02183,0.97446 -1.53883,1.23431 -0.51701,0.25986 -1.07326,0.38979 -1.66876,0.38979 -0.784976,0 -1.380476,-0.23279 -1.786497,-0.69836 -0.406025,-0.46558 -0.609036,-1.14228 -0.609035,-2.030121 -1e-6,-0.579256 0.108272,-1.215359 0.324818,-1.908309 0.216545,-0.692941 0.533243,-1.301975 0.950095,-1.827104 0.416848,-0.525117 0.904079,-0.917605 1.461679,-1.177467 0.55761,-0.259847 1.15311,-0.389775 1.78651,-0.389783 0.72,8e-6 1.38318,0.08121 1.98951,0.243614 l -0.3979,1.835225 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="path6401"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 53.713821,63.973345 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 12 KiB |
90
src/svgs/bravais/oP.svg
Normal file
@ -0,0 +1,90 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
id="svg2379"
|
||||||
|
height="142.21001"
|
||||||
|
width="107.62"
|
||||||
|
version="1.0">
|
||||||
|
<metadata
|
||||||
|
id="metadata8338">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<defs
|
||||||
|
id="defs2381" />
|
||||||
|
<path
|
||||||
|
id="path3635"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 82.521602,87.910349 c 1.22237,1.49614 1.00016,3.702467 -0.49599,4.924827 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.702467 0.49599,-4.924827 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3637"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 96.404447,124.43888 0.03125,-0.28125 -0.125,-0.28125 -16.218755,-34.374991 -0.25,-0.5 h -0.53125 -71.8727782 -0.71875 l -0.15625,0.71875 1.59375,1.031247 H 78.748192 l 15.875005,33.624994 z" />
|
||||||
|
<path
|
||||||
|
id="path3639"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 79.759517,5.8542143 80.049922,89.408589" />
|
||||||
|
<path
|
||||||
|
id="path3623"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 7.3926238,93.529776 c -1.91792,0.23278 -3.66342,-1.13487 -3.89621,-3.05279 -0.23278,-1.917927 1.13487,-3.663427 3.0528,-3.896207 1.91792,-0.23278 3.6634302,1.13487 3.8962102,3.05279 0.232779,1.917927 -1.1348702,3.663427 -3.0528002,3.896207 z" />
|
||||||
|
<path
|
||||||
|
id="path3599"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 6.1314108,7.3568243 -0.022577,82.5937547 -0.03125,0.281247 0.125,0.28125 16.2187492,34.374994 0.25,0.5 h 0.53125 71.872784 0.71875 l 0.15625,-0.71875 0.02256,-82.124996 -1.71875,-0.34375 0.10244,81.437496 H 23.765083 L 7.8900838,90.013076 7.8501608,7.7005743 Z" />
|
||||||
|
<path
|
||||||
|
id="path3625"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 26.110073,126.33733 c -1.03411,1.63194 -3.19786,2.11714 -4.82981,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19787,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path2430"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 5.7914738,7.1380743 0.59375,1.25 16.7187502,34.3749997 0.25,0.5 h 0.53125 71.872773 1.40625 l -0.59375,-1.25 -16.249991,-34.3749997 -0.21875,-0.5 h -0.5625 -72.3415322 z m 2.8125,1.75 H 79.008006 L 94.382997,41.513074 H 24.478974 Z" />
|
||||||
|
<path
|
||||||
|
id="path3627"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 97.745907,122.33128 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.222365,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3611"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 93.162517,45.276694 c -1.63194,-1.03411 -2.117145,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z" />
|
||||||
|
<path
|
||||||
|
id="path3613"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 20.186726,40.559874 c 1.02487,-1.63776 3.18585,-2.13517 4.82361,-1.11029 1.63776,1.02488 2.13517,3.18586 1.11029,4.82362 -1.02488,1.63775 -3.18586,2.13516 -4.82361,1.11029 -1.63776,-1.02488 -2.13517,-3.18586 -1.11029,-4.82362 z" />
|
||||||
|
<path
|
||||||
|
id="path3609"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 82.768025,9.8386643 c -1.03411,1.6319397 -3.19786,2.1171397 -4.829813,1.0830297 -1.63194,-1.0341097 -2.11714,-3.1978597 -1.08303,-4.8298097 1.03411,-1.6319397 3.197873,-2.1171397 4.829813,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path3615"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 8.8272928,5.0951343 c 1.6377602,1.02487 2.1351702,3.18585 1.11029,4.82361 -1.02488,1.6377597 -3.18586,2.1351697 -4.82362,1.1102897 -1.63775,-1.02488 -2.13516,-3.1858597 -1.11029,-4.8236097 1.02488,-1.6377597 3.18586,-2.1351697 4.82362,-1.11029 z" />
|
||||||
|
<path
|
||||||
|
id="path6134"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 23.283068,42.589381 0.290405,83.554359" />
|
||||||
|
<path
|
||||||
|
id="text6151"
|
||||||
|
d="m 9.1218715,103.77982 0.7470827,-0.53595 0.5197098,0.12993 -1.1937083,5.14837 c -0.1191071,0.5143 -0.1786571,0.91491 -0.1786502,1.20183 -6.9e-6,0.21655 0.035182,0.37354 0.105566,0.47099 0.07037,0.0974 0.1813499,0.14617 0.3329391,0.14616 0.1624018,1e-5 0.3356382,-0.0663 0.5197097,-0.19895 0.1840557,-0.13263 0.4439107,-0.38572 0.7795647,-0.75926 l 0.462866,0.45475 c -0.487236,0.51971 -0.902733,0.88919 -1.246491,1.10844 -0.3437738,0.21925 -0.7159613,0.32888 -1.1165638,0.32888 -0.3356522,0 -0.6036273,-0.11098 -0.8039259,-0.33294 -0.2003105,-0.22196 -0.3004628,-0.517 -0.3004572,-0.88513 -5.6e-6,-0.29775 0.062251,-0.61445 0.1867707,-0.9501 l -0.1055661,-0.0325 c -0.5197148,0.75791 -1.0123558,1.31281 -1.4779244,1.6647 -0.4655771,0.35188 -0.9582181,0.52783 -1.4779245,0.52783 -0.5955029,0 -1.0570154,-0.22467 -1.3845392,-0.674 -0.3275264,-0.44933 -0.4912889,-1.08002 -0.491288,-1.89207 -9e-7,-0.93114 0.1827094,-1.82575 0.5481313,-2.68381 0.3654191,-0.85806 0.867534,-1.53476 1.5063461,-2.03012 0.6388063,-0.49534 1.3506996,-0.74301 2.1356821,-0.74302 0.3518814,1e-5 0.6807598,0.0393 0.9866364,0.11775 0.3058644,0.0785 0.6212088,0.2179 0.946034,0.4182 z m -0.7146008,2.4199 c 0.048716,-0.22196 0.081198,-0.41414 0.097446,-0.57656 0.016234,-0.1624 0.024355,-0.33834 0.024361,-0.52783 -6.4e-6,-0.41684 -0.089331,-0.72271 -0.2679754,-0.91761 -0.1786561,-0.19488 -0.4818198,-0.29233 -0.909492,-0.29233 -0.5576098,0 -1.0583713,0.22467 -1.5022858,0.67399 -0.443922,0.44934 -0.7903948,1.05161 -1.0394194,1.80681 -0.24903,0.7552 -0.3735437,1.50905 -0.3735414,2.26155 -2.3e-6,0.56302 0.077142,0.98393 0.2314332,1.26273 0.1542862,0.2788 0.4127874,0.4182 0.7755044,0.4182 0.3572967,0 0.7078298,-0.15429 1.0516001,-0.46286 0.3437616,-0.30858 0.6983549,-0.74844 1.0637808,-1.31958 0.3654151,-0.57114 0.6239163,-1.23025 0.7755043,-1.97733 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="text6155"
|
||||||
|
d="m 56.678533,138.68196 -0.747083,0.52783 -0.51971,-0.12993 2.103201,-9.28169 c 0.12451,-0.55218 0.186767,-0.95279 0.18677,-1.20182 -3e-6,-0.22737 -0.06903,-0.38707 -0.207072,-0.47911 -0.13805,-0.092 -0.385724,-0.14345 -0.743022,-0.15429 l 0.09745,-0.42227 2.054478,-0.0731 h 0.470987 l -1.429202,5.68433 0.105566,0.0325 c 0.52512,-0.70377 1.017761,-1.21265 1.477925,-1.52665 0.460154,-0.31398 0.920313,-0.47098 1.380479,-0.47099 0.59008,1e-5 1.048886,0.22468 1.376418,0.674 0.327518,0.44934 0.49128,1.08274 0.491288,1.90019 -8e-6,0.89326 -0.180011,1.77162 -0.540011,2.63509 -0.360014,0.86348 -0.859422,1.5483 -1.498225,2.05448 -0.638815,0.50617 -1.353416,0.75926 -2.143803,0.75926 -0.720017,0 -1.358827,-0.17594 -1.916429,-0.52783 z m 0.714601,-2.42802 c -0.08121,0.37896 -0.12181,0.74709 -0.121807,1.10439 -3e-6,0.42768 0.09338,0.73625 0.280156,0.92573 0.186767,0.18948 0.496698,0.28422 0.929793,0.28422 0.221955,0 0.433087,-0.0365 0.633396,-0.10963 0.2003,-0.0731 0.404665,-0.19354 0.613095,-0.36136 0.20842,-0.16782 0.406018,-0.38843 0.592794,-0.66182 0.186765,-0.27339 0.358648,-0.61039 0.515649,-1.011 0.15699,-0.4006 0.278797,-0.82963 0.365421,-1.28709 0.08661,-0.45745 0.129921,-0.8946 0.129928,-1.31146 -7e-6,-0.56301 -0.07986,-0.98527 -0.239554,-1.26679 -0.159709,-0.2815 -0.415503,-0.42226 -0.767384,-0.42226 -0.25986,0 -0.515655,0.0826 -0.767384,0.24767 -0.251739,0.16512 -0.531895,0.43851 -0.840468,0.82017 -0.308581,0.38167 -0.560315,0.7728 -0.755203,1.17341 -0.194894,0.40061 -0.36001,0.9122 -0.495348,1.53476 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="text6159"
|
||||||
|
d="m 103.37041,81.496044 c -0.0108,-0.41143 -0.0447,-0.709181 -0.10151,-0.893251 -0.0568,-0.184057 -0.14888,-0.322105 -0.27609,-0.414144 -0.12723,-0.09202 -0.30723,-0.13804 -0.54001,-0.138047 -0.54679,7e-6 -1.03807,0.217906 -1.47387,0.653697 -0.4358,0.435804 -0.79175,1.052959 -1.067839,1.851466 -0.276098,0.798516 -0.414146,1.565899 -0.414144,2.302151 -2e-6,0.552193 0.108271,0.962273 0.324819,1.230253 0.216544,0.26797 0.541364,0.40196 0.974454,0.40196 0.49264,0 0.91896,-0.0934 1.27897,-0.28016 0.36001,-0.18676 0.74031,-0.48045 1.14093,-0.88107 l 0.49535,0.49535 c -0.50889,0.56302 -1.02183,0.97446 -1.53883,1.23431 -0.51701,0.25986 -1.07326,0.38979 -1.66876,0.38979 -0.784976,0 -1.380476,-0.23279 -1.786497,-0.69836 -0.406025,-0.46558 -0.609036,-1.14228 -0.609035,-2.030121 -1e-6,-0.579256 0.108272,-1.215359 0.324818,-1.908309 0.216545,-0.692941 0.533243,-1.301975 0.950095,-1.827104 0.416848,-0.525117 0.904079,-0.917605 1.461679,-1.177467 0.55761,-0.259847 1.15311,-0.389775 1.78651,-0.389783 0.72,8e-6 1.38318,0.08121 1.98951,0.243614 l -0.3979,1.835225 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 11 KiB |
114
src/svgs/bravais/oS.svg
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
id="svg2379"
|
||||||
|
height="142.21001"
|
||||||
|
width="107.62"
|
||||||
|
version="1.0">
|
||||||
|
<metadata
|
||||||
|
id="metadata8481">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<defs
|
||||||
|
id="defs2381" />
|
||||||
|
<path
|
||||||
|
id="path6342"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 23.818505,123.84393 80.447241,91.129363" />
|
||||||
|
<path
|
||||||
|
id="path6344"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 7.1742483,90.555423 96.134932,123.84393" />
|
||||||
|
<path
|
||||||
|
id="path6346"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 53.817581,104.48867 c 1.637761,1.02487 2.135171,3.18585 1.11029,4.82361 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z" />
|
||||||
|
<path
|
||||||
|
id="path3635"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 82.521602,87.910343 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3637"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 96.404447,124.43888 0.03125,-0.28125 -0.125,-0.28125 -16.218755,-34.374997 -0.25,-0.5 h -0.53125 -71.8727782 -0.71875 l -0.15625,0.71875 1.59375,1.03125 H 78.748192 l 15.875005,33.624997 z" />
|
||||||
|
<path
|
||||||
|
id="path3639"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 79.759517,5.8542083 80.049922,89.408583" />
|
||||||
|
<path
|
||||||
|
id="path3623"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 7.3926238,93.529773 c -1.91792,0.23278 -3.66342,-1.13487 -3.89621,-3.05279 -0.23278,-1.91793 1.13487,-3.66343 3.0528,-3.89621 1.91792,-0.23278 3.6634302,1.13487 3.8962102,3.05279 0.232779,1.91793 -1.1348702,3.66343 -3.0528002,3.89621 z" />
|
||||||
|
<path
|
||||||
|
id="path3599"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 6.1314108,7.3568183 -0.022577,82.5937547 -0.03125,0.28125 0.125,0.28125 16.2187492,34.374997 0.25,0.5 h 0.53125 71.872784 0.71875 l 0.15625,-0.71875 0.02256,-82.125002 -1.71875,-0.34375 0.10244,81.437502 H 23.765083 L 7.8900838,90.013073 7.8501608,7.7005683 Z" />
|
||||||
|
<path
|
||||||
|
id="path3625"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 26.110073,126.33733 c -1.03411,1.63194 -3.19786,2.11714 -4.82981,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19787,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path2430"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 5.7914738,7.1380683 0.59375,1.25 16.7187502,34.3749997 0.25,0.5 h 0.53125 71.872773 1.40625 l -0.59375,-1.25 -16.249991,-34.3749997 -0.21875,-0.5 h -0.5625 -72.3415322 z m 2.8125,1.75 H 79.008006 L 94.382997,41.513068 H 24.478974 Z" />
|
||||||
|
<path
|
||||||
|
id="path3627"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 97.745907,122.33128 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.222365,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3611"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 93.162517,45.276688 c -1.63194,-1.03411 -2.117145,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 -1.03411,1.63194 -3.19787,2.11714 -4.82981,1.08303 z" />
|
||||||
|
<path
|
||||||
|
id="path3613"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 20.186726,40.559868 c 1.02487,-1.63776 3.18585,-2.13517 4.82361,-1.11029 1.63776,1.02488 2.13517,3.18586 1.11029,4.82362 -1.02488,1.63775 -3.18586,2.13516 -4.82361,1.11029 -1.63776,-1.02488 -2.13517,-3.18586 -1.11029,-4.82362 z" />
|
||||||
|
<path
|
||||||
|
id="path3609"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 82.768025,9.8386583 c -1.03411,1.6319397 -3.19786,2.1171397 -4.829813,1.0830297 -1.63194,-1.0341097 -2.11714,-3.1978597 -1.08303,-4.8298097 1.03411,-1.63194 3.197873,-2.11714 4.829813,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path3615"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 8.8272928,5.0951283 c 1.6377602,1.02487 2.1351702,3.18585 1.11029,4.82361 -1.02488,1.6377597 -3.18586,2.1351697 -4.82362,1.1102897 -1.63775,-1.02488 -2.13516,-3.1858597 -1.11029,-4.8236097 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z" />
|
||||||
|
<path
|
||||||
|
id="path6134"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 23.283068,42.589375 0.290405,83.554365" />
|
||||||
|
<path
|
||||||
|
id="text6151"
|
||||||
|
d="m 9.1218715,103.77982 0.7470827,-0.53595 0.5197098,0.12993 -1.1937083,5.14837 c -0.1191071,0.5143 -0.1786571,0.91491 -0.1786502,1.20183 -6.9e-6,0.21655 0.035182,0.37354 0.105566,0.47099 0.07037,0.0974 0.1813499,0.14617 0.3329391,0.14616 0.1624018,1e-5 0.3356382,-0.0663 0.5197097,-0.19895 0.1840557,-0.13263 0.4439107,-0.38572 0.7795647,-0.75926 l 0.462866,0.45475 c -0.487236,0.51971 -0.902733,0.88919 -1.246491,1.10844 -0.3437738,0.21925 -0.7159613,0.32888 -1.1165638,0.32888 -0.3356522,0 -0.6036273,-0.11098 -0.8039259,-0.33294 -0.2003105,-0.22196 -0.3004628,-0.517 -0.3004572,-0.88513 -5.6e-6,-0.29775 0.062251,-0.61445 0.1867707,-0.9501 l -0.1055661,-0.0325 c -0.5197148,0.75791 -1.0123558,1.31281 -1.4779244,1.6647 -0.4655771,0.35188 -0.9582181,0.52783 -1.4779245,0.52783 -0.5955029,0 -1.0570154,-0.22467 -1.3845392,-0.674 -0.3275264,-0.44933 -0.4912889,-1.08002 -0.491288,-1.89207 -9e-7,-0.93114 0.1827094,-1.82575 0.5481313,-2.68381 0.3654191,-0.85806 0.867534,-1.53476 1.5063461,-2.03012 0.6388063,-0.49534 1.3506996,-0.74301 2.1356821,-0.74302 0.3518814,1e-5 0.6807598,0.0393 0.9866364,0.11775 0.3058644,0.0785 0.6212088,0.2179 0.946034,0.4182 z m -0.7146008,2.4199 c 0.048716,-0.22196 0.081198,-0.41414 0.097446,-0.57656 0.016234,-0.1624 0.024355,-0.33834 0.024361,-0.52783 -6.4e-6,-0.41684 -0.089331,-0.72271 -0.2679754,-0.91761 -0.1786561,-0.19488 -0.4818198,-0.29233 -0.909492,-0.29233 -0.5576098,0 -1.0583713,0.22467 -1.5022858,0.67399 -0.443922,0.44934 -0.7903948,1.05161 -1.0394194,1.80681 -0.24903,0.7552 -0.3735437,1.50905 -0.3735414,2.26155 -2.3e-6,0.56302 0.077142,0.98393 0.2314332,1.26273 0.1542862,0.2788 0.4127874,0.4182 0.7755044,0.4182 0.3572967,0 0.7078298,-0.15429 1.0516001,-0.46286 0.3437616,-0.30858 0.6983549,-0.74844 1.0637808,-1.31958 0.3654151,-0.57114 0.6239163,-1.23025 0.7755043,-1.97733 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="text6155"
|
||||||
|
d="m 56.678533,138.68196 -0.747083,0.52783 -0.51971,-0.12993 2.103201,-9.28169 c 0.12451,-0.55218 0.186767,-0.95279 0.18677,-1.20182 -3e-6,-0.22737 -0.06903,-0.38707 -0.207072,-0.47911 -0.13805,-0.092 -0.385724,-0.14345 -0.743022,-0.15429 l 0.09745,-0.42227 2.054478,-0.0731 h 0.470987 l -1.429202,5.68433 0.105566,0.0325 c 0.52512,-0.70377 1.017761,-1.21265 1.477925,-1.52665 0.460154,-0.31398 0.920313,-0.47098 1.380479,-0.47099 0.59008,1e-5 1.048886,0.22468 1.376418,0.674 0.327518,0.44934 0.49128,1.08274 0.491288,1.90019 -8e-6,0.89326 -0.180011,1.77162 -0.540011,2.63509 -0.360014,0.86348 -0.859422,1.5483 -1.498225,2.05448 -0.638815,0.50617 -1.353416,0.75926 -2.143803,0.75926 -0.720017,0 -1.358827,-0.17594 -1.916429,-0.52783 z m 0.714601,-2.42802 c -0.08121,0.37896 -0.12181,0.74709 -0.121807,1.10439 -3e-6,0.42768 0.09338,0.73625 0.280156,0.92573 0.186767,0.18948 0.496698,0.28422 0.929793,0.28422 0.221955,0 0.433087,-0.0365 0.633396,-0.10963 0.2003,-0.0731 0.404665,-0.19354 0.613095,-0.36136 0.20842,-0.16782 0.406018,-0.38843 0.592794,-0.66182 0.186765,-0.27339 0.358648,-0.61039 0.515649,-1.011 0.15699,-0.4006 0.278797,-0.82963 0.365421,-1.28709 0.08661,-0.45745 0.129921,-0.8946 0.129928,-1.31146 -7e-6,-0.56301 -0.07986,-0.98527 -0.239554,-1.26679 -0.159709,-0.2815 -0.415503,-0.42226 -0.767384,-0.42226 -0.25986,0 -0.515655,0.0826 -0.767384,0.24767 -0.251739,0.16512 -0.531895,0.43851 -0.840468,0.82017 -0.308581,0.38167 -0.560315,0.7728 -0.755203,1.17341 -0.194894,0.40061 -0.36001,0.9122 -0.495348,1.53476 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="text6159"
|
||||||
|
d="m 103.37041,81.496038 c -0.0108,-0.41143 -0.0447,-0.709181 -0.10151,-0.893251 -0.0568,-0.184057 -0.14888,-0.322105 -0.27609,-0.414144 -0.12723,-0.09202 -0.30723,-0.13804 -0.54001,-0.138047 -0.54679,7e-6 -1.03807,0.217906 -1.47387,0.653697 -0.4358,0.435804 -0.79175,1.052959 -1.067839,1.851466 -0.276098,0.798516 -0.414146,1.565899 -0.414144,2.302151 -2e-6,0.552193 0.108271,0.962273 0.324819,1.230253 0.216544,0.26797 0.541364,0.40196 0.974454,0.40196 0.49264,0 0.91896,-0.0934 1.27897,-0.28016 0.36001,-0.18676 0.74031,-0.48045 1.14093,-0.88107 l 0.49535,0.49535 c -0.50889,0.56302 -1.02183,0.97446 -1.53883,1.23431 -0.51701,0.25986 -1.07326,0.38979 -1.66876,0.38979 -0.784976,0 -1.380476,-0.23279 -1.786497,-0.69836 -0.406025,-0.46558 -0.609036,-1.14228 -0.609035,-2.030121 -1e-6,-0.579256 0.108272,-1.215359 0.324818,-1.908309 0.216545,-0.692941 0.533243,-1.301975 0.950095,-1.827104 0.416848,-0.525117 0.904079,-0.917605 1.461679,-1.177467 0.55761,-0.259847 1.15311,-0.389775 1.78651,-0.389783 0.72,8e-6 1.38318,0.08121 1.98951,0.243614 l -0.3979,1.835225 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="path6295"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 23.340222,41.579216 79.968958,8.8646423" />
|
||||||
|
<path
|
||||||
|
id="path6297"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 6.6959654,8.2907023 95.656649,41.579216" />
|
||||||
|
<path
|
||||||
|
id="path6340"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 53.339298,22.223954 c 1.637761,1.02487 2.135171,3.18585 1.11029,4.82361 -1.02488,1.63776 -3.18586,2.13517 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.63776 3.18586,-2.13517 4.82362,-1.11029 z" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 12 KiB |
609
src/svgs/bravais/oc.svg
Normal file
@ -0,0 +1,609 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||||
|
width="210"
|
||||||
|
height="170"
|
||||||
|
id="svg6244"
|
||||||
|
version="1.0">
|
||||||
|
<defs
|
||||||
|
id="defs6246">
|
||||||
|
<marker
|
||||||
|
orient="auto"
|
||||||
|
refY="0"
|
||||||
|
refX="0"
|
||||||
|
id="Arrow1Lend"
|
||||||
|
style="overflow:visible">
|
||||||
|
<path
|
||||||
|
id="path7384"
|
||||||
|
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||||
|
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;marker-start:none"
|
||||||
|
transform="matrix(-0.8,0,0,-0.8,-10,0)" />
|
||||||
|
</marker>
|
||||||
|
<linearGradient
|
||||||
|
id="linearGradient12908">
|
||||||
|
<stop
|
||||||
|
style="stop-color: rgb(254, 254, 254); stop-opacity: 1;"
|
||||||
|
offset="0"
|
||||||
|
id="stop12910" />
|
||||||
|
<stop
|
||||||
|
id="stop19774"
|
||||||
|
offset="0.5"
|
||||||
|
style="stop-color: rgb(143, 216, 141); stop-opacity: 1;" />
|
||||||
|
<stop
|
||||||
|
style="stop-color: rgb(15, 176, 12); stop-opacity: 1;"
|
||||||
|
offset="1"
|
||||||
|
id="stop12912" />
|
||||||
|
</linearGradient>
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-96.566751,-943.6387)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4330"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-129.2915,-814.0722)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4332"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-10.659813,-943.4041)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4334"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-43.38455,-813.8375)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4336"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-182.46765,-943.3606)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4338"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-215.19238,-813.794)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4340"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-63.84101,-1070.4388)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4342"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,22.060867,-1070.204)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4344"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-149.7429,-1070.1606)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4346"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,75.238057,-942.8207)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4348"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,42.513317,-813.2542)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4350"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,107.96276,-1069.6206)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4352"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4354"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,129.62615,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4356"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-67.54057,-341.33367)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4358"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-1.272793,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4360"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,63.358554,-341.33367)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4362"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,260.52512,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4364"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,194.26078,-341.28622)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4366"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-2.912313,-455.86264)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4368"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,127.98664,-455.86264)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4370"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,258.88889,-455.8152)" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4372"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4374"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4376"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4378"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4380"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4382"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4384"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4386"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4388"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
</defs>
|
||||||
|
<metadata
|
||||||
|
id="metadata6249">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.63867"
|
||||||
|
cx="-96.56675"
|
||||||
|
id="path19605"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4330);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-814.0722"
|
||||||
|
cx="-129.2915"
|
||||||
|
id="path19607"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4332);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.40411"
|
||||||
|
cx="-10.659813"
|
||||||
|
id="path19609"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4334);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.83752"
|
||||||
|
cx="-43.384548"
|
||||||
|
id="path19611"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4336);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.3606"
|
||||||
|
cx="-182.46765"
|
||||||
|
id="path19613"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4338);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.79401"
|
||||||
|
cx="-215.19238"
|
||||||
|
id="path19615"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4340);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.4388"
|
||||||
|
cx="-63.841011"
|
||||||
|
id="path19617"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4342);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.204"
|
||||||
|
cx="22.060867"
|
||||||
|
id="path19619"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4344);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.1606"
|
||||||
|
cx="-149.7429"
|
||||||
|
id="path19621"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4346);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-942.82068"
|
||||||
|
cx="75.23806"
|
||||||
|
id="path19725"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4348);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.25421"
|
||||||
|
cx="42.513317"
|
||||||
|
id="path19727"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4350);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1069.6206"
|
||||||
|
cx="107.96276"
|
||||||
|
id="path19729"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4352);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6305"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4372);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6307"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4374);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6277"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4376);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6279"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4378);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path6259"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4380);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path21752"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4382);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6351"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4384);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6357"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4386);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path6363"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4388);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="129.62614"
|
||||||
|
id="path17337"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4354);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.33368"
|
||||||
|
cx="-67.540573"
|
||||||
|
id="path17339"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4356);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="-1.2727931"
|
||||||
|
id="path17341"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4358);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.33368"
|
||||||
|
cx="63.358555"
|
||||||
|
id="path17389"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4360);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="260.52512"
|
||||||
|
id="path17395"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4362);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.28622"
|
||||||
|
cx="194.26077"
|
||||||
|
id="path17407"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4364);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.86264"
|
||||||
|
cx="-2.912313"
|
||||||
|
id="path17415"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4366);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.86264"
|
||||||
|
cx="127.98664"
|
||||||
|
id="path17425"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4368);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.81519"
|
||||||
|
cx="258.88889"
|
||||||
|
id="path17429"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4370);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse3754"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="27.090546"
|
||||||
|
cy="12.544937" />
|
||||||
|
<path
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||||
|
d="M 27.163874,142.86284 V 10.579903"
|
||||||
|
id="path4472" />
|
||||||
|
<text
|
||||||
|
transform="scale(1.0000332,0.9999668)"
|
||||||
|
id="text4476"
|
||||||
|
y="80.796417"
|
||||||
|
x="-1.1485735"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none"
|
||||||
|
xml:space="preserve"><tspan
|
||||||
|
y="80.796417"
|
||||||
|
x="-1.1485735"
|
||||||
|
id="tspan4478">b</tspan></text>
|
||||||
|
<path
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||||
|
d="M 27.163874,143.62309 H 197.45918"
|
||||||
|
id="path4484" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none"
|
||||||
|
x="101.32594"
|
||||||
|
y="168.98795"
|
||||||
|
id="text4488"
|
||||||
|
transform="scale(1.0000332,0.9999668)"><tspan
|
||||||
|
id="tspan4490"
|
||||||
|
x="101.32594"
|
||||||
|
y="168.98795">a</tspan></text>
|
||||||
|
<path
|
||||||
|
style="fill:none;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 26.704774,102.3913 h 38.78627 v 40.85958"
|
||||||
|
id="path823" />
|
||||||
|
<rect
|
||||||
|
y="11.730856"
|
||||||
|
x="27.152681"
|
||||||
|
height="131.66624"
|
||||||
|
width="170.57536"
|
||||||
|
id="rect3923"
|
||||||
|
style="opacity:0.98;fill:none;fill-opacity:0.305882;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse380"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="197.72707"
|
||||||
|
cy="12.544937" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse382"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="197.72707"
|
||||||
|
cy="143.64726" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse384"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="27.090122"
|
||||||
|
cy="143.64726" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse176"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="112.44036"
|
||||||
|
cy="77.56398" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 28 KiB |
602
src/svgs/bravais/op.svg
Normal file
@ -0,0 +1,602 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||||
|
width="210"
|
||||||
|
height="170"
|
||||||
|
id="svg6244"
|
||||||
|
version="1.0">
|
||||||
|
<defs
|
||||||
|
id="defs6246">
|
||||||
|
<marker
|
||||||
|
orient="auto"
|
||||||
|
refY="0"
|
||||||
|
refX="0"
|
||||||
|
id="Arrow1Lend"
|
||||||
|
style="overflow:visible">
|
||||||
|
<path
|
||||||
|
id="path7384"
|
||||||
|
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||||
|
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;marker-start:none"
|
||||||
|
transform="matrix(-0.8,0,0,-0.8,-10,0)" />
|
||||||
|
</marker>
|
||||||
|
<linearGradient
|
||||||
|
id="linearGradient12908">
|
||||||
|
<stop
|
||||||
|
style="stop-color: rgb(254, 254, 254); stop-opacity: 1;"
|
||||||
|
offset="0"
|
||||||
|
id="stop12910" />
|
||||||
|
<stop
|
||||||
|
id="stop19774"
|
||||||
|
offset="0.5"
|
||||||
|
style="stop-color: rgb(143, 216, 141); stop-opacity: 1;" />
|
||||||
|
<stop
|
||||||
|
style="stop-color: rgb(15, 176, 12); stop-opacity: 1;"
|
||||||
|
offset="1"
|
||||||
|
id="stop12912" />
|
||||||
|
</linearGradient>
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-96.566751,-943.6387)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4330"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-129.2915,-814.0722)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4332"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-10.659813,-943.4041)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4334"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-43.38455,-813.8375)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4336"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-182.46765,-943.3606)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4338"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-215.19238,-813.794)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4340"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-63.84101,-1070.4388)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4342"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,22.060867,-1070.204)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4344"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-149.7429,-1070.1606)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4346"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,75.238057,-942.8207)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4348"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,42.513317,-813.2542)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4350"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,107.96276,-1069.6206)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4352"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4354"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,129.62615,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4356"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-67.54057,-341.33367)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4358"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-1.272793,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4360"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,63.358554,-341.33367)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4362"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,260.52512,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4364"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,194.26078,-341.28622)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4366"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-2.912313,-455.86264)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4368"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,127.98664,-455.86264)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4370"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,258.88889,-455.8152)" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4372"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4374"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4376"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4378"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4380"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4382"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4384"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4386"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4388"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
</defs>
|
||||||
|
<metadata
|
||||||
|
id="metadata6249">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.63867"
|
||||||
|
cx="-96.56675"
|
||||||
|
id="path19605"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4330);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-814.0722"
|
||||||
|
cx="-129.2915"
|
||||||
|
id="path19607"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4332);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.40411"
|
||||||
|
cx="-10.659813"
|
||||||
|
id="path19609"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4334);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.83752"
|
||||||
|
cx="-43.384548"
|
||||||
|
id="path19611"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4336);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.3606"
|
||||||
|
cx="-182.46765"
|
||||||
|
id="path19613"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4338);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.79401"
|
||||||
|
cx="-215.19238"
|
||||||
|
id="path19615"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4340);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.4388"
|
||||||
|
cx="-63.841011"
|
||||||
|
id="path19617"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4342);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.204"
|
||||||
|
cx="22.060867"
|
||||||
|
id="path19619"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4344);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.1606"
|
||||||
|
cx="-149.7429"
|
||||||
|
id="path19621"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4346);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-942.82068"
|
||||||
|
cx="75.23806"
|
||||||
|
id="path19725"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4348);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.25421"
|
||||||
|
cx="42.513317"
|
||||||
|
id="path19727"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4350);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1069.6206"
|
||||||
|
cx="107.96276"
|
||||||
|
id="path19729"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4352);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6305"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4372);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6307"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4374);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6277"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4376);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6279"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4378);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path6259"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4380);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path21752"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4382);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6351"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4384);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6357"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4386);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path6363"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4388);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="129.62614"
|
||||||
|
id="path17337"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4354);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.33368"
|
||||||
|
cx="-67.540573"
|
||||||
|
id="path17339"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4356);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="-1.2727931"
|
||||||
|
id="path17341"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4358);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.33368"
|
||||||
|
cx="63.358555"
|
||||||
|
id="path17389"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4360);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="260.52512"
|
||||||
|
id="path17395"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4362);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.28622"
|
||||||
|
cx="194.26077"
|
||||||
|
id="path17407"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4364);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.86264"
|
||||||
|
cx="-2.912313"
|
||||||
|
id="path17415"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4366);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.86264"
|
||||||
|
cx="127.98664"
|
||||||
|
id="path17425"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4368);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.81519"
|
||||||
|
cx="258.88889"
|
||||||
|
id="path17429"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4370);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse3754"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="27.090546"
|
||||||
|
cy="12.544937" />
|
||||||
|
<path
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||||
|
d="M 27.163874,142.86284 V 10.579903"
|
||||||
|
id="path4472" />
|
||||||
|
<text
|
||||||
|
transform="scale(1.0000332,0.9999668)"
|
||||||
|
id="text4476"
|
||||||
|
y="80.796417"
|
||||||
|
x="-1.1485735"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none"
|
||||||
|
xml:space="preserve"><tspan
|
||||||
|
y="80.796417"
|
||||||
|
x="-1.1485735"
|
||||||
|
id="tspan4478">b</tspan></text>
|
||||||
|
<path
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||||
|
d="M 27.163874,143.62309 H 197.45918"
|
||||||
|
id="path4484" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none"
|
||||||
|
x="101.32594"
|
||||||
|
y="168.98795"
|
||||||
|
id="text4488"
|
||||||
|
transform="scale(1.0000332,0.9999668)"><tspan
|
||||||
|
id="tspan4490"
|
||||||
|
x="101.32594"
|
||||||
|
y="168.98795">a</tspan></text>
|
||||||
|
<path
|
||||||
|
style="fill:none;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 26.704774,102.3913 h 38.78627 v 40.85958"
|
||||||
|
id="path823" />
|
||||||
|
<rect
|
||||||
|
y="11.730856"
|
||||||
|
x="27.152681"
|
||||||
|
height="131.66624"
|
||||||
|
width="170.57536"
|
||||||
|
id="rect3923"
|
||||||
|
style="opacity:0.98;fill:none;fill-opacity:0.305882;fill-rule:nonzero;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse380"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="197.72707"
|
||||||
|
cy="12.544937" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse382"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="197.72707"
|
||||||
|
cy="143.64726" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse384"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="27.090122"
|
||||||
|
cy="143.64726" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 27 KiB |
110
src/svgs/bravais/tI.svg
Normal file
@ -0,0 +1,110 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
version="1.0"
|
||||||
|
width="107.62"
|
||||||
|
height="164.78"
|
||||||
|
id="svg2379">
|
||||||
|
<metadata
|
||||||
|
id="metadata7590">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<defs
|
||||||
|
id="defs2381" />
|
||||||
|
<path
|
||||||
|
id="path6854"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 7.0890454,115.15668 94.242603,41.764212" />
|
||||||
|
<path
|
||||||
|
id="path6858"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 23.769152,149.7679 79.551122,7.1529902" />
|
||||||
|
<path
|
||||||
|
id="path6856"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 7.0890454,6.7359882 95.076609,150.18491" />
|
||||||
|
<path
|
||||||
|
id="path6860"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 23.191842,41.090514 79.390815,115.15668" />
|
||||||
|
<path
|
||||||
|
id="path3635"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 82.521602,113.40088 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3637"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 96.404447,149.92942 0.03125,-0.28125 -0.125,-0.28125 -16.218755,-34.375 -0.25,-0.5 H 79.310692 7.4379144 6.7191643 l -0.15625,0.71875 1.5937501,1.03125 H 78.748192 l 15.875005,33.625 z" />
|
||||||
|
<path
|
||||||
|
id="path3639"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 79.759517,7.1585862 80.049922,114.89912" />
|
||||||
|
<path
|
||||||
|
id="path3623"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 7.3926244,119.02031 c -1.9179201,0.23278 -3.6634201,-1.13487 -3.8962101,-3.05279 -0.23278,-1.91793 1.13487,-3.66343 3.0528,-3.89621 1.9179201,-0.23278 3.6634297,1.13487 3.8962097,3.05279 0.232779,1.91793 -1.1348696,3.66343 -3.0527996,3.89621 z" />
|
||||||
|
<path
|
||||||
|
id="path3599"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 6.1314113,5.7421772 -0.022577,109.6989328 -0.03125,0.28125 0.125,0.28125 16.2187487,34.375 0.25,0.5 h 0.53125 71.872784 0.71875 l 0.15625,-0.71875 0.02256,-109.230183 -1.71875,-0.34375 0.10244,108.542683 H 23.765083 L 7.8900844,115.50361 7.8501614,6.0859272 Z" />
|
||||||
|
<path
|
||||||
|
id="path3625"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 26.110073,151.82787 c -1.03411,1.63194 -3.19786,2.11714 -4.82981,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19787,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path2430"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 5.7914743,5.9404302 0.59375,1.25 16.7187497,34.3749998 0.25,0.5 h 0.53125 71.872773 1.406251 l -0.593751,-1.25 -16.249991,-34.3749998 -0.21875,-0.5 h -0.5625 -72.3415316 z m 2.8125001,1.75 H 79.008006 L 94.382997,40.31543 H 24.478974 Z" />
|
||||||
|
<path
|
||||||
|
id="path3627"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 97.745908,147.82182 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.496141,1.22236 -3.702471,1.00016 -4.924831,-0.49599 -1.222365,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.924831,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3611"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 93.162519,44.079048 c -1.63194,-1.03411 -2.117145,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.19786,-2.11714 4.82981,-1.08303 1.631939,1.03411 2.117139,3.19787 1.083029,4.82981 -1.034109,1.63194 -3.197869,2.11714 -4.829809,1.08303 z" />
|
||||||
|
<path
|
||||||
|
id="path3613"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 20.186726,39.36223 c 1.02487,-1.63776 3.18585,-2.13517 4.82361,-1.11029 1.63776,1.02488 2.13517,3.18586 1.11029,4.82362 -1.02488,1.63775 -3.18586,2.13516 -4.82361,1.11029 -1.63776,-1.02488 -2.13517,-3.18586 -1.11029,-4.82362 z" />
|
||||||
|
<path
|
||||||
|
id="path3609"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 82.768025,8.6410202 c -1.03411,1.6319398 -3.19786,2.1171398 -4.829813,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.197873,-2.11714 4.829813,-1.08303 1.63194,1.03411 2.11714,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path3615"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 8.8272934,3.8974902 c 1.6377596,1.02487 2.1351696,3.18585 1.11029,4.82361 -1.02488,1.6377598 -3.1858601,2.1351698 -4.8236201,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.63776 3.1858601,-2.13517 4.8236201,-1.11029 z" />
|
||||||
|
<path
|
||||||
|
id="path6134"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 23.283068,42.225742 23.573473,151.63428" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 9.121872,129.27036 0.7470827,-0.53595 0.5197093,0.12993 -1.1937078,5.14837 c -0.1191071,0.5143 -0.1786571,0.91491 -0.1786502,1.20183 -6.9e-6,0.21655 0.035182,0.37354 0.105566,0.47099 0.07037,0.0974 0.1813499,0.14616 0.332939,0.14616 0.1624019,0 0.3356383,-0.0663 0.5197098,-0.19895 0.1840562,-0.13263 0.4439102,-0.38572 0.7795642,-0.75926 l 0.462867,0.45475 c -0.487237,0.51971 -0.902733,0.88919 -1.2464915,1.10844 -0.3437738,0.21925 -0.7159613,0.32888 -1.1165638,0.32888 -0.3356522,0 -0.6036273,-0.11098 -0.803926,-0.33294 -0.2003104,-0.22196 -0.3004627,-0.517 -0.3004571,-0.88513 -5.6e-6,-0.29775 0.062251,-0.61445 0.1867706,-0.9501 l -0.105566,-0.0325 c -0.5197149,0.75791 -1.0123559,1.31281 -1.4779245,1.6647 -0.465577,0.35188 -0.958218,0.52783 -1.4779244,0.52783 -0.5955029,0 -1.0570155,-0.22467 -1.3845392,-0.674 -0.3275264,-0.44933 -0.4912889,-1.08002 -0.4912881,-1.89207 -8e-7,-0.93114 0.1827094,-1.82575 0.5481314,-2.68381 0.3654191,-0.85806 0.867534,-1.53476 1.5063461,-2.03012 0.6388063,-0.49534 1.3506996,-0.74301 2.135682,-0.74302 0.3518814,1e-5 0.6807599,0.0393 0.9866364,0.11775 0.3058645,0.0785 0.6212089,0.2179 0.9460341,0.4182 z m -0.7146008,2.4199 c 0.048716,-0.22196 0.081198,-0.41414 0.097445,-0.57656 0.016235,-0.1624 0.024355,-0.33834 0.024361,-0.52783 -6.4e-6,-0.41684 -0.089331,-0.72271 -0.2679753,-0.91761 -0.1786561,-0.19488 -0.4818198,-0.29233 -0.909492,-0.29233 -0.5576098,0 -1.0583713,0.22467 -1.5022858,0.67399 -0.443922,0.44934 -0.7903948,1.05161 -1.0394195,1.80681 -0.2490299,0.7552 -0.3735436,1.50905 -0.3735413,2.26155 -2.3e-6,0.56302 0.077142,0.98393 0.2314332,1.26273 0.1542862,0.2788 0.4127873,0.4182 0.7755043,0.4182 0.3572968,0 0.7078298,-0.15429 1.0516002,-0.46286 0.3437616,-0.30858 0.6983548,-0.74844 1.0637808,-1.31958 0.3654151,-0.57114 0.6239163,-1.23025 0.7755043,-1.97733 z"
|
||||||
|
id="text6151" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 61.640136,154.28612 0.747083,-0.53595 0.51971,0.12993 -1.193709,5.14837 c -0.119107,0.5143 -0.178657,0.91491 -0.17865,1.20183 -7e-6,0.21655 0.03518,0.37354 0.105566,0.47099 0.07037,0.0974 0.18135,0.14617 0.332939,0.14617 0.162402,0 0.335639,-0.0663 0.51971,-0.19895 0.184056,-0.13264 0.44391,-0.38573 0.779565,-0.75927 l 0.462866,0.45475 c -0.487236,0.51971 -0.902733,0.88919 -1.246491,1.10844 -0.343774,0.21925 -0.715962,0.32888 -1.116564,0.32888 -0.335652,0 -0.603627,-0.11098 -0.803926,-0.33294 -0.20031,-0.22196 -0.300463,-0.517 -0.300457,-0.88513 -6e-6,-0.29775 0.06225,-0.61445 0.186771,-0.95009 l -0.105566,-0.0325 c -0.519715,0.75792 -1.012356,1.31281 -1.477925,1.6647 -0.465577,0.35189 -0.958218,0.52783 -1.477924,0.52783 -0.595503,0 -1.057016,-0.22467 -1.38454,-0.674 -0.327526,-0.44933 -0.491289,-1.08002 -0.491288,-1.89207 -10e-7,-0.93114 0.18271,-1.82574 0.548132,-2.68381 0.365419,-0.85806 0.867534,-1.53476 1.506346,-2.03012 0.638806,-0.49534 1.350699,-0.74301 2.135682,-0.74302 0.351881,1e-5 0.68076,0.0393 0.986636,0.11775 0.305865,0.0785 0.621209,0.2179 0.946034,0.4182 z m -0.714601,2.4199 c 0.04872,-0.22195 0.0812,-0.41414 0.09745,-0.57655 0.01624,-0.16241 0.02435,-0.33835 0.02436,-0.52783 -6e-6,-0.41685 -0.08933,-0.72272 -0.267975,-0.91762 -0.178656,-0.19488 -0.48182,-0.29233 -0.909492,-0.29233 -0.55761,0 -1.058371,0.22467 -1.502286,0.674 -0.443922,0.44933 -0.790395,1.0516 -1.039419,1.8068 -0.24903,0.75521 -0.373544,1.50906 -0.373542,2.26155 -2e-6,0.56302 0.07714,0.98393 0.231434,1.26273 0.154286,0.2788 0.412787,0.41821 0.775504,0.4182 0.357297,1e-5 0.70783,-0.15428 1.0516,-0.46286 0.343762,-0.30858 0.698355,-0.74844 1.063781,-1.31958 0.365415,-0.57113 0.623916,-1.23024 0.775504,-1.97733 z"
|
||||||
|
id="text6155" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 103.37041,93.642691 c -0.0108,-0.41143 -0.0447,-0.70918 -0.10151,-0.89325 -0.0568,-0.18405 -0.14888,-0.3221 -0.27609,-0.41414 -0.12723,-0.092 -0.30723,-0.13804 -0.54001,-0.13805 -0.54679,1e-5 -1.03807,0.21791 -1.47387,0.6537 -0.4358,0.4358 -0.79175,1.05296 -1.067839,1.85147 -0.276098,0.79851 -0.414146,1.56589 -0.414144,2.30215 -2e-6,0.55219 0.108271,0.96227 0.324819,1.23025 0.216544,0.26797 0.541364,0.40196 0.974454,0.40196 0.49264,0 0.91896,-0.0934 1.27897,-0.28016 0.36001,-0.18676 0.74031,-0.48045 1.14093,-0.88107 l 0.49535,0.49535 c -0.50889,0.56302 -1.02183,0.97446 -1.53883,1.23431 -0.51701,0.25986 -1.07326,0.38979 -1.66876,0.38979 -0.784976,0 -1.380476,-0.23279 -1.786497,-0.69836 -0.406025,-0.46558 -0.609036,-1.14228 -0.609035,-2.03012 -1e-6,-0.57926 0.108272,-1.21536 0.324818,-1.90831 0.216545,-0.69294 0.533243,-1.30198 0.950095,-1.8271 0.416848,-0.52512 0.904079,-0.91761 1.461679,-1.17747 0.55761,-0.25985 1.15311,-0.38978 1.78651,-0.38978 0.72,0 1.38318,0.0812 1.98951,0.24361 l -0.3979,1.83522 z"
|
||||||
|
id="text6159" />
|
||||||
|
<path
|
||||||
|
id="path6883"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 53.713822,76.119795 c 1.22237,1.49614 1.00016,3.70247 -0.49599,4.92483 -1.49614,1.22236 -3.70247,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.00016,-3.70247 0.49599,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 12 KiB |
90
src/svgs/bravais/tP.svg
Normal file
@ -0,0 +1,90 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
id="svg2379"
|
||||||
|
height="164.78"
|
||||||
|
width="107.62"
|
||||||
|
version="1.0">
|
||||||
|
<metadata
|
||||||
|
id="metadata7710">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<defs
|
||||||
|
id="defs2381" />
|
||||||
|
<path
|
||||||
|
id="path3635"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 82.521603,113.40087 c 1.222369,1.49614 1.000159,3.70247 -0.495991,4.92483 -1.49614,1.22236 -3.702469,1.00016 -4.92483,-0.49599 -1.22236,-1.49615 -1.000159,-3.70247 0.495991,-4.92483 1.49615,-1.22236 3.70247,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3637"
|
||||||
|
style="fill:#c0c0c0;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 96.404448,149.92941 0.03125,-0.28125 -0.125,-0.28125 -16.218755,-34.375 -0.25,-0.5 h -0.53125 -71.8727787 -0.71875 l -0.15625,0.71875 1.59375,1.03125 H 78.748193 l 15.875005,33.625 z" />
|
||||||
|
<path
|
||||||
|
id="path3639"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#c0c0c0;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 79.759518,7.1585884 80.049922,114.89911" />
|
||||||
|
<path
|
||||||
|
id="path3623"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 7.3926243,119.0203 c -1.91792,0.23278 -3.66342,-1.13487 -3.89621,-3.05279 -0.23278,-1.91793 1.13487,-3.66343 3.0528,-3.89621 1.91792,-0.23278 3.6634307,1.13487 3.8962107,3.05279 0.232779,1.91793 -1.1348707,3.66343 -3.0528007,3.89621 z" />
|
||||||
|
<path
|
||||||
|
id="path3599"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 6.1314113,5.7421794 6.1088343,115.4411 l -0.03125,0.28125 0.125,0.28125 16.2187487,34.375 0.25,0.5 h 0.53125 71.872784 0.71875 l 0.15625,-0.71875 0.02256,-109.230171 -1.71875,-0.34375 0.10244,108.542671 H 23.765083 L 7.8900843,115.5036 7.8501613,6.0859294 Z" />
|
||||||
|
<path
|
||||||
|
id="path3625"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 26.110073,151.82786 c -1.034109,1.63194 -3.197859,2.11714 -4.829809,1.08303 -1.63194,-1.03411 -2.117141,-3.19786 -1.083031,-4.82981 1.03411,-1.63194 3.19787,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.117141,3.19787 1.08303,4.82981 z" />
|
||||||
|
<path
|
||||||
|
id="path2430"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 5.7914743,5.9404324 0.59375,1.25 16.7187507,34.3749996 0.25,0.5 h 0.53125 71.872773 1.40625 l -0.59375,-1.25 -16.249992,-34.3749996 -0.21875,-0.5 h -0.5625 -72.3415317 z m 2.8125,1.75 H 79.008006 L 94.382998,40.315432 H 24.478975 Z" />
|
||||||
|
<path
|
||||||
|
id="path3627"
|
||||||
|
style="fill:#000000;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 97.745908,147.82181 c 1.222369,1.49614 1.000159,3.70247 -0.495991,4.92483 -1.49614,1.22236 -3.702469,1.00016 -4.92483,-0.49599 -1.222365,-1.49615 -1.000159,-3.70247 0.495991,-4.92483 1.49615,-1.22236 3.702469,-1.00016 4.92483,0.49599 z" />
|
||||||
|
<path
|
||||||
|
id="path3611"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 93.162517,44.07905 c -1.63194,-1.03411 -2.117145,-3.19786 -1.08303,-4.82981 1.03411,-1.63194 3.197861,-2.11714 4.82981,-1.08303 1.63194,1.03411 2.117141,3.19787 1.083031,4.82981 -1.03411,1.63194 -3.197871,2.11714 -4.829811,1.08303 z" />
|
||||||
|
<path
|
||||||
|
id="path3613"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 20.186726,39.362232 c 1.02487,-1.63776 3.18585,-2.13517 4.82361,-1.11029 1.63776,1.02488 2.135171,3.18586 1.110291,4.82362 -1.024881,1.63775 -3.185861,2.13516 -4.823611,1.11029 -1.63776,-1.02488 -2.13517,-3.18586 -1.11029,-4.82362 z" />
|
||||||
|
<path
|
||||||
|
id="path3609"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 82.768025,8.6410224 c -1.03411,1.6319396 -3.197859,2.1171396 -4.829812,1.08303 -1.63194,-1.03411 -2.11714,-3.19786 -1.083031,-4.8298098 1.03411,-1.63194 3.197873,-2.11714 4.829813,-1.08303 1.631941,1.03411 2.117141,3.1978698 1.08303,4.8298098 z" />
|
||||||
|
<path
|
||||||
|
id="path3615"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.7pt;marker-start:none;marker-end:none"
|
||||||
|
d="m 8.8272933,3.8974926 c 1.6377607,1.02487 2.1351707,3.1858498 1.11029,4.8236098 -1.02488,1.6377596 -3.18586,2.1351696 -4.82362,1.11029 -1.63775,-1.02488 -2.13516,-3.18586 -1.11029,-4.82361 1.02488,-1.6377598 3.18586,-2.1351698 4.82362,-1.1102898 z" />
|
||||||
|
<path
|
||||||
|
id="path6134"
|
||||||
|
style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="M 23.283068,42.225744 23.573473,151.63427" />
|
||||||
|
<path
|
||||||
|
id="text6151"
|
||||||
|
d="m 9.121872,129.27036 0.7470827,-0.53595 0.5197093,0.12993 -1.1937078,5.14837 c -0.1191071,0.5143 -0.1786571,0.91491 -0.1786502,1.20183 -6.9e-6,0.21655 0.035182,0.37354 0.105566,0.47099 0.07037,0.0974 0.1813499,0.14616 0.332939,0.14616 0.1624019,0 0.3356383,-0.0663 0.5197098,-0.19895 0.1840562,-0.13263 0.4439102,-0.38572 0.7795642,-0.75926 l 0.462867,0.45475 c -0.487237,0.51971 -0.902733,0.88919 -1.2464915,1.10844 -0.3437738,0.21925 -0.7159613,0.32888 -1.1165638,0.32888 -0.3356522,0 -0.6036273,-0.11098 -0.803926,-0.33294 -0.2003104,-0.22196 -0.3004627,-0.517 -0.3004571,-0.88513 -5.6e-6,-0.29775 0.062251,-0.61445 0.1867706,-0.9501 l -0.105566,-0.0325 c -0.5197149,0.75791 -1.0123559,1.31281 -1.4779245,1.6647 -0.465577,0.35188 -0.958218,0.52783 -1.4779244,0.52783 -0.5955029,0 -1.0570155,-0.22467 -1.3845392,-0.674 -0.3275264,-0.44933 -0.4912889,-1.08002 -0.4912881,-1.89207 -8e-7,-0.93114 0.1827094,-1.82575 0.5481314,-2.68381 0.3654191,-0.85806 0.867534,-1.53476 1.5063461,-2.03012 0.6388063,-0.49534 1.3506996,-0.74301 2.135682,-0.74302 0.3518814,1e-5 0.6807599,0.0393 0.9866364,0.11775 0.3058645,0.0785 0.6212089,0.2179 0.9460341,0.4182 z m -0.7146008,2.4199 c 0.048716,-0.22196 0.081198,-0.41414 0.097445,-0.57656 0.016235,-0.1624 0.024355,-0.33834 0.024361,-0.52783 -6.4e-6,-0.41684 -0.089331,-0.72271 -0.2679753,-0.91761 -0.1786561,-0.19488 -0.4818198,-0.29233 -0.909492,-0.29233 -0.5576098,0 -1.0583713,0.22467 -1.5022858,0.67399 -0.443922,0.44934 -0.7903948,1.05161 -1.0394195,1.80681 -0.2490299,0.7552 -0.3735436,1.50905 -0.3735413,2.26155 -2.3e-6,0.56302 0.077142,0.98393 0.2314332,1.26273 0.1542862,0.2788 0.4127873,0.4182 0.7755043,0.4182 0.3572968,0 0.7078298,-0.15429 1.0516002,-0.46286 0.3437616,-0.30858 0.6983548,-0.74844 1.0637808,-1.31958 0.3654151,-0.57114 0.6239163,-1.23025 0.7755043,-1.97733 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="text6155"
|
||||||
|
d="m 61.640136,154.28612 0.747083,-0.53595 0.51971,0.12993 -1.193709,5.14837 c -0.119107,0.5143 -0.178657,0.91491 -0.17865,1.20183 -7e-6,0.21655 0.03518,0.37354 0.105566,0.47099 0.07037,0.0974 0.18135,0.14617 0.332939,0.14617 0.162402,0 0.335639,-0.0663 0.51971,-0.19895 0.184056,-0.13264 0.44391,-0.38573 0.779565,-0.75927 l 0.462866,0.45475 c -0.487236,0.51971 -0.902733,0.88919 -1.246491,1.10844 -0.343774,0.21925 -0.715962,0.32888 -1.116564,0.32888 -0.335652,0 -0.603627,-0.11098 -0.803926,-0.33294 -0.20031,-0.22196 -0.300463,-0.517 -0.300457,-0.88513 -6e-6,-0.29775 0.06225,-0.61445 0.186771,-0.95009 l -0.105566,-0.0325 c -0.519715,0.75792 -1.012356,1.31281 -1.477925,1.6647 -0.465577,0.35189 -0.958218,0.52783 -1.477924,0.52783 -0.595503,0 -1.057016,-0.22467 -1.38454,-0.674 -0.327526,-0.44933 -0.491289,-1.08002 -0.491288,-1.89207 -10e-7,-0.93114 0.18271,-1.82574 0.548132,-2.68381 0.365419,-0.85806 0.867534,-1.53476 1.506346,-2.03012 0.638806,-0.49534 1.350699,-0.74301 2.135682,-0.74302 0.351881,1e-5 0.68076,0.0393 0.986636,0.11775 0.305865,0.0785 0.621209,0.2179 0.946034,0.4182 z m -0.714601,2.4199 c 0.04872,-0.22195 0.0812,-0.41414 0.09745,-0.57655 0.01624,-0.16241 0.02435,-0.33835 0.02436,-0.52783 -6e-6,-0.41685 -0.08933,-0.72272 -0.267975,-0.91762 -0.178656,-0.19488 -0.48182,-0.29233 -0.909492,-0.29233 -0.55761,0 -1.058371,0.22467 -1.502286,0.674 -0.443922,0.44933 -0.790395,1.0516 -1.039419,1.8068 -0.24903,0.75521 -0.373544,1.50906 -0.373542,2.26155 -2e-6,0.56302 0.07714,0.98393 0.231434,1.26273 0.154286,0.2788 0.412787,0.41821 0.775504,0.4182 0.357297,1e-5 0.70783,-0.15428 1.0516,-0.46286 0.343762,-0.30858 0.698355,-0.74844 1.063781,-1.31958 0.365415,-0.57113 0.623916,-1.23024 0.775504,-1.97733 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
id="text6159"
|
||||||
|
d="m 103.37041,93.642693 c -0.0108,-0.41143 -0.0447,-0.70918 -0.10151,-0.89325 -0.0568,-0.18405 -0.14888,-0.3221 -0.27609,-0.41414 -0.12723,-0.092 -0.30723,-0.13804 -0.54001,-0.13805 -0.54679,1e-5 -1.03807,0.21791 -1.47387,0.6537 -0.4358,0.4358 -0.79175,1.05296 -1.067839,1.85147 -0.276098,0.798509 -0.414146,1.565889 -0.414144,2.302149 -2e-6,0.55219 0.108271,0.96227 0.324819,1.23025 0.216544,0.26797 0.541364,0.40196 0.974454,0.40196 0.49264,0 0.91896,-0.0934 1.27897,-0.28016 0.36001,-0.18676 0.74031,-0.48045 1.14093,-0.88107 l 0.49535,0.49535 c -0.50889,0.56302 -1.02183,0.97446 -1.53883,1.23431 -0.51701,0.25986 -1.07326,0.38979 -1.66876,0.38979 -0.784976,0 -1.380476,-0.23279 -1.786497,-0.69836 -0.406025,-0.46558 -0.609036,-1.14228 -0.609035,-2.03012 -1e-6,-0.57926 0.108272,-1.21536 0.324818,-1.908309 0.216545,-0.69294 0.533243,-1.30198 0.950095,-1.8271 0.416848,-0.52512 0.904079,-0.91761 1.461679,-1.17747 0.55761,-0.25985 1.15311,-0.38978 1.78651,-0.38978 0.72,0 1.38318,0.0812 1.98951,0.24361 l -0.3979,1.83522 z"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:16.6307106px;font-family:'Bitstream Vera Sans';fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 11 KiB |
602
src/svgs/bravais/tp.svg
Normal file
@ -0,0 +1,602 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||||
|
width="170"
|
||||||
|
height="170"
|
||||||
|
id="svg6244"
|
||||||
|
version="1.0">
|
||||||
|
<defs
|
||||||
|
id="defs6246">
|
||||||
|
<marker
|
||||||
|
orient="auto"
|
||||||
|
refY="0"
|
||||||
|
refX="0"
|
||||||
|
id="Arrow1Lend"
|
||||||
|
style="overflow:visible">
|
||||||
|
<path
|
||||||
|
id="path7384"
|
||||||
|
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||||
|
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;marker-start:none"
|
||||||
|
transform="matrix(-0.8,0,0,-0.8,-10,0)" />
|
||||||
|
</marker>
|
||||||
|
<linearGradient
|
||||||
|
id="linearGradient12908">
|
||||||
|
<stop
|
||||||
|
style="stop-color: rgb(254, 254, 254); stop-opacity: 1;"
|
||||||
|
offset="0"
|
||||||
|
id="stop12910" />
|
||||||
|
<stop
|
||||||
|
id="stop19774"
|
||||||
|
offset="0.5"
|
||||||
|
style="stop-color: rgb(143, 216, 141); stop-opacity: 1;" />
|
||||||
|
<stop
|
||||||
|
style="stop-color: rgb(15, 176, 12); stop-opacity: 1;"
|
||||||
|
offset="1"
|
||||||
|
id="stop12912" />
|
||||||
|
</linearGradient>
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-96.566751,-943.6387)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4330"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-129.2915,-814.0722)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4332"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-10.659813,-943.4041)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4334"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-43.38455,-813.8375)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4336"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-182.46765,-943.3606)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4338"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-215.19238,-813.794)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4340"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-63.84101,-1070.4388)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4342"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,22.060867,-1070.204)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4344"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-149.7429,-1070.1606)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4346"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,75.238057,-942.8207)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4348"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,42.513317,-813.2542)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4350"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,107.96276,-1069.6206)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4352"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.158046" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4354"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,129.62615,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4356"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-67.54057,-341.33367)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4358"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-1.272793,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4360"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,63.358554,-341.33367)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4362"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,260.52512,-226.8047)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4364"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,194.26078,-341.28622)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4366"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,-2.912313,-455.86264)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4368"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,127.98664,-455.86264)" />
|
||||||
|
<radialGradient
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4370"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333"
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,258.88889,-455.8152)" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4372"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4374"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4376"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4378"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-356.95739)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4380"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-226.06698)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4382"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1132.9868,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4384"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,1002.0846,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4386"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
<radialGradient
|
||||||
|
gradientTransform="matrix(1.6213752,0,0,1.6212655,871.18572,-487.88757)"
|
||||||
|
xlink:href="#linearGradient12908"
|
||||||
|
id="radialGradient4388"
|
||||||
|
gradientUnits="userSpaceOnUse"
|
||||||
|
cx="219.8125"
|
||||||
|
cy="732.42468"
|
||||||
|
fx="219.8125"
|
||||||
|
fy="732.42468"
|
||||||
|
r="15.139333" />
|
||||||
|
</defs>
|
||||||
|
<metadata
|
||||||
|
id="metadata6249">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.63867"
|
||||||
|
cx="-96.56675"
|
||||||
|
id="path19605"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4330);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-814.0722"
|
||||||
|
cx="-129.2915"
|
||||||
|
id="path19607"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4332);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.40411"
|
||||||
|
cx="-10.659813"
|
||||||
|
id="path19609"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4334);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.83752"
|
||||||
|
cx="-43.384548"
|
||||||
|
id="path19611"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4336);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-943.3606"
|
||||||
|
cx="-182.46765"
|
||||||
|
id="path19613"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4338);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.79401"
|
||||||
|
cx="-215.19238"
|
||||||
|
id="path19615"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4340);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.4388"
|
||||||
|
cx="-63.841011"
|
||||||
|
id="path19617"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4342);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.204"
|
||||||
|
cx="22.060867"
|
||||||
|
id="path19619"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4344);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1070.1606"
|
||||||
|
cx="-149.7429"
|
||||||
|
id="path19621"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4346);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-942.82068"
|
||||||
|
cx="75.23806"
|
||||||
|
id="path19725"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4348);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-813.25421"
|
||||||
|
cx="42.513317"
|
||||||
|
id="path19727"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4350);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-1069.6206"
|
||||||
|
cx="107.96276"
|
||||||
|
id="path19729"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4352);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6305"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4372);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6307"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4374);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6277"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4376);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6279"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4378);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-356.9574"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path6259"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4380);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.06699"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path21752"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4382);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="1132.9868"
|
||||||
|
id="path6351"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4384);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="1002.0846"
|
||||||
|
id="path6357"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4386);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-487.88757"
|
||||||
|
cx="871.18573"
|
||||||
|
id="path6363"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4388);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="129.62614"
|
||||||
|
id="path17337"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4354);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.33368"
|
||||||
|
cx="-67.540573"
|
||||||
|
id="path17339"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4356);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="-1.2727931"
|
||||||
|
id="path17341"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4358);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.33368"
|
||||||
|
cx="63.358555"
|
||||||
|
id="path17389"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4360);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-226.8047"
|
||||||
|
cx="260.52512"
|
||||||
|
id="path17395"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4362);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-341.28622"
|
||||||
|
cx="194.26077"
|
||||||
|
id="path17407"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4364);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.86264"
|
||||||
|
cx="-2.912313"
|
||||||
|
id="path17415"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4366);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.86264"
|
||||||
|
cx="127.98664"
|
||||||
|
id="path17425"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4368);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<circle
|
||||||
|
r="0"
|
||||||
|
cy="-455.81519"
|
||||||
|
cx="258.88889"
|
||||||
|
id="path17429"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:url(#radialGradient4370);fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.4;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:none;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||||
|
d="m 24.873885,146.11363 129.385795,-0.0331"
|
||||||
|
id="path8549" />
|
||||||
|
<path
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:none;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||||
|
d="m 24.848485,146.07797 -0.034,-129.377106"
|
||||||
|
id="path10496" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none"
|
||||||
|
x="79.705612"
|
||||||
|
y="168.51022"
|
||||||
|
id="text14382"
|
||||||
|
transform="scale(1.0000332,0.9999668)"><tspan
|
||||||
|
id="tspan14384"
|
||||||
|
x="79.705612"
|
||||||
|
y="168.51022">a</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:24.5427px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;stroke:none"
|
||||||
|
x="-0.50423002"
|
||||||
|
y="93.55867"
|
||||||
|
id="text3544"
|
||||||
|
transform="scale(1.0000332,0.9999668)"><tspan
|
||||||
|
id="tspan3542"
|
||||||
|
x="-0.50423002"
|
||||||
|
y="93.55867">a</tspan></text>
|
||||||
|
<path
|
||||||
|
style="fill:none;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||||
|
d="m 24.843785,99.886752 h 45.7597 v 46.197508"
|
||||||
|
id="path3546" />
|
||||||
|
<rect
|
||||||
|
style="fill:none;stroke:#000000;stroke-opacity:1"
|
||||||
|
id="rect396"
|
||||||
|
width="133.68675"
|
||||||
|
height="133.68675"
|
||||||
|
x="24.536646"
|
||||||
|
y="12.335908" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1036"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="24.801737"
|
||||||
|
cy="13.022653" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1227"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="157.80174"
|
||||||
|
cy="13.022653" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1229"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="157.80174"
|
||||||
|
cy="145.79375" />
|
||||||
|
<ellipse
|
||||||
|
ry="11.814878"
|
||||||
|
rx="11.815678"
|
||||||
|
id="ellipse1231"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:30.275px;line-height:122%;font-family:Arial;text-align:start;text-anchor:start;fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.195145;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
cx="24.8013"
|
||||||
|
cy="145.79375" />
|
||||||
|
</svg>
|
After Width: | Height: | Size: 28 KiB |
7
src/svgs/convertToPdf.sh
Executable file
@ -0,0 +1,7 @@
|
|||||||
|
IFS=$'\n'
|
||||||
|
for d in $(find . -type d); do
|
||||||
|
mkdir -p "../img/$d"
|
||||||
|
done
|
||||||
|
for file in $(find . -type f -name '*.svg'); do
|
||||||
|
inkscape -o "../img/${file%.*}.pdf" "$file"
|
||||||
|
done
|
208
src/svgs/td_gay_lussac.svg
Normal file
@ -0,0 +1,208 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
|
||||||
|
<svg
|
||||||
|
width="60.500008mm"
|
||||||
|
height="57.750637mm"
|
||||||
|
viewBox="0 0 228.66145 218.27012"
|
||||||
|
version="1.1"
|
||||||
|
id="svg1"
|
||||||
|
inkscape:version="1.3.2 (091e20ef0f, 2023-11-25, custom)"
|
||||||
|
sodipodi:docname="td_gay_lussac.svg"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg">
|
||||||
|
<sodipodi:namedview
|
||||||
|
id="namedview1"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
bordercolor="#ffffff"
|
||||||
|
borderopacity="1"
|
||||||
|
inkscape:showpageshadow="0"
|
||||||
|
inkscape:pageopacity="0"
|
||||||
|
inkscape:pagecheckerboard="1"
|
||||||
|
inkscape:deskcolor="#d1d1d1"
|
||||||
|
inkscape:document-units="mm"
|
||||||
|
inkscape:zoom="1.1893651"
|
||||||
|
inkscape:cx="125.27693"
|
||||||
|
inkscape:cy="203.46991"
|
||||||
|
inkscape:window-width="1896"
|
||||||
|
inkscape:window-height="1026"
|
||||||
|
inkscape:window-x="0"
|
||||||
|
inkscape:window-y="0"
|
||||||
|
inkscape:window-maximized="1"
|
||||||
|
inkscape:current-layer="layer1" />
|
||||||
|
<defs
|
||||||
|
id="defs1">
|
||||||
|
<marker
|
||||||
|
style="overflow:visible"
|
||||||
|
id="Triangle"
|
||||||
|
refX="0"
|
||||||
|
refY="0"
|
||||||
|
orient="auto-start-reverse"
|
||||||
|
inkscape:stockid="Triangle arrow"
|
||||||
|
markerWidth="1"
|
||||||
|
markerHeight="1"
|
||||||
|
viewBox="0 0 1 1"
|
||||||
|
inkscape:isstock="true"
|
||||||
|
inkscape:collect="always"
|
||||||
|
preserveAspectRatio="xMidYMid">
|
||||||
|
<path
|
||||||
|
transform="scale(0.5)"
|
||||||
|
style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt"
|
||||||
|
d="M 5.77,0 -2.88,5 V -5 Z"
|
||||||
|
id="path135" />
|
||||||
|
</marker>
|
||||||
|
<pattern
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#Strips1_1"
|
||||||
|
preserveAspectRatio="xMidYMid"
|
||||||
|
id="pattern7"
|
||||||
|
patternTransform="matrix(4.2426407,4.2426407,-4.2426407,4.2426407,0.94488287,9.5247022)"
|
||||||
|
x="0"
|
||||||
|
y="0" />
|
||||||
|
<pattern
|
||||||
|
inkscape:collect="always"
|
||||||
|
patternUnits="userSpaceOnUse"
|
||||||
|
width="2"
|
||||||
|
height="10"
|
||||||
|
patternTransform="translate(0,0) scale(2,2)"
|
||||||
|
preserveAspectRatio="xMidYMid"
|
||||||
|
id="Strips1_1"
|
||||||
|
style="fill:#888888"
|
||||||
|
inkscape:stockid="Stripes 01 (1:1)"
|
||||||
|
inkscape:isstock="true"
|
||||||
|
inkscape:label="Streifen 01 (1:1)">
|
||||||
|
<rect
|
||||||
|
style="stroke:none"
|
||||||
|
x="0"
|
||||||
|
y="-0.5"
|
||||||
|
width="1"
|
||||||
|
height="11"
|
||||||
|
id="rect134" />
|
||||||
|
</pattern>
|
||||||
|
<pattern
|
||||||
|
inkscape:collect="always"
|
||||||
|
xlink:href="#pattern3"
|
||||||
|
preserveAspectRatio="xMidYMid"
|
||||||
|
id="pattern4"
|
||||||
|
patternTransform="matrix(4.2426407,4.2426407,-4.2426407,4.2426407,0,0)"
|
||||||
|
x="0"
|
||||||
|
y="0" />
|
||||||
|
<pattern
|
||||||
|
inkscape:collect="always"
|
||||||
|
patternUnits="userSpaceOnUse"
|
||||||
|
width="2"
|
||||||
|
height="10"
|
||||||
|
patternTransform="translate(0,0) scale(2,2)"
|
||||||
|
preserveAspectRatio="xMidYMid"
|
||||||
|
id="pattern3"
|
||||||
|
style="fill:#444444"
|
||||||
|
inkscape:stockid="Stripes 01 (1:1)"
|
||||||
|
inkscape:isstock="true"
|
||||||
|
inkscape:label="Streifen 01 (1:1)">
|
||||||
|
<rect
|
||||||
|
style="stroke:none"
|
||||||
|
x="0"
|
||||||
|
y="-0.5"
|
||||||
|
width="1"
|
||||||
|
height="11"
|
||||||
|
id="rect2" />
|
||||||
|
</pattern>
|
||||||
|
</defs>
|
||||||
|
<g
|
||||||
|
inkscape:label="Ebene 1"
|
||||||
|
inkscape:groupmode="layer"
|
||||||
|
id="layer1"
|
||||||
|
transform="translate(-156.56698,-100.18178)">
|
||||||
|
<rect
|
||||||
|
style="fill:url(#pattern4);fill-opacity:1;stroke:#000000;stroke-width:1.88976;stroke-linejoin:round"
|
||||||
|
id="rect1"
|
||||||
|
width="113.38583"
|
||||||
|
height="75.590553"
|
||||||
|
x="157.51186"
|
||||||
|
y="123.50784" />
|
||||||
|
<rect
|
||||||
|
style="fill:none;fill-opacity:1;stroke:#000000;stroke-width:1.88976;stroke-linejoin:round"
|
||||||
|
id="rect1-9"
|
||||||
|
width="113.38583"
|
||||||
|
height="75.590553"
|
||||||
|
x="270.89771"
|
||||||
|
y="123.50784" />
|
||||||
|
<rect
|
||||||
|
style="fill:url(#pattern7);fill-opacity:1;stroke:#000000;stroke-width:1.88976;stroke-linejoin:round"
|
||||||
|
id="rect4"
|
||||||
|
width="226.77165"
|
||||||
|
height="75.590553"
|
||||||
|
x="157.51186"
|
||||||
|
y="241.91647" />
|
||||||
|
<path
|
||||||
|
style="fill:none;stroke:#000000;stroke-width:1.88976;stroke-linejoin:round;marker-start:url(#Triangle)"
|
||||||
|
d="M 271.84257,228.43005 V 205.9121"
|
||||||
|
id="path7"
|
||||||
|
sodipodi:nodetypes="cc" />
|
||||||
|
<g
|
||||||
|
inkscape:label=""
|
||||||
|
transform="matrix(1.4564796,0,0,1.4564796,204.7417,100.18178)"
|
||||||
|
id="g7">
|
||||||
|
<g
|
||||||
|
fill="#000000"
|
||||||
|
fill-opacity="1"
|
||||||
|
id="g3"
|
||||||
|
transform="matrix(1.33333,0,0,1.33333,-3.5115,-2.67433)">
|
||||||
|
<g
|
||||||
|
id="use2"
|
||||||
|
transform="translate(1.993,10.162)">
|
||||||
|
<path
|
||||||
|
d="M 7.40625,-6.84375 C 7.8125,-7.484375 8.171875,-7.765625 8.78125,-7.8125 8.90625,-7.828125 9,-7.828125 9,-8.046875 9,-8.09375 8.984375,-8.15625 8.875,-8.15625 c -0.21875,0 -0.734375,0.015625 -0.953125,0.015625 -0.34375,0 -0.703125,-0.015625 -1.03125,-0.015625 -0.09375,0 -0.21875,0 -0.21875,0.21875 0,0.109375 0.109375,0.125 0.15625,0.125 0.4375,0.03125 0.484375,0.25 0.484375,0.390625 0,0.171875 -0.171875,0.453125 -0.171875,0.46875 L 3.375,-1 2.546875,-7.453125 c 0,-0.34375 0.625,-0.359375 0.75,-0.359375 0.1875,0 0.28125,0 0.28125,-0.234375 0,-0.109375 -0.125,-0.109375 -0.15625,-0.109375 -0.203125,0 -0.453125,0.015625 -0.65625,0.015625 h -0.65625 c -0.875,0 -1.234375,-0.015625 -1.25,-0.015625 -0.078125,0 -0.21875,0 -0.21875,0.203125 0,0.140625 0.09375,0.140625 0.28125,0.140625 0.609375,0 0.640625,0.109375 0.6875,0.40625 l 0.953125,7.375 C 2.59375,0.21875 2.59375,0.25 2.765625,0.25 2.90625,0.25 2.96875,0.21875 3.078125,0.03125 Z m 0,0"
|
||||||
|
id="path4" />
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
<g
|
||||||
|
fill="#000000"
|
||||||
|
fill-opacity="1"
|
||||||
|
id="g4"
|
||||||
|
transform="matrix(1.33333,0,0,1.33333,-3.5115,-2.67433)">
|
||||||
|
<g
|
||||||
|
id="use3"
|
||||||
|
transform="translate(8.8170004,11.955)">
|
||||||
|
<path
|
||||||
|
d="m 2.5,-5.078125 c 0,-0.21875 -0.015625,-0.21875 -0.234375,-0.21875 -0.328125,0.3125 -0.75,0.5 -1.5,0.5 v 0.265625 c 0.21875,0 0.640625,0 1.109375,-0.203125 v 4.078125 c 0,0.296875 -0.03125,0.390625 -0.78125,0.390625 H 0.8125 V 0 c 0.328125,-0.03125 1.015625,-0.03125 1.375,-0.03125 0.359375,0 1.046875,0 1.375,0.03125 V -0.265625 H 3.28125 c -0.75,0 -0.78125,-0.09375 -0.78125,-0.390625 z m 0,0"
|
||||||
|
id="path5" />
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
<g
|
||||||
|
inkscape:label=""
|
||||||
|
transform="matrix(1.3239403,0,0,1.3239403,318.78182,100.43509)"
|
||||||
|
id="g12">
|
||||||
|
<g
|
||||||
|
fill="#000000"
|
||||||
|
fill-opacity="1"
|
||||||
|
id="g9"
|
||||||
|
transform="matrix(1.33333,0,0,1.33333,-3.5115,-2.67433)">
|
||||||
|
<g
|
||||||
|
id="g8"
|
||||||
|
transform="translate(1.993,10.162)">
|
||||||
|
<path
|
||||||
|
d="M 7.40625,-6.84375 C 7.8125,-7.484375 8.171875,-7.765625 8.78125,-7.8125 8.90625,-7.828125 9,-7.828125 9,-8.046875 9,-8.09375 8.984375,-8.15625 8.875,-8.15625 c -0.21875,0 -0.734375,0.015625 -0.953125,0.015625 -0.34375,0 -0.703125,-0.015625 -1.03125,-0.015625 -0.09375,0 -0.21875,0 -0.21875,0.21875 0,0.109375 0.109375,0.125 0.15625,0.125 0.4375,0.03125 0.484375,0.25 0.484375,0.390625 0,0.171875 -0.171875,0.453125 -0.171875,0.46875 L 3.375,-1 2.546875,-7.453125 c 0,-0.34375 0.625,-0.359375 0.75,-0.359375 0.1875,0 0.28125,0 0.28125,-0.234375 0,-0.109375 -0.125,-0.109375 -0.15625,-0.109375 -0.203125,0 -0.453125,0.015625 -0.65625,0.015625 h -0.65625 c -0.875,0 -1.234375,-0.015625 -1.25,-0.015625 -0.078125,0 -0.21875,0 -0.21875,0.203125 0,0.140625 0.09375,0.140625 0.28125,0.140625 0.609375,0 0.640625,0.109375 0.6875,0.40625 l 0.953125,7.375 C 2.59375,0.21875 2.59375,0.25 2.765625,0.25 2.90625,0.25 2.96875,0.21875 3.078125,0.03125 Z m 0,0"
|
||||||
|
id="path8" />
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
<g
|
||||||
|
fill="#000000"
|
||||||
|
fill-opacity="1"
|
||||||
|
id="g11"
|
||||||
|
transform="matrix(1.33333,0,0,1.33333,-3.5115,-2.67433)">
|
||||||
|
<g
|
||||||
|
id="g10"
|
||||||
|
transform="translate(8.8170004,11.955)">
|
||||||
|
<path
|
||||||
|
d="m 2.25,-1.625 c 0.125,-0.125 0.453125,-0.390625 0.59375,-0.5 0.484375,-0.453125 0.953125,-0.890625 0.953125,-1.609375 0,-0.953125 -0.796875,-1.5625 -1.78125,-1.5625 -0.96875,0 -1.59375,0.71875 -1.59375,1.4375 0,0.390625 0.3125,0.4375 0.421875,0.4375 0.171875,0 0.421875,-0.109375 0.421875,-0.421875 0,-0.40625 -0.40625,-0.40625 -0.5,-0.40625 C 1,-4.84375 1.53125,-5.03125 1.921875,-5.03125 c 0.734375,0 1.125,0.625 1.125,1.296875 0,0.828125 -0.578125,1.4375 -1.53125,2.390625 l -1,1.046875 C 0.421875,-0.21875 0.421875,-0.203125 0.421875,0 H 3.5625 l 0.234375,-1.421875 h -0.25 C 3.53125,-1.265625 3.46875,-0.875 3.375,-0.71875 c -0.046875,0.0625 -0.65625,0.0625 -0.78125,0.0625 H 1.171875 Z m 0,0"
|
||||||
|
id="path9" />
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 8.6 KiB |
84
src/topo.tex
@ -1,3 +1,85 @@
|
|||||||
\Part{Topo}
|
\Part{Topo}
|
||||||
\Section{berry_phase}
|
\Section[
|
||||||
|
\eng{Berry phase / Geometric phase}
|
||||||
|
\ger{Berry-Phase / Geometrische Phase}
|
||||||
|
]{berry_phase}
|
||||||
|
|
||||||
|
\begin{ttext}[desc]
|
||||||
|
\eng{
|
||||||
|
While adiabatically traversing a closed through the parameter space $R(t)$, the wave function of a systems
|
||||||
|
may pick up an additional phase $\gamma$.\\
|
||||||
|
If $\vec{R}(t)$ varies adiabatically (slowly) and the system is initially in eigenstate $\ket{n}$,
|
||||||
|
it will stay in an Eigenstate throughout the process (quantum adiabtic theorem).
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
Beim adiabatischem Durchlauf eines geschlossenen Weges durch den Parameterraum $R(t)$ kann die Wellenfunktion eines Systems
|
||||||
|
eine zusätzliche Phase $\gamma$ erhalten.\\
|
||||||
|
Wenn $\vec{R}(t)$ adiabatisch (langsam) variiert und das System anfangs im Eigenzustand $\ket{n}$ ist,
|
||||||
|
bleibt das System während dem Prozess in einem Eigenzustand (Adiabatisches Theorem der Quantenmechanik).
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
\Eng[dynamic_phase]{Dynamical Phase}
|
||||||
|
\Eng[berry_phase]{Berry Phase}
|
||||||
|
\Ger[dynamic_phase]{Dynamische Phase}
|
||||||
|
\Ger[berry_phase]{Berry Phase}
|
||||||
|
\begin{formula}{schroedinger_equation}
|
||||||
|
\desc{Schrödinger equation}{}{}
|
||||||
|
\desc[german]{Schrödinger Gleichung}{}{}
|
||||||
|
\eq{H(\vec{R}(t)) \ket{n(\vec{R}(t))} = \epsilon(\vec{R}(t)) \ket{n(\vec{R}(t))}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{wavefunction}
|
||||||
|
\desc{Wave function}{After full adiabtic loop in $\vec{R}$}{}
|
||||||
|
\desc[german]{Wellenfunktion}{Nach vollem adiabtischem Umlauf in $\vec{R}$}{}
|
||||||
|
\eq{\ket{\psi_n(t)} = \underbrace{\e^{i\gamma_n(t)}}_\text{\GT{berry_phase}}
|
||||||
|
\underbrace{\e^{\frac{-i}{\hbar} \int^r \epsilon_n(\vec{R}(t`))\d t}}_\text{\GT{dynamic_phase}} \ket{n(\vec{R}(t))}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{berry_connection}
|
||||||
|
\desc{Berry connection}{}{}
|
||||||
|
\desc[german]{Berry connection}{}{}
|
||||||
|
\eq{A_n(\vec{R}) = i\braket{\psi | \nabla_R | \psi}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{berry_curve}
|
||||||
|
\desc{Berry curvature}{Gauge invariant}{}
|
||||||
|
\desc[german]{Berry-Krümmung}{Eichinvariant}{}
|
||||||
|
\eq{\vec{\Omega}_n = \Grad_R \times A_n(\vec{R})}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{berry_phase}
|
||||||
|
\desc{Berry phase}{Gauge invariant up to $2\pi$}{}
|
||||||
|
\desc[german]{Berry-Phase}{Eichinvariant bis auf $2\pi$}{}
|
||||||
|
\eq{\gamma_n = \oint_C \d \vec{R} \cdot A_n(\vec{R}) = \int_S \d\vec{S} \cdot \vec{\Omega}_n(\vec{R})}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{ttext}[chern_number_desc]
|
||||||
|
\eng{The Berry flux through any 2D closed surface is quantized by the \textbf{Chern number}.
|
||||||
|
If there is time-reversal symmetry, the Chern-number is 0.
|
||||||
|
}
|
||||||
|
\ger{Der Berry-Fluß durch eine geschlossene 2D Fl[cher is quantisiert durch die \textbf{Chernzahl}
|
||||||
|
Bei erhaltener Zeitumkehrungssymmetrie ist die Chernzahl 0.
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{chern_number}
|
||||||
|
\desc{Chern number}{Eg. number of Berry curvature monopoles in the Brillouin zone (then $\vec{R} = \vec{k}$)}{$\vec{S}$ closed surface in $\vec{R}$-space. A \textit{Chern insulator} is a 2D insulator with $C_n \neq 0$}
|
||||||
|
\desc[german]{Chernuzahl}{Z.B. Anzahl der Berry-Krümmungs-Monopole in der Brilouinzone (dann ist $\vec{R} = \vec{k}$). Ein \textit{Chern-Isolator} ist ein 2D Isolator mit $C_n\neq0$}{$\vec{S}$ geschlossene Fläche im $\vec{R}$-Raum}
|
||||||
|
\eq{C_n = \frac{1}{2\pi} \oint \d \vec{S}\ \cdot \vec{\Omega}_n(\vec{R})}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\TODO{Hall conductance of 2D band insulator (lecture 4 revision)}
|
||||||
|
\begin{formula}{hall_conductance}
|
||||||
|
\desc{Hall conductance of a 2D band insulator}{}{}
|
||||||
|
\desc[german]{Hall-Leitfähigkeit eines 2D Band-Isolators}{}{}
|
||||||
|
\eq{\vec{\sigma}_{xy} = \sum_n \frac{e^2}{h} \int_\text{\GT{occupied}} \d^2k\, \frac{\Omega_{xy}^n}{2\pi} = \sum_n C_n \frac{e^2}{h}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{A 2D insulator with a non-zero }
|
||||||
|
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,8 +1,27 @@
|
|||||||
\ENG[angle_deg]{Degree}
|
\Eng[angle_deg]{Degree}
|
||||||
\GER[angle_deg]{Grad}
|
\Ger[angle_deg]{Grad}
|
||||||
|
|
||||||
\ENG[angle_rad]{Radian}
|
\Eng[angle_rad]{Radian}
|
||||||
\GER[angle_rad]{Rad}
|
\Ger[angle_rad]{Rad}
|
||||||
|
|
||||||
|
\Eng[see_also]{See also}
|
||||||
|
\Ger[see_also]{Siehe auch}
|
||||||
|
|
||||||
|
\Eng[and_therefore]{and therefore}
|
||||||
|
\Ger[and_therefore]{und damit}
|
||||||
|
|
||||||
|
\Eng[and_therefore_also]{and therefore also}
|
||||||
|
\Ger[and_therefore_also]{und damit auch}
|
||||||
|
|
||||||
|
\Eng[time]{Time}
|
||||||
|
\Ger[time]{Zeit}
|
||||||
|
|
||||||
|
\Eng[ensemble]{Ensemble}
|
||||||
|
\Ger[ensemble]{Ensemble}
|
||||||
|
|
||||||
|
\Eng[even]{even}
|
||||||
|
\Ger[even]{gerade}
|
||||||
|
|
||||||
|
\Eng[odd]{odd}
|
||||||
|
\Ger[odd]{ungerade}
|
||||||
|
|
||||||
\ENG[see_also]{See also}
|
|
||||||
\GER[see_also]{Siehe auch}
|
|
||||||
|