From 4faf0ba2a328e340e85f300894c38132ea14435b Mon Sep 17 00:00:00 2001 From: "matthias@quintern.xyz" Date: Wed, 10 Jul 2024 07:43:50 +0200 Subject: [PATCH] progress --- .gitignore | 6 + src/analysis.tex | 125 ++++ src/atom.tex | 31 +- src/calculus.tex | 55 ++ src/circuit.tex | 79 +++ src/condensed_matter.tex | 231 +++++++ src/electrodynamics.tex | 222 +++++++ src/environments.tex | 213 ++++++ src/{trigonometry.tex => geometry.tex} | 17 +- src/img/bravais2/aP.svg | 760 +++++++++++++++++++++ src/img/bravais2/cF.svg | 801 +++++++++++++++++++++++ src/img/bravais2/cI.svg | 801 +++++++++++++++++++++++ src/img/bravais2/cP.svg | 772 ++++++++++++++++++++++ src/img/bravais2/hP.svg | 743 +++++++++++++++++++++ src/img/bravais2/hR.svg | 768 ++++++++++++++++++++++ src/img/bravais2/mP.svg | 772 ++++++++++++++++++++++ src/img/bravais2/mS.svg | 762 +++++++++++++++++++++ src/img/bravais2/oF.svg | 760 +++++++++++++++++++++ src/img/bravais2/oI.svg | 759 +++++++++++++++++++++ src/img/bravais2/oP.svg | 769 ++++++++++++++++++++++ src/img/bravais2/oS.svg | 766 ++++++++++++++++++++++ src/img/bravais2/tI.svg | 760 +++++++++++++++++++++ src/img/bravais2/tP.svg | 750 +++++++++++++++++++++ src/img/qhe-klitzing.jpeg | Bin 0 -> 266470 bytes src/linalg.tex | 118 ++++ src/macros.tex | 47 ++ src/main.tex | 178 ++--- src/mechanics.tex | 4 +- src/probability_theory.tex | 198 ++++++ src/quantum_computing.tex | 418 +++++++++++- src/quantum_mechanics.tex | 220 +++++-- src/scripts/bloch_sphere.py | 2 + src/scripts/crystal_lattices-Copy1.ipynb | 189 ++++++ src/scripts/crystal_lattices.ipynb | 441 +++++++++++++ src/scripts/distributions.py | 106 +++ src/scripts/plot.py | 34 + src/scripts/qubits.py | 90 +++ src/scripts/requirements.txt | 5 + src/scripts/stat-mech.py | 120 ++++ src/statistical_mechanics.tex | 757 +++++++++++++++++++++ src/svgs/bravais/aP.svg | 118 ++++ src/svgs/bravais/cF.svg | 161 +++++ src/svgs/bravais/cI.svg | 149 +++++ src/svgs/bravais/cP.svg | 34 + src/svgs/bravais/fix.sh | 6 + src/svgs/bravais/hP.svg | 344 ++++++++++ src/svgs/bravais/hR.svg | 181 +++++ src/svgs/bravais/hp.svg | 635 ++++++++++++++++++ src/svgs/bravais/mP.svg | 110 ++++ src/svgs/bravais/mS.svg | 134 ++++ src/svgs/bravais/mp.svg | 614 +++++++++++++++++ src/svgs/bravais/oF.svg | 162 +++++ src/svgs/bravais/oI.svg | 110 ++++ src/svgs/bravais/oP.svg | 90 +++ src/svgs/bravais/oS.svg | 114 ++++ src/svgs/bravais/oc.svg | 609 +++++++++++++++++ src/svgs/bravais/op.svg | 602 +++++++++++++++++ src/svgs/bravais/tI.svg | 110 ++++ src/svgs/bravais/tP.svg | 90 +++ src/svgs/bravais/tp.svg | 602 +++++++++++++++++ src/svgs/convertToPdf.sh | 7 + src/svgs/td_gay_lussac.svg | 208 ++++++ src/topo.tex | 84 ++- src/translations.tex | 31 +- 64 files changed, 19697 insertions(+), 257 deletions(-) create mode 100644 .gitignore create mode 100644 src/analysis.tex create mode 100644 src/calculus.tex create mode 100644 src/circuit.tex create mode 100644 src/condensed_matter.tex create mode 100644 src/electrodynamics.tex create mode 100644 src/environments.tex rename src/{trigonometry.tex => geometry.tex} (89%) create mode 100644 src/img/bravais2/aP.svg create mode 100644 src/img/bravais2/cF.svg create mode 100644 src/img/bravais2/cI.svg create mode 100644 src/img/bravais2/cP.svg create mode 100644 src/img/bravais2/hP.svg create mode 100644 src/img/bravais2/hR.svg create mode 100644 src/img/bravais2/mP.svg create mode 100644 src/img/bravais2/mS.svg create mode 100644 src/img/bravais2/oF.svg create mode 100644 src/img/bravais2/oI.svg create mode 100644 src/img/bravais2/oP.svg create mode 100644 src/img/bravais2/oS.svg create mode 100644 src/img/bravais2/tI.svg create mode 100644 src/img/bravais2/tP.svg create mode 100644 src/img/qhe-klitzing.jpeg create mode 100644 src/linalg.tex create mode 100644 src/macros.tex create mode 100644 src/probability_theory.tex create mode 100644 src/scripts/bloch_sphere.py create mode 100644 src/scripts/crystal_lattices-Copy1.ipynb create mode 100644 src/scripts/crystal_lattices.ipynb create mode 100644 src/scripts/distributions.py create mode 100644 src/scripts/plot.py create mode 100644 src/scripts/qubits.py create mode 100644 src/scripts/requirements.txt create mode 100644 src/scripts/stat-mech.py create mode 100644 src/statistical_mechanics.tex create mode 100644 src/svgs/bravais/aP.svg create mode 100644 src/svgs/bravais/cF.svg create mode 100644 src/svgs/bravais/cI.svg create mode 100644 src/svgs/bravais/cP.svg create mode 100644 src/svgs/bravais/fix.sh create mode 100644 src/svgs/bravais/hP.svg create mode 100644 src/svgs/bravais/hR.svg create mode 100644 src/svgs/bravais/hp.svg create mode 100644 src/svgs/bravais/mP.svg create mode 100644 src/svgs/bravais/mS.svg create mode 100644 src/svgs/bravais/mp.svg create mode 100644 src/svgs/bravais/oF.svg create mode 100644 src/svgs/bravais/oI.svg create mode 100644 src/svgs/bravais/oP.svg create mode 100644 src/svgs/bravais/oS.svg create mode 100644 src/svgs/bravais/oc.svg create mode 100644 src/svgs/bravais/op.svg create mode 100644 src/svgs/bravais/tI.svg create mode 100644 src/svgs/bravais/tP.svg create mode 100644 src/svgs/bravais/tp.svg create mode 100755 src/svgs/convertToPdf.sh create mode 100644 src/svgs/td_gay_lussac.svg diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..dd9c1d4 --- /dev/null +++ b/.gitignore @@ -0,0 +1,6 @@ +.aux +out +*.virtual_documents* +*ipynb_checkpoints* +*__pycache__* +**.pdf diff --git a/src/analysis.tex b/src/analysis.tex new file mode 100644 index 0000000..2ca4dd8 --- /dev/null +++ b/src/analysis.tex @@ -0,0 +1,125 @@ +\Part[ + \eng{Calculus} + \ger{Analysis} + ]{cal} + + \Subsection[ + \eng{Convolution} + \ger{Faltung / Konvolution} + ]{conv} + \begin{ttext} + \eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.} + \ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}} + \end{ttext} + \begin{formula}{def} + \desc{Definition}{}{} + \desc[german]{Definition}{}{} + \eq{(f*g)(t) = f(t) * g(t) = int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau} + \end{formula} + \begin{formula}{notation} + \desc{Notation}{}{} + \desc[german]{Notation}{}{} + \eq{ + f(t) * g(t-t_0) &= (f*g)(t-t_0) \\ + f(t-t_0) * g(t-t_0) &= (f*g)(t-2t_0) + } + \end{formula} + \begin{formula}{commutativity} + \desc{Commutativity}{}{} + \desc[german]{Kommutativität}{}{} + \eq{f * g = g * f} + \end{formula} + + \begin{formula}{associativity} + \desc{Associativity}{}{} + \desc[german]{Assoziativität]}{}{} + \eq{(f*g)*h = f*(g*h)} + \end{formula} + + \begin{formula}{distributivity} + \desc{Distributivity}{}{} + \desc[german]{Distributivität}{}{} + \eq{f * (g + h) = f*g + f*h} + \end{formula} + + \begin{formula}{complex_conjugate} + \desc{Complex conjugate}{}{} + \desc[german]{Komplexe konjugation}{}{} + \eq{(f*g)^* = f^* * g^*} + \end{formula} + + \Subsection[ + \eng{Fourier analysis} + \ger{Fourieranalyse} + ]{fourier} + \Subsubsection[ + \eng{Fourier series} + \ger{Fourierreihe} + ]{series} + \begin{formula}{series} + \desc{Fourier series}{Complex representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}} + \desc[german]{Fourierreihe}{Komplexe Darstellung}{} + \eq{f(t) = \sum_{k=-\infty}^{\infty} c_k \Exp{\frac{2\pi \I kt}{T}}} + \end{formula} + \Eng[real]{real} + \Ger[real]{reellwertig} + \begin{formula}{coefficient} + \desc{Fourier coefficients}{Complex representation}{} + \desc[german]{Fourierkoeffizienten}{Komplexe Darstellung}{} + \eq{ + c_k &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Exp{-\frac{2\pi \I}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\ + c_{-k} &= \overline{c_k} \quad \text{\GT{if} $f$ \GT{real}} + } + \end{formula} + + \begin{formula}{series_sincos} + \desc{Fourier series}{Sine and cosine representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}} + \desc[german]{Fourierreihe}{Sinus und Kosinus Darstellung}{} + \eq{f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \Cos{\frac{2\pi}{T}kt} + b_k\Sin{\frac{2\pi}{T}kt}\right)} + \end{formula} + \begin{formula}{coefficient} + \desc{Fourier coefficients}{Sine and cosine representation\\If $f$ has point symmetry: $a_{k>0}=0$, if $f$ has axial symmetry: $b_k=0$}{} + \desc[german]{Fourierkoeffizienten}{Sinus und Kosinus Darstellung\\Wenn $f$ punktsymmetrisch: $a_{k>0}=0$, wenn $f$ achsensymmetrisch: $b_k=0$}{} + \eq{ + a_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Cos{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\ + b_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Sin{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge1\\ + a_k &= c_k + c_{-k} \quad\text{\GT{for}}\,k\ge0\\ + b_k &= \I(c_k - c_{-k}) \quad\text{\GT{for}}\,k\ge1 + } + \end{formula} + \TODO{cleanup} + + + + \Subsubsection[ + \eng{Fourier transformation} + \ger{Fouriertransformation} + ]{trafo} + \begin{formula}{transform} + \desc{Fourier transform}{}{$\hat{f}:\R^n \mapsto \C$, $\forall f\in L^1(\R^n)$} + \desc[german]{Fouriertransformierte}{}{} + \eq{\hat{f}(k) \coloneq \frac{1}{\sqrt{2\pi}^n} \int_{\R^n} \e^{-\I kx}f(x)\d x} + \end{formula} + + \Eng[linear_in]{linear in} + \Ger[linear_in]{linear in} + \GT{for} $f\in L^1(\R^n)$: + \begin{enumerate}[i)] + \item $f \mapsto \hat{f}$ \GT{linear_in} $f$ + \item $g(x) = f(x-h) \qRarrow \hat{g}(k) = \e^{-\I kn}\hat{f}(k)$ + \item $g(x) = \e^{ih\cdot x}f(x) \qRarrow \hat{g}(k) = \hat{f}(k-h)$ + \item $g(\lambda) = f\left(\frac{x}{\lambda}\right) \qRarrow \hat{g}(k)\lambda^n \hat{f}(\lambda k)$ + \end{enumerate} + + +\Section[ + \eng{List of common integrals} + \ger{Liste nützlicher Integrale} + ]{integrals} + + \begin{formula}{riemann_zeta} + \desc{Riemann Zeta Function}{}{} + \desc[german]{Riemannsche Zeta-Funktion}{}{} + \eq{\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1-2^{(1-s)})\Gamma(s)} \int_0^\infty \d\eta \frac{\eta^{(s-1)}}{\e^\eta + 1}} + \end{formula} + diff --git a/src/atom.tex b/src/atom.tex index c20b1c2..39b5782 100644 --- a/src/atom.tex +++ b/src/atom.tex @@ -1,7 +1,6 @@ -\def\masse{m_\textrm{e}} -\def\grad{\vec{\nabla}} -\def\vecr{\vec{r}} -\def\abohr{a_\textrm{B}} +\def\vecr{{\vec{r}}} +\kef\abohr{a_\textrm{B}} + \Section[ \eng{Hydrogen Atom} \ger{Wasserstoffatom} @@ -23,9 +22,8 @@ \desc[german]{Hamiltonian}{}{} % \eq{V(\vecr) = \frac{Z\,e^2}{4\pi\epsilon_0 r}} \eq{ - - % \hat{H} &= -\frac{\hbar^2}{2\mu} {\grad_\vecr}^2 - V(\vecr) - % &= \frac{\hat{p}_r^2}{2\mu} + \frac{\hat{L}^2}{2\mu r} + V(r) + \hat{H} &= -\frac{\hbar^2}{2\mu} {\Grad_\vecr}^2 - V(\vecr) \\ + &= \frac{\hat{p}_r^2}{2\mu} + \frac{\hat{L}^2}{2\mu r} + V(r) } \end{formula} @@ -67,7 +65,7 @@ \eng{Darwin term} \ger{Darwin-Term} ]{darwin} - \begin{ttext}{desc} + \begin{ttext}[desc] \eng{Relativisitc correction: Because of the electrons zitterbewegung, it is not entirely localised. \TODO{fact check}} \ger{Relativistische Korrektur: Elektronen führen eine Zitterbewegung aus und sind nicht vollständig lokalisiert.} \end{ttext} @@ -87,7 +85,7 @@ \eng{Spin-orbit coupling (LS-coupling)} \ger{Spin-Bahn-Kopplung (LS-Kopplung)} ]{ls_coupling} - \begin{ttext}{desc} + \begin{ttext}[desc] \eng{The interaction of the electron spin with the electrostatic field of the nuclei lead to energy shifts.} \ger{The Wechselwirkung zwischen dem Elektronenspin und dem elektrostatischen Feld des Kerns führt zu Energieverschiebungen.} \end{ttext} @@ -95,7 +93,7 @@ \begin{formula}{energy_shift} \desc{Energy shift}{}{} \desc[german]{Energieverschiebung}{}{} - \eq{\Delta E_\text{LS} = \frac{\mu_0 Z e^2}{8\pi m^2 e\,r^3} \braket{\vec{S} \cdot \vec{L}}} + \eq{\Delta E_\text{LS} = \frac{\mu_0 Z e^2}{8\pi \masse^2\,r^3} \braket{\vec{S} \cdot \vec{L}}} \end{formula} \begin{formula}{sl} \desc{\TODO{name}}{}{} @@ -108,7 +106,7 @@ \eng{Fine-structure} \ger{Feinstruktur} ]{fine_structure} - \begin{ttext}{desc} + \begin{ttext}[desc] \eng{The fine-structure combines relativistic corrections \ref{sec:qm:h:corrections:darwin} and the spin-orbit coupling \ref{sec:qm:h:corrections:ls_coupling}.} \ger{Die Feinstruktur vereint relativistische Korrekturen \ref{sec:qm:h:corrections:darwin} und die Spin-Orbit-Kupplung \ref{sec:qm:h:corrections:ls_coupling}.} \end{ttext} @@ -122,8 +120,8 @@ \Subsubsection[ \eng{Lamb-shift} \ger{Lamb-Shift} - ]{lamb_shift} - \begin{ttext}{desc} + ]{lamb_shift} + \begin{ttext}[desc] \eng{The interaction of the electron with virtual photons emitted/absorbed by the nucleus leads to a (very small) shift in the energy level.} \ger{The Wechselwirkung zwischen dem Elektron und vom Kern absorbierten/emittierten virtuellen Photonen führt zu einer (sehr kleinen) Energieverschiebung.} \end{ttext} @@ -136,11 +134,10 @@ \Subsubsection[ \eng{Hyperfine structure} \ger{Hyperfeinstruktur} - ]{hyperfine_structure} - \begin{ttext}{desc} - \eng{Interaction of the nucleus spin with the magnetic field created by the electron leads to energy shifts. (Lifts degenaracy) } + ]{hyperfine_structure} + \begin{ttext}[desc] + \eng{Interaction of the nucleus spin with the magnetic field created by the electron leads to energy shifts. (Lifts degeneracy) } \ger{Wechselwirkung von Kernspin mit dem vom Elektron erzeugten Magnetfeld spaltet Energieniveaus} - \end{ttext} \begin{formula}{nuclear_spin} \desc{Nuclear spin}{}{} diff --git a/src/calculus.tex b/src/calculus.tex new file mode 100644 index 0000000..3593a9c --- /dev/null +++ b/src/calculus.tex @@ -0,0 +1,55 @@ +\Part[ + \eng{Analysis} + \ger{Analysis} + ]{ana} + + \Subsection[ + \eng{Convolution} + \ger{Faltung / Konvolution} + ]{conv} + \begin{ttext} + \eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.} + \ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}} + \end{ttext} + \begin{formula}{def} + \desc{Definition}{}{} + \desc[german]{Definition}{}{} + \eq{(f*g)(t) = f(t) * g(t) = int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau} + \end{formula} + \begin{formula}{notation} + \desc{Notation}{}{} + \desc[german]{Notation}{}{} + \eq{ + f(t) * g(t-t_0) &= (f*g)(t-t_0) \\ + f(t-t_0) * g(t-t_0) &= (f*g)(t-2t_0) + } + \end{formula} + \begin{formula}{commutativity} + \desc{Commutativity}{}{} + \desc[german]{Kommutativität}{}{} + \eq{f * g = g * f} + \end{formula} + + \begin{formula}{associativity} + \desc{Associativity}{}{} + \desc[german]{Assoziativität]}{}{} + \eq{(f*g)*h = f*(g*h)} + \end{formula} + + \begin{formula}{distributivity} + \desc{Distributivity}{}{} + \desc[german]{Distributivität}{}{} + \eq{f * (g + h) = f*g + f*h} + \end{formula} + + \begin{formula}{complex_conjugate} + \desc{Complex conjugate}{}{} + \desc[german]{Komplexe konjugation}{}{} + \eq{(f*g)^* = f^* * g^*} + \end{formula} + + \Subsection[ + \eng{Fourier analysis} + \ger{Fourieranalyse} + ]{fourier} + diff --git a/src/circuit.tex b/src/circuit.tex new file mode 100644 index 0000000..35e32f0 --- /dev/null +++ b/src/circuit.tex @@ -0,0 +1,79 @@ + +% Josephson junction +\makeatletter +\pgfcircdeclarebipolescaled{instruments} +{ + % put the node text above and centered + \anchor{text}{\pgfextracty{\pgf@circ@res@up}{\northeast} + \pgfpoint{-.5\wd\pgfnodeparttextbox}{ + \dimexpr.5\dp\pgfnodeparttextbox+.5\ht\pgfnodeparttextbox+\pgf@circ@res@up\relax + } + } +} +{\ctikzvalof{bipoles/oscope/height}} +{josephson} +{\ctikzvalof{bipoles/oscope/height}} +{\ctikzvalof{bipoles/oscope/width}} +{ + % ? + \pgf@circ@setlinewidth{bipoles}{\pgfstartlinewidth} + \pgfextracty{\pgf@circ@res@up}{\northeast} + \pgfextractx{\pgf@circ@res@right}{\northeast} + \pgfextractx{\pgf@circ@res@left}{\southwest} + \pgfextracty{\pgf@circ@res@down}{\southwest} + \pgfmathsetlength{\pgf@circ@res@step}{0.25*\pgf@circ@res@up} + + % \pgfscope % box + % \pgfpathrectanglecorners{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@down}}{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@up}} + % \pgf@circ@draworfill + % \endpgfscope + \pgfscope % cross + \pgfpathmoveto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@up}}% + \pgfpathlineto{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@down}}% + \pgfpathmoveto{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@up}}% + \pgfpathlineto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@down}}% + \pgfusepath{draw} + \endpgfscope +} +\def\pgf@circ@josephson@path#1{\pgf@circ@bipole@path{josephson}{#1}} +\tikzset{josephson/.style = {\circuitikzbasekey, /tikz/to path=\pgf@circ@josephson@path, l=#1}} + + +\pgfcircdeclarebipolescaled{instruments} +{ + % put the node text above and centered + \anchor{text}{\pgfextracty{\pgf@circ@res@up}{\northeast} + \pgfpoint{-.5\wd\pgfnodeparttextbox}{ + \dimexpr.5\dp\pgfnodeparttextbox+.5\ht\pgfnodeparttextbox+\pgf@circ@res@up\relax + } + } +} +{\ctikzvalof{bipoles/oscope/height}} +{josephsoncap} +{\ctikzvalof{bipoles/oscope/height}} +{\ctikzvalof{bipoles/oscope/width}} +{ + % ? + \pgf@circ@setlinewidth{bipoles}{\pgfstartlinewidth} + \pgfextracty{\pgf@circ@res@up}{\northeast} + \pgfextractx{\pgf@circ@res@right}{\northeast} + \pgfextractx{\pgf@circ@res@left}{\southwest} + \pgfextracty{\pgf@circ@res@down}{\southwest} + \pgfmathsetlength{\pgf@circ@res@step}{0.25*\pgf@circ@res@up} + + \pgfscope % box + \pgfpathrectanglecorners{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@down}}{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@up}} + \pgf@circ@draworfill + \endpgfscope + \pgfscope % cross + \pgfpathmoveto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@up}}% + \pgfpathlineto{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@down}}% + \pgfpathmoveto{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@up}}% + \pgfpathlineto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@down}}% + \pgfusepath{draw} + \endpgfscope +} +\def\pgf@circ@josephsoncap@path#1{\pgf@circ@bipole@path{josephsoncap}{#1}} +\tikzset{josephsoncap/.style = {\circuitikzbasekey, /tikz/to path=\pgf@circ@josephsoncap@path, l=#1}} + + diff --git a/src/condensed_matter.tex b/src/condensed_matter.tex new file mode 100644 index 0000000..fdac857 --- /dev/null +++ b/src/condensed_matter.tex @@ -0,0 +1,231 @@ +\Part[ + \eng{Condensed matter physics} + \ger{Festkörperphysik} + ]{cm} +\Section[ + \eng{Bravais lattice} + \ger{Bravais-Gitter} + ]{bravais} + + % \begin{ttext} + % \eng{ + + % } + % \ger{ + + % } + % \end{ttext} + + \eng[bravais_table2]{In 2D, there are 5 different Bravais lattices} + \ger[bravais_table2]{In 2D gibt es 5 verschiedene Bravais-Gitter} + + \eng[bravais_table3]{In 3D, there are 14 different Bravais lattices} + \ger[bravais_table3]{In 3D gibt es 14 verschiedene Bravais-Gitter} + + \Eng[lattice_system]{Lattice system} + \Ger[lattice_system]{Gittersystem} + \Eng[crystal_family]{Crystal system} + \Ger[crystal_family]{Kristall-system} + \Eng[point_group]{Point group} + \Ger[point_group]{Punktgruppe} + \eng[bravais_lattices]{Bravais lattices} + \ger[bravais_lattices]{Bravais Gitter} + + \newcommand\bvimg[1]{\begin{center}\includegraphics[width=0.1\textwidth]{img/bravais/#1.pdf}\end{center}} + \renewcommand\tabularxcolumn[1]{m{#1}} + \newcolumntype{Z}{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}X} + \begin{table}[H] + \centering + \caption{\gt{bravais_table2}} + \label{tab:bravais2} + + \begin{adjustbox}{width=\textwidth} + \begin{tabularx}{\textwidth}{||Z|c|Z|Z||} + \hline + \multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{2}{c||}{5 \gt{bravais_lattices}} \\ \cline{3-4} + & & \GT{primitive} (p) & \GT{centered} (c) \\ \hline + \GT{monoclinic} (m) & $\text{C}_\text{2}$ & \bvimg{mp} & \\ \hline + \GT{orthorhombic} (o) & $\text{D}_\text{2}$ & \bvimg{op} & \bvimg{oc} \\ \hline + \GT{tetragonal} (t) & $\text{D}_\text{4}$ & \bvimg{tp} & \\ \hline + \GT{hexagonal} (h) & $\text{D}_\text{6}$ & \bvimg{hp} & \\ \hline + \end{tabularx} + \end{adjustbox} + \end{table} + + + + \begin{table}[H] + \centering + \caption{\gt{bravais_table3}} + \label{tab:bravais3} + + % \newcolumntype{g}{>{\columncolor[]{0.8}}} + \begin{adjustbox}{width=\textwidth} + % \begin{tabularx}{\textwidth}{|c|} + % asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\ + % asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\ + % \end{tabularx} + % \begin{tabular}{|c|} + % asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\ + % asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\ + % \end{tabular} + % \\ + \begin{tabularx}{\textwidth}{||Z|Z|c|Z|Z|Z|Z||} + \hline + \multirow{2}{*}{\GT{crystal_family}} & \multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{4}{c||}{14 \gt{bravais_lattices}} \\ \cline{4-7} + & & & \GT{primitive} (P) & \GT{base_centered} (S) & \GT{body_centered} (I) & \GT{face_centered} (F) \\ \hline + \multicolumn{2}{||c|}{\GT{triclinic} (a)} & $\text{C}_\text{i}$ & \bvimg{tP} & & & \\ \hline + \multicolumn{2}{||c|}{\GT{monoclinic} (m)} & $\text{C}_\text{2h}$ & \bvimg{mP} & \bvimg{mS} & & \\ \hline + \multicolumn{2}{||c|}{\GT{orthorhombic} (o)} & $\text{D}_\text{2h}$ & \bvimg{oP} & \bvimg{oS} & \bvimg{oI} & \bvimg{oF} \\ \hline + \multicolumn{2}{||c|}{\GT{tetragonal} (t)} & $\text{D}_\text{4h}$ & \bvimg{tP} & & \bvimg{tI} & \\ \hline + \multirow{2}{*}{\GT{hexagonal} (h)} & \GT{rhombohedral} & $\text{D}_\text{3d}$ & \bvimg{hR} & & & \\ \cline{2-7} + & \GT{hexagonal} & $\text{D}_\text{6h}$ & \bvimg{hP} & & & \\ \hline + \multicolumn{2}{||c|}{\GT{cubic} (c)} & $\text{O}_\text{h}$ & \bvimg{cP} & & \bvimg{cI} & \bvimg{cF} \\ \hline + \end{tabularx} + \end{adjustbox} + \end{table} + + +\Section[ + \eng{Reciprocal lattice} + \ger{Reziprokes Gitter} + ]{reci} + \begin{ttext} + \eng{The reciprokal lattice is made up of all the wave vectors $\vec{k}$ that ressemble standing waves with the periodicity of the Bravais lattice.} + \ger{Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren $\vec{k}$, die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.} + \end{ttext} + + \begin{formula}{vectors} + \desc{Reciprocal lattice vectors}{}{$a_i$ real-space lattice vectors, $V_c$ volume of the primitive lattice cell} + \desc[german]{Reziproke Gittervektoren}{}{$a_i$ Bravais-Gitter Vektoren, $V_c$ Volumen der primitiven Gitterzelle} + \eq{ + \vec{b_1} &= \frac{2\pi}{V_c} \vec{a_2} \times \vec{a_3} \\ + \vec{b_2} &= \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1} \\ + \vec{b_3} &= \frac{2\pi}{V_c} \vec{a_1} \times \vec{a_2} + } + \end{formula} + + +\Section[ + \eng{Free electron gas} + \ger{Freies Elektronengase} +]{free_e_gas} + \begin{ttext} + \eng{Assumptions: electrons can move freely and independent of each other.} + \ger{Annahmen: Elektronen bewegen sich frei und unabhänig voneinander.} + \end{ttext} + + \begin{formula}{drift_velocity} + \desc{Drift velocity}{Velocity component induced by an external force (eg. electric field)}{$v_\text{th}$ thermal velocity} + \desc[german]{Driftgeschwindgkeit}{Geschwindigkeitskomponente durch eine externe Kraft (z.B. ein elektrisches Feld)}{$v_\text{th}$ thermische Geschwindigkeit} + \eq{\vec{v}_\text{D} = \vec{v} - \vec{v}_\text{th}} + \end{formula} + + \begin{formula}{mean_free_time} + \desc{Mean free time}{}{} + \desc[german]{Streuzeit}{}{} + \eq{\tau} + \end{formula} + + \begin{formula}{mean_free_path} + \desc{Mean free path}{}{} + \desc[german]{Mittlere freie Weglänge}{}{} + \eq{\ell = \braket{v} \tau} + \end{formula} + + \begin{formula}{mobility} + \desc{Electrical mobility}{}{$q$ charge, $m$ mass} + \desc[german]{Beweglichkeit}{}{$q$ Ladung, $m$ Masse} + \eq{\mu = \frac{q \tau}{m}} + \end{formula} + + \Subsection[ + \eng{Drude model} + \ger{Drude-Modell} + ]{drude} + \begin{ttext} + \eng{Classical model describing the transport properties of electrons in materials (metals): + The material is assumed to be an ion lattice and with freely moving electrons (electron gas). The electrons are + accelerated by an electric field and decelerated through collisions with the lattice ions. + The model disregards the Fermi-Dirac partition of the conducting electrons. + } + \ger{Ein klassisches Model zur Beschreibung der Transporteigenschaften von Elektronen in (v.a.) Metallen: + Der Festkörper wird als Ionenkristall mit frei beweglichen Elektronen (Elektronengas). + Die Elektronen werden durch ein Elektrisches Feld $E$ beschleunigt und durch Stöße mit den Gitterionen gebremst. + Das Modell vernachlässigt die Fermi-Dirac Verteilung der Leitungselektronen. + } + \end{ttext} + \begin{formula}{motion} + \desc{Equation of motion}{}{$v$ electron speed, $\vec{v}_\text{D}$ drift velocity, $\tau$ mean free time between collisions} + \desc[german]{Bewegungsgleichung}{}{$v$ Elektronengeschwindigkeit, $\vec{v}_\text{D}$ Driftgeschwindigkeit, $\tau$ Stoßzeit} + \eq{\masse \odv{\vec{v}}{t} + \frac{\masse}{\tau} \vec{v}_\text{D} = -e \vec{E}} + \end{formula} + \begin{formula}{current_density} + \desc{Current density}{Ohm's law}{$n$ charge particle density} + \desc[german]{Stromdichte}{Ohmsches Gesetz}{$n$ Ladungsträgerdichte} + \eq{\vec{j} = -ne\vec{v}_\text{D} = ne\mu \vec{E}} + \end{formula} + \begin{formula}{conductivity} + \desc{Drude-conductivity}{}{} + \desc[german]{Drude-Leitfähigkeit}{}{} + \eq{\sigma = \frac{\vec{j}}{\vec{E}} = \frac{e^2 \tau n}{\masse} = n e \mu} + \end{formula} + + \Subsection[ + \eng{Sommerfeld model} + \ger{Sommerfeld-Modell} + ]{sommerfeld} + \begin{ttext} + \eng{Assumes a gas of free fermions underlying the pauli-exclusion principle. Only electrons in an energy range of $\kB T$ around the Fermi energy $\EFermi$ participate in scattering processes.} + \ger{Annahme eines freien Fermionengases, welches dem Pauli-Prinzip unterliegt. Nur Elektronen in einem Energiebereich von $\kB T$ um die Fermi Energe $\EFermi$ nehmen an Streuprozessen teil.} + \end{ttext} + \begin{formula}{current_density} + \desc{Current density}{}{} + \desc[german]{Stromdichte}{}{} + \eq{\vec{j} = -en\braket{v} = -e n \frac{\hbar}{\masse}\braket{\vec{k}} = -e \frac{1}{V} \sum_{\vec{k},\sigma} \frac{\hbar \vec{k}}{\masse}} + \end{formula} + \TODO{The formula for the conductivity is the same as in the drude model?} + + \Subsection[ + \eng{2D electron gas} + \ger{2D Elektronengas} + ]{2deg} + + \begin{ttext} + \eng{Lower dimension gases can be obtained by restricting a 3D gas with infinetly high potential walls on a narrow area with the width $L$.} + \ger{ + Niederdimensionale Elektronengase erhält man, wenn ein 3D Gas durch unendlich hohe Potentialwände auf einem schmalen Bereich mit Breite $L$ eingeschränkt wird. + } + \end{ttext} + \begin{formula}{confinement_energy} + \desc{Confinement energy}{Raises ground state energy}{} + \desc[german]{Confinement Energie}{Erhöht die Grundzustandsenergie}{} + \eq{\Delta E = \frac{\hbar^2 \pi^2}{2\masse L^2}} + \end{formula} + + \Eng[plain_wave]{plain wave} + \Ger[plain_wave]{ebene Welle} + \begin{formula}{energy} + \desc{Energy}{}{} + \desc[german]{Energie}{}{} + \eq{E_n = \underbrace{\frac{\hbar^2 k_\parallel^2}{2\masse}}_\text{$x$-$y$: \GT{plain_wave}} + \underbrace{\frac{\hbar^2 \pi^2}{2\masse L^2} n^2}_\text{$z$}} + \end{formula} + + \Subsection[ + \eng{1D electron gas / quantum wire} + \ger{1D Eleltronengas / Quantendraht} + ]{1deg} + + \begin{formula}{energy} + \desc{Energy}{}{} + \desc[german]{Energie}{}{} + \eq{E_n = \frac{\hbar^2 k_x^2}{2\masse} + \frac{\hbar^2 \pi^2}{2\masse L_z^2} n_1^2 + \frac{\hbar^2 \pi^2}{2\masse L_y^2} n_2^2} + \end{formula} + + \Subsection[ + \eng{0D electron gas / quantum dot} + \ger{0D Elektronengase / Quantenpunkt} + ]{0deg} + + \TODO{TODO} + diff --git a/src/electrodynamics.tex b/src/electrodynamics.tex new file mode 100644 index 0000000..f08d7c1 --- /dev/null +++ b/src/electrodynamics.tex @@ -0,0 +1,222 @@ +\def\PhiB{\Phi_\text{B}} +\def\PhiE{\Phi_\text{E}} + +\Part[ + \eng{Electrodynamics} + \ger{Elektrodynamik} +]{ed} + + +\Section[ + \eng{Maxwell-Equations} + \ger{Maxwell-Gleichungen} + ]{Maxwell} + \begin{formula}{vacuum} + \desc{Vacuum}{microscopic formulation}{} + \desc[german]{Vakuum}{Mikroskopische Formulierung}{} + \eq{ + \Div \vec{E} &= \frac{\rho_\text{el}}{\epsilon_0} \\ + \Div \vec{B} &= 0 \\ + \Rot \vec{E} &= - \odv{\vec{B}}{t} \\ + \Rot \vec{B} &= \mu_0 \vec{j} + \frac{1}{c^2} \odv{\vec{E}}{t} + } + \end{formula} + + \begin{formula}{material} + \desc{Matter}{Macroscopic formulation}{} + \desc[german]{Materie}{Makroskopische Formulierung}{} + \eq{ + \Div \vec{D} &= \rho_\text{el} \\ + \Div \vec{B} &= 0 \\ + \Rot \vec{E} &= - \odv{\vec{B}}{t} \\ + \Rot \vec{H} &= \vec{j} + \odv{\vec{D}}{t} + } + \end{formula} + +\Section[ + \eng{Fields} + \ger{Felder} + ]{fields} + + \Subsection[ + \eng{Electric field} + \ger{Elektrisches Feld} + ]{mag} + \begin{formula}{gauss_law} + \desc{Gauss's law for electric fields}{Electric flux through a closed surface is proportional to the electric charge}{$S$ closed surface} + \desc[german]{Gaußsches Gesetz für elektrische Felder}{Der magnetische Fluss durch eine geschlossene Fläche ist proportional zur elektrischen Ladung}{$S$ geschlossene Fläche} + \eq{\PhiE = \iint_S \vec{E}\cdot\d\vec{S} = \frac{Q}{\varepsilon_0}} + \end{formula} + + \Subsection[ + \eng{Magnetic field} + \ger{Magnetfeld} + ]{mag} + + \Eng[magnetic_flux]{Magnetix flux density} + \Ger[magnetic_flux]{Magnetische Flussdichte} + + % \begin{quantity}{mag_flux}{\Phi}{\Wb}{\kg\m^2\per\s^2\A^1}{scalar} + % \sign{} + % \desc{Magnetic flux density}{} + % \desc[german]{Magnetische Feldstärke}{} + % \end{quantity} + + \begin{formula}{magnetic_flux} + \desc{Magnetic flux}{}{} + \desc[german]{Magnetischer Fluss}{}{} + \eq{\PhiB = \iint_A \vec{B}\cdot\d\vec{A}} + \end{formula} + + \begin{formula}{gauss_law} + \desc{Gauss's law for magnetism}{Magnetic flux through a closed surface is $0$ \Rightarrow there are no magnetic monopoles}{$S$ closed surface} + \desc[german]{Gaußsches Gesetz für Magnetismus}{Der magnetische Fluss durch eine geschlossene Fläche ist $0$ \Rightarrow es gibt keine magnetischen Monopole}{$S$ geschlossene Fläche} + \eq{\PhiB = \iint_S \vec{B}\cdot\d\vec{S} = 0} + \end{formula} + + \begin{formula}{name} + \desc{}{}{} + \desc[german]{}{}{} + \eq{} + \end{formula} + \begin{formula}{magnetization} + \desc{Magnetization}{}{$m$ mag. moment, $V$ volume} + \desc[german]{Magnetisierung}{}{$m$ mag. Moment, $V$ Volumen} + \eq{\vec{M} = \odv{\vec{m}}{V} = \chi_\text{m} \cdot \vec{H}} + \end{formula} + + \begin{formula}{angular_torque} + \desc{Torque}{}{$m$ mag. moment} + \desc[german]{Drehmoment}{}{$m$ mag. Moment} + \eq{\vec{\tau} = \vec{m} \times \vec{B}} + \end{formula} + + \begin{formula}{suceptibility} + \desc{Susceptibility}{}{} + \desc[german]{Suszeptibilität}{}{} + \eq{\chi_\text{m} = \pdv{M}{B} = \frac{\mu}{\mu_0} - 1 } + \end{formula} + + + \begin{formula}{poynting} + \desc{Poynting vector}{Directional energy flux or power flow of an electromagnetic field [$\si{\W\per\m^2}$]}{} + \desc[german]{Poynting-Vektor}{Gerichteter Energiefluss oder Leistungsfluss eines elektromgnetischen Feldes [$\si{\W\per\m^2}$]}{} + \eq{\vec{S} = \vec{E} \times \vec{H}} + \end{formula} + + + + \Subsection[ + \eng{Induction} + \ger{Unduktion} + ]{induction} + \begin{formula}{farady_law} + \desc{Faraday's law of induction}{}{} + \desc[german]{Faradaysche Induktionsgesetz}{}{} + \eq{U_\text{ind} = -\odv{}{t} \PhiB = - \odv{}{t} \iint_A\vec{B} \cdot \d\vec{A}} + \end{formula} + +\Section[ + \eng{Hall-Effect} + \ger{Hall-Effekt} + ]{hall} + + \begin{formula}{cyclotron} + \desc{Cyclontron frequency}{}{} + \desc[german]{Zyklotronfrequenz}{}{} + \eq{\omega_\text{c} = \frac{e B}{\masse}} + \end{formula} + \TODO{Move} + + + \Subsection[ + \eng{Classical Hall-Effect} + \ger{Klassischer Hall-Effekt} + ]{classic} + \begin{ttext} + \eng{Current flowing in $x$ direction in a conductor ($l \times b \times d$) with a magnetic field $B$ in $z$ direction leads to a hall voltage $U_\text{H}$ in $y$ direction.} + \ger{Fließt in einem Leiter ($l \times b \times d$) ein Strom in $x$ Richtung, während der Leiter von einem Magnetfeld $B$ in $z$-Richtung durchdrungen, wird eine Hallspannung $U_\text{H}$ in $y$-Richtung induziert.} + \end{ttext} + \begin{formula}{voltage} + \desc{Hall voltage}{}{$n$ charge carrier density} + \desc[german]{Hallspannung}{}{$n$ Ladungsträgerdichte} + \eq{U_\text{H} = \frac{I B}{ne d}} + \end{formula} + + \begin{formula}{coefficient} + \desc{Hall coefficient}{}{} + \desc[german]{Hall-Koeffizient}{}{} + \eq{R_\text{H} = -\frac{Eg}{j_x Bg} = \frac{1}{ne} = \frac{\rho_{xy}}{B_z}} + \end{formula} + + \begin{formula}{resistivity} + \desc{Resistivity}{}{} + \desc[german]{Spezifischer Widerstand}{}{} + \eq{\rho_{xx} &= \frac{\masse}{ne^2\tau} \\ \rho_{xy} &= \frac{B}{ne}} + \end{formula} + + + \Subsection[ + \eng{Integer quantum hall effect} + \ger{Ganzahliger Quantenhalleffekt} + ]{quantum} + + \begin{formula}{conductivity} + \desc{Conductivity tensor}{}{} + \desc[german]{Leitfähigkeitstensor}{}{} + \eq{\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} } + \end{formula} + + \begin{formula}{resistivity} + \desc{Resistivity tensor}{}{} + \desc[german]{Spezifischer Widerstands-tensor}{}{} + \eq{ + \rho = \sigma^{-1} + % \sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} } + } + \end{formula} + + \begin{formula}{resistivity} + \desc{Resistivity}{}{$\nu \in \mathbb{Z}$} + \desc[german]{Spezifischer Hallwiderstand}{}{$\nu \in \mathbb{Z}$} + \eq{\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}} + \end{formula} + + % \begin{formula}{qhe} + % \desc{Integer quantum hall effect}{}{} + % \desc[german]{Ganzahliger Quanten-Hall-Effekt}{}{} + % \fig{img/qhe-klitzing.jpeg} + % \end{formula} + + + \TODO{sort} + \begin{formula}{impedance_c} + \desc{Impedance of a capacitor}{}{} + \desc[german]{Impedanz eines Kondesnators}{}{} + \eq{Z_{C} = \frac{1}{i\omega C}} + \end{formula} + + \begin{formula}{impedance_l} + \desc{Impedance of an inductor}{}{} + \desc[german]{Impedanz eines Induktors}{}{} + \eq{Z_{L} = i\omega L} + \end{formula} + + \TODO{impedance addition for parallel / linear} + +\Section[ + \eng{Dipole-stuff} + \ger{Dipol-zeug} +]{dipole} + + \begin{formula}{poynting} + \desc{Dipole radiation Poynting vector}{}{} + \desc[german]{Dipolsrahlung Poynting-Vektor}{}{} + \eq{\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right)\frac{\sin^2\theta}{r^2} \vec{r}} + \end{formula} + + \begin{formula}{power} + \desc{Time-average power}{}{} + \desc[german]{Zeitlich mittlere Leistung}{}{} + \eq{P = \frac{\mu_0\omega^4 p_0^2}{12\pi c}} + \end{formula} diff --git a/src/environments.tex b/src/environments.tex new file mode 100644 index 0000000..0f3d70a --- /dev/null +++ b/src/environments.tex @@ -0,0 +1,213 @@ +\def\descwidth{0.3\textwidth} +\def\eqwidth{0.6\textwidth} + +% [1]: minipage width +% 2: fqname of name +% 3: fqname of a translation that holds the explanation +\newcommand{\NameWithExplanation}[3][\descwidth]{ + \begin{minipage}{#1} + \iftranslation{#2}{ + \raggedright + \gt{#2} + }{} + \iftranslation{#3}{ + \\ {\color{darkgray} \gt{#3}} + }{} + \end{minipage} +} + +% [1]: minipage width +% 2: content +% 3: fqname of a translation that holds the explanation +\newcommand{\ContentBoxWithExplanation}[3][\eqwidth]{ + \fbox{ + \begin{minipage}{#1} + % \vspace{-\baselineskip} % remove the space that comes from starting a new paragraph + #2 + \noindent\iftranslation{#3}{ + \begingroup + \color{darkgray} + \gt{#3} + % \edef\temp{\GT{#1_defs}} + % \expandafter\StrSubstitute\expandafter{\temp}{:}{\\} + \endgroup + }{} + % \vspace{-\baselineskip} % remove the space that comes from starting a new paragraph + \end{minipage} + } + +} + +% 1: fqname, optional with #1_defs and #1_desc defined +% 2: content +\newcommand{\NameLeftContentRight}[2]{ + \par\noindent\ignorespaces + % \textcolor{gray}{\hrule} + \vspace{0.5\baselineskip} + \NameWithExplanation[\descwidth]{#1}{#1_desc} + \hfill + \ContentBoxWithExplanation[\eqwidth]{#2}{#1_defs} + \textcolor{lightgray}{\hrule} + \vspace{0.5\baselineskip} + % \par + % \hrule +} + +\newcommand{\insertEquation}[2]{ + \NameLeftContentRight{#1}{ + \begin{align} + \label{eq:\fqname:#1} + #2 + \end{align} + } +} + +\newcommand{\insertFLAlign}[2]{ % eq name, #cols, eq + \NameLeftContentRight{#1}{% + \begin{flalign}% + % dont place label when one is provided + % \IfSubStringInString{label}\unexpanded{#3}{}{ + % \label{eq:#1} + % } + #2% + \end{flalign} + } +} + +\newcommand{\insertAlignedAt}[3]{ % eq name, #cols, eq + \NameLeftContentRight{#1}{% + \begin{alignat}{#2}% + % dont place label when one is provided + % \IfSubStringInString{label}\unexpanded{#3}{}{ + % \label{eq:#1} + % } + #3% + \end{alignat} + } +} + +\newcommand\luaexpr[1]{\directlua{tex.sprint(#1)}} +% 1: fqname +% 2: file path +% 3: equation +\newcommand{\insertEquationWithFigure}[4][0.55]{ + \par\noindent\ignorespaces + % \textcolor{gray}{\hrule} + \vspace{0.5\baselineskip} + \begin{minipage}{#1\textwidth} + \NameWithExplanation[\textwidth]{#2}{#2_desc} + % TODO: why is this ignored + \vspace{1.0cm} + % TODO: fix box is too large without 0.9 + \ContentBoxWithExplanation[0.90\textwidth]{ + \begin{align} + \label{eq:\fqname:#2} + #4 + \end{align} + }{#2_defs} + \end{minipage} + \hfill + \begin{minipage}{\luaexpr{1.0-#1}\textwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{#3} + \label{fig:\fqname:#2} + \end{figure} + \end{minipage} + \textcolor{lightgray}{\hrule} + \vspace{0.5\baselineskip} + +} + +\newenvironment{formula}[1]{ + % key + \newcommand{\desc}[4][english]{ + % language, name, description, definitions + \dt[#1]{##1}{##2} + \ifblank{##3}{}{\dt[#1_desc]{##1}{##3}} + \ifblank{##4}{}{\dt[#1_defs]{##1}{##4}} + } + \newcommand{\eq}[1]{ + \insertEquation{#1}{##1} + } + \newcommand{\eqAlignedAt}[2]{ + \insertAlignedAt{#1}{##1}{##2} + } + \newcommand{\eqFLAlign}[1]{ + \insertFLAlign{#1}{##1} + } + \newcommand{\figeq}[2]{ + \insertEquationWithFigure{#1}{##1}{##2} + } + \newcommand{\content}[1]{ + \NameLeftContentRight{#1}{##1} + } +}{\ignorespacesafterend} + + +\newenvironment{quantity}[5]{ + % key, symbol, si unit, si base units, comment (key to translation) + \newcommand{\desc}[3][english]{ + % language, name, description + \DT[qty:#1]{}{##1}{##2} + \ifblank{##3}{}{\DT[qty:#1_desc]{##1}{##3}} + } + \newcommand{\eq}[1]{ + \insertEquation{#1}{##1} + } + \newcommand{\eqAlignedAt}[2]{ + \insertAlignedAt{#1}{##1}{##2} + } + \newcommand{\eqFLAlign}[1]{ + \insertFLAlign{#1}{##1} + } + + \edef\qtyname{#1} + \edef\qtysign{#2} + \edef\qtyunit{#3} + \edef\qtybaseunits{#4} + \edef\qtycomment{#5} +} +{ + Quantity: \expandafter\GT\expandafter{qty:\qtyname}: \GT{qty:\qtyname_desc} \\ + $\qtysign$ $[\SI{\qtyunit}] = [\SI{\qtybaseunits}]$ - \qtycomment \\ + \ignorespacesafterend +} + \def\distrightwidth{0.45\textwidth} + \def\distleftwidth{0.45\textwidth} + + % Table for distributions + % create entries for parameters using \disteq + \newenvironment{distribution}[0]{ + % 1: param name (translation key) + % 2: math + \newcommand{\disteq}[2]{ + % add links to some names + \directlua{ + local cases = { + pdf = "eq:pt:distributions:pdf", + pmf = "eq:pt:distributions:pdf", + cdf = "eq:pt:distributions:cdf", + mean = "eq:pt:mean", + variance = "eq:pt:variance" + } + if cases["\luaescapestring{#1}"] \string~= nil then + tex.sprint("\\hyperref["..cases["\luaescapestring{#1}"].."]{\\GT{#1}}") + else + tex.sprint("\\GT{#1}") + end + } + & #2 \\ \hline + } + \hfill + \begin{minipage}{\distrightwidth} + \begingroup + \setlength{\tabcolsep}{0.9em} % horizontal + \renewcommand{\arraystretch}{2} % vertical + \begin{tabular}{|l|>{$\displaystyle}c<{$}|} + \hline + }{ + \end{tabular} + \endgroup + \end{minipage} + } diff --git a/src/trigonometry.tex b/src/geometry.tex similarity index 89% rename from src/trigonometry.tex rename to src/geometry.tex index a5f3682..8f08c22 100644 --- a/src/trigonometry.tex +++ b/src/geometry.tex @@ -1,8 +1,7 @@ - \Part[ - \eng{Analysis} - \ger{Analysis} - ]{ana} + \eng{Geometry} + \ger{Geometrie} + ]{geo} \Section[ \eng{Trigonometry} @@ -18,14 +17,14 @@ \begin{formula}{sine} \desc{Sine}{}{} \desc[german]{Sinus}{}{} - \eq{\sin(x) &= \sum_{n=0}^{\infty} \frac{x^{(2n+1)}}{(2n+1)!} \\ + \eq{\sin(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n+1)}}{(2n+1)!} \\ &= \frac{e^{ix}-e^{-ix}}{2i}} \end{formula} \begin{formula}{cosine} \desc{Cosine}{}{} \desc[german]{Kosinus}{}{} - \eq{\cos(x) &= \sum_{n=0}^{\infty} \frac{x^{(2n)}}{(2n)!} \\ + \eq{\cos(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n)}}{(2n)!} \\ &= \frac{e^{ix}+e^{-ix}}{2}} \end{formula} @@ -72,6 +71,12 @@ } \end{formula} + \begin{formula}{name} + \desc{}{}{$\tan\theta = b$} + \desc[german]{}{}{$\tan\theta = b$} + \eq{\cos x + b\sin x = \sqrt{1 + b^2}\cos(x-\theta)} + \end{formula} + \Subsection[ \eng{Table of values} diff --git a/src/img/bravais2/aP.svg b/src/img/bravais2/aP.svg new file mode 100644 index 0000000..d336e38 --- /dev/null +++ b/src/img/bravais2/aP.svg @@ -0,0 +1,760 @@ + + + + +File:Triclinic.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Triclinic.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 129 × 149 pixels, file size: 16 KB) +

+
+ +
+
+

Summary

+
+ + + + + + + + + + + + + + + + + + + + + + + + +
Description +
English: Triclinic crystal structure.
Date +Original: 1 August 2005; Vector: 2 March 2007
Source +Own work based on: Triclinic.png by DrBob at English Wikipedia
Author +Vectorization: Stannered
SVG development
InfoField
 
The SVG code is valid.
 
This vector image was created with Inkscape.
+
+

Licensing

+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. +
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

2 March 2007

image/svg+xml

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + + + + +
Date/TimeThumbnailDimensionsUserComment
current09:32, 8 August 2016Thumbnail for version as of 09:32, 8 August 2016129 × 149 (16 KB)Officer781Remove incorrect lattice constraint. The triclinic lattice has no constraints since it is the general case. One angle can be 90 degrees and it will still be triclinic.
11:39, 31 July 2016Thumbnail for version as of 11:39, 31 July 2016129 × 165 (26 KB)Officer781Labelled a, b and c.
19:53, 21 May 2012Thumbnail for version as of 19:53, 21 May 2012129 × 154 (26 KB)TretyakСorrection of an error
21:44, 2 March 2007Thumbnail for version as of 21:44, 2 March 2007129 × 154 (25 KB)Stannered{{Information |Description=Triclinic crystal structure. |Source=Crystal stucture |Date=2007-03-02 |Author=Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered |Permission=GNU Free Documentation License |other_versio
+ +
+ + +

Global file usage

+

The following other wikis use this file: +

+

View more global usage of this file. +

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/cF.svg b/src/img/bravais2/cF.svg new file mode 100644 index 0000000..aeec86e --- /dev/null +++ b/src/img/bravais2/cF.svg @@ -0,0 +1,801 @@ + + + + +File:Cubic-face-centered.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Cubic-face-centered.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 109 × 127 pixels, file size: 19 KB) +

+
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + +
Description +Face-centered cubic crystal structure
Date +
Source +Cubic, face-centered.png Lattice face centered cubic.svg
Author +Original PNGs by Daniel Mayer and DrBob, traced in Inkscape by User:Stannered
+
+
 
This vector image was created with Inkscape .
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. Subject to disclaimers. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +
+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. Subject to disclaimers. +

Captions

Astatine's crystal structure is thought to be cubic

Items portrayed in this file

depicts

2 March 2007

image/svg+xml

13d85480de70b83926dcc206a73c2fc4c1d577ff

19,160 byte

127 pixel

109 pixel

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + +
Date/TimeThumbnailDimensionsUserComment
current21:44, 2 March 2007Thumbnail for version as of 21:44, 2 March 2007109 × 127 (19 KB)Stannered{{Information |Description=Face-centered cubic crystal structure |Source=Crystal stucture |Date=2007-03-02 |Author=Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered |Permission=GNU Free Documentation License |oth
+ +
+ +
+
The following pages on the English Wikipedia use this file (pages on other projects are not listed):
+
+

Global file usage

+

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/cI.svg b/src/img/bravais2/cI.svg new file mode 100644 index 0000000..9beec42 --- /dev/null +++ b/src/img/bravais2/cI.svg @@ -0,0 +1,801 @@ + + + + +File:Cubic-body-centered.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Cubic-body-centered.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 109 × 127 pixels, file size: 16 KB) +

+
+ +
+
+

Summary

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Description +
English: The body-centred cubic crystal structure.
+
Bahasa Indonesia: Struktur kristal kubus acuan badan.
+
Українська: Кубічна об'ємноцентрована структура кристалічної ґратки.
+
العربية: الهيكل البلوري لمكعب مركزي الجسم
Date +2 March 2007
Source +Crystal stucture
Author +
Vector:
Other versions +
SVG development
InfoField
 
The SVG code is valid.
 
This geometry was created with Inkscape.
+
+

Licensing

+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. +
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +

Captions

Cubic-body-centered

Items portrayed in this file

depicts

2 March 2007

image/svg+xml

6b7cdf8abb6821b2fa2a27d8c39026e507e17911

16,047 byte

127 pixel

109 pixel

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + +
Date/TimeThumbnailDimensionsUserComment
current21:44, 2 March 2007Thumbnail for version as of 21:44, 2 March 2007109 × 127 (16 KB)Stannered{{Information |Description=Body-centered cubic crystal structure |Source=Crystal stucture |Date=2007-03-02 |Author=Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered |Permission=GNU Free Documentation License |oth
+ +
+ +
+
The following pages on the English Wikipedia use this file (pages on other projects are not listed):
+
+

Global file usage

+

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/cP.svg b/src/img/bravais2/cP.svg new file mode 100644 index 0000000..147c1ad --- /dev/null +++ b/src/img/bravais2/cP.svg @@ -0,0 +1,772 @@ + + + + +File:Cubic.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Cubic.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 109 × 127 pixels, file size: 14 KB) +

+
+ +
+
+

Summary

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Description +
English: Simple cubic crystal structure.
Date +2 March 2007
Source +Own work based on: Cubic crystal shape.png by Daniel Mayer at English Wikipedia
Author +Vectorization: Stannered
Other versions +
SVG development
InfoField
 
The SVG code is valid.
 
This diagram was created with Inkscape.
+
+

Licensing

+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. +
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

2 March 2007

image/svg+xml

3d519680fe695e002aed717d4940209951926218

14,800 byte

127 pixel

109 pixel

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + +
Date/TimeThumbnailDimensionsUserComment
current21:44, 2 March 2007Thumbnail for version as of 21:44, 2 March 2007109 × 127 (14 KB)Stannered{{Information |Description=Simple cubic crystal structure |Source=Crystal stucture |Date=2007-03-02 |Author=Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered |Permission=GNU Free Documentation License |other_vers
+ +
+ + +

Global file usage

+

The following other wikis use this file: +

+

View more global usage of this file. +

+
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/hP.svg b/src/img/bravais2/hP.svg new file mode 100644 index 0000000..a36339f --- /dev/null +++ b/src/img/bravais2/hP.svg @@ -0,0 +1,743 @@ + + + + +File:Hexagonal latticeFRONT.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Hexagonal latticeFRONT.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 160 × 206 pixels, file size: 26 KB) +

+
+ +
+
+

Summary

+
+ + + + + + + + + + + + + + + + + + + + + + + +
Description +
English: Hexagonal lattice cell. View from the front
Date +
Source +Own work
Author +Bor75
+
+

Licensing

+
I, the copyright holder of this work, hereby publish it under the following license:
+
w:en:Creative Commons
+attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

22 January 2013

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

(newest | oldest) View (newer 10 | ) (10 | 20 | 50 | 100 | 250 | 500)
+ + + + + + + + + + + + +
Date/TimeThumbnailDimensionsUserComment
current01:09, 24 January 2013Thumbnail for version as of 01:09, 24 January 2013160 × 206 (26 KB)Bor75Reverted to version as of 20:11, 23 January 2013
00:19, 24 January 2013Thumbnail for version as of 00:19, 24 January 2013157 × 206 (28 KB)Bor75improved
23:31, 23 January 2013Thumbnail for version as of 23:31, 23 January 2013157 × 206 (28 KB)Bor75one more attempt to improve lines
23:31, 23 January 2013Thumbnail for version as of 23:31, 23 January 2013157 × 206 (28 KB)Bor75one more attempt to improve lines
20:42, 23 January 2013Thumbnail for version as of 20:42, 23 January 2013160 × 206 (26 KB)Bor75optimized SVG
20:40, 23 January 2013Thumbnail for version as of 20:40, 23 January 2013160 × 206 (26 KB)Bor75plain svg
20:39, 23 January 2013Thumbnail for version as of 20:39, 23 January 2013100 × 134 (17 KB)Bor75saved as plain svg
20:11, 23 January 2013Thumbnail for version as of 20:11, 23 January 2013160 × 206 (26 KB)Bor75Reverted to version as of 03:47, 23 January 2013
03:51, 23 January 2013Thumbnail for version as of 03:51, 23 January 2013160 × 205 (26 KB)Bor75Reverted to version as of 02:18, 23 January 2013
03:47, 23 January 2013Thumbnail for version as of 03:47, 23 January 2013160 × 206 (26 KB)Bor75grouped objects
+
(newest | oldest) View (newer 10 | ) (10 | 20 | 50 | 100 | 250 | 500)
+
+ +
+
The following pages on the English Wikipedia use this file (pages on other projects are not listed):
+
+

Global file usage

+

The following other wikis use this file: +

+

View more global usage of this file. +

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/hR.svg b/src/img/bravais2/hR.svg new file mode 100644 index 0000000..22fcc5a --- /dev/null +++ b/src/img/bravais2/hR.svg @@ -0,0 +1,768 @@ + + + + +File:Rhombohedral.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Rhombohedral.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 139 × 141 pixels, file size: 20 KB) +

+
+ +
+
+

Summary

+
+ + + + + + + + + + + + + + + + + + + + + + + + +
Description +
English: Rhombohedral crystal structure.
Date +27 February 2007
Source +Own work based on: Rhombohedral.png by Daniel Mayer at English Wikipedia
Author +Vectorization: Stannered
SVG development
InfoField
 
The SVG code is valid.
 
This structural formula was created with Inkscape.
+
+

Licensing

+
I, the copyright holder of this work, hereby publish it under the following license:
+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. +
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + + + + + +
Date/TimeThumbnailDimensionsUserComment
current07:20, 23 April 2019Thumbnail for version as of 07:20, 23 April 2019139 × 141 (20 KB)Officer781Removed inequality captions. Better to include those in the articles themselves.
11:36, 31 July 2016Thumbnail for version as of 11:36, 31 July 2016139 × 166 (26 KB)Officer781Simplified notation by notating all angles as alpha. Alpha denotes the value, not the angle itself just like a denotes the value.
21:15, 21 January 2012Thumbnail for version as of 21:15, 21 January 2012139 × 166 (35 KB)TretyakCorrect error in γ angle
04:25, 30 August 2009Thumbnail for version as of 04:25, 30 August 2009139 × 166 (37 KB)R.e.b.Changed commas to equals signs
14:41, 27 February 2007Thumbnail for version as of 14:41, 27 February 2007139 × 166 (33 KB)Stannered{{Information |Description=Rhombohedral crystal structure. |Source=Image:Rhombohedral.png |Date=2007-02-27 |Author=Created by Daniel Mayer, traced by User:Stannered |Permission=Original licensed under GFDL, this version own work. |other_versions=
+ +
+ + +

Global file usage

+

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/mP.svg b/src/img/bravais2/mP.svg new file mode 100644 index 0000000..dba469a --- /dev/null +++ b/src/img/bravais2/mP.svg @@ -0,0 +1,772 @@ + + + + +File:Monoclinic.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Monoclinic.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 114 × 143 pixels, file size: 13 KB) +

+
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Description +Monoclinic crystal structure.
Date +
Source +Crystal stucture
Author +Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered
Permission
(Reusing this file)
+GNU Free Documentation License
+
+


+

+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. +
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

2 March 2007

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + + + + + + +
Date/TimeThumbnailDimensionsUserComment
current07:19, 23 April 2019Thumbnail for version as of 07:19, 23 April 2019114 × 143 (13 KB)Officer781Removed inequality captions. Better to include those in the articles themselves.
11:37, 31 July 2016Thumbnail for version as of 11:37, 31 July 2016114 × 178 (24 KB)Officer781Simplified notation. Use right angles to denote alpha and gamma without labelling as the orthorhombic, tetragonal, etc lattices are not labelled when it's 90 degrees. Also, a not equal to c because that will result in a right rhombic prism which is ano...
20:56, 20 August 2012Thumbnail for version as of 20:56, 20 August 2012114 × 178 (31 KB)Karol007correcting α=γ=90°≠β
20:04, 21 May 2012Thumbnail for version as of 20:04, 21 May 2012114 × 178 (33 KB)TretyakCorrect of an error
14:31, 18 March 2007Thumbnail for version as of 14:31, 18 March 2007114 × 178 (32 KB)Stanneredcorrecting = and ≠
21:44, 2 March 2007Thumbnail for version as of 21:44, 2 March 2007114 × 178 (31 KB)Stannered{{Information |Description=Monoclinic crystal structure. |Source=Crystal stucture |Date=2007-03-02 |Author=Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered |Permission=GNU Free Documentation License |other_versi
+ +
+ + +

Global file usage

+

The following other wikis use this file: +

+

View more global usage of this file. +

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/mS.svg b/src/img/bravais2/mS.svg new file mode 100644 index 0000000..d5ac3a9 --- /dev/null +++ b/src/img/bravais2/mS.svg @@ -0,0 +1,762 @@ + + + + +File:Base-centered monoclinic.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Base-centered monoclinic.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 114 × 143 pixels, file size: 15 KB) +

+
+ +
+
+

Summary

+
+ + + + + + + + + + + + + + + + + + + + + + + + +
Description +
English: Base-centred monoclinic crystal structure.
Date +2 March 2007
Source +Own work based on: Monoclinic-base-centered.png by DrBob at English Wikipedia
Author +Vectorization: Stannered
SVG development
InfoField
 
The SVG code is valid.
 
This structural formula was created with Inkscape.
+
+

Licensing

+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. +
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

2 March 2007

image/svg+xml

bb9c153e3baf36976a09721486517e90448fae1f

15,307 byte

143 pixel

114 pixel

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + + + + + + + + +
Date/TimeThumbnailDimensionsUserComment
current07:19, 23 April 2019Thumbnail for version as of 07:19, 23 April 2019114 × 143 (15 KB)Officer781Removed inequality captions. Better to include those in the articles themselves.
12:58, 19 April 2019Thumbnail for version as of 12:58, 19 April 2019114 × 178 (22 KB)Officer781Correcting constraints. This one does not have the a!=c constraint.
02:25, 1 August 2016Thumbnail for version as of 02:25, 1 August 2016114 × 178 (26 KB)Officer781Adjusted text to match the primitive monoclinic image.
11:38, 31 July 2016Thumbnail for version as of 11:38, 31 July 2016114 × 178 (26 KB)Officer781Simplified notation. Use right angles to denote alpha and gamma without labelling as the orthorhombic, tetragonal, etc lattices are not labelled when it's 90 degrees. Also, a not equal to c because that will result in a right rhombic prism (orthorhombic).
20:56, 20 August 2012Thumbnail for version as of 20:56, 20 August 2012114 × 178 (32 KB)Karol007correcting α=γ=90°≠β
20:07, 21 May 2012Thumbnail for version as of 20:07, 21 May 2012114 × 178 (34 KB)TretyakCorrect of an error
14:32, 18 March 2007Thumbnail for version as of 14:32, 18 March 2007114 × 178 (34 KB)Stanneredcorrecting = and ≠
21:44, 2 March 2007Thumbnail for version as of 21:44, 2 March 2007114 × 178 (32 KB)Stannered{{Information |Description=Base-centered monoclinic crystal structure. |Source=Crystal stucture |Date=2007-03-02 |Author=Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered |Permission=GNU Free Documentation Licens
+ +
+ + +

Global file usage

+

The following other wikis use this file: +

+

View more global usage of this file. +

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/oF.svg b/src/img/bravais2/oF.svg new file mode 100644 index 0000000..07ecbbf --- /dev/null +++ b/src/img/bravais2/oF.svg @@ -0,0 +1,760 @@ + + + + +File:Face-centered orthorhombic.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Face-centered orthorhombic.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 108 × 142 pixels, file size: 16 KB) +

+
+ +
+
+

Summary

+
+ + + + + + + + + + + + + + + + + + + + + + + + +
Description +
English: Face-centred orthorhombic crystal structure.
Date +2 March 2007
Source +Own work based on: Orthorhombic-face-centered.png by Rocha
Author +Vectorization: Stannered
SVG development
InfoField
 
The SVG code is valid.
 
This structural formula was created with Inkscape.
+
+

Licensing

+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. +
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

2 March 2007

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + + +
Date/TimeThumbnailDimensionsUserComment
current07:18, 23 April 2019Thumbnail for version as of 07:18, 23 April 2019108 × 142 (16 KB)Officer781Removed inequality captions. Better to include those in the articles themselves.
21:44, 2 March 2007Thumbnail for version as of 21:44, 2 March 2007108 × 157 (25 KB)Stannered{{Information |Description=Face-centered orthorhombic crystal structure. |Source=Crystal stucture |Date=2007-03-02 |Author=Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered |Permission=GNU Free Documentation Lice
+ +
+ + +

Global file usage

+

The following other wikis use this file: +

+

View more global usage of this file. +

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/oI.svg b/src/img/bravais2/oI.svg new file mode 100644 index 0000000..3406f36 --- /dev/null +++ b/src/img/bravais2/oI.svg @@ -0,0 +1,759 @@ + + + + +File:Body-centered orthorhombic.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Body-centered orthorhombic.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 108 × 142 pixels, file size: 12 KB) +

+
+ +
+
+

Summary

+
+ + + + + + + + + + + + + + + + + + + + + + + + +
Description +
English: Body-centred orthorhombic crystal structure.
Date +2 March 2007
Source +Own work based on: Orthorhombic-body-centered.png by DrBob at English Wikipedia
Author +Vectorization: Stannered
SVG development
InfoField
 
The SVG code is valid.
 
This structural formula was created with Inkscape.
+
+

Licensing

+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. +
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

2 March 2007

image/svg+xml

c2302e8b0439f3924263f2467ca4a85c364ca484

12,165 byte

142 pixel

108 pixel

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + + +
Date/TimeThumbnailDimensionsUserComment
current07:17, 23 April 2019Thumbnail for version as of 07:17, 23 April 2019108 × 142 (12 KB)Officer781Removed inequality captions. Better to include those in the articles themselves.
21:44, 2 March 2007Thumbnail for version as of 21:44, 2 March 2007108 × 157 (21 KB)Stannered{{Information |Description=Body-centered orthorhombic crystal structure. |Source=Crystal stucture |Date=2007-03-02 |Author=Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered |Permission=GNU Free Documentation Lice
+ +
+ + +

Global file usage

+

The following other wikis use this file: +

+

View more global usage of this file. +

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/oP.svg b/src/img/bravais2/oP.svg new file mode 100644 index 0000000..d96a793 --- /dev/null +++ b/src/img/bravais2/oP.svg @@ -0,0 +1,769 @@ + + + + +File:Orthorhombic.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Orthorhombic.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 108 × 142 pixels, file size: 11 KB) +

+
+ +
+
+

Summary

+
+ + + + + + + + + + + + + + + + + + + + + + + + +
Description +
English: Orthorhombic crystal structure.
Date +2 March 2007
Source +Own work based on: Orthorhombic.png by Daniel Mayer at English Wikipedia
Author +Vectorization: Stannered
SVG development
InfoField
 
The SVG code is valid.
 
This structural formula was created with Inkscape.
+
+

Licensing

+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. +
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +

Captions

Orthorhombic crystal structure.

Items portrayed in this file

depicts

2 March 2007

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + + +
Date/TimeThumbnailDimensionsUserComment
current07:16, 23 April 2019Thumbnail for version as of 07:16, 23 April 2019108 × 142 (11 KB)Officer781Removed inequality captions. Better to include those in the articles themselves.
21:44, 2 March 2007Thumbnail for version as of 21:44, 2 March 2007108 × 157 (20 KB)Stannered{{Information |Description=Orthorhombic crystal structure. |Source=Crystal stucture |Date=2007-03-02 |Author=Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered |Permission=GNU Free Documentation License |other_ver
+ +
+ + +

Global file usage

+

The following other wikis use this file: +

+

View more global usage of this file. +

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/oS.svg b/src/img/bravais2/oS.svg new file mode 100644 index 0000000..824b840 --- /dev/null +++ b/src/img/bravais2/oS.svg @@ -0,0 +1,766 @@ + + + + +File:Base-centered orthorhombic.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Base-centered orthorhombic.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 108 × 142 pixels, file size: 12 KB) +

+
+ +
+
+

Summary

+
+ + + + + + + + + + + + + + + + + + + + + + + + +
Description +
English: Base-centred orthorhombic crystal structure.
Date +2 March 2007
Source +Own work based on: Orthorhombic-base-centered.png by DrBob at English Wikipedia
Author +Vectorization: Stannered
SVG development
InfoField
 
The SVG code is valid.
 
This structural formula was created with Inkscape.
+
+

Licensing

+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. +
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

2 March 2007

image/svg+xml

bb09f8c9a0ed2be2a7623a1e7d267e3a996a9f3d

12,735 byte

142 pixel

108 pixel

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + + + +
Date/TimeThumbnailDimensionsUserComment
current07:17, 23 April 2019Thumbnail for version as of 07:17, 23 April 2019108 × 142 (12 KB)Officer781Removed inequality captions. Better to include those in the articles themselves.
13:02, 19 April 2019Thumbnail for version as of 13:02, 19 April 2019108 × 157 (18 KB)Officer781Actually since for base-centered orthorhombic the c axis is different, the only restriction is between a and b, which forms tetragonal. Does not apply for the c axis since centering a tetragonal in non-base sides is still orthorhombic.
21:44, 2 March 2007Thumbnail for version as of 21:44, 2 March 2007108 × 157 (22 KB)Stannered{{Information |Description=Base-centered orthorhombic crystal structure. |Source=Crystal stucture |Date=2007-03-02 |Author=Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered |Permission=GNU Free Documentation Lice
+ +
+ + +

Global file usage

+

The following other wikis use this file: +

+

View more global usage of this file. +

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/tI.svg b/src/img/bravais2/tI.svg new file mode 100644 index 0000000..bb3d9db --- /dev/null +++ b/src/img/bravais2/tI.svg @@ -0,0 +1,760 @@ + + + + +File:Body-centered tetragonal.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Body-centered tetragonal.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 108 × 165 pixels, file size: 12 KB) +

+
+ +
+
+

Summary

+
+ + + + + + + + + + + + + + + + + + + + + + + + +
Description +
English: Body-centred tetragonal crystal structure.
Date +2 March 2007
Source +Own work based on: Tetragonal-body-centered.png by Rocha
Author +Vectorization: Stannered
SVG development
InfoField
 
The SVG code is valid.
 
This structural formula was created with Inkscape.
+
+

Licensing

+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. +
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

2 March 2007

image/svg+xml

cf2d027d0abc56683ac0d355c617e98b8fbb07c1

12,499 byte

165 pixel

108 pixel

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + + +
Date/TimeThumbnailDimensionsUserComment
current07:15, 23 April 2019Thumbnail for version as of 07:15, 23 April 2019108 × 165 (12 KB)Officer781Removed inequality captions. Better to include those in the articles themselves.
21:44, 2 March 2007Thumbnail for version as of 21:44, 2 March 2007108 × 180 (19 KB)Stannered{{Information |Description=Body-centered tetragonal crystal structure. |Source=Crystal stucture |Date=2007-03-02 |Author=Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered |Permission=GNU Free Documentation Licens
+ +
+ + +

Global file usage

+

The following other wikis use this file: +

+

View more global usage of this file. +

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/bravais2/tP.svg b/src/img/bravais2/tP.svg new file mode 100644 index 0000000..b2d3173 --- /dev/null +++ b/src/img/bravais2/tP.svg @@ -0,0 +1,750 @@ + + + + +File:Tetragonal.svg - Wikipedia + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Jump to content +
+
+
+ + + + +
+
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+ +
+
+
+
+
+
+

File:Tetragonal.svg

+ +
+ + +
+ +
+ Page contents not supported in other languages. +
+ +
+
+
+
+
+
+ +
+
+ + + +
+
+
+
+
+ + +
+
+
+
+
+
This is a file from the Wikimedia Commons
+
+ +
From Wikipedia, the free encyclopedia
+
+
+ + +
+

Original file(SVG file, nominally 108 × 165 pixels, file size: 11 KB) +

+
+ +
+
+

Summary

+
+ + + + + + + + + + + + + + + + + + + + + + + + +
Description +
English: Tetragonal crystal structure.
Date +2 March 2007
Source +Own work based on: Tetragonal.png by Daniel Mayer at English Wikipedia
Author +Vectorization: Stannered
SVG development
InfoField
 
The SVG code is valid.
 
This structural formula was created with Inkscape.
+
+

Licensing

+ + + +
GNU head +Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. +
+ + + + + + + + + + +
w:en:Creative Commons
attribution share alike +
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. + +
+
+
You are free: +
  • to share – to copy, distribute and transmit the work
  • +
  • to remix – to adapt the work
+
Under the following conditions: +
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • +
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
+
This licensing tag was added to this file as part of the GFDL licensing update. +

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

2 March 2007

+ + + + +
+

File history

+
+

Click on a date/time to view the file as it appeared at that time. +

+ + + + +
Date/TimeThumbnailDimensionsUserComment
current07:15, 23 April 2019Thumbnail for version as of 07:15, 23 April 2019108 × 165 (11 KB)Officer781Removed inequality caption. Better to include those in the articles themselves.
21:44, 2 March 2007Thumbnail for version as of 21:44, 2 March 2007108 × 180 (18 KB)Stannered{{Information |Description=Tetragonal crystal structure |Source=Crystal stucture |Date=2007-03-02 |Author=Original PNGs by Daniel Mayer, traced in Inkscape by User:Stannered |Permission=GNU Free Documentation License |other_versio
+ +
+ + +

Global file usage

+

The following other wikis use this file: +

+

View more global usage of this file. +

Metadata

+ +
+ +
+
+ +
+ +
+
+
+ +
+ + + \ No newline at end of file diff --git a/src/img/qhe-klitzing.jpeg b/src/img/qhe-klitzing.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..3fad3ec2843144cf9f69646470e3262ac0e11bd8 GIT binary patch literal 266470 zcmeEvc|cRg_VB$40Sq7kgCZ(~O%rx7pisaF1R;Px2qL(#1zAL`U@M3kthk`aj);me ztU=sxEpF7O6;T8fad}V6>thprtqszOwe_2OZ&rv_tG~a#H%jKrnRCv}ojc2!Gs}JZ z;B7ZVVtM;|Lof_OKHwkp_TSJ^=DLJ92=eu{fYc!fQiF71JOl#>`7?kCs2>gBDPlMg zz*I2}4#4&>4$=bt8t~@;U^4J|;4fjD3d&mqV8nss(6Gdx=Nk}2aj>zsvza*?aN0T0 zUF@7(>>Vif&Mx+jE)LFs8s^LLg2;ILZ_T#&)YR23wzex%Y@%XUMRRRpRwdi6i&|}K zZ)0Z*xz1U)Iw~fKn@Wl1E>BqLX7cm-%O;eBST~a}#{j#4)t=n=1fTRZ+>rG7oS5{a z80T1%IqnqKbuR0YS0{5*qbTc=SFB8NS?6Yg3U>i8g0?lGpd_hDZYB#swmny^;Zo=} zbQ?QsP<&rGm;f1TV&h!cUfyB}AmnBu&g$1+e{J*iOq*3}mfPApJ3HIjIoLWlSOW^{ zl(dzpQR}Q%rkF}3cyUu=)+DS>O<1*(f=G;tUbQyW%><;6Wh{AhK!8-R(lSU+MskZ% zr=&8!0?h9#u@p|)YOXDto3d){niwwgEAGlvQwe))jFflv+BGZC2Z)Wa<*wi+1F{rQ z;`Y*{khdwNMjm*1Lh@>q1C*?k3cyk#rI|;P22beXwJK&Ul8CRDn+YPxC3aOzLaYl4 zIz`i?oTH=StnIn8W?R!^xpeE zwu!5`%S|XqdAZCD@^v$Du(1;dgH}YP#sOM46aR#jYuAafoP=ag1qr9S0 zxqwaD_BfKZXKCl)Vh8dCp4BB_Rcu0B+Fy|(tq6T}J_#ux*)(yB2;qJyhE^m{(E8{S z6@%1nHt&`v>J!N?MnygF{Qlf9#3)J$vpm>4H(dNkeMdUh0j zrnR$^lU>woZk!$09%LHhPgxb0`gPPA?%d^|9)S`7wFvEQC{(m`X%f1xDq8X2|4Hs5K!8+xKsY;{#OG3D}n!&!2e3% zeYFb;t}=le;oB1o&p) zZz?no@`VDRAcz7*Lu;V~Xa$rCSp$D1z@$KI5byC0egl+02yjIMt^_CsaCkwhpkyct z<%f`W0BC@dm2FDgOa~MNYkEKs;mO;#L*`%#T?j#cC1ua#qW4-WX>-wxA)SB%kS+!Ax{X8!y*5H zQvv@8>I8y{3W2DmrmC(<)YQ}+Rq(70YuS?b= zBSK(2;87urBM`=swKTNIAMM^=fppZzZC9(r!#WU72gd8bZ?8gAK*h)5k#;0?YU%{l zad;IFNmjt41aBWfns~rM!jnK1K24Ew{T~9F!6HL%j($bwNMJ~_VNITzu;H8LVF+)i zZAy;IEi$a;K-zh)n?7d_@MYh3YMXWr&s?5AtUvUi*~oZsz2S7K$i2dF#rI~{4~Flv zpONQKb7I)g`;=!7pBre};}%GPhs*hRN_yEyPjXyC+GKo>!}n&tI#jz}--|cg5LcTv zr9*TuNUdev-jm=_CK$$Q7mYw_!aRHL6$T^4Gvms+bAfj|yR`E}(CfAd zPTKXqs9uV@6+D=+Eq{=^%Xqka`od8`)J1)A!D@L(DQ&0H=V)Q;(K_oQe?#FDwQ7qQ;u00PF`%i#E=XS_ak$NU1|%@>2_&1e<7ikd|HloH2o&W* z>hRmH4LUs6+#v7<^@pB0)Z~k%z}XIJwGh6!D>vjI_bud5Bg|H9i3+S0xdnziQzegp zQg1dmRN`LoVA!3(4XigZ<{JeM7xB(*y`?>&S>&K594>v4URt3Z3+K6?>~YQ90y3+a zHe6oKxsz+!dA+FVOf};dx7?6tu7O1@2aWUSLl1tT3m}&QG=Jz1HGG3C06}cr&pf$s zC7})LrZ60=r_&K9AD_}W5F|%VWGoIrx?qXJ?^m1Ggaq(=mj_6Ypopf}Qe+`WD+B5N zr7p?4MG6B>azanGTo`8y`bnA7p;^lU5JU=g;UQr)m)mkoMAi~Mg8iJXAMSV|l?Qv@ zY?cN-6EL;g#a$+f`Y;Vr%O8{>J_j^DW!hw!95U~Gw=DEoAb76dOPL_#89tv&=%Iw8 zZ@{@b)m0`osNuCN@X62-Z{89HBE`8W6^x4#7t98O@Mm+vc_)&Z5NZ4>xxAC>8+i!w z^Eg_jMPWN4YU(o=s!ZhPeI+T+PxsUz!qr^IZ{tZ*Au^W8nu-+rcY&$xw!tQdaJVhx z5JM^jSG*@k8c+^=)WE21T2d3>j}@6he^1R^-=ti=6pIWJAL_I?{cxveCqhnymPyJ< zwLB`2ZD5sIHmZA8CbcW4NEuo=F1N)hwGxSfZ^u+n#5CiR3p%ph0(fVcknJlm?&G{P zL%tFQSdU!))CY;c@g}_y6Tn)e%(X5cZIRfB4-8pN~-;=x%7^LtSGLlj7@IRj`{V;t_HjxePOpe;Mp4X4+o z=7}lbDm~u)R_a-=C!@yHF%musL5Q?BKaFr))34AC!5``tbHgGdssmp@_*oqOR1fY+ z=Rq{sq$D1Z1T!@Llu7)6CLkmJD+tG%m{E!nk)g}oQfgez9!W_`aep6h{&kUng|Y|X z-aWt5%T|z7-?b+JfTvgtrhhf+&5MBmCXAB@rO+;|MAN@{DuQ6GGXKupVG<5JVZ3U zyv73skN`w5xA}aH9#^*)2h2=}Soxk&E#F^bRHup({mq{WZnile<*nkPN){&Pvntob zi3>$sRIWmmh5a?kvD7}tub`^f9P8-%?K|?M5@8>WOVYq61O4I2<9MhPS!ZwG#{jR0 zV)F`^0!`(L@FNmaYu*q!iX2~F)jo@lBKseP33bxrdU(KpjnoJ+U?yvFLkSJjo|4sJOqoY93u*n5{p zXD7;L2wAj_#?p|h-_CQoU7&>V@1bDP)SE6F5ndGvv#%&=o;O1*$k5B(kGXaRp8Hw# z_j@b|n^8jcy#zVKDBKew9&yFVf0765>BV109|X>(X3BLK+9suwuznGh|50;%WjO-V zxy-d#L@*AUN}{39YD2UT)`_hZ_PrF_b<%vOHHSoFT8b3)2>=`#z-iRQ2lDU(DlI?s@WJ`rN$ zSXNj!o{^;?Zwe7qeZJR%%PthU@Q|FUHK#lukiC6KK}Gq*N5SvEcGWycEB+w^2y)FP z%TIS$H$R_-rRKP^mc>UiE7KW3kYH!CPSId}eJ@J&cYjhAp6@9_neqFtOZzmCkfjY@ z_0$Uf-<3OxPtE4`{(}oqq};d%n$YJn@#DdQUDxh42j*Z&E7KT8W$JGR)fu%lEC$M~ zIN$wz&jLXvY`$a_!MQ6{t}9k*_QLnLAOBlVgFCH56B}MfEn9rX$rY|t7mjH{^B2W3 zl(R(Oo2!_QJ}Tdeb$>K#5WA(2iXt_Gy?4rWXP-7S8yV~CR}9X=cU~_YvWn6Mi-@jJ z#D*K|escl4|~7!KBN(?mw$U^z6@Di~V<0c(NP z@?9;Naj{#PtB(f4*xK^rk&HiyX|B+_e~Q%|Xof5?yu{fP|y zfe;mr9QS4vEuPF}0F-MsWf|gQ4)(Y?Ab~&LS98A^&r-$)^e&;)qz<}W1&fd}hWFv7 zo_C3lRYrhsKE!-2iO@Ew+m|_Kvuy1^67dm!^zO)M$h#Qpu<0PNh3W13=!WZYuo4fc z57en%N)1vlM2}^BKL#J_+_ILWj7F6zr~)=&&}CMvcc>=q-oa@Gfjhg?zp38VmBKp( z9gtazmGQq9caH@cvoZ>`d=IpPiQZn@vNt4jIv=dYK=#vl5fzEf{0KZ{{x)=OqKx$~ zaZDylPUDv&uT*OWn>LW;Ed0UP>bYd-ymx%Nrm+JLiTr>?G?|Ri5Fy?49rG9wm4-A3E%M?1e9>gwe^E{a zBg1G}e-$Q#I`YVBQ@neh*w1>ZybjlG(K~-{fRSyVJ zX$}X&!~K@d=Oa;xRiQR0fCN6?RmB!9(bClj1RRCif3WU zc>W4UpiCDiWrypE(J2w(3;XHR;pq*V5J{h!n1Zjy`rI8e=Me8IjTWjtD( zx+=6S7^Iy;7B70r{M6BU50>^lR{0V>B0nI2bNA-UWCnosMF+%|6%hDnhi6g4?eX`Q#Lju#<%38YG{#p<|61;#O|0I1O2pflc@O&5LBfeW;QCL|1g|DWiSvCGsdYb^<>%Y*7!^4Kxo59B6jBQ=%-%!%P4rtvDsw6uKzNC=E$RuW>wbGGHfe8%|87xBX zShRACPO#oYS%-^nuC8iRPBLaC3k5_KY)pi3qTy6-PeIyetW0zQW5;h_df@ zx?QG#c~1bIl$W`xNkXuIA08CKMk?C}IF+R#_=@fiAVf)+UPPJs`P$Tbwlr%aWA@FB za{Rzd6e6o_auFz~!eV@QZ-}!n#{DRfpu!5PSZ0%!=X}OTt$Aq$SAu`9PlD^@-t>D( zA)KvU_4Wjrtw{Y%ef6a!czSTdZ{_^=vx;Mh{1qQw36FSFJNzZ<6+nPTwQG59UiCGl zdi~hsi32mtrM{GI(i)--;lHM1{-p)A3lM)y*&5>2~4{-PhDot*C`Co8=7ekPH;pEP58Gpfn zMXSdjk=a`Ql7s05$xSFed~?ImYSJnGUrHAfsMqr3cYjcY>AVkO)r0bV2R?`r5P`MC zrVBE;IQ~TC`sHYOU=!qDtTQOiu}uW$CP|e^U=RM_GE;T!dw7>II{9~ov$sQyJZUU0 zZ&HRd@IFADoQ-KK?<11N=?E9yJS7dmJ?sxOKEQ1a_X}j>B#_{`%lNodkP<+#qG<+m zG`1_D8jEriWgQ@oMJry>6PR_f*b!nRI-8JT-T}djwK7h3zaw%inj&ztmTUDj z+^b`0lwim!j&EsF#OpQX-sHq@ts84cLCnptNDnIC!Ps_-<_6esM#c@&Q4grY@7{uM zI8Wj2sL{vgOb${^Sm=FfiQqUXt^I`}9tpv9MdZ^xgP|3~MM$it7kx1w!K3a&7tP?h z{llZXRXmX`8YX4V->po60ZZHU2U`*odJ$W(3X#c_>R#Xl<9lciQ<|_Gy#H6Bg<_=W zOv_l*DBfI&A>BQni3Q#oqo-2`2 z;f$u^iF29C^iQ0DLnWWt-{Qvr>Y@l)(Q9#z^~!Z`V>s!8QiDUH@)}`7xwq@< zw!D^u@NeIAgJYCE?kCkZ#KpIiduK25xWXI77{vZ#6b1{5OhlmwM4}m$$VOs(sO6z# z21cRmmk6!mmbq6rWo)I6Xj8O9dfoZ!4Q>p7lSD6ciq6ez**u1qgm!OZWl6ek7&0(k z$&CaO z*GVvAef7?od7e#U@nTG-a#aTGP$TppB&1;dNhAq3fnbw)+CUh1la>CSNhJ=Vdpwq~ zjPYT@1cfm`LI6)H;34oa@1jL~1VG&V+v^OkHJXJS^g0u_lcMD1Iu1pmgy7`<^MW0+ zx*$eMJz{5gkTf6%=!*ndJ9FPBi4eTQ9NMJkmK%cd-*c-nBxySeB))YGDwwLfhqf>5rUkBRBG3hQ7S+w`cIn`5b}X{ zYR=nk@DMshO-^bXmWmjqdN_)5nP5rAUt(+m!J$2-c{0>#%fryr!92Foz%d6^CqJ3k^7 zDJf85p36QDE0uxc>5SaP zv@rz}E@Y5~D^c26n6d@$>;9yY#{g4@O+)H<2pS9}BXVOAT|}@}I>d(J2d&Y5Y>ceG zK=i|P2YgW)_1djFQ>D~kUH#2zhBPPx;5PPv@`Yp>jdG~(ME!w4G)lc_>&}f*BG@R8 zCR6aFXrLC21j)`0Nbv8rjY}vHU(GQmXpoO$m|pZn7=#41;*ZJO2v7=e4#wm(Y2z8D{1dtUnZpN-_szuE#?UAt z@IA)3bVU?=3r`lGvNUC1MpZ0~04V7r*l{m;2Az?)ySFJ{Ete+~!=?hB_++It5}buq z7pG?;Alk?(qAIywi9()If3inz1d@tT2Efy%zHk}Ui0~!Xo0TVbDvUj*TZFZXp@Bog zJY~|A;5>UZMyF?Fd}~6F7^xFXm?UdYc=7^)TrY-+gS~ImmMbP_==TKol!B5 z9jIu}25aF>88rdgXi+LyeYNvyRb3maix^`HR`t@n9w?#zJ<|=jL=lijJm2}iLB&LL*Fm~01hs#@wq=>%;hzr7o#7D1W#9P#Zc8wQLp;U)j1#*jtI2RK^ ztC$S&R9)){>9&U`2>ijWio3}reubD^I#a+AjYF6=Hz+9Hgl#LQ38)s$?UlEAc`_Z% zagV3Sdaw^j8fLZpncDt9k&;By(iuq$7(lS#uBc$SQH3s|SjiMfNJJA(+EX;zcBd$9 zOo*1bboZWpirK_LCPN(SU<_%>HUf`%MLIuLt@D&OsNQ2y{Fuj-D%)eyk|J=$#c!S- zIxY>P00n137m3$3zyh=A5l0ZtYei=Bd}-zv<56BUmlhOh1{j1JtnK zWCnr<4(vt6_t=R0X$NKaaeaW1s*C=Cl~ z+y?^4Qy%Kc#;9ex5_#%x?%yP1VP%TG?THOMzkV2Gvjh+rXv^?^yr$dI>5moq5f z4bzb$M(R*@Zr;HgJcJOQlrR6J#^6YVxD!!5#lc@~RE?L3QwEJPrJy9RmwNobNFz^y z-jbGUDr(n7g@aK{bVnBL1#aWvW5n}%Ct3wBZ^8l}@k@rX$F|T~!^({j0tPBZE)5V? zuf6B{2E{|in2T%Sk)u}irMJqT;@4T5y;H8*>KTZeqpGVgu3$+; zqyi^tSOGnyv6LWo6{BkY^o=kpO*>a_DJ zuf7amAYpYzbyeex7id&{wd-l-TFXrFYD)*JWr@c{JktWGZ@Pht`i59a zmGN`%r~enN+}B9fNrP-dKsRd9v1 z2z>M5o?nx_HhK{b(%A(C!K;+*?b2so7FX6Rdr23gMV4rl79B48c#6qE&bNGf&IEKT zV2OTrjVf*(Z6rO1%vU8HCtOvkzl!Z# znzUR=ug_siW>X6Up<`NXN@uaJRT)p3I0BFv4g4&>?I=#+=t@oOlQ5h}C)j`7z_3+# znF13QFz8q+9%Q%O5?{dz;X@@^(IP+E#T&)t{Ht$YmqgtV#}OFQLzbC{Pe3`cC3hr% zSW|X(;Yhr?>m50pqnto}u-`fZ2_v(0bZh`!u%pD}qyqW&b<0sB;P}-OGEbxZs4N0z z-FS07kM?yFf|BmRM*?`__|-;8fma@0XHjut~SI zv$}e4>CkEkO3ud{reXVrRI_8X#DzfWaNuDiUX`chXc178)`p9ij$5UOPN~1>#hJ&v zieU9C%Bp`&@E(l7b{0VD7j7DwMF#dp&KL?b72L@Wo;ERFksAw{4l%LPAgrFnj=*rp zbp&E)wbhurBk>30I{j6o4~h}?ooM$kHxUdXA#GEZT~_3DQ4>%gfYS_aZFo#dE2a;v zx9=l8+-VroJTS^6gOGvxSW`xGL?Lik>H!Ksuy!E^fECLzYiM2B!~pMK0~ulp%p0FH z>CF!H+Vc!#fr%EnyD9RcQq-CgtI=nH zviyZ&MH^QpF$3coO2{odEIG-qfsio{81ck?yBG_%M!$vfgY_n%^^oaZmoTF%f{#Yx z^z62<<`WEDs39TGX5a^%*d%M(@DzzSd0$7UjV*$J`@O#xzeEG!X)#HB^^*;e^5noU zk{yiO^V~F*{C}( zGPXowH9#v~Bpx!AjdMG5z`8eIZQ4j7mU z&hA0$iF^qFE)#*H)vHmG&|viTff61983=RH7a*OBJO7%Fi2_zetXD-DknM8@!nuCL z6)JzC2UUeU1KQ%pbiv8S^`5HkoWMRCgPc& zX@wz+FO9+zQy8t7X}g*pm+=s$BZgqZHzU4!vQ6a3l8n|b*{WB*Q8X*tw_qj6^Ht=LqvaI zDTf$JR5dNmlwiT$kVsPj>s=4t6OG-kCe9Gz(M65LwS#GLcTUSi0xkPdPW`9~+rdgq zCGBkCi>o&jbJGxG(M)T@QUz}CVW;sy<8Ik#-!ZgE07n72?duSoquk>-e<0y7qX zbM2}XD>2xOO-bm@vg%-HNT+LZj4EKYPI$UdvDY-9E!cS}v5Ms4fKncrmoKh>uy!8p zh;GL|I{V@@XIiG6-kW0ohcQiZ@+9Dn08#^A5)k|SnQL~C$-oUNKBSFwBl6T49byXtSbH$6 zjAK53ev`|*&5z)?LALV$xDU!-I6 zT`4`de4_V}W61uRU=*dWH542Zb!TsqlF9*EuJ^EAf-tK&PtIV6Tt$VensP$!txLG{ zimrdtd5SLyqP}MjaY+Rjv<7{UAkM%CY6oe;uCIcHqoVADsud~ zY1&YoYPXUWO-OePp+}3Sm=Xps=CS{)KeShT7M(Ogk~_$QJ3d8edjv~t*RV+(zPy^B z+9MH$wRN1JphMb<s^_hD2N1c7M8-Vn=FFubZe2If$ z4TQ28^cUfLg$T>cE!M%g&bP#0HIOVis+M!HK}e5R@SZI?@DVca$~3afs7rzkCQ)(V z+95ZERM3DPqhNc{LqEDg41sIkTc_qAK4xnya6w*!CT+p4;2#rui$N<^An9|1sBaN$p4ZVJne2$8h)o$;b>RHY z9v*@a&k~7E(S8uIbD@9%;f_qkCDDXC%6FR~7jTpcf&6vS5rn&ZiHd+(X?f&GEMikWBMlNwf0 zx6RGBX-5Dr-%mWmVGza!r7)GTM=w%C~2{zR6L*6N23Q zIG}T-Ay}QXT2ew@WsM`dcn3kiwT#}yZj7#uWC+5*YneQ zBKR^4fY8#Vg}Y2Zu@dt!u-I_QwigXxCP#*<*s5cYCMXM@W{`Gd0&P}-Fi%bp_%2U4 zc6~E}VU7>C7cb2K3UIwQYh^V@r(?0QjqDs;D7apFR6R$tLkqW_AZ|+7O<_W8v1YB|YcblolmN&C%gsU+P0z*&jax4^fBQS@}1r`h0bCaRdUUl#^y{1MU z60P6}%;_PaV2=zBx&GXgB8>w^_V!ZnBVPQKtaE5(+`j>B8Hatk&=Nj3VV#)6(2G8= z$3ipBd{VqrhW^n0?@5EGOmh8+o{iBvrQIC9oY3pU*CHPUA7W5ANPsa5s;W#wbR&>v zEOXR{aXYBw=Y==Ws)6w$$CT6Z+!zQIPEaV`Uxb9N6vsbi@gjx{<0LauWI*Alzj=yI z*`~g*rK#|_yGW>T$T>vk&GlfeT-@a=}* z@@YF{HUu#In7J_&H|I)(fpgpcC8Z6HTJ>}uToz(MT;PZ8)Kzi!uBrnJ;8Lz;sHSh> zKw23z0zQ4AO{wU$49>GYq&~S~y%{hBON1g#Q}0bF@znUT$pD9QaX*<3CT`H(X3j-y z{m!{0wVkIGggi6moa=#Rr+8a~BnrNbd!4t=3a#4`9QeMOZATfw(oAp-K}j?ZVo{`) z*{MoaU=I)0ExvGbN(V(RzH4_jxhbDDxU#w%J-dv_0OtY!sWz9DxKNNt&~T{w0RkT} zMDMk=6mBtQ|4_g~$a){%@t{anZ4m_WQ3kO4o`!Uf;yg_f zr4HYG|MuDg&c-;Rs~^#yZy=o4$~%b+&Xp=n%$}F%5DD%{3u$KT&?u5{p_erD zB^a5H-0|VrcS+U(p;69fQZt4LK~9)`bks&FOZal3OaQ15$M%6{(5qKe*jC@Qb1Bk! zwe5q!MpiPXp^^nu6@(bvICde+M|^iW2*W)oE5PKwgO!R|qvQo5pSJYa9&}$)BH}o3 zOs~L@U#BL-^otyy3|W-M6-TU)|+UVjMnAZhwYQ9hhvM6!t1GQ>%L7yRP=SxshADC(bx0Aa@%@$mDM}WgH zN2_bGO{DlK-HFsXP-$u}_g!Mk zeU3_H=>qUYOSnz;IXP*5AT{gVm3eS|iL`~HQQ*Qx4wUIrgpK@(Rf%$UT&O_HZ}4OS z5Qq@z?r{%acHLJyWIrefC(xwUbPlFTE)JuEPnNy8HuZP0c@r?`1c&=QK@PhX@eqCm zH?_%SBSUrjBECEpKDNKxWh1OkI`kC}!FR9*7c&sRu>w_Za3uSlKasG^;mj>NzHT!u ztMU78t{-m|15ZwAdTMM`jD1l+rz6^GG8Qb|cHE1F&OPN_MvRr&iu=aRN6G7agyx10A}{?V>WF-_4gmEcykE zdCe(avIDu;un3N?`=s*}5=H{OCprtj`rDv5LUO1SA4-Mq`00c1ib$4eo0{aYV8J7#lBbh4|8_QlhL06nHS#b5@``+)_9^y* z34N|7ys0M`7*_HNzC!TCYpd%ier@&O!XVJAQ$fzehG7y-dr!RlwN0cEeQ-P9`1C#T z|B~>_{FH@HeRYfDrEeXL0d1Jp&d{PBTFzo1h->7|^W6vlbeO6s;Rb~xbN!m;_OvXh zNOF+BiU}bgI?b;%^kZgW7jU4BFby1PMNGcvT?Luo^DzBLyF?t0KnHy?%=C*~#Xu2q zKcI&H>cUQ7+PSF9VUfEBtM*(NRwegmqE}afJ+%QDIU1c94Lqsn`M{wzcDo*Q!Yh6u z&ep2qx!l?nLWCnyaJDYgl|XB#Tl507ppLaLsLm7+MS^QeE`a9dE;(HQbhR#U>6cnpqY`ZWOp3SJ$Vs$Y;TuNV3a011E|F1M?39k1A-s57!OPJ!{=3Tst{Og+ixSk&@!!PmJ}U0*k6+`VZb5hM1I zk8JZv!Mb}~Ax=f4RV}bT&VJnlo|T;gY^43d^c=G(I9vwk6><&bFe9wLGUs; zWe0|En-r*#09d^Bs|EK*C;O5?RVO1A4xAYGVL|;5*W?U{$-#A6iM|Z5UGv@)5I@Sz z^EErtF`lFH_#aaZ}AXRj*shE1_Gdt1WC4lN-)6R*#f?p1*Mc;+S)># z7=fOOP;=gSXC=fZTsD)?fl1e?WRR7HYq~)aoYZHi#4oOh0N=Lgk)jZQeR30+NlCww zr7z;kUE6?zFilc{Lm!-xBtyvP1#ZNJP`eD+V>Co362k?N5=!tz7z%_doglQ9V5B}F zk6ETOr7*yvMPK+`2JtIajJw`CV=1`po1xY$ZE+!1Th}*LPH{K(nM3wj5-rZ6~>N>hf^27h*-2%cvYp_ydp$8ihkfB8()wDw}hno zSoA~o%?oUT^g6GMxfli*!+{!$PFdyinDYGFzCp+$(-AX^-eWCY#+Sw`Efpfqr}8D3 z7vEe8PSg(|W1#A#l+vfogme?Zf5oi8jMI{O0ojcp`FMs@Cg=?6_R*r|-p2E*o@2HJUK$mw#t1S?aOU;xj1mM$?Ez2tCinSM8 zqCy1Xna(d$+h5;KnPgT36eaul2ls-B8|eY$XMmw6o%(-6CS}g3+HwD^)Vjik~p|~`XYiEuB{YY>pp)&p|J6rNcWS2 zu9?H7FTnU?czuV67ptw?PzZ}Az>fMM7U`u!`&H@!mJ0{drqD#-x?H#z+}-=DdquB< zs@Y8=j2$EzNW280(TEz-+Qw2b=!pI*Wcx-ZFfJ}W8X(@DIMx{ z^M9D@gzs?+EE;y*CEQ|HvtysTCk43}co1CEQEczcxV{(9vG4Cn-y70=%_z9U(UZar zaJ^~B2U~q8>7{rJ@R6GyZlGy1xIB18bse|`D(05($P_r&zJJGac!v}I!Szx`+^uyp zy~z)>f`%PbsgGJ?r@%cix7LBZp7oCdLz?fmW;7ca_oRQ*45gPdAg+IK9x%y(Jma6a z`ez<7lT#>##k;h*stv(%Ay;XwDoi>)7F- z25MF{3JtE%`r)_%Bt0W=>jJQgj{?MMd6_?F;qax$0=Gdt*Wvh~-qPJ%AmU=Ko zAtgbrjQ-3c6Xoxoki?)qEGVii8aHMeAuxV4mGKlPWdZL>I%Yvb&pUuGQOVZTB}9Y> zt9LJ0)vBZ}t$0@vNF@AU`m%ExNGhW?>wdn3yK;)4=7wKBqVEx{U%f&**H%63<9F`|Lg# z?Da$R7Cla}KdlZu(ZJI*j^m+wu|Db3SK`d7H7~&3Bhf61i%xqjP3k_fd`E|%rlhm~ zVcPiQec@}zk%i1+C!B$6PHnB~;9@@b6p5f0S?Q(f4LtTMPvI5Z;9Mbf^epl~#s?EN zn5rY69tO)KzsSsW?=6=Phy)*o8%Fd$d+!zq8RYbbI-87wj~jG=QM|TmSLSg#hj{--PIimHUnihsrSY$sJ~M^v?B8b={JF*9iGR17QhR$9vL}H) z1;(kU!7wmA;L#ryf~pz}IZd)-1d%3?^(IEHrs(RJ%`>0HGoAkS5u^@?U;;3AzxeW} zW_F!}N0+aD;mn>x=gh66_o&of;q2W%C1+?LN(92 zo~5xrP?otwLRm?&YK2K+EejW*tC6lW;(RZ=GhT5ZUo#~ z6FYcFgZ%KC#r9jTC=QoO_n){!u$-7Vq3n3Ys;z#ZXD9yd6lu)4HxkwBd$7$hrD*s% zQ+R;vv8=ov*Z1(*S6j-`L)LKaR&6Va?J4yBXXGpkN5OY1X*wyrz0~CLDhlDYx6YY1 zzdPGTQm1AF7e32&*f2S!g=7BXu7keT&Ia798~x_+jn~nYo2ya;K_>g=Pt6XPU2JZt zd!w%DP02qx);x`Bi(I$A+q|_esU&*2LnJ$(`OSh8Yv#l(URaR6)ZRxAwmxAtKW#x} z(aC^sfAFV%RarDQB)Pebrgzqq6>sfJ^}IIO{anS2`{dZyS~)iQU9G*XhwuI?_iAQn z^BewdN4J5mzZl5cdEmEJi_U_QRg;Y_vKK}B?0@smHLhC_Ssnu)O-*NVfr&-2lD{1uXf9IJ~pXI-LJpSK#TZ*ueZ$A3@vSi@hUO);I6k~{LBkSCdI zFKjBb`MP6UPGC9+=718h#K3c%zg5lB zVMWkLL@%w3Ar{%Ca8m`4HGv%GFU&}&Y7bs;IX(YPK%rk*P-8+;dYDP}u9JBQ!6j?7?sR$goBFR} zt(gfJSuyD$`6YRqGyG#$I!B!-NojqxZ~BSJ%fFj<>JX<`6X*K)*p7w-tF$BIo*@}D zt|D@TF|F}|uZEV@vGTTQ)&V+MBO;>RlQ5erJ|lF-o;)>AXq%0HUDlms88DkD2bk zt#ID{V?HPUYL!vY_1&Cg->LR954e1Pa=!Z3M;8gy$6GS=V!IN&H_h5yU*=RAZP(fP zGGp_u>IdHQ2;uathjPt2=>HrSv4}lSkKCB&5tq-lZlbNFY-x49tC3gb!}qzjcE=<3 z7vYaLM+OSdoF`m;IMACszF=iGgqk33`aMh)-sCVv_Mt#nv-)7wN zs6Axy`;Kbf=A34SB$E{t+`h^=_rl#`*E)qnYzqC3@!jPwOOj)E1T3xK@l*NNf8Kq1 zq-b2{KZHx}9!~U7+pFa}8NX=yfj#RN|DNMt7Pd~)=RZGf6kUIXG`&B6UVX%1;RgRM zwaMGQcnc-G?25OW?Pl4yB5iw&wc~|Fy=~=cC#f6Dt18Q`%ze3Yb#~-(3-{Jntbg35 z%xO9KhsA=^e-3Q>_Ho=dI*md4BQtE;_PcmM_%IjeH&8Xm>|IKl=1^ z&Vm&;vV-~!?j=}%RjgO-$TU4SXWoTS1M;aaHw}kbr?4gkWPoaxsqK$~_Wpc>;Y>O6jJz5R<#M*yKWW*~Z-XpBoR* zeE;n_cz(lh(TmI-+XjA3SZDF&;xjuMrrbV!_J;)td`ewfyzZ?z(^$vv-urdWY5tn@ zU3&{FG62V`N)Ef{B6G>5w~+U0Yv*QqFoSY*?UGAx*i|&0X`pP*t#|ZM`LS%{?u5Ow zpKOQ=YCi7L(ne{`d`&Oy$e%JmvB2GRerECC--e@e;NA_F68W@f>+bo{e`Xl#nm%9I zP-(Ebb&mJ(@As1$@4@qD8g57{JV8h3U(*Lp_5EXz?0%Hn1~M5w&Xt(FtmCL&g`alS z*MaV;n=U+@#znK$*s5xpdh}`keWO=1e`+}T!={R*3)PBQKb5EB8kX$o@?cG#cx>Q) zxll*@$+y4gHf+f1VnY0#F)x$aIBBLWf3Ba9$y_vzn?dgjUska+y~0Ih2g@^dINyWE zy!_g+zs}7G_szk#(5craLI27=U-L34D_+mv;v^&1=wMidf61mU6d8GCo0D+P4_8Kp zzxw?dt-?Fw{L7>??aIBO|D14;@cm4?XO?WAu;`6BUu>{oQiYu=1A*?Og;VNR=33tU z_a+m~O>a(p3pKxm?*9nS`NQJBB_8bjR{p?*v)7!5^BFE*c6s897F_T9$4qF_3v(tR z%p$)3C(*g!xMCgf*u5)$udln=+;3Fjn+@ywly~)a^`!4T8$NznxwU9Ki~Y?P_Ep_K zUY_{XjJu7VnR!egl0W^+yMooMo&}dY?hjtD?5$YSaM^porn=AxkN)*a$IK}5W!H-5 ztCFby$-RB#+wl6XqJYqEUGG8x%WZ$^rY&0fC$l z=lLydzYX;rYe~IE-IE)E(<6c>5o#UhhxX zb?V`!pO&mWVPJp#$ZGqm!Ur97k53z{ntbPSN9bE9mvv|E-~s28gTr2@o~YZrv>9IX zACH9=9sJVN?~Cv)Tf2lmCh1kt)&#TFGhV$(BXd;`r#7uQxN#>f{nhi0R!@%HncKEH zLba1bDqGQin0{eusAc0OCg|c91l`)7@;LAJiY464zAx{U#f`H#pzdEfT(#f+;E3Cu zQ?b`U&(hA>N>#aAU#n@b_u#p@@`94X)VTRBE&SNo^FcelkfRzFohW#iUTw%ttXKWuu>9BCv3FM7$cfio|1$SwO!Z)_jBS4Sg8{1Q(J zaB23X?K`rpV>z>1n6>1DYcMxBHv_5Ap=oNjU7B}np`P8uELmB0J~~xT$ea7cGgD&c z^s^Vd<25ENu1ws#s)yZrcTxV+LvAX1KDxJDnxQ>2PF`5Ha6&Wj4?@!qZs}hC_TIxk zs$uN)dwo{vfuGv{z?=VP`l}mZy+>W|YHqOnw+k7x+0m&%l~Ppy#CIMFFD`wZNh%5fb+LKbvjhx z@MVZ&PNPx#7wHF+>TWg9n8x)fRcoDN$f@6AW_#*C+da7T#;lx*(J9qH`_i(FYf!@^z-9qCtf=<6=;~jyOIF%OK*|=|TT6dxX%OpVoJ6k{NNG!_DwR+JTmNM11Yc}; zthKUN_{esXX)>-ct$-!8*vei!hg<6dV@i+4t9lK)ee!S}52R1klV-h=^4dKV&te_c z%_nA9WZ7n#nlOHM4pRlb-rJMh6{|5M;uXnhPAHi~94a$SU7p{08oE(stC23C2&2-L z%P>H3#1ayhuVS){k(@$fe15Fz2hDm#6RU9strE%p)u58JqgFr+f#NczPb-V*{2q&;HTFh!>BmzX#ZB#yU9t+-v{9Yu^yVaxJ~F(n~w&!lHHq<5J!c z4E94yz=br(Wk{E2b>_+3R{f#_idFJ>#tK9cEtV64}JcRk-0|!UmF;=N%DBD#D6y`aQ4bMsDznU0s(vSh*1OSnJQH zI?pt*iP;~?yo0e*pYO!=6Nu(B862)RntPR@_qpB`UU$BwGGU;x%pWtwX_WYKax=+5 zD|!3&iOMt0?qVH}vJ_1!$|k`T;lU~r80;wi07}Z010f#0PrWq;P{eIaNU++(j(?sP zM3~uYS^7zsOk!qd|21#V-<7Q@on={dcPgV^d zAFQT^tedVv65Cz8dK#RK&PL4 zhU?sPr_lBOSa`@BzUJqh4Hy9}FuvMdDJv9bwB-0~B2yBHd9dU7FgK2KgNUsY?@5fnMeP_20@63!> zZ>`q6LF2|CqS?KIS?w9hWn6UyP!OxqR5w@!-+%o@Kvk6|-OxVuW`gh4gty<8J{do6^?F6EY6W_W_`grv zfqjr)`yNlH-y_c5*wR(+0>DWI{&S)EUqjdR%?YgYY5D$Ib{;qehCU&prvHfsb) zY9P}nhPvicW&G_js=4Ls76M#iSqg2^g>nV}z=MB3H;RTUrPntk47mIthsG$+ZejFE zU(w+-N0}|7Kw?A9$rp^4)_Xp}4ValjP8w=nK3*atAN6njzuW&}FlJ~$n1#9;MR1QN zb1l>9V~qQYuO-1RvFM>>OUx56GS&(PQ-~-AIZ(H=VsYcEv%Dy&f)&?~k*GtmXOAsH zlF*7^Zo1b?{K#$>J~h^C8MykmOdG8nJ3(!um6W7gwde1z7v0jAv?byHfwKm^Mcf>p zS{k#NwO@`;ro$wd523ee%O;MaL4K-~*aT~Bsn@5Stj2!M4-pZ-z=}Qw%cEQUsJ*V* zF!mdB+`NT(zH48vyI%@zvaJ`GjdBwuat`FZORQ0dVflIIAUc@gcmCHWxfc@NHF^=| zs+A8PEI4olWncs^Lb+DwBdYid%fgBzixrtvxfGNd2gyx)tUsT@fpV0n_|b*(zxSLwxg=FCoklYZ zPAStXnLJpf7Aohy;yE~mbk#j}+=Xkx3Io?Px9tRXQVbTcySX@$CU-I#{o)M|4;$Yc zbCto($chZD^(H)JNu=?`a;(NPmW`H31kEI#4=sHNs?s@4%5HU>axL%xw5eQR(-Gf1WX{y zwhGf5uU9^m#BB3x6dJ7Eu^8GT21M+IJ0JtBgu1SQD>cB0ojMj;qB%|{DW(l>JYSRF z^Y&sWL&!+I84F8?tw&)vtVXIVVZ85YG2y*}MSH2$j_`Ih>~)bYs7DF5(CuK_B< zH3)6?$VlFrOOwan3_v0vURcjDVzpm`m()sHT=BKU<}E^nnGl&&%-2gSw|X5~A%BG< z?5%NgiZ$21vYz8m4<^c_ORTj^tlcvwG#3ehE+^v0+Zk!{R6)sPuYHgttJr?r6hbWz-MeEG_m4tw#W|3P`uzqjD!qQ?GA={ePO-nPVUVl$6< zKy8TiBC0K3oiR~7dMOV3l-PyvP0?nE(K`HjkrRBvRo<@oZ6od3=QB%>R?GVd{-LHWlGEG?zTOl~thVg(20N6E7BYUdO)y_$5Ma?@b1Sr60jZ4Zj# zP=T0K|0OxK=@M&iGQO)w?e#)4gsTl7`5}JPYsS%%y+;_DXtmFSYmi>2C~P!RM{dxy znYfwRI8}t3`7y}Te9iuS`UUHnXD*Efiq=Kuch>@%!RS?Q?eJpq;-7-Q9tgiB+Mz4} zJKIrzXxME>ajUM?mF1Ph?qvL*I8mGM$gQ3se$>Hdpq z(<7l%8rE=Zb~W#qPBIJ>-YU~IPFlb?fC`je=Wq;eqE9>HOQf78j<4q-sj|PdbC(k&m z;+}B5o0Y6xc36XQ<%P*`C7BD!dZ$ibXt!))-B1$v!f7OyOkLbbo82O_UL}t=b|a|i zehrmc_#GyTjL;8Wsday21=1OD0lzY5u@QG!n##vOlABa)xQck4E3LF^GTZm^EgIX ztr0Efv`0FZ>AcC8>K*7^zua#(NVRKaq?2xP$6lpa)=WLEdu6V|T9Jq=TWDCTx&Da^ zU`1ZnF8CMGt5AOMc-uv!v}H9mY3M+Q?=u=@7CL@P!~QW%1GYSl%{)`}4zuU^{s@f} z@`;)cT5S&)sE5-I`}-2$3T;rzWFW<};fQFTZ|m$I*Pb9EwB;Lh`M#z#1BS}^)*)p% zl0D@q|J8!4Hft;$S?T*j3C{BK9e}|qIOnT-Go=gD&m(bt6+&uqntO63(@iGPu@VH$ zO%9W2^#s0MB*klVjFFDA8SmcHd)Kwb&V8RL@5g!V5UjfA^rr^V(xA1wiMQ9X&0~KX zRhuMp%>A&}VC*u=TnveO?jb8|Mp#IW$K@-e=^D)@O#Ei`5h(3`7Rm*(p1>SxdcJDe zX_6&cZYv-@o2Vq&FlZ$E=MNQK6V3b^7RQyVLH>$@W{xt(n?=FpMR0FXLYnMW;l}_+ zQ$hrs^iWN�OK;5Bs)nF(YkN>Nt?&6RL9!SGkfh`P8yMr!^j?9;aRdy;;1GzHtCo ze}LFJ(i~~m#szrw=mfFi5fG|kA@ZI5&IX~-`kkzD%FZ_l5Ig>+n9`2w)VbkA+ zT9J1tNtH8#1OWq1mFjqn(U0MF3NooHn4aAuYHG6fv}aUlnjB+n(LKowIPg%c1f0-C zvNhfo`>-E$k9~d+jHWj63+WS~js>c!)T^*)PDyIY*sBH~N9QGOgBe*N?yM=|GeS_7 z4~T>1OK*qck+PXa<+*y!x#wg|*%0r_zVb3X(~IL6EgD&Tu3LDBEbl2u!5g3Y`ZJEs zLCAgdPPiI6Y^uuEJ0pNP;9+@Gn@^;>;hxvgFlWY70cH6vHE54}Q%q5jXV(63x_zz8 zVY2+e*j@RMPw~XJHx8FC61@11Y(@Q9hyzDlr4D{MS057xb4Jn+T+w-civ$;W3aebt z#F4d)@^I#t@INM6H!eo*%#8dznijqwXxq|ZD&_k8tzGo<-0ho|sO+MaIB7wn6*HLa z1J$|>f!dObgT*4pVdJ_Dc6)|0P86s1IVkAzR^t&Ojwe{XZBkGX0}z5%<~4>S#hsHw z(km?gGU;j7bzIgt)Nc2=GqM+mKOPxdka_YN^!KwrQ+86ZfX5o-BHkJira51s z+X>Plg6H0erI-}Qyvg7E1C>YiayY*(9(jxU-6l8}RLHbFGoE5Y z!0>X{RIlTo*cH&~g-T0*+Pi2r32o~@zTdKQKVFL`!}U$&iR-m`-}r+B=Xq5fOoS?? z`1jiwlyglyXPIVu9Wh-Tn;{GG+<))v4Cwzhi;7I5!R|Pf;4L;pBId977b7wSfW;?T z1kT=q7dS`3dz4h-S2X5)_cxf;j3*C6jjgIfWLgR~CLkC&^&g&8T~Pk$yHRG>;o4*` z!XUx>;Z_a{oi8zX)Vqdh(|!;skKMG1%~z-*YSOdP;$>7E;_y<(Gy}&mqx|30KMq1z z&`6cRw-NkNM8gS(6T)YzTB6C$IQTOo=bm4ZBDW_M7gVk$n3XFVr z*N7|J5TF4)wdao1e_%8I9ga;G7uX;zC zMc#u_mRH9!ImfJ#qa6VWvll$Qr(nO;N+nwJqWE5TR6mUPYxEm4N>Obx!tp*MFAomhBI6U&A#lK_0y1~T%~7j#(kO!u$iW( z4XD#U4br6kNZpVg_VG?9Hu*7dBVIMc&o$cF4TNBm?TurQc)T{b{@=xZXq;HSA zGXou;e-t_$1{*P%{h$1)I|Pc={Vpor>8!~MyeMN=tE>H2{YeB@=?}b~KoY44u#`q! z-6ht4`vIEOStq#)o7hk2@7#$Ta0KNCm$yWsq0%z*@o2eT=3N4{}v?zkk^ZvkM192%k=i(Ooj5douPd+J9 z>I(F2L8L8mHnT(jo7=gU3xOyeN>W2?g!f*(XGJ4#Vq<}RB8 zvlTAS!kyrjY23~BiU?Xdg)n?SfJH%Y&^?)sOpA*13=uYNs3qvNq$Mx@nVPgpb_SOv z{TSK+=cj&uSVt(iw>wHM;BQPDEDcwh(kLgZa&yYm{|Cx55d?0E^&j#rF)|g7Odv9@@)E1r%A(|o z;d5w``5rX}AeUFY*A*-1J>=LQW3a78^$*GqoD>oFKg%`9rk<1;x8Hj+Mre#%C_356 z+&mAiClpO>%UbG?Cn+ZUxaK)H+SBk@yLBh$HYFln{%`sAhAO$2T=Mb1&^O=G*q(X0 zRuM4gvg@CHD`WO)ey1BFhy%zoQf^AQyqh9IX^&I$OvsO`DZj}vt9hs09t)vS&p`7? zomS&pz_ToT?-g@#dUD@3(l1SsSP-ZhD?JQn=oqOG8bzESS;B6|iKk-7w}vS~Y_P2M zg%-R^@8jWt&{bZT)a5v)p4_}O7@x<(?c;q^;)^nBI@Z2BPSz0U2i^ibeTk*bn6)9o z5@Y!2m+)4p3auBFBh9B@V8MbLL@P+aG^((s{XYRzrNeKp>+l6#O+lkkDT!miys%%p zvYHi}C9)Eb1+o)VE{qGZ}J$ z_W5z)h;UDz9%2V-veUJ!>!GJR6<*s+A8vWP90U`uk#KT}1t{sB+c?a*AY#Z0CrCh% zRkU@nI)6+-5z!J=*g+Fpp4zOs80X;$G*s`$xyo_ZMs%U8kzTX7srZdnwUT3Gt7LGI z%GU+wx7`@bnvBPqrMT>s?>3n9C=*vvX_37Z<8aXWi96Bkjl~i+yZ~LSNRqMTmMC0| zde*g}t#j=zTy)raq55UyoK3?cJ>e`&6#MhQXSq@;&gA4T@xW7&(RFDwBh2CVOVFUk zW@+j7Y9dd~vjWVKca{t`iFy>%hl)BPo>CnsUucOpMA^!cb8EJoC=o>Pq#sCwuO{%N zRQ~;WlcJd&o^i8h)yl#gH7~)9I@-?pq>jH~R%}-)OCS8J&FYO!e%PpHC-tqk-zp*E z@n%jnfxJ}a6-l>;`=Y~{$AcVh2&}kO(Ulb!Xm+NtPuJk0u?ZA;6`kkETl*^l*_UK? zh#iNOHc!4CHMi*TUL!1Oy~MKK#5^_mnM6)29adoc+|)m?V~_E?v==QWFb>jaQPxQfNg34zkn9s%m&>k5rg$sB7(xNAy%xZP$m;8R;Je zvQ^X7Cvp}TSn%J++w)>zAVGGB-QmZ|vg1O{%$@FxHKMa-Hu%L!unhS0uR_rD9nGeL zWwsw5I3I4vnvNC;>^=K)#BPh=7>#K6x++B6CJ$3=(g-wzPIg;nW_B{mj&WKyrpA*d zH>4Y%pj01)4Jeo3=DR84*LDa!m~jJNkvF*u#Azya3jT>^=e_755Lsv^O^0s0{p6$+ z9Q9pFhgXqOoijrco>1e0#e{TdWFUB!)hM1iG(TkCGq>v28W-2ZPv>}ql=>PWsX2wI zF-ukj`gw)Nz}aS;GAE(!SE=vuHU8?frDWF%P(stL#5%^5@$5$L=_2fB9;wHvbPT>Z z3x`IdMivnfdbg#*Ydj*h=YiDVM-esRyUo|E9!1&& z!%DS^MCT2kKDFCp?WPY}bkObJ5gZzpdM?jgdIs!f?j;k?ZG3>i%>aP#dkZU6oT2rN7X2!j_cF}&51^EIb zYERclFzTk$w2XJSS0N4?Nx)hjIbl!K`$f|KWY2L`n5zC4ky|2Jw~mFuQtOvQ7X8io z+AMt%zF&1XWIC0mqZ$=m_h@kp>+h?Da*cEaroJ=TDi$V*d0HvN%^(oh^LHVqGw8_+ z*D+xurqrGbiM|v#nQ9^&3ORgPb0i87Vt%gqW}Q7ouJOLzAg>Z>(qMYLog_?y+1{aZ zTw=)svg>|uN8CtUDFeZYlsSzo)bxz`7@1x(jMOVA#VkNp8IZwAW z{(9LKS~%|Iu&00dzWz*bXhoz_8C6fVXk20mo`n3kTaznxe8H|>)`L7*qr2XBm`f>A zaFTy~*seX+VD8@T%X(LJ7 zQqLmFhqgt$E*bCkt{7U85cBLETY!^Yfx4|0hOjWP_-7L130lF=vKt4lu|7~z^tQx@ z>0;~Y&lAly@E9|)-6?-1e7OuB`_F>cMNlV?8=H-~ zXgyW0*o|tE=G+2fHDknb041^|qu_m)!)()UJ_4WT%qb|=SQ%0zX!|AeTcp^713?5

vxPW!<^yABMYoFm`FRnm}eED!;JU9Gai1J`t)3E z?qO`35xAw$Yz_O*dD^eJ)H&Y*uBx}Ikw?oI^RePnXz3{bGPvhI?b*|%Lu5tb@mxiM z%e)(>SX9otQ(-W2w8f$j70PAtk0DM(X_XVG9D62^nWVaE%s3T$@n6=Cs9&-XZ&)F{ zADs-9dhzY_V@x&(<+75HSF1HR)D~fsT)e0El~q(c9_vXuqBn#mM$&Sk)BFW*sq9xx z1Zi0O>RE$ZWg}&+OL_d$(G#62kCN{5v-apdy5Je*kp(k6)Ga1;$~{ALccINQjHuwr zQEOS`nM=yoU*578a?C#B)*3uRFRs*^k|w4$qL+Lof8*~OeXz+gC@YhDp_Xt{_C?-dMDdzON9oW^WhMGcM5FS(X2f7r((ZL*BDCk%QvocIREDrUR`Gm`5i*$=D9f7 zk?&*$9dA`gMD^cF6x7{JXin3|Cz0GLkUq9_7ER`zAJLxaj+xxtKg^DJk5~57-MLQY z5-a;YMDIJP#mLFyp zTC^k6oe+~B@2_D6e7dlF+?h*-*TgLOEdRYFuNg$DR@3NJjbC8Fi`&mMps&TtLAXk| zO14&uI(1zm^1d@PC#v3^d+_(uycHvbaKWoS@_y2%CCRoAV}-UzdRP9DjjUS_HcNVO z-s!R`1Kj2vJ+FED4RW|^0vG#qWrFqt(9v#bl!DK{)!%NbWD{=f$A z-jBY^ly!I!!-GRL(0UUKc~)ZE1D~RpmoV8Xg&!@oWx1@rXy$IL9wYvQ%hq7+zux1r zI{_5szdgVr&RCMO63`~D<$Omz;2s4 z*9+Z~SJ~I^ZTc^gY7&XAww1SGdv5qh`r=e)+_+A;J32T<%R~eTpQw46Pe8{IRs8lX z4cxIMjO?x~?wwHuI2gpCXEG;M?z-E|xiG6Lq5FkavagYv5ARewswOOq+QE(u8FP-& z6EH0i7yUg@)0g1fcE4bV5#(=~VS7BEbm3d-jFmQh4}1JZxxz@?h+x?x4JYcY>J+B3 z3}?3_Gg^!w=U_NDd71ZeYJPb!Ua+dPXg%1hjgvBeA7^~LK>iD5zr=blk>%JMI+9B@ zw2=CiSK+v8isBOM*0b<8sTk5+m9zSHmsohPig)vXYhaV_$1Np_A)(3?jG_lJCri@; zk*WTXjnxPQUtVeH_a`4${V+V30rn?^D)tJu`jejYw{)W|^K^f->s?gNbygjP-S`?? z{(FsyE6F^d{`NP$6+^D#XQ7rc5^7#1hpQCCm}{@&>YDyoH9`K-mj&@9*{!xMW>9VJckcxVInZ55;vjp+Xk${-gz>k7Q443G1K29PwQ?!*9D& zhN9C{5dC9CfNy9k_D+1r4Av|#l~qj_eeCrFMn3@Mb!`-~pE8zHzf;w8;(C)LQKA1O zqjV@{(3zq^2{ki?qrJwJw|OceJCvsvHOy$4O+J25KmF?6LtBkDHoT_fo-W_07BL93 zk96>jp8Mb^cq&pw9(+koIvuURM4%l6!SRs~nT zIp-3K%k2uXjsh3C-tg>bM*YXaAVu>=f@_KX5Xn%4SVYmbMPGT}hVVp4q%?Z)={c-k zt!P`3nK8lF0RKW}TU}zCPBmBD9@zEpdGR4!-xzw%J-X{tVA9{H=i&p0j?|zCr{d-i zqigUJ$s^YHIfvP z%J-417usq`DtFuN`xpQH4(?UvkWE&D7o;QRmX`CRIb1(wplM1HEdWz5!%Bqi2EAV$ zvc@&q$bF-=_N-s$B~ph^MV&SLJsZ9A#TrOV)&tl`ubSQ?x+F&`r9XG-U6fkqv>Kgh zf;+a>^0kCEEQ3i4MT6jH?bU#!sGi(EF8$HFf=cyseJndmRW9aPdSs~oM*9g77&|b| zjn}xWeA6$nsKAo1^6~nlB)@OgSkX0&6dm6prTMfC`PFitri!qoroY~0q#wtWOBb7I z8NKSba2=u5@8xhyN(E(E(OVTao8KTDfFRWbfLs<+l05q!B3jtA-oksX^cqh=-s2Kg ztjtJH=r_$*%4OY9YTO;Ux{t^At|BQgujPWTQz4K|FN8cfMEqX{Rud}wcX|meQ!z=@ zH;+>fySbc82hKKoKDsc4YWThaZk%9nf0rWI{Z^Pbyf&nj%o*8vt6zG09X%Z;>OZBWTbo z)uT|cZ!}S$Ol1bABvRYw`l`;ya`@qcRwf>M{Aho-cEt9~L|agZz%203-8I+#IwX6Q zgI9Foblm34XJs4)$vYR)MJMzX3#h9Yfp|aP4JO3#czwYiOtO70KlaT4@dtm>fr^t~ zp%!8@)Xaz=&P%`!R2(tyqbiP=JpJtle}3ck?dP!*^U8Z>n!G&PG#>f=qpE5JMi6-m z8&@kufzPLXz?X47I4geaqqFD!+syLl@KM6n?)C|rvc4vauR&MmUw+1OTooMBixn`y zqO`|X!(Y*jw|?XrR$Li2cD={mKh4dNXDq~KAQO3{uE`8Ml+UADz7U{OZ)*C(Qb_F# zdKeBivogmArbAy@YJ?4cE2?s39p;9;S$|tZS`@T=y`&q)g@&_j+`y%TmT;o@^L|F# z+lI8Z8-SaKC2P#G^Oa}Ca%mN8rLw>JX=PDN&_KBKFRIawAy5hoi&I7iuq#vDqY$(Q zC^GRgRu&kR0(hLdz=kDf?33RjMTwJ@qnz5P77A8#pU~R&$^%_I9p#NXsM^6Z%W_UawJvW3SJd%(-N=uA9-7|VHp#rM^>aH z@4vmTQd}AZ0(MJ(-WP`WNd#4$#<>)*Ql==Vq?7}YH>nr5toPR#zV~>=7yNg7JcFPy zV4{@FD(xHhVAvQ|561sFi?bPcfr?zWLhMp2HZ`2niMcSp5jvzxpgk~SxW5i7PYyo6&ZFS@=CAvmgh4Pt9?g9>Y`uW?F~8ILwppa!?EMYvlaEKV_j9nX z<-5~)P90Z;$ZYDcC@y<#{{YSfe%;ifgS`DV|7Q&ztHf@5FLtOFr!t?iu}I2#3zz8G z$0IRILq03M);}H?Vqh}d#XZOCr^pzzQd*jJ&fT4lpKpt&X+$~x;UC%-jTQAogjE<; z=0?46y1~dHvlI3i$WoivQv6%K8b9mWKRY0%6fa;ovT0p=sa~#8I?mgiE$L~eKLgr9 z7W_f;k4Nh%e9xuh?t&ZZc0f(td?Cpj1I%@;&V5M=ub8~)j>A&MH8p?W^btJ>wzG$BmA zXXIWJ{|W4M@VF6F`UYn>&3b=c%)QCl<5dWx@9;1Tw+PhvfSw09MT$V zen#DR?!21-?0C3Czsa=MHwGGYf>?o^q_J0gPRmqG9pl?lB=A*_3$eYfEaItEN$ca{ zrF{}{`1OL{s#Y%U&ddax>ub@p$7#yCvgxHwq*x_6wUD5(rZ%Wtfohlp?u| zv0V`T6c>+SroB`a*e5I~$+$ep`)V;6A9~G=rjAtrA3+ek8|pq?oo`pS`YO{A+<*Cp0TdF<}gQ{TTcBHd=qe#!K-S>h$2MJ&r~o1?dk zmGJv70goGx!ec6YXFmP3x;>Hopvb|cd^*7)CXk#gteBvq;QBz}_xOglERoiaQF}Za zTi*qqD%e&17A^>vaoW6P;NKFk;9tWRQR2Y1{qr07TlHD976agsesx2Esd&j;^v!P| z4fF(Xfa0+ERpszQ3HY8neUI-Ez+`iez3>g?jc3V^Zpf5_Spb5ENlI| z`I>n@Y0FS{_p()i)0n*X7Ta#D$tS){d|)?*d@53=24{r@5Iuc~m6^)u3bXwiJ?guH z9sHb-p_{ju{P@;GWAWr~iAS$(gOg?6iH!>#BewU=v4kglnL94x{?|O{N$tovj8VN4 zbxITc`jDTmvDF=W+#Z(+=OXm|Tuh9CK*d|m4e0Fv6Qs7tgbagg(cw1y zdKVWICoa$^fE{+RiWMqQLml@*u(Y*KUK};EAmNVMrSvQesdztkZ-|TPSyw9=kt5I0 zpf5kx)JUEPLRPeyKDA8hvt}{|h8DLWM;qp9}kS#vRUmR zO4E@j^ppmWAG0KnqkhgvlSBSFANnhrXM@KFFz-Ii_f+g}i9k=Au?ZXrzjx<2rtYx2 zN&GW=0mUJUztK<)PrVWQ29wy#$}%es_keoHp%!hF-*v9Smh1@7w=SL^Kf#^;t}E)l zs{AVc@3H^=Fm}VvL$`4C&ahSmyRa*BHz<1wlm}AY&#edbT3OW!LMoC-J%BaYM$S-T!dw!p@xPQoK5@=A?K&EnP0Mf zs*f3AtIAp=EghFw=9@#sv*u!k@VQGYLwtqF%$n{`Dq;ta?*@d#v@QKzU@9;u4!v<^ z0py_V7z6wRux{=Ky)ewa>Y!L_Zb}@O=X@#m@aGbhxI`KzH;>zgolXvpkJ(d03f|U}5IeD_*@9U*mtB z8+jJTFmkSpB3L_zT8^`tef1W3YPg`lp3g1vv7U%D=20N*z|KnSpRxyMrGGN+N>}Bo zDEJNJ5NRnB!`iw#+d054i~TX1E9qS!ee#7{&#uxmu5XkhtB>jNVKc;Ll)jk^elg0s zKwY{Kdj&5kmFcIBLHGT0tM{vhVa=^7qNFYF2bR(jR7m*h=J*uKZLa!kmwbrj+YFt$ zwAHhv%yCG6tCDt~_VTonBR1^#{dtC&ka7n)i8Ylmv_dZn=1~+!V&fspC#q6mWS^aM zl*;Lyiu9P|4ll8OHO@y-(vMBM9DOIOcsE-YsIfKpW{`FaP(e_)SdA{#S_JQ2g~4i0+amUZ>iQZjGxEN=iPG#9qsv zt?OmpiT0VlHVzb#*3^2Dt*5*7&3qMsI#Na589z>FaF9$8Yiw`*Vyv>NkXm=&zlL(j zQm`U#iWA;YD7T9G9Ma|&C_7T6#k;+3;#w993E>sqj*N?w9tgwV(ysP5XtZgA;H#gp zqPfKbx7zJ#MYz@WL4_!AO!qq)tcg}~WE|uW`T!h49#C6X6!<*q*qboi1=|Pqb+?Y! z2U(70{sLEmPKN%n%&hI#pE|UC&u?2+#aZDd9j3i)6x2$-UCqjF?{$4lJ*H8W72a3m zZgQhqRjnjyoL^H82GezQc9BX7abZQN8dimk>OKk|J>v1>#S?J&Sptq_NmH79e^Iym z5N7$Z2D#-hbtmf~;0 zN+uuV1coFK$fYuG>X^YUfGZ37-aoP9opI?ZXN`*)*oqM3cxLwdtCg^wxdhh(!V0g^ z`+;wsx-mwpc~(1s^jj^Ew~b=YxM(YPkNEU!%N3t=^{kli zC1-wKG>^@%pdvN`CNbAn-7lIxHf*pI|GmUYzfY)!LzG10N2}$mNoQ!&7`n`zR|`4y zeH+~}Tw+6%%IeEF3nLkYU`LVDWovR~{E z6W*b8QtmKey45vWC;CY7S3F)E{3pa?fU-Sy`~LV6<;G7ST=VE3bF5Mlr6C>P403E0 z>A6__SKa7FoBz9-h3hYt`YkO}zH6#MEC< zzQdThA3m;cmTtI)@yNsLw#;>j$uf-&QzH?_`Mu-}YuDb8QL=Z@Ba+5vy$zZ_Xaw zhV0FONZ*(<&{b&3qE8!c=QtF4%rr>*!yHU1Qv=q6aZ3HKZ!WQ30pES~%Xs8)cG6;X zyVny+ZNPy3P+k`s=?)xkOM6I!ZPJs?GyOtfRKEWo$AiDt>maMfOJDGA4)Wlk=qilf z4to925`?K>xBg6AJzVA_>Mxt>+D4Ntv+YiWq+S>+Y4k;$F=P?Zb1J559J39Jw>f|J z!sbEgG0=ZHZH*k&E?3PrCOibS`CPqDwgrR^8+|^t%Kv^JFNy$fZ{?663?)2*8$=RF zf*dlEqF6qXf68nlO}c^6{iX|S#*!D>v+sMM9+AAs7Gp|kkS?{gd+X{zXQS_Z)$2D# z*$sAEXGMK+m>|$o(W=DsMUl_LAO|`>yOmOl1P^7adul|xm&t(bb-U#78Hma#~rErA0?;AcQ`6u5x3l80x}5XhE&I z8%rTlI_>u!$#fTV$7Vh_wW-4Xh4yC=&u^jYE+~Y|3}%2k%*V^ivacW(qEg!4J0BZ_ z%p%YM1{YA*JoI9`qgmmGzLeA~4cWwm%c z09S)3f@X%_;p^i}ZVQP&?#%=atYFxMY&keCrzRlYuPr-fU+^$sKrt0!lLhr$PV zrA04tsN;HHR#Pe)LuX0|m^GH~otF_9B85OhYDv9%kmA+x6MunC&nfBCvysp@J8ybP!qbR!m0D>m-XK zt93CwLXUw(5}1-LyIScfE8Z>S2Cs{Cs0a;6Jy(Bd6vD*yx=)G3KJ}b3lhv>o2!rYy zav$n6UH}7>lk$Fio&>%#9!W9LN6r`1qc-J{qr6XOs+}rV#QtPIDZX|9{0Yxq>F3kp zm012`s8P$pCa_~khjE9O>i6d;>S0F(9zd3)rOluvp7DP?Cdy8s3YInLHusj^GJ_Kv z==4c=!CsUFiML3lEHzNr^}6u>a!SuB6bV^F|BclFSC}s={Uugh?Z#iOY$Jr9kNAK7 zckt8EA>*zE|tf0rnCaeVxfMH8otzJxIqpJd`1=tc`F+Cg?UXTc<2S5Rz>QDD92-PQ^ zENqPo-Vv=Oqw=ZlI4tAUH1ukBNM=B#ZHa#VojBV|oAa=qlDxqOYDfY!-Z1p2_t)?K zVpR(|0&}3p)q6}r2ti#0u|h#0Xp}X!Uws+}tN}m?@qq*Z{Suz7v^XX$UINj@46ifb z?hQkJxWocZ8E8IlEsm1h9Yf;#UPZ8Ez?FWxVgFLxNm+^n%W7{-z%{bxjKFf4FvZI= z!(ujUD?loo$P@ikmZ9wzkNqSHjq4VlAKyppTwc*b%7yK2THKg5rw$W{y~ z5IB%sA6+Opjwyx)X476P<P(bp7d2F;#TJ~5GV;=`{TS?ZHs|Z+~ z=UR&1VJ9ciq&sLw$+n&beirOE39A;`~(8rJQ zwb~j4fEhR>F9iN~+Du48ae;9^ln?F;yNA{>yLct|F?EcA1qvjKn)Oxrp>%M}%exlF zt(oPBn`PofpI0~Ms7R*gdUE9AthE?U=SJ-<}#=qb^VoCQ-|hLCsi! zQ%Ed!$lve8-r$lHnNh*8YApd$6A5xEjb{#ST7vdn!GjbME=@@wXrYhv@(xgGUnP?oNOU|3NT`vX$8EbP$>&JkbDsRo(XPeeq*ZI2|6}G zDadXN4IODf%!9x{X7!lKlWJ8;{hPeA$gtsN1+G62oXr4)9jq2f+c*3C1JJ|`=V+z zE1qI@<8gG>@`RM3kxoOEfd--jes3$%u4Ryq*elr(^einyfB8#pb2H`ZNoz0fxX!K^ zN!hP-{;Cm?QKkUE#MToqsK1-Hzkat_##uJ-5bEpkZVIQzKL9MLcEX+3ib$4U&{-&4 z<#A>L5U6JqgGiVn6`VI8)*+^$pgU-@#Qh59AiY4>RK?SOqO)~Y{b~~BB0nM9mC5Nn zl@HlhW;@_LF#ex>=>9J8_j@;REWj)M))0^TY;-ptgmo39@YxxLSGHDI1KQWkj8fS8 zg4#)e%LCUO_uwLHxATYvIP0-a*%( zHsLjEHlqx-6}(D8Mi7gz1rBI2TKV04K$3g~+ud6x10$OCTh}#98k9Zlw_`_nN_olGhZHAF?9PPVOux-l4FZaHM0%|rqa@V2zN{dD&jj`t(hFO{e{5kmtcO50~5qa zjf>h$->4!%u6#u!OvxIenxH4k*k_m20ra-j#ZwOlx&e(AL2zk}K96hUQvhr$KFWDO z2nD3+&L7Ha&4%$mE$9xQfTl0(9yb?t9kitCaVc!<4!Aw9eW5sYq~Aotoh+{i$W9ia_Cf$Jk>jHuc+wWWO3pF zo&kEKKd8X9sM8A4IX4z=Mu<|@{Y_#$Xr&Hv0ebO@BR8rfA75`BS5@=% z{iCQT4I+5};m{%7-7VcE-F4_zln~- z_sp!dKI=VZR5_N`lmLR|Q{JbqE^#x69AAQOn}}{ifvndz={hN6gcro0*M9`H`j3kyt_5uxzu_Pn)-=t{!^t|ait27!Q|{Zc0*vdGPP2bimKQz-kz zJwd4VfBQOj3O5s6RAixq?tqjJ%NZV!!<2uo=#qs!4n<~<$vO;}x1ufI2tXqCCQyi_ znex?xFAkVz8Xegf=42fTMYkE*SZ)BdMY;eaqU>>%Sicl%IxVw1o){Ri&&ZM3IPO{Jn~Q|47HW%In!+x_Lw3jI0zsbmEeFS>tnwhe@l`F zt^jY|j{1Q?pZyt8`+RfQ6tQ3B4Mp$raw@?VC`kSwv|M$x$^eWf?)Sho#?_19+j-Uc zfYKJ*#k^V%-wUc;*WUoYY`1_j84ae#xd@?El_YXD=xUuz6$Ewu=trD%8?gSOzx5q5I zTCqyjhBN`DC|2EIz`dsu$xaHPk~T$&;y+yMo}jEZ*u+R(4hQkm*0079)n)Zx)^>z_ zWPWb#oH?{A@%0b`01EX?nL_p^pc7TIYmdV-?ha%gAZC?^8`n~ z^SMdS7b0qQ9Wm8Xb7{hGhGeD%OdQ*VK&}|?cswfPu$X=6ud?V+4%stoCE!7nL2^ zeAp4hDPl7*^6A`V>kicx+en`cx$8^;N1s$mM9prOA-Zd&F$78Q(04+Y$f9juXCX4? zS+@BionGq?OhnCn5wT%x3s0`FkQHE`BQZE6FU% zEh`WZ*e#S8CErf)yl|nqDMe~^%cR12*I!R{leyjP>t{{GHP1Qgb!x<%t;Q;`z8r}Gr&CKeyUIB$fCQ!28T`rt)0tJER z05~53L$8T9c1N;PU^6Mn1x$kkY-2eThF=lD>s<vU~uJnK8!YS4hsXr|K $iL5y>&nz^#J6 z_xBSz2+1YnCxHLC+bF+53|!`$B)4}=b#!|8^YeUcngJeBq5uo+15hQ}Y%P9s0N%`B zuT4I#kt&{kIYkn33YF%KQ_!%w69AD%xhXxj22hP>)K^e;WFfOd$F4B^wjd;v%9Usy zUjhuz44iYGT!e#Q_Kvy_cQjhH4@v2{9Vb>#0#lgOC2Y;6JR$(zDoMpTs%j+`vjISi zMgdx%wK6J7z6RLsK0;~yb>FQv`B-(wo{@fK)aLlwNN&J0uk2CgL@FH}^N7~a&WZw6 z9R?u7o=B;KG$pmh8_HxXie4dx}&ro0Vo}|&#IPU2mSMu96JZkJ02x5ih zSiQomA&cfhrnD_;Obo?_e zA&GfBWR#H&GxV8BylNw<(FMfz1dT;EjWCvDek{X3Ull+t0GQ$Iv+Zhw>logqcW+S? zp4EX?Xt}khzdu;U<}}E1cqp0YrfBFDqP6-Y0lCWtRPxl$W#k4SW%sY!h%`pOrD9$_ ziD=Wvjo(}%SW6d#mgejH?54ZK;rQ(J}G5NX84befJWl?Qebs^m$1xtn`ht z`?_bg$uM34t{PPZ_o~>s3OSDqh@)9JE(y*lN)lRF+#~rtDh0`ZCNZOJs?q!+N1^>J zTWZ9>uuNjqkqG_$awd`j5~+OFVQ@D51ZewmKa#|b(3q`nLTXj{d6=DVp7Y0YXpd?9 z+6ZMLMY*KcGK3CQnxQX2m7*JoA=N-XYd;OgBQuV@SD22xOLgjh+*sKJ5PZMh4z&49 zF&zuIo?Jx5rJ?NmqM;T(<8e)D zvW?2dgI#|y8U_Vv#Yve5`l&oi?U*1x*Yv6V_+#?5LLhN?FCAJ4S^=>P)qzVJfH&Us zF`{}UkV#5OtTmH&5D9DEe)6h8{jq6DJc@?*L=dAwozYcO$Y+!_JwSR~`fXI7f{14Q zvj1qTeFe64oGk8Wp9dM_oM@;ESWT2*hIr0uRZqm_MDf8cFGS-3vm>#)HH1xa3d5IL zXqG6 zKyC%3P+yRR5)dKkmEgYBb{L<&AX;-U5Jx4q5N*go$Ss~dr&#pEQ)kK#d$y<#-gvPA zN|e6|d}gmZ6D6(?UAA;P>h3zUKC!=(I>T6a#~CUbC8C-41US^c?f8x#zvYRmDvM~Y z!jcvHRi*nN+kP?0Su8~yHdNGwx?bq)h&=XLI_F@c;@&srYFzeRj>=}k=D43g`Tdh< z?1RFy-{r5<@ZwzZKa6JAe`;qEXno#^a3Do${FdQ&!N&2)k~N)aP~IEbZoPU z1K_;H?%`fz9dQw{2xn)M1^$ESAeEDx#Z1?SI3?d|0kL@?r4MkLPW_GFQrEO58c#oC z1^^0uNg9X*t?xh&IT9Bz&pnsto}#KHw6R5$`*l_@00Onyt&UJntU4^r_XSu~J?5y) zA8mbr!2*a)0L|gtGNXLHUh0$HN2~W8_>_R~XU($Z!WotRrvQIC>O;+HF)7Vh6s_tA ztb3pYBl}j+ay7CzE&g>xm4qa~T`Y#Wf%nJvZb>Oh%vG|(#%=JD)3K!96(TYf`*H)Z0EEn`iLKc8|Jy@x({eK z;Ky2Hi`UQD`2~KdzB?*|u48u~vo{(W69K`^K5drf z;)8L+0b$Z(GDJFonFD3W5qMFXky&1pAGPuUtc1shUn*fKt5Rct5a&?yO+Brgb?%r+8r)iq?hTZDPuULRGn;sZ>fW>>Uy-HKgr{e~h!XjG>63QA zR}1j0NC#*3vm&7%=4nEnl^6TwF_QrFMW|0$H4b;rAZPKL!0rYnSFvG3^^tJr{NLoD z&3RfJC;v(6pCkjF<6k{fR-YX&-^h#=`9@Xhav&5&Fl`Xb=l|pnaJ=~gLz?|D`cWPr z)Ke-5VxdaQCvqxPY*&--bu&*NR{=x0;J9y@B!H&@q^sbd=VtY$jmzv1&gz`ss-DyR z{+ypQ&2qm@PVfb=5dXk9@Wi6W%hm&Nx3WJlw48;ufOlDS_Q1;sT z*&9VA(yzW9=a|B=2LIU^13Z}L>~q6%&3|^Wty3MHj}P1_;ZHN zqNPnKu0V~cv$5p=j%iDGDOQQSOk&Y z)^od6-0qnCfk~2G2=C$IdmQ&#GzvE#ZBhepv&dhyQhC%K?W_L443Qu8Y^0<;nekbZ ztypO=o7$wX^=oMc40Qia@JTz4rA&nsfh;IU7PUPM{F5CYsc{^a>1ojKBWUf92wGdv zl_xu-a5#hp*IwV(be_{nld&Vv41+Wn+5Prw`J$#3C(oXYhpqx#dM?oWT^baf>>IQ8+Ng@R6U9^6EZej`4toU4f@sWm|t zTA2>KE;Or7^I&CQ10!K3r_Bz`m+Djm(V1F_ zoCcoe2)kRAkv}kKe_-sDLD*Bm%OhquGsovwq>*YXd{8Q~2By!GCcq4W?XG#clg zJoo8~=!dveoCIGEbUi!wMGI@p>tJ0i=@D5Zu8)n`(FlFBwBA+9w?EH4MZj%QPD z>>H;gX;0v%ZITsL`5r@3HrJ%1QDmQvI$c(bpnm+Vp&6$6c}=Yr59u*Qn^@FGE1Ikr z_lSO4($kWYFm*CJ>NLg_I|nf;h62^ep4%=4=Tajl9{|{L?$!Nj7;+0 zktht`U}|o zVx1VAnLM0%UH^{*@PGv9E`nicu=)F?46spSF1ns9LT`6>vNThf*&L3KX6Np7QN4YJX4s`42lL6clF^`mkwTwwH1n zY)o1d+gu3328HlirfDhrn;I)uU3;x%y{OEL{LLh%2k3rC3bLz=8XFi-F1npwj*(4j z7|P7~xrRu@`^kZVLu|6G(jTC`wWY%yLcdIY9?Bv&yJ*Es@Mw3~%$Fc6+OiD=Qd3iy zQ>96d{8Z28!G9I)&wQq;*yhpADG6OXZBeqaqd}FQ77-m8$cvNdub9vZ5xHkM?5yHC z63>|6j*WS^GQ+Hc3i=wv;pi-;o!Ey?2A^L2MTlt96>c z>Y{hPSsb9P!VD9fcf`|j)-zQ+Zuj%J%NZi5{R4B%QhoTd96Garl;*ddk#n_4HjBPu zX>DYe9vM=HwcBFLeryiv9Fzt@q()FHY#Z{Dc+f?RwHlEnkd1tz7rY^h{*WjwZni9<7)m(tSpWCTOzE z(A6FsVaOkt+29+y+mYV^tl|?!|P` z7!YlY($0*{1zNPt<0Z<8kJr$y_rtM6Am6NuX+5PM6mTtlCPYIKRk%^eI`YEMm07wY z4F<`~KX#Bd%mp3feMXE4S60U6km?XDrJKssH=iskq?aO7i4#V__TmufiXUW<(TbYk z=HChvFKD3+o8G8fP!(QF!@W0nL(k{=q``Z_h@ggLsg|j;@qz}mHYMMJ@UeF^C#}R3!5A2)D6P7N{vVhe8tNEeu>pJ3&ZJsgh}6&g&iHUtZ%QvCFreHq zwDf0VEh_w#bY^G3``EJgdCpEmO8I^%5$dVzBAZ8St(A+m8j=APnA3gCA73o=)q-%Z zJlcOHypJwJ%X9YP16GU`SjQV@X%A>#$NxE6|DZ94llNo_ulB^GY1TI*ZwXgaRG5>` zFe}FV;*I86ugcPOR|>^Ga&iGN55EK2&PfL`DLxb7eTA?+$_YA8!Xp+ibNl^)Y5hTr zi_ve*AKIW{%U$|($YgCQ8SzGDLCtO^-B6GVX&LEKZKWD2jQMWwf%)oL5y1DOGwSS!|`#?2H!RD z??o-uVz(DY-#F{{IbGJk8OE;Q@R*qDi~-G^6ck<2gh!L7PTi)^8Q-2XUaO}q`-R=p znx-;;qj|*s?@W<0gd{pM+^Lm3E{xK8#bH9RIxaLXK>P#o#qJEZpMXgb2@ta&7a<`^ zi+nG(ay*(Uf0&~@u(w_5uxznRv{jLPU2L(!J*E~mEP>6T5Jn(GM-1+KJd#D*pUHbi ze+p<~L)n8Pmh!ZgmqWN{-8!=uiGRiE42i<`t=5FP?<7&9&Gmu*{bcNQDosU_UhQwB z?{0*5dmoBC)c^DJ|6d31@iTsIFS7+g=#}rJ2n<%s@DSkbv54G78-D&|Hx$mw zHTVOgLJ_9-dtI#RZ3z-$@$2AfE2pEe3Iim>q-dwm##_@R(EqI`-eQa^qtT*unAGo2 zY^|OZBqgNWyEE13LcOvq#hxZ_g_$X17Qf*^s#jgLf6t1Tni_qf(ay4{vknb!bMn5m zdAR+r7a+9vRBf}I0JQ@0c%R&OSJAqxc-;D^J<@ghbYlY&>|3qg_dAU2%1-gye4y>Y zTa!n$TO@>26P0CcF7dbxQ;te~rK$6FZIdtchBxbL3ySFZj=uI(J;BRgmllU7xh*3( zgD5@wixu9`ONWb%Q|+`Tyr(BZ7W{V>5SmgNn~DAzsr7bT?5j5ic#fx2jV=cNDZ=*} zfIY3Xo~-@%&*ivK+mNIDbE6L8#vO!byvm zU)7^q(FC7Eq=9$&@x5x*o=Mm|4QUqJMe^+9n{YBI%~+2)m*qz$3+ocPi66>ymzkxH z4HEi4oan^FK7$uW$9fE3+$1I)jf-Y>RO#}f_K69etpLv0cLW}@1~Nio7=HJ@Ar^SD30XZ(Uwi)Z6kkVru8}+OEw7uRJlyvGHuKw} zIeP*8YEvV0yt@D`@d?ZMfPIm3F+4w^DW~z}tbiLXGKo)LTh2Xdts|J(@Ecvr6HO0- zR^lB6^sK{F8W-NJy0d0_=d{}4H%||Fz)Do@=SAHYcNt(_gv>r-nR@%BwFcr^LFMtq zTf{ePd)-RsH79K|^9=hi_&Coy^mf0!Lk7{|w2YNK zo+|7l4qbUvVM_ds+=XDN)l@09Qz$99&y?u?P3W+qGfYS`%uLpYs}JS0vfp351NrRr z4?)Ca5v3S~aAjEPqNwIl7eBe#k!@qIEptTPSXd6aR2<#Ci6B0~eobd3j#Yl0rn}5I zIW{p#&3pEv;!TsrT=Vq=oO_k&R#SCyJ;r%B=33{h9#}hEP+3$y>9xTDw;hu1;=JzL zfY)MZ$TB51D)QE)A=rDA895=zT}1pozugReH6y3}`UCUmIl6S#%I1%6he20mx{Php z6q>G3;KhnLu?iSooUVlifZ-K@rD;xMTZy5)?vrtp|7M1uZU5mWOjsRk7aQr@hOhR4 z!LpEj8^>}0{@f}boPW?WG!>{(W;{MZl11G=hPWeTU%z1@pK#MhGSDnN-H4?7`{TwL zD=;NcrB%IKi*dMex|Eh9v=yUXWEQZWw@} zX-dPe8l@ zRT(jgV{mwKSAxfb;T8%^#j&z;ejxyIWC68{8=pq}XE^f2L8rrn{KSw9ex(ozf98UK zp8t|%lG8|!7h6m5O)cMhz@$1ac%ZLRw4CR3jfaxRQI((6zKV6gs8M(k!#!FAb+ibi z%*e{~OOo30WB)4J;1b1>)GA(|viCkIozJ`y=jOw&yVPcl&w+KKTz#FFT@*x``ZfRY>5A_T`vY;Z{FvqNi-jLlwPJOa80Q;hhTrd(dl8l8RNE znmLcDx55`<FnqNn);Z=3 zBO)lV5fA9?_UZ1?!C!Ad>(79aN{T01M#M4L++>^1z0QN4G8Ac6C9XP-K$7@l_iYg8 zDM_@EVDTH>Kr*6z1%}(I-*?{b2vnB!bMcv~W>}M*A@nk_?*^4ynB!NiIePxUq$YD) zRqP6u_d|XadK&n__sOyt=-h25_;7Ksc0!6BQHkeI#n^}*ZyK&Z+)}d4pJh4+7zP`c z=lAA17E0gcvS1)Z^@Bb3ysDCR<{1bk9Q1a&J9!rN>8 zZv!6^6sW1|oY=Jb-1n>?cW1XMfL)2kXOBF<;vgy0P7`c&IAzD!>Z`;QOx^dX;yU=n zQ7fYGw*#W}@V@3Xncd4_Kn9R#O3!4>J)k`G96+Vds@mJ!$XX z(QVgi>g8sYhSfQR9N`3HK^-V?N@bmhQe4N_?Fv9#BH=|nMsr6JaUs)^e((nIBCYD9 zX7<(#4z6&Hro-pCiB?o5pUv&?!BxG)+3y&q+Dp|N8vMyR>gmcbCL`k*+HgB_>SqyL zVa znSSBXF)|SZF9DzUF)xgax_yoR9CTbsezTYV3@HcsT%yjAk?dU2*@9s* zwH4oGlLo^IXKV8+!-Qb!9A!!ORrs-=H1rATwH$m_n<@~-lO-5v#Nan_%7Sw8O>tj&H! ze-k%QCQFFlC#II)0wQ5#j+;EsmI_d%_xb_9o1C{}-o zkDcDqdeFS6s7^I)CjKywjup(Rwc%n-H?~pxDOY%&WT|>n*v0HOM&0samRJF%h2z;o zS@_Q9jB6e#r5YKX^Hk+G;FO^r0!*@*!?UFhDKe`oVTI^V9@j{ndr)~V!jyoGY!S4c zYK_DXrIx<^Uf(wgRI&9yS0B*xty!sdE}|8+=A45V+e0t1x#0*dW|4V!j_?lxmwXe)!@+Sn+kLo4=3DGuDe3g?XC4N7p;Y9Zw@Z91hyX0 zDDeU77nR?RldUAD1FK*ndOp=oZ~0g7s>$FBy#sqEL8 zh3(y2F!BEH?>(Gk;g)tDGUPpX5SyEq?rf}AhCfe5v8jXI8q~FA+Hi*J=j3~pD#G3S z_90sCcv~5+nWwH$i zriyadGGqf4@smCkiwN%9^gPpf%%D_ehN?HzMz~sb7mw9U)|>vWHQ$f7Fdds0-yWPz zeHC30a@MALbVux-YoU+s40BHQl4Aab1BVEwgxm|WdMu_^1UQ`Mmp%6xI9I5QqcFa3!L0c}*Q zY&FPi&t8ScFqoOaqkZoC)ovYm)44{fOKp+jX!>nG%eT*`2NxsA;i_A4;{~}K#&6Ly zcelUP;Wus=xEb=^-nso966P5?yIi!y;er#cyM(0VB{e|F5vVIV)+x88_O!Ve(`uC$ zetPy^11Kj>`bKdmZ_VTDi$fWIz0cg)o<#;Z?CoV2`4pOEo4sNTgsI?=sNdgCVc7`H zs0uT{>!yOE7Wp{4w~*lNysA|tu4QHEr-QhHXW;JmWQa?D&@6|Ya|N^9GwZ3NHt(%^ zT@)I+7xAzG?CtUdxP>krb#gPsWAkz;#w5n$9pUDJ%7kn@d0*#zn@i7l19q(IUWvC+ z2s=c|`)GquLdZiKMK4pbv+;Yyr?QIdqU{FbrjBc;e(b{Bn;UTny$npiAU`_c>{Pg@G7|(#O{|! zx}UGG12_9s;#l+h2RwR22r_4m@4WxO0RF8iF9 z=K~8FgSW~^F}f;jyXy=rMurQ$X4*!Hx-kYoU*m8--^%S7HWr(_v~aF0#64Af z#9_jY5Jh!w|uXkuKY5plEGGu7H>6 z`65)>_wFb?>(*-dlYwKZbQwiQvrV$Mt|+8xH5JuZgl@fXE54P_hb>NGo&~2 z#f0OlG!KvF_lgiqt90{t_dF7Y=o!6@>a&m)LQo_WZ3?Q*_spM$19DiO$`0c(!h&P- zTuCBU0tZzuDegQIuhI;cx%$858hl;@k=}@Xmfs&=2lo0pdfc?4XR;IBV&ImS{mcsC zGB#869wvb_2!$iPU7PTZpG#A}me~j=39IP-&cuZW!+F;9rK`|vnWRo&?CMzYF15sW z&(Qayqf%l+mA1gdkh}MrWr?z)5c)8;KvKCyOSNRn0z3-i?7%Q(c#iMsw*NfJiYt;d zZ7NQLc&LRIzF5fNNbv*NsUFwl^GAC>oitv`xRQA) zA>zOkmqJ~|{WExReOh_pSafEZd2|dWqTPMC9<$Eg5wO_Dui;78>)urf&cHnj3PhuL zmcHud*+ty2gi&OsQkeLRGxe}4;6=Eh;9EVSpw4Of8hdUxs3FUQS@QrmtxykVV^5Pg zwjDwX_~fQmIAffo#fn1j!r3sbI}c2(xal2_0q?T8bv&j6-o9o>vM}TPFv%c4^#rwg zs{2#Itc&m_xg2wIbn;gIsml}jzk?&UU|eo4`&?cUz_sr~iiOHDoGm@SGb_n%>;t7| zg&nV2vR_%GnO?0IjV`RnqRt&CKBmNOhW==VvWnt(+yHH9GVK}dWp~X$voJ7VG?3GP zH8b^}OH=Icm>Fspm?Rp2>Xy%HE*q{~_Qi;WK!Ngd#WCw+-(xRzMuvGi?@uPXN9A8u z8z;Z#m66*Xvl;VrcnUWOkS~&}utA_PO9&WrYS@K^c29#AG<{k`S{3mW)16qp+RILosj4->bPCh~d)Mk{`dKIYLG%D>|}$YoOmcuUl=wb1@)20r$O8bsWr z6ktk7(fz!Qov!R?EJR!nmtqRy6CjI97a0@5U#pqTozo>M z(cWQNENbQzX+9Ym`a6H@4SHzjcylvKP!T`R4Xr^Z?a!H((#?rsxQ-4@pj=n0tKMT; z*x{leNkg3rCZ;Y~DsI33p^sA5qXR?qNSw>m6!01oWe9g`ZGYmz`s?;qa%R7*$kqPZ zO~nM}?H*dTavf?d+%h3~^}Y=rWkM#i*0l0w!PSe<2-0|uWki2gtwuCkE?utRtECA(+aIv%Za zl!%E*vvH3I*|LEJ!3cgK^Ldegvb;i0Tqh?a!D2_wOBBv=aFq9)$qSBBceJPX1kV`0 zgR;L%w%GP@U|MAL>0OkGF5F0(a~T_(OygNan^W{1iRh6{Ci6s*e}H9okWUGts6T8;+1sdVoMt#|3v~K!Rq$Qb`#TPN+wW-TJXY-Sx@@G`nhF4Wz1oHIORIu zNZldarEcMZ4)t<^^?cV|N&hOBRZqFISe03w`~0RJCD~!*>Dq5vkp~p#C70c~YtLXC z<(OThzybI5+^`l?V4KSKPCa*XZ|cZP7gO9FZyBw#zSGKxFNq9(mfB^;b@qa=vSoA} z14A6jdm{sd$mJzONSYomovyMlHM*g1DwSy(V;n;IBqkeA{r|J3{KBumqT!;fRG={A z>9_}SA>0Fc-?_fD(JjHIXo=^B+adNT<*){jdQYfYbbm}yIeV|W+_LXMVHIuI0^$t$` z6BFEa!FFsazv1n`Qe+Ns7%sjikuI85G1xcjSj#=UhH&m!3=g7tpC2uEH6ephEEg|` z&y`YW+?ja|PF0jnvQE?9xw1`$_6{Z8MO-=Rb1&$WTaSKR>R0@{V8@fEC3C}>XR2yD z(#yi(vJk+!*TuG!)~!`?!nTKJ@33YwOv5}{Dy}DhOMCK#nUKod!W^9Y!($JH0E%3d zhxm4LzPt(zx-JmoHVIPB;T`jHo82HIRW=dzsFP1HJL>K+U5ae}MA`^7ReQ;!L#O*H znwA+d(HqKS%dd3aRKDW~N~BEQ_M$8dE=_i<6aBFsY#{;)3xWnF*eh!0l`*-~$I!|$ zKZwF8U^z7#>PlViwJ&{_A9WfyH!H9gjk9+6;pk{&V|sMUYDH2#c(i6(`D@P;7V;g1 z<>am#>e}2FvAqOjOb<4$43$!>ssbOGYsuk5yg7t_+=V*uCUNjPIG;NvhG7mOOumXU_q|d>7XB*=KSie9fNj`91*2y zMEYRKw5<4H`Nc*Xg?tp(w*C-g=nLK9?k!Q2M4Y1#$z9>yITR1iqQ7CNC;iIHuE@zx z>j)n5x~!jUz-u5fh=PJN40rIMH#=hK!GS+@qw_Aro5Q~T|T3}gO zp;hTx(~^?zWlm`}DUInC+*HQ+i$KbG_SJzKTyknsPy90 zGGXtajk{c-t?UcWCZs$yMoT&ekd2W(X zpCXk%g0W5*4X6L^%ta`fYgVi<1z2eV`<`~eJ&g&G%LeRuB=s|5F*k^2NlfZ4;Ot$Y zv1LTNpO}TtFLS%f><9)$vV-X9)%5GSuo20a8{wo}3J#O?5~$9yI9R83m~|S~{#J;s zlL4&l=H~Wb6AG;F%vW5imqkqXP(=_wR&1dnFnzoF=3Q|f4hjJD*3@7GAI=JaM75gi zKI57&(T$m$M<+8Ct^O$%nfGG-symk}zKxEL8&+x3&=vM)L!o4yS%P;bB+`UY>rFp@ zzd%JRaw@M4ezBxSE1{|)=v!!MyfF{l?n=`Mn);Obu+poG&@#P6l%k$BR3XI3=(7@% z9Qd%dn3cSu3$a>HMjMX}qtbH@>yVp}Mf1*uVLF3_buQ9PUlT>Sg4jj`h>-JpuM_-K zj@-~ZlYGfqOuS)|g$I6oK9Q&MI8OgW%+w5XEXW%Hqs5iSZqlr3G?@)>qs^dog zmfKY)Jsm5_TV`1QFXdM*VIz2Dfg@mIsezivpi4Vki;b2KeP~khJi>N^jj47zKg9@6 zhT;4A2Vdye)z_G+d_NU}tXOL>y3yBLqCDynX8|8ae$h_i?zRPOyS$K4*hw8ksJWoPb1`$cPIWY_ zm9mfZTqxxOo8kHEvV43KwsJ4SS}Ovn6Js;`6+d|kz={ZR#mLt%-HbgMr;Yx6O+Z>@ zj>HXi*9vXqS4Ka%;OD_7u)#llJb?X9YuLc$Kt<;jf2FJWWM^hpJg1k}(%@Gti?BD! zLU@)tTJ*XuYVvKsZe>YNi-%}SDSfUuoyZU$UC%&}kuzRNfyR%m)MSk*EkO{^tGJ z`@RGgrBM0UxH-`v9zC0tb(YlEx5isHAdc(JvxzVYn1KOw%Es>(*n3kQJ!VU}YDw6e z4nV|RZsC*sB7jFUx!|2p8p7wM9*$D!&uT@VuPDq8*;;DD;i%aqk3RaP_DEG><#F2e zg^NR2pM73Ee{NWJi}DM*#-`3p>%GiT&Q^ex8~2zdgBicJTR7}eaA<{4XBm|v2&vJI zxz(}Yy!{Rv)``5_PH&#ML*hmT;)8XU*HX7TFcgMMmmAwk%{iXh=@nVp1emVwB?oIUO{ei~gb_i_KWeG?ziO#KZ|A>4 zkpDV@KT#zG#5D@-bN)911dEKf?yq4$5B?P!c_{0*z6zP(ddOcvnC?82aItMS^E*F}MiTX6LxW%5_%N$7x~v{`OWm1$*gP=aZ~_5C z1jG4>BrWO?4JMnt6wc?U*lnvj0;~8z6|c+^sw>EDdd|h{2b|#)WMes)^s?q^pVQuD zjp}n>;Zj3Cj8vcW4!MVMq^6e$OPH7EM9rrm}UQwt8jyczF&<%_5I5Mr+SkkyNLPgK#2;c6q=unAQ7}Vh;iJVWMk|^@p4Bi zVKCoH@J$7?S!FH~TK_^jDj@@T>{2+~Lp+&B;zo&N!P=y>C-mr7g%r3xar>8$^s_szjwz1I(5i80d~D3E-Ey>;2`IeYluN+C#7MjV z-Au3v;B&h*c}STl3N~yfC5eyOSVUzbidOcdZ269ZEjF#$4mbVqpSWakeW?{ekv#XW ztM-<&E_j5bH8-*gmZ=s3ls`Unz{g5f3drIlcebw`^21Kg9G`bjg)y6vxJf9>i}Z0I zC;a1xKI|9Yo%69Gz^PXI{G7ZW8OpHom(Oy`fV!+~XuRNP+oSpyhrS@Fo8yY^Q za{bLnG^JjWbd@r%xB;AY=}LMls9+Fjq#0Ot#fD~M<{BP-T`~dqafGUhC~lOabZH{ISuNj9;){N-Yg+r;@OLT2#eL1E zE;?HAwU(LJ=gWUvD9X($6p=-<%D6BlDs&nH`N-zMPJx>k?I)X11L6C!*S|qU|ItYj zy;mHYq*~zU??0KD_~PDFj^2`FmD-uAc02iUiFIb~$8+S$E)fV^;d_H?WLT}XPbmBA zHql}Kz~tVhLQMq#BbP}Wi$mLyThKP0wz63p>jV9yD8_Dfuv$zV-V2+^`4eg*Md`EUB^t(XGi*Zp?R>vn*5h*?T(9SIXls&?(&{qa6=PMT3JXDDTUwYKSd^Bb$?fo>~4N=$7- zATcHME51uQEFFz_?mo((L7pl~6bnlY+JqplgMYY;zxsq9p*yJvrVie%4Rk1)^{=Rv z?s%j9=|J(gCG?3Yv?2M#m>@8pBs-qWk!qof$9dG~iHq)>xh0`xV?DEmLsOa~NGjDF z50%yn*RD=&w~H>LtmSrg*&n5z7hXFB6pSD(OIuU^a%Yx)8LgTsNAr{Rs8U58by?oj z!oP|IzoZX+h!kLvpNDV0U$6i^{UcQjB4p)UJ4LYL>yHmI{@y@_#0V*^R4Z|ULZ0?l z8Dzat_Kjb4Qv^7FU^Z@XZP<08QI9O0F?f=dnS@W9WDE%A?07I%1|5Ih!Yz^&B*v%; z;-exTE;aGqFN^$vx$U-TRC)r=p6_+`@Jb^f90Ps;6gX1HH=vLu^|FrIrCE)}(80@_ z{*liTOIODA*m2_W9{6T+CQfkt;^p{tu;KhRQK^0zs&O31A~!ap9Yen2$dZLIOFcC2 zn$^F7qv}95*1`9u6C9C0!d(xtbp%hZPbMH60qFJ;fy&iVFdlOex0p`%m+`^rSoS%ryWn}tmiIGwZBN%d6LtG0cR@d0!b7@JL)d<3wmU-cFG7w(jF9sWEKZI)??Mh}` zD>4(~=I1|Y$IT*(uPq_S{R$H7#5RU|dFi;W_Ax7GF4iu2Tu~7*rn;Z5o~M zY1is$)t~~+TqV-NtZv=~*Z+!+{WY<-;zO%m>&0y8=S{O4{55d@G{P=zpQHGfhvG?Pm(kL^q~It398C z=%$~SEuB9+JNsLinx0+Ye}iVO7XRFfw}*~Vi3a+OC_G|ZXHHC(V8HD3gt~AoM-vmT zyTZb*eDAn(#lFx3Y;XDKr>S$j&V@3dqErMZ<>@|}2~g0`mDJQh@w#aM*Y%c^L&|%d zZN9i(LuCoter1cV9#3L(mp?uoQ`uASuo+j}ykU)Xy4lDQ`60{+Yhj;v>309XU8Spv ztw@4#E}2oUMajO*@MUuHgi14eH|d7qj?(^E{=n?yUIof^wTgoT<(o| zt-38|sG6#)SmWN3zzZls1rLWV{dLKs4% z8-`Bb3%Kv+(dYMl|CGG~1$}1RLpfFWC70MjH!XBR=*Md`|tbTk>#496m~gH`&&93|19f52+cZe`8Q2 zk+ZNG=YOQinz8?Nrt4jG6@@R_&=S14AI1{znnIr0-dvkb52DJfYxj)f;ncJ3jn;!d z#rKPKy(9%(t{t?F>G=Hud8h4svW8kAiKD;Q2|jmDAcLB*qB%LL!h70IhSrN(3Kmw&eAoZT703S6B@M%*8RQ-kt4V?#bTeRX%uj_E*g#Xkw5>0YQ3v3wmQH?aLR@Ra6}| zKi|NR@AA{>9_WkGTLm0W#b^h#c=tppj!cZ_Sm){t?B~%{l{02z53+K<%^(<&qnrbk-YmXTFt%Hc0Fw|7z>fNCuBoyz zQ!@VONEkem;^;4Z%~~t3>FFV3>au(!_{X$fZbhM4iG}hZ ze^D(mVY0PbUuB9v_rUNxjD^yRj|dm2aD z&t49UFZrASZLIf>>^;2Ep^4MXHW4OW83t^}8in*TvFU`a#2QSppW#`r>TR&LWo1*{ zW{4Pc*1c=OOXjZ<8=`w_36^A^IJ)LJgLeTGPBHD^$b@bVwb9)zr`lpi`dGEbCF4pc8KGcxSk- zusbV7@+}se(ZPOl(owi5_;q^eutFh$85>;yH*C7 z&5Rb+yICe^F2xyr{Ov=G=~K3YU0SmoPF^&{r04w$j_MICy4oYDJe51t+Q(sf zb%aBrFN)NZd&(@`o?@H{omN(i3z}NfO@b;o(;_qlYVAx&<@%O(P|3NY{!LnPn@1G2 zFWhIL1<-9f;pQc=o1@f+l-L0OJoKfekiO3ACSu>nuI2TmDpv8u;Z89VdUm~PrH6$! zh{xAQtLPw}nz>`!?}jO2FrkhsBH$p{uVte*Ocp{q_i#C5*Gu8xFFFroCW{`b?tdp- zHC_`hi9v}63syT+>4{)ne;B1e!eLOcKf@&@EX1(@)N!%U}=VyfYOz6;@kqrIDz=X>!geSoKhwUC4EZ^Tgy#vx>IjYF7}N~Zgt1cZ+2VnpMx5xMR6;vOa!9X z=AW;USB}=vzFYf^u{C|L%@&;zX*l-U0-}97K5aN?ze9`V{zF?Wz6N`ozju8ZD9$8K z1vCDsBwEA6WRWAR{oHxeZE!gLt(~(n)*qxF4(OvhY_D~T%I6lAgO9p0+?0jhl zeKJu1DX4<);rKHA#;E;`fy7~{dg%b#G1S?~-6%bKaw-qpGY=HOWJu+KZ}`3PP9k_G z5d-hH#9&Id2B&MF=hkLb7@1@C&5V1NSv=St{`&u`xbZe@*RY1TfOZ?31PgF1b1i-a zFJ#sv2m2tF+URgo6{!5Zt>tuDX_~WYJ-7d(-22bN|K~3^hS!dDW~;*PSoEGQ3P=$8 zP5LcIw51*x9h+=FIvYKYf9=X^$I0GElvUYSU;_&7w6jJJI7e#^TjbT8X~Ixfz>nCEFG4buYA*+f;)XYY6Vh*?Z}Z z@9w_NMsZSQdds$_JcIWkV@hBIg(3ne!jU#;x%p3fW6toxUps5#9uGTi%1vaL4=x-p zBNW_b@|G;M%oni?4Hn$aJ4@k8=iKsAG_Q~yL_Ebd8CgX?_`it}Kkml4P2lCFWH~$g zvWAQqV{s4xNktfa5=b3B%fC9IsQ%ezCY*Kc1dkO~p7vjOGIYhfOV(>ymHPYw7ye3j zeR1CM)KHj}d8ca}>X9oRxzEq<@?3gq@+bKoKIUjuvsI7 zbm*jg(SE$UYdsdqG4kC+-fmt8!TB5G`_BH>dJE6`-E?_d{pT!>UX&Rb8AL(j#4?h4 zj$b)GIh)gpj7^66Yz*dlnNOQOtvQDn3i-g-5Z^|$*z}ze@Zv@n_KZUcizk2RI5BQs z%n0D5Aa(lutVh4sfa$$XreU!#mn_vkT7_n-(ER)uLUVPJXHiRVqa?k$Yk4dAdC{E- zpT^piJ~tRT`JT$w6cBD;B5WINosRT)YrMj$u zqf^J*QO+t7q#?z0-96hXxM|kUot4i3GnQlrwrh+7GfNRc$5E$}?49w79T~_NmTp9D+TTpxu^=<=SzXTVDM8<2N+c@8-=lhTqoyR*w+4T`*3p*6BlW z?@O2mNf~MMM%=aD4TqFTh$`|ui`+6 zaQlq`n8Gwl{PV-_Q~0eCe{#(5>{=G93>>@6&Np0=1d64I7x+eXoSbBg9c)n%8~cX~ z! zsjeWsUGK6kM*ID==!!xO-;*erg>;3pU9%6fhMQLx>W69%5~b=vbeB(EeAU-=E_jax zF&D(gq}6a3NR_7t$OH#^z7=}8{QDclsH7gk$4tnmzPY{C<3>A**!zisiIjHqnstna z`p(|OyOA-3N=ghb^a8sg!?Qq%qGgh0#19sQKov`Hwq4gFYT(es_?W1@HF~&u`ZllN z6F21cxF&Y{S0hS+M6-UJVeSibhXmtX3oH;mM$rLR17qjX4~J)A%X-EI8Zf}IZbfsU z5_}AK4<5bYb0}~1c%$Y)c!s$I^J)!Z75KR5B(E9ZcFj-?6|j#Bs@+^Tv`(LFcS63I zBIqVDP7{*_dZ6lm|MaJ@Hua3HM~P0(9!+djm+_}eQBg%sD~YS1MAq%2rl#qXyC@f@ z0!l!|>orAJ^wvcA9W!~*LG46_g9(R-Kk2hv1qZlmGVP5Xq&v@hhTfcS zzcCaH_}1G89qFfUtF!PpuKUui>8{=x2vleXh6y=IIcHfBvnLW{- z^{-3qbXgv;-8E}s(~CU&{=;e|vGZY&P$E+h!#s_gVDA8;;6A!pz(Qful1ZTF?k5{r zZDi>Qw`>JN_-m-L6YEy>>!$6{V+NZNQT9+L;*oK~NwUylsOG!R^a<3S+^~(0&2N}q znT6{fqoN#IelGE~fM}5U(5ya<5EoTjrNoexxhjB1<)vHL1HFx@ z@ri3b&U>yiqLhOE$m@~jRA_g&PjCSxD|LTB8B#Vyw8mx(*d}g`tdEQcBcwBZ;RZ8?#FuDeu!vC+@X^99y?J{I0RI9$Kf0L2jB#j%Ob zEoF%qu|p+%*l0&+52$z(GL?l{sT2D6#h{c{&W9cTC%>hxU@oClt4>NyOtg}yjCMO$ z*8r2#YwNxi!Y=YBp=k~eU$Q?5xEmoF!!EJXMaq4?ggJJkcZp#Wu?ZK5(X(FnK=8ou ze)gMW%yq|p)cydBtk5Yz@oWnSczg0p#LaB7tAc1S{GjA2p29jciaX@t9YN!Qus zAy7K)xIC%2{*3xo+z{U$3gKF)f)lB-d7#i&N{DrR(ePIP`f1L^V=9DFVBF{9_CJz; z&_p7pg4rxOtpKh45LZ;F#)z*(2(t zi^Y{9Jf`_vE9e5y00rvtEYem8N&db`;4WZ65<8T%HDR-1Tf-EmS zmvW*g=(K%Nu1&Pq>NC0}ai_m?i+zk|dAHX6Tt;(IdorKnhBe*7jnpFyLJ^rqDXc#0 zkAq$K6249vX$UMY=poqHc1to7CdG$HL1cwoDJlcm}y2=*4sy;4g2SW@U{Pu-#dV@?0tc zY6YX@X=^{Na>Dga@!n@9G1FKvvrb~cN1ump1`u6g0-3+pKs1{Y9wS@ndEY(baVVq$m9iXlv+(@AOc-$NhTUJz9Meh*gZ`{pjj|O zAot46=r|T*0WM4HFLoc6@FxDLDb+ld_VSSPHw_LQ%ghYAVZ8Z-)&=3|{OOFjl>ro+ z;x>W|P82V=q!ykocYR|%hcF81VvX;8xLUj+JB1WBz-qC|ULWFvCq;CSGLG#~`hz=> z{%2z6&&O3el`CzmXlJ7mTaL|!mTf7v{wiYT!ZWH^*yt@3_w%*02jUi~G93UJSzA|M ze!pB7aE$j{9OGKeWtIWnFC!Q}R{hdqrrAckC%XVoH;kj-V4o5F#-PH_jbPPWI~}7i zoufoWS8qD&&@{9g5SaB_-t#Of=~O2#+a#15$F8h#t4j8U{wU7I-R4oVBL}w?V2I7m z*5HJ~R@|Q6jYn`1;%a$ z0yq$WC}T^VkzHh-GuyY~qhq;e%Yo6gZ1Q>%lH^-5*8XCvM_~#$=MYbI8Ocn_^34{Vly6Cku`b$^2u9od09*&Sg&c@i!{n zp6U6Gaa?Bq&Gap$Yek>}>Zw9eaOrWqqlFt(s$LS-5uR)}h;Mj>mIhf0>3qQM6BscT-7!t`J0v-7rW~=O@T6dSf^YhTev(E*Jy)-iq zddQNW_1b$$KvG$eq1OkMZY0#xdc^2cbCt-Qk$>T5)c@2;KSciQJ(MFxR*u@}R=^<7 z;d9kH1C-}kZ^`Wj5QNVR!|tQi`D!rDyV!45otJbDPk{%x$gp$T9fKbk8K%nO5pw)$ z;0>YVhreF2L*-&NA*f`!pnA|AIL6VJ%foh_>5>6FSi;fircEqG6AnV)Cy6!1YLKT{ z#&?p*-tie|da`Hf;J560l?qYYN7@lDC&`T!)sd?CPCf^Qax3eKM$3P*OWe37xQ9p6_|~J`b}Aj%4@VTZ!Zpw8l#4=q45-nQ>3bl zHsXdgAWVG4F`s%H@L{38kLu7TNc`N}Ik?C?2)HhudS?R^p31A`I}5vPuLyL_DSvHq zT6OA20`*qLIFXoafQaOF%hxe@prW4ZtSN&+Lf{K|>s^)}AO9ns7goBREXEm~k;Vc& zFA5AA<9t)5*@uRz^h?_ZsoLJAH9eI``{hZU&fs#lw4%k}ht{vpumk%Q2+NR?teuj7Mn>H^>qnpQP23eLyF7-H9wNLkJZ?a>)2+L zM*2xavE(m~TbJkLJ)~ix+aoER(_aD`BL{MfV%eB?HcshC!^BGB9#?KxSXo)lWoxHT z@bm=g@e*9#ZS> zQ{SvUb*hl)m016pOT43Lq5e&aUM{%y(B67@2mAUfMa6oVIC`MJu>KEcxWGAoj=%Hq4^d+p@|m7 zOC`nbhvsX-TW1n%cgQ`6t=iXa^&00GQGun^)#Oa1=y!u_y2NzO423S+(X-YU!Z1Q1 zVsIPhE1#JoVog{lEIp#D zggZOl$}-#AQc3syQ4yLnGh_!Yvy<9)+|{-xX}1*6z^;5ZnfHAO3lIVaMs0}Uy}J7w z<8jrefchhD&BH;Xx7CZZ=brY_;m=+SeQ;v9N!*cB zh_|!aR`Dy)(hX|oR%)^0b!X{30!IpeqE-lQLFB<9Oll2uSOKp}v-ZMC0uh|pIxVDinl(TI=guETn)L0_^7%OkDY0+Wm!$uKonF3uxK&A9(rEndc>xN!=xu~fIlA|CX6pd=(TP56$|wGCegLQBHkFYnuZ-7|Tzj_XO=;A8;BiX6 zSw9myQG5!A+Y0mmYVqe2NHFj2!TIxb*^sg?(vbZn^SeIpXU#t^VBde2{)1x;@NrD? z7x|6xFpuRyR*=OwH($1-t;}n7;hG!+_apQ2uT3};jkCex6Dh(D?dt&~c{%RT$y>6c zHA-D+Q=K%P(d23YOYOZSxLn9wvhjOl>K(f?ZIi5+Rt-nN2j1o{+<&StsJh=^#ux6B z$=r(yy$dd=pw~@+wphwYf666~PzAaN|GagSAh6>K3)TAD# z%Dg9az*tTrrk&k5l5?)o^QEDwX!ptKs;?BXg{cFn9@b7VHpH^DOxnG6p@N4;%0ylp zFlR`$_mxr`Q5ljYe!;X1^))sCeG8`cgQT*L$W!&IF)Va#_}`CMI-jb;71xCDtkzqV zHgn}&qgWglb07bd5HB~7aT}b00qVyKgQO;}YG$7YU*U3(;PNh2SD;2Hlh6}}x{CBA~JFd zfHQ_@BveZ8ZOzDj<%ze}n|1?$TGvgdug`6(vbtoXm5Q%j^Knm=YA%liI}NiWbHW9c zfu;ye43e7-c4Ts~Xtfi1uD$Q*$=y zO>oSoz%7~QQB0|F#qinbf7~GY$YQ!a|$vj|4ZgL z4GGj3PGBL{$Ltk~|8YRD+TJPe=J8SJoLyU|Myj#R2#%(>8*#@5 zB3A!D*%FJk!aX8~-o_IY2vsRP>v`@Ny)=v_6{ zT3GWv{h1GXlpf6+>+PuH)Y0vH&)QHqvpoL=h^C?Hc2&c9gD>u7NppqEOe8!HaGl3P z3xK>h`KdFM9)V>;%9&jt`^y@4ebN926e{tbr$K3*d?B^jI`my59b>3yVMxG`IQc)O4ch*09Mbl9AWO)-f>VS(D-8$>iuI9T?4NLI@OwMVAe}Xypl_YW?nhRS$H8XgN@wll+3sK4EMYs-NXduDuc* z&WZ8G3<#hx`#;XJH$C0=!|ax_7#d~oz2k8Ac~v#tSmN3H<@F=o_G}mF+QRlZ>M;S} z1gR?t?KlzwJ+!rGgfxhq3sstgQ^?amHPlrc6{WJTYOoKNR1iv;%60(LBNW*+Z|F~r zvfVkdWAUK30KqNt%nj>ct1C2Iml)^e^7D@VL*YxqSZNwQE<^~`)KYtmCsoYU)kWG& zDK>II9v7@xb^2lKghK%fW2l3j-PdaM>^FuXTfXF}bBsup_4eJg2={Z7s(5mDddGM? zyqqhhocqFmiHM@H1HlHr{J(MK-rNU7klW)Gu05p;4(%LY&2W#ke^Jkc(QBk)&z*kn zs-j6hf{cSH%lIR0v&Tu5Wecu$%3nV=c*9^8BWpeH`aTVEb-OEcJSvv#UY+Yc9j&LTd>=NK;Hp#ST|D%!rZ|h#1*MyC~ zUm$zjNC`H4)#`sGuNLzF0Bf*ldjo7!QUH2BS*lGhar&Lw9L}WKodoX@_>DUg)c7jq!+;@ zsHwNL-sH+K4Yrsq{{*Y%HSoMMq`hyw_|GQ~H_u0ZV|YshfmuV&Au~5zcc%IOW2J|c z&zhgFE}x*Rb5rT_q_2bRnzXz;VYAY`t`7|~+J9g%oj$pvpA3k7Inc@4_?oql$g8cg z-J3hm&(9Z$tSDf>k9n&Ci*Oa_2_$v@%!m(uDzqUMFg&09zluw295zM+GpW7F_+6;q zBEf))ER=C5s?TXR!frY(GG-3W5@T~`$Jfk?+T0?RoZd|Z(D@m0s!d%O!%&(_hSjSO z23Ms~9RP-&+r4=|PkN3>P8x-ra3;s>e0#u6d1rp?YsZq59vsi2X~I~4oXiq}#KezS zjHl=cI^}tB8ctU|>Lhr}m;hdese%tD%w9}uX$FzDe(_DJ@%97~c~R=OxVz#W8+u7s zKezD;Diazmh(igh?{U)mAyFQhUrxjjHDuOj*DZa0WRvUY;}#)LtE4~kDmy08@hw*t z3f9`7thbv#VaPh;L5@}fPf^LVmX*lD$b{yjPG8Iu9VJ(Ri$WCwHdc#s`?=Q2s~5|! zw5NB89C!0GC2PzT7J$bKEEL2OVJ^F<`*p%X6lU*f^ei1g{T1gX7jz2fFNo3Yt(Q^s z?lLb=8a&24!Nb2OFGF|bgo1^n3jxm{T0O?MmR{Id9Zx9_1UytkL?i8x0(watT#>h+9rwEIsH{b#}Me0$VGM(*gkZ^ z+{C9s;nL@Gy?b$CZ}I6?$<^@hdr`^M)!i+B1UhwQ-@}_!@O5N;QpNTXT46@A~oF^&BLqzM){DZYy){D{SB$sxjB0l@h@ov z=r*2y(cn|HWBFWhFZl@iaH`(#nM7urJ$`lbJ`=P-n&uE*M;>g)B)v?1&l7HtWc%~L;=xXeY1X%ED@}G$ z)If@ar-iWtDlwUmEkTD}lE=2GFMB`ZVbIs@d_vz2Ow`iXS9Sy;VC_-BVJSw&{H{=N z=GJABgAVAVFLX%j>1+RrSI_Q+$C&@h!)fT@9c%9admkTzCmLIOICq2&?l`q7(tg|O zi*Z1*07mim*`od2iPrxyME}QO|J&n}B8}}^JdTH}zFLFl!&}IggBm015*lL>PchFQ zs}{J;#NgLQJy=-&Y?M8I+`k}V`J%h-OguFjx{HonM@Q%JYn&Zlma4|SfT&=zO<2a|uoy}-GiT-H-6!0W z;pz4fqKB(w9h&$uqnOqZ)s}ZazOJ>?O{kCzz+qHJMstdA&Lc!LWsP0FjCo8eTl;2tn^X$XC0&>Pu^pz#A_@97M zhCuREnT5Rd8EW5eFEu5t8qXzmSeZ_%BX~2*43FZeLH!@rrKeMW+t;=?b||214K?uZFzzoxreuT4GGK966-QAooSH`!rQWJ!qI~TiH*4 zcWY^Ab@)Rb3!No{1id3l{7Nqh>l8)h%e8 zOD)A!;SSvIYxX<}*-02X3bm!6L|KW3;9dr zGJNPS=)Ghq{9?9<)3R_DOFOl;-CICqF(|hS&Ho$*b)@F5GG(s&M!@W4b*^rw{0+P}SsD&Z%+36;9lB1TU;dU`k_g#$O_mGk`4+C#lz#II(`)X>u4|6Zx zzJQEP9t*AyU7Mau_^dfuo~}H;yz=1qLmQAtd1O0KaI8Bz(_94|Vx%2CIZK&s=RB-* z2rnJ58FDPkN_?(u?1BCKnuD`lmUuI269k;%OC^F-r!=*ve#^0RX+ z%nG7-%DoT$=U^V)ek5p-vWypB_36gf$BJ22%(I}OI`?>=aS2I8{F?q$_oo9O?F}wI zLww!`TqHJQ_;O83kt_gHU&2| z!+F$u2p=F@i&2sGr#AW{Q*>|pbG1ea=o1V`HJg2U6Bj}InQ!UK&W!JJ+2|lQ`8kKi zke|%R{+_cjL->f?gt?ZQy{w@?62Tz9b2u#%u{Gs%1h^WNJ<>kvz>$83%%W^3g0=lD zR$^)mttX{ck-NNL=PveGDeHxahstZKD;Erp)2P4HS%TS8n;*fnI6=amMLXmq>|=M1 zr39)(y|(WbisPhX+*{uE8$g0Y#EmZ3@MQ+L9a>97FWvMJk!;tw=L<>Vj+d&iI(R3Y z3#Ggd$F>3&^&(D)eF^kw{0Iqz!b@%oN%RG6bxl2^CJ88XbmY|Sd84Y=VWE&%pD)^&TbGdG_qK~ zZSs+zGYhL5FBw#{-sbG=uwj|esNMrAwnHwS7LPgqN{7dJ;69lFW0;hrjQeoC#R<)0 zta(vnkDuDHN4zKf{$5zp=egZ$K$Q&PNe`6l?pjgQ+2>@N&otxiq-%rprGxzS78;6j zXbM$Y)tHX6pQtcG4|={@+4>r0=`tqdf5>^dYJX?s>?@@!ic&ShH4DlIS}<{NbcWj+ ziX}JlHr*}P=yH5UASNNVkAFn%9%j`^kw~FBk^QBYBQUUz*SzUX^W{-WD26Q?t7k_S z!&zdDg6E|Ddk+BMxGb!h+0<@J9DpiYpELR5>LRN#AD9W|Vo9q(n+$f%+F;bOkt5^o2PgKrjX>F&V#?YgN`A4+ez=CDQ>J2uxym1Oz& zdjHJ^nG4TFRnOP5>OONQxaRky0b$Fs`4TxU#Qrli1exSBz5co^LVTxr!M%KZtPEx} zALUhO1%bOYbXW-Q>d;o7vjROlXOOp+5&6OvXaR*%)30q^9c)`OxIJw zHL(-CLp88)=hYqIy$R1c2b_p9OR48hoa;Q8iYqcU|d{n||YBFhZ zY)>NWZcQ@UkMs4~SXUM4M&SMEl?hrI#bjPwu5=`&q!UjFVbX)(thZpjI_C3(kMauA zoboYku(}^0yM*5u;`XA4FHFj^r=IlOevsoe%{(*uA?G8Q*=h)DE3swey7^B92hvf_ zM!Ntjy6xK~UsJ4aF723D$&A(ClMAPP^m2}B{OFwr*|63ShbSp_{HoIs#_U_&q1BfK zWFhppFpy$SpQ2#YIk`@(Jl2N}j!r4xNT=1c(~69TfSmZ>%Mq zs>;lq&t(pEDL|rpgJe4B|Dbx=o63T1^>%F>?r?Rl%|;;vGTO$pKO?-Hd9lP>94c8m z4JOJMo;puHdo)e+yw^ZAkFmIvvrLc%vhnC8pBHO_h34Yy{Co{5QV|n{z^At>Sj`cF zX!P_>h;Wl2$4?WhQ?^w<78Z<8xGa;*7*8HqUT6`Un*Vgcj6~AU8QlT>?2mg~Ziy-i z2dI_7cSyDk6WYQPQD0mxPq^^%sgDtN;LC<+3dQS&CKg0-1Qa*VsLSWm-NmFjG-R6ap+EfM6ABhq>oHBqrR86lwIU@ z24fNOkIwDOz`8N%dJ!MOV&{wu-0|(Gu04~&711uwX;;#{t7c(NnluBHx-ZFc=QsZAxqL*kBf=1-9E2h6w3>e2XEF&OvlFB(3(it!wT5lUD^)5PWEMI|* zz4=xunGtTUNS7x}#d=M`^C-=?p3(7nC-Z)CvR=3|ca72DCEu5*XwklVMg{r`(xu&4 zudbC0D_N)vEbi=6$x2Jpc<8Ar@!uL0i+|x4<_Vuye;JVC_i6@E8P4}!z5biM?ytAp zbrX3a0XJ(i62Q$`K838F&P)0M*{ix@O?ZD>JveI=VD7Im-L&C0fSr z>!j8$cl*fwzCqa;9C^E(9fXs&mW?SCGs z7+s~o*AH0hwleQWhL@AOPUeNYGkU7%mHKKAaO!@i_IU(M$f+jC#KFgLB3xV1oSVxb z_A--BmTYDyl)G{KCMe-$Ni>4t`OAqXm;-sEfk+XKSZ?q)BSKwu2&|Q`hPAy$W{7T=eT;iXCIWUrVw3!j0xuwhB8U^@1n09oz zgi!j=CEAB7{;Tigz zaML_^yG9v$x}=A1=Ey^)=KkZ%TjFrhDxkA|D4-4%k*6Pg-m_*a-@%U-yE$Z|U$kxilfc{3|o)6BRoB9s<+KW8whX zS5Gcd)ZZ9hN*as|Lp*Xq>N{aPG&EdSElmrJcc@OQ8_%6}G-s#9pD>lcn5;KuRop&7 z{3YJzwsxw}%YyvEGBxKOX(g>9?&!ejCy>r6aPg;FArH`=BF>`R#Ec9ISfWy_bi2NW zgIBZggEE6-@* zyEjR1jf(a0bUYWK7 z4U1{7l58MZ;^kn3iq`PC4eiw3lHEQ1XXIm1QPJ^nNnF{!fPjJgk2Z98do$(e(XiSh z2Fo2;qtt@8ZO)}P1)^Z3@t;^ZlPE0iP+Y z9#*?zt7*2~$RfnDw(b&3qy{4h5(si)$6jY;OG@sIxvVq+@awyBo2qk%H(T7N<0;t^ zA{pg<5|5o5gBnjxDOqs9#Iyb8uO@!!9=lBKFExcA$#iLN)l3)U^;%m-AFU(4vG{QN zAle5rI(^pIIK8&Iz;=5lk1w3Gv*j5Cf7x~)-~V@!^Qf2(U;zXRkPET^BJeq$Jd-<} zXl?+jcjSx|skF53z5u{pjrySg{VVU)wG9EWA1I#tU=&%jSOvqI>ir0#Fs1Tbq86(b zo{E{H#}cy7dSvB*+h{}ctn$bDEE#?83im71mf|p1xWv5eKGbW$3|lr^zCPLD7ysgd z-+hh?9q2*k=4kY^jECR;`GmlBBb7Q9TFjV|q7pMuYyah8WQ?a-WTu@Sp|4CFl61oR zlC$={;|SFp<<7g%WjpR_X=01o{q;#yuTu7t%vec1c}SCaCS)^i+|=x6SeLSUEwFQ; zL6mg0cC{8MsXvh8(tXbefjn+|Z!PGRy(JLK5HXcnur>I+c9ZUmh?Cmf3tFNyzaR$7j(JEtD= z$YNm>0uB1w+aUxRf`l!PBDypPN|h@B@|a$xo_NEWFYc$XuSohW%p_iCkJE^&k!7nqg0req+lTOF0p zH*WBg$Tcrv9tz{gR#Xjf*O&@1n?sK5nqlw=rb#is_={ZBwCQFSR2Hyyk^_usI)!dF z%Ko_M%Yvj)95&FL4n?`Uwrh@ zo=;pXvx2)vZVL)=776SXb=*8nK>=4IEc^gGbZ7VlfO{DfRh)dUq(k53nIMEm*X_g| za44DAk;I1aQ@`A!Q6lD8DHYdCRD54@4BI97$=YUMv1C9$Yk75xOtVfeig=zLhG*tL z@|&QWd}-pcv{E3f69AFD45q%gm;C>Z6M=HEgVG8ej#ici;9l#sZ^rC(P1u0V@-*GF zktT}|uFt`h95(I`{SoXLU66c8hvMb}MspZVFSo{W_{O6T3R+sMKr^9dW0LHi4NG=* z&b1NwP=B-Yk{3t2!uuv3;>S^Mn0sf)C6ea#Sf@{PSFK+Inm_dOTBt{#Z{#|f<3V;d z#3SFy%tMKhXMSmUb~F^6QM2W#Gq2dru8SPx}eQ+K1^&=N#P7Z0l zh3k9Mu)@gq51fA#HNaam)o8L}_z&Twj4s#rn`q;<5>xbxG9P1heLC+e59S{Dp6NDM zzy`gQDnNtv?uBj#(tSXX1?*)pRa`8A^;buWO_Y^+HZRBJ+{`9HFPP9}pdpou5p0t{ zXMjPqDDm9&=UIPx4kX?}lxb}dF3B;F-RRBW{LP}^(_&(ZI*;K4Uu$fah_S6diTEMQ zxY#P4R9@fRYMM#EEK!?u>RlXd|Cxo?Tc z%4F#UH}M%;R0WEOy9Diwj7jDF(iW@6n|fP(Wd(#~Eac5<_O@S9kI)C@5z=Zi z2Diqw<460u1^D+4xsa?@R;R|L<$ivf?@d!C(Jg~YMapvaw|rDYanL+UcHQ&>?<*_ zXVj^ulbP_wSh+hvx`N``SNrRelTY}D>G%^ox~U4748y20f9#uF5)06mHu&F6jYr)p z%|eZo?{Y+x9s?O7U|hp8oI;`wm3~G(EWP<=y+*9fyAe6X%Q_}h;Nw)(P(8l;tx@* z(GnY5!*^@zLRRWJP%FpFeI_wZyl!|sjD`b~BVb1F4$YJ5+M*FpTQ825bJ;)H)P%$7 z7R!U_`++c-DzDt-Wj5ba&K6Jbq_|IKuJ>5jCmuAo<=AzC5;ecn-p5AwRVO8>GfqeV z0}?KzZx38zmk->@2V7$J38;P4WuOc3>akGX9ox^7qI|Q9E8BOfaGAg-Z)bQ`cvwc6 zSF2|SOjc6CeW}2`IIzd(JN6sZ=W)%Fyq$+ikGUS86*Ey0e)6+mftL<3IIJXwTB?ry zU%Vx=bL$v3aMX{q1lvD3o=>e&XAX3*#K=*V?c1I0_t7om#Lbswn zR@Btw#2DM6QZK}um(3C|c2~Q^ZIUpzS2>(Hf}maG=gB7KzpP2ux^APD-^{-}UG^Wc z+>t&xv>!6gTZ;6+-Gg+4fPi%8z#!cnLku9DLr8ZwNH^kHGq}%I&p!Wu-*vfI@4V}Y`~KZd zl%|e?2ZBQNJ0Tj)-1h3TWtj41s{rwY+o1H$;M>6!{FuT*B}l4#{B(^~Igtt1nXcU< zcrCii%w}eS$*tt)rL&;G95GQ`2d}wRGJt4CcPE=9I9}1fJmGw)2P{mXn1*;mMBbYh z@JwN?yRZzj!0h$b5A=wyq4@;xHIz~A{5RvtiJr=My=c!iVCwV6L6YO#Hf9mFSLA1f zB{oajdY7LhwouY-olGC=xA*T3Si0Q!x-Z{0N%|Sk$1vUpIAgk|&(;iy7!~f!(gYMo z@UUBvkOJw-RwQap`aU3}jaid$;V+f$2l zjyXYJjsFo5}=})WS{8pQh9$&OIL50D@yr%Y3pxGVj%kA#kRTPHebh5 zdJUn0mvLA1N~MJ}$4}r&7n{52t3K=V(Vur?Gu&Dncd^%n)JJ7Qo>;|cka`KIh^A@R z;#Hcubrr@EuDoYE>rJ@)o06WRI^WHK-IpE+ELENf>gAA%BW-ZO$@1t%z81;EUq&h# zjVOsIo45gGB~vY+tb|-vHduxqONnZSgi{44T)tVRoB{AGz-@`mZb`|zUJ7bl4rCn) zNdu2rm1pm(+p%>+E^W}&f0E9|PFy{x?VIZZV#g|%9hU2Att#mD3zdVZ;E5UrR5s2| zQ_f72i}$EN08X2&2JFRmbzsJ5f)4dAQ?s(t$q{tG*MB98 zIRZ}$=qxczB_F}d^_0UfEoym8u7_dkzn3wg2ysLJD{V(!C+O$#h4mn%zV_$FO! z=qux5XF(w{79ryoPGOoZO78QN5>6h8Z=7yV;ZMC$u^qa!4$IT;W|BWhKE`Ss;yH8r z@7@ZK|H>;2i7CtZ@0E$3b#p(-S=-pUSPrV$!N1Pv{p-Z1}V9*wdBGZv27O+ z?X|19AE4mN6x{(u6UdZ5rQFJi!2fOnt?k4y?=z37UI!$`zz7wP7=P?aU4%VV;?nRS zi4xw<4W3E=DBx`N^IE-eU8M$WP4?Z}1qoHh+hB}tuUxp=7=QLRh#;d;pNx$1YVk1Q zV#u5kwHaEPj_kmdMKZPB&T@;gfgT5sb!0XBMms5{2<+?EA)E)@;IwE^pzG}5myNtz zVdk;I3>=cxiQZ=RwuiPKFkR zG}63s$U|k(a0qF9Gn*0r441`-1RHIH}6K$<0qT zL2VO<>XGLz$f}%%OA=_f`-2xqc<(z22pAo?B6p|1P*^H%mHtqsNF28@#eet$?&r=` z>u+&av{@)N(MgGWtK{m$D8#}yd>F5hTD_z)Llkv1I0HCe<1vWyrG+?OZU^xsrlyVE zb0wnHjonspwpcS$BK0$h@UE%BZ;1mfK7f>`H%>F9GV)A~$Jk`}7Ydkcij~rT(C@+N zzMB-4&u5#q0ah(8iZMuX(?mf=q*FrctM5~j$=X|I&hTX7K`f-t?Cg_6>z-1W)R@eMZ}QfvVIuY@_lxhQI>nSI#yNa=RnXWmFy_OsOtOa zhb6xV_gYlCd1d7iG6gsrbd;z7X9IRgmw?kx4`-7~j^Yu;Dze@zw&tdG zAF%)W_ldc53X2rAMRxW&xSyEbbbHw&8Hxhw;S#uPKXeWFTk<;|O?Gh}S^2QNmZ8ce z@@a|;s7un8=TxWCRZ){NXSXh#lHqmJX5s%bNOh3ZB6ANV@1fMr3K|sNA|M6Yal@WW z94IJLRhT;7T(H{8G1C)2V=}H-pJVw(+Q+ROU>-BI@_rwc3kI>I&C?z}Sk&9WQG`8a zHq(|&o#~_A<_aDjS%b>Ey?I7CdTn19x=e07;r4siRb-jScOml~zT}pS7@SM12};Lz zTUQ+1YB6eZILoxDZ8&(@|I>0?H|VzJtWRL2g=Kg_*0p?S`M5ZzyLQ)JC%&MYFzdYF zAGxM}5Sc{N~uXetGnyJL7|civ8dwzXY}VLL8&w`*rr?{bWL zZGFyT?~AT4&rF6q!|;!95fb1e=h_!&QF-f>^i&XtXcQDZn(~PS=2r(h>lA;JA@67q zX6I(V2eF_!TT>~c;@w_=HqXV0M|c#*2gp+giKb+pC@LGr4S)Z%X;v7%SrkC%R%&ud zbk-LdNuB?y2lH_C#?QhjDn#%Q1|oN8V_$1XG?qSAmB~HkefxwovXKJ_$Mj|KK=#FA zl26}9(jv+MpkXo-#iu^JRjYA<20#~$$6m9y-9)uIs8(KIwzX9!B7DAGs|O@ud=82c z9NcUhN|bEk2!7by-x6u~qsyai|Kh*G?LEIg2!2+iZAKxNF{a?h{Nq;hQ7+#+d(2A< z;$?P48Y>b~1vc=lZ-8m@L4@8 z?F;Z*eiA~N&i)ryyXqr32LE-1O`3vtsyZ`8DgqQc5&lv+#MRJ@#3Y)(nVhg ztw<$3Mq6ssGtp*M4k|BaM@R$q*ta}O7A7zkun;^KWa@C$|Ni)z84aE;yGzSf8d zjp~>J+ls8kolhT$QJ@ae&rHQHC8H)Q%=YM8k{$KzZCr)kwlRz7nPeT-ddxWyaM!{h z7~uRw>*?z0>M{p);&>(DUBBK`{%Wj*CkN#v4Hh-5WyijIWmLYHGnKqPJLB-321De5 z?EZsG+D0)x4;t>vq4Y{Y8+EOp5**+J=f)S!b?|z%cqjLPLP%iG!#aA%3W!2z#&28Kj>)@pOsHvn69&fjupuE@I{ zVSLX_LVuxr{3tusKE8kPSGAA4=30)W;hDMFUI_$W#dL+c3ROM%d4e*8>*}A;*?X7E zTH?eAxu(Cou~}EU_oqa-qrEzWmw8TbZ-3lbw14W@WOdIVl^RB##(pDgESro}87n-? zvg>b=zTwbvC}UW;jwf%gyqhyq*H3}C^cUHSz5B$St!M8v%NH|hY*9N75rbi17e?PF z2kgRHRFw~NT5tkMjncu&aJVpF!po!Ks$;bb38xHKntHPWWQScZS+3>e_{gRX$<4e& zo#0DH@I90F9V;uG{6j|Ug|c9Sx0xlasokzU@9_TAA&b-ZY3`PVfI?Hv-TN1r-7Z9- zi+!WJV#?))5dv9_YN8Sp57rFo>+~ms{iGK1(xZ*Cq6|f}k{Jwwad4OOQzs&=-8@)i zUn}4@J}>Dq7Xh@FjwGbJDK^MX=JLjZ3r+S4>xhDU6|eaXj9jIk{5P&f1I&l+NOi^s z-gruJ{C&IMj?Z>;I5=|NqxXmHe9u|p%e2@|7kQu#J}7{?vMm$1>`(lx8fUkp;{E;( zQN45{s~24kw;2^f+fedq=!@tfkc=HH^t~ax)^X98d2~r_!p_=T*AoycVgPyqlis%W zs!%P4;UvYxw(NVW#2e->JdgB@Z~?$wU^9wPhYLN=KRft*#9xCSpy2jpRGX7FkS8 zjEc1*JYFm=jOioajm>MB@~*E`DZn%pFCU?DI?#o9MLqX=q!Tvm1wILGWR1s~tfVkpb-$=Z|`%OzO<-4>wDz0;>ot zCt$FNa{*=nqGi^Z4M@-!#%7`it$H?Ud@JgeADfvXso-ZlrF_$gT5>zku!J(t8|#wR zS4sZ6(aO&9Juuu=Mo2~-Q&ULneQHwka@if~f@WW?G=}W-M_P`AX;npu(Cg8Cw_XCDTSnWt-R~o9yA^+YR$Lyd0;{)XGU)Jw|Ev+gnX3x-B7v&l2?z zbyugz;0`7 zKzW79X><3xVNEx&g=_wUvcl>IKDe3t-mz?>RCIeY*!ZzJ z1S;?fi$^slGb9yvrSplQ{Olqpw)Rhf+Hn_JfuZk0)lQDqp~_f+ChfOIN2T6FF>7f$ zFbh7Wz4q7j&4nb}MO8)Z??b3Xq-v{zEbWi9r|I={aHv^mjH>vd8ckhH{T_zoIcb57 z1A=s4p$G47bdn_U7gP{A5JQC|M4351u&m-$ZU567DtCV~p(D&qCHyptTb)RLi^z7b zyZMS$LPB1;{K&yRS}3?zPgis?114FxF9zB=37guy!F7N>X76_X2jo6_+~%%|=s-<; zQ5uSnA88;YG-+dBQGb|qCnwEkMrGTz>rQI>^?N|pbuC7m2R+-DBNDb&XP3aTVwQ5- z18qisHx^iBneEq>X-&r=(*;=H00w(g5MZ!R%xs#5zMS4}>rcPoU_IzBwq8@=SMRPO zq+FS^ZtohaZ+}N@$X1JWwg~e9<{h-DB8-Q-6^0r!?lSI4iFU>Rg?c@wp1`qIC|>bh zDT@0@eCOG-+@^pp&3N}M%}UH%T>mlyvMIKMb=sCc*Ul#ho#kah=iShxYM%cuAKodO zY_qY?fkHR1G0-lO&3qh?lptl(N$GmB&b2n*-1YstVoTXz7h4UtG-X;^sEriKex|O4 zjeGLT?rt?4{lswMXQO2R=B%~Po~|-vwee)Uo`uUy^~>V)f|bPl6PoGim1#PdWrt2- z!b9(}mD3FR?{RX4_n1iyKd?ROBGgW2$?LS+B;J%D&kAGQI=f{=x2&By?Kn0Q|Dc{# zczmcN9hC-3TseBW(G~^2y+Qgz?DPk5$`8Od(s7~kjuO4Tp|vwnJ4>r}X7TI#z%}j) z8`;De3zN8#Wh|m{R;z`s zf81yl!0k`m2+cT>DWlNx&LwznLx(Z$Qn$-2~a z_PSzPL?#)>_Nce?6hBx_8*&2g72rqf-a5U-sORhj=+?+>wJzH)s{U%6p9rN13-4Cp zf4N;wpZPY+(Cp+ivnvEBr-Y(9`l`*-Cz&dqj_~-b1U9bd-(G-&$=C7L_qBReAq2XQ zpDTmRxa7lvrYoT`7;l6@niM6qPY&WthMS)}+&Ie}3uEbADgEnx9dS^`xjQ4Lkayq7+9knXfDvE-f85iN;_i%<4{) z73sUg)ekG~1i2+NiKTjYp!I2Sg5$DV-bjSGMg6vqu2>SU`C12Kv`(=MY2 z0_oZn+1rk6B+H7Z(^1*YvU=BX*Lm`QS_8G6%J35F1Au#Jy#92SeXFPaw)xcRpmf|bl z6=@_llt)|}hniQihAKZe{@G9%k>6D@S|&pemuJ`a#b$e`=BA#XAev;I^NMVa*LV!ASuLrEDfT9hx2?`O+;Nk2O;`FeuN)<2>DaMg+#Dv*ju{ z?>(9QYI^RFeahw9DN7IliKmSBuiVNF8r^8|lCM!s+AvjPNno)tJ4Os?k{DJ(s528( zsA5;N8EA7)Q@;jfdli?&N=ZwmKTti^&CTtugQU@YI9bZZy=7~vKDyGXUbA9M%1g;T zXLI`}hE=(KQHEMfCM$=NfAOlV?Jlv^DcI;2O0>-QKceu03by8XG>XKU^)BK9zN!;F ze)tMe|bC#*ZaEI$#i`Il8&Wjny|GAsZ*EV99IJ-WJPj8@83&Mf!`RPJ*1HZ zt81-h`91m4N~2eq8nWd8^G}ut7D>b+smdA8la-Y~Z)lgFDujK%d;I9)`Gs1U6Q<;v zu9}fX1|BzVgADEP>fn!7YPJI6)M3o0@1THz)QxlVVAHr&X(&lpb16ifZ0M6}mF)uI zU1`@EShcyn9x$>aLD9{pQg3w#LQtg$JR3k?u`VsFAG8~VK5r1ApC)yO%nvR*Cy1fn zT@6mvg_#SLye}6vGU;GG;OtGj6SE0OCq824>nKbcm@E$fT9pC3P1d5cVLu85AA+kjF z{?^4aVAu>b--;wIp$fsS-XL)m30wKYOwnq;A8wKmSHyXs!D{CGX$P3Z7bH;y-|sIKe7a2Az3S4d08mp4pPY`i1i3Ed>IOoCkco&e&CocQPHO-(`X0yg)7-tqOK# z7>dP-jTHSHZq5;odk3L(Kt(*gx@%N_;Hz$3yFW8sbzRMsngWh^e=76Q1w1;^JtSQY zB9arqogg|RY~bwebhiO_`#QlrpmIhOoE5y~+j#a$wWbYv;CUU4#!}wV-G~?Ubbkd_jp~hqWZzhZ0W+nta zCAZ)VCYb0Lk#$4Oq5Zu-->-XOAh*C5sdG7aGb_|Y3x67rybV79ByYy&CnbAJskfoF zvYxtV0@d$AwjlZcfbjP9%jLfHSCoA_xh3h%tT(PZQu1T#Vmsd?TtBjL?BVR&RmgHR z@N^w+d%3-=YojtMvb@#syXK)B0+6zi2TY*K0J50`I%PR4u)TlWmO7%o%`hoHoD(sMrdEYrj$ zlhp^gNOPH%3t}`SJl7drIHQa#tg&CHi^qw_Fb9Z4y$B+a*0s8*{#v&Yh65-jx50p7 zGOMVaVZYP|=JW$v)eGaRs6-BRW9S)7rByz>*`6GGA%mfOzluCSTsOuTbOY1f+anG5 zBaMH}-ZhQsCN{?eE8#&w8e^#mg~ADM^vjFL?R66O8uF?fH#^1yvU{v^^frjCI3?i_ zlSBlFE=ih8y=z>dR>Z}&G@A4~zpyG|%UJ*mSL!*Qw;5cb?_8My>H18c2={&9EE&`= zx0Ljo#Ruknlmw)}ysw)ZnD+tZP~B2NB^@R81dCi28Heyq1~$+og;6Z^PAqF(iKHn` zM4EkVtKlu*%9>ySm22G|BARiQJWE; zK#9Tu!0F&ZYGpQ2gi= zX>sFtQ%ja{6p;GS-Z1kn;`({@Li>Fe07dB}SG4{-F1CtA>iQOIpT{BOi4$EZ)4AA2 z8=$RJSro5Ag#Hn<)yw~5GrulNq@G*)1GJi$De-008J>xU{&5`@H-fkZUTZ$U0+S|# zH}^RuAN5qQwo+2`z=% zBOFc<5hPE!IVWFVC0_ALtOx!OM6PJ}TPp0V^Rf3ZdbbBcG16vkVd)t}n|FD532F>C z6L!AeXO#8BQ{Nkv?SD{)?ea!+gpL}Gtq9$h;TH<&3o2E1M}Xy5b6cLW1#(_UcPbf4BiufJ&18nu!t^|(m-`Xj`wy|AiI0?_0*M! z%P``w51m599pk~XNhsTS31K(sy8t86;DRK_S!k4sgA>uUQokKgnVo8A4A)ot)HU1$ zLF4(UxvO~$%4}-c4R$JN09lZ;Fc85UV!%c6?Yv$K7vLr5DOsa&80gr{h!p)*h!qhd zi6}@Vl#`yx4oF5 zqm@@L%GS6sO#2B=PWs6QnQFx^UReD?8G-nnM=Syo`i>bqKtf;6c!RWvuA}}@^^9a- zB=t!huM3Z1!=c6CwV)o6JpX)cJN`qC<09@HW5Kz~+3yGKEH=D)4;%XoX+C%6IdsL@ z=*{ibLp+%s;>n8FwgDkH@c%4;3eK@FVT{>5IZF9USjJsVt1w{d{q?LIj0hrM= zwAEj~Zx-~jj$te#w3YgV2V2VmS1NyKw1*}I9{?jkM`d0MTM|K?r3oasTj8||KMf=! zBfL=POu`-FL(Er#vDxe294tCN!RV$XFErhDF%czERV{@-?Hm$w@FX}z>Hd#}tVfRq z?ae|zF6z2DZ0HfR{Lh^~->zTO*MUP&dMTl{v+Rn!;Pn> z&`7g8M+PA%#hL2Xw$)E(n1U0_VtVGfaxFTQr~=i?G@bY4#mMEU9&<=4`!qtM))5N* zmTxP|-`N1}4=;lIBOywy9CF`v{B|`~%goP4RvAKHOercLSy$>{eX6-*@|rOqynbRa zPgm%gpe;MY%rw|MS47KA*4ES`(kEM_O$-`iHBE5vXX>|gbBVgFQ6pKyc_v}D=giF@ zqtqZlB=(t&vCROJb>(?wzzgAq8PY$0&HwV|sl4iN>6Wrhtna|1R4^@mYSRF%mQjKc z&}xm+$^*FxY)c7*#*21!TW>yDRdSp6)Z?-6S`_MeSYAI}bIKwo``00?Xdsl2kF`|W z4!=f}I}I{5jg@%&{9MKj0my~$n__Y*8m7Ec2qz#uarH$~eS)JrqnT*-w>;0jLQz*1 z2ioT*20B!pWtlh$m~@j4{~LcB>k~~7O+TFI2`5m|I0@fuwYQk{c9fx*x*QiaJGODF zf7W2jpqFJhmr!=N8D(aHRb^RyR5HZ2C#87K*=1LmrtL{qn601GR4fz>j!+x@DVQ%t z)0?a26SVAhKYZ%rA7pp*#}=Z);7kSM(UETtyng!;fE?lFKR3!a3OMMpx4TvdRgNAy zIx&mqbirayb6w{+vR-H9Yd<-4@AEY*o_6G=D>#C?9J+^0Kjs-o5ARhJ!lMF6d8&G1 z;jZKfgMmazVh7rO2C%H(7cLMV*YiwhfgNBuSBH-{e?-5F6#DDxgIxuS}*#{HQ!1FZfeES$a-Eq?^3! zFx#b`^?OL2qx!=y8>3CwmMM^@Y1W)*@a!R7fy&Da>^75k65rEeZeP4^6&BA1v;!}? zRatwcNz#GFA}%vaS#x3d6nk8(>s#g93z0ZouwEly46Tb?fK+=w+Jwbe7J5b2)DOm> zJ+F7+E9b8~zrSktguSS)v=(`!1GlS)Iy>Y0g@XIn4g2TwTsI7Lk&;AoIvWT74C*}fvRz9Y(M*f8b8#l^pF!u zX{cHp5@|YDT@wA}XB#(s28Ad2YK+^`zZPg(tzAa`%G<^@0`T!e+(1s}9whFx$}(z- zCZuds_E0i6CP($)3)VaRnJP2JmQmu&HC``Q|8-oLcTqpVocdxav}3lSi&?-pQD$RM5Ai)H>FN9tC3{I|zmnU!j&qOOX zX1fNG%=$idnGTog&=}F-BL@~asf8gR1z+0;@`Ou>MMJ588~!Dpv4?MR!y$xj9-E?Go^&krnd6HDH>Gv1td zG?~&6Zv}X!BaAgfgU!Z*h3WsGXf!6#PE+$UYNC4Zx-psUuKys>L(b&qS5+4?(t=Mc z7_1YH>jO777Jr9t+@GjR9prdyNg0COom(-o1k8d2>Xq_MjTF>#dqA(JBhAq5Cu>e8 z6r7l9;tl%Td3_45LMpJ8(W$J8W`w=KqAhfDt zwKGzY{KPCU;%OPIB37P%L$^gH_S&CcazZ~0 zU7F&Hi#zUzq!+ZmCE?g;X~1q{vmTP;CM&^1(eM)TZ=tXu$6;3|v)X&VM`mjby~3iH z0Mmz3m{vR=%%V1De)^0M6Z4|h>g4|3DVNmDMRZ-a%W~bR>kKhR+dxrFGQC6ukD*R) z#ld75cw?)DswPvdf{bXtn&~Sr@kGi=x^WJbf)gB7pSZv=L1I6+c;XpSLI|rfnXSXr znLeR}&$wJ^E`^Wq^cx!KeL&L!hM|f~Z`!QueMElpu0Ma5!su#Xy&`Og7!igo-E$EWk`H{8PCDC zsUqRTIC;$6@xCVlk|V0~nviMd0|y{z0fH;9YjfTD%DueT=zNw=83mmrE6q=aw(nh1 z7~~i?>!W8X3Xt0DufMy$!=Qh&g;aOnpX5xyalA*;liIEM?v=g8?F)956UUkH!_K;c z&;Rw-UvePyHj9R!;b`;AmHO(5t6B1YrcYYe3uJ(x=8Bv`T0B#GAy3t{PF+<(oZ{Y- zx4F-C4O$leM``SW|%Fb*xr!4Do-qi+14Fr#7uUoS6Op?+6 z*v6UUf-X|mkYXQ1c%+P-pGC`HZI3 ze!Z;kPQL*VX!ikoIN5`bzL2it2}_Tsw`Wm?N9(eYd3n& z-2_3Q+d6;Ai+*1M2(JzeH{jLz$Q1X~R!@Ir#!=ddO+7v~GT|p|7Q~ev3~t2uQnFv( zdjp;omla-F9&v}>WP({neIKo&}kmGy>3fe4f{hlV?;l76*Mh-0irxA zNZp9)VzzOaPj{ROiN#OL*lWcTJ;Fjnzku)%84;dN4Gl6o8cwuvt53|q^-jPv>LOiY zxbwWu1`E!@Fh0)B>zSL}xK*L$Ew&e8or656%=NlRt?=nsvgUc*MATHIs1Ma*wvE;B zcf6uBXveUH@fFh|NKND5)6x-%^dH zBHKgbJ>HO9I0yA$##kopANdBmhP8jZ)B5_*S5`lSIx>U;uwxyz_-zo8E`Pyd~B^ zo1y^_OrBGXqufh~onlYFK5cma$O0D5EkiVp>AnA{%r4k+6_rTbAY!QVepiQu|wHPuS@9es`L*P3YBAD%v<_I`8LOd1K!0-lgX zL&HGLh-0AWy_`t-)X9QZ#G5AG4N63W)(3tw0WmV{?A z_JB0#K3J~eUBF``xV?YOQY_=bt-x9@MNaGKNbne>_r=H?p2QWc$u4YEH=NyTxm(9wbD}?A5z(NMa-R;#-S~ z6a#j5)>;+izDrhgILOGsJM6f4mEk%bFG(zxOiif_w9zAD_{0nAG@YD9+^Z&zsNMNE zLO9KKG2@bLU5V5`=J(BQyXK?O0wq|(rCBgobbw>8`+Xn<(~-n}mA&@AT70ey6Li@7 zu#~>+JImDq-9<*p?Oe2@?wLsQzLV}7uQz#Y1Z-kaH-3^I_-tosh6+=f==VnS>^!X7 zXF<2O_9p#>5({pGLNF75Kw+14cu?s-fj)b=!#Pqvt_I%4QpUEB@D+e-#*ky$6EM={ z$-XH#49h?aI({qlHC7Bbj%^>V-LH%VmAUbc0Eu((Q_?dBSKj00koA{eZB{wkw$MeC&od z3AG!O!Y4yIjINbwXV-dU(nrsEUxg*3f~-PNf3FWwS-E`(PuABA46@HEhTOF2$=cmg zf2=Tf`7ILe*O;&+7Uc3lN+uT-Gc7O$GJ}g6t8BwZMBG1tfs6PL=E(&-Vnw}4?p2Aw z3PcKi0eV?GiJ11A&d4FJBxHd>M3c_aE*c>WcPFB_aS9!?<#W)}#~h0EpnDr5$VW8mccbMPD@ZY5LMbywt@OKm zd5ZOl*(C2^R#J0TTMlCC(yC|lz9}pyVQPOAC|!4u$N3owyn~IdCj4Lw;n!D39KJ{0 z$=p7Y`x8^M@s@`!R;9z?!K&dsmi>>LpC2t9{SW6*c%>^qEUJ5L!~G_#20<*ELjEni zGR0w;;d+K(wiN=V!X&=yE!f#LzUi8PLSKPXI8_!+5vuH7i`64P`aR~kBr`kuqkfU1 zyC zZJHl5K#UlCrDCV(MOIPjB}WVA^GZj<*A$!uAMHrlkrM?3Vp-C5veImq@mr|v&lSW` z1#+B#Ss;+(WZae63`^FIs^oCZ|0WJ_`mJqGbRnD=gb894E{EXN!D?SFbFD{UM#h;3 zk?}UY@IjZ4K~lhwIJvHGl90L6LFl%CM;{Z2Pz zm2EciD<6^7(0{OP#Bs*jtW|fome#*n*Iw+st;-BaZVU@~U2n)$y+w#AP-T5PP@(!I zKH)jbtCh3R=4$Sb6xuT z0rnXaSeT{zX)fr=+|o&jRvL zn~C*Ufv@xZ;a+)2`a|_+)q^t1L20QgD)e$@(QSwcPYN^YE^v7V13LRkGHX4C`Q1x}%0HQpqBy4Fxqr9^WPt(b%RT)i2=WCWa5 z%asl7O31BFcqQN-^bcMF+=J)_l+(yP;V%@du8?=Cl+IPr;XaK7ZOJUptc#DEv4e*pa3P zic5V2EikuA)(ge-Rko=a;6_~uEVBl}ISKhXPB>Xtd*VGSrb9)NcT&cNBH1{h(KK9@ zpH;|9Hmb>hwZTJ+iNVX%cW|l45Z&Tc((ex*oXwY;QSusu;C4(U5q;t>0KzuWaGu(_ zQW)z=9flA=&U}NWVTDr$>5zA<6Q(AIJqkw`B9=;3VIZp(hy^XcS-y!MFK~qnL-OM(D5m_-3ohqeURaf+-<_;r%W*Nj z*9qjNBL{9umwpqzD$wq5VU2M+Mihaz_F5zn93h1nXXfHgY5wtmzy|=>Z44vwz*G=< zU~QwXapvg=Ol)jq=&xmu7jVR_7tqmMxM$jpUH=tZ{i)88lLTTot{XmJUA{vVLA1vk zaOHzPenbFfAB@{y;v!JH`~h*m0+uI;AKV#{o=9hxWC0v+kXFY1+8`7GSn$5sARKr_ z%h%C~$e(6V`Rf?o#>a2AT^K?yH5?YClC&{GB@1!Y9P|>HU&1#nY_y@1pAE)s2y6Ej z*gk!-=d4&;YyNV~mL9WIrZ9!N((RLwS^B!xbx-6`M|hI?D-w!J$K!qr;s z`sa7Zo}P|szPLIrEu%SToOiO;8ZQl;d<p)_5cy@nU(Wh{!xmx-<)5BY;BgGFRJH+E>;$0K?LPXo+$M zs05wtHYE{r*zM_V$}SnHArygwFI;XM*p?XFT?WETIkfBc|G7QzjFbo86g+>Cm32$y zlNj9E8EtRi?4DNsM*a%tD;b_ud7Y^T*Od6bUR)aBjGos8)}u>iCYwNv8J^>?fyAWT zO(wtc^Q!~H5n!-rh!`y5AqI;R(fWlyR3DS^fxbrWgwo0W?PVfD6gefOI@29&RG~1+ zFw59i&TZPp*YsnqzCup3+LF(5kp-u*s6!8qtq_~*D-vYKwyc%lkYHL)#{aNAcS`Go zi$qg^=l8tM-&D3w6|)t-YLz=toGAVer8=${?qbhr--s@*?d9@ zmicidhy7K^6Bcr3p>IVeB`$1rofG zdWSJ&0pxA6eS=zF2GYOs%-;|yoWADf%8JcYc2fOvgQFlRBq8E~5jX_R^S%7wbEz4} zMS_lP5UpPXgbUy-%0~wztIP-DnQ+oOOE& zikJn+vIh#hYNUFZ-|(Nn7GxE+!^O5F*V1LPY1K1$y79Z2%!H6NWoGgZS~uRApo2bY zhG!*TpNA4KpYI*nNOg!|L%Y`RtC^K?vb)=$JEIy8a55uCDZAUrlHggM%)FrIA&w)8 zm~AcE%QO=Vi)-`A~k_Nf=@(@{}DP4aqNeV4l5O5#U0AG`LO%mkcNF z+{x)se5bo`B0$qN+pa~qTP?UU%)T@&X0O!@8G%B^{*XgV8s|*BlsUw~;D_uz- zeYtw{Shtkvt3#v(cDL+Z{wVcFF^gGIAdfSKTBqCWf~Mk$-*_uRMQ*aROA4Fz48Ny) zpv?anO7&6Ba?s3UFLbGYIrrMdQeA>vNyw8HPdfVCzYH=BDWyFPFViQktIBc*?pO1p~o;S0nw*p*e8)bsuFd9PCWX5q?ur_5WVy#TR^pgd>p{KaQB?LODaHgO(Hx_Z-ia|2NK zkuk@`Dxxy5LKFrhDt|-Bn~DeDk|09ksJqf?=a|&X=40NxC3w}bDq-5J?X8~@aDW$< zUtOIRc^&?~5XrSazSNz}R1kMyG0+|YZ4hc8KmO|{V+WKbAz*vB`|Y?#KN86)8gs%z zgP7dZzaF?Y_YDR|Q+d9}G(T>OygzxjzxScv*i?F_qBP91FF7}zJ#WZ?4hle|Jd6x7*K ze;RXL_x%$=O+3z06E?m?G|;03@{^{Sc0;TEUEsG-gPokrt8Jka=jSDV&SoFx)|63G zp1c1Aihwp#C5nCM z8CB+{WvcCHkuL)!)?{Tmqulvp5_7k#(fx@3f>LN-2pUFyG@lPEsNfPfZfGQV`ME+7 z4iPu#4c{GtKwffPK93OIqyn)sEh9TNx`$RiOK-DZ@<2tf1YU++TvMU)ac3mn zQ&6UMK}pYA7_)&;T0q!f)zh?E1>k`ZPv_YC4<7=lm6}nkUPNzOeC7U83qtJ7TAre^ zBe|Ogi<$ejFLYtUo!9k##eiWhFrwQG1KwVwj_koIk^0f=&ot-XF|SHuT|K5<2f^h+ zYdfc=O+vN$q5y5~qB)A_*!b0tYu7`}-wK}V%$y9R-UwkIL)4g>F>kAFe2$|VUvs|r ziBa-9CrK01PDIc{B}Gf11+RE^H>&XfS~<33RO0?~l*wYV_R#gFKa4q1Yr2er!F{Ti5Gsw^H~oT#&$z% z!k79Y#)$*~#WcXj_I*jb1&|lSEP-H9{U z%}KB&;WbA&v0S0tL2LnY7yt5G3d&s%ZIRUyIz2nRVjeGQ0$XwQ4&`WYj&WRjtwcAh zSl&h_HuHRQ05l83)WrU%ukx@JbGUF)4M|fafTNlLX2veVgSE~Xlbxoq*=Km z7!Jy~@E4`D}?L6v--@tfzfHzce`9)lW-t-04zO zz7;BHP8O-hCgLv7B-KG`UPV)6H2j+SP({3hX_fb5;gPjGE0DIq$Q0*c`)GS#!&2kB zVa!EUszlku=+^o=PlBny0w|eMgws1@@}})izvW8A=ny%iZ^Z!6QqJb!Vkg}mJId^p zV`51xEg|)1rJe^0o1^V*?_ssA&ibr{>Y&y!b?AGbbJ5{-bJLRhH;oN3b^~tjS9lJLp>zV=?@>;AuW#=h1hKC*^ zZ+H7)IEQT4yKa~LG8C22ZNvZkNCo}4tE{eFGaQ`H+hx&h(xPqXeze#Qp%cnAI}Yn{ z-)w8IKWVUREZeC3ltJ_wOHC=hsf_fipnaBfs=E?$5A>pDS#?886n+{=e--`G6+!@H zO+yvaZY5r-S+wuTn8#F-gjTrKoqKO}j?n3hfulbcaKtpdZ%D@849` z=kwLI`Pos>jOfQ64G&65kP~=G`e4=^eN$sf;gJ2L@J`y6a8`&@(~Wm8(RY$foR((LN4kw6X|k3N@(=3H}JcYtzM^!~$Oo8mOt6 zDj1r5Z!S{Q5%#_LeVLFLsgmMZL}VAc#98`^6!j^bGWy5jBSAtai1|vUplqzW*dy?yP z6=hJO<9+dv9be={BnN^z9dy=pwsYzAZg*AR-2FL_%5xlt#KiM7p~{x`!?)1p$en zJ5`YG8X9RBh8#k=JBM!H8#tav{r=uR!C{=a>)O}eYkgM0tmVs$QKnXoZda3@wCd*l zc_y>u$LEgjM{fbomUwv?Kp_Bho#Iz`-+io=9AW z4li9C!jU#|R`K-qXxUV@Pc-dE8bLz$G%+^M|ZWf~c*=BwGhZ`1F3^47Xul5C|JzQWwWdPy`R?3$a zg2t>6KCfG|E!AzZ8#5-w@bm=uq8mGxQ`a|S@SsTJYq%(}I4Il_5R12USxwlg6VN{{ z>i^V`G`0-ECB-1!ZhCGW;QD6CY0mMg=7>fo2WpNmfBx21)i02GAP=%Ue!I^1YbS_6 zdK(xrk)M;FEMK}M9(eU%SpK+4uQLWxH1!_cu1`ll;_nBfuvg6SPm z(_j2=hUL$pFwLfMzTsgmReznB6RZEZ(A~cYTZwm}-_@>hLo=HVy|=?Tmmv8jTrq$2 zU}1Wd19^f8XDA96r&zq(%z(U5ruhr}j(5R>{%-c2o}`t12xj=_LqwA}QC@f@tRQ11 zq#e_d?JD+SVya z-Q%6l(turnB)D+W5?Lc`^YNB=9D5o3+p?I~n!0P~6d9Reb4S~~6>)ucncTFu zJeH<;UFSi{&{1&gS;ZD)%1SB1=))V=Jq~e&$BeFc+rLhmt-tkMwaH`#OPuhi0|$=W z?wcLZ%^5R9)t>xXV?2CbW43-m5JBKhYWx~otEz<52b3gCqP4Cp_qCU~JyO7`a6amK zX%7Qd4d<}7DytfTPY}>&;5*;k*4I*3-PPyA@x&&K4E1b8RVa4EE`cre@>IK%PJhH9B;m)o^G_roMz)@iL;ZO=+*!2- z8fx2|(H@cDvkE5*7(FN&wSSEH5u1 zzu&_e<{XvpP$~{}>s+(bawEdA2oFpsvR~Efuo4K#`!h-=cvGDm9Y?%+(ed+Lk6duF zL`nNgG1d8J6(aQzyj$~-%x(5RhWlkSjoK4RbI-Uz-L_j~_3FSFP7oL}prJjU8sx~gGHEL8++CP7OMlNUs!#G3o5 zTqjmJ1H265Fv$A}H6*0H@lY$owQY+~~o}<>HDQw>zm* z{32t9#&bbX1M&6^H!PL%lI~T9LrAe)sfk3*&A4ni*++7} zju0NsamVIoeu-MyQG(?_-Ht;hWTk~PN#69?4_Pl&u9KvdZbu{aU-EOudsD?b?^plb}|5m>8Js*qH%6*q_uflOB z(}P81bR=~@H5j!etPiDsY)XEqSk?Q2bC*V9nIpEt$3d5E)a z;JPxeEC}4S%Pv(DAQvGP6(0!|sq<6-f?IR*`#~9}ALT>=xJTdY(H(Z}Cl6|3M59s? zvyj}D|9bCT_Cbp_%e4l)6Td*TLTOP!IF8vYKT!-0=_9vohvg&0vDx)T;A4Ch;}VrG8WF+T2l;QmvCQR@5Pbr9Xly-@_DFhW z7eCjY_zckzg-IYPvF5g?53#NBoyneVt|pFZpl98vY+;dCl)`r^L!>>ZNsRpNR9%A+`o=#pC=(87|I;eCT%xUH9DXu(N(3a>`IKA0nZ6K)^UlDuf|L5IBPJs!ud2aI@`bmQMrK>+u%f_ z&BcEJ#m`ZqU4#j^N(IA_U3Xiv{>QgboNWr8mT4)dRlM{dBPsEEC_B1C6kJ*Cj(*q| zdr%z{FdWE7eIv@uy{``_z?!(`0RfgD^OuA~O&+~|@5O53(i{0kcS?qlwxxREZd3`Cy5l>W$$Q!*_rXI=l zkE*B&q=z0$23M7uV+3q-@EzYg0ZW!ysKO~6{@E{jqFqxGx(%#Z5j9nYV((Y0y=Cip z!R6`mW)Q83+9_G}wVz1yepECI_W`~hmm1@PXtdeu)&}k<#1mtdH^_d^h@fz^`|yuv zAd&f9gB@XC1!o16JKb+(b#Y041cqb;au536wq>s0d{6R@Xy4Ih^}9bsD4t!P9K687 zY&4h1;pA8^BkzNvxr~hG?XM2>jeM%x8*SZs=s`@rK2om1j9)|g3y=KRtysH>IA0$H zlrmBWVZ3v>SQLBRB=MCx>OB^z<4>fL$NCv1xo^IvMWpf9h9D(#?n>%WMlZy~RO_L6 z*Je@(#v#XkotFVSuD5lC+q*moAC^&x?;vp4Lu)17{bFKBPiFa+1ZRC{sW147xj@;9 zY9$Ed1gtEDlszW{f za$2pnGe0t4swh=88;=fxlsERxzz6SmXFMaJ2u7?qa()_=7>X{%^<^~LKypAA61>+N zs~Srm9PE-h{~6u-$vI{zYj_ZH*mRWlItQ|Gc) zGE4_>dBxa!+`L2!_V<+!n59c8j=$9EA<$kCE-wYy)Kz<))>l77F!O~S_#z8#mm_4A zmIiwfia?Yv5SrPyI<$+!2olRK=4sxS?VfS5UD@XRbI`BDUT_hg>Y8DM5~&yKZ`81? zW!V-!I@SX*@IWa-8QLvp5oaD0rwHz54nm_q%m|18C$%fW)GQ4=d{lfN`9|P>JyT%0 zwi;RyP|y^}C5p*%+U#9yU9Yw(Vh;hxqEcPi?P_2vm%AXZKBjW3b!-GQ$s1X&fo3AT zq@WfFMY=HLo0Z4UU!a$SM#tHDqG z3WP2&stIN0AS~5?70DliVw<{OsdH&8Jm`e?=q|o+6E9tvbMnI%v&MO!=wolA@!hq2 zwtzALBU7D0X>nWAJ%@pXQ?RS&z3ldIt z&ZJ{@K?;WyBSOB^;-8$o@uWSS)WRYy^v)=>pf}j$7Ef{Er4dRJHte;TB#z;mtlqqD z^+lmimWE5bt5p zuSz-7vR_5TF1fd7xyCB0N1b~r?p?_DXCew4*(5_l(j8rXI29@Ij-B11%yd;($w-bi z819+zIb}H~5-Ad|a+$RnU#v@7NnInyA~#Mc$dGEMS=(yQa+;kFC*=BP(NIqxONBaT z9-TaeEgBe};h#aFF=h|-d>82dL2dQjuaDiEONe0pD!!lwU_v7;uM}>juNH|QWlp4= zqvb5@u0U9YsD;Kt){E^!^Z0c2V3^87n4Xo|A)u(cE-;@nvgEc6uDnHA%BUvWH0C=V z1(TPSCxhBf(cYrvE?O*v&qj!5g~zXU&%a7~;~g&$DRo`2-ieE69%|~qb*=KJS+3+LY)NX%0qE{|!?#b)Ka?l1 zDa*@s8A&C8F=P42LuE-g0c933|4dtVUa!?)H=d*|jL{1aewD-Bo|d*bi^kP%iquM1 zSED(HJAKD2@uH2IwB8R%IIw9&kV$sc%g z7uRP?Zd9u>!@H75W>4OawLEP1t>SAy=3&nv473yec8M1R|8GJ+>UoLJp(boLolKWm0C0Ayy@6>qTi5+GI8qk$9eaf}Fw!2sy9{T9q z0T~=C8?8~W{oL~Ot0`AqX6ET*aGV)MPgjS0CT0jPW~NRElIuMKhMG21Z(Rk{0>BCl z{w7vTw<{^LPRLg7X6JG^j)QA=hpADX7;uvLpzN?wLk;u7<Wzrq7Z{l8Qf^~$)(`U;lXg+`n3nGWSd4>^EekzZMnwrua>ysuw{t{Ml| zHtOys@NKQRQdZ8h;@Y8N%a$2Ld+$_*k=2bk6faFZ-pf*ksbzP^09YnZYJ6v+ZG|hr z{z9bV8n-4)HmV};YTq~nz1leTIR1-hAOz-)lrji_#+i*abuFQ~6dAw0c+Q}_kVX7B zB>1aG@4JKFv| z*t0jRih-kr(W$#ON7{RKVQo9HutgPUiC`0h(^06M!%7NIA~cGJ3vXP@D#j0p?U0KnfvKm}!r0MFTsUf)yJ=(7yt1 zZrxHGHb8dFoje94r76f(GnG>%sK8!J6Kjl1`tc8*{RLBBvD(gH2U@{Td%!5Ear8My zN!@E#*;Q79T?}pr7(JlA^t==+G1^g6pq)f&iO!(x-!?JDbFS zvFwD%9M(;4oEl-7cRg0(d?Dqmb}0prDVpV$NBg8WL%{$@p|nXN;ewj+|I! z&l17n@y6@9O3~{^^F3kLI#S|MM1}4HHq^9*^)NhtLfU7a_l<^1v!!nlF72Dx_x)3sSKbh zcbklryW;lCYh)_(i2M>>DM!*7?W#>c_FcKkTW{r-C&-@mTOQ5tU(fXq|0*+OAU`+|01IDz1 zq$jO!xYBxY#TT-W^OV$5L7BOwi%yC(ta&tZPw_@TYH(feKPgc+sMX&Mb2ng+qnaBN z5|79Rc-EGFaQyZ6hikjhZpvR?^p6#f@KzuHrHAKzKPz%^ERZa^ZhOG?%CrhQv z_)8T685J521HWs=QE2U7?h4w>lU~KJ6>b~{#L0A9oEn_ff~bi*9>i9+Um43})7K<=WGLQn8&E$o)J>nrT*u+mi2 z|C7f9w9s?8#eo*Oh{E(Y(O@7-SR_I;Jz5z@D>7^q3|z(-G7-5`2mTy%*v?}W8twNt-J}*9fl!g7U`25_^0c|YZ5Vja|gh-yO7};l! zrB3PX-RLQjzS9>BncAF=7KJxT*Dfom#F_=&W#+L_-;+r`ZI0Oj_BwIh5HLAd;~d5K z#Uv@$>+vKQjpcKAWG8P*otJ92f9-f5jTY+2+`f)XeI0*nxW-q%>_$)! zz}KI@72}<3HdAGprkPSAOXgP}!Q944LlGcpTcpn@&WCm%XGQxR)M z#RgSro8BTbzbeGqILU!Rj0o9MPL)BwYyijcfd}ct*LQ4k0_EV6TLoMF+NBnr+GPjl zX}_g{TE=9CzFV^VsBs>dM!HCGPNYl`|5l#Vy?a2(@4=LC4dNOJ(#Bo`AX(tNfVL7n zZA^q+dNm>U>pzU$<)+y99~52cpA0tDbQ0Vk4ND9|X^F(yystBDT!;ovFa zT7Z5tjLk8lpfU6o2?*S&WIyZvJDdM>*E1N}uUs!k=FEJ~CN&@?go?snD^q>o zV6#!RD=dUe_)URsjr@S5;BS4u1T6$k;6BC*lFK{fzpmGs6P2-fREh32&@xpw%3Pr%#@VGPzH5f zCem_sGiSn$LV3EFDMUs(Cagz0(RmPnFL=%{1Mme0s35tuFS1_)dao_|$Lt{n_sd>M zgmMVpw%L3(-4~kjea~yC#BU4s8-jx9;i9jSwZHWy;0qX748g44&3&Ub-CxP%tgB zO^^k|xKixuuI0MAX@`!Y{#w5Kgk2;=G_)q*&?1Oc?~$9Qrg>!5r8Q%FHn{>CFw3?o z1^`-C3-al&9Ml6|OptPwt^yT$`5n1;bh!rG!74zc6it`Cbh+^A)~-x%E+qhRjRP7Z z<-PSx%2KfI%B zshw6AQ>PEqc%YAwf}YzA*|}j<5w3(P51JOHXQrqD=+r&h>2v^sQFJ|G0;t9wnASE| zik(r8#L7vYI?(r!X#CJU)o$=W=YcwAr{~?PjXD=I@}#&R;r(_m z-vh`d!8mKFfTr($Lh@>Fymq2Sa$2y7&py5eOF^S0|7EtS8eO z|L*l};L!)rxz&C5{P@+D_|io5e2}#)PpEK>rw093i?s;Ov<|BN%}1olqyDm-Ue1f9 zWnGViPANy-j)@6Cy3E9HGca$@~h2{p{HS`tcJ+RGv zojy)&n@M!$NqA^zr24P~o2&U*P{@vl+9*A7H!!i+g3)L7g`j-E+gd#vgTfMf(R>#> z-Hf4(mX?(iFSo|NNZvciL$24k#M=b;Ow1kMg=)(Tbt9pxD{vi{6rfDs558j3L$8?h z?im9HiSq_8gG6+bGwO7_;NP!Q63>rGxgHvV+f+pGZ#!Nky^eC+oUWEqF;!PtnQp>$ zw+Orot$TzQjH*+c^5o2-vja;;nqeINX;8UinZ3qR@YZ^2Y{tmy@r}xDfCgZ=(#bwKlp8JPzgQ6)FT2N5jXWhJ8pk6pKI7H@j0FyITp*Lez&o>CKJXrPeHaCmqWqAr7KCI*>mJ^rTB;i&P8Q_k% ztJSnD?V-bT-D7xUq)ZFIRyQrsyP69%Jq~ZY;>tMUOaZF=6^EIM)#$%kxV{BS$l7!IpU~LHSD;oeA;R-Bv@WLLp`Hxt5h?H-) ztrEsdjX5^^9!~#z^ZZ^D(5Qs}V8hkCtDPtNbe|vg+y1ug`kR`d=T>F9-lZZu#~0dj zop7u6B>Afr&`**I49|ONafLNDM?EEPp*1go*vLJhWQ#j9vw!3gpjHkV9 zkWEahb-38NKD_{f5a1x0n=Sy0tc16Fnn=o{8TAaoS&oWz9WQ4x?`8XrED@r%C;K6y z>LWw$*K7MO!wuRfwANU8r?Lu&x_sc~xn~B@&4xuvf>ubx0oPExoi&Seb@^uRg6@Sb zeOWDF1fRlqe&qy@ni^Scea+Ry8r34|Tz>K@92EKOEYvw*P_Wu8p+Y2qx|8y@>M9?B zuy5_~9HYuyi8%X5Q=>=GF0}a>b^86;qpXQLzLcX3_ zWGZj|iA3qtyjGg98!5#@{CI=aOYvyzmKv-IrvvHZz|iEQ5>&5*T4a(psrv@Ncn4ys zFL&4%o-#ki=Y`p&B8=nB0klBef}4jTM}R~mbzgOmSw&VI-?Ur#?}eF^$mt4A8|vLaldai)_1IVk9ve50=y0c-Qm}h0mu)&}7*4JW%+a)+BZSRO+}bQ1 z@F8(y?WNZ+{q`;u`Q^#uH;j00x(s?2vps8E%!*vFb46u*ZO(NN_#Q%C;M9{UT^gPq z(VfzG!qEi^&q?KMN!0jCK%SGmAPlIl`unCPGYhkvyH=yUzDlXYm$4ouus7V99S~I~ zIlX1&8(ae#jJfB5%wBbfr9yw7S*#rM#fxSBgwTyek{_=Spdsq8tFUc+1J7=8k{=S) zNhO19e5|9;5LaqDZU81pL!RarBOK>vweQUBDjd<`Z4Ce54k^Q<@yXOKzL8G^&UYk=HC*VKQ%rSLQ?yZ9akH zKWB(7;LU)#Pao^&sAQ@QYlOU+=6;2=F@tgH5_9Zy?M(-=ZUVsbK-SFzW3)-KcYR{d zr(~afg6h&YHc;)%dSIPvU3+(Sc>l*iZzZmOSeuraC$ba#(OB5iNr#u4U*TH3X(gfx zB%KL9bBL{idZ=G`xdeCgGvQMWS09?q?c~(Z)M)@x{AOAr(j7jv8!x2C|4p^-eEjxn zG5{gUd~&7=C6Y+M?PVPt5D9YAihgqA2R>$R@Y&isW|?+vrmxaIu?FNMZQ() ziI*rN3)=Y%(o3e!Ds@%oK+H%kPDoJvTXBl8>Gx38{h}t8XQfYp*gv!K0-k__bGH5P zXlz+o3PAD$4ZqoIFJcg1KID_w8@PLtaEsB7`;_UJ0mucy5b(m?j~a|lT>GR!IpwQN z;9J--$5~>$lchsDod~qrLahVs>eEP%(yb;|%_S9b zj+~JOy_Q~W*02HTdqPpzRRwn`FcH&%@#L=Q;00sVERL`s1aQC|!MOO1&n&1az6rh< z+1VIv+qMHNr|k?2W(Gr@{4gsT-q@+8lH~^U3;?9ATe|IR4sbqSzd2eVtWREJx~}t^ zfi(|+I<>94{QzS@Z-&dIFKAyrWaJ#zx*(axFe3F>_JJWx%1e#d>)EY+ta*tV(uLbIh_dDIm8<}5k z&JwU}?JpaxLR8olDdc-DACW3W2j=gYWnJ=MHI^G_eMyK=CWxb2B8_Y&dd>;;!+pR= zo6TkNqh5GyU}4JG-_c?`wWHy*`1@oinvDh89PvkIfbazxi_CXLW^8`wg zgL|4PrBal#wbg7_GGWsM>xjRsD7q)lPo(mnNYl8E#hc2>+4Ia>W9YFciUkJ!0ny3I zDdEw`yz}t@mW;m;rvP_rz`_MfWPRzw((H2m708H_42K4`Mq<}Gyrz-ir3BPS4|(4HC2{6(gon0< zqyFCjT$s_gQwBhLMdsS_@EKajf%2X;-1VL7wOEAFyNe5Jl8UR!iL$j1ki_|TNwaK} zQS{R6stR^@FL!+&ZvP`BnDvSyaU&b98{I!^ML$42a+U6m1)s6lY;OFYc)FcU6+<92 z4=TY{P+OXjO8xKd=sxgJlG==$rVr8P^kAHu#vGdbKDb_6AtD7~#|Q1@pIYC5j$2n= zkv*E_O#>xmO!9k%AmG<7(X&5Aa@R18FMn-;^*aLBoh@G0e|hY)eoXs&=-t@cQN>M+hPUu zGQ2H_*pxYkst6@_`?jM)-;fCA+sG%jo^>|A{R{5Hqy{ny+n~siL}`IEASnRNjLDDf zBkYSY@ge(=>|6L*d#65kwW)a;+Dq{;&ITQz#UUKRN}!CRhCFoi>C>pnyQmOB&@tx*kdp=#Nj zTL#}%(cFEtelo#*#yV<7v#1ZIEbN1+x!v9M>)VOv@O+3Kg|HKcZGiPMfX)K*_Xq$( zgB(@3s<-nybp#wy^sMIibul{f0$6Q*)a!VpqlW!i@pgi-kwGsKhE*npsO+oxe(kGX zM8;&P?g!)BZkgN9f5W1;tp%n!&ptBpPUYKO;*ExR$vg#mz8@Ee09*-&bYcH)Io#@> zZs8hQnnFB`PKd|mrz0SRUbl(UUf?n>iC=*m$W<8}(4}2`cF4ZE=i+tF9~ znC=&b2)>bzyD9nGh7g zTKxcj!N+NxdmMI$UB4q3Y+~`U!uN;I+A*-%4-9g+T5EA4*V{THUN#DIw?fxt1P=>? zt`e9j+q%S6X>rWxJ^l2Xe*j(1cqK+}21&Lp77o&UYj6l)Iyt70bmSPMy8Z6_^HnvJ zEl$BPL)Uex27te16vZ?X7}E-6|D}q}8*S@4RgG(%umN3@Zr^GbSG;Sx$DgGL|H1!{ z?%_l`Z6>^9t1~?KEpe9X!l6+EX8pO9I6n^+7+-{_PJE7gAAa_4`|buo<_A~nPtF4y z;rDSz0F567vB%kwj-Bf^a&DU2PNlwv@Ds|QpA_H0&Wciq(Iec#H{kjM#S5btnkrF3u& z5`5yGGir|+-CzpuD7&_b0(8~-Ln8o!U<5!AE>f>11ivaH%$xr|`ft@&UT9?00Nzs2 z$~t@+Q1oA~pjT*rDiuYVwoO*X$LivDLG=0MkVGQN9P+6ziBIqvs8%woJ_)$7j@J&c z+2c>PaF&uHIbSSr#Y-GNTPPW8X0cr#KK>(uDRP`Yo}=DYkk=-k)ehdaet+kclAT-q z-`%=DogqP+FIj9w7MXbEWo4)P!@6sC1OXp*X?gj<+@GnDx>4*_j6ad=jAIk`g)65| zJ#=y{)L*=yN~i6?9|9PBGll8FSrPACpD9c*D23t+o0zFRz_-w@aR4ZcLb@J^Kk~|t z%J)^mRqn+6yL_Uu72=1(0!YtuI4#!BK*dF`ieJ&b|`Z_^lBw4A_`Tu8&m zkIopb)+nMDQQ;_WzP-S;x6>pfGKiQ76e^TSez|KNLtZcsXe_K)az)Is_%Kzs@z2P< zjscKB@=XjFj9K4uw zCww(g8(Tg0{UGJ0BmOUu>~+|kDPcLv7hho&q_ZayrVC;Q;pEDOnRvlOHafljMlH$^ z3!);+1Z=Sen$sOZO_>YYY#(a23jhF0DY>?A?F{f|1mZjOj$%eK8Q?xerFq}*gU}@db`h2nkVY2*)RryZc+FfgFj`(OQjt=7?V_1i zA*hT2?gQylcikJWk5m(UKkGWvXAgdeG2AnFJ-5I zNR)HwC*XROV!Ab(zFlv(6H}{SHxbyJS1DF>I+T_B8{VP0`lbn06syS=2h|oF>-N$s2F?le*-} z(ZK_G)<^GQ2B2qKVuxhWH?3U3_&B!oPNTXWk@=x-=XTfagd1Su-_1?El>qHUoR4ZK zFp%7f27z2a5ey(qiHu(d)yiW7SViI^fV_6rovI>f{Va6;UZWq z_W>kGMM&}aQi7N^WyB#g-5g{qBt(&W+g=PeIgue*sBDL%;_O&mK3*YTy@R+v+PBvg z*u2Me6(BxJVV{PvOq>CA%rz($_kGURIo)Wfg?o?(pDyOeRK{j4<$h_|#?2 z`-^h8QD(@iyv2@cpB`TK%QrWV;A<6)OH$u9g};k0M>rApbUKhJdmW7O(flNy@KqbD z5}nQ@X@5H@mNZ4!kVVXWUnmSsY))WVXlLM5|19*T)BFJl4~cjz2ZV?Gz>s;K5bBbc z+0ozqcD~|!vVb1o)wv252%iH4E6Aj?t;$cM6}VRS4A~c}!!4ZgkDdNtIb2g?J(l{W zK!fe!{pt9{FixiwlH<|VMbosXIE|4-+78+Q~p`ED}lxP4l3Vs=Ks-kWQnn_VXZE!!T~T`*?0hkEB955l_-JJWd4)4v3=N^_5g5E zaVa`odm$dDJ@!chlBW}dV-q4ewRxWs-7tcu4d;V1@i)T54}lUL3#MZPD8}+0+zyrX z$@q`O$sGX@a`fQD!;yI&=`<&ik}Jv6+Fby?3h<@O^?~<)l(PJTPlvWFXILeL%bX<5 zsXp6Nmb6R%F8~5wABJOrv>-155^1i{;k>D3180TEeY4y+?|Aajr;vp8&SXWa6`Ns+QXOr!`Zsr&kgm)|=E&&W zl~uH}R@Z`4*$rOiWOA=(0m1J{!pl@XZXfS0a(m3qb>doE6G#}*02B+GfcA#^#pGiL zCs>hEt!jJRZmbg* zp02Cm{qih7U#5z4yJvkUWu&=nTw0PEYS*&Cr{~!2?J=A=bwPWs`(W>+enO(iN&~55wf%O&$3YHYrsHLkpGXO^;{jKzH9;p?P*Khpc1%Nj6$mWydB#G>^NMtuN;w)&_=Avv2= z-8zbf$%?zRfCs^<>zKXwI{t@`BYDw|!4J0f8#c-x|KG1qI{)iC5?rqLkMqke3vVYf zViru{jrg%g_SM?K#pYfi_#G*-=nD@5S{&Gl*c_SvdDuKUClh|b&_h-tK_7j)-?~ve zJxjTtJL;Cp!B3=HI0?FFzDa1Y43<9W_VsAL` zOvOrczxN{Boa>%-fNAn4eE9o{uk8(3_p;*2$)ktS3Tt5q0 zB_3vZIG-|1YCU(%)LyQqg2K^`^3Orh<8zbCmWG;7dsbpS2o&%b%j&q^mksXOdt(+| z1ioMG;a0BPHpjg8GZMFg%TE{D1-g-(1#vE*ak! zA1hxuivqtp*?nrCsS!G7y*U5(ZGQbI^c7E8o6biCb4T zc__5e$^Y2w?D(zeI>ZUjGTUw4gT=M@JkexG3K$~fD6>_rH3(k_6}~n<^iaaq75Wt;8pMck&e6Tp znRttfJ&z8++=LmCmZRMx++;&Q}t&Xe?jDtJ?baR{i&B^zToK zx)y-9ifT!1YI^vT*we9irro@`wo)^TlI=2%zylD{nq?bt$*3j!=P^_UDwdOX(eL_- z&}XWZw|kOjS>?+pNUDk0H@pLjdh(KQrMt2$REYF?t&JUS&VDlR$d}MijCQt8!r~&H zI_I@28!So6q?2hL#@D(>F*cZ&zIYrvm8vj(@7AW8P!a6Gt=y*bIXZz4?Z~DTADKJE zFZO%0Gj>#i*hu3CY4)n-F&HFmZlX8OOK1L3;V_?V(q-Dmt_IGjT zVy@4wn9;1R8|OIUdCQI73L9bHL!KT5XJQz=aj01kRex?1&{-eL$6KiP>+%1nnU;E$ zWzTu{WA{@1e`^8hnVEcZt>8237xMA4cL;ZWy_!(4+|=3pb?nZ^qUVRifd7ju#L4R< z{i5>Rz7${yzu5fs!vEfBCVXU|P8+&~XT)gRqB+}5o2`+#B{oUnGarQ?l%$8Wf z+wAreE(dSLRTVMl3>UFjKH{&9;40y03Yz3)-AD7Tc#F?Lv%xxZ7Xo^k;cMT`@~Pk2 zBJy)9CAzCb<6|i(;N^;en2pSi9vD{a()j#Cf@f59bcZ@OPHZQCSZ&_ISb?w3X`?ZM zFJB@DQ#Zt;|A4LNH&ocRQ&|KmIt?L%tb!d{v8}A8l)Vr)nodvi7^gcHMM!a*4+{?w z68BCDfx4`CYGOmwb89vP4kN1>>&RqVx3QaT(Q0%1^Pw*xZ@AP6zaXRKhLC+d-M&t2eg`T<$#Z$tDFUPKtl&F48H9{g~=7K;AP z3%B@j^l%-4b?5Ax=q%TfTk`30cQbuqJFY`n^V!Q1@=?gK0GoWPczFPkHA(fLR$Gt*Y_ z1*h_~Tr|K5YXdl89LE*EUS!~y68c3(Ip21Fj z>LvN*5`*!VPzAaH4qX!b%n;_~v6z zg6^Y6z5>rd&fZ=EH1bFZlfpeSIrla%^i#T@-mVW5!$}&smokCduMxGdU4#~ zMl?TD+^O$Q@@?^?jKFbkR(mQWKJV&xW z;A}1Oe%J?phj$nJcM|_SOLud}aEe5&2>%%%ItkI@Vek8f>%8y=1&6%6n)@9S=~8uw z>KfPx=)D6TN%cwbv+lC&`3(F{3RCr7EHT+)-WCp;*&j{P~3sCi)P4F02FO}5csXnd8`~1ch|bePc~!8 zd@X+>A;^wiYRICdS&UN*Or%VSamMwQQ5%F|1*$c38jLwWM0Fm~8{M<8+v=gS?(ZCt z)NA*b-*Qzai;lY>3Nq`5XM+AaCUfgl>Xuxvc}sT?%6+vTms2kY z>Q@zyffH=;bP{pu?&2ki*~NyQhuTC3cG?)S<*mmelzgrz z@_Fl+L&@QaO~JOPRQqLANmBFKX8@8!RP8YW1ZdYE*8|P0*`RyMo2z3L3fh@>WubTO@VXK3mCF^8MR5sSXpBl z#~%8RFiKuF0x_iamx~j&_z+COd4$Os!t)T9G=kem;J_%}?z)iD-`|0&WtEj;fE;-f zcjiwS{f!d*u7t-THBRQ0s?KQ{fQ3auT}JPsPZUBl4Z!8xYrwn9kb!v%=jlIgwf{c( z&6SR7nCS<$a^I7>%a@cmiqcV)=V%Kj6DQ*gDeND9`IJY%vAZ^uW;)P`h9Gf>iGB|sN~@5R5vR_4O2X0Nu{ zGv{__6~-wVcDYm1IkT9O{Qd+;P#9k?L>E?;Esg&iWh`R$5X8M9^G_hEd(*-_cw`|; zp_iuso>v3@w%&qOT&t2Xmyrnn=dsz}f0(0|k{j5@Vs|d3>T++vQm&j%BMTCk4mv8@ zD3ybL*Lv0g$iG!F$R^rgNY={=W7C-&#&qm_&bKDA9^2rrHYp`XD%aRYA;o&`FJqFZ zolBPqKpQritevEVOlB*IrgbF8Z%I_&&r$1ylA5Zco|ZQcf`Pvfit>)}Tv#UM`}G(9 zA6Z`+700%9+qk>CJ0!TfyK8WFhu{$09fG^Nhu|9AB?JP&-QCHnoNMQN?;i|$bXOO( z_gZW2DZNRxL6x6bUBWZ5Mf_`=0INHdKZP}-6ez461;v>awU}q$Hy!);i+WI`o3Ru$ zgV}n??2dRx&WStW=nv>COlfGn3e12m0f|&{tpeU)1>EtEr8;FIU~NX>oS|>M8pQix zddUf}m*{_knotN+uvA78&ol6`A*F6Q*Lo0HrbRUV3hz#6OcM~Ri|8LvKupEp;^aI;yz22$PHbexk|Rq$5tcv6m9(bh7B|pvF1+zS*l&N z0NA%l5sNQFxT~(>qNGVI!>QrsoIf$Oa0VjsWu8|*SsC-x%Au@hEeEn^li;n(;?Od+ zVi6#TEUN+^v25)3o`ho5aClsfv)Y#i-A-F7!KG|*r=-q}E6)4k1ghBRc)GdalxhNp z4)0oo^>)wkMwXU}ZS6gsZcS)y8II@+<1-salnlDc)av@=`!h{iXc%G09_D>?yl)4F z$=O}V0A|J@aa|x~>qu&%FJas0vqx%5O6wc zb|C|t&IXA)J@r!A1oQ_035-u1^h2ghrNw8NPdY@aN!to2hG0jy<5cof9SuksqYw2C zIFtS{utm4BEUrIt9yOTJod4Z`#3yKp-P|9fwhrCEI~?(B(MnZ zmL-ca6qPsutY!bnUBqTR?NHUGx`A8)&@k;Vo+FD~Zb|JVDMnOxJYa z{UPd2`w#S0<;;!7oyMK)PYwox4eHXhF~D8ix7g3l`#TngRg2zI>TA_rXHZ&6Vt#{u zMBh9A%ViV2pejz%$2_$_Z}zeIOIQ9Ms0z*hObG8cr~&8fpTBMK+Nv$?^bBiQdJ*Uz zxtdr6K$UB8sV6Z}oM2P@^aoNJfl3qxh@Zo$@o^>`z+&5Yod|2+UZCR&0eN<#7%b`C zRb5m$)d~}(25EJase*`JF%m#W#au)ioP=Wj_*pTeotbzYH>nhD!?@J?kSaLi^9xMo z9gx%vgC?NF^c$2FmI=ip@fLB+UAX+%)J!+d)kB-r((z7dr;vfSiU)`cac(&Q1PNY( z66K{~?g>!Nb{>Bmd8+j*?NS__BBTT0pAvCPhlR!9G;R+)- z+qS~2G>i>x9-I?VKtz{!mA%YY-LJmA6oPD`WGSB4^&+pyIPKprJI4kNRg~2QT0kp* ztYYH*5M3QsrL(?uYZBsqe8Dr7kZ1#F3B{{<21LN=;}js|iLG&6g{j&E3^c_waCw5{ z1HV1p{@GRBF6w|?g+A_tap5OtT(0@vC?H zbOx65FG3hVlX6w@%uG>L8dk~d3Yh@`SXhJ<+rR^JcLphQt%QJ)N1g#m@4+E3y0xM~ zPVTo3U```CvU9DCjDM87Y&iHPhi@eZI4xucZ%foz9M7Yvs*2aE4YC%#m;Afz@F!$=&8lSSnjZF6$qO~lV8!=^KrNTY#L5dJZqoO?phqaCZe zJLa38*R-vM#tPON5Y_tT2BUvmoC^tvQ z#DCH_1F7_(fczwL6n6T(wGW%r&skF4@$Y1~5Heh@?d)fb|M{=?rv?USb(77)u zDd_WOQP#9DEHQ@~mWM205v3|EN75~s&8H;Yvm&0a4y&w%CZ7o)8^QkuF@O2KM)V_7 zn$w<*r_s{NUAQfUu_t8unt@qWk1n!P5OA|vt{&whKUeSJ3joZHtRd|q zxPHBuhqE%pBOK|>MRfdlojv^B*W!ch*U#Qwl3J37y_lHH^DR;5ppHbJ9}Np{V({KI zC32AW;~ieY3?;Wm^L0%?K#0Sy51|MOc%d5%gC7(`uIuNAsWAo+|DaQZCF97mDFEbk zjrg~aWOQ}u(~S|?`9ZglT!*H4An_g>e!0{yWt&=VRn*b9*ZbU|JIh~qc22c@n8+&C zg2zGj2SPv+#$I-&+GH2X>-+JCZ~q7uBX-ony? zPBm8YUCyv1h2<_e%I43}Sgg77s-47(0)=)}Fv}R5vSQJ9H6`kSd&#UnHDTNws0lFj zrv7w`CzFznySI*pCY)fh3FvAPT5O%X?v|!b|s&asCcxQ_mC5Zub}O7X*3IpNy#PMrqfcCtSIBA4c@C^ zAJtae*H(XaC&W@ZJedd}1=<9_!{ASBqWdO4zk{`{jag!{mjjnk+9@Y4>Ph7znJoLr zCZqC**DoI{jt!AN1R>FBT!0|dn48*TJbwjVS}P2Qm94ek6MzK-0Xsrve$r#17g`Y) z5yfOF9sLnyoNTSCT*om?u^WN*{Ud#MR03Uj0-f;CQWJD*6P6$vgo2DJwBNdb?62>) zTQ*VBcpqxT<8afXbHL;E>;Fa)y#g~T)4XV(IY8-KP=z$?2H#_PuT zZJ(5u2U)GozM+vHxiPnn`k8Y}`Oz!eJ}Ty7Bw~?jPIIq^5{Z8~Al5gH%3&-Qw{@p; zc7e_6)kc`#yXO;wWnTaBmHDg}+OMTng@@?Fg3U(=kaq^1McHJBJ6@Wu!FE}=fgqb* zWy>^Y=F=bKIdp~f6a{v5RXmbdcg_CeQcLr-?d+8tJ5vTh<1Z&Ek&{O_dSBwgI;w8! zRJM_opCS#=Prf1SnuF`DRko6EGx zC;~cwIoV}(kB8?uCV8ema{!^G%6BQx+c$5zJ97!uZ@S!*gmx$lu`Qdk_bsUzT)8L+ z<4JduDF#0-1PTCTKm#Qyr=V?2W>&YZNMFc;ydXd7vjy6IYDtH7E`pIn^HQftQagWv zWsIPP-LjJGdi~*r+U)H7Fq2&AZLYtOzC>s|kx*Qe?7>xNF7u;Cleqwc|3K+KyMw6A zOpZLOF}6Tb9<=v^w->wtP&xG5rE0(+ORGiuc0uzqA|$3mK`-RO6&0%Gu}z9NE|*^r z@sQHKVLQF{h&v!Vnq}9v*7jq}Uoveobczp4Fe>q2AM{TVIX}dVXzKn3iSCCZ$NGH* zgv=~)uq&DfL%oJrtd#1da46sU=rP)fog|)L(-~-jzH^-CT2)I~QpQN=Q?aSZxWtxG zMLdoJB`|R|3MwoLuYwvXW5@o(um;fwT{V9X3n3`rZ<{^mn}{iH?};8|D>oANC;z^W zT`+vesnjV(qcmC%pZBuO znDx%Qxb0yv1*cVtdj0x-h!>uE1r;R7Kib}Q0_98~)?`Cj!8uJBhXtdbrTY|y{w3#w zfQt-)@9-hc;r1{V#~+g*0@* |&6ohe^@~Filc4D&1=9j@ywJW0RYrTO8V-Plg|0 z@VfUFJb{92%l&VB1-1ssO;#bg+1C7Ywj1^fVVEO=OI0=vnNC~&GcT_{X1Ql4xwRps z6U?}O(;mqcbC5#JDAA*Q3m2(Z;|5uU4IUgR(}$gdu4`An9@>wTs?v+5%-ttDQ?2b@ zHv&05h_jQ1a+nF9<|roe^XJtT2fc^>19Ur?7T1+jCLn$z%h3B-rxaw9kwwW|khro` zkDm=+2_IS>wCjq*=pDf?#E~d}F?22Fw;I!G)X|z=HVc2+*`qgBxHLpybKZ#F*Rw;le)@W0U1IOj^( zAB7=s80HcisGCyc{5)kX7%T3)d*&K&=1U;OoS{ihE}oSS;{J%?!vA1ix}37jaW?nv zvIU#`)YaC_Xnu}*vSfwQoJEvE#(t_Ltg8od8qoj+frk#;ZW%_nN0I&`|5VTD&|Qwp zaZ0X1w~J8M(H{Y%Tx=DkG2qLqS6fDg($MgAWug#inKt&F!cH3Kee0*AfA?7uGBW6W zN~mKIUARh!MP*f^lk0;d?=v6b;32K@lXA>Q0HaG6_MTg3DYa(nPWs9Mu5YciAf(Dz zrdfw)U`EE~o-tQfF@n*g{mBP~Wn?xtoUrm6MCAFG&LyZmyBmwOcfX7&Qt-5MaI?x* zL)W}tmeqoEloZ5a@)c^K(QWF zXH~CZ|M+g@Djg-WtLISwH<|6bQU-kNPEmq?LOuTD&2ZrCIXn(4o9vQ>P%rMvFPxX} z`-*^*SjNDUj`RPQ2SOkabJ7SO1c`U!oTk~T(7g1d|25gl{)6As#9g3kYCS&2r~r+E zKY;8F_ZP?QJn+elTwAeO?>`8=0j=5f8_^%**N_#AB?ZFdur)>-COpLPy15PB1}LeJ z8gt5U>g#u+b&IySfy40h@OeItp?eJ zrl9$YatIN8IiAHVYWN1&&LIirC@Ft(5pl0x{%zQ=wrl@hV#AFtky>mmnvg@j)LkT} zTV@#i&tivfVm7XYK&r8~M_84+@vCPt?#EhVl_zEAZg+;lYkIAX4B0PLsV-&~zESAT zUg(}j+`oB8M9@`v_#7Hzn8((AzQ-15H#I9xWuW zpQ(18Xh83uDy6ML`U-7(ShFb$op*As!FzYNFIXu~eT1$8rh^IMUZDMYWw-go5DUq& z+M=Xgf*b2Wv||`7J}K9Y=aU|sERO1Y=d*8a=btNitmFefV^~l*)TF6$G@P70(9*~h zXBG>3m1Uk^8tK%!KX&F`Ui4QUO{7Hqu_~VUV^#bwYtet}?%d_0W*vayQ_Q8ygkR!W>h^=Fu&1@j_p;r^xoriR@t9ZCBVH4 zI8}mHhH3Yg{U2}f{x5I3XVX9CbX==~SMB+Qk(;#~v^C}Y)yIGzW)}VvrCl9AW0Wh_ z_Z5RR+-e}hXd`SqP0mvH_-J^|5EMVqbk3E=IeF7~(c?kn+_cAB9$PUMSyzR+5+{H| zM8db&C?Qv!Q2#`USUOS=hkj4So0^R^9t7pyOxEYzKvQ4Zw6_l&ab&$hFq| z5DHBPYnxTk%FrB5{Gy>mUOkEAR5ey(8}zgH{oX&a(Fl}|-bS6_72b!)mqU!Fy>p$j zpZ$wfHrWyq@x7%la~t7{)kf!~wOWV14lm(vkk$=x$pg*Bfobt?(9OjV%HDS#)}Trl zDIlEjM=Ar|cBS-Tri6^d_s0~c!!7?SY;_IGVoetq?mgo_fB^xCXJySsqU(nzbL=}` zO#7UmsCrgw(-HfCxK84MT#X3xhHgBuWBC8dAbU;fIOKZYNllXBoR+%38-Tx+ zW-Y+z`dxnazKPZ@LoYC`D)cuf@Z!4?^0^=OyobVJqn=#JRHiTAf8&=MI+ROnY|v?X zgconlRbneNWzTjK$stOQ-~=BY>Hp)$sK2U8nSZku2(wD!g%Wc1LUUIC>#QxKb!Fw1 z#0xM=I7z!U{kt6igUwwIk%WK(RT9!hBf2Xz#i4(!?>hAKb8alJ1R1(;&0tGVO9#hN z;j7lrWUri9+_ zyr;6An&z84^-(>fKXqRa==;9p2u0hYz-dNhFMQz6VXb#A$|W}5R|{RyWznb-hNHxP zcjL!!8}}=4xpEezU00wap;7{aH_}jKw3V+Y+=54!!HR!gu#S=Oosx{{lOn40*p+Sy z5Onm|&~xEMUT~3ze39$@;jzY#gQ?_e+%F-pA3%O%WH{rHdhyy-rCI1`G_1I6by~@HEESZqZlH@6!m2XU>9I>+6(p6%)z>noF*a1P z)AEG7N8HbnB2R-4#z%R3_^TdNJ&KLyUz#=DCu>x27J@_iEGmO zsS>6RdT!1@NhwjOpumBgfRoSMaf}(A^f*!XdoRzwK}A3R&pwA&33veX zhy4*a+c;CYwI$jft@Rnbi;yv~_Ya&6m_m)K&BQP7n?N^1e!oy(LkuDn*lL3 zM0eCyULGyh+!J`SWp$riC8`2Vz@K+La^c8(3fsm$OG=6L+AIo6lj!b&w6dlktkhFP z-5ToVh@z|qh=vMyRDVqmfG8>}o}OA2$KcBS0ptu!BaQ$$1GUKEC=9(z!+`VA^U2Got zC2k>#TaPRbH#VoG<=1w&me={COaaDoljVBdXZz zmaKJiEp0*>hQ9|vOsHUBU?6ZXa41M{2;fIB5EvR6iwH=?7*$x=IgpguDAB2}pkemn za`V&g6%g#77YLF42E7nXyr|S*w~+B&CwW<@#f0MxN2REyP2!>phUOrw!(%`Y)5!^Y0-(+k|vh8Jwnhn ze_s|WAh5j=#k0Z&QG6nQf3a8%-W$ga<4CN*CvMFgQ`G&-SqRfsA{Jh;M-w8Nxz0QG zz0fYiJ2&+`rw9?K^KHt&<}H_@I89=9BIDv?ns z@g06y12JFbA|JB42&#(sp(}2+Ux6SVX)!wAAl z;lt_^`r*p={`fWx{gz<{~mW zvLJXs52t)oG~7H#PY8jyoyZ@ zc&D-`_d1Ewu@?%~LZ}PNbGmrl867e_|vXL4Qf4cBZ~Aq&e`v>F*vm@Z7litZq4l5ibO;Ma?X zcPPvQQww`xXpeFgPUrnJAN8JZrws9njqQO=wPNhTv{A@MVzKsQ6UgfN3We)9 zNi=JxE1Vx;wbu&G%w2^tV}>XMO1lll?V3IJR7W*l=H~bbCgd5ufQOtA1 zDyAp#J#m=UC)u=Wt4fYIG8MHs#DjyR2(5(4q2QNQog4b}SNhRQ_l z#bT=uS}lvqkP%%Lj5W8U11md*Jv>GGnc{r^`6}r6v8jf`RLgpG&K+h2?$vE`LjOiJbqDctSdQpBygV-M8I)!Z zqT%@%Lfw}e-i|%3Nho|RoS=+Jk3LlsuOf+57JN<><{}iMUGVN+A75t^>dpNRa&Ri0 z?t!@h^8+*c>yLg-g9MVUWsHbkHIAqmafcx-Dg@Ko8Ngd1;xBQ9;SG8W52-DN3~)19 z*We6-f6k91b-2;Wo$AI7c~^o)9Th`u!$odw+&+U)1g8HjVt70He|P4_-hKf(J5V2Pf2Weh7Ag zOL884=jCziuB`Gms1RqtOQglyVl3*`5ZS?958>yxxK!dgBs`{4D=NHI|LMr$5jM`` zk2io90HJmYbqSh9L=5#ot5E?5Z8W>MF_%OKe2|^;AhCqgoD@M|@eejuHqMW~LH@v7 ztq;b16O8AL>T2ldIW z#9+})+~e~r%}cmR*xLgx7I|LN?B#{UodD92ykbatZF^AF4lx6-gEyd#0W29Vim>t^ zB&?NL()jDg%qE)s>4SWy=NwDKb*W5K<{X}0nbyl)jxT80R*s}Qdk#V4c)V8z_5y9! zL;d)a7V`9rsEjZ8+sY5(Ly8p-LJmkGNEp&6VV~h z&{;oq&ts}`S-0z*J|VVRa6hpRijxLDcXR9+r!mF`)_{6QAEW3@XuUA% zXqh+Wz9VuNPM=Ev#ncUeHr^y3^diZ;P$9#0wsYl=PpE^r;2Q^foh>lWMMAfy$}s%6 zT}o@;dUr5GL*k7_?!DhW;hQ8*!Zk3YEAf;fcRqFrUk%Ln3$uGe&S;#qTt`8$#u2+f zxxisv0p%U+lO59C^>0wzeAN@-d3N$RYo|Hy6wr--!=I(YPVT`WD`q71#vX2(zwI`O z(vBh)Kb|(|BgxULlhOQm?rnB7Hd?g!LjrO&4cis@+<4W6Mx*tn0_NZ z9KRR#U2Ka$=6HX6muNQObg7;YwPwjQk+HV(&8s5J0U0t_cNFftD2_r=L>dDUdKP*1 zB-C)_>vRPg02ZdU{PB=Q&w|MQIU!#85@>8POXj*>(BM^Ml~H#>@;vIYm4GWHgT|=i zEpL|Z%E^(-4e!IE&W%Y7ic!1X`OhcqV_ZtsOV7j}k0}V?Q9$9A?N8rbI#$>^a*ZK! zv$q5zXqLT^PFYt(Q%tizK z-m+A-FQoUF+mr%JzSpgb*yB?0-vJTsbv1ht%xkP1|&~lw?pz+z<~n0KK%||*GocfoIOe3&eu};YPK@q`5UPX% z%4w-5;m*OeYLQNBXg>nFD3&qpfte>{7-jG! zO!NdcRNow_iwlede6F4ud7UftPbzAv5x;^ zGqK-urS$gRYP7X$xf|Lk>$!XzMJw-0fp8f~rqlK{z>$G{hze!y z;Lfu4?a1G&eRaMLx)Z4eeJfN?7mL40wr3Emn4nur zmNe4qX53+x&?x`c_hOdBl2AXmH(n3rl685YQ^c5@$FF;SB<>Cc%$n>!0va9kk_5Ps zoQE}R%wh^fW54rrBcd*SiG*FAyopzp*iQ>ThkBOo-pn4OXiX|SA$kbVthJbhH9b%o zwynX>;7P?3AfDGhn)7;-nRve(>)L%q6(90hH5H0R7LnGLzC(=nsJrIy#E{ht1s(tr zkkueudDWWjjk@FamKAwiZN?A-B?x!-t{o}mO+qgNdf_cKI#_cQGyXGeK8gwX?Rp^tBaz`8N!d6Zo~YLvVs?IrtRmErP-JUHSrlya1eePnHm z^@uW3l+MZM#t74zKJ^!#W1X@bz~n2g8Nf~1bBdb7Bw$pJus!&kB($*#gKeyMgKHpI zpV1pyP}=sE^vDQ}8EzT^bt~k0P%aR%Ks$t7$XlUYH{ib!lb&IP3dP|XDzK5o1){T9 z++Ogd*bpNdk3trsGK7$6b}(}=JALaEW|DJ<)V#*s@a2L`m%Ug_4ILNilMnjpa?C_K zrb)bic=u7Q>L?}fcz@dqwT-bccl1{5!5j{jDA;oOc-ugPm9vPF%+?vk^7IPQun?61 zv;=XWt>l@@#)Itcx^>9GF%bBJw^+wSXiL43&P%H&t^V~QO!MjToalvXN>?pqmIp>} z5+(jONcT5r%!jz!g7M@IyZ+y`_RIEDqc=?+A3<;XX7>$kW1WkgGk(i7IG+rK8U00Jf#!(KgE2=zL zowpCTy?wn{V86YSwXA3D8DRj&jiluy-9pgMX1g`ZFY(Wv3d5c7EY!0g z(~OVUSu}UQKD8-ogL+P{)?d9GFiP1@BFxtG^PRUJt8!lyMPZKV8pKP2;mjF+X&FN} z7&yqQF+?mJ^`0!2v+Ab8kVOJf<2}e@!x9__QrLc$c_X%fCWHF*Bu8!1a8uymEF6K` zL4wk&990TJF$y0YFJLdWk&^cTm_xEJMd+&UBEGLa5Sv8denJKv@9fU_MTt0MBY*{g zK)%DjLFVRZEPlbE7d$CmseNNdvt2?vu6?*@nj4@ySl^&MCNcEz5bwu@LA~mczZTt_ zRKQ@l8Msq?0C_Rz>>0?335UIBl8XNuW`l5c1gDw-L5wpU}wUL~66dhzXGDJ{&$NJx*dM3%u}X+>g!v=+3xQ>xTWd2>#>%faz%IaT$XN~Basl>VZcXy_tTRFU(kxQ~O~EZ;vYNuNId27P{a1D!I2wS@fU=7Cxe z0oF?tki_Uej)w}@$0gb4>Bl1Y@BZs0v5PGb4nx8Dwcz6P9n~|cRW9JN0lP61#^u-M z1EVdpC-6iv=w^A+w7wqQ1v|Y37`4vpXkF6lV0KomKa!k$zJqD<(K}ok8N*j##4(s# zQd#Zcqf|6eWzY$+N0JB_`H6@e;ao;J^ijkRYI(%VGt$Y0ct_&(ddL=WG0v2I-RdRt zyF8zQ<(oS!{=6FZLNHa!)H2l)eMv_nJ%XV2U0r?Q1N3e?+kTr5I#T*H*iZCiU=TIcR3;FtG{Ykbo{tOFtef=)VJTxbS znj&W4qe36)Cvq3 z*?&ky1pRq>HJ<7qe(s+j&v{&T$5>Uh7D?aS1Xu*l1$uW~o!8B-Lt2T;L@=yczu~-v zvFrQ>VI8Fn?lG$);Qni}Bke}}L`1goiBD~hBBzL%S8;GUApF_0b)h9W>k?&}9xG6b z;Z5ou*s=~n0}rq0x6+*~GoT^yaLpc_c33dEEAJB!^+{0FweW`#hswRz;q{Q1mHmzc zYSxj1vJ>QE#BG^zVy|W)SJYbPOiLL2F?izbVCD&Nr{b^rJ5ZjGMb_2){q?**4@slJ z;IC%vldhN6Ezw#AxK26mqhW>T6Ht0LAifMQ*b~PY__L-LCD1u1ME7b8SU!@ra+j+^ z>D8S#tAu56i~hj?NCTn>9K881uU=?4K(@(u3vPy-$oZBqU)FA}flPH@hVUO@F1x;m zDs}~a&ZE_*S4$`bbIJx$!J`!WX_?1bV$^eVp3d-tDdi(z;3rk9~;T8i`$*afZBGIkn*AGC<|i*V$7tHi`l=EC+x z;DBk>YYn1zS?&C!os~X{pSnZl25&P6zQcJ@HvEKOt9n)2znpASI<;lJxuh%PyCXP%KesyNHxAaNGFUk+Nl;cy2NPY?|auh@35LqCO!j^2BFL9>dXT5<;jtnYAlXz5j}Pdg8K zUPBx}yZG2oE9ETA#BM4Q6O2;4#F&w&ER(daI~oKW-NkfxPdqo>zviSId6QW^z1)25 zTB5?rk6loi3xC9vm?n$$WbIf#Ac=8MR_gPPdlM72mR<<^>b~u!4Qh_{487~&duV6i za;Q4H3P?I;lqFw6= zUH}Tx8%x;@uK72Jp(@P*9nGB{fuER9YD!fEhA?r2R7P1@>qb&_kliON@}Nu5A3sZe zD3vYfg3I+qvToLscwNZI4Wlj*iPoGCSmUc)-v`1bkdR+`Sk7H&8p=msT`MI(W!AW+0;F7Uc+Svr|CAAIPCvt7>)R4^ha zB}>H_vvf-LaykRD?1!evN_gJfzn+++_?`5r>)stbbPeCFJ{W%s3(P0NcA=3DkgEHJ z#8k`&9h4+ZG%03DY24@F)9dO4NM8uj-GXn@gTF!KL?welE=U-&-k$eU(PnF4ujTmR zqkb>4gv8Qcp0uW>Zl~OyfNuCz>8u)jJ-@drH}63X&@MKc{rt7R7Wjj#g>_hHjwFdz z0ak(=tXU^oR)~99W=bVLhScH02w3*oMp#MKqK!t^5=NH_5i;arJk8G}FEw^FDM5|XAr{HYe*S8GHBv~cz+$Jw%XV`Na6%*2aWW`Y)zQC5k6AsD%)2t)CC|vwO!3LadtZKYKTto^>Ig`BH{l zwUarQ2?)W_#!`GlvF6GUsw21_ZV`<|?LL?4Ke;MUg>N$?h43B4chtm#1!3&SxkgnB z4~}^O^3QIxffF$=Cn4U0DY@|xgz)-XllTXZPyWV91h0*S6#N@K<)Xhq{R}D+xgHDF z4W4{)UQ_<)<}OykmBgX9N@&)b4OUXJ3twf!BW_cUJ8^B5osT?!NTLXT4fTQYExt;p zU@s%eMfg@)>Y@^ZFtvIater@(S(K=xyj{g zHL6WjCA;kh@huhjp0#ly^H5ZKCvTGd!G7s6@6^`&9e7Gv2PGW&jrQX)jf?rohgV4) zk!j~;yfnh=yMIyMDbMP>*5FiKBvoQ_sgFVP&c~}w-z^sB-LKl^!NGMtE=7(K)FL$s z!GU9&WarD{sNrQ=bv^!dqvy}W zJe_)YbAk}W>|I|0vaE5a?oNk$ooxHo^|$A)`Ih9zQLbw+b$^D^LljU*iQ@Jl3z2LRuc zqwPqp`5Vte8+Rg)f>_KMd%k*7K$Gf08T1(n6_xz7eIht9%&98$PU=iIm^|ni7}(?n z^%DhR6#H)WdGmN(q(Ey-zh7MVIhAq<6_()kcBd8{x$MDkhAP|(0Q)xE zL`I*#YB{bSqofypCJ#^Ky*zzK`HV{1U9_}E^6!CU$2w$YN7kdUf=wzX+P{UD1tQDw zA@KcOPyQjECEEjI$s(pgGt~P+Q^;HpEb4;o8pgsvRu3FY_I2dgX8{?UlZzQD17%w5 z=HO$maNuKTF%tP+lTXM8tZJNOF+v7ra<%!H2kU<4E%uVKOi#0gi@0eUXx%YYc8h7hq8P-_$CiQjNj$tk&M zUHBfhzWsNsLaM6k6;?)kPxD=BLPZQqu9xT`fV>eRT|uSToLlX#!v28+kn03h4@_0Y z;v4qnOeuP7(!72ZDmZ`TioK8zxe2#kCEqs3ef@IRW80TmOV@$KP4{rF$s;L)*vw;% zSUsPIr-!P{uHGW`7|t?S>DYe&bWR6Iedqzf6DEd>j${PrbId;6QNF(LOQYtD*uk zj4vnhR1EzJC%<6{(N|=MI?*cuR8di)ZPiDdwF8e>x)Mj}A;w5oXy~P%Aq>A* zw>ke`q~NyZJcyl~auDl`{k6>~q6qCwqx+mtM>)>Z9j;%nnH4}I!Q1?S_G+Ro6PG#8 zk&-QaKQy8#UQU%-?}_g>hy~IH;(8ezFiAr_25t zJ2S>j(R^g3x^xxfxw+xb7$t>TyMA!UWv`W3&c~|%l*YTYb@EJjvS}tl-C(BSYZTmsWTjC9p;lXW+sa6 z2J9t5Z2-G}XWQc8JGRxl&7}zqF&43YfdE*|I!`8DqZw6e$Qo7C=Tkk?5Y2hqljnzz zspzjU%!U%jZ@By$Tu5N$W7hpDg?Ysd*jTQZjFuYDJ^ff!>xQO*;vtf~860{m(I4UQ z;RoT|e6Ara2#TyDUHpBAu8vAu2pe2@x2Jl@$lekQdC7&o{O5-3J>UF$%94Kjm81l# zRPWsPLS*pfy)Wu!@a1zobrsZ*18S!h;VRau9|WO8Lc=&jMyX}8E(HCW^ z_iv?d%p#L-YryZfU~m!Q_FHM}zqBzJSby;FG=8UGCt5uh2#XkBL-MHzQvs5Al;r0+ zSUB`&EaP&2Ur)0cjWClol>v8nC2wLjPh=322;4Pwi~0Xhb-AmoHoVWNu7(l3fbVHKn zLmTwq+=p%FcSTe~DKU#$Gl~WRikKY?D|t7l5dF0s!m{sCi{edtxk?HGA#ExPGuF>W z0v0&m0Vv1TNeDKnTptGZERX+h&>fYZTEIaI+rx4_U2totL<)s|p)ZRYPz87di|#N6 zeUkDf!L+X?EityEu}M|!kunG}_yX!EK*3DoaOe4+C~(zFQT$^sap zZOuWrm|oGF1IRo+*X2JbJh2o%OF9a&#>QY2VeX4&rb?1Uv*b1;nw+Wlei@is-f&Uz zK_Rws2O+wG=+rp0_L7p&T56D*LyHIX^Yqian?~#rK*)VfC%12E`qZPOl#bYZzslmp zLf?(uynlsKz81G22qvrg_$J8RV0BUYTx6>V7qj92*us+(s1HZB0D^Ouk4 zs@~Z|>tsPy%1#kTR>Uc$6w2~Z_(dbsu+qn_6N+Ix)#|t$EQ|0|g1D90j4PB-dJ7%l zQDq3&S;AUq)YjYW8wS4^-STfe55}q3FyRde}lwE zx2Wj%f}C@PPaanRl0rlc>qit_Me6Z3GZ<|s;g(U^(N@D-3U0;aF&j8#GPuPz@JDLkEUGFP%F3@znBQCp3i07J-R^fq?KJ4~n8r;j-c;(ui^re-kqD&xSK@F-;l!O>LtsNW1D@=VRe0WJTIEXfDjt95mle>~R+Q zEgniygi!?Xwdw`lg8$vUUSD@c=%J6J7`-8WOhbJgVONqk+>uG_&6(N&U*sacze?0p>9IM}!csbDRyWz+cxGkTJV-_usjc~Y+SRgU3Dfe{6rSY2Z z>0N~QOu`yN`^+Bfj(W9Bya3UT;AKnawZbV<6roCx5Q)Ft?$4DBuliYg_+GqF?`7g( zkBW~UBespR)EO|?aXiAI^SRD*fzOytVp9q^HmVN9V%&-iR z+bJOEF>OyLor58syl{{k5y+o(Yp9v6&whiyVw-a4#{d$MYi2vGJG%H+P{yK-ncrh! zCGHu2xz6)U;6r0O>TNTPp+@qiIKg^)Kw-6d;a%aRjkC}ve_~M}a^F?0KRo&KU}dV{ z6_W70JE|P}>U->VKNRxvJ9%qg8`?%(X8{}NqGU7x=CJ++k{)`$wLf?+WPX96V}NR1 zXZi6*=s?q!CvASxUgy1X`U@0czX;qvRc5VN#t_&kmD+PZ?L!BU7{e^^>W|+5GY7J2 z*GTR9Ygty=7eK}Oc)}IQEcsOdt=D(;tDejmk4&&(#W9*9J}uodf;1S`Ssbx7H)vEO%U;xNi{w-Di^AStCf<9CZ-QuPb zRdJkeyV&NDPAr-_&i1DHx9)vMD{biqS@x3VGRxn5}ZulU_O!RA`Z`ge$KD zywa;!86o zOow6fnXc=am@&VzP8YAIqw4y@M_&wH=4T5Q!Z9)P%Nm+zQVkbVu3jGt`6ClgHtW{n z5?=I8*b6?*@+3k~j>brbojmcx0>AQL@pFTD>F}@ghUqr#+}GP$O2?*qSPx}FSGrT=Q5;a3x7PW2c|O`b~Z(e`b;-JEg06R~^q?*Is`eLf z3wouBv{EnGM+x`_O}q8CPN_?UHi=N9BGM1_iPuS;sK&-H8V-3riVs28eI74nV`i|) z^TL$TENd1oS%=Br9aq3^t^-wLCD+iID^G4(nkrNGtimsoEXlvtL{2K?0{=zoS5NBO zOK~4V>08st!7tFt=yk}K=aQV1G~}CxnJYIhn9riSPqZrBRvrIN?o*a}vMOlB4K0!n zk6+DHO>i4};qT<&yg_HD6StR5noJk^+M-Ltv9CQ z%HkaBTxLGFyRm`4{Q}Lt9rL{^c)og#pB_b(mh$uD;_h_Ik2R5m^qeJ-Ta}ioM7)mj zJkZPoX7L|nLT7Dfj#DkgFOz3ciz-sb-<^NU)uSWEHtZKl#xY1kmR?_^g*j9r!>5ya z#;15{9es-V!H-HR7vPm&mM5HIV*~Hn@lyyVFg?cH*;lwS1A!- zE2O`QSQbU?rGzsq48r8o^dx;~Zq!n77SA%RmRrTTR{`070%#9OLGO33lSQKlSu_%h z+p9q_&x_zN3OgsdmZrY{tWCC=*+QL;TmGZG?J`>F&Ad&78=CiosH%3F%JvZpM7_mJ zZm&+gAi~+Iw95OuiRVr-f^&)dXh{()nWgm8y*`QD4l45X@qo1M<=EC^*Diu13%4F1Vg|L z-|jS5!t+Vcq6_R5pjIxca+8dPQ)SaID|Fs0eRp<7?ZUIye!z=oZnykgbCSKoG3(1IF3vui;>z+%b>FWT9!1M3Nx4G04XSZ1c{>JM9;jW2+ z;sDb}?^7Ys#qWPyXZTVWlZ-(;@~D;Gy@FCQRp?x>3>6#R&SNVXZFL9*@UV>jiIyk>?`cS`A+nI1&VSqf za~*6Djb~v%)Vg3d{BofvTN)}#b{obD7i&Zkm|I#r9d>w3sPjSV=>K@pg9+`Ipvi6! zCEN-;CPG>c-tSEs*}8l5TB2CcFOa#J>g}1STYA2(($o3PmcKmg5xRk;{zilu?O@R= zGm6)Y3B?-8lVcRqwLf6S?`6i&H zLIf5e;c>R(p@oBjU-|pCvvC@vIi}NDc;vOIfxg6CHe{%x`r*}^%?x_ZJmO97wn(H1zWWW*}JWV|dSYthvzs7#v zAk?-tLDs7n;59eux%c=BCX!(xs*geTi`pMQO9;0t$LuF2xu_u!I2ey*TxGZ#x94Q2Guu^701t&$e zqrT9B_7Kb>T7>#1R}w)OIJN?Y;jwg|`8NpRy6kF%tIVSGFjiLCYctCH8!Ay83vM+5 z+WmAD!W>C=tmQuyy~!Aa-k&?RALEa>E*WvqkL6lwtCH2@_W&Rv_I`mb9W??jlT5t0 zm8%d742NGs;hS)w40D1ahpD?38Sf}z2J9#709Y|_ z%hIXISgdN662cW%8hG|fV19$W`UR>3&@;HPfb+jB#Z|MnCca^W@?>YsQSi>$yG=s$ z$dZOzY>@e6itq<&RbJT5W=ux|jL(A*arMIp`5M$Rq3grrvh=!ciGs7wOSi{%a ziX?0QH_}|R00S}zg$;Ji4!*`HLK}RWQg{G#aKaPXj?7@w4>1ra*;nAmsgxpf_x-hk zLpCx{F8$IAPZcr`=k&4#d{?Q6S}UEe4eQE^q??tjUrFD2B%R$rdPdIG`Uq#9@T^%Ihas4=1ltx4gO#i8!Uopx`t7>cahh7{a&u-_ivCjsHwm$yo$}ht*wt5<*&Lor7l+#ji zb#S`&$ho#29_K-;=Cr=PCOU`KHeP^qXK`=eaHA@m5a#E-&UwtE_0|$Y*(pJ+sJ?5e z?;qf&qDxttblt}GU1`jF5aZrPO15;V@#F1Gm_Cmb5TVmcboN8DlnrRDEdBa`PuSBN zFqtU8IgsFrXiuA}FIBj)`=ma^yp+vtPL%&aE*>eQh?>H{AXIxnt#~3*~cX(oNVS$iq&F zx7*1m@FRO&l5&rYq)#}L94kJ1ZOE{m5+y$?S}_(NmykQE{%-kC(u8HuDU>@iM(sd+ zuh~_s&7Q6%X-}R}(>DFFU~Eb?((eEh{iEsvlh!A)Xj%_H#e6x6@_C5f$*ccUDCuCc zO);SEcJ{cj>9cmd@sKk~tL@&Wi zyb9`cw^4N~F@d%eBxBoCt@Au>)219?M{0*yd*I*&nc?a$jxkS(ZSCyW( zfC5GiEU>d-%13-aEt)kyLiRnCboZkHk;~mpnxCJ>oJVBrS3x9kM63;Q0xAQEzEB_7 z;Veg)I#y6M%zae-SM@hZ!a)e754BL7gB>=N-kX+agjVEeFy+fRDM_D3B{|le3(4Jv z)q71WB?)jXzG(OXpzuQ@*r=~G;k|^)ZH_{S4EkYq+z|Gd`q4>3`{Fg7Zm|vg z<0~D)L=+*(4^`v9A4s{2VaK|~R3U}ka~k3hQLSo?h1OFNtVBtaxz21RPu#@?7|d3a zsd^Jfn*8yzB++IDZ0=^B8iFL8sZ~}RBZ&z46Dr6jqG6KcBrV4QL<#&42L!0Z8y<OAdK_GFO|?ErR5AB`5A^vB z%){++!9E`_>pu3zEXrT{c!%vNxx`oqMGTzQ6eUlVL6m1NqE9x+pPOG$>q7&@Z^FJ} zUtd??g;aKTNWh2mS(uWcn3dO<59#8JlrLO$3$l76knrmeUcIKs1kjA z-G1^hx(@F~>Z0F5_Lp9s!iVgM)TJ54hz@8R`RHqNYi0kw=AS9>_=+aCtM9>kuchfD z`nE9aY*S30FBYJ+P@Q>uY%@QBTchA2@n{BwPfJLd7$>zDE!D1p$c9-*I!E`!yd<#O z#xDzn8}9VGz$&svn0P0VU!d``($fmk&}pE+EL0lSe_Boy?y>xLPtMVOOJ5>opMTqx zx|8ZMg`@pbf}nthDXkWLxh{l}dtK!DjRMj(?A9GCtx7MiA(vZ9v-79q6VZpKk;x_) zgEEE3Jf&8}V!;%X3Yk{RGC(@QwVW(&$+Xl$@FTf%I!Aco= zc4ddxk5FUpFhPIL%rs9#-TGz`+LD$1eyve`U> zKjY4L-w9ueRD=!dk$J1r#lDzpyyk`gWZgu0ChWk#6;DLfBtPjJZcJwCE-&AMEhm1- z6t1J0#qd;0!j2h2k0ATU`8>+bBJk6b>k*QFmI6F8fuuw?Uqf8dZWc&CQFgZ z$?vAzNdA#*Bw-1BAd2ab;v9Oh?8_@=F`xhXJYN7|#r35HB8@xltkcN1g6U+3LV? zOllQFn2S?lvFa42Gq;x*mjVhT`iKam^ZTP>yRE&S<|jc;!&mw-O+`Vw z)4z6*eFEDD0426mu&<5?NQKxsR0ZLjbOq$HJ~M2V+M+?}Zs%l0RiKy(9Oq->6Tpvp z9`8Gstn>CViICJv?8>d#_)DwSHH2hUuH+b#czm^KWO^ z88r~<(qNa2&ihs*w*{*Qh1%7ns%T}8p*dj!WzIljbSZaDI%GlPK`hX)Mol%fg3|^c zw<94Qf~P=39^d&H(m}3P!tccI<_7y`v47Pl>E2qlCTQ&#*F4UYyof70op@_$vAu?( z9$nb>+TActT^(9t6qBSoD4+ZWr*dcQdl2E5Evk1&%Wf!aM99O|acD2RN%-f$@#=)} zsi8!k-B1gZ4>PUFyT-B>MS|ZLu)EgPl{>W{j-(F5}akwx%uFyKWiqB<> zcQk^OeWx#Ne$Je2T_R1bc#5R;A z(OeT{Y!ab|R;S;b9wBaz!_Buxnp)k=MjD-vBQ#E5^yp3C?Q@`8fC7OPdJ4g%7g>() z+(i8m9`@TzQ?}wxDiYko36@|`TU+>M9-cIwLTn%+--zX=>C#`TlXoA(F?~e(Y)OC| z6H6khPn|b)m=XF@2saHGU$}=zV8g=a8V zi=On2pmL;dlNlWq?EM$~SfiuU;bIhu-%+e~;7n4C{_hdZYs0xr>>1Yu2L(k>C4;tACC4=jP*cj0mi-O*Nerr{#b<=y4=)clzpfqa zRrrRAiV*k_+JsEEzPxjV6iRk|9Kwon@yvQMY;tgNd`(B%EAF*GLIt}2#lSk^^{c}D zK8r>*RspkdO(nSx^M#-z(nIARl3AQdh#&-|XF#;VQ4VhS2jpX?Gf5u+AL!RPKmijz zi>h%JHgHsD^slWq^s?T^l)y>ouFq*8nZ<3yHi3+NeTLf5U`k7d@w!bMfKTjnj_N{` z7XN9;At}aiAFy8!@QKqy1Ia3haq}rs$$LQM) zXbeh@LVyx1!o7tHIf(C`Ox6)cTmC|P8gC5 z_$?l_f9K}!0;fQZav$B6z@Gpz1Df3YC+Qlfv&(BB>+%IYIk`+C>4@AQW03j2x-bZbI(;0Et6TFe9(B=782T$gcyo| z`V3Jc1^A5sC(JX)pN-$cHm6t1*dOZca9SzTO;~xb>8fySTKFa zZQbLM)S9J6-M5C8x+(pc9A9s*t9w9jQ*(KwY+Ad>d_Y9n1`BYObHSAhZ0X!0Xb9;XKil?9F zA%#C_3d+a-YfW?Rd#Vnij=?fa>GaT4E~n7A;ApNcI@Aq&(M= z4v(vNqDVxlP86S-M&zy!#YQ;K+@nx3n&d@JYg*H+VzvsO`DXSDq$G*W36nw!6*V0h zuC*-DT}d7a>re?!qW!cDk`BmUj62Znf09BUJ3G?a6{4Uxd3-xU5)#zT38$hU4pdB5 zo$7RaCQ&v$#OdSERvascEUWQQE4S2|{B7=l!*|$`o4~jctudgQg6RBvLbQMbE7G9& zx%d^xS17|aOUYgC8jl?SbLn2C2VOq>=Yo*c@I-jW7aD_n;ViWu<$i@bW>%Mi`3j!C z)LXn05#j6=RG34I#WCh(l-w8`MBcKidkomGV>lEZ)}t4V{|K%4=w<}idwO{}MRX2? zYDzfY#Myk0HWWA26q5Ob-{h#WEH!{%4Qv*EkUfKCo!PhYGK#4`&ZMQU9WUR{F#Qmp zJQ!8~)YuKafEH3Wq!iL@h5Q;N-J*pxLKdXciMD(I7i|&$A{t~Oa6GfD`nI#`7f1#q z`TR9PVtl!PWa?6q)O7(cSN<3bfpF57E6lwhcr9@uje(kof&Pq+?9=Ifg+mZRxKtNR zXe2<&T2t=3jJN%}tZ*bp_bV!n0a^_YRnF;&2JoH1rPMxmTu@YnR^oH*%oQXA_;$q- zz_)XO3z|4c@`-nri11l0_YZ>8d$j5O^wT+sW12~_-n>6onKTp!!T!@C(=QM~x_SAW zL^gsb>b}Oq%cmFiodXK#Rec}uckzK0Taoo|Z6YMtn6$NHB9r_z#j}Vngh+6-b*+Z> z$p^w2K2iSg(t#*aiY)l}Wlxn|;oLe7v1s*h^Z`K+(5u1M_o)EOT4r!cg|K%yy#H4< zmhfHdPdJ;K(0D%8#NaTj(HU={a}Sus%xUpPYIrxvEaiR$LNN_ZKFZ_=I@-EkXFr7-4Qm5H+mKq^o{3pK(1 zR`ftneeLt);~pIlUbUuXX?4pvBN{p-2J`prgTgR!U=*9~3D_8RKku#XRlEJ>zba64%IT+uEb# zXdiEm^RXM?R?8)OUY}pD{sJK^)mN0AE6^<#G$gk^;+^h&qE#w_DGHdYXijvHoamF| z+ekRb#6ehs;DOawH0S38#K|wW<~0pY=0F2#3T%U$sRd=j0sZHh?u<;q)Jo`MNTRY@ z43B1!v;4Wg7(J?!2@MREN?GcVcrk;n5M3@-Bwvw9^aD>ZII1%^DKA~Mgc*-&8K*47 z>+kk->clrWTts+QLfRO;U7}ko7SwUVGKzur9xqrMgJ-?^BxG;svMXfLdGl4%*Ho=2 z(c7el*O9L-;Xzg)|8d1P(Zw8+tRtysV^b^CZOC`tAK9&{DV2J`s>at)?r279L+h;i zD3NV~yOHTltM7rDmBLIP1#l(>{kE;3a#zA`ZtsZA*--LIDu>H#xY3W%2Gagdj`wQl<_fzdx(fON)sl-T<|FUYRd5!$>|RtpMS<&lr4iJG zyjNbR5Lf<^bm7A5-};|=YJ;>K#Wsl^pXP!KN!fyc6q)?%vheAP%g^tXBQTJXpMPBD zVRW!3JkhtG3kM|xI1EAE1?D`(?=bf}hicjoa*TW?JmBP^u_Dp;+1#j;`TZk}EuXT@g33g%m1sPWN0MNGfzePz_m^3ZD`0+^zl>sM3z| zM0j=U9GRh4VvDE4?=&4Zcof%Ce|u#PF5<<5<;AtK54pbq^qzWKxQOoD5_`D`%N;E*X8OE%Gp zty=KX>y}ZDh9ENV0>jLOAsRh%ZKJR4D5p0Qu|n30`FpkDFiY~FzeL=mmIJHa9%LK8?Je6tc7HcO5L*3iGfx?1^0s@AHV6mA>h{4|c6Gehn z4x|CUo-^o&rW7nt!MxKU_{*g_y7~}+diE?QK1`jUlIl9^9PWUVPT#4|CXiC+;_lUacLKh+#dt17X-2LsX#{@mtmKU8h{& zvO(0@#-ODwc++t-`L2NL;`&@CJb#;r%+G5nDn)dOybV+j_lD>P7z z#QnSTilwVVA6X=6qVa4r5-q@GRd>hCVEi$5@fKk)5Pq?L$|V)l#{CqEOi4dqhc4@e zH&9dd1xNZqVk7lOX||YB3n_%D#GctZzLULdTa-}-6q8ozg6>^qY*~gA3H`5`K6m>C z$_@MlvP?fine1bv=?}LxM;e7Ky*H)kYvecyeD)4Ho3@Ns>{J>pECrr(ch{`cwb7V& z&8LjlDT_?`y1P6eqN&- zesPFXwQvyT(`)p21je+mQiNOY*`>h5wul~Yhl%YxzQp7yOf8e%pZR1sDE}avw%qf# z$vLfVIu-`UGa-Q^>kkBgfJ6}L$|in+2%mk2`ED+E{NSR!O1A2XnBLky7}miR(;07^ z?xrHAD|HvhPyc%Ek5ooO`xQTUu?v{w+nJ6)V++0~K7mVr3{1-_9Bdmb9(jg8FM6J# z@h0d-_HTYJK#wx=TpMp~V-z@0Cb5-{*e4&3>1|Y{eTLclq|=Dwa3gCQk(~nq1&xcw z;KI2XOuyzGx{n%?(&ZduYd|1iT^oqxNY=GaZ*9Ff(DnVCPwE7!!r6BuIHR6dR zCD|_hryozeuAZBhLyGd(4^?A<4vQ}YK1dGQ%#s}b!Kk;l^-{fhX%{jiIvW_m-?8hE8TwvP|JssfV8~hh?##bowYb@Vy0%)3wTpJzjfXzbLcl7S zDUf@3Fx?_19@Z<7gV#$<+r5Y!SDc6}LbQ6$C%o0e{ZPa{5;TFu;rl>vHFOoEKN`mAFU}6Q z6OEp+*rV7KL{ZV{ym`!g7tQuOHeg#%^0nEgZvLG*AR-}D18;vsh@Ym!s0}Or>h}0! zz0HuFW1Ry)R} z0xa-ITQOK>NLoX2ft62(LqlOItJrJVUm&!57lByfahERzjG>)a_exw~7lMNnhvK{( z&$uNI+;fKHrWSDd{;7vntdXdtNP9heN2|kOM>+WHJ;jQ;Oz-}%(Py~8dIVjzsPqfY zh@S%MfMj=el$d4YNY)Wq!lZJZJAfW$i-17c{d#U2+%^EK3GVr7aqX<+@VQB7>Mlf7 zHB84aasV#+U90+~!i8Z&lcJuvyD$6f@x3HfTD{0&At-kQ_gF-cCP+dCgO-VWK>es@ zZmN(48s*e}Uc2EdPS#yV3&Wv(^oHrdT$Dt{fq(dpzS+q^dzl4|C0;jgDqbbt`TFM0 z;`gIiQj(Op#tovyD@P#c^y-WrT=*d3NdDkt6-`$<#r^w22UxBR39; zd33FT_pNBf!R%kYXjBvvC)M?seu;uNG1cQGOdKOSzZ0%VD)+a3fxe``f`QRzW<0+0 z;Jg%{W?zWf@hpqx6No}-f8IMZx4x11Kn`;ggYgOBI+m$_-_`9R!6Uj-D3V#d2uaux za1knp)u8-!&@c^)7-LcU*lQf=A!3E($f>Pomt9ZH8`Y5{VUMPROb0XOaTBanhO=9( zub44G(!Ji90+Q8#rSPQRIw=y&qM+*+XvU)vIYxJa+v*jQfhrR5vjY@M=B*BHhk|-B zxVc>*9)=f00XO%v43Ia_dej^udYz)gI^Wp1*pm936sR+7)%@)?->ZPG_{7Y=iBEDkIOH$^khGDxjNWy!}ut z5-;iX!Gj0cvt7C|C|~}0;MfE`UxEeL_RmgavyG4^7&%(4#Wg64D+~Lvf|km;_aiuI za{4`@Z;U}t!Y?)uCTQR$JZCTKeoJafAJlO*C9c+So4MH`OB>xJ#l{n2Tr3rTS(4P^ z?&s~dc725X#1NJO9m*3VZU7bqr%la2<4Hp5iaRjSt(Q-T|42UcU27Omh8=0A72cNp z=MANd&_EOM8}^?#v2}iLXy~P}rOo+C3ciQ9TwznqK0L>eV|t zR^by&9jqqF#M(FUk8=s@&kUE&&i3y^9}+(@_iySs=-T8#&^)9)dhn(QzFv8)4Kyjb zgds+7XXf26+Rk8L>rVgZLb)Icxj|{r3FzrYH3aMMT4RuDP4;S~@F?{wfz|nU$_Lqg zc|$1y>=DMx!wq^pxmDjtzjO7>U_wv7b>&lfCVCN-!*8EGlXUGP;$Aoq?Or!jCc8@VM2}Hb0$%F2gEsK>Tv5OE%Ai+HBpL3Ei#g`Zq`w} z6?n4bmYSBvQTzfMHR@sE1#h4ELvJJj#8GwV4eLFBe!em;cVI*k)j?6I7m-6-$q)F) zf2{iBd+!(TsmWqCgOh8GHF}8Ovb(y_3hJ_(y^J<9DRc5g%+dUu!pNGIO>3my{j?AE z*GF;jP;@76=930MDP-s29^N1mlY6ZlG!0qx(BL9Qz*7PCPK$AX+B`G_?lLR6%up0w zTIGPGt#JQW&^jVS_$EBd=@o`q(&^jtWeH~T6PYv1VfH!ry9)ZNz3~Fm%xo%wtotzY zKS*x4WeEe?5RhtD1Qf^H+6*tq!nI{ux`G$18v0UHWKWPf)dMch8(n`oBKYGC_m-IK z$mpd_vsV#7rRVosD#L!83eYcg5t!RXe9Eot}Kj zqa6XsAJpDE80%N%}_R~T{-Y8WP5#f#sIuEDwyW00h-e)wZI%w*%FH_fv z{d{LaGj(lkzudPyD$3y?33u&L=C`a)C+WT&Z{n?A;NB(9uGE2J4k^j5IL}~L?F+># z0nQ{ZG_DQ=auhZcHZ+!Y$KdHb0JvZo$CAp4(|VBsT;De>6;J=p{m^dzfFxKg=9Q>Zs>$=g%e%n!nfu|fj$ z(pqcr2A__T!OL%rZ-@)o#s3PsNY&&A=~;r`zf4FOwK%4szto;TN7H#21_eoA?5u!~ z?;geQCwHVMO679Yyr`Z*H&iN)nJ2uItf$-1!-n^qU1bQR*3gt^l7qx?@~ow}_9^K1 znm4?D4|gc*&Qe{FzNfAEF#!AaIVV)45#6`2_wb+=me&{|SMq)L@V-oR|Bk`BLuZGA zbd0sU;&2*|+Q&sk@yyL|bhqx8sn|rc+H|q35U%^f$-BWz`Yq` zxv(SG*z~GwRMxt>3BmOK zr>qzZx`4fVDIC&!%2EOCRJ5dJ`9EEJ^Nk7bOVU(-z|{ztVnz;nfLNn4*|4{<^q5m6 z0!?UqZzzIMgP3Va;Q z801G7_9(tutLp2kSNoqXNc#H416NidZHREaZ8e*&@TUS7! zMANoRbd%sQUWmiH=u2|5CG4pc%LZhOtxm9lu`Aqr*2@1zNlDi?%6(j{I!*7x)hj-8 z|KriPii`LKCTibLBuud~9#m71MK{FGzj3O+=<6Zng@>}8qF>zYv;j!{ z2<5yaW3vh(MIX8{%DNbVF*p%b9(7Q!!L7V`LoyuSXA!Q1rp!y;*gv# z{X*ijhRUGWx8)tUp#Sp6pl`74q8S$5fd{B1j&{@`%%A0DsWmw9m1h?e(F|#QbNMgE zBt^>-_@I*T1(uqRY@DX>lHaQX^ODzK$3ye0%j?LPD+7>oq5uEQuU%i@&Gq?G>y{#J zuRc$_3VZtGZO8Tg7tTFyg_Eprb@-^{laD_7KMD7Y=%M`&>jzgP`yhx&yxXkk16Rlc zduHjd@{V)ynUE!=?K9e3QRr+}qNu`bFV zadIIi!v@Amf0^F2r~sxI`g;Ll!Zo--(ADaSc|n5m=D$coQuw=N<7x;k#BW+r-* z!y9Ui#n{L%{_cc)New~x+fov`TB~W2aWJVdVHW1KP86`N4gP%c7^CE7@6fa-xJDCf zsT+1;jI)Gp=T>3SJQp=;uB}7#Kr&$>?VQ{8abjgV^rvC<3Jw+?ya+mu(hsTNA8a&N znRhRE_vKlt{22a&Z;8J^@or16b;Eob6CH~ask{=6UILdUu~bP&X0P9zfLugX-nIk^Rfyk$QNbP};xm0+y^=feacj8s z;Y|AlO5^!*5E4O#@!>xs*Wc{OtDj_9Z7~djqDk#E32AD98TwB>MpDnqZ*F%>b{*lO zTZQNT&wH|+3FM}h^32uo+?nYHH9F9X38~SLdc*dRiK%rLA1`8j?3Rm3JEN&^$q^yC z2>rYfbQS2q;TxO_XHs+_a}(vZV8o!crK6#Y9Mdhtq9u-;D|=-L&?lM=@Id@~2=KRI zxFWp^l^MUlld9m&Y6%W1-5bxvruD;AQC<5no`4K+Jt`vyRv)!~TGQg25)z}a8DUSQ zDLf=2y_5u0cGA}tpnbq!5l*7w@eS5_buaC#3h1z5OB3}GMEYr#!(&4 zzNqgyd@DRT3>ybyq30stXj|Ly=tSKzNcM4ZGduD3m1BA#JfL@8j5be4Z6TnDg)hD| z9Ph+b4k*SI+1m(qf&~2awwAk<MQkv_eyhB@;|Ju0y+lZ$)K9SUQ{38_p8u}Juw~`a%3~D75)%91 z>E*-2b)4-;Q@1**!=)iNz`Z|^{7#mSMBg(gRl^Lh@WflY$J7a<>!~#1E&FaF-N=&M z;+e#A9EQ+)*}wTPsP}cS@0<|>T_S@1`|gHfYp1!Rrg{kfhZ&ZYpYV=i`Y=oCt4(9+ zF{GTg^M@Nt#dO0FG_S)W3L^ZQQD}7Z@w6zppb$)pPqa3DRkN=WwZPSPW6BgSfjq(J zV>xsqaO7ZJS%uvj$r$!(ch%(5)b1SF&(yt#UAlJBH!|$f$cB%D4fF$tiAkFiIGbxC zXVoBzoy!fce*nLw)SndfL%pxqA}gz zq!04apQpekVY*ppWlyBqj%LP+ROqPJ&&JLv4&yl|{hR5PTZN5}W;uz~DKTlfO@gkg zmb+Je?-AL$anu{9CywErRAv&ze3zg3KdM4fk4eR?LF@04eTC~v9oFf;Wkd8ZBATS!5k&(mSFw^hx{UaZ6V+8Gd$&$!`<<>El2D&t-pncei4D zOoN1UN%U!Bg-J)+*u}mi>h_i%WiDG~5x(AQ2A?0uCR3BSIJ~)%?CRe-V$$3vNSafQ z%wp&mC=*zxGg*V)gIeq;eKdGQEaAR@d5LZj!r^>-`s4Y`z3MrOpNV_ZzDBcVtdXE! z9yTsi$)>0v|IF1EW+h7p>?luW{cjE|lf>NzGti8iSS5YlyqYQbzr2lxE(FH-bhTg| z9o_D5PgH1Q5qwOi=F+{lD6-1xp^7%?o}KO1^+Lbl(FbOPlAX0#=#}25?O>h7cAuLE z(>9?9L$>|QO_x;n7t+vnLgi8zkv~w#xHLxlTbDDWB(uj!BXP|aC>Ti86qCNTP0hjH z>^G0OL7@ToWvQ;z+@@AhBD2iqqvDI;`XVdkGMKOdZU*x6o=ll>q^C8^z{L4smB_)+ zijvCHa)MTBohK~R^4=p2Wx}wi{`wu3HF%HD*Samiz5Re*o*(C8y@^@Dpe75f5*_y! zkCFs&d6eB$9|{S~PV=e|fX!mY*n{9oaG8qheCoCqUm+Dr>V&|5BY>$mc%T%90~0VblzN3zQ~YAOdM= zNGvRu>YLZ}hbr2la7uX`<%|?w@u0 z`%*xbFo0Ht2p0;J^8nQ9r9=S-n_1U@;HPC6=c+xAUetgH#{2C8jHZPLRx>d)#4A=) z!6b%4*1mezb8^Z5X8?Yn`#=PXhRbL(b$qM%=<12F=k573R6DhX!PAKT9FRz4$-s)i zz~k%9!xzJ7=iJ(Jd;9-ytFDMQ>#5X!T<}d%+%L!M)Cp@1Ay0JoED7NBj^qA|^z%bN zX8C>>|B}PyMoQ`Op7ds^SPSE2d&Gas)*aKO!g{q3Y?g=-qee`H=I@5~js7 z$-PU#s7V`~$aq`$6LvEEBL?V_{4i-P8JnNpS08(vIC<26BqM>kfm#Gn|LtB zjL*jJZcHZZO|C!K^IyZ5eIFlf`xgy~6znR`eo*>))aU9lQJ!i(=KbOGe4+nLG#7QQ zhUn0wh15Cm5bYVCW&@K=$fQE-ONsC*^;kr@`H4%oy!hYd^aEm z^xHr?8t;cl1eiffME8hVx>b{dbaN-|xI|+{CYCH0h1^yJh0mKHa>lZ95Hbs(&tu*l zjn}w#-34|3g*Y=^4>3qWi7moHf<0p$4q*%*91Duz{aRJe#TzWcuZ8odo{Hmt0MT)c z+XO~0-7LSnqJ$rQ|1284MFx3o9(!C5D1tIygN^W@-V$cyl5&3hsH6ZA$6diS{^h6W zjfeyitbON!mz^N; zov){ZeTd0G&%Tz^fyVWc{hBW-k}9fU@8sg4LG3M>Y%h-N{Aqwc8M>JJ32tk@Pv5D2 z5P2p@K#V-&+y-yu9o!>|2fJyvZHCHdw4qLj}5! zx2E$NpMH2%SRiga`lRZw=ji&-GCZB;cgeftarOFE#Gf2}x>*-hK+~U`6D^nu_BVT1 zlVE1?SPe@b`=QMLCFghEkZMqS-0hgpdt-ty{-;f6c_qvt!e( z3Kp9$V+C`kH$tcB_`wN;n)E7oJw9e8i6a2nSH$HUV(C1uy7vJPuqav zmwW|LsOV>GMi5E6Dk%O1YRI{8t#TM&!v1I`fvrpYxRLcr2w422!R-_-e3uK7iHy3T z8kr)A8|=fa;uY@+9TuxKrSWWgec67>$+TNtEL?^0F?4S%0@i7VMI5J78n4Jxfa;Jv z1Ey&a*x#bf(e^uMPi;M^apj27W5u|z%uKm;$b z;1YtBk^WxHz*bW~WkA6t;?iAV6-P$&QZS{x=+)Mo;$3d9Scv7f6Juaa2M5ei&b5NrY>qBo zbR#7~j2>A`Bn$`j7{LjBNUqTRG#|sL!Dh6Tl9PWqBf2Jam*(ojM#>R}itK;68Ih`T z=T5|5b_Y9rk8{=ye!~fbn%dhNNP+U&OV)0dwkO}N@gt*t!!eh6TYuu{pg+?182)6a zQvsBbPWK-R;=nksKIQ~7>e(^hk`Sm9e=PlrAfdRWGpU#b4s=r$$~Ck7z}c|a-&gRE zSdgEP9LN9?Pd~9E?|cmR<*@Xa&j~b#Zq545vgAH7=0BiE8WV&gkt?VcgNBMA^0~b5 z;m;EC0@)N^@qZws^8#so9$m9JZt~~N-an#*J2C?{s5e%>bHsSa`c0@YGcBdu;S zVR_UUk4AFhgf=@HZfoA> zJRZIsa1K-c50W}oz7Kor3ju@-9Ea1k>AGx#zwX}~qU^N*x$@r&Ir}59m`ouc!R_=2z+z;_jR0AG$(hBT_cL@0| zydy}{Ql`sO?P@vSR?!?T2b`0`!zVNsm58;B^&7g(Fl55~NHFs_Wwa1RaST=$$dStg z7n)ztbTga$ScEByU)wqMEZq3>n89^S@fhVjUg@}#DMCZ>7c>$Bf#WJz+Yu*j&l268 zjQZ^GtcXu`f*Kn*&byqJaLf?{cFt`5@VB!9%0cf+sc(PFbSF8g&}w+9i*O^m_zIe< zH1G!RJXiJ@YnX$np&&R`?9*eciyT}h3bIIPJ}pz&{Q}*SY<}|#^r)_%u%27L2AY|V z55&6Y@vRNOQ-9d*!+<7~=@_Gqc1b&Y=2(h0O?wS2HZlXc1*f6(nSQktAeNfP8y~c9 z7wY;#GjOt%r2VPS6-^-ab>g)xEoF_;_fOmrS)Y&P#e zzH{&AY%B3NemSt`R*&bbRoz4EN!?)OC5ER;0UzqK*B^KX|ou zcqak-$m@RX+T{f2Xh~8c13Vtkd9MI&oxHfxuvDFMsShp=Q;uLz15pJ^=BMPxhj?UYz{fMtme3ciov}Qn z1~=Lo8=fr=n2U4c(r0ph{+wRKgTNeM|v zq$IMKsHfKsb=~m8qj#NNhdy|vc;xVj$InAGi#pl+UEpD2biM)cGi?=OV-4sHcoY0R zg}0nsEBoVt1Ems*Pe51meoWD2gIP?ZqVMRBw?!t6_*Ix5XHW`PVwQS<^NG7rCnipW z79v7G1ZD@E_uvs|y+`LQ#Jn0xgdB>f3b;Zh?#3AU>n^cT87rQ)aK3+*Bmdklke10Q zAP~a4Q`1WKl(`jv_>$6nX}T8GLE%(m=}`mBp*N3nlh!Pll?{ClBsJG)I(kS?+*33a z;jFRtZaw5Zu}BP|W1L?9_^sQ-!Ae*&+>0{zUK%0e(_k)1xCeaVTF4t~PGkZ1eh9H> zEB3;31*RPMz?385i&2ILHO07^|Ls|De%nA?4%by!az$VJo8KtvZ2o{N_IvvmMG4LGVPVI67wiT)UUM8A*XWS90E54~H(@z%`s z{G93WMK9>Yet}8{he>iqy2lAGJN%qhMhj7ijkgWm@Er2ydUu_MJk{-_2C@7PSYVym zn>s2c)mR0~GsO{v*9CwRik@u3XP+iz#93cnm62glcwonR@~zA$5Y+n(LY+T^4~q8Ljwjd z-B(qAJp1@Q064A=uDU4l)$XlX7cVkw&PvP&1C2$24r%P78WT@_YGTprIuGY>^hd+r zLQ_SJk@wDa>#%nCa~>aMH+qRdh<});QGU(sNi_E!wpwKavjm5Qq zyVM=u6TD=NF1I;p1n|jbH)BNzxXP-CfCG+ zH9fsz`>I?V)KXt86u{#ttgO3nd91zki3!+X|OVH{_)LOJ#et6*blQ z=fT{5JztvYLS=we>^|psr|#o9PZr35KpR>>ppB40ZhggL0-2A5AD3Q#HukfUyHB$XNOxx7;~5?HsE!Zb5WY_IX_EDS(s z`Ee=xF#E)Efc#ANCgKXdtp@7e$I%-O^#Wa)mSlIF7uPy<=XA&v>wNd|CU8(WHs0W+ zoFFE8mg{3&-$$^Z7bObQzKD%hX&p*c%}x4tElTokv1V#&>g$(L@tQQ>uH{^*N?uv+ zpJPAfa!#i9y{BAeycRKj;HbO8XbfP91 zsvg zwjd1*n=7)9^p(f}kvxVz%WkA&yCHXW))~El9pB-fAJZzc-Oj}N)0q_7IvXUJB^y<4 z??%bnRJBV(MS`lNhQhf%@T|nETnt^#|ITqwqw>P_MIs^~RGuyn2XWQ!Nt=COs{-xE zw0oMo5#5(3BwjYYda)RA$(F|yJFL}=hJaYG1sbJ1-ue|-*gnGTMqqq$R7#Z+%x@J$ z?cBET72MeGo~k)J_$g%?1N7rr>X5XhuY5)wWnNo>RK3AbIUqd5)Nz0Fu8#7S8_6k^ z5S3>0dwAiFl-Igs?7l7tyqB1Q=KKQrd;1UFYnT(Ovpvp4n(ebVav#f7=mp9TGi`Web$ zoUBEJ7HP#N4xQSNS6(_ps;Z&>yin8pJ8XUi^OaxqotPlUGdx)dmbocj@Nq*`QfgNFv6Pw5Wt`K>u)N?8wooI* zaX!URup)@a(KL4sCxnpsha$}-qk;GgN~c@1xUI?aV|{qlO=x+Kuh@kA2(AZFM!yG= z3j)4=hp*!g9sl9oH9$b+Cqm(I-xImk;09y}^%Eznj5aH-(e$6iuaDC<-f@{{$-a=lRMPe$y;yKc-kf`hd1*Ju;Sc)N8-wmtn~0n+ZU{U zllLQ+IWuUp$y2Zcv9xOVmHkr4o`0KNThL%(aWjoTbFYMW1z#3UKgYQ-I>iW9z+`s! zm1gt<94NL1K3EG*wL{U+0N4;SU%d#3!s%1o-bLt{hVx2E_4&mU)>36MVJIHvGtb2G zyV>#c#`>-%kgkUc>&Snb6Z&LnSvYj}PP5$5{b_N3g_}-AXTwHgOe&tx6H}Z?V^Q*K zh`sC?#Lzz4o7r_K;7Hu91+8}p^Ig4EiAfpwX!-S?*u)E+zS0J?x9>WHe~PbdA5;@K zV`?Uff2;U?WIg@@IRV$v1|1idz)9@a?qp6m{p{?I-3XTi8%WRQh*aY<;>iqk@I=Wy zb;J>naZaSTTpMkCnUEr8+UzKa7Q|~zuwTr{63sWPYS8~=-ZRfEtek;sL-%XU6Hk3l zyTM(BIC?{X#&zUgW{8oTphecW3M-~*^k{iHmo~HXB^z3)o|73q9HiJOTLEO&)Pq6T zpew8WE|p;({WI=or`IrX^37rC(?o%H&tiCzmRJpH9} zuUAAT8TC3CAGP`TRIH~Sxy{(q=H&f(q1-!#>R!|}oPK(*HLN$|dUeUX)jy}=6uRk- ztkslysWiH~WcSFNvKZuZ6t}5pjOu`;Gf+G&G4nFA#9r4{*&2PcmT3aZ5tikL^p1wR z`GB8Hu_JRqZJ{nY2fEr#9jr$}?vJ1N9;$suM9ovcrxJYq2`gFgOq=WtoOebaXOPo+ zsXl=#KO!Xczwt!D^0wl~`=?OO%sq7lQQ3LDX(ZHxzp_k#ypOSN`DZKBy3}=briPs# zpASH5zCASxpK@F3(J3?Hl{ACpEGKmof**b5Kf_W`q=)_ZmZa)q9CMHzn^xGz)jwOurj(B(@h!p~&>5~o?Owrp=%%U!^gn*z;mjhuTr%Z=vO;Lq++CDm7!8%@pR&yXuxUBQyxDR-#!5tge2x~4N2d?mJOW?Ds^ zL;5w(GqJBtzSP0`ssb)~S+`e+6yKwN7NZI7UQN01QB!E6CQ7EH=IO(rIn(+&-jYyuhH0sK)eLTI7@Zq4w{c?$US)EDg(jx@Nj!H zgMTL^Ci*>l-w_7Jl&wfpuH$Jov~Rx(4nyk{g-2f$UZh#2Fp5X<2NHI&lMz@z3&yaW zGg|V|s3Ro*_G&4ez!W<@KU*4K+?4YZ7Tb?vX5T~Hj9ny3&!?0~g)~dr&UO4ui0Pmg zpIQVPrU{<+`f`eRRth+|?e`szq0I~@XF?|;f|>a%8oHb(D>IE^2FL~b$1{$n(>dlx znnnX!Fz>Shht7&__gg=)DpyoZ5guJoM+vcdHY;49x*3*p+l#GN$X_zo53LGYwb~4k z%v2`AqA=U;XiOFV+1e-?*N~GMXIP(2t%w#z`{~mb3LL%GC412q`sV13{!p~nZTO+r zjkt)auQlb_gmaKRyw?Bo@MKx6%}va_5ic`-d(VL@8clZkZNVk2M+uG_DYmb32%8vV z;6^i#TT(VUpZIa#afk#nAbt+xE|@h81BW_G2FPGz!W>-T4J2nvoMX$^ z`jTLMy9@v3r%0^Es{~_=I87?iV?gk|)uPfszOeFVA)TJrke`PnnR=zies7*hIIraP z{G`l|82eH*vKC``*zP6m5_Xs!0F=*n4L{iRiLRJz{IHy`z=7<0@y`wnH{Y6x;2imX_k<0>!>|#1;*HV^8K^YgRZ8sYiVbRY1#I<`i|*d@x#SjErn<$8lphD4XQ~{P z8zeb-JbEtLp@Zz(<7Y+B=h&ZrRVe29>Z5avca8;{2XJp|M7q)C_*~a-0uO6%;11;3 z*nMn}?fXrK8MgYuR>CA zpvf1az7wS*#@$(|z~T%IaJ;C$`HkQ`#d$I5=i}+5V~;VpspizCWN4S@F~2sqOrAMf zI|_S>Z&vh|_!xaY{GCX}<@U!)X-$#VvUk^g2GV5YZMKr&PC3Y;sW2ttR`^#E{Q{kM z?bua)yTtp=Y5~k4 zj7YU;{!(Z@ab~F;1zU6)!fkknR>xHUL-1rLS$cobijYiE<)X>$xu-(<1jZZ!?PuCF ze}NV*CPZwE4tbFt)wI)JCk(M)F^@m;T;X}9HMl6AX#r_LjWpd4rP z&7S&dx<_y8JRB9AVmnW7N7i!^`-ez}rl7z7%Q25Nyr!c8hc~lz%+bCsX+8|)xhQM$ zN4l|HzxArK7$tL*R7eeK2d5zH3@&mPGiULUa;q@Z&>_5y9y zwZ}K1Q>-DcJx5dLmbcywW=gFK_G_s&|zZgrx5(=s^ip*M+*O1tKPL+)E4an0|4`RpKO z#AhIZXQ~k$c!!jD@XcwiR-O020enStAkFNO@wPw4r(;?fk>lq2(-^(eNDtMj6||Hz zV2^o(afZhjL|5>B!f2h`l=0FHd!2g)_DmqQE9f--LzFjtpXAs8W8=}a(Dbgv&mYq^ z6b1waYB~#D7#jmSjPHrd8)2G)24qY=3UUo|X?>TDlvRB+ilz3cJ4I64tis1R?}I45 zS@GCx_{HFiR*{X$%2w{v1|xk%&_PLU722fdd0-K@s23p}XrY!`);X8dZ%69@!G`sn z{2$&70zvj)-YMFeH4GY24T6gsUdZ%A z`!Dr=J&_Y9l%5TLPk(%8{W)xd9*>Z-g29h<_5OB>-XJ`DlZHbd-YMAKF}tlcon#Vs z3~a>4fgLuUeTm!zCsrgmHi5YF^k=7+qRPI^(D#XE9y7RH4?@hH4O#W7j2VXr zKc+ocTk5$%lN3gpkPoctPPQ(1WsAC37TyV!iv){)#`?5mDLa+xvKrk-$B&FQ?Y;6` zBS`@5v9t7$b!Afg^MEVL%v9V>YfuuZSdU0KW*~+pfd^?kCfJ4IF#Xzhts6~;f zha~sgd4;-#nMs8hw!@n%vMYxl>)oLe(>3}`OOxf^ka9Z zMpqPPY2Utv8SMiaVDkzk0?6EtTZ;iDl4r*IC+yp}9tQapuOyT`N;OmBBhrbSLxuub zIga$doSJ%$m%)pntBaLP<2;Z^k4e950p#;r{=9;48sLaL8_d+|vQhbL{K>h{n0v|B zE!>MfFF}3UuO4wPn;SuY7oSCS;r;k_)Xzh(6KBlfKV+?ce(kI9Z5P&3Ij&6_LB8~Q zy@KtfLAv9Yn{^*D{F5-s7-|*({>5tCZTqBSWsmE32{8svBv3E#JQDMAslh{+CVVM5 z_)2Je!1R1~izyMXJ!>U8`%z!(rH=;OZ`ns-l$y;^xe@!Sv>DNGjoh4H=#!ujF7H`e z#S86_aPQY?QfG?&m2g}+EI(lL_t6FU{8Sqj3mq-`tVShzs(7^fvR7Nq)OJ`vt52qp zqS=v^x2F;NHG$(=udW-CB$&byVwMK{kn>+D(jhe`&Au~G^9I9B7P0v^;4O4#;NCsX zM}!+V^p1~x%bEFY&bJYEW-&g8r4f~NhK7YRYTl&0NFC;BYqpg*VNSof9^a)0pNpIl zDzuU9&T?YlI;&XvQH^%<#Z7OO@z&v2^8ctT0;E zg@Aw@o1Wj#@p2&~dU7WcC7fqYpyZ|dd5-&$uwpVvIES4m>j*3Ysg~fk+SBL{e20TR zyL-0e9#cqiwiF3$IWg>`|8zU?nJTH5{R2g50>aUjseZsciMKD{WMgxI5kI~DtI$Z* z5->y26!4B8{RS+#Nsjk7OAX!t(*`~ir+8kNGeFW?s{>lZZp7?iYY@~Xqf9q(<9Q%l zV(8@mVqS0NLbyRa`su1~(cWYm6S}W>To}Y1F@_Tl-E_ir&my(0RWx6T3|+sqy0UU& zeJhZ1&}T)OTTP`C9=~~usCUoxxV03k*mb$4Eqqf=HGA%7ml*F#_Uq9Z;&?O9#)I9xUep?C7M1?aZxahZ1 zu)}18U85V6hP55d7hPA-eW`w`8Cdr zL9ah%BVQg%Ilwt|4fuFak~|jzVL5VF`1LCvc^4D(xNso5GD^x|!^CIpYlkuit%-2r zd@hw=m$+7ajPTweI&pK1IA7_p3+oMnUAy-~EvP`QW_Gr=XKc&9p z6!gz9uBvKu%6bhoyi&2Ka>{*JiExDgv{TU$AU!%=3iYdRgNTs@~nU!D5^n0F1hK} zd49LlMru`g3r<`ehA*G=`*<_(;03b?hukC?0vTHUmsQE$f_Tu@6c?e+C48R!7Fse~q+F z?=rym9(Qn&Ipw(-8Pe4;82w#LR_TTQdNV|9i=icztq=%Vi-8MqE>d>aINbc^(LAJQ zM~h_Fv&QyRmhy_VWoJM}Z%{5!jq%GE}$FUK9&Q_&>Us)CQZa(9?EW+rQK+ zVQ0tTWzpa~D|R=h*Pb%w66@73jKQ$)Dv)y_8T;LlmQ&!)srz5=3RER3)}NB5^vtGa zzAl<7TQoI_9J~vs_2Q(1IE7X``?%V)JQJrZ8o9KjsF@ALu)j3t*+dZf#U1@Pe&}s1 znP@M@U9PKaWYMb1DG*HQ{3Wk2g;(TXQ(iu+ABYAG!jEZFxJxjYv9sjz)(0YolGbCI z0}Ab3r-AvMkIEV(mscTi{QZw9Ai@|#?Fl7``o*u6M8G+Znn$ht>FsaUj@6a$x1jnq zd#7)?_nYY@tWb40ti8|IVN+^V0Z%B?G6)O8;&|S*1N}61y-m(dh(QR1H|X$CaBr4i z5RtqotGxz3~#oLZzrdfH+iQb+aVGx>XcUT%{^3` zv>RPtNpO0puQZz*N_@XC$YYGv5T}2eT7Bgub$oNoQ2zbPbfME$1ZNE*JAHYIW{%&*;}^#_l9_sOg*oc2KT)(qQ4vQu#WCJ;~%9_)H;Zt}F3yjNeC~kmA9YTIt?M z`&Qp|51=EIx=#DpcxNBkvd@4)Do`iAuWF9WRt_ld@IvSMM{#-Pd4AdkfXf0YWjLL3 z1fLuB{4th>JHXl1iFD_hPeZ`m{1{_7B9%Kf{oo7r+D7otQgJxs)3CD6eXF=d-q z-OB5@fhc*yrKOU3&Ujg=%-T0RPRZj|{dwotCF6R)mXjv7 z_dUFR*N}a96!4Ec^h&({hd2KZkDtxV<_tz=td*NzR*%({0HoL9G{3?Tn^QFf61M$g zNVkPq?D@|7@Ws-3-b>0P~(&0E3T?tsqv1=1Md$xO@~WGLTK)cX6>(+TEY{y`$XekGa^n_~~UiA7%d z1UvL0#}9xz3z{v>4BmGi=oA;}*gT#!C;+1o*mA%m!daLBro({a?zOJkABRcrZq_Y! zsZ(qF5?K8_JvTHB-IAw+PoYrqs@12{PhYIP@W9KLi`Y!6)MNA#d&%$CXl5m&?yFbb zHz}V}N)YHQk;pz1NxJFfiI`;H>Ty3QMTpCPZglJ;un2;PwF3{RY?WtLet%hoE$0l$ z{pY|rJ04>-auNARQ^?v;@A+f;xpK4bW>egV3kbE6ep0gCNzaRWe!HmI&G-F0MK9O6 z`uukZf{=Jw;Gj|q2UF**lmdM-pg?sa6LH`Yp7+woDhph z!1J}4s}`RwgLe}9S(C#vEVewg`($9YE6-P$gpBQb$!9(|W(R-aRH6AQy+eIm0U97+Xwl4N@;utbCs5e7v^A&00 z$6nqMz@AaBwfMTun`vZloB5)#YXrxS$JhG$fuy!qX7dKP>dEA>AE|CUIWV72vg9G)OXvGoSY&pa zyU}!}$2n~7`l@AJ^}RTJRUy$Fd>KwF5w-s8T~#S>?j@F|6Csiysc2VY-g^ohY<0s} zlmF=awm&@pvES*<4P;ZM0*?OjPicIx>Qz{1#Cn$3w#4l$GQT!(YdgY_%mt58#ZtS& z+D3%vV9@e)cLk4TcfuxAsT=1oCF$z}>pniF*QX zfQv5n4FARjp3a$|OyJ-Lj{U zbNvut3k*abVBPy|fi?j>rw9^`L2$|O_Ovw7T)|oFwah#HM0O#rgi&r6+TKwVz&t(1 zg0g{4+TySMXS0aCeZ2TRf$oS;!D?)N9ei@4^jLbS=8g^KhxqnJ| zoF|hCeM?VR@XnKa2FfSbcS&Y+yf0^rmwK8UlYb=0^Gp6oL6W9L^MJSOF45^lmV+d8 zjNCHJllB?>#DXx(c{FgI73PUjG6mb}X?@=6y~KVlKunWKbSoq$FNw zzbh@5loaLws38HF9B_4d;Bj+RjKcSTRo7cuhlq&R!hVvyfrUE&R+(yVP%Ot_MEgvR zHVl`S`5IqMcdV4(id;7{N1@xII~`?uWf?*=A3@SVvTj7orlVVSlAfW3O!P%JfX`|Q0%utom(FqH z&~sb&jt@;K99=3|rd%;x>n>0ifTW-6N@uj3KWxcj9kpJ{(s=p`4j%^z_0?#n^e=;(JtK zOdKU9x*V0hIIs~?wAkw0pdb|`AA|RpaI~622|t&_BKmfDzH%xyc`R;Rr2JS{(+%T# zh74FP#(GjVDZEH3;bTXtDbr+YnQwR zz89@Vn)2ckr!@PF&Ad;G;#i6hpgSb?$kq7Xq;8}yxe+!^KMjyLylIgjI`t8rYJh@VQ4x{^b0C!=VA$`QQvE2rP`{ zkv1L*rh@oc>Suu;3oizJZFPv_3k1>4Y5l>n)#CG$IlCr|2*)&rK%K1k{MY-LGp z{0#LG-1Tw7HZq&;fkFZvSU~M*Nq?`Fi{TrQ%rk}@H_bn7X3rHo;oL1))_nO!I`|NA z8_sFgleGEN2C*b<>U40Aa1vpY1=Dw8QjTYqa4X4wahSl#lHy zp9P0MJuaXS1gw`f-h2A7WA(0kS`{V+_0g1R18Jj=Bb>DnCy$q)OZCwJ^J&dfO79$U zr|&H!-MopN-TQ5Dgex};wxLIYaFYvJis$nM5<|RpqN;OI`|$Df9h_tMQ-oA6=4kqO z0jE4RX_kTsrmr1?T65^{%5R>kpSatRy9W6*Jn9+7mSmE`GU}xa`6=-r>Ck zp1rDER<9-2$mNaX$Imv(3ZJ1oxDkOi3)G?5rHxIj(9btM;E(7`)!H~3xHWa_+>L zo^hoxM$Uoy$fxDg->HK-j}dyf{SY?kj^;6JRe=SLurVU=nEgluVfCw3{!zYW@epzt zI(m%pTI(esFxPi{Uh?r*O18Ac9%|*U){%>howVd=go>sXUQ@~RayL#_s~enFS_0hN z;K$Efzog|PC^Y+6Cld12RE&wFxQ;jTwdeu^{R#0O8p7wI=9li>sud{r!vO-1h0cZ6 z8rHQhNC6=O@u&nlWEoWS>xw;q@U+t2itFX4CQM$vndS->zH%t0+s`#B;(7gvOs;b> z0`N1(K;XM&OmW2%n{gvLz9Pd*zL{pf0OG)mn0L@T#tgm-PcL`vshrddWQ+uN+||-8 zR5(fHeCPST{%_TofuaqRJn(HCL7z%44w=>VAEQZT!U7g_eNbz`wqQ;Tf_MG|RIo6F zX+DeO81D0{j2OfO0peY^ILc3y+!$eJ3%vF&gh!#%@<~0Ijv7}+K!mYFVvNgCp(dO8 zn29A5s46|z<-o)COq11vT0d1(=tQYoW>wBJT*-}#r*2fg{nc7p@nm_P*z+Yzm*USh zOdYm>c;G zOo&f#4GWJbm=p5^*Ek6keAT)|{rCx-o8&49E|AAs934q9w@dO?mVhbGm&ZU>sNR?T z_y$N$`vq;nYh8u~Ir?$Il+N-w{nx9Uzahb5P1C8P}>(KUbLI$s+i7%{?UOC=oVcui(h zMoHnyHD9(`qvUXNK}DftU3*ywfo?;nD$tu$<`w3N6RuApR2pn&t5^*OP`0W7QI# zz|@^#c$9iAfWVGWTF3v$1RoivwYAe!_E#W$Ii*~W`1b+nOA@0TR2_6HvS35)4yrR4 zK+28OMrpMpm~k6zEQwd%jY7ZN6`Y^Vdv{)&fUwQFC>{ZIBU)dd6n-dWFpsB%9Fi%y z#NzT*_&lE`fA37UTb+5B-GDoA1fnCbkY=DVN|^3su0;D6vFWb(lVRZY)a5#kl3$?d zo7W~i^-k#5k$d>#O;kud$-oW3H9q=Kk9tP=qz0+{BrGEK^c;nL3&^R+RKn?opg}1{ zCA0ASxgcFT#&p57%Sm=r$ud!s1Ly9W7bhz`$erWWtP5n7Ub*mK*+A`BvAA3--^Lo3 zD$YZ-qcKN>s9-5c4b2qtTZ)PN2XWZQ8(oOMBZkgq7%hg1!a!bbz^m!r`Fn0gm7U_4 z?3>|SD+^%Xk{Q^y#1lr9MJ!RKsM;m+VSeOY%mFiCTNi!~aBw!8yjH^&XMqTtSHmgj zG@-*90|Ty@9E~ZHHaY`vwAVr)^~TE$;7PjXqnJ7a=pr<;J=GJNDJKUksi0H#zP`zp z8$=jaGC4ovM58W;k;}I#E!E)GU>-JP?#`G4kt>qQtQl7t3a}@_btpY1JW$$ahlZ(r zLYh=2xLgwmMAh&MH2ZQi&%e+5T5UP*RYs+m?R2Z$(qpb~2E?ly8`LB?Q>;!$$*)3I z&c>=q^EMTiO7cku)X`!&7x8I{7dnWxDCE@5VPSAhJh|u#2}(6wxaM{K@~~dqG(9$* zNJyJwU{OZ3KPO<` zOxu-qMeO#sTEEMp1Iv&qT!E{(rf+A3ZZQXZ5-^h=pNYI0USlpv>9vLkrYoawJNAl- zt6p~dLcw<674E$%Sw=8&NjF}m8x@r9|ecuo^Sb}gM5%76Gfhg|_ zQeOn#invG`%PY7n7#LbRWain{^AnLhb{qbntuDx@s~_YRpM$7 z;kz6UiG|_}{Z)QA7LalR?*x3)HtW2&WOpGITtS_-n3pAw9PL~@q@|E2^(>`^gp>pY zyv&G7Rg>k2wH?kZ)gV+#4o#LGe`Y5^|AV0%_R^o&Xrvz1#b9_b-{IypI^qt*np#m| zvGI3>9%_ioIbk{P&R89v^(epPQ=@>*uvwpjd{~~yXwJZ?_pOS@ZIj;Jab(aQ`33R= zHplS|`9aqP1`c&xd_0W%U=@^$`Cwl3s|BSA_B5rvH)nl0&V)V5vAE+65nBER5~<5T z24{RUyn<@yk|m5$X;!8$x`zkIY>vFudCPE{!jv;(1EWe-;1$6}uO3O7Q-GwK`H$|0 zC90iEK3?R>tyl%uwMXNVtxjN13cEXZaruNv+OL$&0ijvsLh;W;y-G&QjE9ee@B9KS z^=}w`nx6q5{#3bm!LM%Dkr~{&%OVh0;u|Mk~P9N@2;3 zH9SX6C>smI;J0z9M_Cc%)uj0uS9Nkjgrb}hVd=5&gu|kH0X`O$!A>7^vuJUcs=sT> zhGvuFD**%R0m)CEJxKQ$c!2-NpI`%o@IGg(&^UhI>(=3>yp%@~r))Yk zi9m!;dt5c>2u=7ee_2A?iZN3g?-7x0AR-~wc1(43d}GRur`*#dgVWs4)ep}Nef#GBHJFQB zo95&i2-xu!hK-f8-W|oxfO+>%AJJk6%U~1L5#gT(capPLVKh(Q9xtg~q6)t|pqYMh zbXZ(1g4$|bhW5r1hM7d?A?+YJFD}cxVwF;K!_!h$QuY-%u}HB1fEh}aye^b{rp zhm~j^5B&gU4OV`ym48Ti;xC08WPlz&ts-=|aZ!pr68kV^>CDiua8MvTW`nD%;!}Bl zeP4$7u^Gq|S%Wom>jO_ATiT{Nt?9uDPuw~6>)6^^778h!x7LzUG9E3zH7DjP$G3Fd z$|X2$f{8{LeEj1_U+d6hc8L&;qn%U0Nxd`Y4c+WLIFipyYnPt8%7+&Ic8(;Q{qY-c zwq#T<;?!VOcd37vd`Q++uLdbg6;bS-yZo8cSj^X5(qbN(pI7v}fZM8Q=>J?>1u1zwzXM_#FC1D;+1fn!ik)&T3$1NF@LQoClaj zq)dE69u^Rd=~y?&K(=-g9waB5x@~+lcdhFK5R|*ix|#|zcqXH|gLlBQ-k`*wyrBR3 z6FGb#>=V+MQ-e)TmWoZC5!6|fZ5y7Sj6PC+@2@Vs3D!97+{dyy*Wu4}ZA`cOy~ymn zSSxHaV%GLb0z@9lFC8TKWjJ*VXWlbUt0P0*ryRL{>t$A%Qocl9jW#?#NdAj_Ahz{S zwo;+m6{!L}I@bDoAx1`bNuDV2D#*~Dx~~RI>oY?^1BB(aJuD~c&*hvwe|H#&wuH<< zbK~oU_U;(P$zw~GfSJR6XIG09RUdWDmdYdfcrly8NcFx}GC@bHm8 zulS&mkN%@c$8Ri?Jc{p3Yk~-!!Vdd~GTas_VxMa6o27Nf{7_jUIucH*rrmY1sLRihH~gDnA<&AE72`|QNW&oVKWU~X=_!4=C7fAFi)b~Ks+ z`!G~Ndbo%XYUF`K@x{6A68&biEruEbKt4}5p3|r8;-bsA$6jK^9jovyRh$(20vse* zD2cA76Q63VDJ*2|Mk@|(c{p=Ooxt~Kf=>THhf<18F`Y8y!LbsHcw~TM@HXt z$%V&qA((<4gY0&;d3L-mtxCY0bJk~_@)`Y7#23Q4QV(gn@g>vJOz}XcY7boNy6-&f zt5h~=0q=hrP9=CRSOa3&0O>21pznFZZAz6Xs=U68$oB^w#T9D4jqQyIgh9b`HMG`} z9B`ow;T3&&xs5;2@1m``7Dt|H=HLTYuv!8YB$ETQj&qOsHkEEKjmc@H4-5@_-l{ek8wY_qx2$NOiCyoNd~Ua|1-79fE(V1zr!09l$~p%2#B5$OqE+7NIT zvfhziUP>DCUPk8)3^;R1JPm8mesp33+u9B=XK4rVRYdjd8K|iyQ zyEFHkCyG&fsE5joz&7pHBY+S-TWR83^Fuh$R+By*=IY!U(#e8)GSFvXJDZ;KnsdHD zwt1R2Z6x;g+R5w|G{r+ExpNjCZjI3&=6shRW8vRvqV@8VdROcXTET}2MB3&Pka1yG zJqBl>7v=ldWTwV8YWNqQ7M962Jlb-2Ezc5xShg}T-JpCSMR{AzMUjlc(ZM2J2trhR zKjDcPt*tmI&nL{g1t}K~S7K$V3Q!m(FQ4If#lpmYNV0V*BH+01XO-ir0m0qICt4iE zZ_>2iWT23Up?cBS@ODk=^9bih<=`heSEe75iX7GB<2PJ=>GfG6;BLBk#4A%07lq{I z7^~3mSLQ;-_Y4}}va?Hh`+cDH=Z%rskf%|(WEwjKIPIAVX4Xyi)-@beoF)LzN&H&+*b%bC^bU#pQ3HCC4REJ8T&t_pergY)R ztavZbcC2g%&w!59clY*&yEui6o!CA{Bh}_Lq*Hx0vS8_@Zan|HdFCr(FVwqKG;EV0 zD%TiGrhzPi8Iz}h%o>e1Eb~o-OsIxc{U5Biq{?MAbQ+0@WC`Awu6Z(t*}hO$qOHLESf&j)CxHzQJleh-%5AGV%V|cx6)*a> zePj&&p+Y;wwII6h)PYr3kE||JYmjzK!ZJFqCyv^*a9{w3b85Bq&fAdT{9Gx94eQ%2 zT-PaprBQqgbBAZqRE`$5CnSizylTIq#*+yhW_aU?jND9WQ~Y)j+W>b$%{~gE3CF07M+0Za z76!Aq$=(V2LwV-T@-H3#^#O#Bfd)bcVSqp&;#f7d|NkGD6bGQiMyke!4*J{VAYfl8 z$X}i*7Q#l1!xXCqj)gGA%7bF%!KAPsTdW)yT@Hi}h=~J=MPu{F0sGIVXoB^n^129Aa@MMK!4K_Fjwa4ZPqj|Pwf zqXR-im_Rse{!lhwfDI^216$ajhznQ=c&iY04TykR^_yz||1K~TgweaIkhd^a5kD08 z?Lv4hDG~;8@mqulfL$2=$6HkP{w`)UHvb(;MkwJwP(d*d@c$_9L8wFi0;^l>?dfsS zgD`L~nEy`;+5JTPOL4VP_ z;i%-cHH?m+vJV^ostVA+zp$un2L4yN`|0gpF}w}D+bW_V|2uoTOzwZRiUTpQo7T2O z2WtMmYW}|>|MzTz56tSpA^*J;|DWbfy1VcGo*>XoRDTa4DyxuxuSV47f4tt*$+l*8 zy>kE9_8$yp6BPu;Z5B}e?MwCw6QZM9h_aF+w zZEO6m3g7chhY9kR)Uv6Qy_)%NJa2a2|L2pkM<;tCW5THo3d@-w3s76{xoH_XI&2_O_P(3#&WY zZgt`w&HNkLcOXP*`1dq$0Ku6K0E5EY?|25vp_^|K@HWD~_p;sFmB8BUHlaUo_0LsI zq;MG2!O327e~A`bEaWe-z28f3Q;@&FDioy?Hx>BTw9OX1sR0y(e_h)s2>+gWZ>^c2 zXy)H_|OFbyIfg-|Y=N|lD4h({@0YBgqKq|+y)s+Wt z{zpiZ2XI?7l&;(^{Pz|P+T8>u!U1~Zj|^|&-1C+r1zI804#4~u5n!nH{7@A2mqgem z0Y;ExLfZ7}_zmk&sV z^mjznnBY~Q1LA>!?UHfNQwc`}N4VL`oBzLMU_Yr5z`lr!9qhpnZnC|#+_9r}-zNJM zg7<9&dl(^1uqx>O0Q5~yOuMap3m9(RP`JAOgL&^SG92ONBmdtY z{9QVSnYS7n@t;KAubU16zxi5_gX;wHzamj%BHfQxG#nwE`TYTQiMjtRim{;pz!5^> z|N8^5p#cB(djFo1--h46ulEyn4>`E8?SX`uHx#@Fc$?yZsv!Hq!(M>Cn^pS*?AvO0 z;r=>NgMn=#M~7b@h|gV+yS_m?YMDrZTPXN|Xh9$_x*FIY1SlCC3v+g20znXh?4YuZ zFd7K}5cQCd6^fLdiS&Sd zbU-kGPZUT};PwE&1A+mlwjp;st$(0`l=KfUyQ_AY_wPhF_)8uI@_=1=aJEtG~?7_ggC5r|rL4 z4X5bp$Sqmcv8|R>?8eX!80eD*^iOmZp(#__GfB$_y zaBv2qkq9AdyISpsc}rN7DiF%`HXHCSFA5uf=wBoQ`-}>HgB*|x1>wOAU_bRD^s`F@ z6rCTe723AoyHKIt!YyPIAsAM^+W_`Qg1(E%KeR%rBHh($-&+)TR6h5;-bRR``F$Zb z3sH2qDHmMi-E6?M0o|_J(+Wi=Q20n*4mhE(4gUuQHr0!Q@Q+=I1|~)W`$L(w#YC{W zw**0S8{r?lZTG>6z0lh*dGZYMA$^TjW8O* zhN#+efzso#yTEqcZj#>A#&*>vtvzVr!21fm$qDHuw*CIMt5A8{ZCc>pO0*wN*fbm{ zM?v@}^WGl=Ove4q8xD_x5cGTAm`Hz*{12_Rs~|8o_Wz+sw?DwX4Uy)JaP!-4i&BLm z-EXMxhkV-rpx|w^aL7MY?SlNx?KZ+_$i6Iri2vs`$!&y8q;PI`^8j1S-(~={c7OP7 zBq#`>`?3w7{rwwk8_#}iQ4nsc7qto6eyvaeet(UE5a95C$Frj?3d39FkbN=#J&Joc z|KALIhZK8oB5MC9w)f~{|91|`vxy+Luj+ObZgyhy{z~2fxdZ2cXzdYpZ!2Ig>EDvx z)a{;DdwVTf{(xWS{U5GBnl}^aCL90ue@|D&?h$04l7ms%YZd4RYq+Cl_iwUCMSBI= z^{v@;i-LAHpU_P^*|wIwU3p+_@8)w06@+a|Ml{eKVYlh-sY0~cVtywi6b$DImEtbs zOmKi*NcO+oCGwVvP@b1)qzG_kcHPEqakww?-CS(~BPm9!fp;{A?!5gIX5eh~PKsM? zQ7A%o03eC(p!gdSq&v%_H&LM=++p4aU8#oiv)g)s2_39_n<5kp+#-J`L?HkDW3nH9rd@@b`b2r4b^!bzHHZ{BV-K~XXi01Emo zlFhbz{z-S1_##p5ECvgV%1FH%eP1z#k;~ zjW|rZI0S8?g>17yx>+KJ(gi4_k!X=TAWQa2x`hha9PuQgnBq2F6g>MCqHqX6Zc#@d z+%DPOFZ-cF@`Je8$>(krA*TjA!PwxpTh9XA)eW|U8;iiXb+L<|y#Nq6hr7Yxg$SG6 zR9Ez#w#2(=ZK6Ucg!eTV&gZrsHnAZrXVY$(cERk~ZQMJ|1H%N|WtmWTq1vY9z@n7E zV0IZ2LMT|(<`1;lYV#i`+`QOC0^A~gn+*{Z(c$GF6a(0V+$=}7f@=U_EkF|p9PM5n zkW~I~A-~BOf*&q%p1{aN89bfT@ANxkre$QTf-G3TKEMR{=WshN6%Y~?H-(LG7Q~p3&4PO zj|Mlng20<^NyoI4?iOaCkaSxFSmFOs_vZ0XzR}q_o5T}_^MpZh0LKC0zQH66xR9I=3lcNu zcU)XW3y2^a9W~D$Cbt#OHeM?HAIP(FnE6Woa{B^b;kgXcwFQ&~2-8;0!?5I=3(0ya)`E_a;h!VHpt z`BrgzZ}_xEGLQZ9z_~t|mYwnQtUc4&Sy;UR4g-XXiHH72QBF5`)HKMnc?+W8-K}}{ zaC(4Q9`I8s6adUdc{sUJ3*5B;DwAvHtP~aC@N z{7@8Oo)ouwa|;w~vm^jBtCu&xk(%-Ie1thRfMe%e>Ov?oe4gqVL5>uDT9%{eZ#E`! z4wjwzSH5OD>IL=f-^??r!Bm{X!j6dfmkkRGh$GHb#H$X+13RsEVf6;pu`@CU_;*Iw z3~;vi^qbAkdoaOCViRd7P7<4w_kquk@+NV@e@XFXVMZ1YorgICGAE12{fl8PU(>1F zwl*WqC6eGXS~&FSt`$E=oTki|`r9Ymsyp9|1!mK@P&|PD%IpF~?C8R(%hm#)vydms zlVxB&!#`mEi(z3;h58F>riIQ!pe|Ig5QlB&yy}euD?ExLH3JA`-$Y%A18Vu(Q9L=F z;a@Oeroy@A%>d#-@OcJLE8;0@E`|IT<*#)v6Uk9JlVuwC4+dwlFi!<}#&&VU}msB;KTjM)F!R6NYdCJW^m8{as8v`I;8|hwJ`B-5lD#8MyhH%N-9g zeAb6_)QrL0EOVi#a}2Yb^8(!5ao=3Qf4uRydBo``JImAsNd#VS=sc-~YoBRO9>;Ph z(}18x`v0P0Pb0%;)q%I)XT!6BImdGN>Adbmu}xjTFe?ZK=9~;lahQ2i!Hmy~@-_#K z*)-%o?3oeycMmy}3a(|?w#_{}+A(053je#Z%`wk)7Yi-q^89C(so)@m2U`}6N8KDO z#~$c^C$Tvf6eX4GUOa9(=^th@X91~jHXG+*I{d@(zs!cSnUU-_1`I&p0BTyC3o`FL zSCN2ubWo7}utDZM9RD-ffM7}C!5Q7W)cMSFhCv9p`AKXk)O_UWDhFcD&=)vumJSAZ zsw`c}cu%+%R)i5JX1(&Ac$nTz<|Q&S@IJzlTdUEC8JWXQKY$ z6L3;7=QNNL#nlC{4da#+1i($Ns(1|J=7AaVv^Xh zv*krY@(9jT#Gx-RlB1Dr;oO7gb}vkhEC&{kn@$C293q#QL*%IjWCGY0xJh&G=`7FS zlL%ZX@V#)125ZFv+jzQAj?@gujH&dQ09PH23g-sEDJT=P6EYhG1%XVE!oxq8kvS1Pn)4^Odc%1$1%^46%;9rCFy~|z)Pe^$mw25!)$K!bU$pDUHGnZkm$)mvPJqt1u05}0Ee7?rH%q|%6 z=pZL@rZ<>tEO;EJ6y}3)hAmJdYFgKH!SR&HGzH}0JU9ramV&i~cYl~$3Nt*@DtKBJ zm%`*|;ql2d<}^Q8uh>3;<3OCb8c6sj{{rGa25XM4S>$OzDjcLNke%ZJ^|BxQf-Fy0 z08W;<%(!XJY5O_-Bt8?xjxsrKF5ABp!MRDZZ>}yVM=zU5UBG|`r$f^Q%oQc5h^O?~ zvh0V>V<8x&ad~(EnW$+_E;S;6ax;KOT^5iaw$+M zM~d5`!6XQ~jn6W(10*JZs*-$f%0w=ND?9btY^#R8n zuc>g5lly=U!OetciPJkgvvd@PnLHzfg44N_Sq29H2kxM9qC9N@zRT*hfG^FLt!UjW<;Fk=-u909O&m?f(cy43|EnH|M8-!OiSle-29@HE@bb&5*!Lfg>gSS%!L6|%uvo_#(WoI2Y zLu69nvz)VNpie-jf$tevaD2hfgh8d#&$MG_qJI?}9)p@=p7sxj$#nu1K8*tgX2TA1 z{2(|F{`62atC|UZr_XMK0Dy$!!1)^z0Dr6mq=0k~jZVg6002V*z`Lg4T>{WEbO@YA z20$VXMPQ=fpdgI|W{RzjEyAN046~7u0L}rP$^MuK+&g8r8VrC3$lz8d0Dv2w9RILa zxF7=rz;XIyI=j^H7!(_m{csAA&Y62axfJ$$p{{A>Sq9XM_&f@p3DU`U9B2mE7^(0~ z5S9w+Wp~aXF_ZhCW&*R6nE;O`|C47LWJY8`l=+|F|CuA)e?Vm}gqlI%c#Kysk5V`< zJ(D^=%A;suPN~2=K^{&VPneg7&Tdx!d=@JGPtLzG@*jY6TKdIc)ujKwFt8^NC~%V;4*q-t=rnMU1v>NvtzFnU{x|Ihpj5E` z;S70XaCr;jgLcAsXSV;Ro&gObv-6GvI357QY!&}kANcH#D&hUnso_Ya8NG9FuyQPcE%qKC%O0|7ui;BT&PAMOwg*x_cVcqsov0km2} z%&^Ver~G9i)WNPWr)V)&KHVvRwW5>J300Xf~^Wr+cz%NRt-c40Y%I(75Pa#pLF++}{;;#0-R?lwcv@|WI1 zC@8X4x7j}awm)2Br}yzYgdT@Brw|!s?N{H^R%)Ml55Lu=9YYz3CrM_&5+tyjkG^lglS}IUBeiR)ib|6l|FZ9zCg%flA3E*%(0~ zmkr+8EhkpuF+#PBe0S{5yGxq+viKfEEx!Cw-nJ1COjS&!ech$j6Qn2>jeqQjj^F7t zh?Z*%9i()3O~sXv^&ZDvle?dsEQlX?vz}}gOZHJpTM@$g>YR5}`Op?xo?Bt*m$VQ; z1I?n0*d}IeQDW7g&w%*g=*fH!Dlr>XqUt3$A>Uk5F5t?PG!@V^344z?UEsUqvyu|E z3@CFy5dFCxzv2D+UU(@VNh~Qt6M-~c)wSaFujLnP4WZ`Z@vDMS(OI7Qk}APIghTqP zO$+WUy@VRpe5d_>d=Y=Jrsp*!+B&?id|`^UMzOVCL*G+AO{r=|}C%No(eN zfKd{W?v@mf`4|ZdqRY>+l)MkwVK+Qiheu+-On=pSohdkUIr-3*Hom^_Gr>cYk?MqOSe8D-QFZOR%qx2Zj}`l3 zDw$y(l3_2S74#$sjymhy#ADsD`WoZVA?Zk0tn>De%`ZN@(-WvJ$a2DDMiz`h?Bo6b zqI+ zQ769PLT;rx+VH5GC9rTOT{Dwl-PUxgHJ; z!Ahb_6`$(m61&P0+xQzTzC69%yc2y%VCiMiq&=hYje(c8dABFF5}OBQ-_(y!zNw^k zm&Ay(iUYS6tu>(QccBm19Y&a?(vSi;0ZD=3Ipx1>+|GU)K9ZWbO+c6#A>gR5KK9xS zNy~sB)Gn_#49LX_rRzf8{tmoID5oJ2NReb3z8+}o^EkfyyTr?lA8v?r=WB=Bcv#EF zZXGga2)gRUoAXn?YsUjs=>oB?_CMS!^0W}&y|&yrl?gysEnlO_kf}ZycH+^e3cJCf z)(LWQ?1rb=gVzv8<2{<nG+i{2LMTV&@CK;B8dJM!fZFzWkejZ5`? zZwce;k)6z|LI|chY(Qr;m)R>=T52q@dQ)n{&T!`)HwmW-H@OrzG7ysm-#yel(%}L( z5Vx+?xZ-Td06IP}_vr*h zAY0K~N&s*>eA%Z*PqBEFeAg%}kT#jfPw;-;-!>(Iz{WQ|_mE=zzEJFXgZ3z!EUjI{ z{GtA8pgZ%>;MOpBU@G$SMLZB}7f(xcyKEM{-?0RZEh~t@n_eq%OF;Iy zT*k36F+#BtYZkDqmiKWKcASCKOM+)vsjHAK&?tw)5Fz zXid*OsPr!mWqR9~E0b9-c7KA?1qTOXbPw(g6ux@r9qVDx6+|p$gP19aubj`LpCX8% zBS;io;bW4+Cxgbe#9dNzS`P?H$%KJBn``BN8?S<-T#GEKnL?Ybs*S_aNOGs91k5B3 zD?4q~e9KhsCg_Ax;~GRr2k+%S4im#6F4i+@PrJw3!~_!4dvBXPKv3u$q809 zQ4G&mOtRh|Y|>YNjdfs}6MxgzRLH8_D2fM%dVs{Az<58tzrv`w6#`X4HT|x9Ab^1* z8EUalv8FUb#7oWHmjhCq4V^T{b8&K9z19TcM52aC53!=zpStyNOo~3u%kYx6T5Olw z7VcOv^at<^&rU&?czCrS?|EqxF^*#J>>aA4b;~X?lLgIx$7((3TQ=a))V1_`EGF9( zIc#@a{<&x_jO6Eb^3p8_rd0DtaVS6kl21@Y%|dKPy7{kusFm&)oskiilZvCF;HgJ1 zE|iI)+!!{R+b5+1ooM&<0({PT%;H``4~=h#qxaV*FD*_9M0aW#Le1KvLNZ6CjHGoF z<#ZaIdogesM1i%!JyXL6C*JYPKa9hX)-^GNtV>3)vrZ6+WW4iVuVejNY`i65kI6^Z zX`ZQw_dq($>}YjHk(j|}q4rVkgc?+E4(X{~8C8j?=9eyK=OzHQ8*8u}#F zkf9B^vo(j%2@Zl8$ryXHH!_N;{x8tO%ao2mLyF=E6!MEjD@_1?{rrm_m?edQHc0*a z+=o=ws(!S7K%Tf;_g2<=g&Zgr?SAq>_2&Y|6u~T`_EzBQy;Xx*Lgwhvb3pNB6rg^i z^Nt9+M^>s5l#X5Lsd5h`xG`BP)L!~3hR8Br%G~j)<>cp6UPMoUsj87Nji)ES{KEG) zU|)*T)ORQr6hQ31S?~Yi>&9u`0#HV;|2QMwc7K-IA7I<{#h=rTZuB{`;=Rkh~-6A2S5W8JXvi+kpQlXIiF zBRb{zC%!G^m#-GrzT;CtVQx@&p_D`QEMPwy-mPh8jf?#(b451DD)x9!3E9~i_oku( zvWAXIF<;RtSRvwTNpkN)8ZuFeo!{7lhBXZNDa-pS6#F7o@+f^a_=6s$NDF zap<|w4{->=1wvA{f1(mWjI%3=^3fx_l^@dcXy3ie>>=#^#Tu8U>Qx2ddwMiCY) zfT0nw=GTo23D(->C9DKLVT!$wA(X5b<~~Uo_$=2AP{htH{{A@pd3c>uhO?pe-j1J6 zD-Qm=+f-`0^Mm{+SHx?~W7 z2!y>Id?ipIB-)!OCt_Z&Ac8+gk4Lyg?7Gu?=F;95-_#!G_|-q~q`=WiYC@qOg^Hz+ zOu$X|NO8<*r$vWKm@SieN5e|HDpTSR%NxUAiS4U=par0d0WU_VtB!LpRLE9?k5qi` zjI=F;gqggWo?U&%Vw|Yb?vsAd`90Q_rfO~J0j_JLgdFV9nP+aVHZ0E&adbh`F4)k6 zRVcgW`cGDO5a*7cD;DafTj~S4kO*7MUoTBTAa)U z`&fy~5B6nB_Cv+JG#f)5v6Qoxe&>U*&PotcO4(UWt%(>zyB@rM?m3O)vRM>YSdMZ} ze9QCSv}B8fpg}gGF%^zzxZgeGv+93Q))3hSA7>frW zq$}?kfQf5dXlg92xKP>I2_waq#K`fT$iEY1CjlFCdFXvHP7S`2B{_8Ubau@h`EhZ? z9V@S@Cw!;v_q*dOg1L)Ko!)dBQrZo+5;m!`M{5%uI$DX9lS$2t)^bjW&_MFXwE4H_ z7s^V>3I5tpRavH)?csM~G_E~=-Fsn6`y|FQ_tOt<*(O*Azj_-U_hMj8rP3#}!KyYH zPrL$OZ@=Asf$Gp3q?PY2x4DJ5Q^<7Tp^Tp^4W;gNMQ&WuwQqWKYZ3X3^1DiR{-|ne zd?m?{)1g!q%?{zOMiB!wwZ8eLe*k6i{hyzvnXTa0-kXMPMm`q*K^JFu(jb*LfB=OT z5w$S;kMU;_~yjgKssKzHS;=>=AI=!a;n>F(Z zvYi#Lw?7#NRxi;&9Cp4stno##hYq-S$3xr2pZtb18LeI=*=4_0Re1v9RN#!R12$r5GZlB9Y7i_l5EYLan)zF0X94gjO?ddn&18YF+*u)<}D zQ#H3cm#bf}-JnZjkN!0F7DUgZbh?Q<%Ay9XZ??a}`AR!~g1RfK(O}E4 zZH@G&0rC(vxA0UXl0~sU?Qe~W9C5+-xiNpF-MpXwrWuIE!bhVnqgHQio=A@7f3=j% z-hp5s#V9L|DrLq+<&T!FxjE$ZqQlU&kN8-6!{n>66`L*wQN^gbJ}yNhfv1j9A%T0_ z<#$DiPPMw#ujwu%HezvbDYP?9h$UTU@)x^`-J%unsw z7EP9Uik9U^pF{wE8AZaAAKp$HY)sD|q!__V1Ww1A)%j5=c5uiKW*`lYc zmjI@CUb06P-&yw!-D@oloYYum?yY9_>~d1uz3{U}HD;(U&oFQ_Z5yD9vOY$Bom021 z^kOZm+{0tvi$B1nm3uw+9|OGG4a^PzgeM*wW@^UYETBy`b{-aKvK0+^;dC zOA6Y&yYMW}R-8axBmQQO^u6V|tFV0P7a8{1<)7C{1(wSYp!_}j2MyaF%l)jPD|sRY zTpu5xI#)l+Ehli+GIB*Wo|Fp{RZGOHXtRUJILE%5eBFw+IQuC4}X6 ze*6QNr3791?2@&*O-VNtV;681syE#3TOCNc+bOk3b|PFr^~z#_%=9}q>PhPfuZwr{ zKiPZ4CP4bJYEzve#yM|NgSlbc_*5Xq<3jlD!`ppF^jh$Ij^@?_hIZm@he!!B=4#?S zwiD;61rIt3DLD{@C_eW51z>63@Y=WQii9=bWtY%cR#a)6ajkn)CX(X%`dqzJlHR!G zAW?XuAk(ONd8W`t^8Fqw9LsandzNLwJxCJbdHwF>>NCn~ut&`8>|=kWViiei$Z}ERwC^>ws<7 zZd79G9ObWOp3|12$6-1j2zE*?qZzI|*(XJ|D2yu*Uq1N|8P+SkXl1~uTfpH)f4-oz zb<8yafUK8+emrS7d62XuW-Sbc+fDSe#o`jo zN6Z`BUQ`GkO-lQ9Y4X}9hdUd9Rp)(K;@8*1b`jzzFq9`m$@O){OfyS7|m+?K{j0k_x9O`U69t*Ue?alStpsdA7@aZfrD=-*(nVN_^Me0>^{z4Qh5c#{lkF%?M`&JMyPg z^w7YihROYJDK8%Nk_z%855B)%+oxkLgX7OGYOAW(B;OXcr7_)? zo3DD9a@xPXu);ZW+mp;N!8KzpqY?XhjoDqwb1S0s&4R8iHexQJ!OiaSf$PEP@9DBo zFXAHgv1KJ#-w+Li?T`3_&+;2CS*O&lP%644= zn$G#h)R;G0>cfh=mDfmD_a-X>_R#p&f`a>EiN_8v?k2dOXsA{V^w@|f5%-DCc)FCH zNdfY<>&uJ$*r=BGr8~rS*Rz+s#+JJW{g)kF`DN@%?~f-EP}yG@vlIMC#kN>=h>&{0 za+U>3f1?=@p5nrI>%YMr5R)up2mwD*OzsIvHA?&pe|*+4xoHbCF&n2SJ}PJiPG8k2 z*c{bwC)4;$!ZjQ81>}A5#70H+ScLdJ6166_6nIdr1E>vony{3eQ+*l- zZftmrwojbZiO#V#hCj9uMy4p=={~QuVn52_w)Y{tQJRlk8pZVOB}@p?DMrtM)hC~Q z%6qJ%G+2yw!mnk3rjD-lct%*Ayl1~hw<;!@Ga`s7A#aNAc?$OPg>BOBS-U!l1#$~& z<+t?yu-H3%xvcOHpbeNTZa6xstVqdz7v3*ZIs#QyOd>#BM)X_rY%hmdXQ-!yx7NYpw%e(i)g8(?=cwdM z3k>@y5j9;?lV9_r6W7(i_L)f78Us%Ds*d>NJC$bzjaxehj8FFZB+3N7+hFE(JPACO z@rVw5EXAlig&OSc2jEwR*3xg2kb^F{S%&8pYDej|c z^_M%=DD*E~ve{}tM8s)V64imJ+F;oDs-U$34{eK}Rg1Kb9XoO!+@47)0#B2$zA}gS zR0UE+8~H-S&V;Q@92!1`wkcVScGI=^e$%BT!s&ET*wzQ&mW&*GOXl$(p!EO>kU6&4 z9{HM^z^cx%Qb@%qiqb{?R_ixu1WK_|%3lUrifgJN+N@>VsqtRD zucL$O$x<{ZVcE+s;Goxio8~DL^RlZ+suW?byzB$%+%wTCDs1(WEcsEdn=8Q$9d4n# z8a?sw%9+)w*NbfT2unu3T)*#jLH1&Wti%UEpc=LSpsh~BAz*6vfe@72bK5i;zTxfZ z@AYebTseYWHZ~_L&K171kZiHIJ+g-7NX+mj=blR-&N#~J(wNgYg8+hTK)%!FnRRQHGiifknnJ5*7iGR z&O-GgMlh8IjqBW5*xghTg%ru&){3<*LsT0LzY~gIA9;x{Eel~;SSIMd&L*@u$ue$> zbaZG!ws_SBa6A%Y5m8YhN!#c+o#>Tz{F@YnkFoa(&@NK&3;bhG8^hjjjlG|c;B8Gocd`!bdK2e=${+jaPi zuvoKa$DW#@r#UNI85<}bUtw)6Q3dUOfj8ku^}{p==EfB34$DR0Ib%|ZKf|U1?_&p;fjlyV&U&_QihSDZXffZO00K54<>O$)#7j zgWJPIr~@4@f0&UyJF8`IaBR@pRpX_$X7Db1J}M*b<-pNC3B!opPNX0Ajad;v@d)EY z#O=-TLh3?Q!)tbq)H_iF_`Ft{p&jGv4O((WrBW64=vYY{tt(Tlfn2#8c-h9f!XGiL zPX=79PFIPX*=d}0HMBM;c0|P*+9F`GzBN`Ap`)(6oNi@SP(Z2KnGKCb6kABSl}Gye zC(y9v-Fn(g&3mP`ha@!K^7OR^L!?8{oGffh1^+$*rY5SRp3Z@3ERWyfBsed{u_KL z>@iYo`%(Cb2BA}x?uG}&E9kx3tEG1`l#in9hhz`~?eWf`6v$5RMXv^K9XCv*$_((` zusg@tV0XlAwIu7{-k-^JO%X_S$D0LtM5X8HWwO$WkmUujQP%OFlMEo>(b)4}ZL)3PcDs(ZqMUmFAUHvL=?`(Ip(oi@ zzjEjO&vz30Bo3XW-Tb_}ePbUrz!3%<#*bH?iU|Uex|$Dt%HDU6;vfzOG_fyZN?*B$ zxVhNqhmN65p15j54ySmjIH<>!oIa&U09NK#;-zCfMLpsrOr9fRYi!BZ-+E>{+~E)K z*>j3tW&L&SqmtdnKJ@o1dV`=ARpLAbU} z;@p|qsA;#}nVV$vX(dBG+YSl^176|4d}OapDgjL*CHM&v?YA;Z$ekjr40cOafa%rC=fsN1+YH<3NvdX+h@ui1TzjsBwDxx7+ zC$vH*d>V9=m%)<8zQh`v-dGkd8Wtb%O?iEKYuHHr4i{DRgRoZ`u;iY?3ju~VexdnL z;b|olmm;?yKH`N68N`hdjmdHD8RicY`1j9?x;02HwWZ&_EA1Kem2ljA|MP76q@8${ zWAMiyn2E5{-nD`8S1hWdlx3hM<4eN@#XKZF`ni*>=v2AGHy_4qu_%NjQ{?v^n|R+O z`CR`FGN^BrC&r~`|6RLyD?-FX&QjKaAxQJ!KG6DIld)|L}EAQ`}v6Z8vVv_!-$q68K=lc{rDIPg%Kp7*iE zwrA+Goqr=ZS_!Z>3SeD?H_LYtT%~OJ$37%k?nAZ^HBDvw8g%;Ymoe3?>G8vix7*B! z2sOXTzDoQ4JHj4l^5T8lBGtKI9CW(=(d%D71|Nv%X-v##k~oo$)~MawRHA? z+agh^Gr-n;B;+L7db_KEUu)JQH{H5T%u>87JS^63QxM+ap{1%ss(j=pmbB0FJkq;J zXxWzgH}J2+!^jRUmec^ti|Tc_(??@dU520Rs&OsN{Zghhu-TQszY@B&J|8BR+dP(- zHMB&FFG-b%i|>c~YxLO3h|~DK)toI1GCdgk1wz|$0OlH#&!8S!XL*}kyj8_%nY3HH z7mewHv5OZzprrD>NAOhS&w}U%n62s0yM|J&tx+2cIt_L>h_#Zl>_VY-?r?}xduh)8 z<1ciOy8N*X*8}Rd6(Xx6$wM_pj?WKvA9d6KBAYxriBg&AwmK`81p6e@kgISoN!X8? z{*7mYv3U+gc68ao2U)Fg#~vSZYfV_vmZhkfdf!$9TD8imgwm+3mrVoUmXn*VWC{!R z#~^z14MhQB>@vR)=0m$LHmnWc9NDETUZ1@ow(}40ZteA}JwHWXHoVk}sf|mcWNtPK z{7ULA7#O2GI3QJH4uk~wY%j5dope6-xeRHtioN?BPedRFNf0|{&#hND=gS=c+1K)s zJ6x`^k?GpuC33b0fN2^M;QHA=3#@)D*4R-WH25Soqg7pOCka<}7&|cWmIf)xgK`Hz>uxh8Uht=i|M-A z$7ft)hE^o~B!qph zyXOv}6@Ic$uVDu|b9Q9Z-W>|D9h5>sX&>>VIJI@AMsH%%&oLW+-HUo_v;s>cKpT73 zgU8~vmP={qQdM^wnwWPg(nvuvi#(jgM~U%>OT@^LBjRdl8l=)9r6U_D@x;zgu3?J- zAZV4KFaLvcUmqgeXGYw7u~0W5rMyz~CiB|;js-057h2*j>YK^_t};%Guo%XfBd7PI%i!&*@Ui#3LZuSjMLw51#mtay zM_)%3%273)q-|(1zrRNwy#I}z%uX8AmITEk#RtVYODf$PvICOZoowIDWx0u}_{&&58g3pIV>X6}OCM&)W1YvUX?6wBZWY z9@*HHV0W?BNY-Lhe&v=af}4aW1fenbys!E*cy~s-dRu#B6UrWE?LAbmDBZJg5Gp~T zU2ptNPM+NktDtkd=V1zsIVDtHY}1=%U9cGY z>dmJ|tZv%7k9r2UiclT(^1H<+9JAi6OSHjfXMekT&zYbYl;L?s_C}wR`YP5~^O}@+$pukP1^{Q3js3bBSl0n2`u>ch!w%$KJ zeuJRY5t1q5_KhEO@_lc{r-jA%km5K2qqANm>7(WUhDQ4g7f!!@XbM-AOM*!uhc{h;% z*8Pi^TY!LfCcgRFL$3ob-WlJ31{q?l6FnP3fTh0V@@q>5W`_&s>f6b{;%^#FdC8Nc z_wFWdyS)8baJl}=7ZhDGp7YVpR!nYWjqRG*l?$Cc$_jCVTQWI80cx%vh2#^m%={lKNA#>D1s!b_qp|b%hxWfLn+~} zOS&TC6aoIm2RrTKJ}=pvUVebovz`vv`hPnTptpR&F&idV3V$N2v21kx;&?X{WboKV_Dq|=$`>Tmo%xxD8NgI@DFpg)P z$jgJbRhsDKX8|jZ*Jp0Gr@v3L5QM_4lfx!MF@vX&zlVFQ_MfnuP1-rqE3q&LhDerCp$-e zrO-0f0hX9@S#P>=WsWX+(YLoN0?*3S#-^%|p(j?Hn7&BZ#Y!;36N81t5@S1+O)(T9 z5>0@zZ_5r?NDfJcwgdU<_vYun4mMv+-Bs`OnqrFb7d@#_)^$1;%C8&9H{XOR1kT#R*yAk8)Q`!DR6*ScG;=a7Pi% zs%?58RHK{?Xch>19~8Qsj8MHGa5K50<+Un>8Nj4Ukv|=pkZ_fb&u|GWDAN%I+Yha| zyksfrr9sV`8g5fk?DT1DvJQT9ylBaoJ3NDg016f@1-CE~{L|1~0&SjZ`!Xamdxc<= z3V#5*kt5Zns`kp31QbzY16d{lI~B*L*uN}6R5M*=Vq)1F`Bs-mvl=XXnEg#~(`ZtsCBtZq>4e-VdUQB|Web6$MXA4aYYe@XHx*C7-NQ zfh*xo$H=j_y8#bGj&Oq)3~I)=LCig6yqe7vc$P{a*lA5UsWhKh(7DhqLLk!dU zA+Xpc_mPryM6*-<$Cd`;_q%YIr@ePnvo@SnsoRbG{LDKs0e5f2rJ&n7>)YX`hg(+J zXXd7l$6A?smm&p9U*cGjwP( z1C??VeO<}E*q<0p)!5eI zC%1g9xg3#;*GV_NdbM8{9U*F?2&}l5C=rM_KK^E!)QOd5vXbkgl@4J#J=gf(@2WU$Av{IK@%T7^Qj+X+oU zrC)8O4g!LWVUWO8Ben&x@Fzq*bzu*N-SqW~k?k!_Fa4xk+D%;1>r&&0h)DQ$x}UaU zBm06O=e`3h^+G=wsrC^MyS?*T85ZTizM=Wzhp5MCnb5M9V$++rV2O!SR1yuEx9Fkx zPy>d9mwU1$_N?r-vCGt>zm)y}Z{^N~wIwCf$HpKu{QclW$ zowfs0woO~ZF2$;L`=+N>#d6yNWoUi&zQi`u-!|eOHt7x-9+enl0Kv3UQm80+c?5CU z0TZw`X*;2nnKvE?Av2;rs>v7GMwENGb}2IA8V3x4HkBCI<#oh>JXfJK5y+^uzSL(Z z(K_22<=wP-SR4a6=mZ|?oo3Y(7C85QZw42{*))V3pw%(RKd3L&+!gqA)8;!KSolLH z_>kf-x0+A-!p(N>BOdRd&b?*$k>P-o;BHNkEk_MgxM~&LPVmt}Z zPKk!(C;Dc4cx9*-`b+E!V-g@|8bW9|D7_Vr_}Q$Utlu1Za%JwaZ&`Y7P6<7JMb}JA zl`^(qq()z@v7zWi$OZTwY;f9sc1aFxzh<@ac?^~QNsx};ZtPifV0)u`op~GQ6vf-~ zw8zd-ORY%6;fo9?ZHX$r{fK@kgC(+@6cz?E#>A5eyKc>$58JQ17fv}XE)|`0YkY1( zZDA)e>Z-TeX;>YIRcIR7zAqq3yA(Uo|IB%_`I@{f$#-t3-g8rY?yU^1gHDEzd-v<` zqn@P8W(%857<;o^ygClOQOTfG5xcW3beF=3WyGaJMnOBT6@~4)bF1<5!P_cLc8;++ zF@Jz(ci#O9kzer#&>^0j_z*bAUa>=>8)7MYtgMfp{&H~msHdU~z*k3r#P82s-LgUY zC+7+QWv^5!46ZF8C@$GiY_aR@6PgktGUC&T=~FhIdqQ1bpfcHsu!Qcw$uCfR-1CIS z^Tb_QM|ICyA{3&Q`5r)S3ldz9DPNp);P!*qCpftcOqTnDp z+9jK_-6Q}l(LQbP+{((fcQHm|TjAzvbfsgL$e3x;+W{v7P1bTD$pidb`C-iux4~C0 ze^bmF8eAcKjD1QQ0iM#v{7NGJ+nAVf4bz|lx$9sU*Lg5CJLw!Z16{1kQ+ltorPIcCpPzCC=gj|F-?Bz+L3CJG0cIF(v%Cn5=C*fl>6G2Rl~Z zmuA4+?Kcj6T!A}qQSdg#xw1{;Oex%FISC@a>5hVfHEk^CSYz?trQRErtzsV<4y&hr zG`>9$h)Hw7XfKZJ> znBPQcKNN3)vSRZ(R%Ux-yv+hHjOQ^1Z(uQdmG;<{xT^QE%q)Wc0ISx1ztkTC9@Tcn z%9LZqMDl7vdse^_9-FLsmUlT~oW1a)p;J_{wtZaMx6wN2k`{B#qO%59?<`;D_VU89 zJq4>@tdFyNo(~~gYq>CYNwP;IZy3}-Y0KIg*F~I<7xtv9En{jn(}CfXPsf~6qEWdA z1T(Pwx6eMxP0^+@FKYEgE9L_dH3V|PzUn|bGh{=euNYI8Teh3xYj22Ko#vDin;nnDVw}mn!)Qzy%S6eN zI=gP#>gl>F>yTKez{U8z=_}t$7Xf0dvnc)>i;QEeIp4=wtLL0tRUg&(v~j!RwrZfG zEYc=Og$cp$J-`IVVeWO9;S;jv5Ra%dzTzT;gI7gg(8`Tv)rqV8&^Bets3l<`8cCW;>VU`fP@uNJNNmAd=)BfJ>?$G z0%`Hp$ZV<*h1F^O%eI4qgXIrt_$+>V-x;`quF#!4i7s-% zL(;UVJ5L4ukn(sU!spVPCFr_XF!1rx((SL4Xj4$JPz^Ko?8~oyi6!e}AzJx?VU$JC zM@?Uwr7nmeQ~V}yE!^547)xHePUjC02i{UMJJB(^ae8vp^{Ns8FH~{w(cNDW19l4W z4~>JAki)H-qevrLc$dPu&7~rK8esTCXhf_MoxQ1$bz#-{+AqO88?ia0?|&g*{&~d1~`{y=+z}{4jVnc_RH@ z6n_+Qa=;{CIMIvG>Bgt+%BGo3N)8dS$VW=sGTj5PQJ%YkoLld$gPit|iI#k2k#lSG zI~;R9q=9(67Hs~gh67IGE|PuAXAf3KR?sXPvoSCiSf>S|3(&4mJVl!D0l8#%Jx3Avdi2Itl>%dKNxvAs0gfKmL$^VVtkmY@yK~H9ESnzxE3~ zH}}AD)orI4{!oENCN%A6Q=a(Aa zPpTf7_=SJ*RMfPe#vT7X|6SX~!w6c9mUUpLOx+ zk33Ob;_xBb8~OI$m;~*FbuUgx#=`tl(-PI8yWh@ICS)}?{?G}bDm2{!?{3id!vmM_0iqNI#+$U;Rdi<5oc+TzC-T4{o z22NK8r#^32I}5iht4^00z7;_2cqFPPE;7>5epR!Jgmq7Dv{2)oC50;=E z+E;o9s#V@D-xf>)G+A5Fr>4IeI(|g(YaepJ(=IeL=3K|Iplm6MZ}!o8_C@+ebatNC z$SutWVc{X4vG1-qbn3XTE#75c`?9HoeGiZGsf9R?o!WW$oyinhwe{K+#Hb+ga*9&~ zU2zy=Q7`6lQ(DZcsABHp-Qf2^;8ji~_==2erW1H16M`$DS0MI?lz{=Fz2!MZ6se3lgUN}>}j2MP!N(7Z?4)&G3Oe|nv zAzpa)1{CKD1ogC~ioXD*N=W;$sgcR+{fDKGeqVKly#PRQ8a{R^hZD32pYYp6@l&dGq<*Zol)_xt-;v zG1v84p3nQ^{*;(_k#|h@`mP60N_gTetIYMy5j0BtGMLe&&#!IKmi)gS|pRKpcBf&Ay4io<-9HY9qW3%=={y( znCrLw8Guvlh$4TOmO_ya7D%2q+k7qc{+pfgf zk{K7gfl!DtBygshKsx!qJef)IwvRD~?IcQ-tm1FFcBFk26|udbWovON!B!)|$8dL- z>Dku;ANTxYx~&*MZ<98Y)CxUf$Sr?hQ2j}B$X8vCcnY(1k36_;5;1Bu&h-i0=aduS zi~jPG49E~$vmxzmU`Pv^s3oP3)7d`jF-OpITQd{?TlXToZk?CZvTbUr%32i^-(Z#) zG1>>@@Ing8m&I*-t3!{ABFh)0>))Fflsu;14xDXe`fs0w6Elf1ZJI7qW|B6|>Io|rv9y0Dt z=>m-|U+hw4c7}g88Af{xf6u5re;4Y11kW^tO3mr4P^Y}@^Z^XQWpTTFN;T^2$(Bu; zrj%{Ji$@&8LVe!CPaF=}&0Qn-*_%a%s9kck65LK-7)Q*s^PV$Y}4i-MmAs z^p&Vc#|&L;+XVs4fy*@n6er_7(*edLngFV(U+qKVXIEmixOrxthf0T^gHXH3+gf!s zFKHltS&Q*~6%Uq&&iz<7MzQSzNYN~7y4D90(?8#w5=JzKI;7MIs8|A%Wy2q?Kta&= zzx+_z2XgFr&-nM9&nHi|LPB3L#q13i#zdEfO#RJcgA|vajIo406S|JqrM|3`H?^av zQ(pg{?+a?Ad=!x1-PgGm`2j8pl}l~V8cuMSqv`O;`1{l#q|&$DDD@bT&wTsrtnrP> zCPdjGzlfDfR_y1!-cs%|vRmkyp3{o*_lqyvZ`66xe)IA^IVzIsdi+lpe^cD}{Snuv zdNXQCPz_~hxM9aQcp8{I!7oWfgGVE1gi{;` zznphoclWXA2HBo^NIlY3#N_niY74GtZ(ZMM~I;aOr>s5o9Y%Thu|w>wpf(hbkBbA)5x$@8lznyWwmn)Ecb z?N=H^uL7xyNWu7vq#Zn(AB5sruEGc+8LfBFH8rtHK+Qwb$TtTGcS4)u=Ad$!?^^Xy zbo*h5Jb;>2KdfWma=3rs)7oOH$c1=eT8L^5|M5$*eY57u-dY$H*SRu>`KyqfpDyoP zX`}VX1YXDut9_>9J#xxCYYRyO^l|vhH?>M6EepoeYhv;hgGl$EYl#3*+%`f2AUB5&?TEy>hgy(G%AWJ2m}u&NH#3Y_y9;DU#?w93ym7P=-3 zc8Or)|JcL;7cx>>NXRsJN3Ejh8c#b1MzB54;9&ZYs2((*MTC1I_CG7aD%@PUM;DOX3j- zcwC7OloGv&=haX(Jdn->(4QDd`Q}MkDDwL|ljEXXqJL6;;vny-5Sp6VZGOl;s$}f7 z`++ZcuIoJ-mHD+5!nqD8#+kW`m)9!&3?dg&AlG1HB9jw7{s7f==-zRGM!N`c^8?<| z!c4^$x)j!luzI6NYb%MxVz5XkWuML%5R7%g;vw%N7gTjV$?O*^;%SN2tKDB)eqq$1 zIeOJ(;;t5eP7-3sGf>;0B(!$Kjk>wL_ni0btWQ6*R3?d#otSy?{NS-%@U6;$WH?#T zl)TdlA$F66kByG3cwR$Ek^?h@aM_QFuqC7-!R*xUIgV6ve5;pA6)U_5ooRt)SP-wP zWhFXYoK=&3ymE|FzS0tESL-6^ubZJ^7aRO@cH6Vqo+A&&C0HLm?R$NB@z?ohx}`m0 z3~#koMO*#+J&vOMt@4Ody+y}u_ZM5#Fd|LLw#=me3mo9Fe0=(QyTs7&7twUXsiQ^p z=M)(B`PR1@)IOgWy3(N8ly_D4c@Dyw%jK{0BvV%7bIU~rsG}&#DdQIF0c=>YWKh;@xTtGg z-ONd;d|0vx^XAgdq&APzwXVZp$YA}ykO3SJg7suVF@-5BUy~2*66ABS6@{vy45inP zf#?+gMkVkFvm1`o1NmfnU+8i%6 z@;3x$WUq5qbTrT%F2f0dDBFY{f98EGH!JCLHhb~|{ZG8G=*_3*3>0pZ3VHCuP+x*q zxU`^cFoPdQHrdRWEXu`CyzcnFWWKK&rYQX34)n>bt3u{H?XS%yel6w4 zGNj?5fUk5DQ`$m8nN%cIIF=VF7;$HpNu2=MBY;# z2!`)AU4w{_xlwXntAv1YJdRDfZre0|k=q`5y08HjF11*yx32J{!k70eUuMhLsU`xD z@w!`g1jaRX4Yr=x2+72j4@*{Rna3F19Q#Gp#E2Hfv@Wl8D%leU=Mn?b7B2Jy<=fPS z$7cM!6Z26aj+(Mi@eV9CqlQnuGUxZd0MGBJ!pUNrVukD%feINXORRNlb#R2(cn6b` z{CcuTtp{_DqUA+2oR3esJFeY*;zd`Lij{oP1P{0WTSF!QE48*a-rud#H=`>Zux{oP zN(J~N8=ow-q5_V8dpbRpf=@w;P>Fnt1(PV1>#;VcYOy9>RfWGyYV3l>-VRDFvF_NRVG+H9M7Kk@ zP$5_b#KB^tZ+})*N%Fo&r=v|5TW?asK}Nzlh~~t%RsyvyBB;{REzN5 zL%_}Opj|m%;_{`ORy6clFF^25+wR3AS=(D^Zv!Fagz!K`3qxi^wQxhDg&VO>?%Xe< z!tu9zS~Q@zTzOuX5eOdk<{r?LOSz!S`;60RpJ;TBUen}*CKzJ{+ArrFIh1W3%;jd6 zS5)WU2L0ik{r=qMg5!2e#=R;lqu`;yW0${C7zzIZAZ_t4a4|}!157%ItR87Or}*y9 zeiXS=*(`friv#o%pa`7sgn}CFPK^CwLaUcOaTMTYUbd+JbA7Nw(Gk&8tNbFE>V-B{ zH)yR4&bhBntdmfseP^9Du8u1<#bvp+?q*tf!z9$47b?p`{e2604$s(?Ov|M=aGKIO zN~jVK=Ef5JVR5^O>7oO2e6mCKK*+%CV;pZt)LK8H*!6DIttOAxew=FVtb6#Ruh z7`_#STk~drg8l`*EgX-xt|JnxRfw{^w`>ZBPIDquzsyj5z5^&nf+OOG)sierLugLr z(xcrX-M%7`EE{!2A&0jCBAumk{Tsz(#_L%|mR`zU57*a&>pFt?D->;a#XT8*VuP%*%&Kz&V&>#DcVe)j;eJXLMBQi7qd={Gu1|NJILY)H zr_@((u*Dr6N!R5z{`Nv&z@+h9>m-=G=AtzNH!6fMd-mE!O=t>kX z^sdfU1Vt{zKz`M??ed}A2(Zw4o0}Au%WDC{y+gB7S^)4NmJ`ZBySOBhj3v4E9Yu8P zXc|>i)(v|j;)OK_=adkNhbSEgnhG+M^t`ZBVMy9&^G?7)e8Pi3gaciv)y!jInRO8d z%1fG`b5DO1IYg#*<&o=TiGN7dBX?A(k{G12Q)64jG+u9bMpf#-F z4#teUch!Juu`C`AkfMZ&T4NeolGkd$B_GP5rrQRhY)*CR;NkH1Vvg?2^CBUznlgi` zPQYg;sbBlP%-NVTyyHujk^n;zP|c!M0_v2;#NAASx8RUNV0xv{l${!*>Y2;4bLfIB z&8`!1O+5}7v-C#91vS8Ejh?)e@0+7_SS3sf+FY~)zCWrW)3oL${B2{D16W8vpOXc* z#~Bryp?IT7%O6!)94wLsKx=q3HI*|%NNqES9Z}1h+u-akO+}&nqfMDO$Pg-Uhv#UG z#BJc|Ce?rbYn{c*vDY`HF)PKCwT0{*<{(Y<{v&@`;KD9sK|F4M2OQzqtFBPPJRL7< z>kDZQ-F`-4@uoKE1?8Ca$xQK&PK9<0)^wq)7ETJ6#oA68F*jBTOqYg_K@j`SSrY_| zkc&X#Fw3-5O z30`kepUf@#4lP?5RG@}jBx{vuEer%D+$6>A)WKXtOqu#mt);`|UOhz*D`IqRu}4Ci zZY+Q?QM0Fs31IK0b7}x(sw(qq%ST&cw zzc06C?xcUWf=OD40itB|+Fj;W2w1CAL#Wks6!H22*E)27zQH%=7jJZ%>GF;tugePD z(D$zY2eYnyc;L9c4D%cB{!96cwjYoab)h$upPD?dN zl6o2Wzm_u+W094IQhtsad$dwCrdUcbtG|^_wZHkM#u|wve>kF*dDSH~ZL0Z%P5Z=f zvq2y)EN0D?#q&G}i#v6FvkZ`$+k6&6KP06;^nIM~GGVE#3ago>sjcF!xK~&l5omRC zdTb9Z{%SArhxsnrbbz86Y1DY@9}p{jWL&R>d6WS5ZHoc0Z;N(*H``;<;O*&t=%%ss zn&ubI(dONaj{B|?RXw|bBpTy;(ex6gBYNn~vz{C6e8U2Ozb|lw-N^1QW5vN`yYTXo zcBdd{MO*x<5#IP(xI(EJgNmYsmuI=X53ml^XI~rZ-KL_*sz@)ce0LoLW5boSKY(QwyO(QSeVJy6UKXQT07DbgN!Ek%;K4Bkw6!5j8J?^5Tsw3 z4_5NWVB3rKv-BN#-GZR&jSem!KvZ3Lw5p3L9mtW({laPa6asZ_>z@|?DDkcGOrK6K zO&_SNH3k(&2|c$ozYl$SoU$iUjnj67*Rva}(=Vmner{>6+lUF52@)5mk#ts}yqgHZ zBr#Yl7LUQ7*NgYNF^~^mz!R)f$?Zn} zJX7y}Q?DWK3tp^P94J+`_5e=Kjx7C<1N``yRNBgo60DiV4+}|N-O0u|%T~BjHKICx zc?TJ9Nd{5}ZwgvkPFEE&Y7`_!_$F_(T1Dt;HPZbh56+xrUE!*TCKrN{lMe5S06-?4 zriF)gcGM(2*?!j?ZO8Cd^o}eh_S&S*V*OBF@rUY8E=kl0Ra>Odb88leJ++xE85IfR z)YcT3JqETt_EU*IR3mwh3dzrt0U$_108LU%&@wI{^A6)Fr{dLH&8c`Hk6C3l)Rn=D zyE5YkNeMz#1yS|_Sf*s#Z^c`UU*+v_Q5Ppq@< zVkxUNjb-{gAm?1qdA5xHd<=SHC^>*`yAH@p24FMx+d^aSOudt1rZGr-@fXeI?uUON zLoD<4midDrXkm;SZ^IU}5>mn1(|0l`aTiz%3l;W@+eh_zUqq}~se@>?Oo%AnI{DhZ z*PxO#&pJg*7(<9$*YvIZ>>(@ZBd_V;%0=99F>v_#ycoQ^W zA8S`>|J1QU(NLZ7;v3BF;&ft}ZIBR#smHR&72G`rR%N+O;({7maD%I=(%qKKAzPJ+ z1LDU~&L1XHc0lDD%I6dUddsB&AXg)It8l;UR#GvV4U1Li>D@5Rq;F;cQhLJ{$6``M zRo9)Rd(J-j;FQYD((1*1v_r+~)sKS`C4!WabRX~Jjn&+PKi4j~cK>r?ZU?t+YH@OF z0O|=R`sFF;xZhTYDBaU0W(P(Megg2crV*^_GYL#B^5D znsoO)UX(U?us(g}=Z!NehxU4xX6+Z3w)M*7W3yUAm2DyIlbo!aotWFfVZG4JTWjq) zm^zG!mbqmcM{f&h5#RGj1n)6V(5Of$#C;69l1x3Qu|^ZO)dTPv)*7DM3V1HQYGK%g zX5im#=G?+oGd?UoU81|yN}7cv#vLa0g&wL_Z}uss+9_j8ly@TYwc6Wk;#lTSGU4!| zShbgWpq-;9A<1$nR<_9tVega1RCJt?{Y_%oRxu+K9BOTdPeNW0YM%NzKQofk(%5r) z&m(nod&l+`Yt}Z}P+sXZGgpZh_b0PwPVLmw<|RnPOOnrZ za=?nV#`35T9>EsAtgte9K2^Equt%d$ffnE=H9?*5f5E;v1Xz#R#SA@Q>?6kTj&%mY zKCry*6Xi8z0u9xOtM?i3d$E}pvPbiagH)}ewyEK-v?&VgF8BCs9}4mQ?hKx$`E$h%dw)J! za^SzPSq3OwxBB=bN|9KMa`}?!SMxF_vYArM z9}*;DDEs4aP#Hwf6%ivq^H^Xf6Pq>|%E>`~5#)}OXi2aBA;ko7| z2Db*!DT92}+@Q2g8vd}utIZXl=Luo+7Y(5rh${TR@@T&Toy{~H7m4`V%407bm=&Pr z)zDgn4~W3}Q~eB9La(M7e2$3;(C6sgxPpUKt&OhD!dM~gLJkf~kGow4P_*Jl${A?d zk6mVyoog&49CvbZg9KU;OI{;@B0-LLx!m^n_73?B+rD45?>dUKw~_#85ig*IKFUWw zrW34MECTre;|74y`$}jVA*=m?Kbm$v4}5((ReW!=W>m8!RecK+{F7*j3{7DWtH$zK z$mZlmi>qv-#lmS*<;6Re489}aD(k3#S)-Yx*2^HZh?9)^B9X`gMF-4Jv}DMpyVQwg zy95t87!;& z30trX0P;efEF=p<6=ixM$}v~N`nl0sV~1b+T<0HlZJRKW6Abc;xytyI{gKX78mjVM zh1UW=g;j~ifQ!Q4*x99xEjfAyJZtK3MH@b5*|axuhdx{8?OXUjW(Y^;Om=pz#tcY^ zJh(I!*_-WMX5J(ue~%L6ocmb9WPo@605^Ry^Vq&#)lq+| z7HNpp8B(CTyOK2HooOapyyDAICVF#}iTtO-G#1LBRmalMj`4mel2H0vLs(SIe!%V;aY$<@b7w66$b&K$@;ej5*AoeGZU(~(W% zFSWq$MR{v58%R#1qs|{kPgBb&NL#5@2Q+vdaw2mu?kX&{J;Be2EVjV05SeMH#bFo^ zQX4F!0(kexP22{eDz{|Fw9kXsAqcQr;jK?HCZAd{Q{TST9`BSu7%k{H({cZ2f zS(Mf>q?-8#i{I~`q@CI#GdC?LH7Q`d!ff^DbG9#tJ7)TL{r~aVEVy}$p;>E)d z#Top?RwOB?6_%52&jEm%n2By$^-*BgD@x77t&t07x64qwT%;tmGf7|<+H)A6p zE+o)ypQYaQgp^#q@NQET`|iGwS;=3p<|v3So+}^Fp#y+oCfX#|U)nbH%;cElP!7%c9}3d*I3e<)#Pg(|a;8%z6e`uA)GI^KGwe%$h3z^v#{t0>Q0+{;T` z>!;b2Ciy=QVCATnVdG!~gtuqcyijIs2}@gA>*N3W`NDy}GagI0e8GdV(ZA-`t2_Y_ zRjqymej+ZZ!wI{W6&No`{*kyZ4^B5jIr8a|v0|~PS~)rK@BVSwOdGrA2gfR>s;zBY z>2Qnrkz+_i4-SXLp&;)Cruo@oj40>thFsf6}Hq$#d zifM=!Xh%1)`pdY2++b*RQ|K{&7PE=#u4$FPT@a4ld=6T#=$PEBQ#mClD40}{XL&Cr zI5;k$LR{b399kB;8q(_W+oUM$D%jTho`1#kd*yjM?UjaPqoVt*xB}8e+i!^sq3`)l z=MWX(XGwxWl>nF8c`vmQJHWgrL*n+9{iXoN&(3YnF5T@2mi~>5xdpo4OwIz2IU-j% z1>c9}<|n!MOH`g%q4xHd#9XM6vG2T@46;cTyUM0(q6>$+?pHa@e$Ok|3*Rdiz*5BY zy}Q1cL6~j7urHvk{BwQIE?8{Za)dE6kg4sF8}f~Z>04S+IQTxj|(uzUk*2HWE8iq5%17e zia)gOOm(%SYo2GHgts$pvK{S!b?!|uf>pqVJW$c+wORmWFdJc3*!h`|xwgq3lLxPpr)n^7&3Q{FPc&(YzzK)ZD&!lsE;N87Yfg5yC z z`I~p->^M*WZgju%bJmEUc7uOb-mZ#CxOd&Ar98jKkC<+9gp*S@ZwDwLvH?%7 zENH9z$%8*)BZN!njVR(?-^~i>NQ*B;*_%w0s0!gb@RLvu#$(z#?g>zX`$Bag*Gy7& zmRO6DusK0kjsNpF(K&LocvLKyNWD@97E=dLSRZeoPyxn$HOyn-vp1~$V(O}9v%lgi z>mr>w0d8D8Tosl-Mle?#vTK-yb#MeST$yw&C^XXjD>RCez1(McKyHjuI)6mqlL4s` zd{G4q)>B?hipaOtVz&)uU)h`d@Z^mE)d&P=7oPjHI;m{5fu%xfI}BxUgd`_Ke(FsQEq!z!ar8vjl2I{L@JOqzg%-(8|=tqPl}`}MZ5vciQ4A#ok4MkR)bGr(7vg{KGFLL<2|(Q%-EKR$KCQ9qW3jZ%UO7ovq-JQL zX3WZGPRiTDb>$S}_}7CEOOtdhAah$RL#Io;qlhdQv!k2*Rd@@aL#FlO4ItY~L?RSu zScEpz`RPfp)jYo4J@~*;X<9MMgRCo-v{XF)q*vHBCLlqm!1rp&StU~4jn|~8w@ct- z`V#(Va|NyWm6!96;wPm0^VLgxh8Knt7s^n9Dt8sneOvx{&ONV`-X&iVdUdarhbzj( zt`x%kDn9r(pWW%wBip0UqXdKO(!eS2N-_EukhqL=N%Esipep+~=xb`O-&kj(YQ6H5 z1ZZ-V12cr#9^GZ?(5h{q&xkp|!z}s|opE9wOb}on2aKmjisH-RKG2fF!D9lXx@#U`sEUTZY^1 z1Ep?iWB(;A2IZclaKiE2kMP5sn%j3|d**ceftSx{+4!13Fn?|$nb@O5q zpvcikHI-p&rJ2I!bfF^hSGiWF_NVgceXWHLo#q+Cu`AvGOT<(|s$+ib*lZ|T{|mgXeo$-jcr^4LC$7kDihQ%jZT{!pL`yf;Zs)-> z3>JRfKg_TH3J$bd+uGyrQ4|9AHx6%7F(}J1Cf?O4yJ*|ae*r(*!=LLW)*c(S>Itwl zvW_|w4#h98099uUI#xCeZ#9d19VN5R(}LvhYDOc|9@V_ydMvk9C2yb`P?;bhrcis8 zRuA8wZIi#j%YX9GQ`g%ZW5oc=TGER1sdVt~k=d3Cv_;c@k`TWa?7q+P5;edBkuXL) zCm*g5YK~2=LXpVljcS#=509nvs7v2fS19>N=97UF$2-6*82zv^PC z8UNtH&R!0ZiKU>}CXry4$EXI17ey^OYzEuQk32iuYlxbp9@X_Bmt4}cHHQP+_bOWR zHg?4m2Q4!lzJ7Y!m=~IEdZ|CO<;CP~nWRNk7qm3A;UK)E;Hwqh+dLhUGsh#>ewnx% zf08FvnTYDwbr-h2;M_LMEC3Q9gMQ*tX)J}LEZ?G&vHH|q@e!Z1S%L5(1Ue``v!m0zDXzGaqnc}vc%mD`E*d;h}6n|hy_ z`N3k(CztWZ5Y>V8@zY_AaY~|9Ur?tlD^7?Rnxl7o(i2JkJoa1y?)k%M(`L&L;-ZRF zoJft8(}zw5fdp4e!c-M3a(wgdpl?2~dUR7%7}p7^umHZjyPbJgO%qPN*pVk$CUNbIW9Iajdv)s7cGGn}<@QKb<=L0_u1dA9*qOn0o!wMwE$I zyUi#>s7yeq;F#yG#{Lr7_tOtTegyz9*~bL22;U;H$=Clh^Q90*S|<|9o5`K#@7;Qy zh;;JuB=#woy$K`3os)&3a|JKjjfGu_)h_y5|4N0l{fc24M7)6Y^-R!@%Aqg0gl$|m z=r{1=_zj+c+5a84W#jgkv+i3hdk**t<9f@U#ZSCWRMP?R3g)n!?D|5vHrcJ^$hPWZ z8`{EClnOc?3hT*1!ueCD|55?exST@qfM=XmS?RipEDEf9fnc-uf!+`h!E#}Uw96Ls zW|%$E!?VUhykmo5 zOn1Cff>j{kEoaAhGn7d|yrBU`woYb8({)%52P28WzAjLHl)M8Tsn0pq`Zi@MIs*bK(Q@SU%c8#FW zSA|!lrGd2yQ`1|k7ots(om-kNB;*?Y0%6_%HuhChu_>ogdmHY{X}u*ql8cV;?NsPI zXqBOfCy|TLO(afr)p<7q3w!GNnMTf}lAy(K(a>5*43R42vh*5~836#Ip#6wyQOXMq zhR}=oEE0e|5fa4PS`8p=B&seRciV{zBuPiWs zXtRsbHl>c7(FjfSJa#AgtNhO$g|>RweItG#2k1s6$z*z+|7T*VPeCh-Tg9#f8_AG^ z+9b5a;vo)OEnIZv%=fjJoNJQV0xtoz#7mPLI+4}b1+bv7g06Vms!mwSrlo<qE! zYcz-J!#2R1z&}0J=e{k3UlG1hR6-Iv6qq==BChqfUG)sK3|FSl@g#`WTyvu% z!6)>2EUrEE3O=S7e)nhyc_I$YRj-r$Bpn1hIJqDGkgDOL`wpobsP;k@V7LWQlj9uw z4x&M*b5fW;s~PC~+?OkpMsmNHon8%JkfN4bbRQX)jvHH=4ESV|1RR~}hpIxC1whzI$rfT4 zGyJ3%9JckPF36dOca&X6*Q%-B(|%+gZtg;s&)F5pky`&1w@%KEiyRcb#IdhYKlGKnIa3Xxn={=8|pK37ZJvEL)Y)BT}Cf@sEp4rH)QI%r%U}zCSPPpa%>A|i)AU-J~YFl&NwEpqW!cV(`3p%676KL6w8enX3!}((2_SYs2~rGGKb0RVN99pCfwAzN6x(P6LBS&g|HRab5!F-K z&yt|zST`4>BqSo(<2UBZXY%cg+0L&aK-@{X@eag(7zEn9;7MMI~S?llo$zwtU{q5O@dV!yNBe zIg0SsN>4iIM#0oGe4xfbXpMitJKKYzD9^VKO zoNVfvyLR%6jK8?br2}EGNKv{P&3bc?$H4v{Lc$kkRHd$c49~Q0E-{z%i~idGci+0` zohJY`vFIeH*zED*^-FoO!}nik95bx`KS>G>rMPnul49`FD}X`dWh@>ClM>lM1PTIu zx%}M*#yZuVIl<*z6;Xtq2dVF@K^;_4X!gON#B`RSXN!-!4o{E1Qy)lg~ zuxptUMw1l)R;Ht;AfiAttD4_3yno6V4$m>;TSBDuR${g| z@lNYh+p47eBSkFAtx`G-c_bHqEla^a-4EyQRD>r~9k%5B>2 ziW+l1(&MW~`y=;|&Z$8&ITQOn=z~db+ffGKq7iivtg5JjRTWs;8Mn{>0=lb>YBL&a z^twdCR-X}R$*_3w>d1p%yUWDv_~ZPdH5WFEJSsOMuX>7QmdA8-nEUt<37Rn!XyKuE zAf|uU9kdt)USE6{m^RKV3z=80+gh-R?=C!ozdMhTj|?-fNH~Xb0Y(r$=6uKRa9!kfvau zP~|9;bO6h=5S5{Yh)Je|vj0$oI!Fm;Qh)--;EiEGm&y-R%O?9Oi#p4oG-vsq&>Ao3-9Kyh@0aZ~dGZJ%Zx*nsxaKvna z>_P29-jI%;K!cZtBjdelx0I&jQ>7SBySh`v3cxQG|`)Vaspe z-d;WT^MM<7^*s#EkRcx!zV9duG%*7Ex8fb;%DAMIgpzH{AMBOiFLm#YYlkO`HZ_JZ z`IwdGIrft}Y_(*({z5jnmG|1dJ6?j_Ey(&c%ONkwF41m=_IR9Dks+gOFBPXL&J>`( ze>gYPwSG_F<;eFsrBiuR&ifb{ununyWb^m8a{P~;$EHxnr1Eh85&7>sQ~PwFJ%x;+ z5jD_}sw$Vlf%f4dRXM6Kj*%>0ji^n1**3W`0?DgnxU9*dRYG_4QhcjTFasfLtxn&w zLs+vXlaPg-MVzUBo~#n(t=Ln67L%nNLxS3sHQ^3?hIqXkdEhWN|B#`rF5#kUh*G%z*sb@sN2t^gQm|&fh zd=Y+oEKl;;PB*QchlnZomf`h+Ra%6NOV~LsOvSma_CMR3G?p+b*>b0JBa7!bCxuKp zOxu3seg1=E`CVBT?~+t3<+~Zk?yB}KSj+)1Hp%s%aN_oK0Q@WJZQTPvCsp`EWliPu`<|fwtvfzcA|PqvRIqzuKhbvq;Nz%l8sU{|38|yUI`KN5dk!*2zeB&w_Yvz zl=0Dr)p1CCpVM92DoR_nH*srlO@kYwo_sg9Bva%faREZ$QAyE*jTb0e`dptgwE4+U z0*`R|mNmCj-8qeqlH0I~ zux8jI%4}p=3OwV=&cFxJdPVhx8c2Z~Z9U@wDXo}{d(dqiArFm3Xqg<(|GX(p&S+SW z9=>3tclwdA*+BdBzS}apM$V#B;5uqesBI-bt6c|PSEp%2^>Rgf+|eCv@BT&&Ru_(| z+eZk$(mZz92gdjN40BNO8&OpuaW?#YOW!TNj2?o&o77EGXqyZ41k8d~Wd)@%!_v@d z8qHQNj;-5-h*glCjX~zU9lx3mWZCh}Lr|)IL5GMF0W(APqY?i}+hEW(7FD$#g^1Q+7V(&I6ajltw3PP3 z191^*D9Hk*Bu!F~{bED^7X<}<#ee5H^OT9?d=(UlS;jJ=_0B4*Jo*znF)VXm=J0P` z)hFR1W#WEwoms)PRqD4R{&_d)m`&81)RQWDxkan#8G#b^0#}#WO;fh(@82C$6ubu< z=?fGI^5I@D^HVFHeIGSv8u~YIL;F47%v>)?qj&5HCF z^Q-0lO6@>p`oVaofk&VkKVS)+CQ)(x!>$#z$V@K?N@#(VElE01d7es}$k}ffX(us< z@T}RmeHLLMkZIdED6)HrqiuqD)acA^JCNK6EC-0iSd~q9<*LP)R|vE!M`uQcen496uJ8qp(t7o~HWBJ7~_!uVI;L}N}dSp&UL>fsB;t_9^qQbZ9 zLpYO2D)In4&&A%6i%Yg8jWrJGiJY5mMlM9C8Zr-=|LLhwgB3M$bJAX4>*K$ivC%YJG!l%jSG(jBl$U=x|AO>m z-t1e*Avn%#%Vo6!7};9$Zl_7*5c9rE3-W}1f!NkrrTt;&5i%o$y|#6d zNB;#*RQ#y>xy`$A6NY$*eD+u9qyJrI^WUdh!+}?`^>hhSN$Q2k(6HtJqu~}KEw15| z6V-om69gEc>Tyo=&bG;W+o1=u2d-(?M!YQC`sq%mZ#9N9dK5x($-4GOgtFKBK3p{i z%XA&A{~g$Vr*Sy+R5GXS#m$0s__ttGhGZk0FUBs|eY%?a2Di*<4(FiH|? zwj~AD=Dk5z_Z&a}bc60;as)#o89uc>$Itw2G8m+U{b=4&xBf^^>d+Ol-s`}lGGF=L z5jo*M@%&Ba-`vl!04_486`a!&-CH*29*Tn}>~q|pSf@KVK*-*)s-jBgE4vj4K3V|0 zT37HeiU~pr)j`Rn&t&KS-gKbPxFo^MWqYm1@6OdapRqK4d3%6+oW;**mPkx)X@OL7c+?M+feve(NTmU5~|Jga$Pe`vQChGP(;r8cM@8d2k0Ija?fwbukjww`R z=}?8t>4^WRtTSQ+Ec7$;1hEjA||^ywVGD(-7FC+t}ljbH&C0mB+C*4 zsZL?vORq|q|2HHq&9fhOkxq-yxtlq$d0c)s*09MmSq~>E4qH&IsQyjEN%%omU^rs3 z^fCeL@~5C=$ZoekPViI-$Pm9_IV?QLEO2smT*o`w}n zQ=2%RP}L{G7j}uC`tAzg6jdZ+`?~$YY#f2j5I(0Rb$}n`b!P13s`5Hn^a=Wg4At;DlqV`-dI#;jcJNI?bLk2^hRi_^Q$CJQ+7WRcu)ljZ`O*?t~Qr}XdOSqV355X2NmxwKK zx+Y`4=4-LrZ%Tya6~5s-;h10H4So$_mv5Y`Y!wy}fC=;Ts00&EL{grcmL=c*Y2QdP z;D@(vmRJP=yOX5n*$n1c7>6e+8_=W2;x}L3-wi2I>a(Yl7o{8(6@h8zaI?*cU9oi~ zH&p+cm6w}6iU+eCRa02GZL4~XAHKpAQ8A1RUU1?r8;$c|#!Z6ZXB}1Uyj&;nQyQs~ z>Cg#*Gt%n5mpPO5(hNcO`QKV=DL=UMqDqUAQ&buU)^98VM5!hy5WrEqSn3G!t`7>{ zMBdYWCwxVJ`&af2EZl_<2IKTnvXD$@DS7_6S|vCG%nfc^1_%B2fZLM{G01PlY7V-` zof>?L_8xrCa$+49H`8OMIZpI8bY{MDN63QPy0Mk&>#M)a!E)YzQ$ab5E*?9?78!?q zSRXsW0pV;RRB_^Qy^WPR{aeV9sz;4$(p%7%ygDu-&_!acFRRb&`}+a;(zgKI9vOaM zFJ&bcET{dY6QjRMktv7c8a;n7w=YN(*rX^cz=K~zZjKC^li(o8e+PlIo(2X=+*-yn z_3`a3pkU_BoDP3Jo^|3iIpHt-+J2pq!E_vm3n!{Uz^O|H;NVmWGx}pR@3)izH1}(0 zf4dNH_|LWX$tDwDg;2z0^b7fp`9n2y#_g>_$pWvU-Msk1e3?_gUcqX56fjl3e=n9G zw+$I74Ky|qp*a=@$iHuA9C!(T#<3`JCNBO$u8`dMkOvic=UqRPu(K4mvR92>S&3|S zvFx@hq7iB4k~?@A-bSAbn3dfmJBiVKf(EPwrgD)lpecEVxBwou#*;kMwC4Che2m>n z$76u)ot({)3ys7}&e=v=Fe}uKPT6t(L$q4PXNbP}?rumig0QXQe+ih0TeR3jd>8qo z_JR9P0;yYh*zE$>VpH9(<3c!xvP?LYRr-8i(6ICQu+~^wC7va<`~%T&VlK2 zoJ-x(+lZo3`^y$1wjGXkw z*hUBKf3&GFxjNWwisFfzmx9nQ4(?%W5u(AKig8X6OhiOQ(dyAB3-ctOWi|LLpY^GP zt`J=%n3Ln^_W9_@ku$ua%ra7k+p&9k9;%|*@ZFS2i+rQcSN>m9XX428|HtvqPBYiA zxy{Tqqe6&?jbT)pGnF()B`LzUFP$4BSF%u~!`)ChDqX6%k5ocMhuq%|mC_+ezt3lC ze*b`D`@BEz*YSKlopwB-=#j4ZL_6fA6s@aG6{;+g0sf>vI zG)D4`dXslEm?Pd!Bwm_qmb~K_RKG#g85j;d_qW0o(^o%nh}sr5=iIbANRX)yLG>RD z>=2`>lKT0b90DuJ*d=N4k+%7wYY+paSU>gHB}HiNBBzwL%eAW8?1u6TRDkPxV2D5-QENIvPqpK1ux2OQcp(BHE(|?R1qnUIO4>MYelUv@z8XOG>t z30Zkt+86U_l6D*K@6Il9iqhgk`h7goiOPSw$+*J-jbX7)^NGiv*JuDH+jf9bIMe~< zsSaY@ifLGS{jYO>oCH6_I?FeQ55tN$xuaG0Yyu4Y(H)L8E0=M$_s1Xx%p&TvKWY0! zEika;MHGC=hP=wAF!N`%8_w{4ZcozdPfAC_BPoWBC5A&VedA%z{F6x`Q+kN73_4A- z{9{PwMpVFfM2RZt0m}=wgrMf`pkOR~EhAgx@k#~~s&i{SE*44K0;e}417+zE4Yr{r zU6j-Wf((7r7k@U zVAUx zwh)@B*nv{@6}pdZepe&3s%2$96$E|i2#8mAYYf&K;jRJ(CH} zViP^Ia}?WJK@-j!kxV@94k`tNXoqipEEfC^w2u_6z&HDd*?W01# zk^J=nn_6JI-vyj@b&hr1AR25m=lN__xrQb$%NxFwhVpfA(oe4%wMcGO`a~YozW3IW zR^z{>hmxz2I>+92fT^InAewrs^c^Y&3J9>MBLH+KiQp{_iw5aOb^e|$rgXY@WAg#2 z>BkH@m_%fCmI93jL?4@@s8(j-jmz&^Lv+vfcnZT~L`Uu8E`{qwCU4}N#l8NtDDbXa z4c4%j4L79IXkY>dY>i$1g)V>v(-s~V#j%nq*ru+5oJ5}}WMyztm|tp$^41(2Y&giK zUTny;6P;y|>12t@RvktCC#eoD4M!nM42xZUT?Vo$Bs#2w>*+NA_kyq$x5R@QB{!pp z_;GOd$j*DMke*Rs;{5`h-rJ(0lC4QZrp|deh97JC4fsS&FV3^<-+x&88+e8|MD>RF z#O4A%rmATp^1PB+R;N)rNP$=XrO&;Ll$Qg!@trfL09u~=4oE?%sc>ctKe6aAgCZ8; z5?zgmFJ6}C>AjlHuYe3SNG86Z*=hra{!u-?dN9wmF>cQ zxc6^}L~;r8qIUW2@`SW9+%3sxBazq=Ca=ha4e{pu|&?PBadEfOX z)<1{lq;@jt82Zxw2T3vdnV&DbaU}4Uo-@L5^(Y@7MbJD#gW){;Z@n4& zyX*Jwv+C9ZkfnqjHHcwRoJ>R@aX{4hEI{md;!%Oc=;-#poRL-d#S~9FL?k$o0V#0c z6l)~UpVl=->MUrFd$r)7bKjmd!0dSUige}B+E|g)M+KDn1P@Q`>T*)h?O%(3s|G4P zm?rWhpkxaGnU7FCBPjV{E{oO`qTQL=`Qxx})7Ntej7w4?vP#iF0jgy(tr$3IHSY1EMl z?Xv=GwZ*2s|4UjIPIOU>Zzw1x%R`eO(NAgvqiyO_UuS+K8-arVRqdH)H==S!lBfmU z_p&Q8Au6@R&SZ=AL)UITw^tX8$u{HOwEQH%##k^K#ii|XE9llZ46EMN;j_MXqP#>g zWdDtdmg}>bhfmr6nj^x+cn#48VQDH^7i*UW?Nt}1K2voNOIXz5Jm@cLvoSO;8Yh(0 ziy85U!GFX^pGjo*Nutb`pLsGc^AZ8U{(vPG=C zlb2b6NXVRqvsf(9(foUe{j>qflSi_7>#lE0$3YnsS|SFF9<5Nq$QnXkEpV!Pzuq0x z-6?B-a*zS`Y71FpbF!MN!M=+ce@|kw6?i8jT^veVINbkcNI)i$k&FugHD9x?d|j0x z04{I)D_^5Kh-(VHU$hM5h=kbBxEemv&^DmY=V_Y;D zJw*)R{`!z;x!AsCJc3$+lf>dJGG&I4QcNW4C;Hh3?CiiK3psWx_TBYL#kC;HtSTw# zolMc&?q;8eK@N#!u#kk(0o28K+;2k!DtR_Lz_o)PR)T_ohvA^T|8=8AD7<9BX)40s zgsPj+aYKtXg|u@D$Ydb9=%OVlu5Lb}46s_Zwz&Ur%hf}bbDr~v$C)4}h|EwkGrLwf z6a7K800|V-U?kQ>`~<;8a$(;+wxD-9<4xf_fzAJEqpcSES8(d|8xW11Iu%g*7h~JO zB&(_>ZPf@w#j0BG_!|{Ety+bH_x2U842I}Fe-K4rcK4%Ju0n~Om3RcOV?m?U&CR)M z-1QAQfD7^5cFDGJWp+dVjUQM#HpxQ!uIEtWjv^{x?|e7uvf#ws9Z+{=fs;cjcf2~L zCDQLhcqds{@e;bBNrGO`IT$$A{LADfLmbnEERONm*$&YY=a6Hy7~U`i&WjhQ_X-&& zNvuSaWQTn3!4r?_WA+p<%4LmeMpV<3@QL{|1CSI;$HzgF3l~Ay;F#KF0(CK2R^(>DYL5u(qtX@A@Z};o^r)b8Y#|T5MgOc6}&H@vZp~{F(bQ27eT)v=&lQ zKD#o0%8YL2@l<0(2_i@tO1iV)EfQ%`m?vi;eMe_e3^!vNtYUdedU8lLJ#%5-oG8nl z$)$8yW<-0W!?$qm29azl0BRz0#!{R^1&0_lTqhum5%cO6atrUCt#+2j4jEoVj2ij{ zj1>WT@_ZTw&_(V!;9n#nsmmxgoy$kV(|LCk21G~7R72qWlP zQGhbzz*1A{mI?%Z)~Q$Kl%e#)$PI>fKq=^TKbjMqZ2NyX!!sejDh-yKH4b_l!i&?C z+WvM!cO<}D$h(lPAiy-YfAjdj+-c1$+2J%Cz?WnsCW>> z3xTQ5=oH~2wE-N%1WtE63TFXs9=`cFTf5V%Q%q9hi)~#fP&^^wiPzA9nB2a%ChOhr zxdMmc`>RefE<_u;ZFV{~Igi+8sy&95D1J84g^|7v-cm{-REx)a!N5n_h;h+!Nqs?| zm$%xYwrhCQN%+lXX>>Y^GBl7JhESB5YVsR%7387LohmWH{ddzl1%?)AeDAA3m1Gp*D-`;04mbmjB5K5$sWqqL2EcqOn0c6;^w(VPy1F6 zdbdLww-=7Gm{gsIJ^r5 zWs}K1Y{892-UciU1RBCDH1a6%21yz|DGI5RSGAehPXCOk(8dowO3QfvR7Kq*OZHt$ z-l8=X9o}q?bY3}peEI$DDmEUMZlBCkPM*0aRB{i}h134KUa6o*7zlIVQ__Zy$i0&m z{+zS&`wcL;(+R8u0s!DA^t<4=)9iOM97j9Nqbzi&;|c!A)yR$RPY}yA`?J`bTWCW9 zChMp4-Rpx*ck;W^ntfIrAff9dv5L>6*C4C*tv~Xue7%{o)R#+b+kKw}yIGQy5lJA4 z4FBN7u|4Tvkvhpd_o`b%8yp;3<&Z64rPkeG1WM)o0>}6gvKdga;6odPw*CvNuNfXz zkY?0g-fUwlvDSGv){Ijf|B06@jAuy&Iw`>7OsbJG0oi!Asl!O+}3kE9W&@SY7T82B9kS#rHM-IPVb& zLr`g9>;rjU6=?X?uwt&FV;h)Loa%<$JjQw*8fy=e#jIrOl3+w-r)rem5EFrRZv8w+ zGQC>ffq z0I$d)UsTbJIAP|-=BKt-(5z_k)aU~zmP4v!gj{6qds2iRbDjY9FHyB5l83yl%2djI z3}=}U;>DdSiNKycIdf+6mTg{R;uJPm?58_2s8SVA>xcZO1@d)*-or-)E)o-WVLMyU`Wgx0ZJtzB6GBa?#(k z)2iXwQ7}@iz5YdR0?}A_ij1-TX|V0h=q$ZG%fn2{-h$~%T0Ck^dr8fl>z}qEPz4NT z*@zS@ukTD(~=fO6h)QURC`;?yh`m&3w_$evxM`<3!W&@~KpJ-~%(ZZ%9e8npE6VDM@?W5HMb zAE@_Vg_nhvgHxa(&g6;47I5uQ1H)sIr@z48``ueAW83zNGFv9Cy#$zE7wEiWJW*jq zbUp~|yUON87H^mAKlMi){^K`ri{vsq-&`L;RXPt-Wgm?-5S23CtdPPg6%eeYo1B2( z%pfmrPQL8i9Qqkms)pgy9SUvL!#BpqMCB5(kb+s;7_R4u7#>OS`)b?m#|=85*9*pN zOJGg(fXEuzqM-#@-GNp1tiFo}f9PLX!wdv*s4Jz;NP&HWuBdOAw@UvFXniMYm9DN( zP`Rhz+<#1h`HwQN05`jzYO~Tk8PKMo9GhNknU;T~=Z(WxIMYLKKQaXNS=E;-D#a9C zp@m{LfT_B#ex;q7Q;Gsy;JoI-!e13WUGm`bT60@bLB%QaMXT^X$3u^qdPNQZ)pWG? z{MzMCpI6^B$wUmlzRx*JN-;1Vjn=55NB=p;)rFeeu18?pxUJmUjmngUWE5$?6Lj>i z4xu?Ug%1+NL8tF_&}FWgSspDP?k(IW1y63Id@e%yNJR;Bc4bFuZT0{83}^A}-(Bb? zyC*!ERWF~>vRkjPHT4dB2Vl}cv#b_mm0Pw6#b_eZc>@>M-!rr*7v>xk5Bx5I{{%g! z??F8Gvjkl32%2qZTe8Adx^yFKJ4eFBu8c-f-zsk|Ab&Tc$p4$^l~OSLi;AZ>$8*Ox z6aKO6!gdEm1@Bl*Eg>Q)Ni7Y|U2kkd|IR41Sfdj4>(=z$udbco?~-?MkZCR`zoBr+ zl&VqFJ0aJwo#Yf5wnim)Wu=0JQ~(H(R@17Bc>WuxiH?|LfQA4Vt6bytA-KlE^xAgm zkvFVDUs3&P2eE(z4b_Cs^(zm({P}9Obn43oPZk+8;wsXIUJr8Gi*UKN)NIA0YP)`5Un|DMHD?lRhRIazl#vkdh6I&UUCRQd@ngt(1IR4q~v#VK6Yc^jra1(#2 zRw2fM;mYeub%}fUH+!`WuN0uual6VS=>#+5M%KuxE0>F(91Ca|Uj}{x$Vkc>H#KQh zZ$KCrlj%L-uDxL)k?)XQKE0@V@7ckJ=N<&gu5Y=>&`?9H>=dftVHDK<*5x2{$fI32 zMJ(m7c=EJ^m<*3OI?ZEt%stG_+-L@Eopud z!%#LN97;5itzV5B7cb%M5Lh6iomjB%e{xJ zukuPT`2#WE@Y~L|(|7!9eM6uq>5FlM$3%O4(e;J%9oGam%!3;+Boa$DSk;zXj79BP z4Zg7gw}UlLkwa>U4Lv-A_4Dke?3mtB9ynKS73~5r&}vHrw1A}aQUHMoR9QelD+Pp3 znfm^Ik5hXBX-5Y>@83ud+wF^94f;2s^hT3Q$pu848gvKDQkoVsV)K!^E0 zv-j48)y3u`4w6#0hSCWaCN2jyld+Ld2iyp7<&neEo_pd06-$MgBbJJ$X?Sg%UypoZ zm1MKb2M&^`IjooqqY;&KZawT-@yqbT_B80XV#quvEr5Cnw9I8wB&mhs<$~zfLq)Pk zCZ=CsA__AXL2|@a`#f#KI4`2>Lrw!{T~cUG%2bX%`!h`4t{@ic+)MaC5LVX6cUv0iArN^QJh9QM{% zRglE(la>BZ={uvQ#8-!3`8nT4{x3(z9gTew?N>d-C&bo+A6&k6vpy%zMvRFywRelj z?Zs?zAR^+d= zfu`0OJlU9_vcj5Yq%mWfvs9HM`xF;e1=&(U@fDS_oLG72TLGYN<^FwIu3NT)s@JuA zs4Vcnj5(iOaINU@)#AikhN(suo;w=}#QJ4?)B+2qu!tqVybpAY%mxx7GKya_FG!Q) zF}>+vprdsrg5|ho7z~4OsHiANp;0TuE8F2CKao{i=mv41X+{1@0Ybl+O+(}!%rLrz zv8gM$gafN`goOyW06q6%9D-0r!w8&H;IqkKyx{Bh%tQA5SqVP=)j~StumX=|WDP(| zj*kuo@AUhL=xf1HadVZ19YSY7Pac96;CcR5*WsRHMeN4oEC~#xP2@n@#HmIdiJTlY zZzsO)ks~$wqQuqXy2v%hwxQ0hhhvb4W3g){cs(bx3nya(`$UD94Ouc)!|e)5dZJyD zb|7#}>!Q`;pR~-W{XCbQ2BwfuSBb;e$tX?&?YHcYIK=>^YkoHjD? z<8kYT>Z{kTWYq=?-MD## z#`fpR%Y(dl9HY#jMg^#7)CGRvzo;_R!rYW_lmnmQ)d~ud13fHR2e*WrN>Gl&uT;~j zUR=X-IIWj+rS`C46NKxDu1wO_>Zr;w)az313mz9x?__l!uPFLPYH`JSl75+3;(8pq z=Mt!-)!+7D`lTdC=22#b^aN!rMK1Fwn7mf>8!!f}sJGX>oqI;f1XOQR8WT^+wxPQV ztItgN!DV)v#;ey~gOX)7Bb)&MF7{L%RLR5lBmU9Ir4}qJo3FcWcYCbI_bS?LqO!$< z!=7W#nku0&eo89Tr6tgNz+B`YNq0p@#h)sqVj4d~VgY5{+FL)QZXR7zc+)Pwzd3{x z_xAqaFll%{)Mjk4Ruc%H+ zj%!@@KqZKyqzB#_P^l@31@2n!G2lzyt0TwWw8>#$^Zch{5?qWdsSbEVMjn;GO}+(6h#U`M;9hU34Crgy^B`)Hxs;Y3V=#PQcvut+PmYuZu5hvZQ?^ z)z@utrP7WyH$?N-^rBV}ed}chqYR82R5`K1A$xeE`F6tzV>06Pq=tP^SPgeAlnIyx zDzXw)Xb!-I_*I8gU)|pGOcy1HHd`M(uR^cY-nQM|LH}iX?NDzkk?F83inioSwG3Q! zYBH3w+*9KM`}@0h1f@XZSD7})gl3Nla+Pwe3}Dijl_ap|(zpvF(4Js-zOc|TP?e^C zVjg@vgc$u5a4SZQuXzJvp2dCSa+j`JHLi}Ocpo2kTtpxqq93{1dfzw*u$9uM{Ud~N zghF#K=mTR6IC+<^{|$7kgvx9RDk>o&U^TBT7~vO&n5r7w6Hjd@)_5kw$~A~!k;nVr zaboWTkk8aMIn8MdWhqTDN=rD($8j3;a9B~iB<_d?@T&KI6$_B5$8koa*fMw=lZUIg z@rTOrYU%DZUvxY(HPq6M#~8UMh8tq!cN>0f8nZBT9buXXg>5Dsv{YrR_$VkM0??c~u}Mf5%-nL4Uh@krWU zf_{ba#K5w^nNpn$0agG^{E3!V8VZjC^d#|nO_UQiQ$6wD%owR}r>q%7S9-WhqMwyT zp@ifH^X2-;E%M7%c6S!XllwDA2GbE2k7bO(1r>V1-P15KN-)L~KVv_%jy?;q{0HS9 zJ0=?#E{m4lYR)dV-#z#KmuHlgQzn{ zG4>JBE9Se^XDBft*=|N;6#qbD;*K64i4?C_Yi+w8G`rQjk%3J;0~5)lm|%lFoUsQc ztw67%$f3%_k&cYLhG&3mVG~>O;aZT;OYreQy1{(Je#5R^d~HkZZEBJFOSW4{X0!a{ zL=_YVbc(?4LEyStUG!3k;cKi|d)qQn0lE>XgrGD$P1(S;8ca!%CUu4d2Ohw_JWcv$ zK{EjYmX~0*;GHxCQ{xAhP_*mHT6;?suWv#WCrHX*Q`bG&a=7dI0F>#uGCQ19TL6RY z2P2b~){DUnk&g>aq*XYcC+oLJuNqI(b-dt#cCtbws_Y7D2RhQ{xNY4s#VRDiKjUbt zYd7_dQu!L`#Crw0evvLfSk0)MYfapC*H9Gj39@BZb3o~4ENYW~@X81JEYE02dRYnx zq_V9SHQ@)VC1B}THMTJs=AYZW!8x^mDH}d2+T~KAK0hVV$s&$y@l>%36mvO&VlEQ> zlH`pQO6TrZ7-YD%#dXx~{xAG2p7cU#Gx^qQXU@n)afc&b$9LtpJ%LHDBPAoP^b$CG zUkFoC8i=ny!U;aOYgUPe|6q~*K5qWpB6++op-DJjvs5#1o36EYEHrxNJgGRkQfean zQ^YZKk^Krv6kaE{#W;Ffid_ST{FD@9AKi)Pk+(KMf|(rODw~dnVL7%N^7Z$^szuRt z@*BNV6~-!?nN8+6m&S6XA~pbje7vtQZv7;~MI>`qQ#uOXg#J%?^@}@|`j15UeSd6n zS{%lS5qyph2d=XGJuhv~vSY7rq8jx{lBgj!7+kg$6rD@xt*iVEJkZD_=X$<{H);o2 zt$59peUn=fc1uuX8#uda^5jiLk-=1|RH$Y+5cdrJRQQR8Z=XjfO3yPrP%F{15rEhRkta{<6k9`I1EimNA{#n6u9r zj)Kug+}pq=0NO$UR?=*`C^>EF5=fs}poWnq_gxIlEGn1nK5)qPQ0?8X|JHua`&7iQ zIeLNN{YhM}9gqP5eJrHjMx>O)wtIuvpdf4Wyp|NU%34xK6ne>xGy2WL-%bW^C6WuW zK-^r2svF7>jWq?NaX#Jm2S zY|PD$)p5(*LAYPtYdY?Cx>Jzuy^G^6DfHEoM5g1)iH`n};|kL3&w(ySuel%J8_Izf z7zxcOCze^3xMNH%)vC#MPpyrJKUbHQbzC+mp1$tbg**j%5}>Q?$SYmlwZTIpIP*I= zvd-fu+Zp$es*#flCa1r!dZ@}x;JhRKlQKG0<6lr%L5L^ln4FI{mklYe)Swk^8dD!Nj4L5pbUXH>It-TPorO}Ig2EI)vL6<=v_cREt)4x8j zesAm~8^q>`>{#cYl&;Jh$`tD9#hzL(gO!x=tft!|LOm|H@1mu91QK^aTb5JkE*!() zW%=n<7R)4fgQuj2ZTTdj!ZLJ0AMONt=meE9^R(G2D%itmHGp^|vyD0hBtOc=FH?ob zCvO5^;|vcL{9{bF_Q@lEwMAO^fWK;}MWsUQ*1#olwa41cz3)ac#l`NZjiS#*g)82H zJzAt=nA1WGFjb>DC6}EvS2nHqAPqxhh#A{H6*g)9_<^*|gWUsi( z_f;Q;SCQ;OHlJZ9HSelurf>> \ggg sign % \usepackage{esdiff} % derivatives % esdiff breaks when taking \dot{q} has argument \usepackage{derivative} +\usepackage{bbold} % \mathbb font \usepackage{braket} \usepackage{graphicx} \usepackage{etoolbox} +\usepackage{expl3} % switch case and other stuff \usepackage{substr} \usepackage{xcolor} \usepackage{float} +\usepackage{tikz} % drawings +\usetikzlibrary{decorations.pathmorphing} +\usetikzlibrary{calc} +\usepackage{circuitikz} \usepackage[hidelinks]{hyperref} \usepackage{subcaption} +\usepackage[shortlabels]{enumitem} % easily change enum symbols to i), a. etc +\usepackage{colortbl} % color table +\usepackage{tabularx} % bravais table +\usepackage{adjustbox} +\usepackage{multirow} % for superconducting qubit table +\usepackage{hhline} % for superconducting qubit table \hypersetup{colorlinks = true, % Colours links instead of ugly boxes urlcolor = blue, % Colour for external hyperlinks linkcolor = cyan, % Colour of internal links @@ -26,13 +39,11 @@ \sisetup{per-mode = power} \sisetup{exponent-product=\ensuremath{\cdot}} -\DeclarePairedDelimiter\abs{\lvert}{\rvert} -\DeclareMathOperator{\e}{e} -\DeclareMathOperator{\d}{d} \usepackage{translations} \newcommand{\TODO}[1]{{\color{red}TODO:#1}} +\newcommand{\ts}{\textsuperscript} % put an explanation above an equal sign % [1]: equality sign (or anything else) @@ -41,6 +52,7 @@ \underset{\substack{\uparrow\\\mathrlap{\text{\hspace{-1em}#2}}}}{#1}} \newcommand{\explOverEq}[2][=]{% \overset{\substack{\mathrlap{\text{\hspace{-1em}#2}}\\\downarrow}}{#1}} + % % TRANSLATION COMMANDS @@ -91,14 +103,14 @@ \newcommand{\ger}[2][\fqname]{\dt[#1]{german}{#2}} \newcommand{\eng}[2][\fqname]{\dt[#1]{english}{#2}} -\newcommand{\GER}[2][\fqname]{\DT[#1]{german}{#2}} -\newcommand{\ENG}[2][\fqname]{\DT[#1]{english}{#2}} +\newcommand{\Ger}[2][\fqname]{\DT[#1]{german}{#2}} +\newcommand{\Eng}[2][\fqname]{\DT[#1]{english}{#2}} % use this to define text in different languages for the key % the translation for when the environment ends. % (temporarily change fqname to the \fqname: to allow % the use of \eng and \ger without the key parameter) -\newenvironment{ttext}[1]{ +\newenvironment{ttext}[1][desc]{ \edef\realfqname{\fqname} \edef\fqname{\fqname:#1} }{ @@ -148,101 +160,27 @@ \label{sec:\fqname} } +\newcommand{\fqEqRef}[1]{ + \hyperref[eq:#1]{\GT{#1}} +} +\newcommand{\fqSecRef}[1]{ + \hyperref[sec:#1]{\GT{#1}} +} + \usepackage{xstring} -\newcommand{\insertEquationLine}[2]{ - \par\noindent\ignorespaces - % \textcolor{gray}{\hrule} - \vspace{0.5\baselineskip} - % \fbox{ - \begin{minipage}{0.3\textwidth} - \iftranslation{#1}{ - \raggedright - \gt{#1} - }{} - \iftranslation{#1_desc}{ - \\ {\color{darkgray} \gt{#1_desc}} - }{} - \end{minipage} - % } - \hfill - \fbox{ - \begin{minipage}{0.6\textwidth} - % \vspace{-\baselineskip} % remove the space that comes from starting a new paragraph - #2 % - \noindent\iftranslation{#1_defs}{ - \begingroup - \color{darkgray} - \gt{#1_defs} - % \edef\temp{\GT{#1_defs}} - % \expandafter\StrSubstitute\expandafter{\temp}{:}{\\} - \endgroup - }{} - % \vspace{-\baselineskip} % remove the space that comes from starting a new paragraph - \end{minipage} - } - \textcolor{lightgray}{\hrule} - \vspace{0.5\baselineskip} - % \par - % \hrule -} -\newcommand{\insertEquation}[2]{ - \insertEquationLine{#1}{ - \begin{align} - \label{eq:\fqname:#1} - #2 - \end{align} - } -} +\input{circuit.tex} -\newcommand{\insertFLAlign}[2]{ % eq name, #cols, eq - \insertEquationLine{#1}{% - \begin{flalign}% - % dont place label when one is provided - % \IfSubStringInString{label}\unexpanded{#3}{}{ - % \label{eq:#1} - % } - #2% - \end{flalign} - } -} - -\newcommand{\insertAlignedAt}[3]{ % eq name, #cols, eq - \insertEquationLine{#1}{% - \begin{alignat}{#2}% - % dont place label when one is provided - % \IfSubStringInString{label}\unexpanded{#3}{}{ - % \label{eq:#1} - % } - #3% - \end{alignat} - } -} - -\newenvironment{formula}[1]{ - % key - \newcommand{\desc}[4][english]{ - % language, name, description, definitions - \dt[#1]{##1}{##2} - \ifblank{##3}{}{\dt[#1_desc]{##1}{##3}} - \ifblank{##4}{}{\dt[#1_defs]{##1}{##4}} - } - \newcommand{\eq}[1]{ - \insertEquation{#1}{##1} - } - \newcommand{\eqAlignedAt}[2]{ - \insertAlignedAt{#1}{##1}{##2} - } - \newcommand{\eqFLAlign}[1]{ - \insertFLAlign{#1}{##1} - } -}{\ignorespacesafterend} +% some translations \title{Formelsammlung} \author{Matthias Quintern} \date{\today} +\input{macros.tex} +\input{environments.tex} + \begin{document} \maketitle @@ -250,55 +188,29 @@ \newpage \setcounter{page}{1} -% \nuwcommand{\eq}[4][desc]{ -% \vspace*{0.1cm} -% \begin{minipage}{0.3\textwidth} -% \raggedright -% .#2 \\ -% \ifstrequal{#1}{desc}{}{ -% {\color{gray}#1} -% } -% \end{minipage} -% \begin{minipage}{0.7\textwidth} -% \begin{align} -% \label{eq:#4} -% #3 -% \end{align} -% \end{minipage} -% \newline -% } - - -% \newcommand{\eqd}[5][desc]{ -% \vspace*{0.1cm} -% \begin{minipage}{0.3\textwidth} -% \raggedright -% .#2 \\ -% \ifstrequal{#1}{desc}{}{ -% {\color{gray}#1} -% } -% \end{minipage} -% \begin{minipage}{0.7\textwidth} -% \begin{align} -% \label{eq:#5} -% #3 -% \end{align} -% {\color{gray}with: #4} -% \end{minipage} -% \newline -% } -\IfSubStringInString{lol}{lol\frac{asdsd}{lol} & l}{YES!}{ - NO! -} \input{translations.tex} -\input{trigonometry.tex} +\input{linalg.tex} + +\input{geometry.tex} + +\input{analysis.tex} + +\input{probability_theory.tex} \input{mechanics.tex} + +\input{statistical_mechanics.tex} + +\input{electrodynamics.tex} \input{quantum_mechanics.tex} \input{atom.tex} +\input{condensed_matter.tex} + +\input{topo.tex} + \input{quantum_computing.tex} \input{many-body-simulations.tex} diff --git a/src/mechanics.tex b/src/mechanics.tex index bb4a946..f2dc4ee 100644 --- a/src/mechanics.tex +++ b/src/mechanics.tex @@ -8,7 +8,7 @@ \eng{Lagrange formalism} \ger{Lagrange Formalismus} ]{lagrange} - \begin{ttext}{desc} + \begin{ttext}[desc] \eng{The Lagrange formalism is often the most simple approach the get the equations of motion, because with suitable generalied coordinates obtaining the Lagrange function is often relatively easy. } @@ -16,7 +16,7 @@ da das Aufstellen der Lagrange-Funktion mit geeigneten generalisierten Koordinaten oft relativ einfach ist. } \end{ttext} - \begin{ttext}{generalized_coords} + \begin{ttext}[generalized_coords] \eng{ The generalized coordinates are choosen so that the cronstraints are automatically fullfilled. For example, the generalized coordinate for a 2D pendelum is $q=\varphi$, with $\vec{x} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \end{pmatrix}$. diff --git a/src/probability_theory.tex b/src/probability_theory.tex new file mode 100644 index 0000000..c1f4c7d --- /dev/null +++ b/src/probability_theory.tex @@ -0,0 +1,198 @@ +\Part[ + \eng{Probability theory} + \ger{Wahrscheinlichkeitstheorie} + ]{pt} + + \begin{formula}{mean} + \desc{Mean}{}{} + \desc[german]{Mittelwert}{}{} + \eq{\braket{x} = \int w(x)\, x\, \d x} + \end{formula} + + \begin{formula}{variance} + \desc{Variance}{}{} + \desc[german]{Varianz}{}{} + \eq{\sigma^2 = (\Delta \hat{x})^2 = \braket{\hat{x}^2} - \braket{\hat{x}}^2 = \braket{(x - \braket{x})^2}} + \end{formula} + + \begin{formula}{std_deviation} + \desc{Standard deviation}{}{} + \desc[german]{Standardabweichung}{}{} + \eq{\sigma = \sqrt{(\Delta x)^2}} + \end{formula} + + \begin{formula}{median} + \desc{Median}{Value separating lower half from top half}{$x$ dataset with $n$ elements} + \desc[german]{Median}{Teilt die untere von der oberen Hälfte}{$x$ Reihe mit $n$ Elementen} + \eq{ + \textrm{med}(x) = \left\{ \begin{array}{ll} x_{(n+1)/2} & \text{$n$ \GT{odd}} \\ \frac{x_{(n/2)}+x_{((n/2)+1)}}{2} & \text{$n$ \GT{even}} \end{array} \right + } + \end{formula} + + \begin{formula}{pdf} + \desc{Probability density function}{Random variable has density $f$. The integral gives the probability of $X$ taking a value $x\in[a,b]$.}{$f$ normalized: $\int_{-\infty}^\infty f(x) \d x= 1$} + \desc[german]{Wahrscheinlichkeitsdichtefunktion}{Zufallsvariable hat Dichte $f$. Das Integral gibt Wahrscheinlichkeit an, dass $X$ einen Wert $x\in[a,b]$ annimmt}{$f$ normalisiert $\int_{-\infty}^\infty f(x) \d x= 1$} + \eq{P([a,b]) := \int_a^b f(x) \d x} + \end{formula} + + \begin{formula}{cdf} + \desc{Cumulative distribution function}{}{$f$ probability density function} + \desc[german]{Kumulative Verteilungsfunktion}{}{$f$ Wahrscheinlichkeitsdichtefunktion} + \eq{F(x) = \int_{-\infty}^x f(t) \d t} + \end{formula} + +\Section[ + \eng{Distributions} + \ger{Verteilungen} + ]{distributions} + + + + + \Subsubsection[ + \eng{Gauß/Normal distribution} + \ger{Gauß/Normal-Verteilung} + ]{normal} + \begin{minipage}{\distleftwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/distribution_gauss.pdf} + \end{figure} + \end{minipage} + \begin{distribution} + \disteq{parameters}{\mu \in \R,\quad \sigma^2 \in \R} + \disteq{support}{x \in \R} + \disteq{pdf}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right)} + \disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]} + \disteq{mean}{\mu} + \disteq{median}{\mu} + \disteq{variance}{\sigma^2} + \end{distribution} + + \begin{formula}{standard_normal_distribution} + \desc{Density function of the standard normal distribution}{$\mu = 0$, $\sigma = 1$}{} + \desc[german]{Dichtefunktion der Standard-Normalverteilung}{$\mu = 0$, $\sigma = 1$}{} + \eq{\varphi(x) = \frac{1}{\sqrt{2\pi}} \e^{-\frac{1}{2}x^2}} + \end{formula} + + \Subsubsection[ + \eng{Cauchys / Lorentz distribution} + \ger{Cauchy / Lorentz-Verteilung} + ]{cauchy} + \begin{minipage}{\distleftwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/distribution_cauchy.pdf} + \end{figure} + \end{minipage} + \begin{distribution} + \disteq{parameters}{x_0 \in \R,\quad \gamma \in \R} + \disteq{support}{x \in \R} + \disteq{pdf}{\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}} + \disteq{cdf}{\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}} + \disteq{mean}{\text{\GT{undefined}}} + \disteq{median}{x_0} + \disteq{variance}{\text{\GT{undefined}}} + \end{distribution} + + \begin{ttext} + \eng{Also known as \textbf{Cauchy-Lorentz distribution}, \textbf{Lorentz(ian) function}, \textbf{Breit-Wigner distribution}.} + \ger{Auch bekannt als \textbf{Cauchy-Lorentz Verteilung}, \textbf{Lorentz Funktion}, \textbf{Breit-Wigner Verteilung}.} + \end{ttext} + + + \Subsubsection[ + \eng{Binomial distribution} + \ger{Binomialverteilung} + ]{binomial} + \begin{ttext} + \eng{For the number of trials going to infinity ($n\to\infty$), the binomial distribution converges to the \hyperref[sec:pb:distributions::poisson]{poisson distribution}} + \ger{Geht die Zahl der Versuche gegen unendlich ($n\to\infty$), konvergiert die Binomualverteilung gegen die \hyperref[sec:pb:distributions::poisson]{Poissonverteilung}} + \end{ttext} + \begin{minipage}{\distleftwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/distribution_binomial.pdf} + \end{figure} + \end{minipage} + \begin{distribution} + \disteq{parameters}{n \in \Z, \quad p \in [0,1],\quad q = 1 - p} + \disteq{support}{k \in \{0,\,1,\,\dots,\,n\}} + \disteq{pmf}{\binom{n}{k} p^k q^{n-k}} + % \disteq{cdf}{\text{regularized incomplete beta function}} + \disteq{mean}{np} + \disteq{median}{\floor{np} \text{ or } \ceil{np}} + \disteq{variance}{npq = np(1-p)} + \end{distribution} + \Subsubsection[ + \eng{Poisson distribution} + \ger{Poissonverteilung} + ]{poisson} + \begin{minipage}{\distleftwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/distribution_poisson.pdf} + \end{figure} + \end{minipage} + \begin{distribution} + \disteq{parameters}{\lambda \in (0,\infty)} + \disteq{support}{k \in \N} + \disteq{pmf}{\frac{\lambda^k \e^{-\lambda}}{k!}} + \disteq{cdf}{\e^{-\lambda} \sum_{j=0}^{\floor{k}} \frac{\lambda^j}{j!}} + \disteq{mean}{\lambda} + \disteq{median}{\approx\floor*{\lambda + \frac{1}{3} - \frac{1}{50\lambda}}} + \disteq{variance}{\lambda} + \end{distribution} + + + \Subsubsection[ + \eng{Maxwell-Boltzmann distribution} + \ger{Maxwell-Boltzmann Verteilung} + ]{maxwell-boltzmann} + \begin{minipage}{\distleftwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/distribution_maxwell-boltzmann.pdf} + \end{figure} + \end{minipage} + \begin{distribution} + \disteq{parameters}{a > 0} + \disteq{support}{x \in (0, \infty)} + \disteq{pdf}{\sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp\left(-\frac{x^2}{2a^2}\right)} + \disteq{cdf}{\erf \left(\frac{x}{\sqrt{2} a}\right) - \sqrt{\frac{2}{\pi}} \frac{x}{a} \exp\left({\frac{-x^2}{2a^2}}\right)} + \disteq{mean}{2a \frac{2}{\pi}} + \disteq{median}{} + \disteq{variance}{\frac{a^2(3\pi-8)}{\pi}} + \end{distribution} + + + + % \begin{distribution}{maxwell-boltzmann} + % \distdesc{Maxwell-Boltzmann distribution}{} + % \distdesc[german]{Maxwell-Boltzmann Verteilung}{} + % \disteq{parameters}{} + % \disteq{pdf}{} + % \disteq{cdf}{} + % \disteq{mean}{} + % \disteq{median}{} + % \disteq{variance}{} + % \end{distribution} + + + \Subsection[ + \eng{Central limit theorem} + \ger{Zentraler Grenzwertsatz} + ]{cls} + \begin{ttext} + \eng{ + Suppose $X_1, X_2, \dots$ is a sequence of independent and identically distributed random variables with $\braket{X_i} = \mu$ and $(\Delta X_i)^2 = \sigma^2 < \infty$. + As $N$ approaches infinity, the random variables $\sqrt{N}(\bar{X}_N - \mu)$ converge to a normal distribution $\mathcal{N}(0, \sigma^2)$. + \\ That means that the variance scales with $\frac{1}{\sqrt{N}}$ and statements become accurate for large $N$. + } + \ger{ + Sei $X_1, X_2, \dots$ eine Reihe unabhängiger und gleichverteilter Zufallsvariablen mit $\braket{X_i} = \mu$ und $(\Delta X_i)^2 = \sigma^2 < \infty$. + Für $N$ gegen unendlich konvergieren die Zufallsvariablen $\sqrt{N}(\bar{X}_N - \mu)$ zu einer Normalverteilung $\mathcal{N}(0, \sigma^2)$. + \\ Das bedeutet, dass die Schwankung mit $\frac{1}{\sqrt{N}}$ wächst und Aussagen für große $N$ scharf werden. + } + \end{ttext} + diff --git a/src/quantum_computing.tex b/src/quantum_computing.tex index 488b177..f8501e0 100644 --- a/src/quantum_computing.tex +++ b/src/quantum_computing.tex @@ -1,7 +1,7 @@ \Part[ \eng{Quantum Computing} \ger{Quantencomputing} -]{qubit} +]{qc} \Section[ \eng{Qubits} @@ -36,38 +36,396 @@ % \item \gt{bitphaseflip}: $\hat{Y} = \sigma_y = \sigmaymatrix$ % \item \gt{phaseflip}: $\hat{Z} = \sigma_z = \sigmazmatrix$ \item \gt{hadamard}: $\hat{H} = \frac{1}{\sqrt{2}}(\hat{X}-\hat{Z}) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ % \end{itemize} - \Section[ - \eng{Josephson Junction} - \ger{Josephson-Kontakt} - ]{josephson_junction} - \begin{ttext}{desc} - \eng{When two superconductors are separated by a thin isolator, Cooper pairs can tunnel through the insulator} - \ger{Wenn zwei Supraleiter durch einen dünnen Isolator getrennt sind, können Cooper-Paare durch den Isolator tunneln.} - \end{ttext} + \eng{Superconducting qubits} + \ger{Supraleitende qubits} + ]{scq} - \begin{formula}{hamiltonian} - \desc{Josephson-Hamiltonian}{}{} - \desc[german]{Josephson-Hamiltonian}{}{} - \eq{ - \hat{H}_\text{J} &= - \frac{E_\text{J}}{2} \sum_n [\ket{n}\bra{n+1} + \ket{n+1}\bra{n}] - } - \end{formula} + \Subsection[ + \eng{Building blocks} + \ger{Bauelemente} + ]{elements} + \Subsubsection[ + \eng{Josephson Junction} + \ger{Josephson-Kontakt} + ]{josephson_junction} + \begin{ttext}[desc] + \eng{When two superconductors are separated by a thin isolator, Cooper pairs can tunnel through the insulator. The Josephson junction is a non-linear inductor.} + \ger{Wenn zwei Supraleiter durch einen dünnen Isolator getrennt sind, können Cooper-Paare durch den Isolator tunneln. Der Josephson-Kontakt ist ein nicht-linearer Induktor.} + \end{ttext} - \begin{formula}{1st_josephson_relation} - \desc{1. Josephson relation}{Dissipationless supercurrent accros junction at zero applied voltage}{$I_\text{C}=\frac{2e}{\hbar}E_\text{J}$ critical current, $\delta$ phase difference accross junction} - \desc[german]{1. Josephson Gleichung}{Dissipationsloser Suprastrom durch die Kreuzung ohne angelegte Spannung}{$I_\text{C}=\frac{2e}{\hbar}E_\text{J}$ kritischer Strom, $\delta$ Phasendifferenz zwischen den Supraleitern} - \eq{\hat{I}\ket{\delta} = I_\text{C}\sin\delta \ket{\delta}} - \end{formula} + \begin{formula}{hamiltonian} + \desc{Josephson-Hamiltonian}{}{} + \desc[german]{Josephson-Hamiltonian}{}{} + \eq{ + \hat{H}_\text{J} &= - \frac{E_\text{J}}{2} \sum_n [\ket{n}\bra{n+1} + \ket{n+1}\bra{n}] + } + \end{formula} + + \begin{formula}{1st_josephson_relation} + \desc{1. Josephson relation}{Dissipationless supercurrent accros junction at zero applied voltage}{$I_\text{C}=\frac{2e}{\hbar}E_\text{J}$ critical current, $\delta$ phase difference accross junction} + \desc[german]{1. Josephson Gleichung}{Dissipationsloser Suprastrom durch die Kreuzung ohne angelegte Spannung}{$I_\text{C}=\frac{2e}{\hbar}E_\text{J}$ kritischer Strom, $\delta$ Phasendifferenz zwischen den Supraleitern} + \eq{\hat{I}\ket{\delta} = I_\text{C}\sin\delta \ket{\delta}} + \end{formula} + + \begin{formula}{2nd_josephson_relation} + \desc{2. Josephson relation}{superconducting phase change is proportional to applied voltage}{$\varphi_0=\frac{\hbar}{2e}$ reduced flux quantum} + \desc[german]{2. Josephson Gleichung}{Supraleitende Phasendifferenz is proportional zur angelegten Spannung}{$\varphi_0=\frac{\hbar}{2e}$ reduziertes Flussquantum} + \eq{\odv{\hat{\delta}}{t}=\frac{1}{i\hbar}[\hat{H},\hat{\delta}] = -\frac{2eU}{i\hbar}[\hat{n},\hat{\delta}] = \frac{1}{\varphi_0} U} + \end{formula} + + \Subsubsection[ + \eng{SQUID} + \ger{SQUID} + ]{squid} + \ctikzsubcircuitdef{squidloop}{n, s, nw, ne, se, sw}{ + % start at top + coordinate(#1-n) + (#1-n) + to ++(-1, 0) coordinate(#1-nw) + to[josephsoncap=$\phi_1$] ++(0,-2) coordinate(#1-sw) + to ++(1,0) coordinate(#1-s) to ++(1,0) coordinate(#1-se) + to[josephsoncap=$\phi_2$] ++(0,2) coordinate(#1-ne) + to ++(-1,0) + (#1-s) % leave at bottom + } + \begin{formula}{circuit} + \desc{SQUID}{Superconducting quantum interference device, consists of parallel \hyperref{sec:qc:scq:josephson_junction}{josephson junctions}, can be used to measure extremely weak magnetic fields}{} + \desc[german]{SQUID}{Superconducting quantum interference device, besteht aus parralelen \hyperref{sec:qc:scq:josephson_junction}{Josephson Junctions} und kann zur Messung extrem schwacher Magnetfelder genutzt werden}{} + \content{ + \centering + \begin{circuitikz} + \draw (0, 0) \squidloop{loop}{}; + \end{circuitikz} + } + \end{formula} + \begin{formula}{hamiltonian} + \desc{Hamiltonian}{}{$\hat{\phi}$ phase difference across the junction} + \desc[german]{Hamiltonian}{}{$\hat{\phi}$ Phasendifferenz an einer Junction} + \eq{\hat{H} &= -E_{\text{J}1} \cos\hat{\phi}_{1} - E_{\text{J}2} \cos\hat{\phi}_{2}} + \end{formula} + + \Subsection[ + \eng{Josephson Qubit??} + \ger{TODO} + ]{josephson_qubit} + \begin{circuitikz} + \draw (0,0) to[capacitor] (0,2); + \draw (0,0) to (2,0); + \draw (0,2) to (2,2); + \draw (2,0) to[josephson] (2,2); + + \draw[->] (3,1) -- (4,1); + \draw (5,0) to[josephsoncap=$C_\text{J}$] (5,2); + \end{circuitikz} + \TODO{Include schaltplan} + + \begin{circuitikz} + \draw (0,0) to[sV=$V_\text{g}$] (0,2); + \draw (0,2) to[capacitor=$C_\text{g}$] (2,2); + \draw (2,2) to (4,2); + \draw (2,0) to[josephsoncap=$C_\text{J}$] (2,2); + \draw (4,0) to[capacitor=$C_C$] (4,2); + \draw (0,0) to (2,0); + \draw (2,0) to (4,0); + \end{circuitikz} + + \begin{formula}{charging_energy} + \desc{Charging energy / electrostatic energy}{}{} + \desc[german]{Ladeenergie?}{}{} + \eq{E_\text{C} = \frac{(2e)^2}{C}} + \end{formula} + + \begin{formula}{josephson_energy} + \desc{Josephson energy}{}{} + \desc[german]{Josephson-Energie?}{}{} + \eq{E_\text{J} = \frac{I_0 \phi_0}{2\pi}} + \end{formula} + \TODO{Was ist I0} + + \begin{formula}{inductive_energy} + \desc{Inductive energy}{}{} + \desc[german]{Induktive Energie}{}{} + \eq{E_\text{L} = \frac{\varphi_0^2}{L}} + \end{formula} + + \begin{formula}{gate_charge} + \desc{Gate charge}{or offset charge}{} + \desc[german]{Gate Ladung}{auch Offset charge}{} + \eq{n_\text{g}=\frac{C_g V_\text{g}}{2e}} + \end{formula} + + \begin{formula}{anharmonicity} + \desc{Anharmonicity}{}{} + \desc[german]{Anharmonizität}{}{} + \eq{\alpha \coloneq \omega_{1\leftrightarrow 2} - \omega_{0\leftrightarrow 1}} + \end{formula} + + + \begin{table}[h!] + \centering + \begin{tabular}{ p{1cm} |p{1cm}||p{2.8cm}|p{2cm}|p{2cm}|p{2cm}|} + \multicolumn{1}{c}{}& \multicolumn{1}{c}{} &\multicolumn{4}{c}{$E_L/(E_J-E_L)$} \\ + \cline{3-6} + \multicolumn{1}{c}{} & & $0$ & $\ll$ 1 & $\sim 1$ & $\gg 1$\\ + \hhline{~|=====|} + \multirow{4}{*}{$E_J/E_C$} & $\ll 1$ & cooper-pair box & & & \\ + \cline{2-6} + & $\sim 1$ & quantronium & fluxonium & &\\ + \cline{2-6} + & $\gg 1$ &transmon & & & flux qubit\\ + \cline{2-6} + & $\ggg 1$ & & & phase qubit & \\ + \cline{2-6} + \end{tabular} + \caption{``periodic table'' of superconducting quantum circuits} + \label{Juncatalog} + + \end{table} + + + \Subsection[ + \eng{Cooper Pair Box (CPB) qubit} + \ger{Cooper Paar Box (QPB) Qubit} + ]{cpb} + \begin{ttext} + \eng{ + = voltage bias junction\\= charge qubit? + \begin{itemize} + \item large anharmonicity + \item sensitive to charge noise + \end{itemize} + } + \ger{} + \end{ttext} + \begin{circuitikz} + \draw (0,0) to[sV=$V_\text{g}$] (0,2); + % \draw (0,0) to (2,0); + \draw (0,2) to[capacitor=$C_\text{g}$] (2,2); + \draw (2,0) to[josephsoncap=$C_\text{J}$] (2,2); + \draw (0,0) to (2,0); + \end{circuitikz} + + + \TODO{maybe include graphic from page 48, intro to qed circuits} + + \begin{formula}{hamiltonian} + \desc{Hamiltonian}{}{} + \desc[german]{Hamiltonian}{}{} + \eq{\hat{H} &= 4 E_C(\hat{n} - n_\text{g})^2 - E_\text{J} \cos\hat{\phi} \\ + &=\sum_n \left[4 E_C (n-n_\text{g})^2 \ket{n}\bra{n} - \frac{E_\text{J}}{2}\ket{n}\bra{n+1}+\ket{n+1}\bra{n}\right] } + \end{formula} + + \Subsection[ + \eng{Transmon qubit} + \ger{Transmon Qubit} + ]{transmon} + \begin{formula}{circuit} + \desc{Transmon qubit}{ + Josephson junction with a shunt \textbf{capacitance}. + \begin{itemize} + \item charge noise insensitive + \item small anharmonicity + \end{itemize} + }{} + \desc[ger]{Transmon Qubit}{ + Josephson-Kontakt mit einem parallelen \textbf{kapzitiven Element}. + \begin{itemize} + \item Charge noise resilient + \item Geringe Anharmonizität $\alpha$ + \end{itemize} + }{} + \content{ + \centering + \begin{circuitikz} + \draw (0,0) to[sV=$V_\text{g}$] ++(0,3) + to[capacitor=$C_\text{g}$] ++(2,0) + to[capacitor=$C_C$] ++(0,-3) + to ++(-2,0); + \draw (2,3) to ++(2,0) to ++(0,-0.5) to[josephsoncap=$C_\text{J}$] ++(-0,-2) to ++(0,-0.5) to ++(-2,0); + \end{circuitikz} + \\\TODO{Ist beim Transmon noch die Voltage source dran?} + } + \end{formula} + + \begin{formula}{hamiltonian} + \desc{Hamiltonian}{}{} + \desc[german]{Hamiltonian}{}{} + \eq{\hat{H} &= 4 E_C\hat{n}^2 - E_\text{J} \cos\hat{\phi}} + \end{formula} + + \Subsubsection[ + \eng{Tunable Transmon qubit} + \ger{Tunable Transmon Qubit} + ]{tunable} + \begin{formula}{circuit} + \desc{Frequency tunable transmon}{By using a \fqSecRef{qc:scq:elements:squid} instead of a \fqSecRef{qc:scq:elements:josephson_junction}, the qubit is frequency tunable through an external field}{} + \desc[german]{}{Durch Nutzung eines \fqSecRef{qc:scq:elements:squid} anstatt eines \fqSecRef{qc:scq:elements:josephson_junction}s, ist die Frequenz des Qubits durch ein externes Magnetfeld einstellbar}{} + \content{ + \centering + \begin{circuitikz} + \draw (0,0) to[sV=$V_\text{g}$] ++(0,3) + to[capacitor=$C_\text{g}$] ++(2,0) + to[capacitor=$C_C$] ++(0,-3) + to ++(-2,0); + \draw (2,3) to ++(3,0) to ++(0,-0.5) \squidloop{loop}{SQUID} to ++(0,-0.5) to ++(-3,0); + \end{circuitikz} + } + \end{formula} + + \begin{formula}{energy} + \desc{Josephson energy}{}{$d=(E_\text{J1}-E_\text{J2})/(E_\text{J1}+E_\text{J2})$ asymmetry} + \desc[german]{Josephson Energie}{}{$d=(E_\text{J1}-E_\text{J2})/(E_\text{J1}+E_\text{J2})$ Asymmetrie} + \eq{E_\text{J,eff}(\Phi_\text{ext}) = (E_\text{J1}+E_\text{J2}) \sqrt{\cos^2\left(\pi\frac{\Phi_\text{ext}}{\Phi_0}\right) + d^2 \sin \left(\pi\frac{\Phi_\text{ext}}{\Phi_0}\right)}} + \end{formula} + \begin{formula}{hamiltonian} + \desc{Hamiltonian}{}{} + \desc[german]{Hamiltonian}{}{} + \eq{\hat{H} = 4E_C \hat{n}^2 - \frac{1}{2} E_\text{J,eff}(\Phi_\text{ext}) \sum_{n}\left[\ket{n}\bra{n+1} + \ket{n+1}\bra{n}\right]} + \end{formula} + + + \Subsection[ + \eng{Flux qubit} + \ger{Flux Qubit} + ]{flux} + \TODO{TODO} + \begin{formula}{circuit} + \desc{Flux qubit / Persistent current qubit}{}{} + \desc[german]{Flux Qubit / Persistent current qubit}{}{} + \content{ + \centering + \begin{circuitikz} + \draw (0,0) to[sV=$V_\text{g}$] ++(0,3) + to ++(2,0) coordinate(top1); + \draw[color=gray] (top1) to[capacitor=$C_C$] ++(0,-3); + \draw (top1) to ++(2,0) coordinate(top2) to ++(0,-0.5) + to[josephsoncap=$C_\text{J}$] ++(-0,-2) to ++(0,-0.5) to ++(-2,0) to ++(-2,0); + \draw (top2) to ++(2,0) to[cute inductor=$E_L$] ++(0,-3) to ++(-2,0); + \node at (5,0.5) {$\Phi_\text{ext}$}; + \end{circuitikz} + \\\TODO{Ist beim Fluxonium noch die Voltage source dran?} + } + \end{formula} + + + \Subsection[ + \eng{Fluxonium qubit} + \ger{Fluxonium Qubit} + ]{fluxonium} + \begin{formula}{circuit} + \desc{Fluxonium qubit}{ + Josephson junction with a shunt \textbf{inductance}. Instead of having to tunnel, cooper pairs can move to the island via the inductance. + The inductance consists of many parallel Josephson Junctions to avoid parasitic capacitances. + }{} + \desc[german]{Fluxonium Qubit}{ + Josephson-Kontakt mit einem parallelen \textbf{induktiven Element}. + Anstatt zu tunneln, können die Cooper-Paare über das induktive Element auf die Insel gelangen. + Das induktive Element besteht aus sehr vielen parallelen Josephson-Kontakten um parisitische Kapazitäten zu vermeiden. + }{} + \content{ + \centering + \begin{circuitikz} + \draw (0,0) to[sV=$V_\text{g}$] ++(0,3) + to ++(2,0) coordinate(top1); + \draw[color=gray] (top1) to[capacitor=$C_C$] ++(0,-3); + \draw (top1) to ++(2,0) coordinate(top2) to ++(0,-0.5) + to[josephsoncap=$C_\text{J}$] ++(-0,-2) to ++(0,-0.5) to ++(-2,0) to ++(-2,0); + \draw (top2) to ++(2,0) to[cute inductor=$E_L$] ++(0,-3) to ++(-2,0); + \node at (5,0.5) {$\Phi_\text{ext}$}; + \end{circuitikz} + \\\TODO{Ist beim Fluxonium noch die Voltage source dran?} + } + \end{formula} + + \def\temp{$E_\text{C} = \frac{(2e)^2}{2C}, E_\text{L} = \frac{\varphi_0^2}{2L}, \delta_\text{s} = \frac{\varphi_\text{s}}{\varphi_0}$} + \begin{formula}{hamiltonian} + \desc{Hamiltonian}{}{\temp} + \desc[german]{Hamiltonian}{}{\temp} + \eq{\hat{H} = 4E_\text{C} \hat{n}^2 - E_\text{J} \cos \hat{\delta} + E_\text{L}(\hat{\delta} - \delta_\text{s})^2} + \end{formula} + + \begin{figure}[h] + \centering + \includegraphics[width=0.8\textwidth]{img/qubit_flux_onium.pdf} + \caption{img/} + \label{fig:img-} + \end{figure} + + + \Section[ + \eng{Two-level system} + \ger{Zwei-Niveau System} + ]{stuff} + + \begin{formula}{resonance_frequency} + \desc{Resonance frequency}{}{} + \desc[german]{Ressonanzfrequenz}{}{} + \eq{\omega_{21} = \frac{E_2 - E_1}{\hbar}} + \end{formula} + \TODO{sollte das nicht 10 sein?} + + \begin{formula}{rabi_oscillation} + \desc{Rabi oscillations}{}{$\omega_{21}$ resonance frequency of the energy transition, $\Omega$ Rabi frequency} + \desc[german]{Rabi-Oszillationen}{}{$\omega_{21}$ Resonanzfrequenz des Energieübergangs, $\Omega$ Rabi-Frequenz} + \eq{\Omega_ TODO} + \end{formula} + + \Subsection[ + \eng{Ramsey interferometry} + \ger{Ramsey Interferometrie} + ]{ramsey} + + \begin{ttext} + \eng{$\ket{0} \xrightarrow{\frac{\pi}{2}\,\text{pulse}}$ precession in $xy$ plane for time $\tau$ $\xrightarrow{\frac{\pi}{2}\,\text{pulse}}$ measurement} + \ger{q} + \end{ttext} + + \Section[ + \eng{Noise and decoherence} + \ger{Noise und Dekohärenz} + ]{noise} + \begin{formula}{long} + \desc{Longitudinal relaxation rate}{$\Gamma_{1\downarrow}$: $\ket{1}\rightarrow \ket{0}$ \\ $\Gamma_{1\uparrow}$: $\ket{0}\rightarrow \ket{1}$}{} + \desc[german]{Longitudinale Relaxationsrate}{$\Gamma_{1\downarrow}$: $\ket{1}\rightarrow \ket{0}$ \\ $\Gamma_{1\uparrow}$: $\ket{0}\rightarrow \ket{1}$}{} + \eq{\Gamma_1 = \frac{1}{T_1} = \Gamma_{1\uparrow} + \Gamma_{1\downarrow}} + \end{formula} + + \begin{ttext}[long] + \eng{$\Gamma_{1\uparrow}$ is supressed because of detailed balance} + \ger{$\Gamma_{1\uparrow}$ ist unterdrückt wegen detailed balance} + \end{ttext} + + \begin{formula}{dephasing} + \desc{Pure dephasing rate}{}{} + \desc[german]{Reine Phasenverschiebung}{}{} + \eq{\Gamma_\phi} + \end{formula} + + \begin{formula}{trans} + \desc{Transversal relaxation rate}{}{} + \desc[german]{Transversale Relaxationsrate}{}{} + \eq{\Gamma_2 = \frac{1}{T_2} = \frac{\Gamma_1}{2} + \Gamma_\phi} + \end{formula} + + \begin{formula}{bloch_redfield} + \desc{Bloch-Redfield density matrix}{2-level System weakly coupled to noise sources with short correlation time}{} + \desc[german]{Bloch-Redfield Dichtematrix}{2-Niveau System schwach an Noise Quellen mit kurzer Korrelationszeit gekoppelt}{} + \eq{\rho_\text{BR} = \begin{pmatrix} 1+(\abs{\alpha}^2-1)\e^{-\Gamma_1 t} & \alpha \beta^* \e^{-\Gamma_2 t} \\ + \alpha^*\beta \e^{-\Gamma_2 t} & \abs{\beta}^2 \e^{-\Gamma_1 t} \end{pmatrix} } + \end{formula} + + \begin{figure}[h] + \centering + \includegraphics[width=0.8\textwidth]{img/qubit_transmon.pdf} + \caption{Transmon and so TODO} + \label{fig:img-qubit_transmon-pdf} + \end{figure} + + + + + - \begin{formula}{2nd_josephson_relation} - \desc{2. Josephson relation}{superconducting phase change is proportional to applied voltage}{$\varphi_0=\frac{\hbar}{2e}$ reduced flux quantum} - \desc[german]{2. Josephson Gleichung}{Supraleitende Phasendifferenz is proportional zur angelegten Spannung}{$\varphi_0=\frac{\hbar}{2e}$ reduziertes Flussquantum} - \eq{\odv{\hat{\delta}}{t}=\frac{1}{i\hbar}[\hat{H},\hat{\delta}] = -\frac{2eU}{i\hbar}[\hat{n},\hat{\delta}] = \frac{1}{\varphi_0} U} - \end{formula} -\Section[ - \eng{Cooper Pair Box (CPB) qubit} - \ger{Cooper Paar Box (QPB) Qubit} - ]{cpb} diff --git a/src/quantum_mechanics.tex b/src/quantum_mechanics.tex index fbfcb1a..f6a8355 100644 --- a/src/quantum_mechanics.tex +++ b/src/quantum_mechanics.tex @@ -17,10 +17,10 @@ \eng{Operators} \ger{Operatoren} ]{op} - \GER[row_vector]{Zeilenvektor} - \GER[column_vector]{Spaltenvektor} - \ENG[column_vector]{Column vector} - \ENG[row_vector]{Row vector} + \Ger[row_vector]{Zeilenvektor} + \Ger[column_vector]{Spaltenvektor} + \Eng[column_vector]{Column vector} + \Eng[row_vector]{Row vector} \begin{formula}{dirac_notation} \desc{Dirac notation}{}{} \desc[german]{Dirac-Notation}{}{} @@ -75,12 +75,6 @@ \eq{\Delta \hat{A} = \hat{A} - \braket{\hat{A}}} \end{formula} - \begin{formula}{variance} - \desc{Variance}{}{} - \desc[german]{Varianz}{}{} - \eq{\sigma^2 = \braket{(\Delta \hat{A})^2} = \braket{\hat{A}^2} - \braket{\hat{A}}^2} - \end{formula} - \begin{formula}{generalized_uncertainty} \desc{Generalized uncertainty principle}{}{} \desc[german]{Allgemeine Unschärferelation}{}{} @@ -116,27 +110,40 @@ \begin{formula}{commutator} \desc{Commutator}{}{} \desc[german]{Kommutator}{}{} - \eq{[a,b] = ab - ba} + \eq{[A,B] = AB - BA} \end{formula} \begin{formula}{anticommutator} \desc{Anticommutator}{}{} \desc[german]{Antikommmutator}{}{} - \eq{\{a,b\} = ab + ba} + \eq{\{A,B\} = AB + BA} \end{formula} \begin{formula}{commutation_relations}\ \desc{Commutation relations}{}{} \desc[german]{Kommutatorrelationen}{}{} - \eq{[a, bc] = \{a, b\}c - b\{a,c\}} + \eq{[A, BC] = [A, B]C - B[A,C]} + \end{formula} + \TODO{add some more?} + + \begin{formula}{function} + \desc{Commutator involving a function}{}{given $[A,[A,B]] = 0$} + \desc[german]{Kommutator mit einer Funktion}{}{falls $[A,[A,B]] = 0$} + \eq{[f(A) , B] = [A,B]\,\pdv{f}{A}} \end{formula} \begin{formula}{jacobi_identity} \desc{Jacobi identity}{}{} \desc[german]{Jakobi-Identität}{}{} - \eq{[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0} + \eq{[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0} \end{formula} + \begin{formula}{hadamard_lemma} + \desc{Hadamard's Lemma}{}{} + \desc[german]{Lemma von Hadamard}{}{} + \eq{\e^A B \e^{-A} = B + [A,B] + \frac{1}{2!} [A, [A,B]] + \frac{1}{3!} [A, [A, [A, B]]] + \dots} + \end{formula} + \begin{formula}{canon_comm_relation} \desc{Canonical commutation relation}{}{$x$, $p$ canonical conjugates} \desc[german]{Kanonische Vertauschungsrelationen}{}{$x$, $p$ kanonische konjugierte} @@ -147,39 +154,44 @@ } \end{formula} + \Section[ + \eng{Schrödinger equation} + \ger{Schrödingergleichung} + ]{schroedinger_equation} + \begin{formula}{energy_operator} + \desc{Energy operator}{}{} + \desc[german]{Energieoperator}{}{} + \eq{E = i\hbar \frac{\partial}{\partial t}} + \end{formula} + + \begin{formula}{momentum_operator} + \desc{Momentum operator}{}{} + \desc[german]{Impulsoperator}{}{} + \eq{\vec{p} = -i\hbar \vec{\nabla_x}} + \end{formula} + + \begin{formula}{space_operator} + \desc{Space operator}{}{} + \desc[german]{Ortsoperator}{}{} + \eq{\vec{x} = i\hbar \vec{\nabla_p}} + \end{formula} + + \begin{formula}{stationary_schroedinger_equation} + \desc{Stationary Schrödingerequation}{}{} + \desc[german]{Stationäre Schrödingergleichung}{}{} + \eq{\hat{H}\ket{\psi} = E\ket{\psi}} + \end{formula} + + \begin{formula}{schroedinger_equation} + \desc{Schrödinger equation}{}{} + \desc[german]{Schrödingergleichung}{}{} + \eq{i\hbar\frac{\partial}{\partial t}\psi(x, t) = (- \frac{\hbar^2}{2m} \vec{\nabla}^2 + \vec{V}(x)) \psi(x)} + \end{formula} + \Subsection[ - \eng{Schrödinger equation} - \ger{Schrödingergleichung} - ]{schroedinger_equation} - \begin{formula}{energy_operator} - \desc{Energy operator}{}{} - \desc[german]{Energieoperator}{}{} - \eq{E = i\hbar \frac{\partial}{\partial t}} - \end{formula} - - \begin{formula}{momentum_operator} - \desc{Momentum operator}{}{} - \desc[german]{Impulsoperator}{}{} - \eq{\vec{p} = -i\hbar \vec{\nabla_x}} - \end{formula} - - \begin{formula}{space_operator} - \desc{Space operator}{}{} - \desc[german]{Ortsoperator}{}{} - \eq{\vec{x} = i\hbar \vec{\nabla_p}} - \end{formula} - - \begin{formula}{stationary_schroedinger_equation} - \desc{Stationary Schrödingerequation}{}{} - \desc[german]{Stationäre Schrödingergleichung}{}{} - \eq{\hat{H}\ket{\psi} = E\ket{\psi}} - \end{formula} - - \begin{formula}{schroedinger_equation} - \desc{Schrödinger equation}{}{} - \desc[german]{Schrödingergleichung}{}{} - \eq{i\hbar\frac{\partial}{\partial t}\psi(x, t) = (- \frac{\hbar^2}{2m} \vec{\nabla}^2 + \vec{V}(x)) \psi(x)} - \end{formula} + \eng{Time evolution} + \ger{Zeitentwicklug} + ]{time} The time evolution of the Hamiltonian is given by: \begin{formula}{time_evolution_op} \desc{Time evolution operator}{}{$U$ unitary} @@ -187,6 +199,21 @@ \eq{\ket{\psi(t)} = \hat{U}(t, t_0) \ket{\psi(t_0)}} \end{formula} + \begin{formula}{von_neumann} + \desc{Von-Neumann Equation}{Time evolution of the density operator in the Schrödinger picture. Qm analog to the Liouville equation \ref{eq:mech:liouville:todo}}{} + \desc[german]{Von-Neumann Gleichung}{Zeitentwicklung des Dichteoperators im Schödingerbild. Qm. Analogon zur Liouville-Gleichung \ref{eq:mech:liouville:todo}}{} + \eq{\pdv{\hat{\rho}}{t} = - \frac{i}{\hbar}[\hat{H}, \hat{\rho}]} + \end{formula} + + \begin{formula}{lindblad} + \desc{Lindblad master equation}{Generalization of von-Neummann equation for open quantum systems}{$h$ positive semidifnite matrix, $\hat{A}$ arbitrary operator} + \desc[german]{Lindblad-Mastergleichung}{Verallgemeinerung der von-Neumman Gleichung für offene Quantensysteme}{$h$ positiv-semifinite Matrix, $\hat{A}$ beliebiger Operator} + \eq{\dot{\rho} = \underbrace{-\frac{i}{\hbar} [\hat{H}, \rho]}_\text{reversible} + \underbrace{\sum_{n.m} h_{nm} \left(\hat{A}_n\rho \hat{A}_{m^\dagger} - \frac{1}{2}\left\{\hat{A}_m^\dagger \hat{A}_n,\rho \right\}\right)}_\text{irreversible}} + \end{formula} + + + \TODO{unitary transformation of time dependent H} + \Subsubsection[ \eng{Schrödinger- and Heisenberg-pictures} \ger{Schrödinger- und Heisenberg-Bild} @@ -217,20 +244,10 @@ } \end{formula} - \Subsubsection[ - \ger{Korrespondenzprinzip} - \eng{Correspondence principle} - ]{correspondence_principle} - \begin{ttext}{desc} - \ger{Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenmechanik ableiten.} - \eng{The classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.} - \end{ttext} - - \Subsubsection[ \eng{Ehrenfest theorem} \ger{Ehrenfest-Theorem} - ]{ehrenfest_theorem} + ]{ehrenfest_theorem} \GT{see_also} \ref{sec:qm:basics:schroedinger_equation:correspondence_principle} \begin{formula}{ehrenfest_theorem} \desc{Ehrenfesttheorem}{applies to both pictures}{} @@ -244,15 +261,27 @@ \desc[german]{}{Beispiel für $x$}{} \eq{m\odv[2]{}{t}\braket{x} = -\braket{\nabla V(x)} = \braket{F(x)}} \end{formula} - % \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time} + % \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time} + + \Subsection[ + \ger{Korrespondenzprinzip} + \eng{Correspondence principle} + ]{correspondence_principle} + \begin{ttext}[desc] + \ger{Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenmechanik ableiten.} + \eng{The classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.} + \end{ttext} + + \Section[ \eng{Pertubation theory} \ger{Störungstheorie} - ]{qm_pertubation} - \eng[desc]{The following holds true if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.} - \ger[desc]{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.} - \gt{desc} + ]{qm_pertubation} + \begin{ttext} + \eng[desc]{The following holds true if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.} + \ger[desc]{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.} + \end{ttext} \begin{formula}{pertubation_hamiltonian} \desc{Hamiltonian}{}{} \desc[german]{Hamiltonian}{}{} @@ -289,6 +318,12 @@ % \eq{\ket{\psi_n^{(1)}} = \sum_{k\neq n}\frac{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}{E_n^{(0)} - E_k^{(0)}}\ket{\psi_k^{(0)}}} % \end{formula} + \begin{formula}{golden_rule} + \desc{Fermi\'s golden rule}{Transition rate from initial state $\ket{i}$ under a pertubation $H^1$ to final state $\ket{f}$}{} + \desc[german]{Fermis goldene Regel}{Übergangsrate des initial Zustandes $\ket{i}$ unter einer Störung $H^1$ zum Endzustand $\ket{f}$}{} + \eq{\Gamma_{i\to f} = \frac{2\pi}{\hbar} \abs*{\braket{f | H^1 | i}}^2\,\rho(E_f)} + \end{formula} + \Section[ \eng{Harmonic oscillator} @@ -404,3 +439,64 @@ \eq{\delta = \frac{2 e}{\hbar} \oint \vec{A}\cdot \d\vec{s} = \frac{2 e}{\hbar} \Phi} \end{formula} \TODO{replace with loop intergral symbol and add more info} + + + \Section[ + \eng{Symmetries} + \ger{Symmetrien} + ]{symmetry} + \begin{ttext}[desc] + \eng{Most symmetry operators are unitary \ref{sec:linalg:unitary} because the norm of a state must be invariant under transformations of space, time and spin.} + \ger{Die meisten Symmetrieoperatoren sind unitär \ref{sec:linalg:unitary}, da die Norm eines Zustands invariant unter Raum-, Zeit- und Spin-Transformationen sein muss.} + \end{ttext} + \begin{formula}{invariance} + \desc{Invariance}{$\hat{H}$ is invariant under a symmetrie described by $\hat{U}$ if this holds}{} + \desc[german]{Invarianz}{$\hat{H}$ is invariant unter der von $\hat{U}$ beschriebenen Symmetrie wenn gilt:}{} + \eq{\hat{U}\hat{H}\hat{U}^\dagger = \hat{H} \Leftrightarrow [\hat{U}, \hat{H}] = 0} + \end{formula} + + \Subsection[ + \eng{Time-reversal symmetry} + \ger{Zeitumkehrungssymmetrie} + ]{time_reversal} + + \begin{formula}{time} + \desc{Time-reversal symmetry}{}{} + \desc[german]{Zeitumkehrungssymmetrie}{}{} + \eq{T: t \to -t} + \end{formula} + + \begin{formula}{antiunitary} + \desc{Anti-unitary}{}{} + \desc[german]{Antiunitär}{}{} + \eq{T^2 = -1} + \end{formula} + + \Section[ + \eng{Two-level systems (TLS)} + \ger{Zwei-Niveau System (TLS)} + ]{tls} + \begin{formula}{james_cummings} + \desc{James-Cummings Hamiltonian}{TLS interacting with optical cavity}{$\hat{E} = E_\text{ZPF}(\hat{a} + \hat{a}^\dagger)$ field operator with bosonic ladder operators, $\hat{S} = \hat{\sigma}^\dagger + \hat{\sigma}$ polarization operator with ladder operators of the TLS} + \desc[german]{James-Cummings Hamiltonian}{TLS interagiert mit resonantem Lichtfeld}{$\hat{E} = E_\text{ZPF}(\hat{a} + \hat{a}^\dagger)$ Feldoperator mit bosonischen Leiteroperatoren, $\hat{S} = \hat{\sigma}^\dagger + \hat{\sigma}$ Polarisationsoperator mit Leiteroperatoren des TLS} + \eq{H &= \underbrace{\hbar\omega_c \hat{a}^\dagger \hat{a}}_\text{\GT{field}} + + \underbrace{\hbar\omega_\text{a} \frac{\hat{\sigma}_z}{2}}_\text{\GT{atom}} + + \underbrace{\frac{\hbar\Omega}{2} \hat{E} \hat{S}}_\text{int} \\ + \shortintertext{\GT{after} \hyperref[eq:qm:other:RWS]{RWA}:} \\ + &= \hbar\omega_c \hat{a}^\dagger \hat{a} + + \hbar\omega_\text{a} \hat{\sigma}^\dagger \hat{\sigma} + + \frac{\hbar\Omega}{2} (\hat{a}\hat{\sigma^\dagger} + \hat{a}^\dagger \hat{\sigma}) + } + \end{formula} + + \Section[ + \eng{Other} + \ger{Sonstiges} + ]{other} + \begin{formula}{RWS} + \desc{Rotating Wave Approximation (RWS)}{Rapidly oscilating terms are neglected}{$\omega_\text{L}$ light frequency, $\omega_0$ transition frequency} + \desc[german]{Rotating Wave Approximation / Drehwellennäherung (RWS)}{Schnell oscillierende Terme werden vernachlässigt}{$\omega_\text{L}$ Frequenz des Lichtes, $\omega_0$ Übergangsfrequenz} + \eq{\Delta\omega \coloneq \abs{\omega_0 - \omega_\text{L}} \ll \abs{\omega_0 + \omega_\text{L}} \approx 2\omega_0} + \end{formula} + + diff --git a/src/scripts/bloch_sphere.py b/src/scripts/bloch_sphere.py new file mode 100644 index 0000000..2a7b430 --- /dev/null +++ b/src/scripts/bloch_sphere.py @@ -0,0 +1,2 @@ +import qutip as qt + diff --git a/src/scripts/crystal_lattices-Copy1.ipynb b/src/scripts/crystal_lattices-Copy1.ipynb new file mode 100644 index 0000000..208cf8f --- /dev/null +++ b/src/scripts/crystal_lattices-Copy1.ipynb @@ -0,0 +1,189 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "eaed683c-c6f1-45e4-aaee-ae4e57209f5f", + "metadata": {}, + "outputs": [], + "source": [ + "import scipy as scp\n", + "from scipy.spatial import Voronoi, voronoi_plot_2d\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "efd84ecd-9fb3-4d2f-9f7a-47cd1ff09eea", + "metadata": {}, + "outputs": [], + "source": [ + "class Lattice:\n", + " def __init__(self, *vecs):\n", + " # if the vecs were put in an iterable\n", + " if len(vecs) == 1:\n", + " vecs = vecs[0]\n", + " if len(vecs) == 3:\n", + " pass\n", + " elif len(vecs) == 2:\n", + " pass\n", + " else: raise ValueError(\"Vecs must contain either 2 or 3 vectors\")\n", + " self.dim = len(vecs)\n", + " self.vecs = list(vecs)\n", + " for i, v in enumerate(self.vecs):\n", + " if type(v) != np.ndarray:\n", + " self.vecs[i] = np.array(v)\n", + " if self.vecs[i].shape != (self.dim,):\n", + " raise ValueError(f\"Got {self.dim} vectors, therefore all vectors must be {self.dim} dimensional but vector {i+1} has shape {self.vecs[i].shape}\")\n", + " self.vecs = np.array(self.vecs)\n", + " self.vec_lengths = np.array([np.linalg.norm(v) for v in self.vecs])\n", + " self.center = np.zeros(self.dim)\n", + "\n", + " def get_point(self, *ns):\n", + " if len(ns) != len(self.vecs): raise ValueError(f\"Requires one index for each lattice vector {len(self.vecs)}, but got only {ns}\")\n", + " point = self.center.copy()\n", + " for i, n in enumerate(ns):\n", + " point += n * self.vecs[i]\n", + " return point\n", + "\n", + " \n", + " def get_points_around_center(self, n):\n", + " import itertools\n", + " ns = [i for i in range(-i, i+1)]\n", + " for n in itertools.product(*[])\n", + " for i in range(self.dim):\n", + " \n", + " \n", + " for i in range(-n, n+1):\n", + " for j " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "2855d08e-70d8-4ef7-ba19-2c06316caf15", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "1.7320508075688774 [0.70710678 1.58113883 0.70710678 0.70710678 1.58113883 0.70710678]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHkUlEQVR4nO3deVwV9f7H8dc57KLgDogoSkQapLhiZWYmqaWmlpaooFi3rO61bovaYt5+ZlZ2rSzLsnLLpbTSbLMuaV2tLFfUDBeEkCXUgBAVOd/fHyQ3xNwS5nB4Px+PecDMd86cDwzfc97MfGeOzRhjEBEREbGA3eoCREREpOZSEBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWEZBRERERCzjbnUBp+NwONi/fz916tTBZrNZXY6IiIicBWMMBQUFNGnSBLv99Mc8nDqI7N+/n5CQEKvLEBERkfOQnp5O06ZNT7uOUweROnXqAKU/iJ+fn8XViJS3a9cuFi5cyMKFC8nIyCAsLIxXX32Vjh07Wl2aiIil8vPzCQkJKXsfPx2bM3/WTH5+Pv7+/uTl5SmIiNNyOBwkJSUxZ84cpk6dSlBQEK+99hre3t4MHDgQX19fq0sUEalS5/L+rcGqIn+R3W6nR48ezJ07l6CgIAA+//xzRowYQWBgIImJiaxZswYnzvwiIpZREBGpBIsXL2bPnj3cf//9JCUl0a1bNzZv3gxAUVGRxdWJiDgPnZoRqWQOh4P169fTqVMnbDYb0dHR+Pn5kZCQwE033XRW51BFRKoTnZoRcSJ2u53OnTtjs9lwOBzcf//9eHp6kpiYSGBgICNGjCA3N9fqMkVELKEgIlKF7HY7cXFxrFq1in379vHwww+zZ88e/P39AZgzZw4//fSTxVWKiFQdnZoRcRKHDx+mefPm5Obm0qVLF+Lj4xkyZAh169a1ujQRkXOiUzMi1VCtWrVIT09n0aJF1K1blzFjxhAaGlo2uNWJ/2cQETlvCiIiTsTb25shQ4bw0UcfkZ6ezltvvYWPjw9HjhwhKiqKBx98kG3btlldpojIBaMgIuKkmjRpwo033ghAYWEh3bt3Z/bs2URGRtKxY0deeuklHSURkWpPQUSkGmjQoAEvvvgi+/fvZ+nSpQQFBbF48WJsNhvGGD799FOKi4utLlNE5JxpsKpINXX8+HHc3d354Ycf6NChA40bNyYuLo74+HjatGljdXkiUoNpsKpIDeDuXvqZle3bt2fTpk3ExcUxf/582rZtS79+/SyuTkTk7CiIiLiANm3a8Nxzz5GRkcHy5csZOnQoAPv27aN///4sW7aMY8eOWVyliEhF7lYXICIXjoeHB3379i2bz8nJITMzk0GDBlG/fn2GDh3KyJEjadeunYVVioj8j46IiLiwjh078t1337Ft2zZGjx7N0qVLeeGFF4DSG6hlZmZaXKGI1HQKIiI1QOvWrZk6dSppaWn8+9//Bko/Ibhp06b06dOHxYsXc+TIEYurFJGaSEFEpAZxd3enXr16AAwYMICZM2eSl5fHLbfcQmBgYNnREhGRqqIgIlJD1a1bl9tvv53//ve/7Ny5k7vvvpvmzZsDsHbtWp588knS09MtrlJEXJ3uIyIiFbzyyivcd999HDlyhB49ehAfH8+AAQPw9fW1ujQRqQZ0HxER+UvuuOMOsrOzmT17NseOHWP48OG8+OKLABQVFenW8iJyweiIiIic0Z49e/Dz86Nhw4aMHz+eJUuWMGLECEaMGEGLFi2sLk9EnIyOiIjIBdWyZUsaNmwIQP/+/enWrRvPPvssLVu25Oqrr2bt2rUWVygi1ZWCiIick5iYGN544w2ysrKYN28eHh4eZbeb/+KLL/jPf/6Dw+GwuEoRqS4qNYhMmTKFjh07UqdOHRo3bsyNN97Izp07K/MpRaSK+Pr6MmzYMFatWkWnTp0AePXVV+nRowctWrTgkUceISUlxeIqRcTZVWoQWb16NXfddRfffPMNq1at4vjx48TGxlJYWFiZTysiFlm8eDH//e9/6dWrFzNmzODiiy/miy++ANAAV5ELJDOviLW7c8nMK7K6lAuiSger/vLLLzRu3JjVq1dz1VVXnXF9DVYVqb6KiopYsWIF/fv3x8vLi7i4OBwOBwkJCVx77bW4ublZXaJItbN4fRrjl23FYcBugykDoxjSsZnVZVXgtINV8/LyAKhfv/4p248ePUp+fn65SUSqJx8fHwYPHoyXlxdQ+rk3W7ZsoVevXjRr1oyHHnqInJwci6sUqT4y84rKQgiAw8CEZcnV/shIlQURYwz33XcfV155JZGRkadcZ8qUKfj7+5dNISEhVVWeiFSysWPHkpyczHfffceAAQOYO3cuNpsNgK+++ooDBw5YXKGIc9ubW1gWQk4oMYbU3MPWFHSBVNmpmbvuuouVK1fy9ddf07Rp01Ouc/ToUY4ePVo2n5+fT0hIiE7NiLigkpIS3NzcKCkpITg4mIMHD9KvXz8SEhK47rrr8PDwsLpEEaeSmVfEFU/9p1wYcbPZ+Hpcd4L8fawr7BSc7tTMPffcw/Lly0lKSvrTEALg5eWFn59fuUlEXNOJMSJubm5s3ryZqVOnsmvXLvr27UvTpk3Jzc21uEIR5xLk78OUgVG4/X4k0c1m48mBkU4XQs5VpR4RMcZwzz338N577/Hll18SHh5+To/XYFWRmmfTpk2sWrWKBx54AGMMQ4YM4fLLL2fo0KE0btzY6vJELJeZV0Rq7mFCG9Zy2hByLu/flRpExowZw9tvv80HH3xARERE2XJ/f398fM78y1MQEanZCgoKSEhIYMWKFRhj6NOnDwkJCfTt27fsJmoi4nycJoicGIh2sjfffJOEhIQzPl5BREQAcnNzWbRoEXPmzGH//v2kpaXh5ubGTz/9RHh4+J++1oiINZwmiPxVCiIicrIDBw7QoEEDfv75Z5o1a0br1q1JSEggLi6OoKAgq8sTEZxwsKqIyIXSoEEDAAIDA/noo4+IjIzkkUceoWnTptx00026g6tINaMgIiLVkru7O7169WLRokVkZWXx8ssv06ZNG2w2G4WFhdx999188803CiYiTk6nZkTE5WzevJm+ffuSnp7OxRdfTEJCAsOHDz/t7QNE5MLRqRkRqdHatGlDamoqn3/+OZ06deKJJ54gLi4OAIfDweHD1ftOlCKuREFERFyS3W6nR48ezJs3j6ysLF577TUA1qxZQ2BgIImJiaxZs0anbkQspiAiIi7Pz8+Piy++GIDw8HD++c9/kpSURLdu3QgLC2PmzJkWVyhScymIiEiNEhwczMSJE9m1axerV6/m6quvprCwEIDU1FTefPNNCgoKLK5SpObQYFURkd+98cYbjB49Gh8fHwYNGkR8fDzdu3fHbtf/bCLnQoNVRUTOw6hRo0hNTWXChAl88803XHvttTz44IMAGksiUkl0RERE5BSMMaxbt44GDRoQERHBrFmzmDNnDgkJCQwePBh/f3+rSxRxWjoiIiLyF9lsNi6//PKyD+wMCwvDz8+PO+64g8DAQG699VbWr19vcZUi1Z+CiIjIWejRowcff/wx6enpTJo0iS1btrBnzx4Atm/fzo4dOyyuUKR60qkZEZHzYIzBGIPdbichIYE5c+bQsWNHEhISuOWWW6hfv77VJYpYRqdmREQqmc1mK7ua5tVXX+Xdd98lMDCQv//97wQFBfHBBx9YXKFI9eBudQEiItWdl5cXgwYNYtCgQWRnZ/P222/TuXNnACZPnszBgweJj4/nsssus7hSEeejIyIiIhdQQEAA9957L4GBgUDpZ9vMmzePNm3aEB0dzfTp0zl48KDFVYo4DwUREZFK9Oijj5KRkcEHH3xAy5YtefDBB0lLSwNgz549HDt2zOIKRaylwaoiIlXo0KFD1KtXDyj9lOCMjAyGDh1KfHw87dq1w2azWVyhyF+nwaoiIk7qRAgBePvttxk1ahTvvPMOHTp0ICoqir1791pYnUjVUxAREbHIpZdeytNPP016ejofffQRMTExNG3aFIB//etfLFmyhCNHjlhcpUjl0qkZEREnc/z4ca655hq++uor6tatyy233EJ8fDydO3fWqRupFnRqRkSkGnN3d2fNmjX8+OOPjBkzhg8//JBu3brx66+/AlBQUGBtgSIXkIKIiIiTioiIYPLkyaSmprJ+/Xrq1avHkSNHCA0NJTY2lgULFnD48GGryxT5SxREREScnJubW7mboT3zzDMcOXKEYcOGERgYyOjRoykuLrawQpHzpyAiIlKNeHt7M2rUKNasWcPu3bu57777+O233/Dw8MAYw/Tp00lNTbW6TJGzpsGqIiIuYvfu3bRp04bCwkKuvvpq4uPjuemmm6hdu7bVpUkNo8GqIiI1UFhYGNnZ2cydOxe73c6oUaPo3LkzJ/7fdOL/O6UGUxAREXEhvr6+DB8+nC+++ILU1FRefvllbDYbqamptGjRgkcffZRdu3adfiOOEtj7FWx9t/Sro6RqipcaSUFERMRFNWvWjG7dupXNx8bG8sILLxAeHs6VV17J/PnzKz5o+3KYHglzboCliaVfp0eWLhepBAoiIiI1QGhoKLNmzSIrK4uFCxdSu3ZtvvzyS6D0viSffvopJVvfgyUjIH9/+QfnZ5YuVxiRSqDBqiIiNZTD4cBut7N48WJuueUWmvi5MzzKTnwbD1o1cjtpbRv4NYGxW8F+cptIeefy/u1eRTWJiIiTsdtLD4oPHjyYFl6/MmfyPcz64RhT/3uMezp5Mv5KTzJ/+8P/qplp1Pv6XVpcNYQjR46wffv2Ctts164dADt37qSwsLBcW2hoKPXr1+eXX34hPT29XFudOnUIDw+npKSEzZs3V9huVFQUHh4e7N69m7y8vHJtwcHBBAQEcOjQoQofGujj40OrVq0A2LhxY4UBu61atcLHx4d9+/Zx4MCBcm0BAQEEBwdTUFBASkpKuTYPDw+ioqIA2Lp1a4X7uISHh1OnTh0yMjLIzs4u19agQQOaN29OUVERO3bsKNdms9mIjo4GYMeOHRQVFZVrb9GiBfXq1SM7O5uMjIxybf7+/oSFhVFcXMzWrVs5WZs2bXBzcyMlJaXC3XlDQkJo1KgRBw8erHD5t6+vLxEREQBs2LChwnZbt26Nt7c3e/fu5dChQwD89ttvFdb7U8aJ5eXlGcDk5eVZXYqIiGvb8o4xE/3MkYfrmHdu9jHv3ORtujW3G6DcFHd9V2OMMSkpKRXa/viWEhMTU6Ft3rx5xhhjZsyYUaEtNjbWGPO/1/2Tp5ycHGOMMX379q3QNm3aNGOMMUuWLKnQFh0dXVaTp6dnhfbk5GRjjDGJiYkV2saNG2eMMSYpKalCW3BwcNl2g4ODK7QnJSUZY4wZN25chbbExERjjDHJyckV2jw9Pcu2Gx0dXaF9yZIlxhhjpk2bVqGtb9++xhhjcnJyTvk7PPFeGhsbW6FtxowZxhhj5s2bV6EtJiamrKZTbTclJcUYY0xcXNyfPufp6NSMiIiUXh0z54ay2Q2ZJbSfVcj8gd60avi/UzH14mbriAg6IvJHf3ZEpFu3bmf1/q0gIiIipZfoTo8sHZiKKQsiP9zuS7sgNzRGRM6FbmgmIiLnxu4Gvab+PmM7qfH3+V5PKYTIBacgIiIipVr3g8FzwS+o/HK/JqXLW/ezpi5xaQoiIiLyP637wdhkuGF66fwN00tPxyiESCVREBERkfLsbhBcOuiU4HY6HSOVSkFERERELKMgIiIiIpZREBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWEZBRERERCyjICIiIiKWURARERERyyiIiIiIiGUURERERMQyCiIiIiJiGQURERERsYyCiIiIiFim2gSRhIQEnnvuObKzs60uRURERC6QahFEjh49SmFhIePHjyc4OJi+ffvy7rvvUlxcbHVpIiIi8hdUiyDi5eXFO++8Q2ZmJi+88AI5OTncfvvtOBwOAHbv3o0xxuIqRURE5FxViyByQv369RkzZgzffvstO3fuxMvLiwMHDtCqVSsuvfRSpk6dSkZGhtVlioiIyFmqVkHkjxo1agRA3bp1+fDDD2nbti2PP/44zZo1o2/fvmVHS0RERMR5VdsgcoKbmxuxsbG8/fbbZGVl8eqrrxIVFYXdbufYsWP84x//YO3atTp1IyIi4oTcrS7gQvL392f06NFl83v37uX999/nhRdeIDw8nBEjRjBixAiaNWtmYZUiIiJyQrU/InI6ERER7N27ly+++IIuXbowZcoUBgwYAIAxhsOHD1tcoYiISM3m0kEEwG63c8011zBnzhyys7OZP38+ABs3biQgIICRI0eyevVqjSkRERGxgMsHkT+qXbs2rVq1AqBJkyY88MADrFmzhquvvpqwsDCef/55iysUERGpWWpUEPmjwMBAHnvsMXbt2sWaNWvo0aMHv/76KwBZWVm88cYbFBQUWFukiIiIi6vUILJmzRr69u1LkyZNsNlsvP/++5X5dOfFZrPRtWtXXn/9dSZOnAjAl19+yejRowkICGD48OF8/vnnlJSUWFypiIiI66nUIFJYWEibNm2YMWNGZT7NBXfLLbewb98+Hn30UdavX0/Pnj256667AHQZsMgFkplXxNrduWTmFVldiki14mp9p1Iv3+3duze9e/euzKeoNCEhIYwfP55x48bx7bff4uvrC8DixYt54YUXiI+PZ8iQIdStW9faQkWqocXr0xi/bCsOA3YbTBkYxZCOuqxe5Excse841RiRo0ePkp+fX26yms1mIyYmhqioKKB0kGu9evUYM2YMgYGBDBkyhHXr1llcpUj1kZlXVPZCCuAwMGFZssv8dydSWVy17zhVEJkyZQr+/v5lU0hIiNUlVXDVVVexcuVKfv75Z/7v//6P7du3k5ycDMCuXbvKvheRU9ubW1j2QnpCiTGk5uq+PiKn46p9x6mCyPjx48nLyyub0tPTrS7pTwUFBXH//fezZcsWRo0aBcD06dOJioqiQ4cOvPjii+Tm5lpcpYjzadHQF7ut/DI3m43QhrWsKUikmnDVvuNUQcTLyws/P79yk7Oz2Wy4ubkB8Nxzz7Fs2TKaNm3KfffdR5MmTVi4cKHFFYo4lyB/H6YMjMLNVvqK6maz8eTASIL8fSyuTMS5uWrfcanPmrGap6cnAwYMYMCAAeTk5LBw4UJiYmIAeP7559m7dy8JCQm0bdvW2kJFLDakYzOuurgRqbmHCW1Yq9q/kIpUFVfsO5UaRH777Td27dpVNr937142bdpE/fr1Xf6D5xo3bsw//vGPsvljx46xcOFCnn/+eS677DISEhIYPnw4DRs2tLBKEesE+fu4xIuoSFVztb5Tqadmvv/+e6Kjo4mOjgbgvvvuIzo6mscee6wyn9YpPfDAA/z888+sWLGC8PBwxo0bx44dOwDYt28fR48etbhCERGRqlepR0Suvvpq3QDsDzw8PLjhhhu44YYbOHjwIPXq1QNg2LBhbNu2jVtvvZWEhAQ6dOiAzWY7w9ZERESqP6carFqT1K9fvyxszJo1i9tvv53333+fTp06ERkZWXa0RERExJUpiDiBVq1a8dRTT5GWlsYnn3xCx44dad68OQBPP/00ixYtoqioet+wRkRE5FQURJyIm5sb1113HW+99Ra1atXCGMNnn33GrbfeSlBQEH/7299Yt26dTneJiIjLUBBxYjabjc8//5yffvqJe+65h48//pgrr7ySrKwsoPSqJBERkepMQaQaCA8P54knniA1NZXvv/+eoKAgjh8/TkREBD169GDu3LkUFhZaXaaIiMg5UxCpRux2e9ml0A6Hg8mTJ+NwOIiPjycwMJCRI0dy+HD1/swBERGpWRREqilPT08SEhJISkpiz549PPDAA+Tm5uLjU3qTm5deeondu3dbXKWIiMjpKYi4gBYtWvDYY4+xYsUKbDYbmZmZjB8/nosuuoirrrqKN954g/z8fKvLFBERqUBBxAUFBQWRlZXF/Pnz8fLyYvTo0Vx22WVlV9voqhsREXEWCiIuqlatWsTFxbFq1Sr27dvHa6+9hs1mIycnh7CwMB5++GF++uknq8sUEZEaTkGkBggJCaFnz54AFBcXc9111/Hyyy8TERFBly5deOONNyyuUEREaioFkRomODiYmTNnkpmZyeLFi6lfvz6ffvopAEePHuXjjz/m+PHjFlcpIiI1RaV+6J04L29vbwYPHszgwYNxOBwAfPHFF1x//fUEBgYyfPhw4uPjufTSSy2uVEREXJmOiAh2e+mfQe/evfn++++5+eabeeONN4iMjGTUqFEWVyciIq5MQUTK2Gw22rdvzwsvvMD+/ftZtmwZgwcPBuC7775j0KBBLF++nOLiYosrFRERV6FTM3JKnp6eDBgwoGz+t99+Y+/evfTv359GjRoRFxdHYmIikZGRFlYpIiLVnY6IyFm55ppr2LBhA5s3b2b48OG8/fbbLFy4EICDBw+Sk5NjcYUiIlIdKYjIObnsssuYNm0aP//8M+PGjQNg5syZNGnShH79+rF06VKOHj1qcZUiIlJdKIjIefHw8KBOnToA3HHHHTz//PNkZWVx00030aRJE+bNm2dxhSIiUh0oiMhf1qBBA+666y6+++47tm3bxm233UbLli0BWLFiBU8//TT79++3uEoREXFGCiJyQbVu3ZqnnnqKK664AoCtW7cyceJEQkJC6N27N4sWLaKoqMjiKkVExFkoiEilmjBhApmZmcycOZP8/HxuvfVW3nnnHaD0Shx9AJ+ISM2mICKVrm7dutx+++3897//5aeffmLQoEEAjBkzhksuuYTJkyeTlpZmcZUiImIFBRGpUuHh4fj6+gKQmJhI586defLJJwkNDeXaa69l69atFlcoIiJVSUFELNOtWzfmzp1LVlYWs2fPpqSkBH9/fwCWLVvGmjVryj4HR0REXJOCiFiuTp06jBw5kqSkJJo1awbA888/T7du3bjooot4/PHH2bNnj8VViohIZVAQEaeUlJTE6tWr6d69O8899xxhYWEkJycDaICriIgLURARp2S327nqqquYPXs2WVlZvPvuu1x66aUA9OjRg+HDh/P555+f/tSNowT2fgVb3y396iipoupFqjlHCWRsKP0+Y4P6jlQqBRFxerVq1WLQoEHYbDYcDgfXXnst3333HT179iQ0NJSHH36YvLy88g/avhymR8KcG2BpYunX6ZGly0Xkz53oOx+OLZ3/cKz6jlQqBRGpVux2OxMmTODHH39k3bp19OnTh0WLFuHt7Q3Ap59+yq/fvA1LRkD+SXdzzc8sXa4XVJFT275cfUeqnLvVBYicD5vNRkxMDDExMTgcDux2O7/99hsDBgzAUXyEGyPcSGjrSc+WbrjZbb8/ygA2+GQcXHI92N2s/BFEnIujBD55iNJ+cjL1Hak8CiJS7dntpQf2ateuza7/LGDBo7fy1uZiei84TDN/G6vja3HwyB8ekJkGK9+E4HbWFCzijDI2wM70stkduSXlvgKQmUa9r9+lxVVDOHLkCNu3b6+wmXbtSvvVzp07KSwsLNcWGhpK/fr1+eWXX0hPTy/XVqdOHcLDwykpKWHz5s0VthsVFYWHhwe7d++ucCo2ODiYgIAADh06xN69e8u1+fj40KpVKwA2btxYYbB7q1at8PHxYd++fRw4cKBcW0BAAMHBwRQUFJCSklKuzcPDg6ioKKD0oyyKi4vLtYeHh1OnTh0yMjLIzs4u19agQQOaN29OUVERO3bsKNdms9mIjo4GYMeOHRU+EqNFixbUq1eP7OxsMjIyyrX5+/sTFhZGcXHxKe/J1KZNG9zc3EhJSaGgoKBcW0hICI0aNeLgwYOkpqaWa/P19SUiIgKADRs2VNhu69at8fb2Zu/evRw6dAgovXP2WTNOLC8vzwAmLy/P6lKkutjyjjET/YzjsTpm/W2+Zuq1XqZbc7uh9F86TZo0ncPk71VxWdz1XY0xxqSkpJzyMSfExMRUaJs3b54xxpgZM2ZUaIuNjTXG/O91/+QpJyfHGGNM3759K7RNmzbNGGPMkiVLKrRFR0eX1eTp6VmhPTk52RhjTGJiYoW2cePGGWOMSUpKqtAWHBxctt3g4OAK7UlJScYYY8aNG1ehLTEx0RhjTHJycoU2T0/Psu1GR0dXaF+yZIkxxphp06ZVaOvbt68xxpicnJxT/g5PvJfGxsZWaJsxY4Yxxph58+ZVaIuJiSmr6VTbTUlJMcYYExcX96fPeTq23zfslPLz8/H39ycvLw8/Pz+ry5HqYO9XpQNTf7chs4T2swqZP9CbVg3/cDj5huk6IiLyRxkb/jdAldIjIcOWHanQd+rFzdYREXRE5I/+7IhIt27dzur9W0FEXIujpHSEf34mYMqCyA+3+9IuyA2wgV8TGLtV57lF/kh9Ry6gc3n/1lUz4lrsbtBr6u8ztpMaf5/v9ZReSEVOpr4jFlEQEdfTuh8Mngt+QeWX+zUpXd66nzV1iTg79R2xgIKIuKbW/WBsculYECj9OnarXkhFzkR9R6qYgoi4Lrvb/wakBrfTIWWRs6W+I1VIQUREREQsoyAiIiIillEQEREREcsoiIiIiIhlFERERETEMgoiIiIiYhkFEREREbGMgoiIiIhYRkFERERELKMgIiIiIpZREBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWEZBRERERCyjICIiIiKWURARERERyyiIiIiIiGUURERERMQyCiIiIiJiGQURERERsYyCiIiIiFhGQUREREQsoyAiIiIillEQEREREctUSRB5+eWXadGiBd7e3rRv356vvvqqKp5WREREnFylB5HFixczduxYHn74YTZu3EjXrl3p3bs3aWlplf3UVSYzr4i1u3PJzCuyuhSRakP9RuT8uFrfca/sJ3juuedITExk9OjRAEyfPp1PP/2UmTNnMmXKlMp++kq3eH0a45dtxWHAboMpA6MY0rGZ1WWJODX1G5Hz44p9p1KPiBw7dowffviB2NjYcstjY2NZu3ZthfWPHj1Kfn5+ucmZZeYVlf1BADgMTFiW7DIpVaQyqN+InB9X7TuVGkRyc3MpKSkhICCg3PKAgACysrIqrD9lyhT8/f3LppCQkMos7y/bm1tY9gdxQokxpOYetqYgkWpA/Ubk/Lhq36mSwao2m63cvDGmwjKA8ePHk5eXVzalp6dXRXnnrUVDX+wn/RhuNhuhDWtZU5BINaB+I3J+XLXvVGoQadiwIW5ubhWOfuTk5FQ4SgLg5eWFn59fucmZBfn7MGVgFG6/hyo3m40nB0YS5O9jcWUizkv9RuT8uGrfqdTBqp6enrRv355Vq1YxYMCAsuWrVq2if//+lfnUVWZIx2ZcdXEjUnMPE9qwVrX/gxCpCuo3IufHFftOpV81c9999zF8+HA6dOhAly5dmDVrFmlpadxxxx2V/dRVJsjfxyX+GESqkvqNyPlxtb5T6UFkyJAhHDhwgH/9619kZmYSGRnJRx99RPPmzSv7qUVERMTJVXoQARgzZgxjxoypiqcSERGRakSfNSMiIiKWURARERERyyiIiIiIiGUURERERMQyCiIiIiJiGQURERERsYyCiIiIiFhGQUREREQsoyAiIiIillEQEREREcsoiIiIiIhlFERERETEMgoiIiIiYhkFEREREbGMgoiIiIhYRkFERERELKMgIiIiIpZREBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWEZBRERERCyjICIiIiKWURARERERyyiIiIiIiGUURMR1OUogY0Pp9xkbSudF5MzUd6QKKYiIa9q+HKZHwodjS+c/HFs6v325lVWJOD/1HaliCiLierYvhyUjIH9/+eX5maXL9YIqcmrqO2IBBRFxLY4S+OQhwJyi8fdln4zToWaRk6nviEXcrS7gbGzatInatWuXzderV48WLVpw5MgRtm/fXmH9du3aAbBz504KCwvLtYWGhlK/fn1++eUX0tPTy7XVqVOH8PBwSkpK2Lx5c4XtRkVF4eHhwe7du8nLyyvXFhwcTEBAAIcOHWLv3r3l2nx8fGjVqhUAGzduxJjyHb1Vq1b4+Piwb98+Dhw4UK4tICCA4OBgCgoKSElJKdfm4eFBVFQUAFu3bqW4uLhce3h4OHXq1CEjI4Ps7OxybQ0aNKB58+YUFRWxY8eOcm02m43o6GgAduzYQVFRUbn2Fi1aUK9ePbKzs8nIyCjX5u/vT1hYGMXFxWzdupWTtWnTBjc3N1JSUigoKCjXFhISQqNGjTh48CCpqanl2nx9fYmIiABgw4YNFbbbunVrvL292fv1uxza+b/9uiO3pNxXADLTYOWbENyuwnZEaqyMDfCHvrPip9LXk7wjJ16vDORnwL610KKrBQWKyzJOLC8vz1AaxctNcXFxxhhjUlJSTtl+QkxMTIW2efPmGWOMmTFjRoW22NjY0z5vTk6OMcaYvn37VmibNm2aMcaYJUuWVGiLjo4uq8nT07NCe3JysjHGmMTExApt48aNM8YYk5SUVKEtODi4bLvBwcEV2pOSkowxxowbN65CW2JiojHGmOTk5Aptnp6eZduNjo6u0L5kyRJjjDHTpk2r0Na3b19jjDE5OTmn/B3m5eUZY4yJjY2t0DZjxgxjjDHz5s2r0BYTE1NW06m2m5KSYowxJu76rhXa/L0qrq9Jk6azmzzdMDe1djcrbvUxxY/WMWbLO+fzci41zIn30ROv+adjM+akf8+dSH5+Pv7+/qxevVpHRHRE5OyOiKxZzKEFiWXLd+SWMGzZEeYP9KZVQ7f/PeCG6ToiIvJHGRv+N0D1d+42wxd7S3hrczFbsh0829OLf766iuKmMXh4eFhTp1QLJ96/8/Ly8PPzO+261SKInM0PIgKUnr+eHlk6uA7DhswS2s8q5IfbfWkX5AbYwK8JjN0KdrczbU2k5jip75xsU5aDJkFBNH50B+MmPMxnn31GfHw8Q4cOpVGjRlVfrzi1c3n/1mBVcS12N+g19fcZ20mNv8/3ekohRORkZ+g7bQPdaHzzs2B3o0ePHoSGhvLAAw/QpEkTbrzxRjZu3FjVFYuLUBAR19O6HwyeC35B5Zf7NSld3rqfNXWJOLuz7Ds9e/Zk2bJl7N+/n3//+9/8/PPPZaeG16xZw4YNGyqcghb5Mzo1I67LUcKGlW/Svt9t/LD8NdpdP1JHQkTOhqOk9OqY37KhdgA0v/ys+06fPn34+OOPiYyMJD4+nri4OIKCgs78QHEpOjUjAqUvnCcGpAa3UwgROVt2t9JLdKNuKv16Dn1n+fLlrFy5ktatW/PII4/QtGlTvv7660osVqq7anEfERERqR7c3d3p06cPffr04dChQ7z77rt07NgRgFGjRuHl5UV8fDydO3fGZjt5LIrURDoiIiIilaJevXrcdttteHl5AdCsWTM+/PBDunTpQqtWrZgyZQqHDh2yuEqxmoKIiIhUiccff5zU1FQ+++wzOnTowNSpUzl+/DgA33//PYcPH7a4QrGCgoiIiFQZNzc3evbsyfz588nOzqZRo0YcP36c3r17ExgYyOjRo/n666911U0NoiAiIiKWOHHKxt3dnW+++YZ7772Xzz//nK5duxIeHq7TNjWEgoiIiFguLCyMSZMmsWfPHpKSkoiLi6NevXoYYxg5ciRvvfUWv/32m9VlSiVQEBEREadht9u5+uqrmTRpEgB5eXns27ePkSNHEhgYSHx8PElJSTgcDosrlQtFQURERJxW3bp1+c9//kNqairjxo3jv//9L8OGDSsbQ7J//36LK5S/SkFEREScXvPmzXnkkUdISUnhm2++wc3NjfT0dEJCQrjyyit5/fXXK3wqulQPCiIiIlJt2Gw2QkJCAGjUqBELFiygdu3a/O1vfyMwMJDbbrvN4grlXCmIiIhIteTt7c0tt9zCJ598QlpaGo8//jiNGzcGoLCwkIcffpgdO3ZYXKWciYKIiIhUe8HBwTz00ENMnjwZgG3btjFz5kxat25N586dmTlzpi4HdlIKIiIi4nI6depEZmYm77zzDo0bN+aee+7h5ptvBsDhcJTd0VWspyAiIiIuycvLi5tuuokVK1bw888/M336dADWrFlD06ZN+ec//8mWLVusLVIURERExPUFBgYSGRkJQEhICLfccgtz586lTZs2tGvXjgULFlhcYc2lICIiIjVKWFgY06dPJyMjg/fff5/Q0FDS09MB2LdvH++99x7Hjh2zuMqaw93qAkRERKzg6elJ//796d+/f9myFStWcM8999CgQQOGDh1KfHw87dq1w2azWVipa9MRERERkd/dfffdbN26lZEjR/LOO+/QoUMHJk6caHVZLk1BRERE5A8iIyN55plnSE9PZ+XKlQwZMgSA2bNnc/311/POO+9w5MgRi6t0HQoiIiIip+Du7k6fPn249NJLgdI7uR48eJDBgwcTFBTEnXfeybZt2yyusvpTEBERETkL/fr1Y926dfz444/ceeedfPjhhyQnJwOQkpLCzz//bHGF1ZOCiIiIyDmIiIjgySefJDU1lUGDBgEwceJEmjVrRmxsLAsWLODw4cMWV1l9KIiIiIicBzc3N9zdSy8+feWVV3jttdc4cuQIw4YNIzAwkE8//dTiCqsHXb4rIiLyF/n5+ZGYmEhiYiK7d+8uu1kawLPPPktRUREjRoygefPmFlfqfHRERERE5AIKCwtj0qRJBAYGApCdnc3UqVMJDQ2le/fuzJkzh8LCQourdB4KIiIiIpXomWeeISsrizlz5mC320lISGDXrl0A7N+/H4fDYXGF1lIQERERqWS1a9dmxIgRfPHFF/z888+0adMGYwy9evWiZcuWPPbYY2XhpKap1CAyefJkLr/8cmrVqkXdunUr86lERESqheDg4LLvZ86cSWxsLM8//zzh4eFceeWVNe4y4EoNIseOHePmm2/mzjvvrMynsVxmXhFrd+eSmVdkdSki1Yb6jdR0NpuNK664glmzZpGVlcXbb79NcHAwAQEBQOkg188++4ySkhKLK61clXrVzKRJkwB46623KvNpLLV4fRrjl23FYcBugykDoxjSsZnVZYk4NfUbkfJ8fHy49dZbufXWW4HSf+TnzJlDcnIywcHBDB8+nPj4eC655BKLK73wnGqMyNGjR8nPzy83ObPMvKKyF1MAh4EJy5L1H57IaajfiJyZp6cnW7Zs4dtvv6V///68+uqrtG3btux98dixYxZXeOE4VRCZMmUK/v7+ZVNISIjVJZ3W3tzCshfTE0qMITVXd9QT+TPqNyJnx2az0alTJ1566SUyMzNJSkrCz8+PoqIimjVrxuDBg1m5ciXHjx+3utS/5JyDyOOPP47NZjvt9P33359XMePHjycvL69sSk9PP6/tVJUWDX2x28ovc7PZCG1Yy5qCRKoB9RuRc+fl5UWXLl0AcDgcPPjgg/z444/ccMMNhISE8MADD1TbsSTnHETuvvtuduzYcdopMjLyvIrx8vLCz8+v3OTMgvx9mDIwCjdb6auqm83GkwMjCfL3sbgyEeelfiPy1/j6+nLfffexefNmNmzYwJAhQ/jpp59wc3PDGMPs2bPJzc21usyzds6DVRs2bEjDhg0ro5ZqaUjHZlx1cSNScw8T2rCWXkxFzoL6jchfZ7PZiI6OJjo6umzZzp07ueOOO7jzzju5/vrriY+Pp0+fPnh6elpY6elV6lUzaWlpHDx4kLS0NEpKSti0aRMAF110EbVr167Mp65SQf4+eiEVOUfqNyIX3iWXXML+/ftZuHAhc+bMYcCAAbRv3/68h0xUhUoNIo899hhz5swpmz+R2pKSkrj66qsr86lFRERqpEaNGvH3v/+dv//97yQnJ5ORkQFAamoq/fv3Z8SIEcTFxZV9Fo7VKvWqmbfeegtjTIVJIURERKTyRUZGct111wGlt8iIiIhgwoQJNG3alBtuuIHly5dbXKGTXb4rIiIilSMiIoIlS5aQlZXFjBkzyM3N5b333gOgoKCAb7/9FmPMGbZy4SmIiIiI1CD16tXjjjvu4JtvvmHWrFkAvP/++8TExNCqVSueeuqpstM5VUFBREREpIby8PAAYOjQoXz22We0b9+eSZMmERISwoQJE6qkBgURERGRGs7NzY2ePXuyYMECsrKymDVrFt27dwfgyy+/5LbbbuPrr7+ulFM3CiIiIiJSxt/fn9GjR9OzZ08ADh48yOeff07Xrl25+OKLeeKJJ0hLS7tgz6cgIiIiIn9q4MCB7N69m6SkJK644gqmTp3K22+/DZSGlN9+++0vbV9BRERERE7Lbrdz9dVX89Zbb5GVlcWYMWMAmDp1KoGBgSQkJJCUlITD4Tj3bV/oYkVERMR11a5du+yz4MaMGcO4ceP4+uuvueaaa2jZsiUrV648p+0piIiIiMh5ad68OY888ggpKSl8/fXX9OzZk6CgoHPaRqXe4l1ERERcn81m44orruCKK64AID8//6wfqyMiIiIiYhkFEREREbGMgoiIiIhYRkFERERELKMgIiIiIpZREBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWEZBRERERCyjICIiIiKWURARERERyyiIiIiIiGUURERERMQyCiIiIiJiGQURcV2OEsjYUPp9xobSeRERcSoKIuKati+H6ZHw4djS+Q/Hls5vX25lVSIichIFEXE925fDkhGQv7/88vzM0uUKIyIiTkNBRFyLowQ+eQgwp2j8fdkn43SaRkTESbhbXcDZ2LRpE7Vr1y6br1evHi1atODIkSNs3769wvrt2rUDYOfOnRQWFpZrCw0NpX79+vzyyy+kp6eXa6tTpw7h4eGUlJSwefPmCtuNiorCw8OD3bt3k5eXV64tODiYgIAADh06xN69e8u1+fj40KpVKwA2btyIMeXfJFu1aoWPjw/79u3jwIED5doCAgIIDg6moKCAlJSUcm0eHh5ERUUBsHXrVoqLi8u1h4eHU6dOHTIyMsjOzi7X1qBBA5o3b05RURE7duwo12az2YiOjgZgx44dFBUVlWtv0aIF9erVIzs7m4yMjHJt/v7+hIWFUVxczNatWzlZmzZtcHNzIyUlhYKCgnJtISEhNGrUiIMHD5KamlquzdfXl4iICAA2bNhQYbutW7fG29ubvV+/y6Gd/9uvW3OOA7D7oIN2QW6AgfwM2LcWWnStsB0REalixonl5eUZSv+NLTfFxcUZY4xJSUk5ZfsJMTExFdrmzZtnjDFmxowZFdpiY2NP+7w5OTnGGGP69u1boW3atGnGGGOWLFlSoS06OrqsJk9PzwrtycnJxhhjEhMTK7SNGzfOGGNMUlJShbbg4OCy7QYHB1doT0pKMsYYM27cuAptiYmJxhhjkpOTK7R5enqWbTc6OrpC+5IlS4wxxkybNq1CW9++fY0xxuTk5Jzyd5iXl2eMMSY2NrZC24wZM4wxxsybN69CW0xMTFlNp9puSkqKMcaYuOu7Vmhzt5d+7dDEbmb09ja5D9Q2Zss75/MnKSIiZ+HE++iJ1/zTsRlz0r/nTiQ/Px9/f39Wr16tIyI6InJ2R0TWLObQgsRybfW9YUOWgzmbi/ko5Tjtg9z45qskTOiVlJSU4O5eLQ4MiohUGyfev/Py8vDz8zvtutUiiJzNDyIClI79mB5ZOjD1FONEcgoNGSUNiX42hR82bqJPnz7ExcURHx9PmzZtqr5eEREXdC7v3xqsKq7F7ga9pv4+Yzup0UZjXzvRo6eD3Y0GDRoQFxfH/Pnzadu2LW3btuXNN9+s4oJFRGo2BRFxPa37weC54BdUfrlfk9LlrfsBpafpnnvuOTIyMli+fDkXXXQRu3fvBiArK4tly5Zx7Nixqq5eRKRG0akZcV2OktKrY37LhtoB0Pzy0iMmZ+HNN99k1KhR1K9fn6FDhxIfH0/79u2x2U4+yiIiIifTqRkRKA0dLbpC1E2lX88yhACMHDmSbdu2MXr0aJYuXUrHjh25//77K7FYEZGaSUFE5E+0bt2aqVOnkpaWxscff8ywYcMAWLx4Mb1792bRokUVrigSEZFzoyAicgbu7u706tWr7JJmPz8/8vLyuPXWWwkKCuJvf/sbW7ZssbhKEZHqSUFE5Bz17t2btWvXsnPnTu6++24+/vhjvvvuOwBSU1NJS0uzuEIRkepDg1VF/iKHw0FJSQkeHh7cfvvtvP7661xzzTUkJCQwYMAAfH19rS5RRKRKabCqSBWy2+14eHgAMG3aNGbPnk1xcTHDhw8nMDCQ999/39oCRUScmI6IiFSSPXv2MG/ePIYPH07Lli15+eWXycnJYcSIEbRs2dLq8kREKo2OiIg4gZYtWzJx4sSy0JGZmcm0adMICwujW7duvPnmmxU+b0dEpKZREBGpIk888QRZWVnMmzcPDw8PEhMT2bhxI1B6J1eHw2FxhSIiVU+nZkQskp6eTnBwMHa7nSuvvJK0tDRGjBhBfHw84eHhVpcnInLedGpGpBoICQnBbi/tgs8++yx9+vRhxowZXHzxxVx++eVln3sjIuLKFEREnEBMTAyvvPIKmZmZLFq0iMDAQIKCSj+078UXX+STTz6hpKTE4ipFRC48nZoRcWIOh4NOnTrxww8/0KRJE4YNG0Z8fDytW7e2ujQRkT+lUzMiLsJut7N+/XrWr1/PwIEDef3114mKiuKXX34BoLi42OIKRUT+GgURESdns9no0KEDL774Ivv37+fLL7+kUaNGHD9+nPDwcAYNGsSKFSsUSkSkWlIQEalGvLy86Nq1KwDHjx9n7Nix7N69m379+tG0aVPuvfdejh49anGVIiJnT0FEpJry9vZm7NixbNq0iY0bNzJ06FC2bNmCp6cnAHPmzCEnJ8fiKkVETk+DVUVcUFpaGhdddBHGGHr37k1CQgLXX389Xl5eVpcmIjWABquK1HDNmjUjMzOT6dOnk5mZyaBBg2jbti1O/H+HiNRQCiIiLqpBgwbcddddrF+/nuTkZKZOnYrNZiM7O5u2bdvyzDPPkJmZaXWZIlLDKYiI1ACXXnop/fr1A+Dw4cO0atWKRx99lKZNm9K7d2+WLl1qcYUiUlMpiIjUMC1atGDhwoVkZWUxc+ZM8vPzWbRoEQBHjhxh3bp1OoUjIlVGg1VFhGPHjuHp6cl7773HwIEDufjii4mPj2f48OGEhIRYXZ6IVDMarCoi5+TEJb/9+/fn888/p3PnzkyePJnmzZszduxYa4sTEZemICIiZex2Oz169GDu3LlkZWUxe/ZsrrnmGgDWr19PYmIia9as0akbEblgFERE5JTq1KnDyJEjywa55uTkkJSURLdu3QgLC2PSpEns3bvX4ipFpLpTEBGRs3L99deza9cuVq9eTffu3Xn22Wd5/fXXAcjLy6OgoMDiCkWkOlIQEZGzZrfbueqqq5g9ezZZWVncf//9AMyYMYPAwEBGjBjBF198gcPhsLhSEakuKi2IpKamkpiYSIsWLfDx8SEsLIyJEydy7NixynpKEalCvr6+1KtXD4ARI0bw8MMP880333DttdcSGhqqe5OIyFmptCDy448/4nA4ePXVV9m2bRv//ve/eeWVV5gwYUJlPaVlMvOKWLs7l8y8IqtLEbFESEgIEyZMYOfOnaxdu5bevXvTuHFjAD755BNmzZrFr7/+am2RIuKUqvQ+Is888wwzZ85kz549Z7V+dbiPyOL1aYxfthWHAbsNpgyMYkjHZlaXJeI0JkyYwNSpU/H09OTGG28kPj6enj174ubmZnVpIlJJnPY+Inl5edSvX/9P248ePUp+fn65yZll5hWVhRAAh4EJy5J1ZETkD5588knS09OZNGkSW7ZsoXfv3ixevBhAp2pFpOqCyO7du3nxxRe54447/nSdKVOm4O/vXzY5+x0d9+YWloWQE0qMITX3sDUFiTipJk2a8OCDD5KcnMz69evp378/AKNHj6ZTp0689NJLHDx40OIqRcQK5xxEHn/8cWw222mn77//vtxj9u/fT69evbj55psZPXr0n257/Pjx5OXllU3p6enn/hNVoRYNfbHbyi9zs9kIbVjLmoJEnJzNZqNDhw74+voCcPPNNxMYGMg//vEPgoKCuOmmm/jpp58srlJEqtI5jxHJzc0lNzf3tOuEhobi7e0NlIaQ7t2707lzZ9566y3s9rPPPtVljMiEZcmUGIObzcaTAyM1RkTkHGVnZ/P2228zb948PvjgA0JCQvjoo49o2rQpl112mdXlicg5Opf370odrJqRkUH37t1p37498+fPP+fBadUhiEDpWJHU3MOENqxFkL+P1eWIuIT27duzYcMG2rZtS0JCAkOHDqVRo0ZWlyUiZ8Epgsj+/fvp1q0bzZo1Y+7cueVCSGBg4Flto7oEERG58IqLi/n444+ZM2cOK1aswBjDtm3buPjii60uTUTO4Fzev90rq4jPPvuMXbt2sWvXLpo2bVquTR+YJSJn4uHhQb9+/ejXrx8HDhxgxYoVhIeHA9CnTx/CwsJISEigXbt22Gy2M2xNRJxVpV01k5CQgDHmlJOIyLlo0KABCQkJ2Gw2jh8/TmRkJEuXLqVDhw5ERUXxzDPPUFhYaHWZInIe9FkzIlKtuLu78/TTT5OWlsZHH31EZGQk06dPx9299ADv119/zZEjRyyuUkTOVpXeWfVcaYyIiJyN4uJiPDw8yMvLo3HjxtSqVYshQ4aQkJBA586ddepGpIo57Z1VRUQqg4eHBwD+/v5s2bKFMWPGsHLlSrp06cJll11GcXGxxRWKyJ9REBERlxIREcHkyZNJTU1l1apVjBo1Cg8PD44dO8agQYNYsGABhw/r7scizkJBRERckpubG9deey333nsvUHrTtNzcXIYNG0ZgYCCJiYl89dVXGkAvYjEFERGpEUJCQli9ejW7d+/mvvvuIykpiX/84x/YbDaMMaSlpVldokiNpMGqIlIjORwOcnJyCAwM5Pvvv6djx45069aNhIQEbrrpJmrXrm11iSLVlgarioicgd1uL7vLc6tWrZg3bx7u7u6MGjWKgIAA7r//fosrFKkZFEREpMbz9fVl2LBhfP7556SmpjJhwgSCg4OB0s/MeuSRR0hJSbG4ShHXpFMzIiKn8emnnzJkyBDy8vK4/PLLiY+PZ/DgwdStW9fq0kSclk7NiIhcINdddx2ZmZksXLgQPz8/7rzzTu655x6g9EZqJSUlFlcoUr0piIiInIGPjw+33HILH3/8Menp6Tz++OMAvPPOOzRr1oyHHnqI7du3W1ukSDWlICIicg6aNGlCWFgYAG3btmXAgAG89tprXHrppXTq1IkPPvjA4gpFqhcFERGR89S6dWtmzJhBZmYm7777LgEBAfz6668AbN26lQ8//FC3lxc5AwUREZG/yMvLi0GDBrFixQri4+MBWLJkCX379qVp06bcd999bNmyxeIqRZyTgoiISCV44okn2LhxI0OHDmX+/Pm0adOGl156yeqyRJyOLt8VEalkxcXFfPzxx0RHRxMSEsL//d//sX79ehISErj++uvx9PS0ukSRC0qX74qIOBEPDw/69etHSEgIAC1btmT//v0MHDiQJk2acM8997Br1y6LqxSxhoKIiEgVGzp0KOvXryc5OZlRo0axdOlSsrKyANiyZQuZmZkWVyhSdXRqRkTEYsePH8fNzQ2bzUb37t1Zs2YN1113HQkJCfTr1w9vb2+rSxQ5Jzo1IyJSjbi7u2Oz2QBYtmwZL7/8Mr/++itDhgwhKCiI9evXW1yhSOXRERERESe1c+dOFixYwPjx4/Hx8eGhhx6ibt26DB8+nKZNm1pdnsif0hEREREXEBERwb/+9S98fHwwxnDw4EGeeOIJmjVrRs+ePVmwYAFFRUVWlynylzj1EZG8vDzq1q1Lenq6joiIiFD6n+YHH3zAggUL+Pbbb9mxYweBgYGkpaUREhJSdopHxEr5+fmEhITw66+/4u/vf9p13auopvNSUFAAUHbJm4iIlBcREWF1CSJ/qqCg4IxBxKmPiDgcDvbv30+dOnWcOuWfSH46cuN8tG+cl/aNc9P+cV7VYd8YYygoKKBJkybY7acfBeLUR0Tsdnu1GpDl5+fntH8UNZ32jfPSvnFu2j/Oy9n3zZmOhJygwaoiIiJiGQURERERsYyCyAXg5eXFxIkT8fLysroUOYn2jfPSvnFu2j/Oy9X2jVMPVhURERHXpiMiIiIiYhkFEREREbGMgoiIiIhYRkFERERELKMgch4mT57M5ZdfTq1atahbt+5ZPcYYw+OPP06TJk3w8fHh6quvZtu2bZVbaA116NAhhg8fjr+/P/7+/gwfPpxff/31tI9JSEjAZrOVm2JiYqqmYBf28ssv06JFC7y9vWnfvj1fffXVaddfvXo17du3x9vbm5YtW/LKK69UUaU1z7nsmy+//LJC/7DZbPz4449VWHHNsGbNGvr27UuTJk2w2Wy8//77Z3xMde83CiLn4dixY9x8883ceeedZ/2Yp59+mueee44ZM2awfv16AgMD6dmzZ9nn6ciFM3ToUDZt2sQnn3zCJ598wqZNmxg+fPgZH9erVy8yMzPLpo8++qgKqnVdixcvZuzYsTz88MNs3LiRrl270rt3b9LS0k65/t69e+nTpw9du3Zl48aNTJgwgb///e8sXbq0iit3fee6b07YuXNnuT4SHh5eRRXXHIWFhbRp04YZM2ac1fou0W+MnLc333zT+Pv7n3E9h8NhAgMDzVNPPVW27MiRI8bf39+88sorlVhhzbN9+3YDmG+++aZs2bp16wxgfvzxxz99XHx8vOnfv38VVFhzdOrUydxxxx3lll1yySVm3Lhxp1z/wQcfNJdcckm5ZX/7299MTExMpdVYU53rvklKSjKAOXToUBVUJycA5r333jvtOq7Qb3REpArs3buXrKwsYmNjy5Z5eXnRrVs31q5da2FlrmfdunX4+/vTuXPnsmUxMTH4+/uf8Xf95Zdf0rhxYy6++GJuu+02cnJyKrtcl3Xs2DF++OGHcn/zALGxsX+6H9atW1dh/euuu47vv/+e4uLiSqu1pjmffXNCdHQ0QUFB9OjRg6SkpMosU86SK/QbBZEqkJWVBUBAQEC55QEBAWVtcmFkZWXRuHHjCssbN2582t917969WbBgAf/5z3+YNm0a69ev55prruHo0aOVWa7Lys3NpaSk5Jz+5rOysk65/vHjx8nNza20Wmua89k3QUFBzJo1i6VLl7Js2TIiIiLo0aMHa9asqYqS5TRcod849afvVqXHH3+cSZMmnXad9evX06FDh/N+DpvNVm7eGFNhmZza2e4fqPh7hjP/rocMGVL2fWRkJB06dKB58+asXLmSgQMHnmfVcq5/86da/1TL5a87l30TERFBRERE2XyXLl1IT0/n2Wef5aqrrqrUOuXMqnu/URD53d13380tt9xy2nVCQ0PPa9uBgYFAaXINCgoqW56Tk1Mhycqpne3+2bJlC9nZ2RXafvnll3P6XQcFBdG8eXNSUlLOuVaBhg0b4ubmVuE/7NP9zQcGBp5yfXd3dxo0aFBptdY057NvTiUmJob58+df6PLkHLlCv1EQ+V3Dhg1p2LBhpWy7RYsWBAYGsmrVKqKjo4HS87SrV69m6tSplfKcruZs90+XLl3Iy8vju+++o1OnTgB8++235OXlcfnll5/18x04cID09PRywVHOnqenJ+3bt2fVqlUMGDCgbPmqVavo37//KR/TpUsXVqxYUW7ZZ599RocOHfDw8KjUemuS89k3p7Jx40b1DyfgEv3GypGy1dW+ffvMxo0bzaRJk0zt2rXNxo0bzcaNG01BQUHZOhEREWbZsmVl80899ZTx9/c3y5YtM1u3bjW33nqrCQoKMvn5+Vb8CC6tV69e5rLLLjPr1q0z69atM1FRUeaGG24ot84f909BQYH55z//adauXWv27t1rkpKSTJcuXUxwcLD2z1+waNEi4+HhYWbPnm22b99uxo4da3x9fU1qaqoxxphx48aZ4cOHl62/Z88eU6tWLXPvvfea7du3m9mzZxsPDw/z7rvvWvUjuKxz3Tf//ve/zXvvvWd++uknk5ycbMaNG2cAs3TpUqt+BJdVUFBQ9p4CmOeee85s3LjR7Nu3zxjjmv1GQeQ8xMfHG6DClJSUVLYOYN58882yeYfDYSZOnGgCAwONl5eXueqqq8zWrVurvvga4MCBAyYuLs7UqVPH1KlTx8TFxVW47PCP++fw4cMmNjbWNGrUyHh4eJhmzZqZ+Ph4k5aWVvXFu5iXXnrJNG/e3Hh6epp27dqZ1atXl7XFx8ebbt26lVv/yy+/NNHR0cbT09OEhoaamTNnVnHFNce57JupU6easLAw4+3tberVq2euvPJKs3LlSguqdn0nLpU+eYqPjzfGuGa/sRnz+6gWERERkSqmy3dFRETEMgoiIiIiYhkFEREREbGMgoiIiIhYRkFERERELKMgIiIiIpZREBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWOb/AVqYDa5btuMtAAAAAElFTkSuQmCC", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/fUlEQVR4nO3deVyU9d7/8fcAgqgwpsgmCNqvo6kthuWWuYZ7iyfTW1OsTo+oPGnmnXq6K7W7bDl17LSZ57awbPHk0klckk6ilrRoam6ZFSkhhCug6YDw/f0xMacRRFBmhgtez8djHjLf+V4zn68X18yb6/pe19iMMUYAAAAW4efrAgAAAKqD8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACwlwNcF1LTS0lIdOHBAISEhstlsvi4HAABUgTFGhYWFio6Olp9f5ftW6lx4OXDggGJjY31dBgAAOA9ZWVmKiYmptE+dCy8hISGSnIMPDQ31cTUAAKAqCgoKFBsb6/ocr0ydCy9lh4pCQ0MJLwAAWExVpnwwYRcAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFhKnbtIHQAA8IySEmnDBiknR4qKknr2lPz9vV+HR/e8zJ49W1dffbVCQkIUHh6um266SXv27DnncuvWrVNCQoIaNmyoNm3aaO7cuZ4sEwAAnMPSpVJ8vNSnjzR6tPPf+Hhnu7d5NLysW7dO9913nz7//HOlpaXp9OnTSkxM1IkTJ866TGZmpgYPHqyePXtqy5Yt+stf/qL7779fS5Ys8WSpAADgLJYulW65Rfr5Z/f27Gxnu7cDjM0YY7z1YgcPHlR4eLjWrVun6667rsI+U6dO1Ycffqjdu3e72pKTk7Vt2zZlZGSc8zUKCgpkt9uVn5/PdxsBAHCBSkqce1jODC5lbDYpJkbKzLywQ0jV+fz26oTd/Px8SVKzZs3O2icjI0OJiYlubQMGDNCmTZtUXFxcrr/D4VBBQYHbDQAA1IwNG84eXCTJGCkry9nPW7wWXowxmjx5sq699lp17NjxrP1yc3MVERHh1hYREaHTp0/r0KFD5frPnj1bdrvddYuNja3x2gEAqK9ycmq2X03wWniZMGGCvvnmG7377rvn7Hvm12GXHdmq6Guyp0+frvz8fNctKyurZgoGAACKiqrZfjXBK6dK//nPf9aHH36o9evXKyYmptK+kZGRys3NdWvLy8tTQECAmjdvXq5/UFCQgoKCarReAADg1LOnc05LdrbzENGZyua89OzpvZo8uufFGKMJEyZo6dKl+uSTT9S6detzLtOtWzelpaW5ta1Zs0adO3dWgwYNPFUqAACogL+/9MILzp/PPABSdn/OHO9e78Wj4eW+++7TwoUL9c477ygkJES5ubnKzc3VyZMnXX2mT5+ucePGue4nJydr3759mjx5snbv3q3XX39d8+fP15QpUzxZKgAAOIvhw6XFi6WWLd3bY2Kc7cOHe7cej54qXdEcFUl64403NH78eEnS+PHj9dNPPyk9Pd31+Lp16/TAAw9o586dio6O1tSpU5WcnFyl1+RUaQAAPMOTV9itzue3V6/z4g2EFwAArKfWXucFAADgQhFeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApXg0vKxfv17Dhg1TdHS0bDabPvjgg0r7p6eny2azlbt9++23niwTAABYSIAnn/zEiRO64oordPvtt+uPf/xjlZfbs2ePQkNDXfdbtGjhifIAAIAFeTS8DBo0SIMGDar2cuHh4WratGnNFwQAACyvVs556dSpk6KiotSvXz+tXbu20r4Oh0MFBQVuNwAAUHfVqvASFRWlefPmacmSJVq6dKnatm2rfv36af369WddZvbs2bLb7a5bbGysFysGAADeZjPGGK+8kM2mZcuW6aabbqrWcsOGDZPNZtOHH35Y4eMOh0MOh8N1v6CgQLGxscrPz3ebNwMAAGqvgoIC2e32Kn1+16o9LxXp2rWr9u7de9bHg4KCFBoa6nYDAAB1V60PL1u2bFFUVJSvywAAALWER882On78uL7//nvX/czMTG3dulXNmjVTq1atNH36dGVnZ+vNN9+UJM2ZM0fx8fHq0KGDioqKtHDhQi1ZskRLlizxZJkAAMBCPBpeNm3apD59+rjuT548WZKUlJSklJQU5eTkaP/+/a7Hi4qKNGXKFGVnZys4OFgdOnTQihUrNHjwYE+WCQAALMRrE3a9pToTfgAAQO1QpybsAgAA/B7hBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWEqArwsAgKooKZE2bJBycqSoKKlnT8nf39dVAfVLbdkOPbrnZf369Ro2bJiio6Nls9n0wQcfnHOZdevWKSEhQQ0bNlSbNm00d+5cT5YIwAKWLpXi46U+faTRo53/xsc72wF4R23aDj0aXk6cOKErrrhCL730UpX6Z2ZmavDgwerZs6e2bNmiv/zlL7r//vu1ZMkST5YJoBZbulS65Rbp55/d27Ozne0EGMDzatt2aDPGGK+8kM2mZcuW6aabbjprn6lTp+rDDz/U7t27XW3Jycnatm2bMjIyqvQ6BQUFstvtys/PV2ho6IWWDcCHSkqcf9md+YZZxmaTYmKkzEwOIQGe4q3tsDqf37VqzktGRoYSExPd2gYMGKD58+eruLhYDRo0KLeMw+GQw+Fw3S8oKPB4nQC8Y8OGs79hSpIxUlaWs1/v3l4rC6gT5s2bp4kTJ6pFixZq1aqV4uLi1LJlS8XExLj9u2dPpH7++exxwRfbYa0KL7m5uYqIiHBri4iI0OnTp3Xo0CFFRUWVW2b27NmaOXOmt0oE4EU5OTXbD8B/NG/eXKdOnVJWVpaysrKUkZEhf39/lZSUqLS01NXPZvOT1ExS499uX0hqUu75vLkd1rpTpW02m9v9sqNaZ7aXmT59uvLz8123rKwsj9cIwDvK/73ys6Tuko6cox+Acxk6dKjb4ZnS0lIVFxe7BRdJMqZU0iFJ+yT9IKni2Sbe3A5rVXiJjIxUbm6uW1teXp4CAgLUvHnzCpcJCgpSaGio2w1A3dCzp/NY+n/+dpkqKUPSDEnO9thYZz8A1RMUFKTbbrtNAQFVOQhjk3SRpJ2SQtwf8cF2WKvCS7du3ZSWlubWtmbNGnXu3LnC+S4A6jZ/f+mFF8ru5Ula/NvPr0tyzm+bM4fJusD5Gj9+vE6fPl1pHz8/PzVs2ERSumy2i90eK/vDwtvboUfDy/Hjx7V161Zt3bpVkvNU6K1bt2r//v2SnId8xo0b5+qfnJysffv2afLkydq9e7def/11zZ8/X1OmTPFkmQBqseHDpcWLpSZNnpVU9ib7q+z2F7V4sfNxANVXWlqq/Px8hYSEnLWPn5+fAgMD9cknH2nJksvVsqX74zEx8sl26NFTpdPT09WnT59y7UlJSUpJSdH48eP1008/KT093fXYunXr9MADD2jnzp2Kjo7W1KlTlZycXOXX5FRpoO7Jy8tTq1ZxcjhOudpCQkL1889ZbOdANe3du1cLFizQm2++qaysLIWFhenw4cM6Mw7YbDb5+/tr5cqVuv766yV59gq71fn89tp1XryF8ALUPf/93/+tv/3tbyopKXG1+fn5adasWXr44Yd9WBlgDceOHdM///lPpaSkKCMjQ3a7XaNGjVJSUpJatWql2NjYCsPL4sWLNdxLu1UIL4QXoM7Iy8tTXFycTp06Ve6x0NBQZWWx9wWoSElJidLS0pSSkqIPPvhAxcXFGjBggJKSknTDDTcoODjY1TcxMVGffPKJ2x8I8+fP1x133OG1eqvz+V2rJuwCwJmeffZZFRcXV/jY8ePH9eKLL3q5IqB227lzpx566CHFxsZq0KBB2rFjhx5//HFlZWVp5cqVGjlypFtwkaQ77rjDLbg899xzXg0u1cWeFwC1VmV7Xcqw9wWQDh8+rPfee08pKSnatGmTmjVrptGjRyspKUkJCQlnvVZamZMnTyo8PFzHjx/Xww8/rP/93//1UuX/YdmvBwCA36tsr0uZsr0vzH1BfVNcXKzVq1crJSVFy5cvlzFGgwcP1pIlSzRkyBAFBQVV+bmCg4P15JNP6ujRo3rkkUc8WHXNYM8LgFqpKntdyrD3BfXJtm3btGDBAr399tvKy8vTlVdeqaSkJI0ePVrh4eG+Lu+8MecFgOU999xzVQoukvNN76WXXjqv18nNzdX9999f7pLoQG2Sl5enOXPm6Morr9SVV16phQsXasyYMdq6dau2bNmiSZMmWTq4VBeHjQDUSqGhobr4YvereZ46dUrZ2dmKjY1VYGCg22NNmpT/oriKzJs3T++8845b2549e9S2bVvdd999F1Y0UIMcDodWrFihlJQUrVq1SjabTTfccIMef/xxDRw4sF5feZ7DRgAsIyMjQ927d9eOHTvUoUOHGnnOI0eOaNy4cVq4cKGaNm1aI88JnC9jjDZv3qyUlBS9++67OnLkiDp37qzx48dr1KhRZ/2ev7qACbsAUEVNmjTRkiVLqjW5EahpOTk5WrhwoVJSUrRr1y5FRUXpT3/6k5KSktS+fXtfl1frEF4A1GtnHn4CvOXUqVP617/+pZSUFK1Zs0YNGjTQzTffrOeee079+/ev4rc9109M2AVQ78yaNUuXXXaZGjdurIiICN1zzz3nPCUbqAnGGGVkZGjcuHGuS/QXFBTo1VdfVW5urt59910NHDiQ4HIO/O8AqFeMMSopKdFrr72mli1bateuXRo3bpwuv/xy3XPPPb4uD3XUU089pddee02//PKLTp48qaCgIDVo0EDTpk3TzJkzfV2e5RBeANQrNpvN7cMiLi5O119/vb799ltlZWVp7NixysvLU0BAgB555BGNGDHCh9XCyk6cOKFly5YpJSVFn3zyiYKDg3XLLbcoKSlJV1xxhcaPH68HHnjA12VaEuEFQL2yb98+Pfvss0pPT1d2draKi4t16tQpzZ49WwEBAa5raeTl5emqq67S4MGD1bhxY1+XDYsoLS3Vp59+qpSUFL3//vs6fvy4evXqpfnz5+uWW25RSEiIJKmoqIiJ4heA8AKg3jh06JCuueYa9enTR88//7xatmyp0tJSde7cWVdeeaWioqIUFRUlSQoPD1ezZs105MgRwgvOKTMzU2+++aYWLFigzMxMtW7dWlOmTNHYsWPVpk2bcv2ZKH5hCC8A6o2VK1fq9OnTevfdd11fVPfyyy+rqKhIV155pVvfTZs2qbS0VLGxsT6oFFZQWFioxYsXKyUlRevXr1eTJk106623KiUlRddee638/NzPiZk1a5bef/99/fjjj2rSpImGDx+uv//97/X6YnPni/ACoN5o1qyZCgoK9OGHH6p9+/Zavny5Zs+erZYtW6pFixaufocPH9a4ceP0f//3fz6sFrVRaWmp1q5dq5SUFC1dulQnT55U37599dZbb+nmm28+6146JorXLMILgHpjyJAhuvPOOzV27FgFBwfrtttu06233qp9+/a5+jgcDt18882aPn26unfv7sNqUZt89913WrBggd566y1lZWXpkksu0cMPP6zbbrtNrVq1OufylU0Ul6Sbb75Z6enp6tevnxYvXuyxcdQVhBcA9YbNZtPcuXM1d+7cCh83xmj8+PHq27evxo4d6+XqUNscO3ZMixYt0oIFC5SRkSG73a6RI0dq/Pjx6tq1q+vQY1VUNlFcku6//37dcccdWrBggaeGU6dwkToA+M1nn32mRYsW6YMPPnB9e+/27dt9XRa8qKSkRKtXr9aoUaMUGRmpe++9V3a7Xe+9955ycnL02muvqVu3btUKLmUTxQ8dOqTnn39en376qTIyMuTv7++aa9WnTx/XmUg4N/a8AMBvrr32WpWWlvq6DPjAzp07tWDBAi1cuFA5OTlq3769Hn/8cY0ZM0bR0dEX9NzVmSiOqiG8AADqpcOHD+u9995TSkqKNm3apGbNmmn06NFKSkpSQkJCtfauVKaqE8VRdYQXAEC9UVxcrNWrVyslJUXLly9XaWmpBg8erCVLlmjIkCEeuWhcVSaKo3oILwCAOm/btm1KSUnRO++8o7y8PF1xxRV65plnNHr0aIWHh3v0tc81URzVR3gBANRJeXl5evvtt7VgwQJt27ZNLVq00JgxY5SUlFTr5poMGDBAX3/9tU6cOKGYmBgtW7ZMV199ta/LqrUILwCAOsPhcGjFihVKSUnRqlWrZLPZNGzYMD3++OMaOHBgrb2a7UcffeTrEiyF8AIAsDRjjDZv3qyUlBS9++67OnLkiDp37qw5c+Zo1KhRat68ua9LRA0jvAAALCknJ0cLFy5USkqKdu3apaioKN15551KSkpShw4dfF0ePIjwAgCwjFOnTulf//qXUlJStGbNGjVo0EA33XSTnnvuOfXv318BAXys1QesZQBArWaM0eeff66UlBQtWrRI+fn56tatm1555RWNHDlSTZs29XWJ8DLCC+qP0hLp4AbpZI4UHCW16Cn5+fu6KqD+qOY2uH//fr311ltasGCB9u7dq5iYGN13330aN26c2rZt68XCUdt45buNXnnlFbVu3VoNGzZUQkKCNmzYcNa+6enpstls5W5l37wJnJespdKH8dK/+0gbRzv//TDe2Q7A86q4DZ44cUILFy5U//79FR8fryeeeEJdunRRWlqafvrpJz3xxBMEF3h+z8uiRYs0adIkvfLKK+rRo4dee+01DRo0SLt27ar0a8T37Nmj0NBQ130uoYzzlrVU2nCLJOPe/mu2s73nYil2uE9KA+qFc2yDpT3+qU/3hSslJUXvv/++jh8/ruuuu07z58/XLbfcwhcWohyPh5fnn39ed955p/70pz9JkubMmaOPPvpIr776quurwCsSHh7OcUxcuNISafNElXvTlH5rs0mbJ0ktb+QQEuAJlWyDmXlGb26QFkwepcxfStS6dWs9+OCDGjdunNq0aeP9WmEZHg0vRUVF2rx5s6ZNm+bWnpiYqI0bN1a6bKdOnXTq1Cm1b99e//M//6M+ffpU2M/hcMjhcLjuFxQUXHjhqDsObpB+/dmtqei0n06b333hWv4Baf/HUnhPLxeH6jp16pQk6eTJk/r11199XA2qJG+DlJ8jyfnHQeFJow83GS38zGj9t1KThtKILiVKmTtH197wZ/n5eWU2AyzOo+Hl0KFDKikpUUREhFt7RESEcnNzK1wmKipK8+bNU0JCghwOh9566y3169dP6enpuu6668r1nz17tmbOnOmR+lEHnMxxu1t02k+bDjTTiaIzfvUzvpDCeNOs7Xbt2iVJ2rJli44ePerjalAlh75QaWaYtv1UpDVbTurT3Q4VnTbqfan0ZrI0/GqpcUNJV4ZLBBdUkVfONjrza8WNMWf9qvG2bdu6Tcbq1q2bsrKy9Ne//rXC8DJ9+nRNnjzZdb+goECxsbE1VDksLzjK7e5pY9OJogAF+pcq0L/0Pw/YI6UmTbxcHKorODhYktSoUSM1YX3VellZWVr5r8+1evVB/ZJfqtjmfrqtVyP1uayRbr7iiBo1KPlP5zO2VaAyHg0vYWFh8vf3L7eXJS8vr9zemMp07dpVCxcurPCxoKAgj3yFOeqIFj2lRjHOiYG/O+Ye6F+qoIDfwktQCym8E3NeLCAwMND1L9t97VRYWKi0tDQtX75c33zzjZo0aaLEy0M0tFOpLo8LUFGJv44X/X5bszm30RYctkXVeTS8BAYGKiEhQWlpabr55ptd7Wlpabrxxhur/DxbtmxRVBSpHOfBz19KeOG3Mx0q3tunS+4luAAXoKSkRF988YWWL1+u9PR0nT59Wl27dtWTTz6pXr16qWHBJmlHRYf3f9smE+awDaJaPH7YaPLkyRo7dqw6d+6sbt26ad68edq/f7+Sk5MlOQ/7ZGdn680335TkPBspPj5eHTp0UFFRkRYuXKglS5ZoyZIlni4VdVXscOfp0Jsn/jZx8DdBLZzBJfxa39UGWNgPP/yg1NRUrVy5UocOHVKbNm2UnJyswYMHu1/eouG1UsfHpL0vS6eP/Ke9UYwzuHCpAlSTx8PLyJEjdfjwYc2aNUs5OTnq2LGjVq5cqbi4OEnOL9bav3+/q39RUZGmTJmi7OxsBQcHq0OHDlqxYoUGDx7s6VJRl8UOd54Ovf9j5+RceySHioDzcOzYMa1Zs0bLly/Xrl27ZLfbNWDAAA0dOlTt27c/63xGhV8rhXWT8rZI+blSty5Sq/5sgzgvNmNMRRfAsKyCggLZ7Xbl5+e7XeQOkKRff/1Vn332mZo0acKcCQv65ptvdPvtt+uf//ynLr74Yl+XU28UFxcrIyNDy5cv1/r162WMUY8ePTR06FD17NnTNRepKhwOh44fP64ePXqoUaNGHqwaVlOdz2++2wgAUKHvvvtOqampWrVqlY4cOaI//OEPuv/++zVw4EA1b97c1+WhHiO8AABcjhw5otWrV2v58uX67rvvdNFFF2nQoEEaOnQo3ymEWoPwAgD1XHFxsTZs2KDU1FR9+umnstlsuu6665ScnKzu3burQYMGvi4RcEN4AYB6yBij3bt3KzU1VatXr1Z+fr7at2+vBx98UAMGDOC75VCrEV4AoB45ePCgVq1apdTUVP3www8KCwvTjTfeqKFDhzIJGpZBeAGAOs7hcGjdunVKTU1VRkaGAgIC1Lt3b02cOFFdunRRQAAfBbAWfmMBoA4yxmj79u1KTU3VmjVrVFhYqMsvv1zTpk3T9ddfz6UkYGmEFwCoQ3Jzc7Vy5UqlpqZq3759ioiI0IgRIzRkyBDFx8f7ujygRhBeAMDiTp48qbVr1yo1NVVffvmlAgMD1a9fP02dOlWdO3eWvz9XsUXdQngBAAsyxmjLli1KTU3Vxx9/rBMnTuiqq67SI488on79+qlJkya+LhHwGMILAFhIdna2VqxYodTUVGVnZ6tly5YaM2aMhgwZopiYGF+XB3gF4QUAarkTJ07o3//+t1JTU7V582Y1atRI/fv312OPPaZOnTrJz8/P1yUCXkV4AYBaqLS0VJs2bVJqaqr+/e9/y+Fw6Oqrr9asWbPUt29fBQcH+7pEwGcILwBQi+zfv1+pqalasWKFcnNzFRsbqzvuuEODBw9WVFSUr8sDagXCCwD4WGFhodLS0pSamqpt27apcePGGjBggIYOHarLL79cNpvN1yUCtQrhBQB8oKSkRF988YVSU1OVnp6u4uJide3aVU8++aR69eqlhg0b+rpEoNYivACAF/34449KTU3VypUrdfDgQbVp00Z33323Bg8erBYtWvi6PMASCC8A4GH5+fn66KOPlJqaqp07dyo0NFQDBw7U0KFD1b59ew4LAdVEeAEADyguLlZGRoZSU1O1fv16lZaWqkePHnrmmWfUs2dPBQYG+rpEwLIILwBQg/bu3avly5dr1apVOnLkiC655BL9+c9/1sCBA9W8eXNflwfUCYQXALhAR48e1apVq5Samqo9e/booosu0qBBgzR06FC1bdvW1+UBdQ7hBQDOQ3FxsTZs2KDU1FR9+umnstlsuu6663T33Xere/fuatCgga9LBOoswgsAVJExRt9++62WL1+u1atXKz8/X5deeqkefPBBJSYm6qKLLvJ1iUC9QHgBgHM4ePCg67DQDz/8oObNm+vGG2/U0KFDdfHFF/u6PKDeIbwAQAUcDofWrVun1NRUZWRkKCAgQL1799bEiRPVpUsXBQTw9gn4ClsfAPzGGKMdO3Zo+fLlWrNmjQoLC3X55Zdr2rRpuv766xUaGurrEgGI8AIA+uWXX7RixQqlpqZq3759ioiI0IgRIzRkyBDFx8f7ujwAZyC8AKiXTp48qbVr1yo1NVVffvmlAgMD1a9fP02dOlWdO3eWv7+/r0sEcBaEFwD1hjFGW7du1fLly/Xxxx/rxIkT6tSpkx555BH169dPTZo08XWJAKqA8AKgzjtw4IBSU1O1YsUK/fzzz4qOjtaYMWM0ZMgQxcTE+Lo8ANVEeKmikhJpwwYpJ0eKipJ69pTYqwx4T0mJtHev8+c9e6T4+Mq3wV9//VUff/yxUlNTtXnzZgUHB6t///569NFH1alTJ/n5+XmlbqAuqS2fhV7Zel955RW1bt1aDRs2VEJCgjZs2FBp/3Xr1ikhIUENGzZUmzZtNHfuXG+UeVZLlzrfKPv0kUaPdv4bH+9sB+B5n34q3Xab9OKLzvvPPuu8/+mn7v1KS0v15Zdf6tFHH1ViYqJmzZolPz8/zZo1S2lpaZoxY4YSEhIILsB5qE2fhR7f87Jo0SJNmjRJr7zyinr06KHXXntNgwYN0q5du9SqVaty/TMzMzV48GDdddddWrhwoT777DPde++9atGihf74xz96utxyli6VbrlFMsa9PTvb2b54sTR8uNfLAuqNTz+VZs4s337okLP9scekuLgsLV++XCtWrFBubq5iY2N1++23a/DgwYqKivJ+0UAdU9s+C23GnFlKzerSpYuuuuoqvfrqq662Sy+9VDfddJNmz55drv/UqVP14Ycfavfu3a625ORkbdu2TRkZGed8vYKCAtntduXn51/wNRlKSpyp8uefK37cZpNiYqTMTA4hWcWvv/6qzz77TE2aNFFQUJCvy8E5lJQ497AcOuS8X1z8jQoLb1do6D/l5xeuoqI0GZOqkye3qXHjxhowYICGDh2qyy+/XDabzbfFo0IOh0PHjx9Xjx491KhRI1+Xgyrw1mdhdT6/PbrnpaioSJs3b9a0adPc2hMTE7Vx48YKl8nIyFBiYqJb24ABAzR//nwVFxeX+7Izh8Mhh8Phul9QUFBD1TuP651tZUnOBJqV5ezXu3eNvSyA3+zY8Z/g8nu//vqCTp/eJKlYDRp00d13P6lx43qpYcOGXq8RqOtq42ehRw/8Hjp0SCUlJYqIiHBrj4iIUG5uboXL5ObmVtj/9OnTOlTBu9js2bNlt9tdt9jY2BqrPyenZvsBqJ7Dh89sKZUklZTsV3Dw3WradKVCQl7S//t/AwgugIfUxs9Cr8xaO3P3rTGm0l26FfWvqF2Spk+frvz8fNctKyurBip2quqhcg6pA57RvLn7/QYNrpTd/qGaNl2m4OAk+fm1qLAfgJpTGz8LPXrYKCwsTP7+/uX2suTl5ZXbu1ImMjKywv4BAQFqXsE7VFBQkMfmLvTs6TyOl51dfpKS9J/jfD17euTlgXqvY0cpLMz90JG/f0u3Pi1aOPsB8Iza+Fno0T0vgYGBSkhIUFpamlt7WlqaunfvXuEy3bp1K9d/zZo16ty5c7n5Lp7m7y+98ILz5zN3+pTdnzOHybqAp/j7S/fdV3mfe+9lGwQ8qTZ+Fnr8sNHkyZP1f//3f3r99de1e/duPfDAA9q/f7+Sk5MlOQ/7jBs3ztU/OTlZ+/bt0+TJk7V79269/vrrmj9/vqZMmeLpUis0fLjzFLCW7n/sKSaG06QBb7j2Wufp0GFh7u0tWjjbr73WN3UB9Ult+yz0+HVeRo4cqcOHD2vWrFnKyclRx44dtXLlSsXFxUmScnJytH//flf/1q1ba+XKlXrggQf08ssvKzo6Wn//+999co2XMsOHSzfeWDuuKgjUR9deK3Xr5jz76PBh5xyXjh3ZBgFvqk2fhR6/zou31eR1XlD3cJ0XwLe4zgvOpjqf31wjGwAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBfVHaYmUt0E6lCEd3e68D8B7Skuc296hDOe2yDaI8+TR8HL06FGNHTtWdrtddrtdY8eO1bFjxypdZvz48bLZbG63rl27erJM1AdZS6UP46V1Q6S9r0rfPCxl3CblferryoD6Ie9T5zb3zcPObXDdEOc2mbXU15XBgjwaXkaPHq2tW7dq9erVWr16tbZu3aqxY8eec7mBAwcqJyfHdVu5cqUny0Rdl7VU2nCL9OvP7u2OQ9KOmQQYwNPyPnVua45D7u2/Zju3TQIMqinAU0+8e/durV69Wp9//rm6dOkiSfrHP/6hbt26ac+ePWrbtu1Zlw0KClJkZKSnSkN9UloibZ4oyZy9z95XpLBukp+/18oC6o3SEmnvy2d50EiySZsnSS1vZBtElXksvGRkZMhut7uCiyR17dpVdrtdGzdurDS8pKenKzw8XE2bNlWvXr30xBNPKDw8vMK+DodDDofDdb+goKDmBgHrO7ih/B4XSUUlv9vpePqwlLdFuugyLxYG1BNHt0snjqhsR7/btidJMtKvWc5tNaK3t6uDRXksvOTm5lYYOMLDw5Wbm3vW5QYNGqQRI0YoLi5OmZmZeuSRR9S3b19t3rxZQUFB5frPnj1bM2fOrNHaUYeczHG7G2Azahx4WieKAtzfRPNzpQatvVwcUA/k50pF7h81jQNPK8B2xt7QM7ZVoDLVDi8zZsw4Z1j46quvJEk2m63cY8aYCtvLjBw50vVzx44d1blzZ8XFxWnFihUaPnx4uf7Tp0/X5MmTXfcLCgoUGxt7znGgngiOcrsbGFCqztFHdNqc8TvYrYsU3sOLhQH1RF6pVDTLrSnAZhQYUOre74xtFahMtcPLhAkTNGrUqEr7xMfH65tvvtEvv/xS7rGDBw8qIiKiyq8XFRWluLg47d27t8LHg4KCKtwjA0iSWvSUGsU4Jwb+Nu8lMKBUga4ONufjrfpzvB3whFb9JXuU2zbo7rdtsEVPb1cGC6t2eAkLC1NYWNg5+3Xr1k35+fn68ssvdc0110iSvvjiC+Xn56t79+5Vfr3Dhw8rKytLUVGkcpwHP38p4QXnGQ2yyf3N87e9LwlzCC6Ap7ANwgM8dqr0pZdeqoEDB+quu+7S559/rs8//1x33XWXhg4d6jZZt127dlq2bJkk6fjx45oyZYoyMjL0008/KT09XcOGDVNYWJhuvvlmT5WKui52uNRzsdSopXt7oxhne2z5w5EAahDbIGqYxybsStLbb7+t+++/X4mJiZKkG264QS+99JJbnz179ig/P1+S5O/vr+3bt+vNN9/UsWPHFBUVpT59+mjRokUKCQnxZKmo62KHO0/FPLjBOTEwOMq5m5q/9gDvYBtEDbIZYyq5AIb1FBQUyG63Kz8/X6Ghob4uBwAAVEF1Pr/5biMAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGApAb4uwCpKSqQNG6ScHCkqSurZU/L393VVQP3BNgigjEf3vDzxxBPq3r27GjVqpKZNm1ZpGWOMZsyYoejoaAUHB6t3797auXOnJ8s8p6VLpfh4qU8fafRo57/x8c52AJ7HNgjg9zwaXoqKijRixAjdc889VV7mmWee0fPPP6+XXnpJX331lSIjI3X99dersLDQg5We3dKl0i23SD//7N6ene1s580T8Cy2QQBnshljjKdfJCUlRZMmTdKxY8cq7WeMUXR0tCZNmqSpU6dKkhwOhyIiIvT000/r7rvvPudrFRQUyG63Kz8/X6GhoRdUd0mJ86+7M980y9hsUkyMlJnJ7mvAE9gGgfqjOp/ftWrCbmZmpnJzc5WYmOhqCwoKUq9evbRx48YKl3E4HCooKHC71ZQNG87+pilJxkhZWc5+AGoe2yCAitSq8JKbmytJioiIcGuPiIhwPXam2bNny263u26xsbE1Vk9OTs32A1A9bIMAKlLt8DJjxgzZbLZKb5s2bbqgomw2m9t9Y0y5tjLTp09Xfn6+65aVlXVBr/17UVE12w9A9bANAqhItU+VnjBhgkaNGlVpn/j4+PMqJjIyUpJzD0zU796N8vLyyu2NKRMUFKSgoKDzer1z6dnTeTw9O9u5e/pMZcfbe/b0yMsD9R7bIICKVDu8hIWFKSwszBO1qHXr1oqMjFRaWpo6deokyXnG0rp16/T000975DUr4+8vvfCC84wGm839zbNsR9CcOUwUBDyFbRBARTw652X//v3aunWr9u/fr5KSEm3dulVbt27V8ePHXX3atWunZcuWSXIeLpo0aZKefPJJLVu2TDt27ND48ePVqFEjjR492pOlntXw4dLixVLLlu7tMTHO9uHDfVIWUG+wDQI4k0evsPvoo49qwYIFrvtle1PWrl2r3r17S5L27Nmj/Px8V5+HHnpIJ0+e1L333qujR4+qS5cuWrNmjUJCQjxZaqWGD5duvJGrewK+wjYI4Pe8cp0Xb6rJ67wAAADvsOx1XgAAAM6F8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACzFo+HliSeeUPfu3dWoUSM1bdq0SsuMHz9eNpvN7da1a1dPlgkAACzEo+GlqKhII0aM0D333FOt5QYOHKicnBzXbeXKlR6qEAAAWE2AJ5985syZkqSUlJRqLRcUFKTIyEgPVAQAAKyuVs55SU9PV3h4uP7whz/orrvuUl5e3ln7OhwOFRQUuN0AAEDdVevCy6BBg/T222/rk08+0XPPPaevvvpKffv2lcPhqLD/7NmzZbfbXbfY2FgvVwwAALyp2uFlxowZ5SbUnnnbtGnTeRc0cuRIDRkyRB07dtSwYcO0atUqfffdd1qxYkWF/adPn678/HzXLSsr67xfGwAA1H7VnvMyYcIEjRo1qtI+8fHx51tPOVFRUYqLi9PevXsrfDwoKEhBQUE19noAAKB2q3Z4CQsLU1hYmCdqqdDhw4eVlZWlqKgor70mAACovTw652X//v3aunWr9u/fr5KSEm3dulVbt27V8ePHXX3atWunZcuWSZKOHz+uKVOmKCMjQz/99JPS09M1bNgwhYWF6eabb/ZkqQAAwCI8eqr0o48+qgULFrjud+rUSZK0du1a9e7dW5K0Z88e5efnS5L8/f21fft2vfnmmzp27JiioqLUp08fLVq0SCEhIZ4sFQAAWITNGGN8XURNKigokN1uV35+vkJDQ31dDgAAqILqfH7XulOlAQAAKkN4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlhLg6wKsoqRE2rBBysmRoqKknj0lf39fVwUAQP3jsT0vP/30k+688061bt1awcHBuvjii/XYY4+pqKio0uWMMZoxY4aio6MVHBys3r17a+fOnZ4qs0qWLpXi46U+faTRo53/xsc72wEAgHd5LLx8++23Ki0t1WuvvaadO3fqb3/7m+bOnau//OUvlS73zDPP6Pnnn9dLL72kr776SpGRkbr++utVWFjoqVIrtXSpdMst0s8/u7dnZzvbCTAAAHiXzRhjvPVizz77rF599VX9+OOPFT5ujFF0dLQmTZqkqVOnSpIcDociIiL09NNP6+677z7naxQUFMhutys/P1+hoaEXVG9JiXMPy5nBpYzNJsXESJmZHEICAOBCVOfz26sTdvPz89WsWbOzPp6Zmanc3FwlJia62oKCgtSrVy9t3LixwmUcDocKCgrcbjVlw4azBxdJMkbKynL2AwAA3uG18PLDDz/oxRdfVHJy8ln75ObmSpIiIiLc2iMiIlyPnWn27Nmy2+2uW2xsbI3VnJNTs/0AAMCFq3Z4mTFjhmw2W6W3TZs2uS1z4MABDRw4UCNGjNCf/vSnc76GzWZzu2+MKddWZvr06crPz3fdsrKyqjuks4qKqtl+AADgwlX7VOkJEyZo1KhRlfaJj493/XzgwAH16dNH3bp107x58ypdLjIyUpJzD0zU7xJBXl5eub0xZYKCghQUFFTF6qunZ0/nnJbsbOchojOVzXnp2dMjLw8AACpQ7fASFhamsLCwKvXNzs5Wnz59lJCQoDfeeEN+fpXv6GndurUiIyOVlpamTp06SZKKioq0bt06Pf3009Ut9YL5+0svvOA8q8hmcw8wZTuC5sxhsi4AAN7ksTkvBw4cUO/evRUbG6u//vWvOnjwoHJzc8vNXWnXrp2WLVsmyXm4aNKkSXryySe1bNky7dixQ+PHj1ejRo00evRoT5VaqeHDpcWLpZYt3dtjYpztw4f7pCwAAOotj11hd82aNfr+++/1/fffKyYmxu2x35+dvWfPHuXn57vuP/TQQzp58qTuvfdeHT16VF26dNGaNWsUEhLiqVLPafhw6cYbucIuAAC1gVev8+INNXmdFwAA4B219jovAAAAF4rwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALMVjXw/gK2UXDC4oKPBxJQAAoKrKPrercuH/OhdeCgsLJUmxsbE+rgQAAFRXYWGh7HZ7pX3q3HcblZaW6sCBAwoJCZHNZqvR5y4oKFBsbKyysrLq5Pcm1fXxSXV/jIzP+ur6GOv6+KS6P0ZPjc8Yo8LCQkVHR8vPr/JZLXVuz4ufn1+5b7GuaaGhoXXyF7JMXR+fVPfHyPisr66Psa6PT6r7Y/TE+M61x6UME3YBAIClEF4AAIClEF6qISgoSI899piCgoJ8XYpH1PXxSXV/jIzP+ur6GOv6+KS6P8baML46N2EXAADUbex5AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4+Z0nnnhC3bt3V6NGjdS0adMqLWOM0YwZMxQdHa3g4GD17t1bO3fudOvjcDj05z//WWFhYWrcuLFuuOEG/fzzzx4YwbkdPXpUY8eOld1ul91u19ixY3Xs2LFKl7HZbBXenn32WVef3r17l3t81KhRHh5NeeczvvHjx5ervWvXrm59ass6rO74iouLNXXqVF122WVq3LixoqOjNW7cOB04cMCtny/X3yuvvKLWrVurYcOGSkhI0IYNGyrtv27dOiUkJKhhw4Zq06aN5s6dW67PkiVL1L59ewUFBal9+/ZatmyZp8o/p+qMb+nSpbr++uvVokULhYaGqlu3bvroo4/c+qSkpFS4PZ46dcrTQzmr6owxPT29wvq//fZbt35WXYcVvZ/YbDZ16NDB1ac2rcP169dr2LBhio6Ols1m0wcffHDOZWrFNmjg8uijj5rnn3/eTJ482djt9iot89RTT5mQkBCzZMkSs337djNy5EgTFRVlCgoKXH2Sk5NNy5YtTVpamvn6669Nnz59zBVXXGFOnz7toZGc3cCBA03Hjh3Nxo0bzcaNG03Hjh3N0KFDK10mJyfH7fb6668bm81mfvjhB1efXr16mbvuusut37Fjxzw9nHLOZ3xJSUlm4MCBbrUfPnzYrU9tWYfVHd+xY8dM//79zaJFi8y3335rMjIyTJcuXUxCQoJbP1+tv/fee880aNDA/OMf/zC7du0yEydONI0bNzb79u2rsP+PP/5oGjVqZCZOnGh27dpl/vGPf5gGDRqYxYsXu/ps3LjR+Pv7myeffNLs3r3bPPnkkyYgIMB8/vnnHh/Pmao7vokTJ5qnn37afPnll+a7774z06dPNw0aNDBff/21q88bb7xhQkNDy22XvlLdMa5du9ZIMnv27HGr//fbkpXX4bFjx9zGlZWVZZo1a2Yee+wxV5/atA5XrlxpHn74YbNkyRIjySxbtqzS/rVlGyS8VOCNN96oUngpLS01kZGR5qmnnnK1nTp1ytjtdjN37lxjjPMXuUGDBua9995z9cnOzjZ+fn5m9erVNV57ZXbt2mUkuf0CZWRkGEnm22+/rfLz3HjjjaZv375ubb169TITJ06sqVLPy/mOLykpydx4441nfby2rMOaWn9ffvmlkeT25uur9XfNNdeY5ORkt7Z27dqZadOmVdj/oYceMu3atXNru/vuu03Xrl1d92+99VYzcOBAtz4DBgwwo0aNqqGqq66646tI+/btzcyZM133q/r+5C3VHWNZeDl69OhZn7MurcNly5YZm81mfvrpJ1dbbVuHZaoSXmrLNshhowuQmZmp3NxcJSYmutqCgoLUq1cvbdy4UZK0efNmFRcXu/WJjo5Wx44dXX28JSMjQ3a7XV26dHG1de3aVXa7vcq1/PLLL1qxYoXuvPPOco+9/fbbCgsLU4cOHTRlyhTXN3x7y4WMLz09XeHh4frDH/6gu+66S3l5ea7Hass6rIn1J0n5+fmy2WzlDo16e/0VFRVp8+bNbv+vkpSYmHjW8WRkZJTrP2DAAG3atEnFxcWV9vH29nY+4ztTaWmpCgsL1axZM7f248ePKy4uTjExMRo6dKi2bNlSY3VXx4WMsVOnToqKilK/fv20du1at8fq0jqcP3+++vfvr7i4OLf22rIOq6u2bIN17osZvSk3N1eSFBER4dYeERGhffv2ufoEBgbqoosuKtenbHlvyc3NVXh4eLn28PDwKteyYMEChYSEaPjw4W7tY8aMUevWrRUZGakdO3Zo+vTp2rZtm9LS0mqk9qo43/ENGjRII0aMUFxcnDIzM/XII4+ob9++2rx5s4KCgmrNOqyJ9Xfq1ClNmzZNo0ePdvtCNV+sv0OHDqmkpKTC7eds48nNza2w/+nTp3Xo0CFFRUWdtY+3t7fzGd+ZnnvuOZ04cUK33nqrq61du3ZKSUnRZZddpoKCAr3wwgvq0aOHtm3bpksuuaRGx3Au5zPGqKgozZs3TwkJCXI4HHrrrbfUr18/paen67rrrpN09vVstXWYk5OjVatW6Z133nFrr03rsLpqyzZY58PLjBkzNHPmzEr7fPXVV+rcufN5v4bNZnO7b4wp13amqvSpqqqOUSpfa3Vref311zVmzBg1bNjQrf2uu+5y/dyxY0ddcskl6ty5s77++mtdddVVVXrus/H0+EaOHOn6uWPHjurcubPi4uK0YsWKciGtOs9bVd5af8XFxRo1apRKS0v1yiuvuD3myfV3LtXdfirqf2b7+WyTnnK+tbz77ruaMWOG/vWvf7mF1q5du7pNKO/Ro4euuuoqvfjii/r73/9ec4VXQ3XG2LZtW7Vt29Z1v1u3bsrKytJf//pXV3ip7nN62vnWkpKSoqZNm+qmm25ya6+N67A6asM2WOfDy4QJE8551kR8fPx5PXdkZKQkZxKNiopytefl5blSZ2RkpIqKinT06FG3v9zz8vLUvXv383rdM1V1jN98841++eWXco8dPHiwXEquyIYNG7Rnzx4tWrTonH2vuuoqNWjQQHv37r3gDz9vja9MVFSU4uLitHfvXkmeX4feGF9xcbFuvfVWZWZm6pNPPjnn19jX5Po7m7CwMPn7+5f7a+z328+ZIiMjK+wfEBCg5s2bV9qnOr8DNeF8xldm0aJFuvPOO/X++++rf//+lfb18/PT1Vdf7fp99aYLGePvde3aVQsXLnTdrwvr0Bij119/XWPHjlVgYGClfX25Dqur1myDNTZ7pg6p7oTdp59+2tXmcDgqnLC7aNEiV58DBw74dMLuF1984Wr7/PPPqzzhMykpqdxZKmezfft2I8msW7fuvOutrgsdX5lDhw6ZoKAgs2DBAmNM7VmH5zu+oqIic9NNN5kOHTqYvLy8Kr2Wt9bfNddcY+655x63tksvvbTSCbuXXnqpW1tycnK5yYKDBg1y6zNw4ECfTfaszviMMeadd94xDRs2POfEyTKlpaWmc+fO5vbbb7+QUs/b+YzxTH/84x9Nnz59XPetvg6N+c/E5O3bt5/zNXy9DsuoihN2a8M2SHj5nX379pktW7aYmTNnmiZNmpgtW7aYLVu2mMLCQleftm3bmqVLl7ruP/XUU8Zut5ulS5ea7du3m//6r/+q8FTpmJgY8/HHH5uvv/7a9O3b16enSl9++eUmIyPDZGRkmMsuu6zcqbZnjtEYY/Lz802jRo3Mq6++Wu45v//+ezNz5kzz1VdfmczMTLNixQrTrl0706lTJ5+cSlyd8RUWFpoHH3zQbNy40WRmZpq1a9eabt26mZYtW9bKdVjd8RUXF5sbbrjBxMTEmK1bt7qdlulwOIwxvl1/Zaehzp8/3+zatctMmjTJNG7c2HVmxrRp08zYsWNd/ctO03zggQfMrl27zPz588udpvnZZ58Zf39/89RTT5ndu3ebp556yuen2VZ1fO+8844JCAgwL7/88llPW58xY4ZZvXq1+eGHH8yWLVvM7bffbgICAtxCrTdVd4x/+9vfzLJly8x3331nduzYYaZNm2YkmSVLlrj6WHkdlrnttttMly5dKnzO2rQOCwsLXZ91kszzzz9vtmzZ4jobsbZug4SX30lKSjKSyt3Wrl3r6iPJvPHGG677paWl5rHHHjORkZEmKCjIXHfddeWS9smTJ82ECRNMs2bNTHBwsBk6dKjZv3+/l0bl7vDhw2bMmDEmJCTEhISEmDFjxpQ7ZfHMMRpjzGuvvWaCg4MrvPbH/v37zXXXXWeaNWtmAgMDzcUXX2zuv//+ctdK8Ybqju/XX381iYmJpkWLFqZBgwamVatWJikpqdz6qS3rsLrjy8zMrPB3+ve/175efy+//LKJi4szgYGB5qqrrnLb25OUlGR69erl1j89Pd106tTJBAYGmvj4+AoD9fvvv2/atm1rGjRoYNq1a+f2weht1Rlfr169KlxXSUlJrj6TJk0yrVq1MoGBgaZFixYmMTHRbNy40YsjKq86Y3z66afNxRdfbBo2bGguuugic+2115oVK1aUe06rrkNjnHtrg4ODzbx58yp8vtq0Dsv2EJ3td662boM2Y36baQMAAGABXOcFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYyv8HCZEXIrMjqX0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sphere_point = lambda rad: np.array([np.cos(rad), np.sin(rad)])\n", + "\n", + "square_lattice = Lattice([1, 0], [0, 1])\n", + "tilted_lattice = Lattice([1, 1], [0, 1])\n", + "honeycomb_lattice = Lattice(sphere_point(0), sphere_point(np.pi * 2/3))\n", + "\n", + "def get_elementary_cell(lattice: Lattice):\n", + " points = []\n", + " for n1 in range(-1, 2):\n", + " for n2 in range(-1, 2):\n", + " p = lattice.get_point(n1, n2)\n", + " p_len = np.linalg.norm(p)\n", + " # if (p_len <= lattice.vec_lengths).any():\n", + " points.append(p)\n", + " return points\n", + "\n", + "def get_n_points_around_center(n)\n", + "\n", + "points = get_elementary_cell(tilted_lattice)\n", + "vor = Voronoi(points)\n", + "\n", + "print(vor)\n", + "fig = voronoi_plot_2d(vor)\n", + "\n", + "def get_orthogonal_2D(vec):\n", + " return np.array((vec[1], -vec[0]))\n", + "def plot_voronoi(lattice, v: Voronoi, subplot_kw={}):\n", + " fig, ax = plt.subplots(**subplot_kw) \n", + " lattice_points = v.points\n", + " lattice_vec_norm = np.sqrt(np.sum(lattice.vec_lengths**2))\n", + " print(lattice_vec_norm, np.linalg.norm(v.vertices, axis=1))\n", + " cell_vertices = v.vertices[np.linalg.norm(v.vertices, axis=1) <= 0.5 * lattice_vec_norm]\n", + " \n", + " x, y = zip(*lattice_points)\n", + " ax.scatter(x, y, color=\"blue\")\n", + " x, y = zip(*cell_vertices)\n", + " arrowprops = dict(arrowstyle=\"-|>,head_width=0.4,head_length=0.8\", color=\"black\", shrinkA=0,shrinkB=0)\n", + " for i, vec in enumerate(lattice.vecs):\n", + " ax.annotate(f\"\", xy=lattice.vecs[i], xytext=lattice.center, arrowprops=arrowprops)\n", + " # add name of vector at a perpendicular offset starting at half length\n", + " ax.annotate(r\"$\\vec{a}_\"+f\"{i+1}$\", xy=0.7*lattice.vecs[i], xytext=0.7*lattice.vecs[i] + 0.06*get_orthogonal_2D(lattice.vecs[i]))\n", + " \n", + " ax.scatter(x, y, color=\"orange\")\n", + " ax.fill(x, y, color=\"#4444\")\n", + " return fig\n", + " \n", + "\n", + "plot_voronoi(tilted_lattice, vor)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c2faef81-5f2a-4950-b986-e891ddfa7da8", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a6b6ccf4-34c7-419d-8bcc-f3ce2870ba25", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "conda", + "language": "python", + "name": "conda" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/src/scripts/crystal_lattices.ipynb b/src/scripts/crystal_lattices.ipynb new file mode 100644 index 0000000..fc408ff --- /dev/null +++ b/src/scripts/crystal_lattices.ipynb @@ -0,0 +1,441 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "eaed683c-c6f1-45e4-aaee-ae4e57209f5f", + "metadata": {}, + "outputs": [], + "source": [ + "import scipy as scp\n", + "from scipy.spatial import Voronoi, voronoi_plot_2d\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "from mpl_toolkits.mplot3d.art3d import Poly3DCollection\n", + "%matplotlib widget" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "efd84ecd-9fb3-4d2f-9f7a-47cd1ff09eea", + "metadata": {}, + "outputs": [], + "source": [ + "class Lattice:\n", + " def __init__(self, *vecs):\n", + " # if the vecs were put in an iterable\n", + " if len(vecs) == 1:\n", + " vecs = vecs[0]\n", + " if len(vecs) == 3:\n", + " pass\n", + " elif len(vecs) == 2:\n", + " pass\n", + " else: raise ValueError(\"Vecs must contain either 2 or 3 vectors\")\n", + " self.dim = len(vecs)\n", + " self.vecs = list(vecs)\n", + " for i, v in enumerate(self.vecs):\n", + " if type(v) != np.ndarray:\n", + " self.vecs[i] = np.array(v)\n", + " if self.vecs[i].shape != (self.dim,):\n", + " raise ValueError(f\"Got {self.dim} vectors, therefore all vectors must be {self.dim} dimensional but vector {i+1} has shape {self.vecs[i].shape}\")\n", + " self.vecs = np.array(self.vecs)\n", + " self.vec_lengths = np.array([np.linalg.norm(v) for v in self.vecs])\n", + " self.center = np.zeros(self.dim)\n", + "\n", + " def get_point(self, *ns):\n", + " if len(ns) != len(self.vecs): raise ValueError(f\"Requires one index for each lattice vector {len(self.vecs)}, but got only {ns}\")\n", + " point = self.center.copy()\n", + " for i, n in enumerate(ns):\n", + " point += n * self.vecs[i]\n", + " return point\n", + "\n", + " \n", + " def get_points_around_center(self, n):\n", + " points = []\n", + " import itertools\n", + " ns = [i for i in range(-n, n+1)]\n", + " for n in itertools.product(*[ns for _ in range(self.dim)]):\n", + " # print(n)\n", + " points.append(self.get_point(*n))\n", + " return points" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "515b9133-233b-4a6a-8b2f-a2fca10fea3d", + "metadata": {}, + "outputs": [], + "source": [ + "def rot_mat_2D(rad):\n", + " return np.array([[np.cos(rad), -np.sin(rad)], [np.sin(rad), np.cos(rad)]])\n", + "\n", + "\n", + "def get_reciprocal_lattice(lattice: Lattice):\n", + " if lattice.dim == 2:\n", + " rot_90_deg = rot_mat_2D(np.pi / 2)\n", + " a1, a2 = lattice.vecs\n", + " b1 = 2 * np.pi * rot_90_deg @ a2 / (np.dot(a1, rot_90_deg @ a2))\n", + " b2 = 2 * np.pi * rot_90_deg @ a1 / (np.dot(a2, rot_90_deg @ a1))\n", + " return Lattice(b1, b2)\n", + " elif lattice.dim == 3:\n", + " a1, a2, a3 = lattice.vecs\n", + " V = np.dot(a1, np.cross(a2, a3))\n", + " b1 = 2 * np.pi/V * np.cross(a2, a3)\n", + " b2 = 2 * np.pi/V * np.cross(a3, a1)\n", + " b3 = 2 * np.pi/V * np.cross(a1, a2)\n", + " return Lattice(b1, b2, b3)\n", + " else: raise NotImplementedError(f\"Dim must be 2 or 3, but is {lattice.dim}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "2855d08e-70d8-4ef7-ba19-2c06316caf15", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def get_elementary_cell(lattice: Lattice):\n", + " points = lattice.get_points_around_center(1)\n", + " return points\n", + "\n", + "def get_orthogonal_2D(vec):\n", + " return np.array((vec[1], -vec[0]))\n", + "\n", + "def get_unit_cell_vertices(lattice: Lattice, voronoi: Voronoi):\n", + " \"\"\"regard only voronoi vertices which are closest to the center <=> their norm is <= 0.5*(norm of the unit vectors added together\n", + " \"\"\"\n", + " lattice_vec_norm = np.sqrt(np.sum(lattice.vec_lengths**2))\n", + " return voronoi.vertices[np.linalg.norm(voronoi.vertices, axis=1) <= 0.5 * lattice_vec_norm]\n", + " \n", + "def plot_unit_cell(lattice, fig_ax=None, vec_label=\"a\", subplot_kw={}):\n", + " # get voronoi of the points around the center\n", + " points = get_elementary_cell(lattice)\n", + " voronoi = Voronoi(points)\n", + "\n", + " if fig_ax:\n", + " fig, ax = fig_ax\n", + " else:\n", + " if lattice.dim == 3:\n", + " fig = plt.figure()\n", + " ax = fig.add_subplot(1,1,1, projection=\"3d\") \n", + " else:\n", + " fig, ax = plt.subplots(**subplot_kw) \n", + "\n", + " # unit cell vertices\n", + " cell_points = get_unit_cell_vertices(lattice, voronoi)\n", + " # sort by polar angle for the fill function\n", + " cell_points = list(cell_points)\n", + " # print(cell_points)\n", + " # print([i for i in map(lambda p: np.arctan2(p[1],p[0]), cell_points)])\n", + " if lattice.dim == 2:\n", + " cell_points.sort(key=lambda p: np.arctan2(p[1],p[0]))\n", + " x_cell, y_cell = zip(*cell_points)\n", + " ax.fill(x_cell, y_cell, color=\"#4444\")\n", + " ax.scatter(x_cell, y_cell, color=\"orange\")\n", + " \n", + " # lattice points\n", + " x_lat, y_lat = zip(*lattice.get_points_around_center(3))\n", + " ax.scatter(x_lat, y_lat, color=\"blue\")\n", + " \n", + " # lattice vectors\n", + " arrowprops = dict(arrowstyle=\"-|>,head_width=0.4,head_length=0.8\", color=\"black\", shrinkA=0,shrinkB=0)\n", + " for i, vec in enumerate(lattice.vecs):\n", + " ax.annotate(f\"\", xy=lattice.vecs[i], xytext=lattice.center, arrowprops=arrowprops)\n", + " if vec_label is not None:\n", + " # add name of vector at a perpendicular offset starting at half length\n", + " ax.annotate(r\"$\\vec{\"+f\"{vec_label}}}_{i+1}$\", xy=0.7*lattice.vecs[i], xytext=0.7*lattice.vecs[i] + 0.06*get_orthogonal_2D(lattice.vecs[i]))\n", + " elif lattice.dim == 3:\n", + " ridges = voronoi.ridge_vertices\n", + " for ridge in ridges:\n", + " verts = voronoi.vertices[ridge]\n", + " # print(verts, type(verts), verts.shape, verts.ndim)\n", + " ax.add_collection3d(Poly3DCollection([voronoi.vertices[ridge]], edgecolor=\"black\"))\n", + " ax.set_xlim(-2, 2)\n", + " ax.set_ylim(-2, 2)\n", + " ax.set_zlim(-2, 2)\n", + " else: raise NotImplementedError(f\"Dim must be 2 or 3, but is {lattice.dim}\")\n", + "\n", + " # limit to 2*lattice vectors\n", + " def calc_lim(axis):\n", + " lim = 2.05 * np.max(np.abs(lattice.vecs[axis,:]))\n", + " return -lim, lim\n", + " ax.set_xlim(*calc_lim(0))\n", + " ax.set_ylim(*calc_lim(1))\n", + " if lattice.dim == 3: ax.set_zlim(*calc_lim(2))\n", + " return fig" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c2faef81-5f2a-4950-b986-e891ddfa7da8", + "metadata": {}, + "outputs": [], + "source": [ + "sphere_point = lambda rad: np.array([np.cos(rad), np.sin(rad)])\n", + "\n", + "square_lattice = Lattice([1, 0], [0, 1])\n", + "tilted_lattice = Lattice([1, 0.5], [0, 1])\n", + "honeycomb_lattice = Lattice(sphere_point(0), sphere_point(np.pi * 2/3))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a6b6ccf4-34c7-419d-8bcc-f3ce2870ba25", + "metadata": {}, + "outputs": [], + "source": [ + "# fig, axs = plt.subplots(3, figsize=(4, 12))\n", + "# plot_unit_cell(square_lattice, fig_ax=(fig, axs[0]))\n", + "# plot_unit_cell(tilted_lattice, fig_ax=(fig, axs[1]))\n", + "# plot_unit_cell(honeycomb_lattice, fig_ax=(fig,axs[2]));" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "5314dd3a-17a7-402d-b3ee-ddbf69a6c4ed", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_lattice(lattice: Lattice):\n", + " reci = get_reciprocal_lattice(lattice)\n", + " print(reci.vecs)\n", + " if lattice.dim == 3:\n", + " fig = plt.figure()\n", + " axs = [fig.add_subplot(1,2,i, projection=\"3d\") for i in [1,2]]\n", + " else:\n", + " fig, axs = plt.subplots(1, 2)\n", + " plot_unit_cell(lattice, fig_ax=(fig, axs[0]))\n", + " plot_unit_cell(reci, fig_ax=(fig, axs[1]), vec_label=\"b\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "39a49d00-fc93-4f2a-8645-d5e440e7a092", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 6.28318531e+00 -3.84734139e-16]\n", + " [ 3.84734139e-16 6.28318531e+00]]\n", + "[[ 6.28318531e+00 -3.84734139e-16]\n", + " [-3.14159265e+00 6.28318531e+00]]\n", + "[[6.28318531e+00 3.62759873e+00]\n", + " [4.44252717e-16 7.25519746e+00]]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d387139d3da141268f8c9c7345f26575", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/xElEQVR4nO3de3wU9b3/8fcmwHJLFjGQC0RILcUKHuSiAhoEWkEU6r1SW4RzFEWlCClekFbBFuLt56FHrZRqQY9V8RixHEELfUiQKl5AglSQowImhqQRkF0uZQPJ/P5YsmXJJtmETWZnvq/n4zEP3dmZ7OeT2fnmvTOzg8eyLEsAAAAwRpLdBQAAAKBlEQABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDCt7C7Ayaqrq7V7926lpKTI4/HYXQ5gHMuydODAAWVlZSkpyTmfZxk7AHs5deyIK8sF5s+fbw0aNMjq2LGj1aVLF+uKK66wPvvsswbXKywstAYMGGB5vV4rJyfHevrppxv1uiUlJZYkJiYmm6eSkpKmDh+2YOxgYkqMyWljRzy54gjg2rVrdccdd+i8887TsWPHNHv2bI0aNUpbt25Vhw4doq6zc+dOXXbZZZo8ebJeeOEFvfvuu7r99tvVpUsXXXPNNTG9bkpKyvH/K5GUWuv5//5v6Uc/amJTNlu+XJowoe7n6S0xmddbQFL2CfuiM9Q3drhvG/0LvSUmM3tz5tgRTx7Lsiy7i4i3b775Rl27dtXatWs1bNiwqMvcc889Wr58ubZt2xaeN2XKFG3evFnr16+P6XUCgYB8Pp8kv04exD0eqXt3aedOKTm5qZ3Yo6pK6tlT+vrr6M/TW2Iys7eAJJ/8fr9SU2t/CEtUdY0d7txGIfSWmMztzZljRzy58sS33++XJHXu3LnOZdavX69Ro0ZFzBs9erQ2bNigo0ePRl0nGAwqEAhETHWxLKmkRFq3rgkN2GzduroHA4neEpXJvbmFm7cRvSUmk3sznesCoGVZysvL00UXXaS+ffvWuVx5ebnS09Mj5qWnp+vYsWPas2dP1HXy8/Pl8/nCU3Z2doP1lJU1rv5EEGvN9JZY6M09nNgv7z96SzROrLkluS4ATp06VZ988oleeumlBpc9+dt3NWfD6/pW3qxZs+T3+8NTSUlJg6+RmRlD0Qkm1prpLbHQm3s4sV/ef/SWaJxYc0tyVQD8+c9/ruXLl2vNmjXq3r17vctmZGSovLw8Yl5FRYVatWql008/Peo6Xq9XqampEVNdPB4pO1vKzW18H3bLzQ1d81HX3SnoLTGZ3JtbuHkb0VtiMrk307kiAFqWpalTp+q1117T22+/rZycnAbXGTJkiFavXh0xb9WqVRo0aJBat259SvXUvNkWLHDeRbNSqObf/jb0/yfvOPSWuEztzS3cvI3oLXGZ2hskV9wH8LbbbrN8Pp9VWFholZWVhafDhw+Hl7n33nutCRMmhB/v2LHDat++vTVjxgxr69at1rPPPmu1bt3aevXVV2N+Xb/fb0mysrL8VuhS2dCUnW1ZBQVxbdEWBQWW1b27RW8OY1ZvoX3Q7/fbXVqj1Iwdofrdvo3ozQlM661bN2eOHfHkitvA1HXN3uLFizVp0iRJ0qRJk7Rr1y4VFhaGn1+7dq1mzJihTz/9VFlZWbrnnns0ZcqUmF+35lYO+/b5tXlzqsrKQtcc5OY689NSNFVVoW9S0ZuzmNJbampAY8c671YONWPHG2/4FQikunob0ZtzmNRbv34Bde7svLEjnlwRAO1SM4ib/AYC7OTUfdCpdQNuwT7okmsAAQAAEDsCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIACc4J133tG4ceOUlZUlj8ej119/PeJ5y7I0Z84cZWVlqV27dho+fLg+/fRTe4oFgCYiAALACQ4dOqR+/frpySefjPr8I488oscff1xPPvmkPvroI2VkZOiSSy7RgQMHWrhSAGi6VnYXAACJZMyYMRozZkzU5yzL0oIFCzR79mxdffXVkqTnnntO6enpevHFF3Xrrbe2ZKkA0GQcAQSAGO3cuVPl5eUaNWpUeJ7X69XFF1+s9957z8bKAKBxOAIIADEqLy+XJKWnp0fMT09P11dffVXnesFgUMFgMPw4EAg0T4EAECOOAAJAI3k8nojHlmXVmnei/Px8+Xy+8JSdnd3cJQJAvQiAABCjjIwMSf86ElijoqKi1lHBE82aNUt+vz88lZSUNGudANAQAiAAxCgnJ0cZGRlavXp1eF5lZaXWrl2roUOH1rme1+tVampqxAQAduIaQAA4wcGDB/XFF1+EH+/cuVNFRUXq3LmzzjjjDE2fPl3z589Xr1691KtXL82fP1/t27fXDTfcYGPVANA4rjkC2NDNW09WWFgoj8dTa/rss89apmAACWnDhg3q37+/+vfvL0nKy8tT//79df/990uS7r77bk2fPl233367Bg0apNLSUq1atUopKSl2lg0AjeKaI4A1N2/993//d11zzTUxr7d9+/aI0zFdunRpjvIAOMTw4cNlWVadz3s8Hs2ZM0dz5sxpuaIAIM5cEwDru3lrfbp27apOnTrFvyAAAIAE5ZpTwE3Vv39/ZWZm6gc/+IHWrFlT77LBYFCBQCBiAgAAcBpjA2BmZqYWLVqkgoICvfbaa+rdu7d+8IMf6J133qlzHe7lBQAA3MBj1Xexi0N5PB4tW7ZMV155ZaPWGzdunDwej5YvXx71+Wh388/Ozpbf7+e2DoANAoGAfD6f4/ZBp9YNuAX7oMFHAKMZPHiwPv/88zqf515eAADADQiAJ9i0aZMyMzPtLgMAAKBZueZbwA3dvHXWrFkqLS3V888/L0lasGCBevbsqT59+qiyslIvvPCCCgoKVFBQYFcLAAAALcI1AXDDhg0aMWJE+HFeXp4kaeLEiVqyZInKyspUXFwcfr6yslIzZ85UaWmp2rVrpz59+mjFihW67LLLWrx2AACAluTKL4G0FC4iBezl1H3QqXUDbsE+yDWAAAAAxiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGaWV3AW5QVSUVFkplZVJmppSbKyUn211VfFRVSevW0ZvTmNJbaqrd1ZyadeukQMDd24jenMOk3vr1s7uiBGC5xNq1a62xY8damZmZliRr2bJlDa5TWFhoDRgwwPJ6vVZOTo719NNPN+o1/X6/JcnKyvJbkhWeune3rIKCJjaSQAoKQr3Qm7OY1VtoH/T7/XaX1ig1Y0eofrdvI3pzAtN6C/3ddt7YEU+uCYArV660Zs+ebRUUFMQUAHfs2GG1b9/euvPOO62tW7daf/jDH6zWrVtbr776asyvGW0QlyzL4wlNTt5xCgpCPZzYF70lPvN6c+YgHm3scO82ordEZ2JvTh074sljWZZl19HH5uLxeLRs2TJdeeWVdS5zzz33aPny5dq2bVt43pQpU7R582atX78+ptcJBALy+XyS/JIiz0V5PFL37tLOnc47hF5VJfXsKX39dfTn6S0xmdlbQJJPfr9fqQ46H1zX2OHObRRCb4nJ3N6cOXbEk7FfAlm/fr1GjRoVMW/06NHasGGDjh49GnWdYDCoQCAQMdXFsqSSktA1B06zbl3dg4FEb4nK5N7cws3biN4Sk8m9mc7YAFheXq709PSIeenp6Tp27Jj27NkTdZ38/Hz5fL7wlJ2d3eDrlJXFpdwWFWvN9JZY6M09nNgv7z96SzROrLklGRsApdCp4hPVnA0/eX6NWbNmye/3h6eSkpIGXyMz89TrbGmx1uz83iolZUr6fw0s5wzmbDf3c2K/Zr3//p9CY0dlA8slPrO2G05kbADMyMhQeXl5xLyKigq1atVKp59+etR1vF6vUlNTI6a6eDxSdnboa/ROk5sbuuajjhzsot6WSCqX9JCkKklu6q02N/fmFm7eRu7prUqhMaNc0nOS3NRbbW7uzXTGBsAhQ4Zo9erVEfNWrVqlQYMGqXXr1qf0s2vebAsWOO+iWSlU829/G/r/k3cct/RmWZWS5h6fu0fSK67pTXLvdpPcO5i7eRu5qTdpqUJjhhQaQ0JHAd3Qm5u3m1vHjVNi87eQ4+bAgQPWpk2brE2bNlmSrMcff9zatGmT9dVXX1mWZVn33nuvNWHChPDyNbeBmTFjhrV161br2WefbfJtYE6+D2B2trO/Nl8j2r2T3NLbrbf+/vhtOGRJHkv6rtW9+zFX9Obm7ebm+wC6dxu5p7dXXjlmJSefeXzMCI0fp522yBW9uXm7ReutWzdnjh3x5JrbwBQWFmrEiBG15k+cOFFLlizRpEmTtGvXLhUWFoafW7t2rWbMmKFPP/1UWVlZuueeezRlypSYX7PmVg779vm1eXOqEXdPd0NvlZWVysnJUVlZmU58+7/wwov66U9/YmNl8ePG7VYj8l8CCWjsWOfdyqFm7HjjDb8CgVRXbyM39fbiiy/qpz/96QlzPOrWLUs7duxQmzZtbKsrXty63aRo/xJIQJ07O2/siCfXBEA71AziJr+BnGjRokW69dZbI+YlJSXpO9/5jj777DMlu2XEM4BT90Gn1m2yqqoq9e7dWzt27NDJfzYXLVqkyZMn21QZmoJ90OBrAGGmyspKzZ07t9Y3vaurq/XFF1/olVdesakyAIls6dKl+vLLL2uFP4/Ho7lz56qysrKONYHERACEUZYsWaLdu3fXGsSl0FHA+++/X1VVVTZUBiBRVVVV6f777496izDLslRaWqrnnnvOhsqApiMAwhh1Hf2rwVFAANHUdfSvBkcB4UQEQBijvqN/NTgKCOBE9R39q8FRQDgRARBGaOjoXw2OAgI4UUNH/2rUdRSwvLxc06ZNU3V1dXOWCTRaK7sLAFrC//zP/2j37t1KSkqK+JbvsWPHlJSUpKSkpIh58+fP109+4o5bwgBouvz8fElSq1b/+nNZXV2t6urqWvNKS0t122236csvv4z4Gdu3b1fv3r11xx13tEzRQAwIgDBCv379dPPNN9f6FL5kyRKdf/75OvvssyPm9+3btyXLA5Cg/uM//kN///vfI+Zt3bpVH374oW688caI+UlJSbrzzjsjxo99+/bpxhtvPOn+gYD9uA/gKeA+Qs7Xtm1bPfbYY5o6dWq9y5WXl2v+/PlasGBBxNFC2MuOfXDOnDmaO3duxLz09PRa/7Z4fRg7nO3JJ5/UzJkzdeTIkQaXrayslGVZ8nq9LVAZYsU+yBFAIKpFixbpxRdfjJjHaRzU6NOnj/7617+GH3PzcNTFDf9CCNyJAAhEccstt+iWW24JP+Y0Dk7UqlUrZWRk2F0GEtQ999yjTz75RG+++abdpQB14lwWEIOOHTuqoKBAnTp1srsUJIDPP/9cWVlZysnJ0fjx47Vjxw67S0ICKSoqUr9+/ewuA6gXARCIQZs2bbiGB5KkCy64QM8//7z+8pe/6A9/+IPKy8s1dOhQ7d27t851gsGgAoFAxAT32rx5s84991y7ywDqRQAE6vDggw/qnHPOUYcOHZSenq7bbrtNR48etbss2GzMmDG65pprdM455+iHP/yhVqxYIUn13gQ4Pz9fPp8vPGVnZ7dUuWhh5eXl+sc//qHq6moNGzZM7du316BBg7R582a7SwMiEACBKCzLUlVVlX7/+99r69atWrJkiV599VU988wzdpeGBNOhQwedc845+vzzz+tcZtasWfL7/eGppKSkBStES9q0aZMkacGCBZo/f742bNiglJQUjR8/3ubKgEh8CQSIouau/jV69OihSy65RJ999plKSko0YcIEVVRUqFWrVvrVr36l6667zsZqYadgMKht27YpNze3zmW8Xi+XEBiiqKhIbdu21euvv66srCxJ0rx583ThhRcydiChcAQQiOKrr77S1KlT1bdvX5122mnq2LGjXnnlFXXv3l2tWrXSggULtHXrVv31r3/VjBkzdOjQIbtLRguZOXOm1q5dq507d+qDDz7Qtddeq0AgoIkTJ9pdGhJAUVGRfvzjH4fDnxQ6SiyFbhTN2IFEQQAETrJnzx6df/752rNnjx5//HH97W9/0/r165WcnKxzzz1XmZmZ4Qu8u3btqs6dO2vfvn32Fo0W8/XXX+snP/mJevfurauvvlpt2rTR+++/rx49ethdGhJAUVFRrS+AfPzxx8rIyFBWVhZjBxIGp4CBk6xcuVLHjh3TSy+9JI/HI0l66qmnVFlZWWtg37Bhg6qrq7mo3yAvv/yy3SUgQR0+fFhffPGFqqqqwvOqq6v1xBNPaNKkSeHxRGLsgP0IgMBJOnfurEAgoOXLl+vss8/W//7v/yo/P1/dunVTly5dwsvt3btXN954I18MASApdPuX5ORkLV68WMOGDVOnTp1033336dChQ7rvvvvCyzF2IBFwChg4yeWXX66bbrpJEyZM0EUXXaTS0lL9+Mc/jjj6FwwGddVVV2nWrFkaOnSofcUCSBibN2/W9773Pc2ZM0fXXHON+vfvr9atW+u9995TSkqKJMYOJA6OAAIn8Xg8WrhwoRYuXBj1ecuyNGnSJI0cOVITJkxo4eoAJKopU6ZoypQpkhT1272MHUgkHAEEGundd9/V0qVL9frrr+vcc8/Vueeeqy1btthdFoAEx9iBRMIRQKCRLrroIlVXV9tdBgCHYexAIuEIIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhuGfgkPiqK6Svlkn/bNMapcpdcmVkpLtrio+3NwbYDc3719u7g22clUA/N3vfqdHH31UZWVl6tOnjxYsWKDc3NyoyxYWFmrEiBG15m/btk1nnXVWc5eKk5W8Jm28Uzr89b/mte8uDfytlH21fXXFg5t7A+zm5v3Lzb3Bdq45Bbx06VJNnz5ds2fP1qZNm5Sbm6sxY8aouLi43vW2b9+usrKy8NSrV68WqhhhJa9J666NHOQk6XBpaH7Ja/bUFQ9u7g2wm5v3Lzf3hoTgmgD4+OOP66abbtLNN9+s73//+1qwYIGys7P19NNP17te165dlZGREZ6Skzm03qKqq0KfcGVFefL4vI3TQ8s5jZt7A+zm5v3Lzb0hYbjiFHBlZaU2btyoe++9N2L+qFGj9N5779W7bv/+/XXkyBGdffbZ+uUvfxn1tHCNYDCoYDAYfhwIBE6tcISubTn5E24ESzpcoiMlq1XdZVizlFBZWanDhw/H/ecmffOO2sbQm75ZJ6UPj/vrA65m49hRWVkpSc0ybkiMHWgZrgiAe/bsUVVVldLT0yPmp6enq7y8POo6mZmZWrRokQYOHKhgMKj//u//1g9+8AMVFhZq2LDog0V+fr7mzp0b9/qN9s+ymBb7/JN3VN42/kdnq6urtWPHDr377rtx/9kZR97RObEsGOPvAMAJbBw7duzYoerq6mYZNyTGDrQMVwTAGh6PJ+KxZVm15tXo3bu3evfuHX48ZMgQlZSU6LHHHqszAM6aNUt5eXnhx4FAQNnZ2XGo3GDtMmNaLKlDN3Vs1zHuL+/xeOT1etWxY/x/dlJyN+lADAvG+DsAcAIbxw6v1yuPx9Ms44bE2IGW4YoAmJaWpuTk5FpH+yoqKmodFazP4MGD9cILL9T5vNfrldfrbXKdiKJLbuhbbYdLFe16F0vS0VbpCvrOl9fTPNdntmrVqlm2a7DN+arc01Wtj1Uo+scQT6j3LtG/qQ6gHjaOHa1ahf50NtffA8YOtARXfAmkTZs2GjhwoFavXh0xf/Xq1Ro6dGjMP2fTpk3KzOQTVYtKSg7d0kCSThrqrOPzvk6fKTVT+GtWnmR9nX6XpGh/no73OnAB9/QCmoKxg7EDp8QVAVCS8vLy9Mwzz+iPf/yjtm3bphkzZqi4uFhTpkyRFDp9e+ONN4aXX7BggV5//XV9/vnn+vTTTzVr1iwVFBRo6tSpdrVgruyrpdxXpfbdImYfbZWund0e0f6UkTYVdur2p4zUzm6P6mirrpFPtO8e6pl7eQFNx9gBNJkrTgFL0vXXX6+9e/fqwQcfVFlZmfr27auVK1eqR48ekqSysrKIewJWVlZq5syZKi0tVbt27dSnTx+tWLFCl112mV0tmC37aqnbFTpSslqff/KOkjp0U9B3vjM/vZ9kf8pI7e94sbz+D1V9qFS9/m2Y2mZfwqd3IB4YO4AmcU0AlKTbb79dt99+e9TnlixZEvH47rvv1t13390CVSFmScmq7jJM5W2T1bFdx2a75s8WnmQF2g3Qwarv6cwuFzKAA/HE2AE0mmtOAQMAACA2BEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAMAA5eXlmjZtmqqrq+0uBQmgld0FAACA+Fu0aJFefPHFiHnbt29X7969dccdd9hUFRIFARAAABe65ZZbdMstt4Qf79u3TzfeeKN++tOf2lgVEgWngAGH4TQOgKbo2LGjCgoK1KlTJ7tLQQLgCCCQ4DiNAyAe2rRpY3cJSCAEQCDB3XLLLUpOTtYbb7yhe++9V7169eI0DoAGBYNBnXXWWWrdurU2bNig1NRUu0tCAiEAxkFVlVRYKJWVSZmZUm6ulJxsd1XxUVUlrVvn3t6qq6WtW9trw4aO6t//YML2tmbNGr3++ut6/fXX9cMf/lD3339/vadx3L7danpz+t+zdeukQMDd28iNvRUXe1VdrYQfN/bt26ddu3ZJkrKzs3XXXXdp2rRpdQZBt2+3E3vr18/uiuznqmsAf/e73yknJ0dt27bVwIEDtW7dunqXX7t2rQYOHKi2bdvqO9/5jhYuXNik1+3bVxoxQrrhhtB/e/aUXnutST8qobz2WqgXN/b29tudNHZsXx075tEbb5yuW2/9nsaO7au33+5kd2l1SkoK7a5r1qzRsGHDNHr0aH3wwQe1lnPzdju5t7Fj7aulseNNNGPHun8buam3mnHj5Ze76tgxjyPGjRqBQEAPPPCAsrOz9Zvf/EaBQCDieTdvt2i99e1rd1X2c00AXLp0qaZPn67Zs2dr06ZNys3N1ZgxY1RcXBx1+Z07d+qyyy5Tbm6uNm3apPvuu0/Tpk1TQUFBo1979+7Ix6Wl0rXXOnvHee21UA9ffx053w29vf12J911V44qKlpHzK+oaK277spJyMF8y5Yt4S99VFVVSZL++te/avDgwRFB0M3bra7e7NDY8SYWbt5GbujNieNGRUVFxOPq6moFAgHdf//9EUHQzdutrt5O/rttIo9lWZbdRcTDBRdcoAEDBujpp58Oz/v+97+vK6+8Uvn5+bWWv+eee7R8+XJt27YtPG/KlCnavHmz1q9fH9NrBgIB+Xw+SX5JkYfUPR6pe3dp507nHUKvqgp9WqrrD21z9nb48GG9++676tixo7xeb3x/uEK9jR3b9/gg7pHUVtJjkqYeX8JSevpR/e///j3uvQWDQR08eFAXXnih2rdvH/N6lmWpX79++vTTT6N+8zc5OVlVVVUaNWqUNm16UN98c0HUn+PO92RAkk9+v79Fr29q7HhzsrrGDnduo5Dm7q05x47a48aTkmZKOnJ8ieYbN6Smjx1/+tOf9LOf/azO55OSktShQ0d5PHcpEJimk/+OSW5+T9ozdiQSV1wDWFlZqY0bN+ree++NmD9q1Ci99957UddZv369Ro0aFTFv9OjRevbZZ3X06FG1bt261jrBYFDBYDD8+ORD6CeyLKmkJHTNwfDhjWgmAaxbV/9RFif3tmlTR1VUnPhNOEvS3yWtCM/5xz+k558v1Xe/+8+4vvbRo0d15MgRHThwoNF/oE4//fQ6n6s5Irhq1SpJqyT1lzRP0piI5Zy83Rp6T7akpow3sY4dbt5GTu6t9rhRJalaLTFuSE0fO/785z/X+3x1dbUOHAhI+pWk+ZJ+LOl3kv4VMp283RJp3EhErgiAe/bsUVVVldLT0yPmp6enq7y8POo65eXlUZc/duyY9uzZo8zMzFrr5Ofna+7cuY2qraysUYsnhFhrdmJve/acHOwtSb8/Pv3Lk0+2VEXNYZOkiZIqoj7rxO2WSDU3Zbxp7NiRSP3GyqxxY6+ko5IiL0J19rjxT0nPSTpX0vRazzpxuzmx5pbkigBYw+PxRDy2LKvWvIaWjza/xqxZs5SXlxd+HAgElJ2dXW9NUXJkwou1Zif2lpZ29KQ5/uNTpEce+VL9+h2K62tXVlbq0KFDOu+882I+jbN3714NHz5cbdu2VWlpqRq+YqO9pCmS7q5zCSdut0SsuTHjTWPHjkTstyFmjRsPSpom6VjE3OYYN6SmjR2SNHjwYH311Vf1LuPxeI6PK/8m6ZeSro26nBO3mxNrbkmuCIBpaWlKTk6u9em7oqKi1qf0GhkZGVGXb9WqVZ2n27xeb8yH32uum8jNjWnxhJKbG6q9tDR0+P9kTu6tf/+D6tq18oRredodn2qEruUZPny3kpPbRf8hTRQMBuX1epWRkRHzIL5q1SpVV1dr2LBhWrp0afh074mSkpLUpk0b9eyZo0DgXZWVnea67dbQe7IlNWW8iXXscPM2cnJvtccNSUo7YYnmGzekpo0dhw8fVklJSZ3P11w73KtXL+3a1VWVle/oX739i5O3WyKNG4nIFd8CbtOmjQYOHKjVq1dHzF+9erWGDh0adZ0hQ4bUWn7VqlUaNGhQ1Ov/GqPmIMCCBc67aFYK1fzb34b+/+QDGm7o7a67ai4KOXlEsOTxSDNnfp0wvXXu3FmBQEBff/11raN/oQu4O+iXv/ylXnnlFfXpc7aeeOI0Se7cbnW9J1taU8abWLh5G7mhNyeNG5K0efNmJddT0Lnnnqu33npLCxcu1IAB6fJ4PK7cbokybiQiVwRAScrLy9MzzzyjP/7xj9q2bZtmzJih4uJiTZkyRVLoFMyNN94YXn7KlCn66quvlJeXp23btumPf/yjnn32Wc2cObPRr52VFfm4e3fp1Velq68+pZZsdfXVoR66dYuc74beRo7cr0cf3amuXSNP66SnH9Ujj+zUyJH77Sksissvv1w33XST3nvvvYhvACcnJ2v27NkqLi7W3LlzlZKSIsnd262u3uzQ0HjTFG7eRm7ozUnjhhQKgN/5zndqze/Xr5/efPNNffTRRxo9erQ8Ho+6dXPvdqvrPZkI44jdXHEKWJKuv/567d27Vw8++KDKysrUt29frVy5Uj169JAklZWVRdyjKycnRytXrtSMGTP01FNPKSsrS//1X/+la665ptGv/fe/S5s3u+/u6VdfLV1xhTvvDD9y5H5dfPF+bdrUUXv2tFZa2tGEvKO/x+PRwoULdfDgQf3pT39Shw4dlJeXp+nTp6tz585R13Hzdju5t9RUe24G3dB4E6s33nDfvwTi5vefU8YNKXSQ44orrlDW8SMUAwcO1G9+85tw6DuZm7dbtN769ZPqGEKN4Zr7ANqh5l5eJt9HKN6a+z6Admrqvbwk6e2339YHH3ygW2+9tVbwGz16tD7++GMdOnRInTt31rJly3TeeefFs/SE5dR90Kl1JzLGjtqqq6v1wAMP6MILL4wa/Bg7zN4HXXMEEHCzkSNHauTIkVGf+8tf/tLC1QBwgqSkJP3617+u83nGDrO55hpAAAAAxIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQAicVRXKembd5RxZI1S//mxZFXZXVH8WFVK/efHyjiyRknfvCNVu6g3wG6MHUCjuSIAfvvtt5owYYJ8Pp98Pp8mTJig/fv317vOpEmT5PF4IqbBgwe3TMGoreQ1aXlPtX13jM45kK8+5VPV98ux6nTgbbsrO2WdDrytvl+OVZ/yqTrnQL7avjtGWt4z1DOAU8PYATSJKwLgDTfcoKKiIr311lt66623VFRUpAkTJjS43qWXXqqysrLwtHLlyhaoFrWUvCatu1Y6/HXE7NbHKpRTepejB/JOB95WTuldan2sIvKJw6WhnhnIgaZj7ACarJXdBZyqbdu26a233tL777+vCy64QJL0hz/8QUOGDNH27dvVu3fvOtf1er3KyMhoqVIRTXWVtPFOSVatpzzH53b/x2Pa3/FiyZPc0tWdGqtK3f/xqKRQLyc9GZq7cbrU7QopyWG9AXZj7GDswClxfABcv369fD5fOPxJ0uDBg+Xz+fTee+/VGwALCwvVtWtXderUSRdffLHmzZunrl271rl8MBhUMBgMPw4EAvFpwmTfrKv16f1EHkltjv1DXv+HCrQb0HJ1xUHqPz9Wm5M/vUewpMMlod9B+vCWKgtwB8YOxg6cEscHwPLy8qihrWvXriovL69zvTFjxui6665Tjx49tHPnTv3qV7/SyJEjtXHjRnm93qjr5Ofna+7cuXGrHZL+WRbTYtWHSnWw6nvNXEx8dTxSGtuCMf4OAJyAsYOxA6ckYQPgnDlzGgxbH330kSTJ44lykNyyos6vcf3114f/v2/fvho0aJB69OihFStW6Oqrr466zqxZs5SXlxd+HAgElJ2dXW+NaEC7zJgW6/Vvw3RmlwubuZj4SvqmSno3v+EFY/wdADgBYwdjB05JwgbAqVOnavz48fUu07NnT33yySf6xz/+Ueu5b775Runp6TG/XmZmpnr06KHPP/+8zmW8Xm+dRwfRRF1ypfbdQxc2R7mWR/JI7burbfYlzrvWJfuSmHpTl9yWrgxwPsYOxg6ckoQNgGlpaUpLS2twuSFDhsjv9+vDDz/U+eefL0n64IMP5Pf7NXTo0Jhfb+/evSopKVFmJp+oWlRSsjTwt6FvtYUv3a5x/AjuwAXOG8Ald/cG2M3N+5ebe0PCcPxtYL7//e/r0ksv1eTJk/X+++/r/fff1+TJkzV27NiIL4CcddZZWrZsmSTp4MGDmjlzptavX69du3apsLBQ48aNU1pamq666iq7WjFX9tVS7qtS+26R89t3D83Pjn5K3hHc3BtgNzfvX27uDQkhYY8ANsaf/vQnTZs2TaNGjZIk/ehHP9KTTz4Zscz27dvl9/slScnJydqyZYuef/557d+/X5mZmRoxYoSWLl2qlJSUFq8fCg1m3a4Ifavtn2Wha1u65LrjE66bewPs5ub9y829wXYey7KiXWCAGAQCAfl8Pvn9fqWmptpdDmAcp+6DTq0bcAv2QRecAgYAAEDjEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAGiEnj17yuPxREz33nuv3WUBQKO0srsAAHCaBx98UJMnTw4/7tixo43VAEDjEQABoJFSUlKUkZFhdxkA0GScAgaARnr44Yd1+umn69xzz9W8efNUWVlZ7/LBYFCBQCBiAgA7cQQQABrhzjvv1IABA3Taaafpww8/1KxZs7Rz504988wzda6Tn5+vuXPntmCVAFA/j2VZlt1FOFUgEJDP55Pf71dqaqrd5QDGidc+OGfOnAYD2kcffaRBgwbVml9QUKBrr71We/bs0emnnx513WAwqGAwGFF3dnY2YwdgE/5+cwQQADR16lSNHz++3mV69uwZdf7gwYMlSV988UWdAdDr9crr9Z5SjQAQTwRAAMZLS0tTWlpak9bdtGmTJCkzMzOeJQFAsyIAAkCM1q9fr/fff18jRoyQz+fTRx99pBkzZuhHP/qRzjjjDLvLA4CYEQABIEZer1dLly7V3LlzFQwG1aNHD02ePFl333233aUBQKMQAAEgRgMGDND7779vdxkAcMq4DyAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGMYV9wGcN2+eVqxYoaKiIrVp00b79+9vcB3LsjR37lwtWrRI3377rS644AI99dRT6tOnT6Nfv6pKKiyUysqkzEwpN1dKTm58H4moqkpat47enMaU3pz+b7ivWycFAu7eRvTmHCb11q+f3RUlAMsF7r//fuvxxx+38vLyLJ/PF9M6Dz30kJWSkmIVFBRYW7Zssa6//norMzPTCgQCMb+u3++3JFlZWX5LssJT9+6WVVDQxGYSSEFBqBd6cxazegvtg36/3+7SGqVm7AjV7/ZtRG9OYFpvob/bzhs74skVAbDG4sWLYwqA1dXVVkZGhvXQQw+F5x05csTy+XzWwoULY369aIO4ZFkeT2hy8o5TUBDq4cS+6C3xmdebMwfxaGOHe7cRvSU6E3tz6tgRTx7Lsiz7jj/G15IlSzR9+vQGTwHv2LFDZ555pj7++GP1798/PP+KK65Qp06d9Nxzz8X0eoFAQD6fT5JfUuS5KI9H6t5d2rnTeYfQq6qknj2lr7+O/jy9JSYzewtI8snv9yvVQeeD6xo73LmNQugtMZnbmzPHjngy8ksg5eXlkqT09PSI+enp6eHnogkGgwoEAhFTXSxLKikJXXPgNOvW1T0YSPSWqEzuzS3cvI3oLTGZ3JvpEjYAzpkzRx6Pp95pw4YNp/QaHo8n4rFlWbXmnSg/P18+ny88ZWdnN/gaZWWnVKItYq2Z3hILvbmHE/vl/UdvicaJNbekhP0W8NSpUzV+/Ph6l+nZs2eTfnZGRoak0JHAzMzM8PyKiopaRwVPNGvWLOXl5YUfBwKBBkPgCT/eMWKtmd4SC725hxP75f1Hb4nGiTW3pIQNgGlpaUpLS2uWn52Tk6OMjAytXr06fA1gZWWl1q5dq4cffrjO9bxer7xeb0yvUXPdRG5uXEpuUbm5odpLS0OH/09Gb4nJ5N7cws3biN4Sk8m9mS5hTwE3RnFxsYqKilRcXKyqqioVFRWpqKhIBw8eDC9z1llnadmyZZJCp36nT5+u+fPna9myZfr73/+uSZMmqX379rrhhhtOuZ6as8gLFjjvolkpVPNvfxv6/5PPiNNb4jK1N7dw8zait8Rlam+QO+4DOHHixOO3VIic1qxZE15GkrV48eLw4+rqauuBBx6wMjIyLK/Xaw0bNszasmVLo163rvsAZmc7+2vzNaLdO4neEp9ZvTnzVg7RbgPj3m1Eb05gWm/dujlz7IgnV90GpqXV3Mph3z6/Nm9ONeLu6fTmDKb0lpoa0NixzruVQ83Y8cYbfgUCqa7eRvTmHCb11q9fQJ07O2/siCcC4CmoGcRNfgMBdnLqPujUugG3YB90yTWAAAAAiB0BEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwjCsC4Lx58zR06FC1b99enTp1immdSZMmyePxREyDBw9u3kIBAAASgCsCYGVlpa677jrddtttjVrv0ksvVVlZWXhauXJlM1UIAACQOFrZXUA8zJ07V5K0ZMmSRq3n9XqVkZHRDBUBAAAkLlccAWyqwsJCde3aVd/73vc0efJkVVRU2F0SAABAs3PFEcCmGDNmjK677jr16NFDO3fu1K9+9SuNHDlSGzdulNfrjbpOMBhUMBgMPw4EAi1VLgAAQNwk7BHAOXPm1PqSxsnThg0bmvzzr7/+el1++eXq27evxo0bpzfffFP/93//pxUrVtS5Tn5+vnw+X3jKzs5u8usDAADYJWGPAE6dOlXjx4+vd5mePXvG7fUyMzPVo0cPff7553UuM2vWLOXl5YUfBwIBQiAAAHCchA2AaWlpSktLa7HX27t3r0pKSpSZmVnnMl6vt87TwwAAAE6RsKeAG6O4uFhFRUUqLi5WVVWVioqKVFRUpIMHD4aXOeuss7Rs2TJJ0sGDBzVz5kytX79eu3btUmFhocaNG6e0tDRdddVVdrUBwGax3FO0uLhY48aNU4cOHZSWlqZp06apsrKyZQsFgFOUsEcAG+P+++/Xc889F37cv39/SdKaNWs0fPhwSdL27dvl9/slScnJydqyZYuef/557d+/X5mZmRoxYoSWLl2qlJSUFq8fQGKouafokCFD9Oyzz9Z6vqqqSpdffrm6dOmiv/3tb9q7d68mTpwoy7L0xBNP2FAxADSNx7Isy+4inCoQCMjn88nv9ys1NdXucgDjNNc+uGTJEk2fPl379++PmP/mm29q7NixKikpUVZWliTp5Zdf1qRJk1RRURFzDYwdgL3YB11yChgAWsL69evVt2/fcPiTpNGjRysYDGrjxo02VgYAjeOKU8AA0BLKy8uVnp4eMe+0005TmzZtVF5eXud63EMUQKLhCCAAV4v3PUU9Hk+teZZlRZ1fg3uIAkg0HAEE4GrxvKdoRkaGPvjgg4h53377rY4ePVrryOCJuIcogERDAATgavG8p+iQIUM0b948lZWVhe8ZumrVKnm9Xg0cOLDO9biHKIBEQwAEgOOKi4u1b9++iHuKStJ3v/tddezYUaNGjdLZZ5+tCRMm6NFHH9W+ffs0c+ZMTZ482dhvEgJwJgIgABzX0D1Fk5OTtWLFCt1+++268MIL1a5dO91www167LHH7CoZAJqE+wCeAu4jBNjLqfugU+sG3IJ9kG8BAwAAGIcACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYJhWdhdwqnbt2qVf//rXevvtt1VeXq6srCz97Gc/0+zZs9WmTZs617MsS3PnztWiRYv07bff6oILLtBTTz2lPn36NLqGqiqpsFAqK5MyM6XcXCk5+RSaSiBVVdK6dfTmNKb0lppqdzWnZt06KRBw9zaiN+cwqbd+/eyuKAFYDvfmm29akyZNsv7yl79YX375pfXnP//Z6tq1q/WLX/yi3vUeeughKyUlxSooKLC2bNliXX/99VZmZqYVCARifm2/329JsrKy/JZkhafu3S2roOBUO7NfQUGoF3pzFrN6C+2Dfr/f7tIapWbsCNXv9m1Eb05gWm+hv9vOGzviyfEBMJpHHnnEysnJqfP56upqKyMjw3rooYfC844cOWL5fD5r4cKFMb9OtEFcsiyPJzQ5eccpKAj1cGJf9Jb4zOvNmYN4tLHDvduI3hKdib05deyIJ49lWZZ9xx+bxy9/+Uu99dZb2rBhQ9Tnd+zYoTPPPFMff/yx+vfvH55/xRVXqFOnTnruuediep1AICCfzyfJLynyXJTHI3XvLu3c6bxD6FVVUs+e0tdfR3+e3hKTmb0FJPnk9/uV6qDzwXWNHe7cRiH0lpjM7c2ZY0c8ue5LIF9++aWeeOIJTZkypc5lysvLJUnp6ekR89PT08PPRRMMBhUIBCKmuliWVFISuubAadatq3swkOgtUZncm1u4eRvRW2IyuTfTJWwAnDNnjjweT73TyUf4du/erUsvvVTXXXedbr755gZfw+PxRDy2LKvWvBPl5+fL5/OFp+zs7AZfo6yswUUSTqw101tioTf3cGK/vP/oLdE4seaWlLDfAp46darGjx9f7zI9e/YM///u3bs1YsQIDRkyRIsWLap3vYyMDEmhI4GZmZnh+RUVFbWOCp5o1qxZysvLCz8OBAINhsATfrxjxFozvSUWenMPJ/bL+4/eEo0Ta25JrrgGsLS0VCNGjNDAgQP1wgsvKLmBCxUsy1JWVpZmzJihu+++W5JUWVmprl276uGHH9att94a0+u6/RrA0tLQ4f+T0VtiMrM3Z17H4+ZrAM16/4XQW2Kqvzdnjh3xlLBHAGO1e/duDR8+XGeccYYee+wxffPNN+Hnao70SdJZZ52l/Px8XXXVVfJ4PJo+fbrmz5+vXr16qVevXpo/f77at2+vG264IebX/ld2rn0toGVJ8+dLhw41uTVb5edLEyZEf47eEpd5vYX2Pad9jq1r7HDnNgqht8RlZm/OHDviyq6vH8fL4sWLj99OofZ0IknW4sWLw4+rq6utBx54wMrIyLC8Xq81bNgwa8uWLY167ZKSkjpfm4mJqeWmkpKSeAwnLYaxg4kpMSanjR3x5IpTwHaprq7W7t27lZKSogMHDig7O1slJSWuO5xcc60jvTmLCb0VFxfL4/EoKytLSUkJ+522Wk4cO+r74tmpcPP2txu/2+bVEr9fy7J04MABx40d8eT4U8B2SkpKUvfu3SX96xvFqamprh0Q6M2Z3Nybz+dzZG8njh3Nzc3b3278bptXc/9+Q9fhmsvM2AsAAGAwAiAAAIBhCIBx4vV69cADD8jr9dpdStzRmzPRm9n4HTUffrfNi99vy+BLIAAAAIbhCCAAAIBhCIAAAACGIQACAAAYhgAIAABgGAJgnO3atUs33XSTcnJy1K5dO5155pl64IEHVFlZaXdpcTFv3jwNHTpU7du3V6dOnewu55T87ne/U05Ojtq2bauBAwdq3bp1dpcUF++8847GjRunrKwseTwevf7663aXFBf5+fk677zzlJKSoq5du+rKK6/U9u3b7S4rIcWynxYXF2vcuHHq0KGD0tLSNG3aNNeMU83NrWNHS2ponLIsS3PmzFFWVpbatWun4cOH69NPP7WnWJciAMbZZ599purqav3+97/Xp59+qv/8z//UwoULdd9999ldWlxUVlbquuuu02233WZ3Kadk6dKlmj59umbPnq1NmzYpNzdXY8aMUXFxsd2lnbJDhw6pX79+evLJJ+0uJa7Wrl2rO+64Q++//75Wr16tY8eOadSoUTrk1H+lvhk1tJ9WVVXp8ssv16FDh/S3v/1NL7/8sgoKCvSLX/yihSt1HjePHS2poXHqkUce0eOPP64nn3xSH330kTIyMnTJJZfowIEDLVypi9n5DxGb4pFHHrFycnLsLiOuFi9ebPl8PrvLaLLzzz/fmjJlSsS8s846y7r33nttqqh5SLKWLVtmdxnNoqKiwpJkrV271u5SElZd++nKlSutpKQkq7S0NDzvpZdesrxer+X3+1uwQucxZexoSSePU9XV1VZGRob10EMPhecdOXLE8vl81sKFC22o0J04AtgC/H6/OnfubHcZOK6yslIbN27UqFGjIuaPGjVK7733nk1VobH8fr8ksW81wfr169W3b19lZWWF540ePVrBYFAbN260sbLExtjRMnbu3Kny8vKI37PX69XFF1/M7zmOCIDN7Msvv9QTTzyhKVOm2F0KjtuzZ4+qqqqUnp4eMT89PV3l5eU2VYXGsCxLeXl5uuiii9S3b1+7y3Gc8vLyWu//0047TW3atGEfqAdjR8uo+V3ye25eBMAYzZkzRx6Pp95pw4YNEevs3r1bl156qa677jrdfPPNNlXesKb05gYejyfisWVZteYhMU2dOlWffPKJXnrpJbtLaTHx3k+jvdfZB2LD2NEy+D03r1Z2F+AUU6dO1fjx4+tdpmfPnuH/3717t0aMGKEhQ4Zo0aJFzVzdqWlsb06Xlpam5OTkWp8kKyoqan3iROL5+c9/ruXLl+udd95R9+7d7S6nxcRzP83IyNAHH3wQMe/bb7/V0aNH2QfqwdjRMjIyMiSFjgRmZmaG5/N7ji8CYIzS0tKUlpYW07KlpaUaMWKEBg4cqMWLFyspKbEPtDamNzdo06aNBg4cqNWrV+uqq64Kz1+9erWuuOIKGytDfSzL0s9//nMtW7ZMhYWFysnJsbukFhXP/XTIkCGaN2+eysrKwn9gV61aJa/Xq4EDB8blNdyIsaNl5OTkKCMjQ6tXr1b//v0lha6/XLt2rR5++GGbq3MPAmCc7d69W8OHD9cZZ5yhxx57TN988034uZpPNU5WXFysffv2qbi4WFVVVSoqKpIkffe731XHjh3tLa4R8vLyNGHCBA0aNCh8lLa4uNgV12oePHhQX3zxRfjxzp07VVRUpM6dO+uMM86wsbJTc8cdd+jFF1/Un//8Z6WkpISPwvh8PrVr187m6hJLQ/vpqFGjdPbZZ2vChAl69NFHtW/fPs2cOVOTJ09WamqqvcUnODePHS2poXFq+vTpmj9/vnr16qVevXpp/vz5at++vW644QYbq3YZO7+C7EaLFy+2JEWd3GDixIlRe1uzZo3dpTXaU089ZfXo0cNq06aNNWDAANfcTmTNmjVRt9HEiRPtLu2U1LVfLV682O7SEk4s++lXX31lXX755Va7du2szp07W1OnTrWOHDliX9EO4taxoyU1NE5VV1dbDzzwgJWRkWF5vV5r2LBh1pYtW+wt2mU8lmVZzR8zAQAAkCgS++I0AAAAxB0BEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADD/H89BUFVchRD+QAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b13b23809cf34187826c182c0cb2dae3", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZxElEQVR4nO3dfXxT5f0//tdp2qb3KaVt0tICVbkR6qAWQdACdQqiUJXhZGwg+6mTTUToYIruI+AmeDeHD5lj3sGc82Za0G6gwr7YWseNgBSRu6ErtJSW3kATepe0yfn9ERsJTdq0TXLuXs/H41Byck7yvnLlXH33nOtclyCKoggiIiIi0owQqQMgIiIiouBiAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaUyo1AEomcPhwJkzZxAbGwtBEKQOh0hzRFHEhQsXkJqaipAQ5fw9y7aDSFpKbTv8SlSB1atXi2PGjBFjYmLEpKQk8bbbbhOPHTvW7X5FRUXi1VdfLer1ejEjI0P885//3KP3raioEAFw4cJF4qWioqK3zYck2HZw4SKPRWlthz+p4gxgcXExHnjgAVxzzTVob2/HY489hilTpuDIkSOIjo72uE9ZWRluueUW3HfffXjzzTfxn//8B7/61a+QlJSEH/3oRz69b2xs7Hf/qwAQ1+n5v/0NyMvrZaEoYAoLgblzvT/PepMnz/VmAZB+0bGoDF21HUr+/qn52GLZghePP3kvmzLbDn8SRFEUpQ7C32pra5GcnIzi4mJMnDjR4zYPP/wwCgsLcfToUde6BQsW4ODBg9i1a5dP72OxWGAwGACYcWkjLghAWhpQVgbodL0tCfmb3Q4MHgycPu35edabPHmvNwsAA8xmM+LiOv8RJlfe2g4lf//UfGyxbGosmzLbDn9S5YVvs9kMAEhISPC6za5duzBlyhS3dVOnTsW+ffvQ1tbmcR+r1QqLxeK2eCOKQEUFUFLSiwJQwJSUeG/oANabXHVXb2qh5O+fmo8tlk2dZdM61SWAoigiPz8f119/PTIzM71uV11dDaPR6LbOaDSivb0ddXV1HvdZs2YNDAaDa0lPT+82nqqqnsVPgeVrfbDe5EVr9aHE8qr52GLZ1F02rVJdArhw4UJ89dVXePvtt7vd9tK77zquhnu7K2/58uUwm82upaKiotv3SEnxIWgKGl/rg/UmL1qrDyWWV83HFsum7rJplaoSwAcffBCFhYX49NNPkZaW1uW2JpMJ1dXVbutqamoQGhqK/v37e9xHr9cjLi7ObfFGEID0dCAnp+floMDJyXH2Z/E28gbrTZ66qze1UPL3T83HFsumzrJpnSoSQFEUsXDhQmzatAk7duxARkZGt/uMHz8e27dvd1u3bds2jBkzBmFhYX2Kp+PLtnat8jrNqp1OB7zwgvP/lzYKrDf56qre1ELp3z81H1ssm/rKRoAqxgH85S9/KRoMBrGoqEisqqpyLc3Nza5tHnnkEXHu3Lmux//73//EqKgoccmSJeKRI0fE1157TQwLCxPff/99n9/XbDaLAMTUVLPo7CrrXNLTRbGgwK9FJD8rKBDFtDSR9aYwnevNeQyazWapQ+uRjrbDGb+6vn9qPrZYNmXyVLYBA5TZdviTKoaB8dZnb8OGDZg/fz4AYP78+Th58iSKiopczxcXF2PJkiU4fPgwUlNT8fDDD2PBggU+v2/HUA7nzplx8GAcqqqcfQ5ycpT515LW2O3Ou8RYb8pycb3FxVkwfbryhnLoaDv+9S8zLJY41X3/1HxssWzKdGnZRo2yICFBeW2HP6kiAZRKRyOu5S8QkZSUegwqNW4iteAxqJI+gERERETkOyaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaAREQX+eyzzzBjxgykpqZCEAR88MEHbs+LooiVK1ciNTUVkZGRmDx5Mg4fPixNsEREvcQEkIjoIk1NTRg1ahTWrVvn8flnnnkGzz//PNatW4e9e/fCZDLhpptuwoULF4IcKRFR74VKHQARkZxMmzYN06ZN8/icKIpYu3YtHnvsMcycORMA8Ne//hVGoxFvvfUW7r///mCGSkTUazwDSETko7KyMlRXV2PKlCmudXq9HpMmTcLOnTsljIyIqGd4BpCIyEfV1dUAAKPR6LbeaDTi1KlTXvezWq2wWq2uxxaLJTABEhH5iGcAiYh6SBAEt8eiKHZad7E1a9bAYDC4lvT09ECHSETUJSaAREQ+MplMAL4/E9ihpqam01nBiy1fvhxms9m1VFRUBDROIqLuMAEkIvJRRkYGTCYTtm/f7lpns9lQXFyMCRMmeN1Pr9cjLi7ObSEikhL7AFKX7HagpASoqgJSUoCcHECnkzoq6g7rrfcaGxvxzTffuB6XlZWhtLQUCQkJGDhwIBYvXozVq1djyJAhGDJkCFavXo2oqCjMmTNHwqiJiHpGNWcAuxu89VJFRUUQBKHTcuzYseAErACbNgGDBwO5ucCcOc6fgwc715N8sd76Zt++fcjKykJWVhYAID8/H1lZWXj88ccBAL/5zW+wePFi/OpXv8KYMWNQWVmJbdu2ITY2VsqwiYh6RDVnADsGb/35z3+OH/3oRz7vd/z4cbfLMUlJSYEIT3E2bQJmzQJE0X19ZaVz/fvvA98Ng0Yywnrru8mTJ0O89AO8iCAIWLlyJVauXBm8oIiI/Ew1CWBXg7d2JTk5GfHx8f4PSMHsduChhzonEYBznSAAixcDt93Gy4pywnojIiJfqeYScG9lZWUhJSUFP/zhD/Hpp592ua3VaoXFYnFb1KikBDh92vvzoghUVDi3I/lgvRERka80mwCmpKTg5ZdfRkFBATZt2oRhw4bhhz/8IT777DOv+2hlLK+qKv9uR8HBeiMiIl+p5hJwTw0bNgzDhg1zPR4/fjwqKirw3HPPYeLEiR73Wb58OfLz812PLRaLKpPAlBT/bkfBwXojIiJfafYMoCfXXnstTpw44fV5rYzllZMDpKU5+4x5IghAerpzO5IP1hsREfmKCeBFDhw4gBSeHoFOB7zwgvP/lyYTHY/XruWNBHLDeiMiIl+pJgFsbGxEaWkpSktLAXw/eGt5eTkA5+XbefPmubZfu3YtPvjgA5w4cQKHDx/G8uXLUVBQgIULF0oRvuzMnOkcMmTAAPf1aWkcSkTOWG9EROQL1fQB3LdvH3Jzc12PO/rq3X333di4cSOqqqpcySDgnL5p6dKlqKysRGRkJEaOHIktW7bglltuCXrscjVzpnPIEM4ooSysNyIi6o4gdjXiKXXJYrHAYDDAbDartj8gkZwp9RhUatxEasFjUEWXgImIiIjIN0wAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDGhUgegBnY7UFQEVFUBKSlATg6g00kdFXXHbgdKSlhvSnNxvcXFSR2Ncqj5+86yKZOay6YIokoUFxeL06dPF1NSUkQA4ubNm7vdp6ioSLz66qtFvV4vZmRkiH/+85979J5ms1kEIKammkVAdC1paaJYUNDLglBQFBQ464n1piyd6815DJrNZqlD65GOtiNYcav5+86yKZPUZQv2MShHqrkE3NTUhFGjRmHdunU+bV9WVoZbbrkFOTk5OHDgAB599FEsWrQIBQUFPX7vM2fcH1dWArNmAZs29filKAg2bXLWz+nT7utZb/Lmrd6oa2r+vrNsyqTmsimJIIqiKHUQ/iYIAjZv3ozbb7/d6zYPP/wwCgsLcfToUde6BQsW4ODBg9i1a5dP72OxWGAwGACYAbhfixIEIC0NKCvjKW05sduBwYO9JxGsN3nyXm8WAAaYzWbEKeh6cEfbEei41fx9Z9lYtr4I1jEoZ6o5A9hTu3btwpQpU9zWTZ06Ffv27UNbW5vHfaxWKywWi9vijSgCFRXO/g0kHyUlXZ9BYr3JU3f1Rp6p+fvOsrFs1DeaTQCrq6thNBrd1hmNRrS3t6Ours7jPmvWrIHBYHAt6enp3b5PVZVfwiU/8bU+WG/ywvroHTV/31k2lo36RrMJIOC8VHyxjqvhl67vsHz5cpjNZtdSUVHR7XukpPQ9TvIf9/qwAUgB8IdutiOpsT56x9fPTYmfb+eYVwEwAKjsZjv501a99W076j3NJoAmkwnV1dVu62pqahAaGor+/ft73Eev1yMuLs5t8UYQgPR0523tJB85Oc7+Jc4cfyOAagBPAbADYL3JlXu9ka+6+9yU/H3vXLY9cPYJvQ5AncrK5o5lI3/QbAI4fvx4bN++3W3dtm3bMGbMGISFhfXptTu+2GvXKq+DrtrpdMALLwCiaIPzjAEA1AH4B+tNxjrqDWAS2BNdfW5K/753Llvtd8+UA/ghRNGsorJ9T3319j2ll01pVJMANjY2orS0FKWlpQCcw7yUlpaivLwcgPPy7bx581zbL1iwAKdOnUJ+fj6OHj2K119/Ha+99hqWLl3a4/dOTXV/nJYGvP8+MHNmr4tDATRzJnD//RsBdIzfIwB4HAMG2FlvMjZzpvO4GjBA6kiUxdvnpoZ2qqNsqakigI4RHUQAhzFkyM2YOrVJwuj6Rgv1psayKYlqhoEpKipCbm5up/V33303Nm7ciPnz5+PkyZMoKipyPVdcXIwlS5bg8OHDSE1NxcMPP4wFCxb4/J4dt5GfO2fGwYNxHM1cIWw2GzIyMlBVVYWLv/5vvvkWfvrTn0gYGfnCfSYQC6ZPV95QDlIMQaHmWRdOnqxARsZAt3U6nQ4TJ07E1q1bERERIVFkfafmepOybBwGRkUJoBT4BVKml19+Gffff7/bupCQEFx22WU4duwYdGppXTVAqcegUuOWq48//hjTpk3rtD4kJAS33HILNm3a1OeuPaQuPAZVdAmYyBc2mw2rVq3qdKe3w+HAN998g3/84x8SRUZEvfX1118jJKTzrzOHw4EtW7bgZz/7Gex2uwSREckXE0DSlI0bN+LMmTPwdOI7JCQEjz/+OH9RECnM4cOHPSaAgHN4r/feew/333+/x+P+UtXV1Vi0aBEcDoe/wySSlVCpAyAKlovP/nn6RXDxWcCf/IR9AYmUorS0FO3t7V6fF0URr732GmJiYvDHP/7R7QrAyy+/jLfeestt++PHj2PYsGF44IEHAhYzkdTYB7AP2IdAWTz1/bsU+wIqi1KPQaXGLUcOhwPR0dFobW31afuCggLM7OI203PnzmHevHl48803ER8f76coSW54DPISMGmEt75/l2JfQCJlOXXqVJfJX8el4bS0NDz00EOYOHFil68XExODgoICJn+kerwETJrw3nvv4cyZMwgJCXE7s9fe3o6QkBC3/kPt7e1YvXo1LwMTKcDhw4fdHut0Olc/3mHDhuHuu+9GXl4eRowY0e0fgAAQHh4ekDiJ5IYJIGnCqFGjcO+993bq2L1x40aMHTsWI0aMcFufmZkZzPCIqJcuTgD1ej1uuukm5OXl4dFHH8WMGTOwfPnybl/j4YcfxldffYWPPvookKESyQoTQNKEzMxMvPLKK53W//3vf8dPf/pTLFy4sMv9q6ursXr1aqxdu9br3YakDStXrsSqVavc1hmNxk5zi1Nw5Obm4oEHHsCUKVNw4403IioqCgDwxRdfoLCwEM8++2y3r1FaWoqsrKxAh0okK0wAiTzgnYHUlZEjR+Lf//636zFvGJLO2LFjMXbs2E7r8/Ly8Oqrr7qO264cPHgQP//5zwMVIpEs8VQGkQe/+MUvUFRU5Fo2bdqE7Oxs/PSnP5U6NJKB0NBQmEwm15KUlCR1SHSJH/7wh4iMjERhYWGX21VXV+Ps2bNwOByYOHEioqKiMGbMGBw8eDBIkRJJgwkgkQ94ZyBd7MSJE0hNTUVGRgZmz56N//3vf1KHRJeIiorCTTfd1G0CeODAAQDA2rVrsXr1auzbtw+xsbGYPXt2MMIkkgwTQCIfhIeHQ6/XSx0GycC4cePwxhtv4JNPPsErr7yC6upqTJgwAfX19V73sVqtsFgsbgsFXl5eHnbu3Ina2lqv25SWliIiIgIffPABrr/+eowYMQJPPvkkjh07hoqKCkyePBkjRozAD37wA7z33ntBjJ4osJgAEnnxxBNP4KqrrkJ0dDSMRiN++ctfoq2tTeqwSGLTpk3Dj370I1x11VW48cYbsWXLFgDAX//6V6/7rFmzBgaDwbWkp6cHK1xNmz59OkRRxNatW71uU1paih//+MdITU11rYuOjgbgHENw7dq1OHLkCP79739jyZIlaGpqCnjcRMHABJDIA1EUYbfb8Ze//AVHjhzBxo0b8f777+PVV1+VOjSSmejoaFx11VU4ceKE122WL18Os9nsWioqKoIYoXYZjUaMGzcOH374oddtSktLMXr0aLd1X375JUwmE1JTU13PJScnIyEhAefOnQtgxETBwwSQyANBELBq1SpMmDABgwYNwrRp03DTTTfxshB1YrVacfToUaSkpHjdRq/XIy4uzm2h4MjLy8Mnn3zicbaQ5uZmfPPNN66BowHnbEAvvvgi5s+f7zZw9L59++BwOHj2llSDCSCRB6dOncLChQuRmZmJfv36ISYmBv/4xz+QlpaG0NBQXhbSsKVLl6K4uBhlZWXYs2cPZs2aBYvFgrvvvlvq0MiDvLw8NDc3Y8eOHZ2eO3jwIHQ6HTZs2IAvvvgC//3vf/HjH/8YTU1NePTRR13b1dfXY968eXj55ZeDGTpRQDEBJLpEXV0dxo4di7q6Ojz//PP4/PPPsWvXLuh0OowePRopKSm8LKRhp0+fxk9+8hMMGzYMM2fORHh4OHbv3o1BgwZJHRp5MGLECFx++eUe7wY+ePAghg4dipUrV+JHP/oRsrKyEBYWhp07dyI2NhaA8wzvHXfcgeXLl2PChAnBDp8oYDgQNNEltm7divb2drz99tuuS0B/+tOfYLPZOvUV4mUh7XnnnXekDoF6QBAE5OXl4d1338VLL73kNpPPggULsGDBAgDAnXfe2WlfURQxf/583HDDDZg7d27QYiYKBp4BJLpEQkICLBYLCgsLceLECTz//PNYuXIlBgwY4DbgLy8LESlDXl4ezpw5gy+//LJH+/3nP//Bu+++iw8++ACjR4/G6NGjcejQoQBFSRRcPANIdIlbb70V99xzD+bOnYvIyEj87Gc/w49//GOcOnXKtQ0vCxEpx3XXXYd+/fqhsLAQY8aM8Xm/66+/Hg6HI4CREUmHCSDRJQRBwPr167F+/XqPz/OyEJGyhIWF4ZZbbkFhYSGeeOIJqcMhkgVeAibqIV4WIlKevLw8HDx40O1MPpGW8QwgUQ/xshCR8kydOhVhYWH45z//iYULF/b+hRx2oLYEaKkCIlOApBwgROe/QImChGcAiYhI9QwGAyZPnuxxOBifVWwCCgcD/y8X2DnH+bNwsHM9kcIwASQiIk3Iy8tDUVERzGZzz3eu2ASUzAKaT7uvb650rmcSSArDBJCIiDRhxowZaGtrw8cff9yzHR12YP9DAEQPT363bv9i53ZECsEEkIiINGHQoEEYNWpUzy8D15Z0PvPnRgSaK5zbESkEE0AiItKMvLw8bN26FW1tbb7v1FLl3+2IZIAJIBERaUZeXh4aGhrw+eef+75TZIp/tyOSASaARESkGVdffTVSU1N7dBm4vd94tIWZPPYABJy9AO36Ac4hYYgUggkgERFpRkhICPLy8vDhhx9CFL2ldN9raWnB10eOolQ3H0Dn20A6Hn+tvwenz1T59JpEcsAEkIiINCUvLw9lZWU4cuRIl9s1NDSgtLQUFRUVcAy4HWUDnkVbaLLbNm2hRpQNeBb1UZPw1Vdf4cSJE2hvbw9k+ER+wZlAiIhIU3JzcxEdHY3CwkKMHDnS4zbV1dU4evQompubkZKSgpCQEDSE3YCGmEmIaT6AMHsd2nSJaIzKAgQd4gE0Nzfj+PHjaG5uxrBhwxAZGRnUchH1BBNA6pLdDpSUAFVVQEoKkJMD6KSY9UgJ0y/JKEbZ1BuRDEVERGDq1KkoLCzE8uXL3Z6z2+04deoU/vvf/0Kn08FkMkEQhO83EHRojB7j8XWjoqIQFhaG8vJytLa24sorr4TBYAhkUYh6TVWXgF966SVkZGQgIiIC2dnZKCnxPiZTUVERBEHotBw7diyIEcvbpk3A4MFAbi4wZ47z5+DBzvVBpYTpl2QUo2zqjUjG8vLysGfPHlRXV7vW2Ww2HDt2DEeOHEFkZCT69+/vnvz5ICwsDCkpKaivr8eXX36Js2fP+jt0Ir9QTQL47rvvYvHixXjsscdw4MAB5OTkYNq0aSgvL+9yv+PHj6Oqqsq1DBkyJEgRy9umTcCsWcDpS8Y+rax0rg9aMqGE6ZdkFKNs6o1I5m655RYIgoB//etfAICmpiYcPHgQ3377Lfr374/Y2Nhev3bHmcP29naUlpairKwMDofDX6ET+YVqEsDnn38e99xzD+69915ceeWVWLt2LdLT0/HnP/+5y/2Sk5NhMplci47XyWC3Aw89BHi6ma1j3eLFzu0CSgnTL8koRtnUG5ECJCUlYcKECSgsLERdXR2+/PJLVFdXw2QyQa/X9/n1BUFA//79ERERgcOHD+PYsWOw2Wx+iJzIP1TRB9Bms2H//v145JFH3NZPmTIFO3fu7HLfrKwstLa2YsSIEfjtb3+L3Nxcr9tarVZYrVbXY4vF0rfAZaqkpPMZpIuJIlBR4dxu8uQABuLj9Evmb/+F9oTre/02TU1NqK+v79W+oec+h8HXKaKMk3v1Hr6STb0RKcSMGTPw+OOPY9euXQgNDXXd7OFPsbGxCAsLwzfffIPm5mZceeWViI6O9ut7EPWGKhLAuro62O12GI1Gt/VGo9Gtf8fFUlJS8PLLLyM7OxtWqxV/+9vf8MMf/hBFRUWYOHGix33WrFmDVatW+T1+uanycTYjX7frNR+nVfrf1//BmfDefZUdDgfKysqwe/fuXu2favsPsnzZMAhTRDnrwwHgIICPASyDp0M84PVGpADt7e34wQ9+AKvVitLSUtx6660Be6+IiAiYTCZUVVW5bg7p379/wN6PyBeqSAA7XNpZVxRFrx14hw0bhmHDhrkejx8/HhUVFXjuuee8JoDLly9Hfn6+67HFYkF6erofIpeXFB9nM/J1u17zcVqlqMTLYYoy9eotBEFAXFwcTKbe7R/VfDlQ4cOGAZoi6sKFC9izZw927tyJwsISADsBNH/37G0ARnTaJ+D1RiRzLS0tOH78ONra2pCeno79+/cHNAEE4DrDWFtbi9LSUgwbNgwDBgzo8U0mRP6iigQwMTEROp2u09m+mpqaTmcFu3LttdfizTff9Pq8Xq/3S98QucvJAdLSnDcOeOpPJgjO53MCPetRUg4Qlea8mcJDHzsRzkFYm6Ku7lMj2nEHeG80RV0NW2gywtpr4PkVBGcZ/DBFlCiKKCsrw86dO7Fz504UFxfj6NGjEEUROp3uu07mHZ/TKFya/AWt3ohkzGw24+jRo67fD5MnT8aWLVvgcDj8fvn3UiEhITAajTh//jwOHTqE5uZmXH755ex7TpJQxU0g4eHhyM7Oxvbt293Wb9++HRMmTPD5dQ4cOIAUnh6BTge88ILz/5fmRR2P164NwrhyITog2xmIeEl65UxzBJw2LgUECRtPQYfTxmUXxfQ9V8zZa/s0HmB9fT3uuusuJCUl4fLLL8fcuXPxyiuv4MiRI65pp+x2+yVTUP3ePcxg1huRTJ09exZffvkl6uvrkZKSgrCwMEyaNAnnzp3D4cOHgxZHv379EBMTg+PHj+PQoUNobW0N2nsTdVBFAggA+fn5ePXVV/H666/j6NGjWLJkCcrLy7FgwQIAzsu38+bNc22/du1afPDBBzhx4gQOHz6M5cuXo6CgAAsXLpSqCLIycybw/vvAgAHu69PSnOtnzgxSIOkzgZz30Raa5LbaOf3SM2iIvSFIgXjXEHuDxymiHBGpQM77zjL0QWtrKwoLC91uVPE21ZQgCDAaL8eAAbe4rQ96vRHJSEdf39LSUrS3t7uN+HDVVVfBYDCguLg4qDFFR0cjKSkJFRUVKC0tVe1NhSRfqrgEDAB33XUX6uvr8cQTT6CqqgqZmZnYunUrBg0aBACoqqpyGxPQZrNh6dKlqKysRGRkJEaOHIktW7bglltu8fYWmjNzJnDbbdLPKNGUMBW7+r0Bo/BfxIRecJt+SS4aYt2niKo6D5h+cCcuS+/7uJIDBgzAm2++iVmzZnW7rSiKWLVqGe69N0TyeiOSA5vNhm+++Qb/+9//EBsb22l8v9DQUOTk5OCzzz4L+gmA8PBwmEwm1NTU4Msvv8SIESOQnJzc/Y5EfiCIoqdeXuQLi8UCg8EAs9mMuLg4qcNRraqqKuzbtw+pqal+7zA9fvx4LF68GHfddZdfX7e+vh6xsbEYO3as3/oVrVixAk888USX2xgMBlRVVWlmDlKlHoNKjVtpmpqacPToUZw5cwaJiYmIiIjwuN2OHTuwbNkyfPDBB5Lc2CeKIurr6yGKIoYNG4aBAwcGvD+i1vEYVNElYFKvuro66HQ6Rd0tFxMTA4vFgsbGRr+9ZkpKSpdDR4SEhGDRokWaSf6IXBx24GwRcPJt50+HHfX19Thw4ACqqqpgMpm8Jn+A8wbAsLCwLqcPDSRBEJCYmAi9Xo+vv/4ax44dQ1tbm/NJD2Uj8gfVXAImdbLZbKirq1PcwKl6vR51dXV+/etywYIFcDgceOCBBzw+HxIS4vU5ItWq2OScjeeiAdnbw1NQGfkLXAgZ59PgzlFRURg7diyKi4sxZ86cQEfsVVxcHMLDw/Htt9+ipaUFI+OOI+Lww+4D4kelOW+O62PfYiKeASRZa2hoQHNzM6KioqQOpcfCwsJQW1vrl9dqb2/H4sWL8cADD2D27NmIj493OyMaGhqKuXPn9mjYIyLF8zIPt85WhavMqzAs6rDPl1InTpyIAwcOSH4zRkREBIxGIxyn3od+708hymCOcVInJoAkaw0NDXA4HIocJys6Ohrnz59HS0tLn17n3LlzmDZtGtatW4d169bhrbfewocffuj2i629vR2//vWv+xoykXJ0MQ93x59GaWefA0TfLpnm5OTAbrfj888/91+MvRSqEzCq/XUA8DC+qEzmQSfFYwJIsmW323H27FnFXf7tEBkZiZaWFjQ0NPT6NY4ePYpx48bhyy+/xLZt21BfX48f/OAHmDZtmttZ0RtvvBEjR470Q9RECtHNXOECgPD2s4hpPuDTyxmNRlx55ZX47LPP/BRg78U0H0C418HlAbc5xol6iQkgyVbHTRRKTQBDQkIgCALOnTvXq/23bNmCcePGQa/XY+/evcjNzYXdbsdf/vIXHDlyBO+++66rY/tvfvMbf4ZOJH8+zq8dZq/z+SUnTpyInTt3fn8DhkR8jjkIc4yTejEBJNkym81ob29HWFiY1KH0WnR0NGpra2Gz2XzeRxRFPP3005gxYwZyc3Oxa9cuXHbZZRAEAatWrcKECRMwaNAgTJs2Dbfffjvuuusu3HTTTbjjjjvQr18/n8YLJFI8H+fXbtMl+vySkyZNQlNTE/bv39/bqPzC55gDNMc4aQMTQJIlURRx9uzZLoduUILo6Gg0NTX53LG8paUFP/vZz/DII4/g0UcfxebNm10D1546dQoLFy5EZmamayqp9957D9nZ2QCARYsW4Y033ghYWYhkpWOucC8XSkUAtlCjc9B4Hw0dOhQmk0nyy8CNUVmwhSZ76N3YQQCi0v0yxzhpFxNAkqXGxkaYzWbFXv7toNPpIIoizp8/3+22lZWVmDhxIjZv3ox33nkHv//97103etTV1WHs2LGoq6vD888/j88//xy7du2CTqfD6NGjAQC5ubmdZjkgUq2L5gq/NAns7VzhgiBg0qRJKC4uhqRzJHQxxzj8NMc4ERNAkiWz2Qyr1Qq9Xi91KH0WGRmJmpoa2O3e79jbs2cPrrnmGlRXV6OkpKTTzCRbt25Fe3s73n77bUyZMgUjR47EZ599BpvN5koAiTTnu7nCEeU+aXlf5gqfOHEiqqurceLECX9F2Sve5hhHVJpf5hgn4kDQJEu1tbUIDQ1V1Owf3kRHR6OhoQEXLlxAfHx8p+ffeOMN/OIXv0B2djYKCgpgMpk6bZOQkACLxYLCwkKMGDEC//znP7FmzRoMGDAASUlJQSgFkUylzwQG3IYjn/0F9sbT0BsG92mu8OzsbERHR6O4uBhDhw71c7A90zHHuLXi3xiR0Q8G03DnZV+e+SM/4BlAkp2WlhacP38eMTExUofiF+Hh4Whvb4fZbHZbb7fbsWzZMtx9992YM2cOduzY4TH5A4Bbb70V99xzD+bOnYvrr78elZWV+PGPf8yzf0QAEKLDhchsnI24AY3RY3qd/AHOAdwnTJggeT9AF0GH+tCr0Gq6AzBOZvJHfsMzgCQ7ZrMZzc3NXpMhJQoPD0dNTQ0GDhwIQRDQ0NCAn/zkJ9i2bRvWrl2LRYsWdXm2UxAErF+/HuvXrw9i1ETaNHHiRPzf//0fampqkJyc3P0ORArEM4AkO/X19RAEwecpnJSg4zJwc3Mzjh8/jnHjxmH37t346KOP8NBDD/nlUvfUqVNx5513YuvWrUhLS8PevXv9EDmR9lx33XXQ6XQoKeFAy6Re6vkNS6rQ1taG2tpaxd/9e6mIiAi0trbigw8+wLhx4xASEoIvvvgCU6ZM8dt7fPLJJ6itrUVzczNOnz6Na665xm+vTaQlBoMBo0ePRnFxsdShEAUME0CSlY7LvxdPc6YWhYWFmDdvHq677jrs3r0bQ4YMkTokIvJi0qRJ2Lt3L5qbm6UOhSggmACSrDQ0NMDhcCA0VD3dU61WK1auXIlXX30Vs2bNwj/+8Q8YDAapwyKiLkycOBE2mw27d++WOhSigGACSLJht9tx9uxZREZGSh2K39TW1uL+++/Htm3bsGrVKsydOxdNTU1Sh0VE3UhPT8dll13Gy8CkWkwASTYuXLiACxcuqKb/3+HDhzFv3jxUV1fj1VdfxfTp0yEIAs6dOyd1aETkg0mTJqGkpKTLQdyJlIoJIMmG2WxGW1sbwsPDpQ6lzz766CPcd999SEpKwt/+9jeMHDkSABAVFYWamhq0t7dLHCERdWfSpEkwm8346quvpA6FyO+YAJIsiKKImpoaxU/9Zrfb8eKLL+K3v/0tbrzxRrzyyituM3VER0e75jkmInkbOXIkEhIS5DMoNJEfMQEkWWhubkZDQ4OiL/82NjYiPz8fb7zxBhYvXoxVq1Z1SmhDQ0Nht9uZABIpQEhICHJyctgPkFSJCSDJgtlsRmtrKyIiIqQOpVcqKiowf/58HDhwAGvXrsXcuXO9Du4cGRmJ6upqOByOIEdJRD01adIknDp1CidPnpQ6FCK/YgJIslBXVwedTueXGTGCbc+ePZg3bx4cDgf++te/4rrrruty++joaFy4cAGNjY1BipCIemvs2LHQ6/W8DEyqwwSQJGe1WlFfX4+YmBipQ+kRURTx9ttv48EHH8TIkSOxceNGZGRkdLufXq+HzWbjZWAiBYiMjMS4ceOYAJLqMAEkyZnNZjQ1NSlq9g+bzYbf/e53eO655zB79mysXbsWcXFxPu8fHh6OmpqaAEZIRP4yceJEHDx4EOfPn5c6FCK/YQJIkusYFy8kRBlfx/r6eixYsABbt27FypUrkZ+f3+OZS6Kjo9HQ0MBppogUICcnBw6HA//5z3+kDoXIb5TxG5dUq729HTU1NYo5+3f06FHMnTsXp0+fxiuvvIIZM2b06nUiIyPR3NzMy8BECpCYmIjMzEzFXwaurq7GokWLeAMaAQDUM+EqKZLFYkFjYyMSExOlDqVb27Ztw8qVK3HZZZfhD3/4A4xGY69fSxAEhISEoK6uDikpKX6MkogCYdKkSXj99ddhtVoVM17pyy+/jLfeestt3fHjxzFs2DA88MADEkVFcsEzgCSphoYG2O32Hl9CDSaHw4GXXnoJy5cvR25uLl599dU+JX8dYmJiUFdXB5vN5ocoiSiQJk2ahJaWFuzfv1/qUHz2i1/8AkVFRa5l06ZNyM7Oxk9/+lOpQyMZYAJIknE4HKipqZH12H9NTU1YunQpXn/9dTz44IP4/e9/77d4o6KieBmYSCEuu+wyDBgwQNGDQsfExKCgoADx8fFSh0IywASQJNMxJZpch385ffo0fv7zn2Pfvn14/vnnMX/+fL+OU6jT6SCKIu8sJFIAQRAwadIkfPbZZxBFUepweiU8PFwxl68p8JgAkmTMZjNsNpssG6S9e/di3rx5sFqt2LhxIyZOnBiQ94mKikJNTQ3sdntAXp+I/GfixImoqanBsWPHpA7FJ1arFRkZGRg6dCgsFovU4ZDMyLfjlYLY7UBREVBVBaSkADk5gE4ndVQy5bADtSVASxWaKywID0uXLBS7HXA4gCNHorBvXwyyshoREiLivffew3PPPYfs7Gw89dRTMBgMAYshOjoa5+pr0Vy2FbGhjUBkCpCUA4TwC+SN3Q6UlDiPtx4MvShLJSWAxaK+duPiOlJT2UaPHo3Y2Fi8/fYuTJgwAYmJbcjKapRt2c6dO+eawi49PR3Lli3DokWLvI5ZqtZ6AzqXbdQoqSOSnqrOAL700kvIyMhAREQEsrOzUVJS0uX2xcXFyM7ORkREBC677DKsX7++V++bmQnk5gJz5jh/Dh4MbNrUq5dSt4pNQOFg4P/lAjvnYFjFAkw2z0f8hR1BD2XHjnhMn56J9nYB//pXf9x//1DceutQLFz4Bzz99NO488478eKLLwY0+QOApNYSTDbPR+wXecDOOc7PpnCw87OiTjZtch5fHcfb9OnSxdLT9saT6dPV125cWkdqKltJSRJstluxZct/8NhjGbj//qGYPj0TO3bESx1atywWC1asWIH09HT8/ve/73RGUM315qlsmZlSRyU91SSA7777LhYvXozHHnsMBw4cQE5ODqZNm4by8nKP25eVleGWW25BTk4ODhw4gEcffRSLFi1CQUFBj9/7zBn3x5WVwKxZ6jhw/KZiE1AyC2g+7bY63F6LjMplQU0Cd+yIx7JlGaipCbtobS1qa2/B7t3v484712DZsmUBvzM5/sIOZFQuQ4RY7/5Ec6Xzs2IS6GbTJudxdfp099sGWk/bG1+ood3wVkdqKFtHu2G13gagFICzrmtqwrBsWYYsk8BLZxtyOBywWCx4/PHH3RJBNdebt7Jd+ntbiwRRqb1ZLzFu3DhcffXV+POf/+xad+WVV+L222/HmjVrOm3/8MMPo7CwEEePHnWtW7BgAQ4ePIhdu3b59J4Wi+W7M0RmAO6n1AUBSEsDysrUcwq91xx251mtZs+/uUUAbaFGfH35PwEhsB+W3Q5Mn575XfInAIgAsATA2wBaABTAaByLf/7z68DWm2hH5rfTEdZeA8+3lQhAVBqQV8bLwXDW2+DBnpI/CwADzGZzj6bi66uetjeX8tZ2KLnd8F5HToEu2549e3DhwgUkJCT4/bXd2w0LgEQAawF0jKUnwmhsC1i7cebMGVxzzTU9Hn7q73//O372s595fT4kJATR0TEQhGWwWBbh0t9jgJq/k9K0HXKiij6ANpsN+/fvxyOPPOK2fsqUKdi5c6fHfXbt2oUpU6a4rZs6dSpee+01tLW1ISwsrNM+VqsVVqvV9birTrWiCFRUOPscTJ7cg8KoUW2J1+QPcKZh4e1nEdN8AI3RYwIayoEDMaipCb9ojQPAHwBkAvgAwECcPevcbsyYxoDFEdN8AOHtXc0FLALNFc7Pzjg5YHEoRUmJPM78Ab1rb3xtO5TcbnRXR0oum3u7YQAwCcAGAINd25w9C7zxRiWuuKLF7+9/7tw5NDQ0oF+/fj3a78MPP+zyeYfDgQsXLAD+D8BqAD8G8BKA72dmUnK9yandkCNVJIB1dXWw2+2d/joyGo2orq72uE91dbXH7dvb273OzrBmzRqsWrWqR7FVVfVoc3Vq8e1DCLPXBTgQoK7u0sReAHANgG24uNHrvJ1/+VxWHz87tZPTcdSb9qanbYecyusrX2NWYtk6twdXA3gWgHsn1HXrghVRILQA+CuA0QAWd3pWifWmxJiDSRUJYIdLx2gTRbHLcds8be9pfYfly5cjPz/f9dhisSA9veu7WDnLF5x3tvqgTRf46eASE9suWdMMoPN1jc7b+ZfPZfXxs1M7OR5HPWlvetp2yLG83fE1ZiWWrXN78AyA/E7bPfPMtxg1qsnv73/27FmMHj0aSUlJPdrv2muvxalTp7rcRhCE7373/QDAbwHM8ridEutNiTEHkyoSwMTEROh0uk5/fdfU1HjtM2EymTxuHxoaiv79+3vcR6/X+zxmXUe/iZwcnzZXt6QcZ3+25ko4e/y56+gD2BiVFfBQsrIakZxsu6gP4KXJn7MvT1ZW4C7/AkBjVBZsocnd9wFM4hcIcB5HaWnOTulS91ruTXvja9uh5HajuzpSctk6txsAYLpoC2e7MXnyGeh0kX5/f5vNhuTk5B71AWxubkZFRYXX53U6Hex2O4YMGYKTJ5Nhs30GeGiNlFxvcmo35EgVdwGHh4cjOzsb27dvd1u/fft2TJgwweM+48eP77T9tm3bMGbMGI/9/3qi4yTA2rXK6zQbECE6IPuF7x5cctbku3WnjUsDfgMI4KyPZcs6OoVc2iKIEARg6dLTga83QYfTxmUeo3B9RtlreQPId3Q64IXvvkJ+nIylV3rT3vhC6e1GV3WkhrLJot3ogYMHD0LXRUCjR4/Gxx9/jPXr1+Pqq40QBEGV9SaXdkOOVJEAAkB+fj5effVVvP766zh69CiWLFmC8vJyLFiwAIDzEsy8efNc2y9YsACnTp1Cfn4+jh49itdffx2vvfYali5d2uP3Tk11f5yWBrz/PjBzZp+KpC7pM4Gc94GoAW6rrbpklA14Bg2xNwQtlBtuaMCzz5YhOdn9so7R2IZnninDDTc0BCWOhtgbUDbgWbQKl5xxjkpzflbp/AJdbOZM53E1YED32wZad+1Nb6ih3fBWR2oom1zaDV8dPHgQl112Waf1o0aNwkcffYS9e/di6tSpEAQBAwaot968fSfl0I5ITTXDwADOgVmfeeYZVFVVITMzE3/84x9dU3jNnz8fJ0+eRFFRkWv74uJiLFmyBIcPH0ZqaioefvjhHjXgHUM5nDtnxsGDcaocPd3vLpoJ5H9VLTh2LgmmFGmORLvdeXdfXV2YZCP6W61WWMzncf1QEdEhFs4E4gP3mUAsmD5dmqEcumpvutPRdvzrX2ZYLHGqazekmFEikMPAXEyKdqO3w8BUVVUh9bszFNnZ2fj973/vSvo6FBUVYd26dXj//fc1NhOIBQkJ2h4GRlUJYLB1NOJa/gL1xZkzZ7B//36kpqZ2ebOOmtXX1yM2Nhbjxo3T7GfQF0o9BpUat5wFKwGUQm8TQIfDgRUrVuC6667rlPgBzqHPvvzySzQ1NSEhIQGbN2/GNddc48/QZYvHoEpuAiFlMhgMiIiIQEtLC6KiorrfQYWsVisuv/xyJn9E5HchISH43e9+5/X5Tz75JIjRkNyopg8gKU9UVBT69euHpib/D5ugBO3t7dDpdIiPj5c6FCIi0hgmgCQZQRCQlJTkNkOCljQ2NiI6Olqzlx+IiEg6TABJUvHx8dDr9bDZbFKHEnTNzc1ITk5GaCh7YhARUXAxASRJxcbGIiYmBo2NgR14WW4cDgcAqLLDOhERyR8TQJJUSEgITCYTWlr8P4G6nDU3NyM6OhoGg0HqUIiISIOYAJLk4uPjERISgvb2dqlDCZrGxkb079/f56kFiYiI/IkJIEkuLi4OsbGxaG5uljqUoBBFEXa7HYmJiVKHQkREGsUEkCQXFhaGpKQkzfQDbG1tRUREBC//EhGRZJgAkix03AzRcXOEmjU1NSE+Pl6zg18TEZH0mACSLBgMBkRFRWniMrDVakVycjJn/yAiIskwASRZiIiIQEJCgupnBbHZbAgLC+PsH0REJCkmgCQbiYmJaGtrgyiKUocSME1NTYiNjUVsbKzUoRARkYYxASTZiI+PR2RkJFpbW6UOJWBaWlpgNBoREsJDj4iIpMPfQiQbHfPiqrUfYHt7O0JCQnj5l4iIJMcEkGRDEAQYjUbVngFsbm5GVFQUh38hIiLJMQEkWTEYDAgNDUVbW5vUofhdU1MTkpOTERYWJnUoRESkcUwASVY6ZgVR26DQDocDoii6xjskIiKSEhNAkhWdTofk5GS0tLRIHYpftbS08PIvERHJBhNAkp1+/fpBEATY7XapQ/GbxsZG9OvXD5GRkVKHQkRExASQ5Edts4KIooj29nYkJSVJHQoREREAJoAkQ+Hh4UhKSlJNP0Cr1Qq9Xs/Lv0REJBtMAEmW+vfvD4fDAYfDIXUofdbU1ASDwYCYmBipQyFSJ4cdsS37YWzdgZimfYConu4jEO3o334IEdWbgbNFgENFZSNJhUodAJEnHZeBW1tbERUVJXU4fdLa2oorrrgCgiBIHQqR+lRsAvY/hBHNp52PLYAtNBmnjcvQEHuDtLH1UfyFHUg7+yzC22uAw3AuUWlA9gtA+kypwyOF4xlAkqWoqCjEx8ejqalJ6lD6pK2tDaGhoZz9gygQKjYBJbOAjuTvO2HtNcioXIb4CzskCqzv4i/sQEblMoS117g/0VzpLHPFJmkCI9VgAkiylZycDJvNJnUYfdLU1ISYmBjExcVJHQqRujjswP6HAIidnuo415529jllXg4W7Ug7+yyA78ty0ZPOH/sX83Iw9QkTQJItg8GA8PBwWK1WqUPptebmZhiNRuh0OqlDIVKX2pJOZ/4uJgAIbz+LmOYDwYvJT2KaDyC8vcZD8tdBBJornJ8BUS8xASTZiomJQWxsrGIvA9vtdgiCwMu/RIHQUuXTZmH2ugAH4n8+x+zjZ0DkCRNAkq2QkBCYTCbFzgrS3Nzs6stIRH4WmeLTZm26xAAH4n8+x+zjZ0DkCRNAkrX4+HjodDq0t7dLHUqPNTU1ITExEeHh4VKHQqQ+STnOO2K9XCgVAVhDjWiMygpqWP5QKwxHi9DfQ+/GDgIQle78DIh6iQkgyVpcXBxiYmIUdxlYFEXY7XYkJirv7AORIoTonMOhALg0CRS/e/xV6M/RbveeRsmRxWJBg/kC6gc/Dme5Lk1wv3ucvdb5GRD1EhNAkrXQ0FAkJycrblq4lpYWREZG8u5fokBKnwnkvA9EDXBbLUSlwXrN3xEyaBaqq6sV0Y1EFEXU1taira0NmZmZSB23EIKHsiEqzVlmjgNIfcSBoEn2EhIS8M0338DhcCAkRBl/szQ1NaF///6Ijo6WOhQidUufCQy4zXlHbEuVs19cUg4iQnT4QVsbIiMj8b///Q9tbW2y/YPMbrfj7NmziIuLw/Dhw5GcnOx8wkvZeOaP/IEJIHXJbgdKSoCqKiAlBcjJAYI9oonBYEBUpB5h5/6DuPAmtOkSnf16BJk1gqIdMc0HEGavQ0uTiOThcyQLRQ71RhQ0ITrAOLnT6rCwMAwfPhxRUVE4fvw46urq0L9/f1nNymOz2VBbWwuj0Yjhw4d3TlK9lI2or5RxOqUb58+fx9y5c2EwGGAwGDB37lw0NDR0uc/8+fMhCILbcu211wYnYIXYtAkYPBjIzQXmzHH+HDzYuT6Y9DVbcH39XIyqW4yMM49haMX9yPx2uqxG+Y+/sAOZ307H0Ir7kXHmMVzX+luk7b9ektH65VJvRHIQEhKCwYMHIysrC3q9HlVVVbDb5TGAclNTE2prazFo0CCMGjVKtmcoSZ1UkQDOmTMHpaWl+Pjjj/Hxxx+jtLQUc+fO7Xa/m2++GVVVVa5l69atQYhWGTZtAmbNAk5fMs5qZaVzfdCSie+megprP+u2Wk5TPXmbsklorQr6lE2yqTcimUlOTkZWVhYSExNRVVUl+SxD58+fR2NjI4YPH46RI0dCr9dLGg9pj+ITwKNHj+Ljjz/Gq6++ivHjx2P8+PF45ZVX8K9//QvHjx/vcl+9Xg+TyeRaEhISghS1vNntwEMPAaKHm+c61i1e7NwuoC6a6snLfXDST/XUxZRNQpCnbJJNvRHJVFxcHEaPHo1BgwahtrZWktEFHA4HqqurIQgCRo0ahSuuuIIzBZEkFN8HcNeuXTAYDBg3bpxr3bXXXguDwYCdO3di2LBhXvctKipCcnIy4uPjMWnSJDz55JPfd771wGq1uk1LZrFY/FMImSkp6XwG6WKiCFRUOLebPDmAgfg41VNYw25YIq4OYCDexbV+ifBLJ2t3c9GUTQHuxyObeiOSsYiICGRmZiIqKgrffPMNbDYb+vXrF5T3bm9vx9mzZ5GQkIARI0YE7X2JPFF8AlhdXe0xaUtOTkZ1dbXX/aZNm4Y777wTgwYNQllZGf7v//4PN9xwA/bv3+/1VPyaNWuwatUqv8UuV1U+zi7k63a95us0Ry1VaBGlGeYhrtX3GANNNvVGJHM6nQ5XXHEFoqKicOzYMdfvkUCOMtDS0oJz584hNTUVw4cP5wgBJDnZJoArV67sNtnau3cvAHi8o0sUxS7v9Lrrrrtc/8/MzMSYMWMwaNAgbNmyBTNneh5fafny5cjPz3c9tlgsSE9P7zJGJUrxcXYhX7frNR+nORr6g0m4Ium6AAfjWUitHfh8TfcbBmHKJtnUG5ECCIKAAQMGIDIyEkePHkVVVRWMRiNCQ/3/a9FisaCxsRGXX345hgwZgrCwML+/B1FPyTYBXLhwIWbPnt3lNoMHD8ZXX32Fs2fPdnqu47Z6X6WkpGDQoEE4ceKE1230er0mOurm5ABpac4bBzz1JxME5/M5gZ6FqGOqp+ZKwOOkSAIQlQZ92o3SjYuVdqNPMQZjyibZ1BuRgiQkJGD06NE4duwYKisrkZiYiIiICL+8tiiKqK+vhyiKyMzMxMCBAxUzlimpn2wTwMTERJ+m0Ro/fjzMZjO++OILjB07FgCwZ88emM1mTJgwwef3q6+vR0VFBVJ4egQ6HfDCC867RgXBPZnoOKm6dm0QxpXrmOqpZBacPf4uzmpkMh2SjGKUTb0RKUx0dDSuuuoq16DRsbGxiI2N7dNrdgzuHBsbiyuvvLLL/uVEUlD8nyJXXnklbr75Ztx3333YvXs3du/ejfvuuw/Tp093uwFk+PDh2Lx5MwCgsbERS5cuxa5du3Dy5EkUFRVhxowZSExMxB133CFVUWRl5kzg/feBAZfMQpSW5lzv5Sq5/3mZ6klW0yHJKEbZ1BuRwoSHh7uGZGltbUVdXR1ET6fSfWCz2VBVVYXExERkZWUx+SNZEsTefsNl5Ny5c1i0aBEKCwsBAHl5eVi3bh3i4+Nd2wiCgA0bNmD+/PloaWnB7bffjgMHDqChoQEpKSnIzc3F7373ux716bNYLDAYDDCbzaodwFM2M0o47PKfDklGMcqm3gJMqcegUuPWirNnz+Lo0aNoampCcnJyj4ZpaWpqQkNDAwYOHIhhw4b57XIy+RePQZUkgFLhF4hIWko9BpUat5ZYLBYcOXIEtbW1SEpKQnh4eLf7nD9/HjabDVdccQUuu+wyju8nYzwGVXAJmIiIyN86Bo1OT09HbW0tmpubnU+IdsQ07UM/y8eIadoHiHbX4M4AcNVVV3FwZ1IE2d4EQkREJKVLB402WP4fhjW+5Db4u1WXjK/C/j8YjNMxfPhw9O/fX8KIiXzHBJCIiMiL0NBQDBkyBAnNxeh/ZGWn58PtNRhjfwrW5KsQ0V+a8UiJeoOXgImIiLogiA4knnzC+f9Ln/vu34jDjwRlzm8if2ECSERE1JXv5iX3NreUcPGc30QKwQSQiIioKz2Yl5xIKZgAEhERdcXXubyDMOc3kb8wASQiIupKx7zkXVwERlR6UOb8JvIXJoBERERd6ZjzG4C320Akn5ecqIeYABIREXVHRnN+E/kDxwEkIiLyRfpMYMBtspnzm6gvmAASERH5KkQHGCdLHQVRn/ESMBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIR9cDgwYMhCILb8sgjj0gdFhFRj/AuYCKiHnriiSdw3333uR7HxMRIGA0RUc8xASQi6qHY2FiYTCapwyAi6jVeAiYi6qGnn34a/fv3x+jRo/Hkk0/CZrN1ub3VaoXFYnFbiIikxDOAREQ98NBDD+Hqq69Gv3798MUXX2D58uUoKyvDq6++6nWfNWvWYNWqVUGMkoioa4IoiqLUQSiVxWKBwWCA2WxGXFyc1OEQaY6/jsGVK1d2m6Dt3bsXY8aM6bS+oKAAs2bNQl1dHfr37+9xX6vVCqvV6hZ3eno62w4iifD3N88AEhFh4cKFmD17dpfbDB482OP6a6+9FgDwzTffeE0A9Xo99Hp9n2IkIvInJoBEpHmJiYlITEzs1b4HDhwAAKSkpPgzJCKigGICSETko127dmH37t3Izc2FwWDA3r17sWTJEuTl5WHgwIFSh0dE5DMmgEREPtLr9Xj33XexatUqWK1WDBo0CPfddx9+85vfSB0aEVGPMAEkIvLR1Vdfjd27d0sdBhFRn3EcQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY1QxDuCTTz6JLVu2oLS0FOHh4WhoaOh2H1EUsWrVKrz88ss4f/48xo0bhz/96U8YOXJkj9/fbgeKioCqKiAlBcjJAXS6npeDgstuB0pKWG9Kc3G9aXQO915R8/edZVMmNZdNEUQVePzxx8Xnn39ezM/PFw0Gg0/7PPXUU2JsbKxYUFAgHjp0SLzrrrvElJQU0WKx+Py+ZrNZBCCmpppFQHQtaWmiWFDQy8JQUBQUOOuJ9aYsnevNeQyazWapQ+uRjrYjWHGr+fvOsimT1GUL9jEoR6pIADts2LDBpwTQ4XCIJpNJfOqpp1zrWltbRYPBIK5fv97n9+v4Ajl/CX3/JRYE56KGg1SNCgqc9XNxnbHe5M9zvSmzEQ/mLx81f99ZNmWSQ9mYAIqiJvsAlpWVobq6GlOmTHGt0+v1mDRpEnbu3Nnn1xdF58/Fi52nuEk+7HbgoYe+r6OLsd7kq6t6I+/U/H1n2Vg26htNJoDV1dUAAKPR6LbeaDS6nvPEarXCYrG4Ld6IIlBR4ezfQPJRUgKcPu39edabPHVXb+SZmr/vLBvLRn0j2wRw5cqVEAShy2Xfvn19eg9BENwei6LYad3F1qxZA4PB4FrS09O7fY+qqj6FSH7ma32w3uSF9dE7av6+s2wsG/WNbO8CXrhwIWbPnt3lNoMHD+7Va5tMJgDOM4EpKSmu9TU1NZ3OCl5s+fLlyM/Pdz22WCzdJoEXvTzJgK/1wXqTF9ZH76j5+86ysWzUN7JNABMTE5GYmBiQ187IyIDJZML27duRlZUFALDZbCguLsbTTz/tdT+9Xg+9Xu/TewgCkJbmvK2d5CMnx1kvlZWe+6Cw3uSpu3ojz9T8fWfZWDbqG9leAu6J8vJylJaWory8HHa7HaWlpSgtLUVjY6Nrm+HDh2Pz5s0AnJd+Fy9ejNWrV2Pz5s34+uuvMX/+fERFRWHOnDl9jqfjKvLatRzTSG50OuCFF5z/v/RqP+tNvrqqN/JOzd93lo1loz6S+jZkf7j77ru/G47Fffn0009d2wAQN2zY4HrscDjEFStWiCaTSdTr9eLEiRPFQ4cO9eh9vY0DmJ6u7Fv0tcDTGFSsN/njOIC9o+bvO8umTFKXjcPAiKIgiryg0lsWiwUGgwHnzplx8GAcRzNXGI5Cr0zuM4FYMH26AWazGXEKmhako+0IZtxq/r6zbMokZdmkOAblhglgH/ALRCQtpR6DSo2bSC14DKqkDyARERER+Y4JIBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDRGFQngk08+iQkTJiAqKgrx8fE+7TN//nwIguC2XHvttYENVIHsdqCoCHj7bedPu13qiMgXrDciIupKqNQB+IPNZsOdd96J8ePH47XXXvN5v5tvvhkbNmxwPQ4PDw9EeIq1aRPw0EPA6dPfr0tLA154AZg5U7q4qGusNyIi6o4qEsBVq1YBADZu3Nij/fR6PUwmUwAiUr5Nm4BZswBRdF9fWelc//77TCbkiPVGRES+UMUl4N4qKipCcnIyhg4divvuuw81NTVShyQLdrvzDNKlSQTw/brFi3lZUW5Yb0RE5CvNJoDTpk3D3//+d+zYsQN/+MMfsHfvXtxwww2wWq1e97FarbBYLG6LGpWUuF8+vJQoAhUVzu1IPlhvRETkK9kmgCtXrux0k8aly759+3r9+nfddRduvfVWZGZmYsaMGfjoo4/w3//+F1u2bPG6z5o1a2AwGFxLenp6r99fzqqq/LsdBQfrjYiIfCXbPoALFy7E7Nmzu9xm8ODBfnu/lJQUDBo0CCdOnPC6zfLly5Gfn+96bLFYVJkEpqT4dzsKDtYbERH5SrYJYGJiIhITE4P2fvX19aioqEBKF78d9Xo99Hp90GKSSk6O867RykrP/ckEwfl8Tk7wYyPvWG9EROQr2V4C7ony8nKUlpaivLwcdrsdpaWlKC0tRWNjo2ub4cOHY/PmzQCAxsZGLF26FLt27cLJkydRVFSEGTNmIDExEXfccYdUxZANnc45ZAjgTBou1vF47VrndiQfrLe+82VM0fLycsyYMQPR0dFITEzEokWLYLPZghsoEVEfqSIBfPzxx5GVlYUVK1agsbERWVlZyMrKcusjePz4cZjNZgCATqfDoUOHcNttt2Ho0KG4++67MXToUOzatQuxsbFSFUNWZs50DhkyYID7+rQ0DiUiZ6y3vukYU/SXv/ylx+ftdjtuvfVWNDU14fPPP8c777yDgoIC/PrXvw5ypEREfSOIoqeLReQLi8UCg8EAs9mMuLg4qcMJCLvdeddoVZWz71hODs8gKYFW6i1Qx+DGjRuxePFiNDQ0uK3/6KOPMH36dFRUVCA1NRUA8M4772D+/PmoqanxOQYttB1EcsZjUMZ9AEkedDpg8mSpo6CeYr0Fxq5du5CZmelK/gBg6tSpsFqt2L9/P3JzcyWMjojId0wAiYh8VF1dDaPR6LauX79+CA8PR3V1tdf9rFar2xijah1DlIiUQxV9AImIvPH3mKLCpXfYABBF0eP6DloZQ5SIlINnAIlI1fw5pqjJZMKePXvc1p0/fx5tbW2dzgxeTCtjiBKRcjABJCJV8+eYouPHj8eTTz6Jqqoq15ih27Ztg16vR3Z2ttf9tDKGKBEpBxNAIqLvlJeX49y5c25jigLAFVdcgZiYGEyZMgUjRozA3Llz8eyzz+LcuXNYunQp7rvvPs3eSUhEysQEkIjoO48//jj++te/uh5nZWUBAD799FNMnjwZOp0OW7Zswa9+9Stcd911iIyMxJw5c/Dcc89JFTIRUa9wHMA+4DhCRNJS6jGo1LiJ1ILHIO8CJiIiItIcJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGqP4BPDkyZO45557kJGRgcjISFx++eVYsWIFbDZbl/uJooiVK1ciNTUVkZGRmDx5Mg4fPtyrGOx2oKgIePtt50+7vVcvQ0HGelOmi+utpETqaPqmpESd3z81H1ssmzKpuWy9JircRx99JM6fP1/85JNPxG+//Vb88MMPxeTkZPHXv/51l/s99dRTYmxsrFhQUCAeOnRIvOuuu8SUlBTRYrH4/N5ms1kEIKammkVAdC1paaJYUNDXklEgFRQ464n1piyd6815DJrNZqlD65GOtsMZv7q+f2o+tlg2ZfJUNufvbeW1Hf6k+ATQk2eeeUbMyMjw+rzD4RBNJpP41FNPuda1traKBoNBXL9+vc/v46kRB0RREJyLGg4cNSoocNbPxXXGepM/z/WmzEbcU9uhhu+fmo8tlk2ZvJVNqW2HPyn+ErAnZrMZCQkJXp8vKytDdXU1pkyZ4lqn1+sxadIk7Ny5s8/vL4rOn4sX8zSz3NjtwEMPfV9HF2O9yVdX9aYWSv/+qfnYYtnUVzZSQR/AS3377bd48cUXsWDBAq/bVFdXAwCMRqPbeqPR6HrOE6vVCovF4rZ4I4pARYXy+yipTUkJcPq09+dZb/LUXb2phZK/f2o+tlg2dZZN62SbAK5cuRKCIHS57Nu3z22fM2fO4Oabb8add96Je++9t9v3EATB7bEoip3WXWzNmjUwGAyuJT09vdv3qKrqdhMKIl/rg/UmL1qrDyWWV83HFsum7rJpVajUAXizcOFCzJ49u8ttBg8e7Pr/mTNnkJubi/Hjx+Pll1/ucj+TyQTAeSYwJSXFtb6mpqbTWcGLLV++HPn5+a7HFoul2yTwopcnGfC1Plhv8qK1+lBiedV8bLFs6i6bVgmiqPyr45WVlcjNzUV2djbefPNN6HS6LrcXRRGpqalYsmQJfvOb3wAAbDYbkpOT8fTTT+P+++/36X0tFgsMBgMAM4A4t+cEAUhLA8rKgG7CoSCy24HBg4HKSs/9Qlhv8uS93iwADDCbzYiLi/O8swx5azuU/P1T87HFsqmxbMpsO/xJtmcAfXXmzBlMnjwZAwcOxHPPPYfa2lrXcx1n+gBg+PDhWLNmDe644w4IgoDFixdj9erVGDJkCIYMGYLVq1cjKioKc+bM8fm9v8+dO/cFFEVg9WqgqanXRaMAWbMGmDvX83OsN/nyXG/OY09pf8d6azuU/v1T87HFsgU3Jn/xXjZlth1+Jd0NyP6xYcOG74ZT6LxcDIC4YcMG12OHwyGuWLFCNJlMol6vFydOnCgeOnSoR+9dUVHh9b25cOESvKWiosIfzUnQsO3gwkUei9LaDn9SxSVgqTgcDpw5cwaxsbG4cOEC0tPTUVFRobrTyR19HVk2ZdFC2crLyyEIAlJTUxESItt72jq5uO3o6sazvlBz/UuNn21gBePzFUURFy5cUFzb4U+KvwQspZCQEKSlpQH4/o7iuLg41TYILJsyqblsBoNBkWW7uO0INDXXv9T42QZWoD9fZz9c7dJm2ktERESkYUwAiYiIiDSGCaCf6PV6rFixAnq9XupQ/I5lUyaWTdv4GQUOP9vA4ucbHLwJhIiIiEhjeAaQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwA/ezkyZO45557kJGRgcjISFx++eVYsWIFbDab1KH5xZNPPokJEyYgKioK8fHxUofTJy+99BIyMjIQERGB7OxslJSUSB2SX3z22WeYMWMGUlNTIQgCPvjgA6lD8os1a9bgmmuuQWxsLJKTk3H77bfj+PHjUoclS74cp+Xl5ZgxYwaio6ORmJiIRYsWqaadCjS1th3B1F07JYoiVq5cidTUVERGRmLy5Mk4fPiwNMGqFBNAPzt27BgcDgf+8pe/4PDhw/jjH/+I9evX49FHH5U6NL+w2Wy488478ctf/lLqUPrk3XffxeLFi/HYY4/hwIEDyMnJwbRp01BeXi51aH3W1NSEUaNGYd26dVKH4lfFxcV44IEHsHv3bmzfvh3t7e2YMmUKmpQ6S30AdXec2u123HrrrWhqasLnn3+Od955BwUFBfj1r38d5EiVR81tRzB1104988wzeP7557Fu3Trs3bsXJpMJN910Ey5cuBDkSFVMyomIteKZZ54RMzIypA7DrzZs2CAaDAapw+i1sWPHigsWLHBbN3z4cPGRRx6RKKLAACBu3rxZ6jACoqamRgQgFhcXSx2KbHk7Trdu3SqGhISIlZWVrnVvv/22qNfrRbPZHMQIlUcrbUcwXdpOORwO0WQyiU899ZRrXWtrq2gwGMT169dLEKE68QxgEJjNZiQkJEgdBn3HZrNh//79mDJlitv6KVOmYOfOnRJFRT1lNpsBgMdWL+zatQuZmZlITU11rZs6dSqsViv2798vYWTyxrYjOMrKylBdXe32Oev1ekyaNImfsx8xAQywb7/9Fi+++CIWLFggdSj0nbq6OtjtdhiNRrf1RqMR1dXVEkVFPSGKIvLz83H99dcjMzNT6nAUp7q6utP3v1+/fggPD+cx0AW2HcHR8Vnycw4sJoA+WrlyJQRB6HLZt2+f2z5nzpzBzTffjDvvvBP33nuvRJF3rzdlUwNBENwei6LYaR3J08KFC/HVV1/h7bffljqUoPH3cerpu85jwDdsO4KDn3NghUodgFIsXLgQs2fP7nKbwYMHu/5/5swZ5ObmYvz48Xj55ZcDHF3f9LRsSpeYmAidTtfpL8mamppOf3GS/Dz44IMoLCzEZ599hrS0NKnDCRp/Hqcmkwl79uxxW3f+/Hm0tbXxGOgC247gMJlMAJxnAlNSUlzr+Tn7FxNAHyUmJiIxMdGnbSsrK5Gbm4vs7Gxs2LABISHyPtHak7KpQXh4OLKzs7F9+3bccccdrvXbt2/HbbfdJmFk1BVRFPHggw9i8+bNKCoqQkZGhtQhBZU/j9Px48fjySefRFVVlesX7LZt26DX65Gdne2X91Ajth3BkZGRAZPJhO3btyMrKwuAs/9lcXExnn76aYmjUw8mgH525swZTJ48GQMHDsRzzz2H2tpa13Mdf9UoWXl5Oc6dO4fy8nLY7XaUlpYCAK644grExMRIG1wP5OfnY+7cuRgzZozrLG15ebkq+mo2Njbim2++cT0uKytDaWkpEhISMHDgQAkj65sHHngAb731Fj788EPExsa6zsIYDAZERkZKHJ28dHecTpkyBSNGjMDcuXPx7LPP4ty5c1i6dCnuu+8+xMXFSRu8zKm57Qim7tqpxYsXY/Xq1RgyZAiGDBmC1atXIyoqCnPmzJEwapWR8hZkNdqwYYMIwOOiBnfffbfHsn366adSh9Zjf/rTn8RBgwaJ4eHh4tVXX62a4UQ+/fRTj3V09913Sx1an3g7rjZs2CB1aLLjy3F66tQp8dZbbxUjIyPFhIQEceHChWJra6t0QSuIWtuOYOqunXI4HOKKFStEk8kk6vV6ceLEieKhQ4ekDVplBFEUxcCnmUREREQkF/LunEZEREREfscEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcb8/0Z7v7jxjKEtAAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1f00d6b046d449228a592b5ba2e109a4", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYyklEQVR4nO3deXxTZb4/8M9p2qZ72tI2XaEdZBHKJiiLls2xikAdKyiXe1n8zXDFkUFgUAe9V9F7kRl1nDKio6gjOCrjFSqiMle5ylIFZBmKUlal0jbdaEuTbjRtcn5/hEZCF9I2ydk+79crrzYn5yTf5zw5T78953meI4iiKIKIiIiINMNP6gCIiIiIyLeYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGuMvdQBKZrfbUVpaivDwcAiCIHU4RJojiiLq6uqQmJgIPz/l/D/LtoNIWkptOzyJCWAvlJaWIiUlReowiDSvuLgYycnJUofhNrYdRPKgtLbDk5gA9kJ4ePjl34oBRLR7/W9/A7KyfBqSx2zfDsyb1/nrLJs8aa9sFgApVxyLytBV26HkOlIzNR9batZ5vSmz7fAkQRRFUeoglMpiscBgMAAw4+pGXBCA5GSgsBDQ6SQJr8dsNiA1FSgp6fh1lk2etFk2CwADzGYzIiLa/xMmV521HUquIzVT87GlZl3XmzLbDk/S5oVvHxBFoLgYyMuTOpLuy8vrvKEDWDa50nLZ1ELJdaRmaj621Ewr7UZPMQH0srIyqSPoPndjZtnkhWVTD62VV+7UfGypGeuja0wAvSwhQeoIus/dmFk2eWHZ1ENr5ZU7NR9basb66Br7APaC2vsAmkyOSxtXY9nkSZtlU2Y/HvYBVBY1H1tq1nW9KbPt8CSeAfSCtmm9cnKU2RjodMC6dY7fr56ijGWTL62WTS2UXkdqpuZjS8200G70BhNAD0hMdH2enAxs2QJkZ0sTjydkZzvKkJTkupxlkzctlk0t1FBHaqbmY0vNOqs3tbYj3cFLwL3QdhmnpsaMY8ciUFbm6HOQkaGe/wRtNsdIKpZNWbRStogIC2bMUN5lnLa245NPzLBYIlRXR2qm5mNLza6utxEjLIiOVl7b4UlMAHuhrRHX8heISEpKPQaVGjeRWvAY5CVgIiIiIs1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGNUkgHv37sXMmTORmJgIQRCwbdu2LtffvXs3BEFo9zh16pRvAiYiIiKSiL/UAXhKQ0MDRowYgfvvvx/33HOP29udPn0aERERzuexsbHeCI+IiIhINlSTAE6bNg3Tpk3r9nZxcXGIjIz0fEBEREREMqWaS8A9NWrUKCQkJODWW2/Frl27uly3ubkZFovF5UFERESkNJpNABMSErBhwwZs3boVubm5GDRoEG699Vbs3bu3023Wrl0Lg8HgfKSkpPgwYiIiIiLPEERRFKUOwtMEQcCHH36IX/ziF93abubMmRAEAdu3b+/w9ebmZjQ3NzufWywWpKSkwGw2u/QjJCLfsFgsMBgMijsGlRo3kVrwGNTwGcCOjBs3DmfPnu30db1ej4iICJcHERERkdIwAbzC0aNHkZCQIHUYRERERF6lmlHA9fX1+P77753PCwsLkZ+fj+joaPTt2xerVq2CyWTC22+/DQDIyclBamoqhg4dCqvVinfeeQdbt27F1q1bpSoCERERkU+oJgE8fPgwpkyZ4ny+YsUKAMCCBQuwceNGlJWVoaioyPm61WrFypUrYTKZEBwcjKFDh+LTTz/FnXfe6fPYiYiIiHxJlYNAfIWdSImkpdRjUKlxE6kFj0H2ASQiIiLSHCaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hjV3AqOiIjkwWYD8vKAsjIgIQHIyAB0OqmjomthvWkLE0AiIvKY3Fzg4YeBkpKfliUnA+vWAdnZ0sVFXWO9aQ8vARMRkUfk5gKzZrkmEQBgMjmW5+ZKExd1jfWmTUwAiYio12w2xxkkUWz/WtuyZcsc65F8sN60iwkgERH1Wl5e+zNIVxJFoLjYsR7JB+tNu5gAEhFRr5WVeXY98g3Wm3YxASQiol5LSPDseuQbrDftYgJIRES9lpHhGDUqCB2/LghASopjPZIP1pt2MQEkIqJe0+kcU4YA7ZOJtuc5OZxXTm5Yb9rFBJCIiDwiOxvYsgVISnJdnpzsWM755OSJ9aZNnAiaiIg8JjsbuOsu3lFCaVhv2sMEkIiIPEqnAyZPljoK6i7Wm7bwEjAR0RX27t2LmTNnIjExEYIgYNu2bS6vi6KI1atXIzExEcHBwZg8eTIKCgqkCZaIqIeYABIRXaGhoQEjRozA+vXrO3z9ueeew4svvoj169fj0KFDiI+Px2233Ya6ujofR0pE1HO8BExEdIVp06Zh2rRpHb4miiJycnLwxBNPIPtyz/hNmzbBaDTivffewwMPPODLUImIeoxnAImI3FRYWIjy8nJkZmY6l+n1ekyaNAn79u3rdLvm5mZYLBaXBxGRlJgAEhG5qby8HABgNBpdlhuNRudrHVm7di0MBoPzkZKS4tU4iYiuhQkgEVE3CVfNmCuKYrtlV1q1ahXMZrPzUVxc7O0QiYi6xD6ARERuio+PB+A4E5hwxc1RKysr250VvJJer4der/d6fERE7uIZQCIiN6WlpSE+Ph47d+50LrNardizZw8mTJggYWRERN3DM4BERFeor6/H999/73xeWFiI/Px8REdHo2/fvli2bBmeffZZDBgwAAMGDMCzzz6LkJAQzJ07V8KoiYi6hwkgEdEVDh8+jClTpjifr1ixAgCwYMECbNy4EY8++iiamprw61//GhcvXsTYsWPx+eefIzw8XKqQiYi6TRBFUZQ6CKWyWCwwGAwwm82IiIiQOhwizVHqMajUuInUgscg+wASERERaQ4TQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY5gAEhEREWmMahLAvXv3YubMmUhMTIQgCNi2bds1t9mzZw9Gjx6NoKAg/OxnP8Orr77q/UCJiIiIJKaaBLChoQEjRozA+vXr3Vq/sLAQd955JzIyMnD06FE8/vjjWLp0KbZu3erlSImIiIik5S91AJ4ybdo0TJs2ze31X331VfTt2xc5OTkAgOuvvx6HDx/GCy+8gHvuucdLURIRERFJTzVnALtr//79yMzMdFl2++234/Dhw2hpaelwm+bmZlgsFpcHERERkdJoNgEsLy+H0Wh0WWY0GtHa2oqqqqoOt1m7di0MBoPzkZKS4otQiYiIiDxKswkgAAiC4PJcFMUOl7dZtWoVzGaz81FcXOz1GImIiIg8TTV9ALsrPj4e5eXlLssqKyvh7++PPn36dLiNXq+HXq/3RXhEREREXqPZM4Djx4/Hzp07XZZ9/vnnGDNmDAICAiSKioiIiMj7VJMA1tfXIz8/H/n5+QAc07zk5+ejqKgIgOPy7fz5853rL168GOfPn8eKFStw8uRJ/PWvf8Wbb76JlStXShE+ERERkc+o5hLw4cOHMWXKFOfzFStWAAAWLFiAjRs3oqyszJkMAkBaWhp27NiB5cuX4+WXX0ZiYiL+/Oc/cwoYIiIiUj1BbBv5QN1msVhgMBhgNpsREREhdThEmqPUY1CpcROpBY9BFV0CJiIiIiL3MAEkIiIi0hjV9AHUCpsNyMsDysqAhAQgIwPQ6aSOyjNYNmVSc9m8LS8PsFi435SE33dlurreRoyQOiIZEKnHzGazCEA0m80++bytW0UxOVkUgZ8eycmO5UrHsimT1GXz9THoKW1xA2bVfSfUTOrvO/VMR/WWmKjMtsOTOAikF3zZiTQ3F5g1y/HVvVLbTUu2bAGys70agtewbL6PyxPkUDalduRuixswA3DErYbvhJrJ4ftO3ddZvQEWAMprOzyJCWAv+OqPj80GpKYCJSUdvy4IQHIyUFiovEsRLBvL1htqSgABZX8n1Ewu33fqnq7rjQkgB4EoQF5e5w0P4PjPprjYsZ7SsGwsG/2E+02e+H1XpmvVm9YxAVSAsjLPricnLBvLRu1xv8kLv+/KxProGhNABUhI8Ox6ctI+5lYABgArrrGe/Gmr3nq3HrnifpOX9vXxRwAJAKzXWI+kxProGvsA9oKv+wCaTB11ZFV2/5P2ZTsNYPDlVzdCEBaoqGyu1FVvrtgHsGvsA6gsrt93G4B4AFUANgBYxHqTqa7bKfYB5BlABdDpgHXrHL+3jThr0/Y8J0eZDU/7shVc8er9EMUtKirbT9RXbz9Retmkwv0mX1d+34H34Uj+AOBptJ0FZL3JT1ftFDEBVIzsbMc0A0lJrsuTk5U//YBr2QoAtLWiIvz85iAoaId0wfWSdurtJ2oomxS43+QtOxt4/30bdLonAbRlEyZERW1ivclYZ+3U1c+1iJeAe0GKy09qnoXeZgN+/vP7sGfPFoiiHQAgCAICAgLw2WefYfLkydIG2Atqrzepyqb0S8CffGKGxRKhuu+EWr333nv413/91yuWCEhKSsS5c+cQGBgoWVx0be3vBGJBdLTy2g5PYgLYC0r94yNngwYNwpkzZ1yW+fn5Qa/XY9euXRg7dqxEkZEcKfUYVGrcWmaz2TBo0CCcO3cOV//Z3LBhAxYtWiRRZNQTPAZ5CZhkpKWlBefOnWu33G63o7m5GbfddhuOHTsmQWREpHXvv/8+fvjhh3bJnyAIePrpp2G1WjvZkkiemACSbJw9exatra0dvma329HY2IgpU6bg1KlTPo6MiLTMZrPhySefhNDBSAJRFGEymbBp0yYJIiPqOSaAJBvHjx/v8nWbzQaLxYLJkyejsLDQR1ERkdZ1dvavDc8CkhIxASTZKCgogL+/f5fr2Gw2VFRUYM6cOT6Kioi0rKuzf214FpCUiAkgycbx48dht9s7fK0tMQwMDMT06dPx5JNPdvle5eXlWLp0aafvR0Tkjmud/WvT2VlAtkUkV12fbiHyofz8fJdG0t/fH62trQgICMC8efNw11134ec//zlCQkLabbthwwa89957LstOnz6NQYMG4aGHHvJ67ESkTmvXrgUAl6sTdrsddru93TKTyYQHH3wQP/zwg8t7sC0iOeI0ML3AYeSeY7VaERwc7EwABwwYgHvuuQd1dXV44403UFNT02Hi15mamhrMnz8f77zzDiIjI70UNUlNqcegUuPWoj/96U/t+iefOHECBw8exMKFC12W+/n54eGHH0Z6erpzGdsieeIxyASwV/gF8hxRFPHoo48iMTERM2fOxHXXXQcAOHPmDAYNGoSPPvoIWVlZbr+f1WqFKIrQ6/XeCplkQKnHoFLjJof169dj5cqVuHTp0jXXZVskTzwGeQmYZEIQBDz//PPtlg8cOBCDBg3C9u3bu5UAclZ+IpIDtkUkVxwEQrKXlZWFjz/++JqdqJ955hkMGzYMoaGhMBqNePDBB9HS0uKjKImIHB577DFMmzZN6jCIusQEkGQvKysLlZWVOHjwYKfriKIIm82G1157DSdOnMDGjRuxZcsWvPHGGz6MlIjIMaBtxIgRUodB1CUmgCR748ePR58+fbB9+/ZO12mbgmHChAno168fpk2bhttuuw2nTp1CcXExJk+ejCFDhmD48OH44IMPfBg9EWnNsWPHMHLkSKnDIOoSE0CSPZ1OhxkzZnSZAJ4/fx5LlixBeno6oqKiEBYWhv/5n/9BcnIy/P39kZOTgxMnTuD//u//sHz5cjQ0NPiwBESkFeXl5aioqIDdbsfEiRMREhKCMWPG8D7mJDtMAEkRsrKyUFBQ0G5+LQCoqqrCTTfdhKqqKrz44ov46quvsH//fuh0OowcORIJCQnO/8bj4uIQHR2NmpoaH5eAiLTg6NGjAICcnBw8++yzOHz4MMLDw3n3IpIdJoCkCJmZmQgMDMTHH3/c7rUdO3agtbUVmzdvRmZmJoYOHYq9e/fCarW2uwxz+PBh2O12pKSk+ChyItKS/Px8BAUFYdu2bbjlllswZMgQrFmzht1RSHaYAJIihIWF4dZbb+3wMnB0dDQsFgu2b9+Os2fP4sUXX8Tq1auRlJSE2NhY53rV1dWYP38+NmzY4MvQiUhD8vPzce+99yIxMdG5LDQ0FIBjomh2RyG5YAJIinHXXXdh7969uHjxosvy6dOn45e//CXmzZuHW265BSaTCffee6/L2b/m5mbcfffdWLVqFSZMmODjyIlIK/Lz89tdefjnP/+J+Ph4JCYmsjsKyQYTQFKMGTNmwGaz4R//+IfLckEQ8Oqrr8JisaCiogJ//OMf8fLLL+OTTz4B4JgiZuHChZg6dSrmzZsnReikIqtXr4YgCC6P+Ph4qcMiGWhsbMT3338Pm83mXGa32/HSSy9h4cKFEATBuZzdUUhqTABJMZKSkjBmzJguRwN35Ouvv8b777+Pbdu2YeTIkRg5ciS+++47wG4DKnYDP252/LTbrvVWRACAoUOHoqyszPn47rvvpA6JZODYsWPQ6XR46623cPDgQZw5cwb33nsvGhoa8PjjjzvXY3cUkgPeCo4UJSsrCy+88AKsVqvbt1i65ZZb2t9FpDgX2H4n0Fjy07KQZGD0OiAl24MRkxr5+/vzrB+1c+zYMQwcOBBPPfUU7rnnHtTU1CArKwv79u1DeHg4AHZHIfngGUBSlKysLFgsFuzZs6fnb1KcC+TNck3+AKDR5FhenNu7IEn1zp49i8TERKSlpWHOnDk4d+5cl+s3NzfDYrG4PEh9Fi9ejOPHj2P27NkoLi5GQ0MDNm/ejD59+gBgdxSSFyaApCjDhw9H3759u30Z2MluA448DEDs4MXLy44s4+Vg6tTYsWPx9ttv47PPPsPrr7+O8vJyTJgwAdXV1Z1us3btWhgMBueD/b60qdPuKEQSYAJIiiIIArKysrB9+3aIYkdJ3DVcyGt/5s+FCDQWO9Yj6sC0adNwzz33YNiwYfj5z3+OTz/9FACwadOmTrdZtWoVzGaz81FcXOyrcElG2rqj5OfnOx/Dhg2TOizSKCaApDhZWVkoKirCt99+2/2Nm8o8ux5pXmhoKIYNG4azZ892uo5er0dERITLg4hISkwASXEmTZqE8PDwnl0GDk7w7Hqkec3NzTh58iQSEvidISLlYAJIihMYGIhp06b1LAGMzYA9KLHDHoAAIEIAQlKA2IxexUjqtXLlSuzZsweFhYX45ptvMGvWLFgsFixYsEDq0IiI3MYEkBQpKysLhw8fhslk6tZ2DU2XcDZiCYD2w0Ccz0fnAH663oZIKlVSUoJ/+Zd/waBBg5CdnY3AwEAcOHAA/fr1kzo0IiK3qSoBfOWVV5CWloagoCCMHj0aeXmdd+TfvXt3u9n8BUHAqVOnfBgx9dS0adOg0+mcd/twx6VLl3DixAmcaUrHDwl/QIt/nMvrzX6xyA97AqW6cZ4Ol1Tk73//O0pLS2G1WmEymbB161YMGTJE6rCIiLpFNRNBv//++1i2bBleeeUV3HzzzXjttdcwbdo0nDhxAn379u10u9OnT7t0yI6NjfVFuNRL0dHRyMjIwPbt2/HAAw9cc32r1YoTJ06gvLwc8fHxsOiScDxiCsIajyLAVoUWXQzqQ0bhYq0FVQUF8Pf3R1xc3DXfl4iISIlUcwbwxRdfxC9/+Uv86le/wvXXX4+cnBykpKTgL3/5S5fbxcXFIT4+3vnQ6XjpTymysrLwxRdfoL6+vsv1Wltbcfr0aZSUlCAuLu6nOhZ0qA8dg4sRd6A+dAwg6BAVFQVRFFFQUMCbtBMRkWqpIgG0Wq04cuQIMjMzXZZnZmZi3759XW47atQoJCQk4NZbb8WuXbu6XJez+ctLVlYWmpubsXPnzk7XsdlsOHv2LAoLCxEXF4eAgIBrvm+fPn3Q1NSE48ePs46JiEiVVJEAVlVVwWazwWg0uiw3Go0oLy/vcJuEhARs2LABW7duRW5uLgYNGoRbb70Ve/fu7fRzOJu/vPTv3x9Dhw7tdDSwKIo4d+4cfvjhB/Tp08ftewcLggCj0Yi6ujocP34cDQ0NngybiIhIcqrpAwg4/nBfSRTFdsvaDBo0CIMGDXI+Hz9+PIqLi/HCCy9g4sSJHW6zatUqrFixwvncYrEwCZRYVlYWXn/9ddhsNpfL96Io4scff8SZM2dgMBgQHBzcrfdtSwLLyspQUFCAYcOGdfs9iIiI5EoVZwBjYmKg0+nane2rrKxsd1awK+PGjeNs/gqTlZWFqqoqHDhwwGW5yWTCqVOnEBYWhtDQ0B69t5+fH+Lj41FRUYETJ07AarV6ImQi1bPZgN27gc2bHT9tcri1tt0GVOwGftzs+CmH+33LLCZZ1ht5jSoSwMDAQIwePbpdX7CdO3diwoQJbr/P0aNHOZu/wtx0002Ii4vDRx995FxWUVGBkydPQq/XIzw8vFfvr9PpYDQaYTKZcPLkSbS2tvY2ZCJVy80FUlOBKVOAuXMdP1NTHcslU5wLbE8FvpgC7Jvr+Lk91bGcMQGQab2RV6kiAQSAFStW4I033sBf//pXnDx5EsuXL0dRUREWL14MwHH5dv78+c71c3JysG3bNpw9exYFBQVYtWoVtm7diiVLlkhVBOoBPz8/zJw509kPsKqqCgUFBQCAyMhIj3xG25Qw58+fx5kzZ2Djv8VEHcrNBWbNAkpKXJebTI7lkiQTxblA3iyg8aqgGk2O5VIkXDKLSZb1Rl6nmj6A9913H6qrq/HMM8+grKwM6enp2LFjh3N2/rKyMhQVFTnXt1qtWLlyJUwmE4KDgzF06FB8+umnuPPOO6UqAvVQVlYW3nzzTRw6dAiNjY2wWq0en8MvMDAQsbGx+OGHH+Dv74/rrrsOfn6q+f+JqNdsNuDhhwGxg/ssiiIgCMCyZcBddwE+m23LbgOOPIz29/3B5WUCcGQZkHSX7+7+I7OYZFlv5BOCKHZU7eQOi8UCg8EAs9nM/oASamxsRJ8+ffD//t//w5133on4+PhOB/944rNqa2sxZMgQpKWlee1zyD1KPQaVGndXdu92XDa8ll27gMmTvR3NZRW7HZdWr8F84za0Rt/i9tu+8cYbeOqpp7p9K0oA8K/5CoZDv7j2irfuAoyTu/3+3SXLevMBNR6D3aWaM4CkbWPGjMHu3btx//33ezUpCwkJgd1ux6lTpxAQEMBR4ESXlZV5dj2PaHLvw84d/xqlge7/OSwsLITdbm83+MwdidavMcqdFd2Mvbd+qo9aANsAJAP4eRfrkVowASRFa25uRkFBAUaOHIlXXnkFZrMZUVFRXv3MsLAw2Gw2nDhxAv7+/hw4RATA3cPAp4dLsHsfFhLTH/Eh8W6/bUREBARBQHy8+9s4P6uxP1Dsxopuxt4Toijihx9+wNdff40tW/YB2APg9OVXrwPQfjYMNnPqwwSQFKulpQUnT55EWVkZ7rzzTqxfvx5ff/01ZsyY4fXPNhgMqKmpcSaBvIc0aV1GBpCc7Bg40FHHIkFwvJ6R4cOgYjOAkGTH4IoO+tyJAFr8jWgIuaFbVw7a1u3J1YaGkBtg9Y9DQGslOt5acMQc67kd1dTUhCNHjmDfvn346quvsHfvXpjNZgCOQW7AlbMb/ME1GinqjXyCvdhJkWw2G06fPo2ioiIYjUYYjUakp6d3eScXT4uOjkZrayuOHz+Oixcv+uxzieRIpwPWrXP8fnVe1PY8J8fHAwn8dMDodRDRPv1zPBdQYlwJCD4MStChxPjIFTG4vOj4MTrHIwNAPvjgA4wZMwZhYWHIyMjAY489ho8//tiZ/AG4amqr6wD84qdopKo38gkmgKQ4drvdeX/f2NhY5/19J02ahH379qG5udlnscTExPC+wUSXZWcDW7YASUmuy5OTHcuzsyUIKiUbtemv45LQx2Vxi78RhUnPoTZ8qs9Dqg2fisKk59Hi7zpbgRicBGRsAVI8s6OOHTuGI0eOwG63u7V+ZOSjuDItkLTeyOt4CZgUpa3vyvfff4/o6Gjo9XrnaxMnTsTLL7+MI0eOdGsC8N4QBAFxcXEoLy9HQUEBhg8f3uM7jxCpQXa2Y8qQvDzHwIGEBMflQ6nOIImiiB+sI1AVuQk/CzMhwFaFFl0M6kNG+fbM31Vqw6eiNmwSwhqPQtdSiUqLDj8btwDG+ESPfcaTTz6J3bt348CBA9ecvzQqKgpFRf+Gw4flUW/kfUwASVHOnz+Ps2fPdnh/3/79+yMpKQl79uzxWQII/HTLuLKyMpw4cQLDhg1DUFCQzz6fSG50OvlMGVJbW4uqqioYIqNRr5fZSAZBh/rQMQCAi5fKUVZeiThjgsdmMggMDMSHH36IUaNGoby8vNMk0M/PD0uXLkVYWLBs6o28j5eASTHa7u8bEhLS4Vk2QRAwadIk7N27F76e3vLqJJD3DSaSh4qKCrS0tLhcLZAjg8GACxcuoK6uzqPvGxsbix07dnS5jk6nw69//WuPfi7JHxNAUoTKykqcOHECAQEBXU7aOXHiRFRWVuLUqVM+jM6h7b7BJSUlOHXqFO8bTCSxS5cuoaysrNf3BPeF4OBgXLp0CRcuXPD4eyclJbW7YtLG398f8+fP9/jdk0j+mACS7FVXV+P48eMQRfGac/yNHDkS4eHhPh0NfKWAgADExcXhxx9/5H2DiSRWVVWF+vp6hIWFSR2KW0JDQ2EymTx6BaGgoAA33XQTGhoaMHHixHavt7a2YsWKFR77PFIOJoAkH3ab49ZNP252/LTbYDabUVBQgObmZsTExFzzLQICAnDzzTdjz549Xg+3M4GBgYiJicG5c+dw7tw5x+XoDspGRN5jt9tRWlqKwMBAxdy3Ozw8HBaLBdXV1R55v48//hjjxo1DYGAgRFHEokWL0KfPT6Oh/fz8kJmZiSFDhnjk80hZlHFUkPoV5wLbUx337dw3F/hiCuzb+qH04Muoq6vr1uWJSZMm4fTp0yiT8N5FQUFBiIyMxJkzZ1B55FWIH6W6lA3bUx1lJiKvqK2tRXV1NQwGg9ShuE2n00Gn06G0tLRX/ZhFUcTatWtx11134bbbbsOaNWsAAH/+85+xefNm9O/fH4AjSX7kkUc8EjspDxNAkl5xLpA3C2gscVksXDJh8IUnMCikoFuj4saPHw+dToe8vDxPR9otISEhSNX9E3Fnfg00uZYNjSZHmZkEEnlFRUUFbDYbAgMDpQ6lWwwGA6qqqlwma+6OxsZGzJ07F48//jiefPJJbNmyBadPn0ZQUBC2bduG2267DV988YWzX+TQoUNx9913IyoqCrNmzfJkUUjmmACStOw24MjD6GJOfPS98CIgun/JNDw8HGPGjJH0MjAAQLRhgGU9AHRwy6fL5T2yjJeDiTysqalJMYM/rhYUFASr1dqjwSDFxcXIyMjA9u3b8cEHH2D16tXw8/NDfn4+7r33XiQmOuYY7NevHz744AMAjrOFS5cuxdtvv+3RcpD8MQEkaV3Ia3fm70oCgMDWCoQ1Hu3W206cOBGHDx9GfX19LwPsubDGowjs9H6fACACjcWOfUBEHtM2+EOpk7KHh4fDZDJ1665G+/fvx4033oiqqip8/fXXLmfz8vPzMXLkSJf1S0tLER8fj4SEBEyZMkWRyTL1DhNAklaTe/30AmxV3XrbiRMnorW1Ffv37+9JVB7hdsxu7gMiujabzQaTyYTg4GDFDP64WlhYGOrq6lBV5V4bsnHjRkyePBkDBgzAoUOHXJK9xsZGfP/99y4zEtjtdrz00ktYuHChxyadJuVR5tFB6hHs3sz8LbprjwC+UmJiIgYMGCDZdDBAN2J2cx8Q0bVdvHgRNTU1Xc4XKnd+fn4IDAxEaWlpl/fxbZvC5f7778f8+fPxxRdftBswd+zYMeh0Orz11ls4ePAgzpw5g3vvvRcNDQ14/PHHvV0UkjEmgCSt2AwgJBkd9ZIDHD3lrP5Gx307u2nixIn46quvJJuQuT5kFKz+cR30bmwjACEpjn1ARB5RUVEBURQREBAgdSi9YjAYUF1d3elgkIsXL2L69On485//jJdeegkbNmzocMDLsWPHMHDgQKxevRr33HMPRo0ahYCAAOzbt4+XfTWOCSBJy08HjF53+YlrEiheXlZiXNmjm7ZPmjQJFosFx44d622UPSPoUGJ0TLHQ6RCX0TmOfUBEvdbQ0IDy8nJVJDaBgYFoaWlBRUVFu9dOnTqFsWPH4vDhw/j888+xZMmSTi/lLl68GMePH8fs2bNRXFyMhoYGbN682WU+QNImJoAkvZRsIGMLEJLksrjF34jCpOdQGz61R297/fXXIzY2VtLRwLXhU1GY9Dxa/K+axzAk2VHmlGxpAiNSoaqqKjQ2Nip28MfVIiIiUFZWhqamJueyHTt2YOzYsQgICMDBgwcxdWrP2scr3X777Zg9ezZ27NiB5ORkHDp0qNfvSfLnL3UARAAciVDSXag58xF+PLkfYTEDHJd9e3Dmr42fnx8mTpyIPXv2YPny5ZJ1dq4Nn4rasEkQK/bCENiI64ZlOC778swfkcfYbDaUlJQgODhYNQMbQkNDUVpaiurqaiQlJeGFF17AY489hhkzZuCdd97xWD/Hzz77zCPvQ8rCM4AkH346tETdjNKASagPHdOr5K/NxIkTUVJSgh9//LH38fWGoMPFwBGoDs8EjJOZ/BF5WHV1NWpraxU9+ONqfn5+CAoKwrlz5zBv3jw8+uijWLVqFbZt26aqcpI0eAaQVO3GG29EUFAQ9uzZg7S0NKnDISIvKS8vBwD4+6vrz5rVasVvfvMbFBUVYfPmzZgzZ47UIZFK8AwgqZper8f48eMlnQ6GiLyrvr4eFRUVirrvrzuOHz+O+++/H9XV1Xj77beZ/JFHMQEk1Zs4cSK+/fZbVFdXSx0KEXlBZWUlLl26hODgYKlD8ZgdO3Zg0aJFSExMxOuvv44+ffqgsbFR6rBIRZgAkuplZDjm2fvqq68kjoSIPK21tRWlpaUICQlRxeAPm82GdevW4T//8z9x++2347XXXkPfvn3R0NDg9p1BiNzBBJBULyoqCsOHD5d0Ohgi8g41Df6oq6vD8uXL8c477+C3v/0tnnrqKQQGBkIQBAQFBaGkpMTllm5EvcEEkDRh0qRJOHDgAC5duiR1KETkIaIooqysDH5+ftDplD2y/vz581iwYAG+/fZb/PnPf8bcuXNdzmhGRESgtrYWFy9elDBKUhMmgKQJEydORHNzMw4ePCh1KETkIXV1dbhw4YLiB3/s378fCxYsgCAIePvttzF+/Ph26wQEBDgTXiJPYAJImpCamoq+fftyNDCRily4cAFNTU2KHfwhiiLeffddLF26FMOHD8fGjRvRt2/fTtePiIhARUUFGhoafBglqZW6Jkwi6oQgCJg4cSL+8Y9/wG63w8+P//sQKZnVaoXJZEJYWJjUofSI1WrFs88+i48//hgLFizAQw89dM3L2CEhIbh48SKqqqpUc7s7kg7/CpJmTJo0CdXV1Thx4oTUoRBRL1VXV8NisSA8PFzqULqtqqoKDzzwAD777DP813/9F5YuXepWH0ZBEBASEoKSkhK0trb6IFJSMyaApBnDhw+HwWDgZWAihRNFEaWlpdDpdIob/HHixAnMmzcPpaWleP3113HnnXd2a/u2wSA1NTVeipC0ggkgaYa/vz9uueUWTgdDpHBmsxlVVVWKG/zx2Wef4Ve/+hViY2PxzjvvID09vdvv0Xaru9LSUk+HRxrDBJA0ZdKkSfj+++9hMpmkDoWIeujChQuwWq0ICgqSOhS32O12rF+/Ho8//jhuvfVWbNiwAbGxsT1+P4PBgAsXLqCurs6DUZLWMAEkTRk3bhwCAgJ4GZhIoZqbm2EymRTT96++vh6//e1vsXHjRjz88MN45plnep24hoSEoKmpCRcuXPBQlKRFTABJU0JDQ3HjjTcyASRSqOrqatTV1Sli9G9xcTHuv/9+HDlyBDk5OZg/f77HblcXGhoKk8mElpYWj7wfaQ8TQNKciRMn4siRI7x8QqQwdrsdJpMJgYGBsp/K6eDBg5g/fz5aW1uxadMm3HLLLR59/4iICJjNZlRXV3v0fUk75H0EEXnBxIkTYbPZ8PXXX0sdSo+Ul5dj6dKlsNvtUodC5FNtCY+c7/sriiL+/ve/Y8mSJRgyZAg2bdqEtLQ0j3+OTqeDn58fysrKIIqix9+f1I8JIGmO0WjE4MGDFXMZeMOGDRg0aBBiYmJwww03YM6cOfjggw/wl7/8RerQiHyqoqICra2t0Ov1UofSoZaWFvz3f/83nn/+ecyZMwfr1q3zarLKwSDUG7wTiAfYbMDu3UBZGZCQAGRkAAqbmqpTNhuQl6e+sk2aNAnvvvsuDhwIRG1tKGJiWjBqVL0sy/bv//7v2Lt3L959911UV1djypQp6N+/P/71X/+1023UWm+Aa9lkfCLILXl5gMWivjryKLsNuJAHq+U8mn6sQXjYCEnDsdmAoiI97Hbg8OEwZ7tRU1ODRx55BAUFBXjqqaeQlZXl9ViCg4NRU1ODivJSRDT9E2gqA4ITgNgMwI9fpitd3SaOkPZrJAuqOgP4yiuvIC0tDUFBQRg9ejTy8vK6XH/Pnj0YPXo0goKC8LOf/Qyvvvpqjz43PR2YMgWYO9fxMzUVyM3t0VvJSm6uoyxqLFtw8HTU19fjoYcq8MQTaXjggYGYMSMdX34ZKXVonWrr87Rnzx58/fXXuO+++/DNN9+0W0/N9XZ12WbMkC6W7rY3HZkxQ3115FHFucD2VOCLKQg8tBCjalZgfOW/ILLuS0nC+fLLSMyYkY6//z0Ora2Cs934299K8W//9m8oLi7Ghg0bfJL8tUnV/RMp/5wIfDEF2DfX8XN7qmPfEYCO28QeTMGoOqpJAN9//30sW7YMTzzxBI4ePYqMjAxMmzYNRUVFHa5fWFiIO++8ExkZGTh69Cgef/xxLF26FFu3bu32Z189H6fJBMyapezGPDfXUYaSEtflaijbl19GIidnOoBkANudyysrA/DII2myTQLbRg+29f374osvMG7cONx+++3ORFDN9dZZ2aTQ3fbGHWqoI48qzgXyZgGNrhUe0FqJNNMjPk8Cv/wyEo88kobKygCX5ZWV25CTcy8CAmLxt7/9DcOHD/dZTJF1XyK9djX09qumg2k0OfYdk8BO2w3Oow0Iokp6j44dOxY33HCDS7+o66+/Hr/4xS+wdu3adus/9thj2L59O06ePOlctnjxYhw7dgz79+936zMtFsvlmejNAFyvRQkCkJwMFBYq77KOzeb4b6mzP7TeLFtFRQUOHTqExMREz77xZTYbMGNG+uVGfAmAHQDOAWibmkGE0diCjz8+7vGy1dTUIDw8HGPHju32tiNGjMC3337b4Ws6nQ42mw2ZmZk4evQZXLjQ8fur8ztpAWCA2Wz26cCA7rY3V+us7VByHXmU3eY4i9XYcSMkAmjxN+J4/48Bwfs7yrXdEACsB7ASwKMA/gvAHMTF/QWffHLOd/Um2pD+wwwEtFai44llBCAkGcgq1Ozl4K7/lknTdsiJKvoAWq1WHDlyBL/73e9clmdmZmLfvn0dbrN//35kZma6LLv99tvx5ptvoqWlBQEBAe22aW5uRnNzs/O5xWLpNCZRBIqLHX0OJk/uRmFkIC+v67MsSi7b0aNhqKwMvPwsC8Arlx+pznUqKoC33zbhuuuaPPrZ9fX1CA4ORlVVVbe2E0URZrMZgiB0ONrPZrMBAP7v//4PdvvnAEYBWANg2lXvo9x6u9Z30pd60t6423YouY486kJep8kf4EjBAlsrENZ4FPWhY7wejmu7AQBWAC0A/hvAswB+h8pKAUePhmHMmHqvxwMAYY1HEdha2cUaItBY7NiXxsk+iUlu5NRuyJEqEsCqqirYbDYYjUaX5UajEeXl5R1uU15e3uH6ra2tqKqqQkJCQrtt1q5di6effrpbsZWVdWt1WXA3ZiWWrarqysR+MoC2M4Gu1q/3UUAe9NO0MEcBLADQ8R8HJdabnGLuSXvT3bZDTuWVRJN7OyDA1r1/pnrKtd0AHGduRQAfAZjZxXre43bZ3dyXaqT54+gaVJEAtrl6hnVRFLucdb2j9Tta3mbVqlVYsWKF87nFYkFKSkqXMXWQR8qeuzErsWwxMVfOmq8HUA2god16zz33A0aMaL+8N2praxEWFoYbbrihW9sVFxdjzpw5OHfunBtrhwBYDMelqY4psd7kGHN32pvuth1yLK9PBbu3A1p0MV4OxMG13QCA1QCeBKC7xnre43bZ3dyXaqT54+gaVJEAxsTEQKfTtfvvu7Kyst1/6W3i4+M7XN/f3x99+vTpcBu9Xu/2/FNtfXkyMtxaXVYyMhyxm0yOS1JXU3LZRo2qR1yc9Yq+POGXH20cfQAnTy6FThfs0c/28/NDeHg44uPj3d6mqqoKM2bMQHBwMPz8/Dqc/NnPzw+BgYFITU2DxfI1ysqiVFdv1/pO+lJP2ht32w4l15FHxWY4+q81muA40+aqrQ9gfcgon4TTvt0Q4Jr8OdqNUaN8c/kXAOpDRsHqH3ftPoCx2v0yyandkCNVjAIODAzE6NGjsXPnTpflO3fuxIQJEzrcZvz48e3W//zzzzFmzJgO+/91R9tJgJwcZXbk1umAdescv199QkMNZXvkkbZOIVe3CCIEAVi5skQ2ZduxYwdaW1tx8803tzu7JAgCQkND8R//8R/4n//5HwwdOgQvvRR1+TVcta7jp5LrrbPvpK/1pL1xh9LryKP8dMDoyxV+VXpz+ToNSowrfTIABJBpuyHoUGJ8pMOInPtsdI5mB4AA8mo35EgVCSAArFixAm+88Qb++te/4uTJk1i+fDmKioqwePFiAI5LMPPnz3euv3jxYpw/fx4rVqzAyZMn8de//hVvvvkmVq5c2e3PvnrAanIysGULkJ3dqyJJKjvbUYakJNflaijb1Km1eP75QsTFuV6uMRpb8NxzhZg6tVaawDoQHR0Ni8WCkpISl7N/giDgP/7jP1BUVISnn34a4eGOs5hqrrfOyiaFa7U3PaGGOvKolGwgYwsQ4lrhVn8jCpOeQ234VJ+GI8d2ozZ8Kr6NeBJWXazrCyHJjn2Xwi9TZ+2GHNoRqalmGhjAMTHrc889h7KyMqSnp+NPf/oTJk6cCABYuHAhfvzxR+zevdu5/p49e7B8+XIUFBQgMTERjz32WLca8LapHGpqzDh2LEL1d13wRdm8PQ3MlWw2x+i+qqoAn9wJpCfTwIiiiAcffBBvvvkmWltb4e/vj5EjRyI6OhqfffaZc73du3dj/fr12LJlCwAt3QnEghkzpJnKoav25lra2o5PPjHDYolQXR151OU7gbTWF+PEuYu4IAxGVLRv+v51xNftRldEUYTJZMKI4enoF1zEO4F0of2dQCyIjtb2NDCqSgB9ra0R1/IXyNN8mQD6Wm/mAfzyyy/xzTff4IEHHkB0dHS7169OALVCqcegUuOW2rlz53D8+HEkJydLHYos1NfXo6WlBePGjUNoaKjU4SgKj0GVDAIhUrupU6di6tSOL3ndfvvt+Oc//4mGhgYkJyfjww8/xI033ujjCIm8LzY2FsHBwWhsbERISIjU4Uiurq4OqampTP6oR5gAEinclZeCidQsPDwcsbGxMJlMmk8AW1paIAhCpyPPia5FNYNAiIhI/dq6h7S2tkocibQsFguio6MRFRUldSikUEwAiYhIMaKjoxEZGdnlrTjVzm63o6mpCUlJSdBx5BD1EBNAIiJSDH9/fyQlJaGxsbHDe2NrQUNDA8LCwhATI91oaFI+JoBERKQosbGxCAkJQWNjo9ShSKKurg4JCQkIDvbs3YpIW5gAEhGRooSGhsJoNGryMrDVaoVOp+PgD+o1JoBERKQ4CQkJEAQBLS0t115ZRcxmM/r06YPIyEipQyGFYwJIRESKExUVpbnBIHa7HVarFYmJifDz459v6h1+g4iISHF0Oh2Sk5Nx6dIlzQwGqa+v5+AP8hgmgEREpEgxMTEIDQ1FQ0OD1KH4RNvgj6CgIKlDIRVgAkhERIoUEhKC+Ph4TVwGbm5uRkBAAAd/kMcwASQiIsUyGo3Q6XSqHwxiNpsRExPDwR/kMUwAiYhIsaKiohAVFQWz2Sx1KF5jt9vR0tKCxMRECIIgdTikEkwAiYhIsfz8/JyDQex2u9TheEVdXR0iIiI4+IM8igkgEREpWp8+fRAeHq7awSD19fVITExEYGCg1KGQijABJCIiRQsODkZCQoIqB4M0NTUhMDCQgz/I45gAEhGR4hmNRgQEBMBqtUodikdZLBbExcUhPDxc6lBIZZgAknzYbQi4+DUSW/YgrOEwINqkjshzRBuirMfQp+5zoGI3YFdR2YhkwGAwoE+fPqoaDGKz2WCz2Zy3vSPyJH+pAyACABTnAkceRnRjCaIBoBiw+sehxPgIasOnSh1dr0TWfYnkiucR2FrpWPAFgJBkYPQ6ICVb0tiI1MLPzw+JiYkoLy+H3W5Xxa3SLBYLIiIi0KdPH6lDIRVS/hFCylecC+TNAhpLXBYHtFYizfQIIuu+lCiw3ous+xJppkcQ0Jb8tWk0OcpcnCtNYEQqFBMTg/DwcNTX10sdikc0NjYiOTkZAQEBUodCKsQEkKRltwFHHgbQ/l6ebRc8kiteUOblYNGG5IrnAfxUlitedPw4soyXg4k8RK/XIzExEXV1dVKH0muNjY0ICgpCbGys1KGQSjEBJGldyGt35u9KAoDA1gqENR71XUweEtZ4FIGtlR0kf21EoLHYsQ+IyCPi4uIQGBiIS5cuSR1Kr5jNZsTGxnLwB3kNE0CSVlOZW6sF2Kq8HIjnuR2zm/uAiK7NYDAgJiZG0YNBWltbAQCJiYkSR0JqxgSQpBWc4NZqLTrlzYDvdsxu7gMiujZBEJCYmOgcQatEFosFkZGRiI6OljoUUjEmgCSt2AzHiNhOLpSKAKz+RtSHjPJpWJ5QHzIKVv+4Dno3thGAkBTHPiAij+nTpw8iIiIU2RdQFEU0NjYiKSkJ/v6cqIO8hwkgSctP55gOBcDVSaB4+fn5mOWAoPNxYB4g6HAyZDGAn8pyxYuOH6NzHPuAiDwmMDAQSUlJirw1XGNjI0JCQjj4g7yOCSBJLyUbyNgChCS5Lg9OwrnE53CqYYgiL+XU1taiUn8LzMPehHB12UKSHWXmPIBEXhEbGwu9Xo+mpiapQ+kWi8UCo9GI0NBQqUMhleP5ZZKHlGwg6S7HiNimMiA4AUJsBhKbraj+7juUl5cjISFBMZO71tXVobm5GcOGDUNk8m3A0AUuZUNsBs/8EXlReHg4YmNjUVZWhuDgYKnDcUtraysEQUB8fLzUoZAGMAEk+fDTAcbJLouCg4MxdOhQtLS0oKKiAvHx8bK/JVJDQwPq6+sxdOhQJCcnOxZ2UDYi8p62wSAmkwk2mw06nfz/4TKbzRz8QT6jjNMppGmhoaEYNmwYwsPDUVlZee0NJNTU1ASz2YyBAweiX79+UodDpGnR0dEwGAywWCxSh3JNoiji0qVLSEpKUkSySsrHBJAUISIiAunp6QgKCkJVlTznBLRaraipqUH//v3Rv39/2Z+pJFK7gIAAJCUlobGxEaLY+Xh8OWhoaEBoaCgHf5DPMAEkxYiOjsbQoUMhCAIuXrwodTguWlpaUFlZidTUVAwcOFAxfRWJ1C4uLg5BQUGyHwxisVgQHx+PkJAQqUMhjWAfQFKUuLg4DB06FN9++y0sFgsiIiKkDgk2mw0VFRVISUnBoEGDePmGNM9mA/LygLIyICEByMgApDoswsLCEBcXh5Li84gTTyDAVoUWXYxjblGpp5cSbQhrPAq/5gq02AMRF3ujpOHIqd7I+5gAkuIkJiaipaUFBQUF8PPzQ1hYmGSx2O125wjl66+/HoGBgZLFQiQHubnAww8DJVfc4js5GVi3DsiWaNajVN0/MbDuUQRbfuo+YvWPQ4nxEdSGT5Ukpsi6L5Fc8TwCWx39mq8DIH61HhizTpLpoeRYb+RdvE5FitS3b18MGjQIFotFsks7drsdZWVliImJwdChQxEUFCRJHERykZsLzJrlmkQAgMnkWJ6bK0FQxbmI+PaXCBJd+w4HtFYizfQIIuu+9HlIkXVfIs30CAJaXQe1CU0mIG8WUOzbHSXLeiOvYwJIiiQIAtLS0nDdddehpqYGzc3NPv18URRRUVGBqKgopKens98OaZ7N5jiD1NFYi7Zly5Y51vMZuw048jCEzu/Fg+SKFwDRh0GJNiRXPO8SwxUvOn4cWeaI3QdkWW/kE7wETIrl5+eHAQMGoLW1FefOnYPRaERAQIBPPruqqgqhoaEYOnQowsPDffKZRHKWl9f+DNKVRBEoLnasN3myj4K6kAc0dh6UACCwtQIBtQdgCbrBJyFFXPqn87Jvx0SgsdgRuw/mDpVlvZFPMAEkRdPpdBg0aBBaW1tRXFwMo9Ho9RuoV1dXIyAgAOnp6YiKivLqZxEpRVmZZ9fziCY3P6ypDE2ib7qSRFxyPyZfkGW9kU8wASTFCwgIwPXXX4/W1laUlpYiISHBayNxa2trIYoihgwZgpiYGK98BpESJSR4dj2PCHbvwwYOn4TrYm/2cjAOfhdswFdrr72im7H3lizrjXyCCSCpgl6vx9ChQ9Ha2uq8ZZyn5+K78v6+vFcnkauMDMeoUZOp4/5kguB4PSPDh0HFZgAhyUCjCc7+da5RASHJ0Cf/3Hf35k7+uVsxIdY3O0qW9UY+oYpBIBcvXsS8efNgMBhgMBgwb9481NbWdrnNwoULIQiCy2PcuHG+CZi8Ijg42HlZtrKy0qMz/zc2NqK+vh6DBg1CUlKSx96XSC10OseUIYAjabhS2/OcHB/PK+enA0ava4viqhcvPx+d47vkT4YxybLeyCdUkQDOnTsX+fn5+N///V/87//+L/Lz8zFv3rxrbnfHHXegrKzM+dixY4cPoiVvCgsLQ3p6OsLCwjx23+BLly6htrYWAwYMQFpaGm/xRtSJ7Gxgyxbg6v+RkpMdyyWZTy4lG8jYAoRcFVRIsmO5BHPuyS0mWdYbeZ0gyv0Giddw8uRJDBkyBAcOHMDYsWMBAAcOHMD48eNx6tQpDBo0qMPtFi5ciNraWmzbtq3Hn22xWGAwGGA2m2VxRwr6SXV1NY4dOwabzYY+ffr0+H2sVisqKytx3XXX8S4fMqTUY1CpcbtLlneUsNscI2ubyhz962IzfHvmTwExybLevETtx6A7FN8HcP/+/TAYDM7kDwDGjRsHg8GAffv2dZoAAsDu3bsRFxeHyMhITJo0CWvWrEFcXFyn6zc3N7vMN2exWDxTCPK4Pn36OG8Zd/HixR6N1m1tbXW5vy+TPyL36HQynDLET+eTaVW6RWYxybLeyGsUfwm4vLy8w6QtLi4O5eXlnW43bdo0vPvuu/jyyy/xxz/+EYcOHcLUqVO7nFB47dq1zn6GBoMBKSkpHikDeYfRaMSQIUPQ0tKCurq6bm1rs9lQXl6O5ORkDB482OtTyxAREfmSbBPA1atXtxukcfXj8OHDANBhnyxRFLvsq3Xfffdh+vTpSE9Px8yZM/GPf/wDZ86cwaefftrpNqtWrYLZbHY+iouLe19Q8qqkpCQMHjwYDQ0NaGhocGubtvv7xsfHY8iQIby/LxERqY5sT2ssWbIEc+bM6XKd1NRUfPvtt6ioqGj32oULF2A0Gt3+vISEBPTr1w9nz57tdB29Xg+9Xu/2e5I89OvXDy0tLTh9+jT8/PwQHBzc6bqiKKK8vNx5CZn39yUiIjWSbQIYExPj1kS748ePh9lsxsGDB3HTTTcBAL755huYzWZMmDDB7c+rrq5GcXExEjjbpeoIgoD+/fvDZrPh7NmziI2NdZzVE20IazyKAFsVWnQxqAseiYrKKhgMBqSnpyM0NFTq0ImIiLxCtgmgu66//nrccccdWLRoEV577TUAwL//+79jxowZLgNABg8ejLVr1+Luu+9GfX09Vq9ejXvuuQcJCQn48ccf8fjjjyMmJgZ33323VEUhL2q7b3BLSwsKCwsxOPQEUqv/5HJPzkt+MQiMWILk9KWaHRVGRETaINs+gN3x7rvvYtiwYcjMzERmZiaGDx+Ov/3tby7rnD59GmazGYDj/rHfffcd7rrrLgwcOBALFizAwIEDsX//foSHh0tRBPIBnU6HwYMHY1jkWQyoWIWAq27IrrdXIb32aUTV75IoQiIiIt9Q/DyAUuI8Qgpkt0H8qB/QZGo3B7/D5dswZRVKP0cYXZMUx2BqairOnz/vsuyxxx7D73//e7ffg20HkbR4DKrgEjBRt1zIg9Bk6mIFEWgsdkzOKqP5uUhennnmGSxatMj5PCwsTMJoiIi6jwkgaUtTmWfXI00KDw9HfHy81GEQEfWYKvoAErkt2M1R3u6uR5r0hz/8AX369MHIkSOxZs0aWK1WqUMiIuoWngEkbYnNcPTxazQB6Kj76+U+gLEZvo6MFOLhhx/GDTfcgKioKBw8eBCrVq1CYWEh3njjjU634W0kiUhueAaQtMVPB4xed/nJ1cNALj8fncMBIBrTnTsPLV++HJMmTcLw4cPxq1/9Cq+++irefPNNVFdXd/r+vI0kEckNRwH3AkcRKVhxLnDkYaCx5KdlISmO5C8lW7KwqHs8dQxWVVWhqqqqy3VSU1M7vDOMyWRCcnIyDhw4gLFjx3a4bUdnAFNSUth2EEmEf795CZi0KiUbSLrLMdq3qczR5y82g2f+NMrdOw915OjRowDQ5V2EeBtJIpIbJoCkXX46TvVC3bJ//34cOHAAU6ZMgcFgwKFDh7B8+XJkZWWhb9++UodHROQ2JoBERG7S6/V4//338fTTT6O5uRn9+vXDokWL8Oijj0odGhFRtzABJCJy0w033IADBw5IHQYRUa9xFDARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHG+EsdAHWPzQbk5QFlZUBCApCRAeh0UkflGSybMqm5bN6WlwdYLNxvSsLvuzJdXW8jRkgdkQyI1GNms1kEIJrNZp983tatopicLIrAT4/kZMdypWPZlEnqsvn6GPSUtrgBs+q+E2om9fedeqajektMVGbb4UmCKIqitCmoclksFhgMBpjNZkRERHj1s3JzgVmzHF/dKwmC4+eWLUB2tldD8BqWzfdxeYIcyubLY9CT2uIGzAAccavhO6Fmcvi+U/d1Vm+ABYDy2g5PYgLYC77642OzAampQElJx68LApCcDBQWKu9SBMvGsvWGmhJAQNnfCTWTy/eduqfremMCyEEgCpCX13nDAzj+sykudqynNCwby0Y/4X6TJ37flela9aZ1TAAVoKzMs+vJCcvGslF73G/ywu+7MrE+usYEUAESEjy7npywbCwbtcf9Ji/8visT66Nr7APYC77uA2gyddSRVdn9T1g2lq032AeQfEEu33fqnq7rjX0AeQZQAXQ6YN06x+9tI87atD3PyVFmw8OysWzkwP0mX/y+K1NX9UZMABUjO9sxzUBSkuvy5GTlTz/AsimTmssmBe43eeP3XZk6q7ern2sRLwH3ghSXn9Q8Cz3LpkxSlk3pl4A/+cQMiyVCdd8JNVPzsaxm7e8EYkF0tPLaDk9iAtgLSv3jQ6QWSj0GlRo3kVrwGOQlYCIiIiLNYQJIREREpDGqSADXrFmDCRMmICQkBJGRkW5tI4oiVq9ejcTERAQHB2Py5MkoKCjwbqBEREREMqCKBNBqtWL27Nl48MEH3d7mueeew4svvoj169fj0KFDiI+Px2233Ya6ujovRkpEREQkPVUkgE8//TSWL1+OYcOGubW+KIrIycnBE088gezsbKSnp2PTpk1obGzEe++95+VoiYiIiKSligSwuwoLC1FeXo7MzEznMr1ej0mTJmHfvn2dbtfc3AyLxeLyICIiIlIaTSaA5eXlAACj0eiy3Gg0Ol/ryNq1a2EwGJyPlJQUr8ZJRERE5A2yTQBXr14NQRC6fBw+fLhXnyFcdW8YURTbLbvSqlWrYDabnY/i4uJefT4RERGRFPylDqAzS5YswZw5c7pcJzU1tUfvHR8fD8BxJjAhIcG5vLKyst1ZwSvp9Xro9foefSYRERGRXMg2AYyJiUFMTIxX3jstLQ3x8fHYuXMnRo0aBcAxknjPnj34wx/+4JXPJCIiIpIL2V4C7o6ioiLk5+ejqKgINpsN+fn5yM/PR319vXOdwYMH48MPPwTguPS7bNkyPPvss/jwww9x/PhxLFy4ECEhIZg7d65UxSAiIiLyCdmeAeyOJ598Eps2bXI+bzurt2vXLkyePBkAcPr0aZjNZuc6jz76KJqamvDrX/8aFy9exNixY/H5558jPDzcp7ETERER+ZogiqIodRBKxZtJE0lLqcegUuMmUgsegyq5BExERERE7mMCSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIRERFpDBNAIiIiIo1hAkhEdNmaNWswYcIEhISEIDIyssN1ioqKMHPmTISGhiImJgZLly6F1Wr1baBERL2kinsBExF5gtVqxezZszF+/Hi8+eab7V632WyYPn06YmNj8dVXX6G6uhoLFiyAKIp46aWXJIiYiKhnmAASEV329NNPAwA2btzY4euff/45Tpw4geLiYiQmJgIA/vjHP2LhwoVYs2aNZu8pSkTKw0vARERu2r9/P9LT053JHwDcfvvtaG5uxpEjRySMjIioe3gGkIjITeXl5TAajS7LoqKiEBgYiPLy8k63a25uRnNzs/O5xWLxWoxERO7gGUAiUrXVq1dDEIQuH4cPH3b7/QRBaLdMFMUOl7dZu3YtDAaD85GSktKjshAReQrPABKRqi1ZsgRz5szpcp3U1FS33is+Ph7ffPONy7KLFy+ipaWl3ZnBK61atQorVqxwPrdYLEwCiUhSTACJSNViYmIQExPjkfcaP3481qxZg7KyMiQkJABwDAzR6/UYPXp0p9vp9Xro9XqPxEBE5AlMAImILisqKkJNTQ2Kiopgs9mQn58PALjuuusQFhaGzMxMDBkyBPPmzcPzzz+PmpoarFy5EosWLeIIYCJSFCaARESXPfnkk9i0aZPz+ahRowAAu3btwuTJk6HT6fDpp5/i17/+NW6++WYEBwdj7ty5eOGFF6QKmYioRwRRFEWpg1Aqi8UCg8EAs9nM//6JJKDUY1CpcROpBY9BngEkIiIPs9mAvDygrAxISAAyMgCdTuqo6FpYb9rCBJCIiDwmNxd4+GGgpOSnZcnJwLp1QHa2dHFR11hv2sN5AImIyCNyc4FZs1yTCAAwmRzLc3OliYu6xnrTJiaARETUazab4wxSR73K25YtW+ZYj+SD9aZdTACJiKjX8vLan0G6kigCxcWO9Ug+WG/axQSQiIh6razMs+uRb7DetIsJIBER9drlG6N4bD3yDdabdjEBJCKiXsvIcIwaFYSOXxcEICXFsR7JB+tNu5gAEhFRr+l0jilDgPbJRNvznBzOKyc3rDftYgJIREQekZ0NbNkCJCW5Lk9OdiznfHLyxHrTJk4ETUREHpOdDdx1F+8ooTSsN+1hAkhERB6l0wGTJ0sdBXUX601beAmYiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjVJEArlmzBhMmTEBISAgiIyPd2mbhwoUQBMHlMW7cOO8GSkRERCQDqkgArVYrZs+ejQcffLBb291xxx0oKytzPnbs2OGlCImIiIjkQxX3An766acBABs3buzWdnq9HvHx8V6IiIiIiEi+VHEGsKd2796NuLg4DBw4EIsWLUJlZaXUIRERERF5nSrOAPbEtGnTMHv2bPTr1w+FhYX4z//8T0ydOhVHjhyBXq/vcJvm5mY0Nzc7n1ssFl+FS0REROQxsj0DuHr16naDNK5+HD58uMfvf99992H69OlIT0/HzJkz8Y9//ANnzpzBp59+2uk2a9euhcFgcD5SUlJ6/PlEREREUpHtGcAlS5Zgzpw5Xa6Tmprqsc9LSEhAv379cPbs2U7XWbVqFVasWOF8brFYmAQSERGR4sg2AYyJiUFMTIzPPq+6uhrFxcVISEjodB29Xt/p5WEiIiIipZDtJeDuKCoqQn5+PoqKimCz2ZCfn4/8/HzU19c71xk8eDA+/PBDAEB9fT1WrlyJ/fv348cff8Tu3bsxc+ZMxMTE4O6775aqGEREREQ+IdszgN3x5JNPYtOmTc7no0aNAgDs2rULkydPBgCcPn0aZrMZAKDT6fDdd9/h7bffRm1tLRISEjBlyhS8//77CA8P93n8RERERL4kiKIoSh2EUlksFhgMBpjNZkREREgdDpHmKPUYVGrcRGrBY1All4CJiIiIyH1MAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hgmgEREREQa4y91AGpgswG7dwNlZUBCApCRAeh0UkflGTYbkJfHsimNVsoWESF1NL2TlwdYLOqrIzVT87GlZlfX24gRUkckAyL1mNlsFgGIiYlmERCdj+RkUdy6Veroem/rVkdZWDZl0VbZHMeg2WyWOrRuaWs7HPGrq47UTM3Hlpp1VG+Ov9vKazs8SRBFUZQ2BVUui8UCg8EAwAzgp1MRguD4uWULkJ0tSWi9lpsLzJrlOFSuxLLJm/bKZgFggNlsRoSCTgd21HaooY7UTM3Hlpp1Vm9KbTs8iQlgL3SWAAKORiE5GSgsVN7lAZsNSE0FSko6fp1lkydtlk2ZjXhX/zwqtY7UTM3Hlpp1XW/KbDs8iYNAvEQUgeJiR58DpcnL67yhA1g2udJy2dRCyXWkZmo+ttRMK+1GTzEB9LKyMqkj6D53Y2bZ5IVlUw+tlVfu1HxsqRnro2tMAL0sIUHqCLrP3ZhZNnlh2dRDa+WVOzUfW2rG+uga+wD2gtr7AJpMHXWcZdnkSptlU2Y/HvYBVBY1H1tq1nW9KbPt8CTOA9gLP+XOlg5eA559Fmho8G1MnrJ2LTBvXsevsWzypb2yOY49pf0f21nbofQ6UjM1H1tq1nm9KbPt8CSeAeyFkpISpKSkSB0GkeYVFxcjOTlZ6jDcxraDSB6U1nZ4EhPAXrDb7SgtLUV4eDjq6uqQkpKC4uJi1Z1OtlgsLJsCaaFsRUVFEAQBiYmJ8PNTTpfmK9sOoW0iOQ9Tc/1LjfvWu3yxf0VRRF1dneLaDk/iJeBe8PPzc/7n0NaIR0REqLZBYNmUSc1lMxgMiizblW2Ht6m5/qXGfetd3t6/jn642qXNtJeIiIhIw5gAEhEREWkME0AP0ev1eOqpp6DX66UOxeNYNmVi2bSN+8h7uG+9i/vXNzgIhIiIiEhjeAaQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAPezHH3/EL3/5S6SlpSE4OBj9+/fHU089BavVKnVoHrFmzRpMmDABISEhiIyMlDqcXnnllVeQlpaGoKAgjB49Gnl5eVKH5BF79+7FzJkzkZiYCEEQsG3bNqlD8oi1a9fixhtvRHh4OOLi4vCLX/wCp0+fljosWXLnOC0qKsLMmTMRGhqKmJgYLF26VDXtlLepte3wpWu1U6IoYvXq1UhMTERwcDAmT56MgoICaYJVKSaAHnbq1CnY7Xa89tprKCgowJ/+9Ce8+uqrePzxx6UOzSOsVitmz56NBx98UOpQeuX999/HsmXL8MQTT+Do0aPIyMjAtGnTUFRUJHVovdbQ0IARI0Zg/fr1UofiUXv27MFDDz2EAwcOYOfOnWhtbUVmZiYaGhqkDk12rnWc2mw2TJ8+HQ0NDfjqq6/w97//HVu3bsVvf/tbH0eqPGpuO3zpWu3Uc889hxdffBHr16/HoUOHEB8fj9tuuw11dXU+jlTFRPK65557TkxLS5M6DI966623RIPBIHUYPXbTTTeJixcvdlk2ePBg8Xe/+51EEXkHAPHDDz+UOgyvqKysFAGIe/bskToU2ersON2xY4fo5+cnmkwm57LNmzeLer1eNJvNPoxQebTSdvjS1e2U3W4X4+Pjxd///vfOZZcuXRINBoP46quvShChOvEMoA+YzWZER0dLHQZdZrVaceTIEWRmZrosz8zMxL59+ySKirrLbDYDAI+tHti/fz/S09ORmJjoXHb77bejubkZR44ckTAyeWPb4RuFhYUoLy932c96vR6TJk3ifvYgJoBe9sMPP+Cll17C4sWLpQ6FLquqqoLNZoPRaHRZbjQaUV5eLlFU1B2iKGLFihW45ZZbkJ6eLnU4ilNeXt7u+x8VFYXAwEAeA11g2+EbbfuS+9m7mAC6afXq1RAEocvH4cOHXbYpLS3FHXfcgdmzZ+NXv/qVRJFfW0/KpgaCILg8F0Wx3TKSpyVLluDbb7/F5s2bpQ7FZzx9nHb0Xecx4B62Hb7B/exd/lIHoBRLlizBnDlzulwnNTXV+XtpaSmmTJmC8ePHY8OGDV6Orne6Wzali4mJgU6na/efZGVlZbv/OEl+fvOb32D79u3Yu3cvkpOTpQ7HZzx5nMbHx+Obb75xWXbx4kW0tLTwGOgC2w7fiI+PB+A4E5iQkOBczv3sWUwA3RQTE4OYmBi31jWZTJgyZQpGjx6Nt956C35+8j7R2p2yqUFgYCBGjx6NnTt34u6773Yu37lzJ+666y4JI6OuiKKI3/zmN/jwww+xe/dupKWlSR2ST3nyOB0/fjzWrFmDsrIy5x/Yzz//HHq9HqNHj/bIZ6gR2w7fSEtLQ3x8PHbu3IlRo0YBcPS/3LNnD/7whz9IHJ16MAH0sNLSUkyePBl9+/bFCy+8gAsXLjhfa/uvRsmKiopQU1ODoqIi2Gw25OfnAwCuu+46hIWFSRtcN6xYsQLz5s3DmDFjnGdpi4qKVNFXs76+Ht9//73zeWFhIfLz8xEdHY2+fftKGFnvPPTQQ3jvvffw0UcfITw83HkWxmAwIDg4WOLo5OVax2lmZiaGDBmCefPm4fnnn0dNTQ1WrlyJRYsWISIiQtrgZU7NbYcvXaudWrZsGZ599lkMGDAAAwYMwLPPPouQkBDMnTtXwqhVRsohyGr01ltviQA6fKjBggULOizbrl27pA6t215++WWxX79+YmBgoHjDDTeoZjqRXbt2dVhHCxYskDq0XunsuHrrrbekDk123DlOz58/L06fPl0MDg4Wo6OjxSVLloiXLl2SLmgFUWvb4UvXaqfsdrv41FNPifHx8aJerxcnTpwofvfdd9IGrTKCKIqi99NMIiIiIpILeXdOIyIiIiKPYwJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY5gAEhEREWkME0AiIiIijWECSERERKQxTACJiIiINIYJIBEREZHGMAEkIiIi0hgmgEREREQawwSQiIiISGOYABIRERFpDBNAIiIiIo1hAkhERESkMUwAiYiIiDSGCSARERGRxjABJCIiItIYJoBEREREGsMEkIiIiEhjmAASERERaQwTQCIiIiKNYQJIREREpDFMAImIiIg0hgkgERERkcYwASQiIiLSGCaARERERBrDBJCIiIhIY/4/wvyrCkgebdIAAAAASUVORK5CYII=", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_lattice(square_lattice)\n", + "plot_lattice(tilted_lattice)\n", + "plot_lattice(honeycomb_lattice)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "ef0a5d74-739f-4688-ad7f-fed91c39dcaa", + "metadata": {}, + "outputs": [], + "source": [ + "simple_cubic = Lattice([1,0,0], [0,1,0], [0,0,1])\n", + "graphite = Lattice([0.5,-0.5 * 3**(0.5),0], [0.5,0.5 * 3**(0.5),0], [0,0,1])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "364f3ddb-21d0-4586-8b3b-acad8ba20d9b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[6.28318531 0. 0. ]\n", + " [0. 6.28318531 0. ]\n", + " [0. 0. 6.28318531]]\n", + "[[ 6.28318531 -3.62759873 0. ]\n", + " [ 6.28318531 3.62759873 -0. ]\n", + " [-0. 0. 6.28318531]]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3eb3e14cd16741d085826e020df23362", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2I0lEQVR4nOydd3xb9bn/PxretmTJK7bjFduZTmzHznDCLDNAiCnlttCWUtpCGe1te7vuhXLbe0tbSkvpouu2QEv5MZqEvSFhJBAS73jGey9JtrXn+f1hvgdJlmyNo+Hoeb9e9/W6DcnRsSw95/N9xucRcRzHgSAIgiAIgogZxJG+AYIgCIIgCCK8kAAkCIIgCIKIMUgAEgRBEARBxBgkAAmCIAiCIGIMEoAEQRAEQRAxBglAgiAIgiCIGIMEIEEQBEEQRIxBApAgCIIgCCLGIAFIEARBEAQRY5AAJAiCIAiCiDFIABIEQRAEQcQYJAAJgiAIgiBiDBKABEEQBEEQMQYJQIIgCIIgiBiDBCBBEARBEESMQQKQIAiCIAgixiABSBAEQRAEEWOQACQIgiAIgogxSAASBEEQBEHEGCQACYIgCIIgYgwSgARBEARBEDEGCUCCIAiCIIgYgwQgQRAEQRBEjEECkCAIgiAIIsYgAUgQBEEQBBFjkAAkCIIgCIKIMUgAEgRBEARBxBgkAAmCIAiCIGIMEoAEQRAEQRAxBglAgiAIgiCIGIMEIEEQBEEQRIxBApAgCIIgCCLGIAFIEARBEAQRY5AAJAiCIAiCiDFIABIEQRAEQcQYJAAJgiAIgiBiDBKABEEQBEEQMQYJQIIgCIIgiBiDBCBBEARBEESMQQKQIAiCIAgixiABSBAEQRAEEWOQACQIgiAIgogxSAASBEEQBEHEGCQACYIgCIIgYgwSgARBEARBEDEGCUCCIAiCIIgYgwQgQRAEQRBEjEECkCAIgiAIIsYgAUgQBEEQBBFjkAAkCIIgCIKIMUgAEgRBEARBxBgkAAmCIAiCIGIMEoAEQRAEQRAxBglAgiAIgiCIGIMEIEEQBEEQRIxBApAgCIIgCCLGIAFIEARBEAQRY5AAJAiCIAiCiDFIABIEQRAEQcQYJAAJgiAIgiBiDBKABEEQBEEQMQYJQIIgCIIgiBiDBCBBEARBEESMQQKQIAiCIAgixiABSBAEQRAEEWOQACQIgiAIgogxSAASBEEQBEHEGCQACYIgCIIgYgwSgARBEARBEDEGCUCCIAiCIIgYgwQgQRAEQRBEjEECkCAIgiAIIsYgAUgQBEEQBBFjkAAkCIIgCIKIMUgAEgRBEARBxBgkAAmCIAiCIGIMEoAEQRAEQRAxBglAgiAIgiCIGIMEIEEQBEEQRIxBApAgCIIgCCLGIAFIEARBEAQRY5AAJAiCIAiCiDFIABIEQRAEQcQYJAAJgiAIgiBiDBKABEEQBEEQMQYJQIIgCIIgiBiDBCBBEARBEESMQQKQIAiCIAgixiABSBAEQRAEEWOQACQIgiAIgogxSAASBEEQBEHEGCQACYIgCIIgYgwSgARBEARBEDEGCUCCIAiCIIgYgwQgQRAEQRBEjEECkCAIgiAIIsYgAUgQBEEQBBFjkAAkCIIgCIKIMUgAEgRBEARBxBgkAAmCIAiCIGIMEoAEQRAEQRAxBglAgiAIgiCIGIMEIEEQBEEQRIxBApAgCIIgCCLGIAFIEARBEAQRY5AAJAiCIAiCiDFIABIEQRAEQcQYJAAJgiAIgiBiDBKABEEQBEEQMQYJQIIgCIIgiBiDBCBBEARBEESMQQKQIAiCIAgixiABSBAEQRAEEWOQACQIgiAIgogxSAASBEEQBEHEGCQACYIgCIIgYgwSgARBEARBEDEGCUCCIAiCIIgYgwQgQRAEQRBEjEECkCAIgiAIIsYgAUgQBEEQBBFjkAAkCIIgCIKIMUgAEgRBEARBxBgkAAmCIAiCIGIMEoAEQRAEQRAxBglAgiAIgiCIGIMEIEEQBEEQRIxBApAgCIIgCCLGIAFIEARBEAQRY5AAJAiCIAiCiDFIABIEQRAEQcQYJAAJgiAIgiBiDBKABEEQBEEQMQYJQIIgCIIgiBiDBCBBEARBEESMQQKQIAiCIAgixiABSBAEQRAEEWOQACQIgiAIgogxSAASBEEQBEHEGCQACYIgCIIgYgwSgARBEARBEDEGCUCCIAiCIIgYgwQgQRAEQRBEjEECkCAIgiAIIsYgAUgQBEEQBBFjSCN9AwSxEhzHwWazAQCkUilEIlGE74ggiGiH4zg+dkgkEojFYoodBOEECUAiqrHb7bBarTAajeA4DmKxGFKplP8/iURCQZ0gCBeY8LNYLDCZTBCLxZBIJC5xgwQhEeuIOI7jIn0TBOEOx3HQ6/UwGo1ISUmBzWbjT/QzMzOYmJjA1q1b+cAeFxcHiURCgpAgYhyHwwGr1Qq73Q4AMJvNEIvF4DgODocDACAWi10OkyQIiViEMoBE1OFwOGCz2TA5OYmJiQlUV1djYmICycnJkMlkEIlEsNvtkEgkfLC3WCwQiURLgjoJQoKIDTiOg91uh81mg8PhgFgshsPh4OMCAEgkEv4gabfbYbfbYTabPcYOEoTE2Q4JQCJqYCd0q9XKl3ttNhs++OADcBwHi8UCjuOQlJQEq9UKrVaLtLQ0iEQisES2w+GAxWLxGtRJEBLE2QfHcS5Zv+XEm0gkchGF3gShSCSCVCpFXFwc33tMsYM4m6ASMBEVuAdwADh9+jTGx8dRWlqKtWvXQiQSQa/XY2RkBDMzMwAWg3l6ejoUCgUUCgVSUlKWCEIW4EkQEsTZBzv0sayf8/fZ4XDAbDZDIpH4fD0WLyYmJjA5OYnKykqIRKIlPYQkCInVDmUAiYjj3LMjFothtVrR3t4OlUqFlJQUlJWVwWKxAADS0tKQlZUFnU6H2tpa6HQ6aDQaqFQq9Pf3QywWuwjC5ORkXhCy/zObzfz1SBASxOqEZe2cKwZCfHedM4RM+LGhEqvVyv93995jllEkiNUCCUAiYnjq2Zmbm0NLSwvS0tKwceNGjIyMAIBLVo8FebFYDJlMBplMhqKiIjgcDmi1Wmg0GszMzKC3txdSqdRFECYlJbn0ATFB6FwyZkFdKpVSHxBBRCEcx2F+fp7/vq5U8g0EFnO8lYxJEBKrHRKARERwL/mKRCL09/ejr68P69evR1FREaanp+GtQ8HTn4vFYsjlcsjlchQXF8PhcGB+fh4ajQZTU1Po6elBfHw8FAoFLwo9CUKTycTfE3vAUGM4QUQHLOvX2tqKtWvXIj8/P6yvv5IgBDxXFkgQEtEGCUAi7Lj37JjNZrS2tsJkMmHXrl2Qy+UAXLN+znj7c3fEYjGf+QMWHxxMEI6Pj6O7uxsJCQn831EoFEhISFgiCOfm5nDmzBls27aNvMQIIkIwkcVM4X2NA6HGmyB0didgAyUkCIloggQgETY89ezMzs6itbUVWVlZ2L59O6TSjz+SywnAQJBIJFAqlVAqlQAAm83GC8KRkRF0dHQgKSnJRRDGx8dDJBJBq9XythIsQ0heYgQRHlifsLuPXygFYDClY3dByO6fZQjdBSFtOCIiAQlAIiwwbz/nKd/u7m6MjIxg8+bNXss4/pSA/UUqlSIjIwMZGRkAAKvVygvCoaEhtLe3IyUlBSkpKbx4ZT0+7JTPpgzZtgEShAQhHM7iyX3KNxwZQCGuz/oDna/p7l/qLAhpwxERLkgAEiHF3dtPJBLBaDSiubkZHMehrq4OqampHv9tsCVgf4mLi0NmZiYyMzMBLApCjUaD6elpOBwOvPvuu0hNTeV7CNPT0xEXF8f/nN7MZZ2HSsg6giB8YyVvP1/iwNzcHGZnZ6FUKpGamhoVZVdfBCFtOCLCAQlAImR46tmZmJhAR0cH8vLysGHDhmX9uYSe6vOXuLg4ZGdnIzk5GSqVCnV1ddBoNNBoNOjr64PBYEBaWhpfLpbL5XwJ21kQ2mw2l0lB8hIjiOVxt4by9B1ZTgByHMcPlaWnp2N4eBgAPHqGeiNc30tfBSHZVRFCQwKQCAnuPTsOhwOdnZ2Ynp7G1q1bkZOTs+I1RCIR/+/dCXfzt0gkQnx8PHJycvh7N5vNvCDs7u6G2WxeURB6so5wLxkTRKziyRpquYOgpzjAhsqMRiN27tyJxMREvo+XeYb29fVBIpG49PsmJSUtea1IDJk4C0LacESEEhKAhKCwAD40NASr1Yri4mLodDo0NzcjPj4ee/bsQVJSkk/X8jfwhwpvr5WQkIA1a9ZgzZo1AACj0Yi5uTloNBp0dnbCYrFAJpP5LQjJS4yIRfxZ5wZ4PiCqVCq0trZCoVCguroaYrGYz6K5e4YuLCx4tIhydg6INOznJ0FIhAISgIRgOAdwg8EAk8mEkZERdHd3o7i4GKWlpX4JGneh52zKGo0kJSUhKSkJubm54DgORqMRGo0Gc3NzGB8fh81mg1wuR3p6OpRKJdLS0rwKQqPRCK1Wi7Vr15J1BHHWw9wBVsr6OeMcHziOQ29vLwYHB7Fx40Z+daS3CgLbGJSeno6SkhIXi6ixsTF0dnYiPj4eHMdhenoa6enpiI+PF/RnDgRPgtB9w9HU1BRkMhl/4CRBSHiDBCAhCO49OwCgVquhUqmwfft2ftLWH1bq8YlmRCIRkpOTkZycjPz8fHAcB4PBwJeMR0dH4XA4IJfL+YxDamoqLwjVajXGx8eRk5NDXmLEWYt7n7A/U/PMBsZkMqG1tRVmsxm7d+9GWlqa3/fhySJqaGgI4+PjGBwchE6n4wfA2BCYs2VVpHA+EDN3gomJCYjFYiQmJtKGI2JZIv8JJlY1nrz95ubmMDw8DIlEgr179wZ8cg73FHAoEYlEvKXM2rVrwXEc9Ho9LwiHhobAcRzfpM4yF84ZQvISI84m3K2h/M3ui0Qi6PV6HD9+HJmZmUt8RINBKpVCJpNBpVJh586dsFgsfHvHmTNnYDKZlvT7LjfQFi5YbJRKpYiLi6MNR8SykAAkAma5dW7MSiWYsonQRtDBIPRrikQipKamIjU1FQUFBeA4DjqdjheEGo0GHMehra2NF4XOU4vkJUasVjxZQ/n7OWVrHrVaLbZs2YK1a9eG6G4XiY+PR3Z2NrKzswEAJpOJ/56yfl/nbL5MJotYdp69p4DnDKEnQUgbjmITEoBEQLj37Livc5ubm4NKpQrqNVZzCdhfRCIR0tLSkJaWhsLCQoyPj2N0dBRpaWmYnZ1dMrWYnp6O5OTkZQUheYkR0YanQ6O/n0mj0YiWlhYYjUbk5uaGTPwtd1+JiYnIzc1d0u/rrb0jLS0tbN89ZwHojjdBSBuOYhMSgIRfeOrZ8bTObX5+XhCRFg0ZwEiJzbi4OBQXF6O4uHjJ1OKZM2cglUpdphaZ3QW7Z/ISI6IJX7z9VmJ6ehptbW3IycmBTCYLwV264st331O/r3N7x+DgIEQiET/8pVAoXA5vobhnX6+9nCCkDUdnPyQACZ9x9/bjOA49PT0e17mxvbnBEEsZQHdYPyXD09QiE4QTExPo7u5eYmORmJjIXwsg6wgiMvjj7ecNh8PBx5otW7YgLy8P3d3d/EE0mnBv73A4HNDpdFCr1ZiZmUFvb++Sw5uv1li+4I8A9HTvzv+WNhyd3ZAAJFbE0z7Olda5LWfB4CvR4gMYCVYK4s7lYGCxJD83N4e5uTmMjY2hq6sLiYmJLpsPEhIS+GsDJAiJ0OOvt58nDAYDWlpa4HA4sGfPHqSkpPDXCmUcEOqzLxaLeQ9Cls1nljPs8JaQkOAiCNl3NRCCEYDuMGHHDqO04ejsggQgsSyeArgv69yECM7OQs85mJwNQyAr4W8Ql0gkyMjI4O12bDYbP7U4MjKCjo4OJCcnu/QQsgEdZ0H44YcfIj8/H1lZWSQIiaBgB4xAs34AMDU1hba2No+xJhwHwVBcXywWezy8efuuKhQKfue4r/ccqu+pN0FIG45WJyQACa+49+zY7Xaf17kJEZxZEDObzeju7oZIJEJGRgYSExNjPgO4ElKpFJmZmfw0ttVq5R8yAwMD0Ov1SElJcRGEcXFxcDgcfMB2NpcFQF5ihE94soYKpOTb1dWF8fFxVFRU8Nt2nDlbKgHuhzf37+rp06f98iAMpQB0xx9BSBuOog8SgMQSPPXs+LvOTageQAB4//33IZPJEB8fj76+PhgMBgBAb28vlEplyD24IvGQcTgcggbxuLg4ZGVlISsrCwBcfM3Ye5qamgqTyQS9Xg+lUsmf3slLjPAVd2+/QD4Ter0eLS0tAIA9e/YgOTnZ4987WwSgO56+q2ygxN2DUKlUQiaTucS/cApAd1YShAA8VhZIEEYGEoCEC55sGgJZ5xZscOY4DsPDwwCA4uJi5Ofn82J0YWEBp06dgsViQUdHB79ijQXEcFouhIpQB3F3XzOz2QyNRoPu7m5++0FaWhrfQ5iens4HaxKEhDtCePsBwMTEBNrb25Gfn48NGzYsG2tCLQCj5bMbHx+PnJwcvuLCdo6r1Wq0t7e7xD9mIh8t9+5NEHrzLyVBGF5IABI8drsdk5OTUKvVKC8vh9VqRXt7O+bm5vxe5xZMBtBisaCtrQ1arRYAUFBQAAD89ViD9MaNGyESifgVa2q1mheNLBgqlUokJSVFTUD0lXCf4hMSErBmzRr09vaioqICCQkJfNahu7sbZrMZMpmMF4Ms60rmsgTL8Jw+fRp5eXmQy+V+/55Ze8nU1NSK7SUMXwVgMJ+5aMwwuu8cd14xOTIyArvdjp6eHmRmZvIrJqPle+dJEDpvONJqtbBYLFizZg1tOAoDJAAJF28/5nA/NzeHlpYWpKWlBbTOLdDT+fz8PJqampCWloZdu3bh7bffXiKGnL3uxGKxy4o1T5YLcXFxvBgMdMIu2odAhIJlWZ2NbgG4GN2Oj4/DZrPxgpBtPnAXhOQldvbj3Ces0WiQmZnp9++UtZdIJBKf2ksYvjoNeBokO1sQiZaumDx69CjkcjnfQygSiVwGSkLpQegv7KDI0Gq1mJubQ0ZGBm04CgMkAGMcTz07BoMBJ0+exPr161FUVBTQl83fDCAr+fb09KCsrIy3S2D/zZnl7sfdcsFut2N+fh5qtZqfsHMeflAoFFGx1N2dSAlAd/9BBss65OXledx8YLfbl2w+YIF9OS8xEoSrE099woFk/cfGxtDR0YHCwkKUl5f7VfoLRwk4GjOAy8HuOS8vD0lJSXA4HNBqtdBoNGHxIAwWh8PBxwSANhyFmuh78hFhwVPPjtlsxsDAACwWC3bv3g25XB7w9f0Jnqx8pNFoUFNTA6VSyV+D3aunL7gv15dIJFAqlfw1rVYrL1z6+vpgNBpdGqrlcvmSh1AkHgKRzgAuh7fNB2yoZHh4GBzH8cbVTBA6B3V3LzGDwcCbXZO5bHTjzdvPHwFos9l4R4Gqqip+4MEfQu0DuBpxz3aKxWLI5XLI5XL+QOxuIC+kB2GwMMcJhnuGkDYcCQsJwBjE06AHW+eWlpaGpKSkoMQf4HsGcGFhAc3NzUhKSsKePXs8Bh9vGcBAgn9cXJzHpe7ODdVMtCiVyiUG1+EiEgLQ4XB4zQAuh/PmA1aG0ul0fCuB8yos9pBJSUlxEYRTU1Ow2+1ISEiASCTCm2++ieeeew5///vfQ/GjEgGynLcfs4paCa1Wi5aWFsTFxWHv3r38xhp/WY0ZulDD3g9v32F3A3mbzcabUnuqkDB7qHDBbKi84SwIvRna33rrrbjllltw8cUXh+WeVzMkAGMMd28/juPQ3d3Nr3NLSkpCW1tb0K+zUnDmOA5jY2Po7OxESUkJSktLlwie5TaBCIX7UneDwQC1Wu2ywzM1NRV2ux0GgyFsAyWBCDEhXhPw/vDwFZFIhLS0NKSlpaGwsJDvy9RoNFCpVOjv7+ezfexBY7fbIZVKERcXB47jMDExgdHRUSF+LEIAfPH2W+nQ5/yd98dRwBuxMgXsD/72O0ql0iUehM4VEoPBwFdInN0AQoXdbvdZcLKf0V0QtrS08MNoxPKQAIwRPPXseFrnNjc3F7R/H7B8g7bNZkNHRwdmZ2dRXV3NmxV7ugbg/VQodPB3bqhmOzy1Wi3Gx8exsLCAEydOID4+nh8mUSqVfg/H+EqkMoBA8ALQHee+zKKiIo99ScDHfYbJycnQarX8yq9Q8NOf/hSHDh1CV1cXn32+7777sGHDhpC95mrF13VuywlAm82G9vZ2qFSqZb/z/uCLAAz2O7TaMozBDry4V0iYPZQnNwCFQuGxZSYYVsoALgf7POj1eqSlpQl2T2czJABjAH/WuQlh4Myuw3q9nIMRm/iLi4vDnj17Viz/eApk4RJGrH/G4XBAo9Fg165dS1Y2paSk8IJwJYd+fzibBKA77n1JDocDTU1NkEgkmJqawq9//Wu8+uqryMrKwsMPP4xPfOITKCoqEvQe3n77bdxxxx3YsWMHbDYb7rrrLlx66aX875RYhGX9fFnnJpFIPMYO1uaRmJiIvXv3CtZjRiXgpQg98czsodgmFk9uAM4erKmpqUHFD/cewEBgW46IlSEBeJbj3rOz0jo3oQSgpwGO8fFxtLe3+zXxx4J8oEMgQuJpZRPrH2QO/UKdjiMlACMxeMGm+rKyspCfn4/f//73+OpXv4qhoSH83//9H5577jkcPnxY0Nd85ZVXXP73ww8/jOzsbDQ0NOC8884T9LVWI87WUIBvGz3cYwfHcbyJvLc2j2AItQ9gLJSA/cXdDcDZg5ANfzkPlKSkpPh1L8FkABmsbE2sDAnAsxRPPTu+rHPztZF7JZyNPu12O7q6ujA5OYnKykq+vOALnoJ8MEMgQuJeLnE+HY+NjcFutyM9PZ3PEPpjyBopARgpB3673c4H/tTUVKxZswYlJSV48MEHw/J7np+fBwB+WjyWYX3C/maEnQUgM5F3n+wXEl99AIMh0jHGX8LpeejJg5D1+qrVar7X191yZrl7CzYDaLFYYLFYIja8t9ogAXgWEsw6N/bnwYoB9iXX6/U4ffo0RCIR6urqvO71XO460SoA3XE/Hev1ej4YDgwMuARDtqHEG5EYAokWAQgsfm5Yn1ioH2Ycx+Fb3/oWzjnnHFRUVIT0taIZZ4sNX0q+7jABOD8/j+bmZqSkpARkIu8rVAJeSiRNrz0Nf2m1WqjVakxNTaGnpwfx8fEugtC9BSjYDKBerwcAEoA+QgLwLMKTt5+/69yEEoDs33744YfIy8vDxo0bA7qetxJwtJdnnK1R2EAJ89+anJxET08P77/FMoTOD8pYywC6B369Xh+2IH7nnXeitbUV7733XlheLxrxddBjOUQiEebm5jA6OorS0lKUlJSE9DMcah/AaI8xnoiUf6gnnHt9S0pKeFN+ViHp6upCYmKiiyAMNgOo0+kAgHoAfYQE4FmCe88OC8b+rnNjD+FgSisOhwM9PT0AgPXr16OwsDDgay13yg/X6V+IoMpsT9LT01FSUsL7b6nVagwNDaG9vR2pqam8IIzEQvdoygAaDIawCMCvfe1reO655/DOO+9g7dq1IX+9aMTdGiqQz53FYsH09DRMJhNqa2t5n7lQEo4M4GrLMEaTAHTH3ZTfZrPxQ3UsBopEIkxMTABAQEN1BoMBycnJEYtjqw0SgGcBdrsder3eZXtCf38/+vr6/F7n5pwBDASj0YiWlhZeiAbi8O+MtyAfrUHOV9z9tywWi4vdgslkgsFggNVq5XfthjqoRZMADPUkH8dx+NrXvobDhw/j6NGjKCkpCdlrRSuerKEC+V5pNBq0tLRAIpEgMzMzLOIPoBKwJ6JZALojlUqRmZnJt3pYLBZ88MEHAIDe3l6XLU1sqG6l8rBOp/N78CSWIQG4imElX4vFgqNHj+Kcc86BRCJBa2srTCYTdu3a5fdGDyYgAxGAMzMzaG1tRU5ODjZt2oQ33nhDkADNruF+rbMp+MfHxyMnJ4efyj516hSSk5Oh1+sxOjoKh8PhsqEkFEEu0gLQ+bV1Ol1IJ/nuuOMOPP7443j22WeRlpaGyclJAIBcLo+q3aihQoiSL8dxGBgYQG9vL9avXw+O4zA3NxeCu/UMCcClrCYB6A6rUJWUlCA1NRVms5k35e/s7ITFYnHZN+7pUEwWMP5BAnCV4imAq1QqnDlzBllZWdi+fXvAnnT+WsFwHIfe3l4MDg5i8+bNyM/PD+g6nmBB3tMgSDiDfySsURQKBb+hhE3XaTQafqCE9Q4KtdA9UgKQraBzdvQ3GAwhDeR/+MMfAAAXXHCBy58//PDDuOmmm0L2utGAP95+3rBYLGhtbYVer8fOnTuRnp6O4eHhkE/lOkObQJYSidYRIXE+CCYkJLhsaXJ2WRgdHeVdFlgMTEtLEzwD+M477+D+++9HQ0MDJiYmcPjwYdTX1/P/neM4/OhHP8Kf//xn3iv297//PbZs2SLI64caEoCrEE/r3DiOQ1dXF7Zs2cILsEDxR7iZzWa0tLTAbDZj9+7dLlkbIQL02VoCXgnnk7yn6bqFhQWo1Wp+oTtrplYqlUhPTw9o8jJSDw92iAnnEEgsZo6c+4S9rXPzBbVajZaWFqSnp2PPnj386i6hPER9hXoAl7KaM4DuB0FnRCIRkpOTkZycjPz8fBeXBdZDePz4cRw8eBAGgwHt7e3YvHlz0O+FXq9HZWUlvvjFL+Laa69d8t9//vOf44EHHsAjjzyC9evX48c//jEuueQSdHd3rwovQhKAqwhP3n7O69wqKiqCFn+A74FcpVKhtbUVSqXSY8ZRqAygN8I5BBJulgvkzgMlgGsz9cDAAC+enDeU+GKtIIQJayB4E4BUyhEOh8MBm80WdMm3v78f/f39/HCX8zUiIQDD+XqrgdUuAAHffCfdXRY4joNcLseJEyfQ2NiIHTt2YMuWLTh58mRQ97Rv3z7s27fP43/jOA4PPvgg7rrrLnzyk58EADz66KPIycnB448/jltvvTWo1w4HJABXCSutc7PZbIL5bfmy1J09CDZs2ICCggKvK9uEygBqNBro9XpkZGQgISHhrO//8SeQe2qmZr0zbH+n87qmtLQ0j0E2UiVgT9OntM9TGDxZQwUiEMxmM1pbW2E0GrFr1y7IZLIlf0coE3lf8SUG2O12jI+PIzk52e/NPKtRSJ0NAjCQQ6hIJEJlZSUuuugiJCcn4+mnn8bw8LDQt+jCwMAAJicncemll/J/lpCQgPPPPx/Hjx8nAUgIg3vPjqd1bsePHxfsNLycAHTv/VluyESoE/rY2Bimp6eRnJyMrq4upKSk8J5SKSkpEclahZpgAnl8fDy/v9O9d2ZkZMTruqZIloCdf4cWiwU2m43MXIPEkyF8IL9flUqFlpYWKJVKVFdXe+0tDncGcCUfQIPBgKamJpf46WzEnpycvOL7sdoOmZEwkBcKu90e9CpKZh+VkJCA8vJyAe9uKWxwzH2dak5ODoaGhkL62kJBAjCK8bSP03md2969e3kndYlEItjp21sgn5ubQ3NzM2QymUvvz3LXCSaAWq1WmEwmWK1W1NbWIjExEQ6HAxqNBh0dHRgaGkJfXx/kcjnvL+XPurVoRqiTvKfeGZ1OB7VaDZVKhb6+PkilUt6ENRoEIDNzJQEYOEJ4+zkPd23cuBFr165d9joSiSRqegBnZmbQ0tKCvLw8rFu3DgD4nrHZ2Vn09fUhLi6OjxtKpXLFeLYaWO0ZwEA/q4xItI643+9q+h2QAIxS3PdxAlh2nZuQ5RdPS92HhobQ09OD8vJyFBcX+/QBDyYjoNVq0dTUBJFIhA0bNiAtLQ1Wq5Xfv3vmzBls2bIF8fHxUKvVUKvVGBwc5Kdj2f8lJCQE9PruhPsLHaog4jxQUlRUxK/u0mg0mJiYgNlsxgcffOCSIQz1g9G991Cn0/HClfAPobz9TCYTWlpaYLFYlgx3eSMSPYCA63eF4zj09fVhYGAAW7ZsQW5uLl/+dh6kstvtS0yI09LS+Ljhr31WtLCaxIc7wW4BARZjR7gOjmvWrAGwmAnMzc3l/3x6enpJVjBaIQEYZXjax+nLOjchT9/uS91Pnz6N+fl57Nixwy+T10D79MbHx9He3o6SkhJMT09DIpF4DWosu7V27VqX6dixsTF0dnYiJSWFD+q+DkNEA+EK5M77ie12O+x2OzIzM/n9xadPn+bNWNmDUej30JsJ9GotZUUKVvJtampCYWEhFApFQJ8h5ueZlZWFmpoan+2kIi0ArVYr357CRKu3+CORSFyM2JnnnFqtRnt7O+x2O9LS0uBwOKDX630qF0cDq10ABhtb9Hp92MRXSUkJ1qxZg9dffx3V1dUAFttX3n77bdx3331huYdgIQEYRXga9PB1nZvQJWC73Y6FhQU0NzcjOTkZe/bs8XvIxN8eQIfDge7uboyNjaGqqgpZWVmYmZnxagPj/ufO07Hr1q2D1WqFRqOBWq1Gd3c3byTqb7k4UlPA4RZADodjyUCJ2Wzm38POzk5YrdYlAyXBPnDcT/6r6YEbLTBDeIfDwW+Q8ff9czgcOHPmDIaHh138PH0lkgKQVQxSUlJQV1fnd9ba3XNOr9djcnISc3NzOHny5KopF69mASiECwFbBScUOp0Ovb29/P8eGBhAc3MzlEolCgsL8Y1vfAM/+clPUF5ejvLycvzkJz9BcnIybrjhBsHuIZSQAIwS3Ht2APi1zk1IASgSiaBSqdDV1YV169Zh3bp1AQUVf3oAWcnJZrNhz549/Jd4OR/Ala7NysXZ2dn8MEQ4ysVCEIlA7nA4ljzYEhISlgyUsAljNmWXnp7OW84EItzCvQbubMKTNVQgscB5hWNdXV1AZbRICcDx8XF0dXWhpKQEpaWlQX9vmMVIbm4uRkdHce655y7Z2+1eLo6WbPVqF4DBvo9CuwecOnUKF154If+/v/WtbwEAvvCFL+CRRx7Bd7/7XRiNRtx+++28EfRrr722ahwMSABGGE89O8xywZ91bkIFX5vNBp1OB6vV6rXc7Cu+ZgA1Gg2am5uRkZGBLVu2uIgBJvTcg5q/Qc55GGI1lIsjJQCXC8Du7yHLvGg0GszMzKC3txdSqZQXg76Kak9DILTPc2W8efv5KwCnp6fR1tbGr3AM9HPPYlC4PrvsANjd3c1XDISE/QwSiYSPC4BrVpyVi9khyNfp4lCxmgWgED2AQh8eL7jggmUTDSKRCD/84Q/xwx/+ULDXDCckACOIp5Lv7Ows33/jzzo3ITKAOp0OTU1NcDgcKCwsDEr8AStnADmOw/DwMHp6ejwaywKumT5P01bB3Nty5WKz2cwH9Uic7qNRALojEokgk8kgk8lQVFTEW/NoNBpeVCcnJ7sYUnsqnVEG0D9W8vbzNRY4HA709PRgZGQEW7ZsQV5eXlD3xT474fjsmkwmNDc3AwBqa2t5U3Sh8RRj3LPier3eZareuVysUCgE82f19X5XswAUogeQ3AN8hwRghHD39uM4Dt3d3RgZGQmo/0YikcBisQR8P2NjY+jo6EBRURHMZrMgome5DKDdbsfp06ehVqtRW1vrdbjEWzATOsgtVy5Wq9XgOA7t7e1hKxevBgHojnumxGq18pOWfX19MBqN/ECJQqHgB0pIAPqOuzWUJ980XwSgwWBAS0sLHA4H9uzZI8j7zT47oTYUd64YzM3N8VZYkcB5IwWbLo5kuXg1C8BgewDDsUP8bIMEYJhhAXxoaAgqlQqVlZUu69yC6b8JJAPITKWnpqb4MkpHR4cg5WRvGUBm0CqVSrFnz55lxVQwPYCB4l7qnJ6eRl9fH5KSkjA2Noauri4+sxWqcnEkTJmFfnDHxcUhKyuLL82xSUvm42iz2SCXy2Gz2ZCSksI/vEJ9il9pwXu04twnLBKJvP6uJBIJLxA9MTk5idOnTyMvLw8bNmwQ7LPrLABDgXvFoKCgAOPj4z7FgUCEUSDfP/dDENvKE65ycaTM3IVAKBuY1dJ/Fw2QAAwzziVfi8XCr3PLz8/Hhg0bAv4CBGIDo9fr0dzcDLFYjD179iApKQmAcP2EnjKA09PTaG1t9fnnXU7ohWs6l/VVsYGY5crFQplRr8YM4Eq4T1oaDAbeh02v12N2dhadnZ14/fXXXQSh0Ky04D0acZ7yXcnbz1sG0G63o7u7G+Pj46ioqOB9zIQilALQW8Ug1Cshg722+1aeUJeLV3sGUIgeQCoB+w4JwAjATu9arRadnZ3Ytm0bsrOzg7qmvz2ALAvgSYgx78Fgcc4AOm8V8KffaLkMYKTwdbqYDUIEUqI6GwWgMyKRCCkpKUhJSYFGo4FcLkd6ejq6urrQ2dmJmZkZFBUV4bbbbsN//ud/Cvrayy14j2bYlO9KnwuJRLLk+6vX69HS0gKRSOQyZS8krBwttABcrmKwmnaCh6NcvJoFYLA9gOxQSQLQd0gAhhmxWIyFhQWcOXMGdrsd5513niA9LL6WgJ299rxlAYTMALJBF3eDVn+v4YlwBv7lehG9TRePj4+ju7vb73Kxt6GXUBNOAeiM3W6HVCqFTCbDLbfcgq6uLiQmJuLqq68Oq61INCMWi33+3UilUpdYwIzV165dG1SVwReE3EgErFwxWE0C0J2VysU2m40/RPqzu3i1CkDmQxooZrOZdoj7CQnAMDM6OorTp09jzZo1mJ2dFayB2ZcSsHOv4XJZAKEEoFgshtFoxPHjx5GamhqQQWskegCDwdt0sUaj4cvFzIw6IyPDY7k4UgIwUovkPRlB5+bm4pJLLgn7vUQzvn7mWTXAub+3srIy6CqDLwgVO3ytGIS6Fzic+FouZqLQU7l4NQtAu90eVAlcr9cDoB3i/kACMMykpKRg+/btiIuLw/T0tGDXXakEzLy+1qxZg40bNy6bhRIqiLMer9LS0qAMWiNdAg7mAeNcLgYW3xM2CDE0NMSvYmOn/MTExIgJQCGasAN9XfcpYNoDHDjMEeD999/ny6asvzfUCBE7/KkYhKLk7E4kRNVy5eLh4WF0dHR4LBevZgEY7BQw7RD3HxKAYUapVMJms8FgMCw7qecv3gSgw+FAb28vhoaGfO69CzaIOxwOdHV1YW5uDllZWSgrKwv4WtFSAhYK93KxVquFSqXCxMQEuru7kZSUxDe4h7v8GckSsHPgpz6e4Jifn8f8/DxKSkpQXl4e1t9psDvJFxYW0NTU5HPFwJ9tQ/4STULK13IxE1GrUQgGewBlFjCr7eeOJCQAIwT7kgr10PUk2th6NavV6pe9TDACkBm02u125ObmBtXTAay+ErA/iMViyOVyftML882bmZkBALz//vsuu4uF2Lu7HJEsAbtnAEkALmWlz7zNZkNHRwemp6eRmJiIDRs2hPHuFgkmdrBeRX/WT670nnjySfSXaBRT3srFo6OjMJvNOHbsmMuay3CaUQeKEBlAEoD+QQIwzDivFwIWg7YQX073DKBKpUJLSwsyMzNRU1PjlxALNIir1Wo0NzcjMzMTW7ZsQW9vb9BZzmiZAg7H6zHfPLlcjsnJSezYscOl7CMSiZaUi4UkWjKAoRaAKy14X41otVo0NzcjPj4eFRUV6O7ujsh9BBI7WMVgYmLC75VuZ8NBMFicy8UWiwV2ux1ZWVlQq9UYGRlBR0cHUlNTXQbRomV3sTPBZgDJQN5/SABGCPbAE2pijglAh8OB/v5+DAwMYOPGjVi7dq3f4sXfST6O4zA0NIQzZ85gw4YNKCgo4K1ugg3Oy9372Rr42c+VkpKC1NRU5Ofn8+VitVrtUi52DurBZFuFzEb7+7rOApBlM0IZyFda8L6a4DgOo6Oj6OrqQnFxMUpLS6HVagWdxPUHfwUgqxg4HA7U1dX53b9FAtAVlsX3Vi7u7OyE1Wp18S2NlqwZZQDDDwnACBHI0vblYA/uhoYGGI1G7Nq1CzKZLOBr+RrEbTYb2tvbPa50E6IhPBpKwOF+wHh6PedycUlJCWw2G29GfebMGZhMpqDKxew1wy0A2efDPQMYSjf/lRa8rxbYd0+lUqG6uhqZmZkAhNkLHij+fOdZxSArKwubN28O6OF/Nk0BC4GnNg73cjEbRFOr1ejv74dUKo2KcrFQPYCE75AADDPOQUUqlQo2CKLVagEsBuBA7Fac8bWRW6/Xo6mpCXFxcR5XugkRnNk1NBoNJicn+WzXagzOvsJ6jpb7GaVSqcuaNWcz6kDKxez3HS0CkHoAl+L8eVhYWEBzczOSkpKwd+9el+8eE4CR6F3zRQB6qxgEQrimgFcLK/3OnQ3YCwoK4HA4+DYTT+Vitq87HAiVASR8hwRgBBHipM5xHAYHB/meps2bNwcl/gDfgjgzaF27di3Wr1/vUTgIEZxFIhHm5+cxNDSEzMxMdHd3w2KxQCKR8J57Qu/TjDSBPLiTkpKQn58fcLk4UgKQff7Z64ajBLya4TgOIyMj6O7u9jos4dxeEuwQlr+sFDucKwY7duxAenp60K+3kkA7m2LDSvgbO5gNlUKhQGlpKSwWC19ZCHe5WIgeQDo4+gcJwAgSrAC0Wq1oa2vDwsICduzYgRMnTghm4OztOs4GrRUVFcjNzV32OsGcnh0OB1QqFQwGA2pqavjgYzQa0dbWBoPBgJMnTyIuLg4ZGRl8kArFQy/cvoPBvF4g5WL2+46E96BEIuFf12QyweFw0EJ3D1itVrS0tGBubg41NTV8j5c77PMfbQJwpYpBIFAJ2JVgY0d8fDxycnKQk5MT9nJxsBlAso/yHxKAYUaoEvD8/Dyam5uRmpqKPXv2ID4+PmgPLoa3IG6xWNDa2gqDweDTSrdgMoBmsxlNTU2wWCxYs2YNFAoFLBaLy+q19PR05OXlYX5+HiqVCgMDA2hvb4dMJkNGRobXTRsvvfQSnn/+efz2t7/16QEZ7hKQw+EQ9OGzUrkYAGQyGUQiEcxms+DTxcvhaQsIQG7+nhgYGIDdbsfevXuXffCy9oFI9AF6ix2+VAwCwRcBGOz31/nff/7zn8c3v/lNbN++PahrhgohY0c4y8VCDKFRCdh/SABGkEAygM4loNLSUpSUlLhYywgR9D0FcWbQmpaW5nOPYaAZwPn5eTQ1NUGhUEAuly+bjXQ3SDWZTFCpVPyCdbFY7JId/PWvf43//d//BQD88/89gXipBNXV1bj//vtRVVXl972GglD3bnkqF09OTkKtVuP9998XdLp4JdwtYHQ6HcRicdg2V6wmysvLYbfbV/xsCD1g5g/uscOfikEghGsYzGazoaysDGq1Bs8++xxEYjEylArccMMN+OEPfxj2TKs3Qhk7Qlku9tQL7C96vZ73VCV8Izo+tTEGC1oSicSvDKDNZsPp06eh0Wg8loCEFoAsmIyNjaGjo8Mvg1YgsAwgM4MtKytDcXExent7YTabPV7bE4mJiS7iZmFhASqVCiMjI/j0pz+NpuYWiFMz4NCpIUlRwi4S4cSJEzjvvPMhEouhVKTj05/+NH784x9HLKiHs3mflYtFIhFmZmawe/duQaeLV8KTByBZOXjGnwnbaBCA/lYMAiEcAnBsbAzV1dWw2WwQJ8vhMMwjLnsdZmcG8Zvf/Aa/+d3vIRWLsHnzZtx77704//zzQ3o/yxHO2CFkudi9FzgQDAYD8vPzA/73sQgJwAgilUp9DtLM6DUhIcFr/4y//n3eYF9Cu92Onp6egAxa2XV8Dc4cx6G7uxujo6NLXivQVXBsSCQ9PR1XXXUVxsbGkFhcjaz672Py8f+ETTOG/K/+DQ6zHqaBRhj6G6AabMZDDz2Eh/74J0jFImzYsAHf/va3UVxc7PPPHSyRmN5k5RdfysUsoCsUiqAzdSQAfcef9ySSAtButwdUMQiEUPcAnjhxAvWfvBaACJn7v424nDJM/PV2JORvwprP3gfTaAdM/Q0w9J1Ea2sr9u/fD4glkKelYt++fXjggQfC2s4Qqa0lwZaLhRhCo+Ex/yEBGEF8DdKjo6Po7OxEcXExysrKvH7BhewBBICTJ0+C47iADFoB3zOAVqsVzc3NMJlMqKurc/kSB+sDODs7i40bN8JisSCt9gAUF94MkViCzKu/i4m/3o75409AefGtiFPkIW37VeBsVpjGFoO6se8k2tvb8cUvfhEQS5CWkox9+/bhF7/4RdDTi8sRSQHojnO5mOM4LCwsCGpG7U0AEsERSQE4Pz+PEydO+F0xCIRQ2sDcfffdeOiPf4I4IQXZn/pvJOQtrtZLLKqEtvEFpNVejaTiKiQVV0HxiS/BtjAL40AjjAOnsDDQhCeeeAJPPPk0JGKgpKQE//Vf/4VPfepTIblXRrSsrfO3XMz+TTD3TrHDf0gARgBfS8B2u53f7elLBk6ooD83NwcASE5ORkVFRcB9Gb5kALVarcvyd3cB4RwQvP3/3nj77bdx9YF6cBwH5eVfQ1rlZfx/i89Y+1EgfxFptQcQl75m8brSOCQVVSKpqBKKC2+GTTsL00ATjP0N0A004KmnnsJTT/8LYrEIxUVF+N73vofrr7/ep/fDV6JJADojEolWnC6WyWRQKpXIyMjwqVzsSQCebbY+kcDf9hIhYFP7Wq0W27dv542pQ0moMoAXX3wxPjx5CnGZhcj+1H9DKvs49mbs/zbGHvoC5t5+FFkHvsf/uVSWibTKS5FWeSk4hx3m8R6YBhYPkr29vbj55ptx85e/guTEBJx//vn49a9/jTVr1gh639EiAN1Zrlw8MDDAPysmJyehUCgCmhAnGxj/IQEYQaRSqcf+NmCxGb65uRlSqRR79+71aTIz2BKws0ErAKxfvz6optyVgvPU1BRaW1uXzWy6X8M5wC137fvuuw/3/vRnEMUlIueTdyOxcOuSv5Ox/9sY+/3SQO6MNC0TqdsuQeq2S8A57LBM9Cye8vtOor+/F7feeituve12JCcm4JxzzsGDDz6ItWvXer0vX4hWAejOcuXikZERAHAxo/ZULvY0BEJB3DPRXAJmK91MJhMyMjLCIv4A4X0APx72UCNpfR0yr/wPiONdY680WY6UTedDf/pNmHd+Egm55UtfUyxB4tpNSFy7Cennfg52wzxMg80wfiQIX375Zbz8yqsQiUTIy12D2267DV//+td9vk9vRKsAdMZTuXhsbAz9/f1BTReTAPQfEoARxFuQnpiYwOnTp1FQUOCXZUIwJWDnARPmKRjsydpb0zrHcejr68PAwAC2bt267CnYWQA6B7flxGV9fT3eOnIUUkUusq/7EZ/dc0eaLEfKZhbIr0FC7vplfx6RWIKE/E1IyN+E9HM+C7txYTGo9zfC2PchXnvtNWzeUgGRSITcNTn46le/im984xvLXtMTkRKAwb6me7lYq9VCpVJhcnISPT09SEpK4gWhQqGAVCpd4v1FQVwYwikAnVe6ZWdn8xWEcCBkBnBoaIgf9pDv+Qzk59wAkchz7FVedgcMXe9Bc+SvyLn+pyt+dyQfxZqUzeeD4xywTg9+JAZPYWysE3fffTfuvue/kRAnRW1tLR544AFs2rTJ759hNQhAd8RiMVJSUpCQkIAdO3bAarUu2V0sl8t5NwdPPcIsq0ixwz9IAEYA9uF19wF0OBzo6urC+Pg4tm3bhpycHL+uG2jQZwat8fHx/ICJEAMlnvpzbDYbb17tq5egtx5Ad2w2GyoqKjA+Po7EkhpkHfgexAnL9y5+HMj/5lMgd0aSJEPKpvOQsuk8cBwH68zHQX18tAP33HMP7vnhj5AQJ8X27dvxy1/+EhUVFSte19M+z1ATrAeXOyKRCDKZDDKZjC8Xz83NQa1Wo6+vD0ajETKZDBzHITExkX9whaOP56GHHsL999+PiYkJbNmyBQ8++CDOPffckL5muAmHAHSuGGzcuBFr167FyMhIyFezOSOUAHzuuefwuRu/AIhEyNz/HaRsXn6SVyyNR9rOa7Bw/AmY+huQVFrr82uJRGLE56xDfM46yHdfB4fZANNwK4wf9R0fO3YMu3bthkgsRmaGEtdff73PVjORiB1C4OwHGhcXt2y5WCKRuFQWWLk4HNWDsy12kACMIM5B2mAwoLm5GQCwZ8+egIYuAhFt3gxa/bGcWO5+nIOzwWBAY2MjEhISUFdX55OL/HIB3vnPXYY9dtRDccEXIRKvXDYIJpC732d8dgnis0sg3/Wpj4J622K5uPcE3n//fezZsxf33PMDfPvb3172WqulBOwPUqkUmZmZfGnQaDRCo9FgcHAQOp0O7777Lrq6uvDmm29CJpOF7D6efPJJfOMb38BDDz2EvXv34k9/+hP27duHjo4OFBYWhux1w02oBSCrGMzNzbmsdBNqEM1XfBGAGo0GRqMRmZmZHkXU97///cVhj8RUZF97Dz/ssRLyvTdA2/gC1Ef+irySap/ijSfECclILt+N5PLd4DgONs34ohjsP4WZ4bZFq5nf/AYLCwsrXms1ZgAB71tAlpsuZsORycnJOHjwIObn50Nq3XU2xo7Vd1Q4i2CN2tPT0zh+/DjS09Oxe/fugMQfu56vQZ/jOPT09KClpQUVFRXYuHGjiwAQIpA7B+fZ2Vm8//77yMjIQE1Njc8rhHyZAn7zzTdRWlYOi9UG5eVfh/ITX/YrGMv33gBRYirUR/4KziHMQ3MxqO+C8pKvIrXq8o/+lMPMzMyK//ZsFIDuJCUlIS8vD3K5HEVFRbwJd3t7O55//nmUl5fjwQcfFPx1H3jgAXzpS1/Cl7/8ZWzatAkPPvggCgoK8Ic//EHw1xKaaOkB1Ov1+OCDD2CxWFBXV+cyES/EwdEfVjog9vb2orm5GYODg3j33XfR2NiIwcFBaLVacByHT3ziE3joD39EXGYhcr/wa5/FH/DRpOuFX4JNNQJ9+xHBfp44ZT5ktVcj4/KvQZqeA3gpQ3titQpAX/cAs+ni0tJS7NixA+eeey7y8vIwMTEBk8mE8847D5dccgn6+voEv8fVHDu8QRnACMC+oGKxGCaTiRdhwbrkSyQSWK3WFf+exWJBS0sLjEYj6urqPKbNhcoA2u12DA4O4syZM9i8eXNARp3LlYB/9rOf4Sc/u29x2OPaHyCxYOUSq6f7VFz4Jahf/jX07UeQuvViv6/hCc5ug+rV30Pf9jqkyrWwqUcxNzeHvr4+ZGRkQCaTeQx6sSAAGWxfrUwmwy233IKOjg6kpKTgkksuEdw7zmKxoKGhAd///vdd/vzSSy/F8ePHBX2tUOFryXO5AbNgmJqaQltbGwoKClBeXr7kMxMtAtC51WTHjh1ITEyE2WyGWq2GSqVCX18fbrzxRmi1WiSt34PMq74FcZz/KxDTtl2C+ff+Cc3bjyJ547kQxwW/3xgALFP9mHrqHjjMOsQp82FTj/n071arAAx0D3BcXBwKCwvxpz/9Cc899xzeeustNDU1+e1ZuxJnQ+zwBAnACGEymdDd3c3v9hSid0EikcBkMi37d9iaNblcjj179nhNmQsRyB0OBxwOBwYGBlzKRP7AysiegtpXv/pVfHjyFKSKPGRf90Ovwx6+IHQgd5gNmHnmJzANtiBl26VI3Xoxpv75XWRkZMBkMqGtrQ0cx0GhUPDNzWzSO9YEoHPgNxgMKCgoWDTUFZjZ2VnY7fYlvbU5OTmYnJwU/PUiidAZQI7jcObMGQwNDS07uBUJAej+ekajEU1NTZBIJKirq4NYLIbVauWHlGw2G86/4ALYbTbI91wP+TnXex328IWMK76B6Sd/AG3D85DvDt7nz9jfgJnD9wIiMXI//yvMHfvnWS8Afc0AeoPtEK+qqsLevXuFui2eszV2kACMALOzs2hoaIBCoRC0cXWlHkDWM+G+Q9jbtYIJ5M4ip66uzicbG2+wEz67X5vNhn379mFmZgaJ62qRdfV3Vxz28AWhArlNO4vpp/4bVtUI0i+4CfJd18I0choAkJmZiS1btvBTss6mysnJyVAqlWHZbepOtAhAnU4XcAuEr3iaIFyND83lEFIAsooBM2pfLl5FOgOo0WjQ1NSE7OxsbN68GWKx2GXQ7plnnsGNN31xcdjj6u8iZdN5Qd9DUnEV4rKKMH/8CaRWXgpJUuA9rNqW16B+9bcQJ8mR+8XfQJqqBBx2AL5vVFqNn+VAM4AMnU4HiUQS1HPGF8622EECMALExcVhw4YNyMzMxNGjRwX7EHnr23M4HOjs7MTk5CSqq6t98ugKJpCzIKxUKqHT6QIy9WS4B/jZ2Vls3LQJVosFsp2fRPr5Xwi4+dodIQK5ZWYQU0/+AA6TFpkHvoeUDR+dRj96L1nG1XlKtri4GFarFRqNBiqVCjMzM7DZbGhpaeGzg6EWRdEiAENp5ZCZmQmJRLLkxD49Pe33xH2k8LUELJQAdK4YeDJqdyeSApDtLF+/fj0KCwuXxNTvfve7+OOf/7I47PGp/17R9skfMvd/BxMPfw3zx5+E8qKv+P3vOY7D/LuPYf79JyHNKETuTQ9CLF3sk+b8sGgSws4pEgSbATQYDEhJSQlZDDsbYocnaAgkAqSnp2Pt2rX8g0+ok7qnoG8ymXDixAnMz89jz549Phu0BhrIR0ZGcOrUKZSWlmLDhsWG6mAyWu7BrLS0FFaLBeIUBeLXbhZM/DEy938HnM2C+eNP+v1vjYPNmPzHt8FZjFjzufs/Fn8AOG7xvfQmhuPi4pCdnY1NmzahuLgY6enpUCgUmJmZwYkTi1PE3d3dmJ2dDcmGh2gRgKH0AYyPj0dNTQ1ef/11lz9//fXXsWfPnpC8ZqQQYhPI6OgoPvzwQxQWFqKqqsqnCctwC0D2el1dXejq6kJ1dTWKioqWxI3bbrsNf/zjHwGHHQkFWyFNE/ahHZ9VhITCrdA2vgDrnH8lQc5uxewLD2D+/SeRuK4GuTf/jhd/H/0F36+1SjNSQmQAQ2kfdbbGDsoARhD2gbfZbIKMr7sLQJVKhZaWFl5Y+PMF8zeQsyA8MTGB7du3IyMjAxaLBUDwAtDlPkQSABwceg1mD/0YsxBBnKJA8oY9SD/nc5AkBScenAO5rPZqSOW+PSh0bW9C9fKvIU5MRe4XfwtpWobrX/houtjTNgxPsObmwsJC2O32JSvX2B7NjIwMj8ao/hJNAjCUgfxb3/oWPv/5z6O2thZ1dXX485//jOHhYXz1q18N2WtGgmAygIFUDBhC+If6A8ctTtZLJBLs3r3b62ens7Pzo/9PBGP3exjtfg+QxCEuuxjy3dchZX3wD/HM/d/B2EM3Ye6dfyDr6u/49G8cJh2mD/0Y5tF2pNXsh/LiW5f8HX8ygKtVALJhsEAJh3/o2Rg7SABGELFYLGjAZKKN4zgMDg6it7cXGzduREFBQcDX8gWz2Yzm5mbYbDbU1dXx5UomKII53TkHM4vFAohFSKu+Cmk1+6E99SyMfSdhm5uCrvEF6BpfACTxiF9TBvne65FcUh3Qa7JArnnn78jav3wg5zgO88efwPx7/4RUmY/cL/x6yeqoxb+4+F760qPiHsQlEomLhx4zRlWpVBgYGIBUKkVGRgYyMjKgUCgCmp6NlAB0/mxwHAe9Xr+iOXgwfPrTn4ZKpcL//M//YGJiAhUVFXjppZdQVFQUstcUEl8f7oEKQJPJhKamJnAchz179vh8YGGEMwOo1+sxNjYGsViM3bt3L/u5Z5+pvK/+DZaJLuhaX4d5rBPWiTOYPfyTjw6S6Uhevwfp534+oIOkNCUdyRvPhaHjyOJmoTVly/5928I0pp68B7a5CSguugWyGi+DT5zv7+dqFYDBZgCZAAzlz77aY4cnSABGAPeHu1AlPXatlpaWJQat/uJrIF9YWEBjYyPS09NRU1PjcorzZWfvSrAMYFdXF4aGhhZ7oTkH4tLXLJ6WL74VDocNhva3oTv9JiwTPbCMdWDmqR8AEEGSloHkTedBvvd6SOJ9e5i5BPId3gM5Z7dB9cpvoT/9JhKLqpD1b//jVUSx98AX/8OVgnhycjKSk5Oxdu1aOBwOfsPGwMAA2tvbIZPJ+OxgWlqaT0ExEgKQ47glvT/hWOd0++234/bbbw/pa0SaQARgMBUDBpvaD7UQUalUaG5uRkpKCpKTk1c89Hzce8shZeO5SNm4uL3BNjeJhYbnYez9ELa5SeiaXoSu6cWPDpKlkO/5DJLX1fh8Xxn7vgZDz7HFzUKfudfre2CZ6vvI5sWArE/ejeTSHd4v6oc36WoVgEJMAYc6AwicfbGDBGCEkUqlgmUAzWYzTCYTkpKSsGfPHp/Nlj3hiwBkO4vXrVuHdevWLQk87H8HkxFwOBwwGAxwOBzYuXMngMWSiOu9SpG69SKkbr0IAGBRjUB76nkY+0/BvjAN7YeHoP3wEETSBMTnbYD83M8hae3mZV+XBfK5I39DzvU/WXpfZgOmD98L81ArUquuQMZlKwSFIDKAyyEWi/mVSGVlZTCZTPzapJGREYhEIv6/Z2RkeP1MREIAss+F86GBdgELg7+m8MFWDBhCZP2Xg+M4DA8Po6enB5s2bYLZbOYtQLwhEon4+3KPHdL0NYtDGxd9ZfEg2fkudG2vwzLeA8tYJ2ae/m8AIohTlUjZdB7k59yw7EFSLI2HrPYAFj54GqaBRiR5EI/GvlOYeeYngFiC3C/8CvFZxSv8zLFRAg42A0hxw39IAEYYoab1pqam0N7eDpFIhNra2qAf5ssJQLZFZGRkBJWVlcjOzvb494LNABoMBnR3dwMAdu3a9XGmdIWm6PiMAl6QOWwW6E8fgb79LVgmz8A83Irpf34XEIkgSctESsUnINvzaUgkrsJoMZDXY+GDp2AcaERSyXb+v9kWZjH91D2wqkehuPBmyHZes/IP89F76UtJLZggnpiYiLy8POTl5cHhcECr1UKlUvEWQGlpabwYdDaijoQAZJ97/uH8UQk4HCf5sx0WV1b6LDmvdNu5cyfkcnnQrwuERgA6HA50dHRgenoatbW1UCgU6O/v9+mAyR8ylolFYrEUqVsuROqWCwEAFtUotA3Pw9h/Evb5aWhPHob25GGIpPGIz10P+TmfQ1LhUuN5+bmfh7bpJWiO/A2JxVUug2ra5legfu33ECenL/YKp6T78oOf9QIw2PgT6iGQsxUSgBFAyBKws0Hr+vXr0d3dLciD3JsAtFqt/BaR3bt3L3vqEolEHo1afUGtVqOpqYn3SnT5mfwQlGJpPNKqLkNa1WUAAMvUABYan4NpoBH2hRksHH8SC8efhCguEQn5m5B+3heQkLtY8pWf+zlom16E5q2/IvHmKohEYlimP3LoN+mQWf+fSFlf59N9sClgXwWgUL9DuVwOuVyOdevWwWKx8NnBtrY2OBwOPjtos9kiLgANBgM4jgtpD+Bqx9eHOxM8ywkxnU6HpqYmJCYmBl0xYDgfKITEYrGgqamJ7zNm36OVVsGxNgO+ROxHP118xlpkXHobgNsWD5LtR6E//dFBcuQ0pv/f9z8+SG6+ELK66yCJT1rcLHTBTVC/+nvoO44iteIicByHuXf/gYX3n0JcVhHW3Pgr10nfZeD87AGMRC9vsAR7YAhH68jZCAnACBNMCdjdoFUqlaKzs1OQU6Cn4RSdTofGxkakpKSs2HTtfB1/M4AsW7VhwwYkJyejpaUFMzMzUCgUALglZRx/iM8pQea+fwewmB3UtbwKfcdRWKb6YRpswuRgEyASQyrPRuq2SyE790bMv/EH6NuPQpKSjplD9wIiEdZ8/gEk5Kzz/YU/6uPxxc8vVKf4+Ph4rFmzBmvWrAHHcdDpdFCpVJicnIROp0Nvby8WFhagVCqRnp4ekhKeM6zsw35WVsqjQB48zhZTnn6PK610CxQh2j7c0Wq1aGxshEwm89hn7Cm+cBwHh8MBu90OkUj0sbgN8L7E0nikVV6KtMpLASz6fS5mBxsWD5IfPIWFD56CKC4R8XkbkX7e5yFJzcDc248iuXw3VK8+BEPn20gq3YHMT/7Av/c7RkrAq6EH8GyDBGCEYIEr0AygJ4NWZrsS7Eg9gCUO+tPT02htbUVhYSHKy8t9DjK+GtcCi8Gru7sbY2NjqK6uhlKphNlsRnZ2Nrq7u/mfz59T/HKIpfGQ1eznp+/M4z1YaHwBpsEm2OYmMffO39lPAdXLvwUcNoiTZYulm1SlX6/FTvFCDIEIgUgkQlpaGtLS0lBcXIwPPvgAWVlZsFqt6OrqgtVqhUKh4MvFSUlJgt+TJwsYiUQSlHE4sQh7mLof4ljFYHh4GBUVFV5XugUK67cTSgBOT0+jpaUFJSUlKC0tXfIZ9HTAZFk/ZoosFov5zxTnh6fecsRnFSPj8q8B+Ogg2foa9O1HYZnqg3moGVP/aAZEIoDjMPKHmwGLAWm19VBe9GX/X+wjZwd2CPYW2903Jq0mgu0B1Ol0yMjIWPkvEi6QAIwwgWQAva10c+6/CRa2VYTjOPT396O/vx8VFRXIzc316zq+PgzY9LJer8euXbuQlJTEC9lNmzaB47iPvbwEEoDuJOStR1betwAADosBuuZXoe98B5bpAcBhBQCkbL04sIt/FJx9zQBGYiBDqVRCoVCA4zgYDAaoVCrMzs6ir68P8fHx/FaS5R5C/uBpDVwo3fzPBvw5eLn3FztXDFZq3wgGIQSgc9xZbvew+wHTWfyJxWL+/QqkBOwrYmk8ZNuvgmz7VQAA88QZaBtfgHGgCQ69GrAYIUnNQGJhBTiH3W/zes5hh1gkQm9vL+8BymyfkpOTl/Rar0YBKIQNzGq2Y4kUJAAjjD9DIKwJempqijdbdsbbqT8QWAaQWcrs2rULMpn/q9F8yQAaDAY0NjYiISEBu3fvdnmAsFL06dOnodVqIcLSSb5QII5PhmznNZDtvAZ2oxajv7keEIuh/fAwtB8eRvLm8yGrPbCi1xfPRw8eXx66kSjjODdhi0QipKSkICUlhTeinpubg0ql4h9CcrmcfwgF6r8Vzi0gsYhzbPF3pVswBCsA2fddo9GsGHec44s38Qc4Zd7DsGc7IbccCVd+EwCgPvI3aE8+C7thDjOHfgyJLAuyHfVI3XqJ7/vLucWfp66uzsUDtL+/H3Fxcfz3kA3wrFYBKMQqOMI/SABGCH9LwEajEc3NzQDg1aDV06k/UKxWK9RqNWQyWVAN4is9DNje4DVr1mDDhg187w4L4CaTCc3NzZBIJNi5c+fiSvQQZQC9s/jQSCrdifRzPouZ534OQ+c7MLQfQUL+Jsh2XIOk8l3LnuyZaPVF4ERin+dyWUeJRMI/ZIDFz6JKpYJarcbg4CD/39lAia9G1OHeAhJrsNjCKgZlZWUoLi4O+WcrGAHIjKhFIhHq6upWbAdgQ2as34+9vvvPyARvOA6PrvcnBkQiFH37GWje+Qe0p56F5s3/w9zbf0dq1eVIq9mPuPQVyvBOB0JnD1BPBzNgcSdyVlaWS3YwmvHkB+ovFDsCgwRghJFKpTAajcv+HWZ6mpOTs6JBqxDlF5VKhaGhIcTFxQVtKbNcBpAtb9+wYQMKCgp42woWwBcWFtDc3IyMjAxs2rRp8c85zi9jVEFwuv/47BLkf/kPsFuMmH3+FzANNGLmmZ9AkpYJWe0BpFZeCnGCh0DELfW88/5ykc0ArkRSUhLWrl3LG1HPz8/zn5mOjg6kpaXxgnE5I2r319Tr9avmoRUp/HlvxGIxBgYGMD8/77FiECoCjUHz8/NobGxEZmYmtmzZ4vPnkQkI4GPnAXc+zgBG5vAIAIrzPg/FeZ+Hoe8kVK/8DtqGF6A99SySynZBtqMeCQUVHu/dmw+g+8FsYWEBp06dwtzcHAYHB0PSthEK2GeFfADDT3R+ImKI5TJ2HMdhYGAAfX192LRpE9auXRvU9VbC2WR1zZo1MBqNIfETdPYRZMMe7qWb6elp3mTaZbm7COAQ+jKOZ5zse+KTkHPtDwAAc8efwMIHB6E58jfMvfsPpFZehrTtVyFOmf/xP43ydU6BlmDEYjEUCsVHE9qLZuQsOzgyMgIA/CCJUql0yei4DyvpdDoK4gJhNBphMpkCXukWDIEIwPHxcbS3t/uVpWQVlPn5eTQ3NyMrKwtZWVkezdaZAAx3BtBTyTm5dAeS73gU1oUZzD77Mxj7G2DsPYG4zCLIdl6DlE3nQeRsEeOw+/R+sJ9727Zti7YzbtlBb72DkYYEYOQgARghnAc3PJWAbTYb2traMD8/75dBa6C7hR0OB9rb2zE7O4va2lqYTKbF1WtB4p4BtNlsaG1thU6nw+7du/lhD3bvADAwMICBgQFUVFQsNZnmuICtHILGS8BM3/MZpO/5DAwDTVC//Btom16CtuF5JK6rhWxHPRKLKsE57HAWkMsRbgHIhn2EGL5ISEjwaEQ9NjaGzs5OpKam8mLQ3XswEn089957L1588UU0NzcjPj4ec3NzYX39UMAqBlKpFMXFxWEVf4B/AtB5KrmqqgpZWVk+/zu73Q6lUoldu3bxdkbd3d1ISUlBZmYmsrKyIJfLIRKJPj54CDQFLARxsizkfv6XsNvt0Lz2e+jbj0L10oPQvPVXpNVchbSqKyBJVfA9gCvhPAQiFotdsoNsqIv1DrLsINsfHmrLp+Vw7vcOBDa0RgLQf0gARhhPU8DBGLSy6V1/YH03AFBXV4fExERMTU0JMk3s/DAwGo1obGxEfHw8du3a5XKv7O91dnZCpVKhtrbWY/O3SCT6SEyFEV7ALi/KkkuqkXz7w7Dr1Jh+5mcwDTbD1H8K0oyCxT4fHzVduAUge3AIPX27nBF1e3s7rFYrEhISMDY2BplMFhE3f4vFguuuuw51dXX461//GtbXDoTlPhfuFYOpqamg9nAHiq+HUPfDoK8PcPdhD2c7I6vVitnZWczOzvI90xkZGU4WUpGqHnhHIpEgc9/Xkbnv69C2vIq5o49g/viTmH//KaRsOh8OiwlIWFmgsVjq6TPCegdZqw3LDp45cybi2UHW/xfMa1IGMDBIAEYY95Lt5OQk2traUFRU5JffnrfrrcTc3ByampqQkZGBLVu28CdBoby8WAaQDXvk5ORg48aNAFy/+Myiwm63Y+fOncvvzI1UH4+PvwtJqhK5n/v5YqB944/QnX4TNtUIIBL75HcViQwgILwAdMfdiLq9vR1msxlTU1P4wQ9+gNdeew15eXl49dVXcd5554Ulc/WjH/0IAPDII4+E/LVCiaeKwezsrGB7xv3Bl9jhPvnvqz8mGxLzNOkLLNq95ObmIjc3FxzHYX5+HjMzM9DpdB9dI/Il4OVIq7wMaZWXwTw9gNnnfg5959uAww69zbcMoC9xw713MNLZwWAHQAASgIFCAjBCsC+qVCqFzWaDw+HAmTNnMDIygm3btiEnJyeg6/ojANl0YHl5uWufHYQVgCqVChMTE1i/fj0KCgqWBHC9Xo+mpiakpaWhoqJi5YAT9gxgYP9MIpFAedEtcJh0MHS9izipBO+++y4UCgUfYD2JnEgJwHC+JptYVygUWLduHX7xi1/gS1/6EsbHx3HLLbfgggsuwKOPPhq2+1lNuLdVeKsYBLNlKBhWih1szWNubi42btzoc3mTxQ32Git9XkUiEdLT05Geno7169cv/mGY20cC7VdOyC5B5hXfwOSTPwAsRtxyyy0rv1aAccM9O6jRaKBWq9HT0wOz2Rzy7GCwHoAOh4MEYICQAIwwrAfw1KlTsFgsQRu0+lJ+cTgc6O7uxvj4uNfpQKHMXE0mEz+FqFQql4g/lUqF1tZWFBQUeHT6d2fx4RddPYDecJgNmD70Y5iH21BVVYW3334ber0eKpUK09PTOHPmDJKTk118vNhmg3ALQNY3FE6cs6FKpRIFBQWorq7Gz3/+cxgMhrDey2pluYqBUJZQ/rJc7BgZGUFXVxc2btyIgoICn67HSr7BtCrwFYVIxQ4/MfadwvThewHOgcOHD+Giiy5a8d8IETckEgkyMzORmZmJ8vJy3vIplNnBYDOALFaQAPQfEoARxmAwwGKxID4+Htu3bw96VH+lHkCLxYLm5mZYLBbU1dV53UwRrABkJSmz2YySkhJ+0pddWyQSYWRkBD09Pdi0aRPy8vJ8v3ikTvF+BFe7XoOpJ38A6+ww9u27HP/4xz9gtVqRmJiIgoICFBUVwWaz8aau7e3tfFO7yWQK64M7WBPWQPHkA8gmQIPpBfzhD3/Il3a9cfLkSdTW1gb8GpHGl4qBRCKB1WoN+715ih0OhwNdXV2YmJhATU0NlErfVikuZ+7sD0wARnsJGAB0p9+E6qVfQyQW4fix91BeXg6r1cr//N6+q0JvEBKJRB6zgyqVCj09PbBYLHx2UKlUBpwdFGILCEACMBBIAEYIJoDYerNt27YJ8uVd7tTvvFR9JbEZ6DQx8PGwR1xcHJRKpcs9sQDR3d2NiYkJbN++nbcQ8ZkIBXGRj1McVs04pp64C3adGnfecTt+8pOf8A8x9zJWRkYGMjMzIRKJoNPpMDs7C7Vajd7eXkxOTiIzMxMZGRmQyWQhywpGiwAUagr4zjvvxGc+85ll/05xcXHQrxMpLBYLmpqaVqwYSCQS3hw4nLgLQNbfazablz10uuOc+Qt2SODjKeAIZAD9GP5a+PAg5o4+gri4OPT39yMtLY0vfzvHY7FYzP+f878PZeXAOTvIJm/ZAdZ5XaS/2UEhTKDj4uJoh3gAkACMEBMTEzhz5gwqKyvR1NQk2LSeNwHISkXelqq7E2gGcG5uDo2NjcjOzsamTZvQ2tqKiYkJiMViZGVlQSqVoq2tDUajETt37vT5YcCIyBSwH3085okzmH7qB3BYjLjt1luwf/9+nDlzBpmZmVAoFBCJRLwYZIEd+Pi0XVRUBLVajZycHEilUr5EznEcH1yVSmXAm1k8EYnNI+x1Q7EKjj2kzkY4jkNDQwMSExNXPMRFQwlYp9OhsbERqamp2L17t88VDufDUrDiD8DHVluR8AH0IXxwnAOaN/8P2obnkJaWhtHRUZf3isULbwdJFlfC9T12Xhe5UnaQ9TovZwgfbAYw0HWUsQ4JwAixZs0apKam8g9ym80mSD+Fe+bO2WersrJyqa+eFyQSCT915+sXi5m5lpeXo7CwEA6HA6WlpZiensbk5CS6urogFouRkJCAzZs3BzTlabPZIFmYgb7rPSSVbPd9n2Yw8C4wy78PxoFGzBz6MTiHHYcP/gsXXXQR1Go1Zmdn0dnZCYvFAqVSiaysLGRmZiI+Pt4lqLPfG/ssZGdn8xOzCwsLUKlUfNaYbdvIzMxEampqUMEvWjKAkVjnNDw8DLVajeHhYdjtdt46pKysLCpLSiKRCNu3b0dcXNyKv3Nf10wKDWtDmZmZQUtLCwoLC312NAhk2GMlRkZGeE9Tw5kTkMqzEZe9LkyCYWX1x9msmH3xARi63sXatWvR3d295O+w7yf7vrB44XyQZOV+JgTD+Z32lh2cnZ1Fb28vEhISvGYHg80A6nQ6vxMJxCIkACOEWCxGYmIiL7CEOqk7B32r1YrW1lbo9Xq/h0vYF9KX0xnHcejt7cXQ0BCqqqqQkZHBB/Hk5GSUlJRAoVCgubkZaWlpkEqlaGlp4YNGVlYWXypeibS0NGj1C5h99meASIyEggokl+9CUulOxClyff75AkLkPUjp2o9A9eKvIBKJcPLEB9i8eTMA8NsJOI6DXq/H7OwsJiYm0NXVxRvWZmZmQi6X8++jxWJBSkoK/3sUiURITU1FWloa1q1bx2/bUKlUGB4edrF1UCqVfveRBnsCDxT3wB+JSb577rnHZdq4uroaAHDkyBFccMEFYb0XX3E2T1+OSGUARSIR5ubmMDIygi1btvjc3yvEsIf79c6cOYPx8XH827/9G+655x7o29+C/vQbEKekI7lsN5LKdiCxqBLiuGVsp4JlGZ3pPChWXV2N9957z6dLOpd/HQ4HDAYD+vr6oFAoViwVhxp/s4O+WGMtB4sblAH0HxKAEYbZYQgpAO12O/R6PRobG5GUlIS6ujrExcX5dR1fBSAb9lhYWMCuXbuQkpKyZNhjYmICHR0dfGaQXXdubg4zMzPo7u6G2Wx2yY558wGcnJwEAPzhD3/AAw88gInRdpiH26B58y+QKnKRXF6HpNIdSMjfBJFEqI/38kMgCx8ehubIXyGVxqGvr9dj+ZGJuNTUVN6wVqVSYXZ2Fi0tLeA4DnFxcbDZbKiqqoJMJnMp9Th/PiQSCdasWcNv22C7eAcGBtDe3g65XM4HV19KI5EqATsHfiaQ09LSwnoPjzzyyKr3APRGJASgw+GASqWCXq/Hrl27fN5gtJK/n7/Y7Xa0tbVBr9djx44dSElJgV6vx+TkJG6//Xa8/fbb0LW9Dl3LK4BEisSiKiSX7URS6Q5IZb5tIwkWu06DqacWB8X2778KTzzxREDXYZ6K2dnZ2LBhg0tVgeM4l4PkSoMkocBTdpDFvt7eXkgkEsTHx2N2djagyeJIVA7OFkgARgHMC1AIxGIxjEYj3n//fRQUFGD9+vUBBVNnAegNk8mExsZGSCQS7N692+OwR19fH19+dhZGYrEYSqUSSqUS69evh8FgwMzMDJ8dS01N5cWgpwGI2267DbfddhsA4PTp07jzzjvR3NyMhVPPYuHDQxDFJyFpXS2SynYiaV0NJElLt4r4jucyDsc5MHfkYSycPIyU1FSMj435nH2Li4vjTZFZ6XFhYQGJiYk4deoUZDIZHzRZcGMPSPegLpPJIJfLUVZWBqPRyDdmDwwMIC4ujh8k8RZco6UETOuchCXcAtBsNvPDKWwNmy8INenrfB/Nzc0Qi8XYsWOHS7/smjVrcOjQIQCLh9df/OIX+OMf/4jZwSaY+k8BAOIyi5BUvhvJpTsQn1sOkTiI7LiX3m6regxTT94Nu06Nr915B372s58FdPm5uTk0NzejoKAA69YtlrWdBZ7zIdKXQZJQ45wdLCwshM1mQ2dnJwwGg8fsoC+lXRKAgUMCMAoQKlBzHAe1Wo25uTls27bNP2sVN1gQ9iYA2QaRrKwsbNq0iT/BOzckt7e3Y35+Hjt27Fj2we4cFJzXOc3MzGB4eJgfIGFCxl3EVFRU4OjRowAWRem3vvUtHD58GAs9x2HoeheACAn5G5HESsUZBf49ZPgY/vG/4exWzL70IAwdbyM3Nxe9vb2+X88Jm82GlpYW2Gw27N27F/Hx8TCbzfw6q8HBQZcTdEZGBt/n6Wk6kG1CyM/P97jyydmEmgXXSAhAdu+R7gE8mwmnAFxYWEBjYyMUCgWysrKg1Wp9+ndCD3swU2yFQoHNmzcv+7mWSqX4/ve/j+9///sAgOPHj+Nb3/oWOjo6sPDB01h4/0mIE1ORVLYLSaU7Auw5XjoE4jwo9vOf/RR33HGHn9dcRKVSoaWlBWVlZXxlxR33UrFzpjUasoNSqRQJCQlITExEWVnZkuxgYmIiH6/S09M9HmApbgQOCcAI4W7YGmwGkJU8NBoN0tLSghJ/7P68TQJPTEzg9OnTLsMezgGcncBFIhF27drl98Sq8zon51LxmTNn0NbWBqVSyfcOupeKExMT8dBDD+Ghhx4CADz++OO49957MTTcA/N4F+aOPgJJWiaS1y+WihMLtkIk9a08zotiixEzh+6FabgF27Ztw/vvv+/Xz8dgdh5SqRQ1NTV89jAhIQH5+fnIz8/nf/7Z2Vn09fWhra0NCoWCF4Ts53cWhM6Txenp6VAoFHyWlfUOOgdX558tXDBhwgK63W6nDKCP+Pq7CtcmEOYwUFpaipKSEgwPD6/oIMAGzNzbRYKBTcwXFhby2TB/2LNnDz744AMAiwfcr3/963jllVeg7zgK/ek3AZEYiQUVHx8kA+g5dh4U+8XP70N5eTmOHTvGx7P09HSfBNjk5CTa29uxefNm5Ob6dh/eBkl8tZkJFQ6HA/Hx8R6zg+wA293d7TU7qNPpQho37r33Xrz44otobm5GfHw85ubmlvyd4eFh3HHHHXjrrbeQlJSEG264Ab/4xS8EdWsIBSQAIwhb6RRsoDYajWhqaoJEIsH69esxMjIiyP25C8Dlhj1YANdqtWhuboZCocCmTZuCHi5wLhVv2LABer0eMzMzmJqaQnd3N1JTU/ng6alUfMMNN6C+vh6NjY2Yn5/Hb3/7W5w4cQLappegbXgeImk8Eku2I7lsF5JKayFJ8eRJ+HEPoF0/h6mn/xvW6QHsu/xy/Otf/wro52Ll85SUlGXX33kqlbPsIJuuY2LQ2WbGPaiLRCLEx8cjPz9/SWP21NQUbDYbWltb+UGSUO/hdReAzMw13D2AZzOhzgCyeDA4OOjiMLCSh6j7sAcrWwbD6Ogouru7/RJEy5Geno6///3v/P927jk2eeo5XrvZY6mY48AXDjwNijEz+JmZGbS1tcHhcCxxCnBnZGQEZ86cwbZt25CVFXi/oqfsoKeDJIvtocoOepsClkqly/YOJiYmYmxsDA0NDSGNGxaLBddddx3q6urw17/+1eP9X3nllcjKysJ7770HlUqFL3zhC+A4Dr/97W9Ddl9CQAIwCggmUKvVajQ3NyMnJwebNm2CSqUSZIcv4CoAWYZxfn7e67AHC2LFxcUoKSkJSVbJU6l4dnYWjY2NEIvFLlPFUqmU75HJy8vD3r17ceWVVwJYLL3efffdeOyxx6DpOwnjmcWTf3xOGZLKdyG5bCdvFcEeVA6TFhP/+A/YtbP46q234Je//GVAPwMb0FEqldi8ebNf71NycjIKCwtRWFgIu93ul82Me1BXKBRQKpVISEjA3Nwc5HI5pqam0NPT43FFnZC4W1WwdU5UyhEOZuUUihK/8/DX7t27XR7Ay3mICj3s4TzpG5CpvI/41HNcugPJZTuRWFIDSRJ7PxZjx8KHh6A58jdI4+LQ1/vxoJhUKkV2djays7PBcRy0Wi1mZmYwMjLCD3QxEZSamorBwUEMDQ2hurpa0J91peygc1WBfW+F+kz54kLgKTuo0Wjw9ttv480334TZbIZGo8FXvvIVXHPNNYLcF4NtFfI2LPbaa6+ho6MDIyMjfOXtl7/8JW666Sbce++9kMmC6T8PLSQAo4BASsAcx2FkZATd3d0uezWFPPWzQO4+7OGcsWQBfGhoCH19fdiyZYvHtVShwFOpeHZ2lu93S0lJgU6n482vnZFKpfjZz37GN1+//PLL+K//+i/09vZhfrof8+/9k7eKiM9ZBwAw9rwPiCX4xc/v4x8G/sJ6pfLz81FWVhbUA1AikfhlMwPAowm13W5HXFwcv6LOarXy2UHnFXVMEArhuO+p/4/c/H3D18+Mc3ldSAHINv1IpVLU1dUtyVJ5E4BCD3vY7XacPn0aWq2Wn/QNB157jruPwdD5Dpx7ju1aFcBx0Bz5G1JTUzG2zKAYG+iSyWQoLS1d0gsMLL6HZWVlIc+Ue8sOejOhDiY7GMjnUyqVIisrC9///vcxNjYGsViMLVu2wGw2B3QPwfD++++joqLCpe3qsssug9lsRkNDAy688MKw35OvkACMIIGWgB0OBzo6OjA9PY3a2lqXk6DQApCVdDMzM7F582Y+EDj3CHZ1dWFmZgY1NTU+T/4JjXuptK+vDwMDA0hOTsbAwACmp6f5zJhcLl/y8Nm3bx/27dsHAEusItDC3k8R/vXUk/zf8xe1Wo2WlhaUlJQIvorMF5sZZhydmZmJuLg4XjROTU0hJyeHP4SwTKpzVkKlUmF8fJwvuzMxGOiKOvcJYJ1OR27+AuMsAP21gfKGRqNBU1MTX3Hw9OD2tgtYyMyf86Tvzp07I9ZrtVLPMTgOEIkDGhRjvcC5ublob2+HWq1GRkYGXwJmvdCZmZkhNUL2xYQaCHyQRIhNINu2bcN//Md/BHyNYJicnFyS9FAoFIiPj+dty6IVEoBRgD8ZQGa14HA4UFdXt6RXK5gdvu7Y7XZ0dXWhvLwcRUVFSwI4M5q2Wq3YtWuXV+++cML6ksbGxlBbW4v09HReDM3MzKCpqYkXOGyq1v1E7m4Vcd999+HXv/41nn32WdTV1QV0X9PT0zh9+jQ2bNiA/Pz8oH/OlXC2mWGbRGZnZzE8PIyOjg7eOobtGy4tLfU6HZiSkoLU1FSUlJTAYrHwNjMtLS0QiUQu2UFfhUY0bAE522EPYqEspkZHR9HZ2Yn169ejsLDQq4hzFoChGPZgk77p6enYsmVLRCyMvHHDDTfghhtuALBogXXdddeB4zg0NTUFdD273Y7W1laYTCbs3r2bz5CzbP/MzAzfssFimq+DJIGyXHYwkEGSYDPURqPR79jxwx/+kC/teuPkyZOora316XqePtOh3s0sBCQAowCpVOpT6np+fh6NjY3IyMjAli1bPJ6a2BqmYOA4Dn19fTCbzVi3bh2Ki4uXlG70ej2am5uRkpKCyspKv7dPhAKHw+FiPcOCgrMYYsbJMzMz/FSt81Sxu6CWSqW46667cNdddwV8X+Pj4+js7MTWrVt9XsUnJCKRCHK5HHK5nC8tjY2NYWBgABzHYXZ2Fl1dXS42M8t5hwmxos7TFhDKAPqGP++REBUBjuPQ3d2NsbExbN++nZ8c9wb7/IRi2CPYSd9wUlpaisbGxoD/vdVq5VcT1tbWuhyuWD8ca9lgvcDOe8OzsrKQkZER0uyoc3bQuaXEH5uZYDOArHrgD3feeSc+85nPLPt3fK3SrFmzBidOnHD5M41GA6vVGrZ2qECJ/FOb8ClIj42NoaOjA2VlZSguLvYa+IJt/HYe9khLS+OHPZzFn1qtRmtrK/Ly8nze8RlqrFYrWlpaYLfbly0JseEHZ2uUmZkZ/iTN+uaYkW2wPxvrjayuroZSqQzqWkJhtVoxMjLCP0Tn5+dXtJnxlh0MdEUdZQDDQ7ACkH2vjEYjdu/e7dPviAlAIfv9gI8nfTdt2hS0zVW0wyo98fHxqKysXFYgxcXFIScnBzk5OfyhbGZmBkNDQ2hvb4dMJuPbX0K5Mo09b/w1oQ42AxjIBiEW34Sgrq4O9957LyYmJvgJ9Ndeew0JCQmoqakR5DVCBQnACMK+iMuVgB0OB3p6ejA6OoqqqqoVx/7ZFymQL5XJZEJTUxPv39fa2gqNRoP09HQkJCRAJBJhbGwMXV1d2LhxY1hKmb7AbHCSkpJQXV3t12kyOTkZRUVF/Ema9c2xkzcTg55KxcvhXIqOZG+kO1qtFg0NDS6bA4SwmQH8W1Fns9mW9ACG0wNwcHAQ//u//4u33noLk5OTyMvLw+c+9zncddddUe/d5Q/BCEA2rZ6cnIzdu3f7XN5nZWe1Ws1/ZoKBfZdGR0ej6iAVKoxGIxoaGiCXy/0ucTtn+8vKymAymfjv88DAAG+t4s/+9UDx1YSafT4DTVqE+vA4PDwMtVqN4eFhfmsTAJSVlSE1NRWXXnopNm/ejM9//vO4//77oVar8e1vfxtf+cpXonoCGCABGBV4GwKxWCxoaWmB2WxGXV2dTx9y50Zdf3AvL3Mch7y8PAwPD+O9997jBYxOp4uqIKzVatHU1ITMzExs3LgxqJOkp1Kxe2aMTd0u55PHcRw6OzuhUqnCOp24Eux3zGx6PCGkzYz7ijqWHRwYGIBYLIZUKuX3fxoMhrC+T11dXXA4HPjTn/6EsrIynD59Gl/5yleg1+vxi1/8Imz3EQjhKAGz4aH8/Hxs2LDB59d0OBxISEhAdnY22traAID/znja4rMSzpO+O3fujJrvUqjQ6XQue32DFc+JiYlYu3Yt1q5dC4fDAY1Gs2T/OjvghdL709sgyejoKBwOB78Hnf1dX21mmD9gKA+P99xzDx599FH+f1dXVwMAjhw5ggsuuAASiQQvvvgibr/9duzdu9fFCDraEXGsQYMIOzabDXa7HZOTkxgYGHAZMNBqtWhsbERaWhq2bdvmV/bp1VdfxbnnnuvzZBhz8i8rK/M47KHX69Ha2gqDwQCO45CcnMwHdSHKpIHC+oGKi4uXLYsLAcuMzczMQKPReH0PHA4Hv4R++/btUTEYA3y8uq+0tNTr2qjlcLaZmZmZwfz8/Io2M869X879P2y4SKvVguM4HD58GC+88AIUCgUOHTqEsrIyQX92X7n//vvxhz/8Af39/RF5fX/w1e7ixIkTWLt2rc/Zeo7jMDw8jJ6eHmzevNmvf+c87MG+D2yLz8zMDEwmE3+AyMrKWtHyx2w284NGlZWVZ1Vm1hPsOxqO/kbn7/Ps7Czm5uaWfJ9DPVwzPDyMvr4+VFVVQSaTucQOxko2MxzHobS0FC+88AJ27doV0vs9G6EMYATxVgKemprihU0gXnG+TgJzHIf+/n709/ejsrISWVlZLqcwkUgEk8mE1tZWxMfHo7a2FiKRaMlELQvooS4pOMMGK4Ry/l8J58wYa7qemZlxKRUrlUqMj4/DbrejtrY2ah5YzCy8vLyc94v0l0BtZrxNB8bHxyM9PR0bN26EQqFAS0sLBgcHsWXLFtx0003405/+JNSP7zPz8/NRk9leCWeD8uXwx2JqOXup5fBmFgyA77ctLy/nt/iMj4+jq6uL703LyspaMgDEJn1ZGTRccSVSsAGO5fb6Cokv32f2XWbfZyFh4m/79u384TFQmxm9Xk8rJAOEBGAUwIK082qlrVu3Ys2aNQFdz5dJYFZa0Wg02LVrF1JTU/l7YF+y+fl5NDc3Iysry6W8yhqOnff0spICmz7LysoKiQDiOA4DAwMu6+jCjXvT9fz8PCYnJ9HZ2QmHwwGFQsHbq4TSn8sXmF2L0PYzvtjMsIdHWlraklIxm9yzWq0oLy9HZWUlqqurcd9990GlUgl2n77S19eH3/72twFvd4lWfC0Bs73Udrvdo72UN5x/r8v5vzkLjpKSEpjNZj4z2N/fj8TERD5usEG0goIClJaWRsWQWSgJZK+v0Lh/n1n7y+DgoMtGEk9i3V88iT9n/LGZcTgcMBqNJAADhARgFMAygE1NTdBqtUtWKwVyveWCvtlsRmNjI0QiEd/c7e7TNTk5iY6ODr5k6OkL726+rNPpMDMzw/uFyeVylxN+sDDT6dnZWdTW1kbF3liRSITExESo1WpkZmairKyMz5Ayfy7WM5eenh7Whxlbzbdp06aQPlg82cw4bzCQSCS8GFQqlejr64PRaMSGDRsALB5GPvjgA+Tl5fEiIVAC8fcaHx/H5Zdfjuuuuw5f/vKXA37taMQXAcjaTeRyOSoqKnxuNwlms0dCQgLfm2a3212qCna7Henp6ZDJZEFbhEQ7zNS5srJSsKnUYBGJREhPT0d6errLIAkT6/Hx8bwYVCgUfv1+VhJ/7qxkQs3aNaxWawA/KUE9gBHE4XDwqfeTJ08iIyNDkF6X9957Dxs2bPA4McxWkbE9tAD4UpJYLOYzbCwLGeiycRY0pqenoVarg+4bZLtHTSYTqquro6a3jk1KZmRkYNOmTS4/l81m4x9ss7OzAD62H/DHNDkQpqamcPr0aVRUVETUi8p5Rd/s7Cz0ej3EYjGKioqgUCggl8vxq1/9Cg888AAeeughfPaznw3q9djrLEdxcTH/+RkfH8eFF16IXbt24ZFHHokqU+HlsFqtPg16dXR0QCKR8GLbHdZuwtYl+vq9FHqtG6t+jIyM8KIjkL7B1YJzJaO6uhrp6emRviWfsNvt/CDJ7OzsksGw5eLy0NAQ+vv7fRZ/KzE1NYXLL78ccrkc77777lnz2QgnJAAjiMPhwMTEBJqbm2Gz2XDxxRcLYqh8/PhxrFu3bkkJmQX70tJSFBcX80GcBXC73Y6Ojg7Mzc2hqqpKsAybsxCamZlxWTXmS98g88SSSqWorKwMqXDyB3/2+rKyCgucer2e99vLysoStFQ8MTHBG08HKuCFhuM49PT0YHJyEmvXrsX8/Dzuu+8+vPPOOzCZTLj//vtxyy23hFXYj42N4cILL0RNTQ0ee+yxVZVp8lUAdnd3w26384c9hnP/rz/tJmzYQ8i1bna7He3t7VhYWEB1dTVfLWCDCixuLCwsLNs3uFpw/i5s3749KioZgeD8+5mdneUHwzyt3BRa/M3OzuKKK67A5s2b8fjjj0fFIoLVCAnACDI9PY0PP/wQGzZsQEdHBz7xiU8I0jd34sQJFBQU8GapzsF+27ZtyM7OXnJ6t1gs/EBDZWVlyE5Tzn2DMzMzK/YNsgxbtK19Cnavr9Fo5AMny5A6G1AH+nOyBvvKysqI9Ed6gmV3JiYmUFtbi+TkZHAchwcffBD33nsvLr/8cpw6dQrXXnstfvWrX4XlnsbHx3H++eejsLAQf//7313EX6C9t+HEVwHY29sLg8GAbdu28X/m3P+7fft2n73Klhv2CBTnuFNVVbVs/HPuG1Sr1bzdTFZWVtjbKwKFDdrMzc1h+/btEe8RFhKr1cpn4GdnZyESifiy9vT0tGB+qGq1GldddRVKSkrw5JNPRs2w3WqEBGAEYen01NRUvPrqqzj//PMF8WI6deoUcnJyUFBQsCTYp6amLjm9R2rijp0gp6enMTMzA61W69I3yFYh+ZJhCydC7/VlGVLWZwPAZZWTrxnP0dFR9PT0oKqqKmqmWdlaQbabOSUlBRzH4W9/+xvuuusuvPTSSzjnnHPAcRxMJlNIvciceeSRR/DFL37R6z1HO8xCaiUGBgYwNzfHe5eZTCY0NjZCLBajurra54Oe+1o3IQ5iOp0Ozc3NkMlkfscd575B9p1hVYVA/AbDgfNe3+3bt5/VJUvmo9rX1weNRsP3FbIWmECzt/Pz89i/fz9ycnJw6NChs/o9DAckACMIx3GwWCwAgNdffx11dXWCTDOxHr/c3Fx+F2V1dTXi4+NdfLpEIhFmZ2fR1tYWFbs13fsGOY6DUqlEaWlpRP0GnRkbG0N3dzcqKipCstfXeQJvZmYGer0e6enpfFnF2zANa66Otn6ivr4+jI6Ouoi/f/zjH/jOd76D559/HhdccEGkb3FV4qsAHB4e5m1dmM9cZmamX9l0ofv9gI8z6EJM+nIcF5TfYDhw3utbVVUVNW0soYSVfWtqahAXF8dnBln21nmQxJfPolarxYEDByCTyfDcc89FTR/4aoYEYARxFoBHjhwR7OHd0tKC+Ph4TE1NQaFQYMuWLfzrAR+f3oeHh9Hb2xvyKVF/GRoaQm9vLwoLC/mJUlZO8LVvMBQMDg5iYGAAlZWVYcuwGY1GXgyq1WokJSW5TBWLxWL+voTqrxGK/v5+DA8Po7a2FqmpqeA4Dk8++SS+/vWv49ChQ7j00ksjfYurFl8F4NjYGEZHR1FQUID29naUl5ejqKjIr2EP593PQoi/UK+TdK4qREPfIHNdSExMxLZt26IyOyk0LCbV1NQsaTFgG4ZYC4zNZnPZSOJJ2On1enzyk59EXFwcnn/++bN+I0y4IAEYYZij/zvvvIMtW7YI0rd18uRJqNVqlJWVoaSkZMmwh8PhQHd3N6anp1FZWRk1GSPWHD0xMYHq6mpezPjbNxiK+2J7ff3pmRIatl+VBU62dotNRvtq3BsOBgcHMTg4iJqaGr7J/dChQ/jqV7+Kp556CldccUWE73B1Y7fbve4Pd4YNBDkcDt7s3RdCMezB2gFGRkawbdu2sPSosgMkqyqEu28wmL2+q5XlxJ87HMdBp9Pxh9yFhQWkpqbyh9y0tDSYTCZcd911sNvteOmll8jzT0BIAEYYJgCPHTuG8vLyoMqKzFrgzJkzyMzMxPbt25eUbqxWK9ra2mA2m1FVVRW2nquVYL2KbNewt+bolfoGhT4ZOu/13b59e9ScPFkz+dTUFBITE2E0Gvkem1C8D/7ASj/OXo3PP/88br75Zjz++OM4cOBAxO7tbMEXAWiz2XDy5EksLCxg7969Pj84QzHswSZ95+fnUV1dHZGHeLj7BnU6HRoaGpCTkyPIXt/VgD/izxMWi4UvFU9OTuKOO+6AzWaDXC7HW2+9hbVr14bgrmMXEoARxmKxgOO4JZO7/uJwOHD69GmoVCo+mG3YsMFF/BkMBjQ3NyMpKQlbt26NmtF51h/DcdyKk4DuCO036Ey07vVlmdKpqSnU1NQgJSXFpVSs0WiQmJjIi0FWKg4HrBfR+QHw8ssv48Ybb8Sjjz6KT33qU2G5j7OdlQSgwWDghz3MZjMuvPBCn64bimEPfyZ9w0Wo+wbDudc3WghW/Lmj0+lwxRVXYGRkBAqFAv39/Th9+jTWr18vwN0SAAnAiMMEoPPkrr8wnzyO41BdXY2RkRFMT0+jvLwc6enpkEgk0Gg0aGlpQW5uLtavXx81AcloNKKxsREpKSnYunVrUKdwd+Nl1jfIpmn9ubbNZkNLSwtsNhs/QBMNcBzHb0OpqanxmCl1znSwUjErmYdirydjZGQEvb29Lr2Ib775Jq6//nr85S9/wfXXXx+S141FmIm8J1QqFZqbm5GXl4e8vDycOnUKF1100YrXZJk/53aRYNHr9Whqagpo0jecCNk3yPb6BrN7e7XBWj6EapGxWq248cYbMTQ0hDfffBMZGRno7+9HcXFxTJTRwwUJwAjDBGBTUxPS09NRUlLi17/XarVoaGhAeno6KioqACyKqoGBAczOzoLjOKSkpGB+fh7r168Py6JxX1lYWEBTU1NISiTB9A2yvajMeDpaMqUcx6GjowMajQY1NTU+le/Znl4mBnU6nUvJPDk5WZD3nVnQbN++ne8pfeedd3Ddddfhd7/7HW688caoOXScDXgTgMPDw+ju7sbGjRtRUFAAvV6PY8eOrThwE8pJ37Vr10aVjdNKeOobzMrKQnZ29ooendGw1zfcCC3+bDYbbr75ZnR1deHIkSNRY2Z/NkICMMIwQ9e2tjYkJSWhrKzM5387PT3NmxGvW7duScO2w+FAe3s7pqam+H2/GRkZyM7ODmkmyBfYKXndunV+TSUGgrNj/fT09LJ9g8wnjWUko+W0yX6XWq02qHI0W7HlbMfA3odAS8XMfNp5EOXYsWO49tpr8ctf/hJf/vKXV83Df7XgLgDZnmw2QMWm1E0mE44ePYrLLrvM6++AxQ0hxd/4+Dg6OztDNukbLvzpG2R7fbdt2xY1e31DjdDiz26349Zbb0VTUxOOHDmyKkzZVzMkACMME4Ar7ex0huM4DA4Oore3F1u3bkVOTs6S0zsbqtBqtfxQhU6nw/T0NKanp6HX66FUKvmJuHB6ZY2OjqK7uxtbtmyJyBfcebm5Wq1GYmIisrOzkZqayg/QuO/1jSTsgGAwGAQ1kGUPN/ZeOJeKMzIyfCp7sylTZ/PpEydOoL6+Hvfeey/uuOOOqHkfzyacBSDrsbNYLEu2S1itVrz55pse10yySV93b9BgiMSkb7hYrm/QYDBgbGws6nw4QwnbZew86R8MdrsdX/va13Ds2DEcPXp0VR8cVgskACMME4Dd3d2w2Wy8Z583WCZodnaW3yPpfno3mUxobm6GRCJBZWWlxwe5wWDge17m5+chk8mQnZ2N7OzskK0nYivphoeHw+qltxysb3B8fByzs7MQi8VYs2ZNQH2DocDhcKClpQVmsxnbt28PWS8iKxUzMehcKvbm3D85OYmOjg6XtXONjY3Yv38/7rnnHnzjG98g8RcimIeoTqdDY2MjUlNTsW3btiUiz+Fw4LXXXsMFF1zgkjUOxbCH8y7xSE36hhPWNzg8PAyLxYLU1FQ+dqzWPcW+IrT4czgc+OY3v4k333wTR44cQVFRkQB3SaxEdDQ3xTAsSEilUt4SxhusN81ut2P37t1ISEjgT+9M/C0sLKC5uRkZGRnYtGmT18CenJyM4uJiFBcX8zs2p6en0dvbi5SUFF4MpqamChLIHA4HOjs7oVarsWPHjqh5OEilUsTFxWFubg5lZWWQy+WYmZlBT09P2P0G3bHb7fwgCnPTDxUikQhyuRxyuRylpaUuWdK+vj6+VJyZmQmFQoGZmRm0t7e7iL+WlhZcffXV+P73v0/iLwzMzMygpaUFhYWFKC8v9/h+O1cEGEL7+wGLsamlpQUOhwM7d+6Miu0boSYpKQl6vR4SiQQ7duzg20z6+/v96htcbYRC/H3ve9/Dq6++iqNHj5L4CyOUAYwwzNF/cHAQGo2G39npjlarRWNjI+RyOSoqKvigzso2IpGI31EbTF8dW+jN+sTi4uJ4MRiocSqbqLVaraiqqooaOxXg472+GzdudLHg8advMBTYbDbeGqe6ujqigyjuzv0sa11YWIiSkhLEx8ejo6MDl19+Of793/8dd999N4m/EKPX63H06FFs2bJlxWGDN954Azt37oRMJgvJsAeb9E1LS0NFRUXEs+bhYLm9vt76BllVIVqGygIhFOLv7rvvxtNPP42jR4+ivLxcgLskfIUEYIRhAnB0dBQTExPYsWPHkr8zPT2N1tZWFBcXuwx7iEQiiMVividwYGBA0B217MHPSsUA+FNtRkaGT6dak8mEpqYmJCQkeCxRRRJ/9vp66xsUwm/QHZvNhqamJojFYlRVVUXVA5V9FrOzs2E0GvH666/j6aefxsTEBD772c/iD3/4w1mV7YhmtFqtT1npI0eOoKqqCnK5XPDMH7OXys/PX1WTvsHgz15fttubxdBo3FPsK0KLP47j8D//8z949NFHcfToUWzcuFGAuyT8gQRghGECcGJiAkNDQ9i9ezf/35yHPSoqKrBmzZolp3dWWlWpVKiqqgrZmjJnW5Xp6WlYrVZ+Gi4zM9OjsNPpdGhqaoJSqVy2HB0JgtnrK6TfoDtWqxWNjY2Ii4tDZWVlVIm/2dlZtLS0oKKiAjk5OQCA9957D5/61KeQlZWFiYkJ7Nq1C0eOHInwncYGzEJqJd555x1s2rSJH04Qaqcvm/TdsGFDzGxoCHavr3NVIRr2FPtKKMTfz372M/zxj3/EkSNHeAszIryQAIwwzNF/enoaPT09OOeccwAsHfaQyWRLxB/ru7Hb7WEtrXIcB61Wy59qPU0UMw+waHPCF3qvr5B7ii0Wi8vDJZoEs0qlQktLCzZv3sxPbg8MDGDfvn245ppr8Ktf/QomkwkDAwMrDjIRwuCLAOQ4DsePH4dSqURRURHi4+MFmfRlw1xn26TvcrC9vunp6di8eXPQ30/mNzgzMwOVShW1fYOhEH+/+tWv8Ktf/Qpvvvkmqqqqgr9JIiBIAEYYJgDVajXa2tpw/vnnuwx7VFdXuwx7sNN7NPXdsIlidqpNSkqC0WhEaWmp38bWoSTUe3099Q2y6eqV+gbNZjMaGhqQmpqKioqKqAn+wKKhb3NzMzZt2sT3mw0PD+Pyyy/Hvn378Pvf/z6q7jdWWEkAsn6/yclJDA8PQ6vVQqFQ8D29gZQf2cE0ViZ9GawHO1R7faO1b5AJfSHF3+9+9zvcd999ePXVVz22PBHhgwRghGECcH5+Hg0NDdi5cycaGhogk8mwdetWvswLfCz+VCoVWltbUVBQgNLS0qjKrvX19WFwcBCpqanQ6XQhmSgOhEjs9WXT1Sv1DZpMJjQ0NEAulwuSWRASjUaDpqYmlyGZ8fFxXH755bjgggvw5z//OSL3+9Of/hSHDh1CV1cXkpKSsGfPHtx3330++WieLSwnAD0NexiNRv6gNj8/D7lczn83fdkq4zzpW1VVtar614KB7fUtKipCSUlJyGNYtPQNhkL8/fnPf8aPfvQjvPzyy6irqxPgLolgIAEYYZihq06nw7FjxyCRSFBUVITS0lI4HI4lPl0jIyPo6enBpk2bXKZWIw3Hceju7sbU1BSqq6shk8n4ieLp6WnMzs66lDgCnSgOhGjY6+veNwiAF4IDAwNQKpXYvHlz1Ih5YPHB19jYiA0bNvCmrJOTk9i3bx927dqFhx9+OGKZ58svvxyf+cxnsGPHDthsNtx1111oa2tDR0dHyCe0owU2je2OL5s9nK2f1Go1UlNTkZ2djZycHI/vn16vR3NzM5+hjqbe1FASDXt9I9E3GArx98gjj+A///M/8cILL+C8884T4C6JYCEBGGEcDgcsFgt6e3vR19eHbdu2ITc3d8npneM49PT0YGJiApWVlfzKrWjAbre7ZNc8ZRPcSxwikYgXg0qlMmRZpGjc6+twODA/P4/x8XFMTEwAAL+iLxJ+g55gWY/y8nK+wX9mZgZXXHEFtm3bhn/84x9R8V4yZmZmkJ2djbfffjtmHi7uAjDQzR5Wq5UXGCqVCklJSXxmMC0tDXNzc2hpaUFeXp5Xv8GzkYmJCXR0dERsY5EnLBYLH0Od+waDWeXoTijE3z//+U/8x3/8B5577jlceOGFQV+TEAYSgBGGZaemp6dhsVhw0UUX8WVfJv5sNhva2tpgNBpRVVUVsk0dgcDWUIlEohUtERhscIKVOGw2m8uOYqGEBdvrG419dXq9Hg0NDcjOzkZ+fj7fDM5O+L70DYaK+fl5NDY2oqysjM96qFQqXHnllSgvL8cTTzwR0T3Snujt7UV5eTna2tpiZqLQWQC6b/YIdNKXZaqnpqb4zThWqxWFhYVYv359zIi/1bDXNxR9g0z81dbWCtLfyXEcnn76adx55504ePAgLrvssqCvSQgHCcAIo1ar0draim3btuHdd9/FOeecg/j4eJe+nebmZiQkJGDr1q1R9eA1GAxobGwMahDFeaJ4enoaRqPRZaI40GyYXq9HY2MjvxElmh5cOp0ODQ0NyM/PX9LD6alv0HkyMNQ/x8LCAhoaGngzcWAxG3jVVVchPz8fBw8ejIoMpTMcx+HAgQPQaDR49913I307YYNZSDn3+zFv0GBh0/LDw8NIT0+HVquFSCTiM4MKhSKqDlRC4TzhvJr2+rK+QZbJDaRvkO1wFkr8AcDhw4dx66234oknnsBVV10lyDUJ4SABGGE4joPJZALHcTh27BjsdjuysrKQk5MDkUiE1tZW5OTkYP369VEVcOfn59HU1ITc3FxBMwNsvybLhvnbqO58b2vXro2qIRlgUWA1Njby9jjL4a1vMFR7irVaLRoaGvgVgex+Dxw4AIVCgWeeeSaqtrgw7rjjDrz44ot47733YsaPDlj8fDARKKS5s8PhQEdHBzQaDaqqqvh94xqNhj+ocRzn0sJxNvQEOvcx19TUrOoJZ/e+wbS0NJeqgvvnJBTi74UXXsAXv/hFPPbYY7jmmmsEuSYhLCQAI4xWqwXHcRCLxXxv2NTUFCYnJ2G32/ndrNF04mbr00pLS0O6t9FkMvFBTKPR8I3q2dnZXpufmf+gcwYrWmCl1ZKSEl5g+Qr7bDBxLPSeYp1Oh1OnTvGTjuzPrrnmGiQmJuKFF17wWYCHk6997Wt45pln8M4770SV5VA4YD1gLH4IIf7YlgtnCyp3nKdUp6amfDKFj3aYvc38/Dxqamqi8rMeKCv1DQ4MDAgu/l555RXceOON+Nvf/oZ/+7d/E+SaK/HOO+/g/vvvR0NDAyYmJnD48GHU19fz/53jOPzoRz/Cn//8Z2g0GuzatQu///3vY9q3lARghPne976Hxx57DFdffTUOHDiA3bt347HHHkNRURHWrVsHs9mM6elpl8ygr2vYQgHrjdmyZQu/DSIcsEZ1lg1LSEjgxSArjU5PT6OtrS3qJqSBj4cqSktLUVhYGNS1nP0GhegbZCVpljEFFsv71157LQDgxRdfjLpsCMdx+NrXvobDhw/H5A5Rk8mE7OxsVFZWor6+HldffTXy8vKCEoEGgwFNTU1ISUnB1q1bfcrqeWrhcB5oiqaWFW8st9f3bMO9b5C1EJSXlyM/P18Q8f7WW2/hM5/5DP70pz/hhhtuCFsF5uWXX8axY8ewfft2XHvttUsE4H333Yd7770XjzzyCNavX48f//jHeOedd9Dd3S3IsMtqhARghDGbzXjjjTdw8OBBPPvss9DpdJBIJPjd736Ha6+9FnFxcR5P3Kz8kpmZGZbyi/MGjaqqqoj2xrAgxrJhYrEYKSkpmJ+fj6qJPQYzUl6/fn1ISpTB9A3q9XqcOnWK3+UKLG48+PSnPw2j0YiXX345ZOsFg+H222/H448/jmeffdbF+08ul59V2ZvlGBoawqFDh3Do0CG8//772LFjB66++mrU19ejsLDQrwcv2+kb7KQva+GYmpqCTqcL2ng61Piz1/dso7e3FyMjI8jOzsbc3JwgfoPvvPMOrrvuOvzmN7/BTTfdFLH2G5FI5CIAOY5DXl4evvGNb+B73/segMW4mZOTg/vuuw+33nprRO4z0pAAjBIWFhZw8cUXQ6/Xo7q6Gm+88QasViuuuuoq1NfX44ILLuDLPVqtFlNTU3yzb2ZmJnJyckJWfnF2/w/FBo1gcDgc6Orqwvj4OKRSKTiO48tRkXTQZzAfMWcj5VDiT9+gwWDAqVOnkJubi7KyMohEIpjNZtxwww1QqVR47bXXorYJ3tuD5eGHH8ZNN90U3puJMBzHYXx8HIcPH8bBgwfx3nvvYdu2baivr8eBAwdW7INldifr168X1OsuWOPpUBPsXt/VTF9fH0ZHR116HZ2rCvPz8yv2Dbpz/PhxfPKTn8T999+PW265JaK91+4CsL+/H6WlpWhsbER1dTX/9w4cOID09HQ8+uijEbrTyEICMErgOA5//OMf8cUvfhGJiYmw2Wx477338K9//QvPPPMMdDodrrjiCtTX1+Oiiy5CUlISOI6DTqfjg6zBYIBSqUROTo5g5Rer1epiohxNp3j3vb5paWlYWFjgM4NCTRQHyszMDNra2lz254YTT32D7P1ISUlBa2sr1qxZw2d8LBYLPv/5z2NsbAxvvPEGlEpl2O+ZCA6O4zA9PY1nnnkGBw8exNGjR7Fx40bU19ejvr7eZY0Zx3EYGBjA4OBgyO1OWCuLcz9vTk4O/1kMN8zBQKi9vqsJT+LPHX/9Bj/88EPU19fjxz/+Me64446ID965C8Djx49j7969GBsbczmI33LLLRgaGsKrr74aoTuNLCQAVwF2ux3vv/8+Dh48iMOHD0OtVuOyyy5DfX09Lr30Uj6Aupdf2MM+Ozs7IPFjMpnQ1NSExMREbN26NeLZNGccDgc6OzuhVqu9ZiXZ+8H28qanp/NiMNQZiKmpKZw+fRpbt25FdnZ2SF/LF5z7BqempqDVahEfH4/CwkIkJCQgMzMTX/rSl3DmzBm89dZbUet9RvgOx3FQq9V49tlncfDgQbz55ptYt24dDhw4gCuuuAIPP/wwrrjiCpx77rlh7YFayXg61OKB7fVds2ZNTHkbMoublcSfO978BhUKBZKTkzEwMID9+/fjBz/4Ab75zW9GxfvpTQCOj4/z+8wB4Ctf+QpGRkbwyiuvROhOIwsJwFWGw+HAyZMneTE4Pj6OSy65BAcOHMC+ffv4fi2j0ciXiRcWFpCens5nBn2x8tBqtWhqakJmZiY2btwYVSdku92O06dP+7XX12Qy8ZkwXyeKA2ViYgKdnZ3YunUrsrKyBLuuEJhMJpw6dQrp6elIT0/HzMwMbr75ZoyOjiIxMREPP/wwrrzyypgqh8UKc3NzeP755/HEE0/glVdegUQiwU033YQbb7wRVVVVEfmO22w2l3WR8fHxS4a7hCTce32jhUDFn6frML/BI0eO4Nvf/jZEIhGuuuoq/P73v4+a4TsqAfsGCcBVjMPhQEtLC/71r3/h0KFDGBgYwMUXX4yrr74aV155Jb9vl4mfqakpn3pxVCoVWltbozJIss0pdrsdVVVVAWU2LRYL/9BRqVRITEzkM4PBPnTGxsbQ3d2NyspKZGRkBHydUMDEn1Kp5M2x7XY7vvKVr/Ar1N566y3cdddd+MY3vhHp2yVCgN1uR01NDfLz83HdddfhpZdewssvv4zMzEx+gGTHjh0REYN2ux1qtZrP2ovFYkGNp6Nhr28k4DgOfX19GBsbE9TfsKOjA5dccglqampgNpvR0tKCmZmZqGgT8jYE8s1vfhPf/e53ASw+B7Kzs2kIJNI3QQQPx3Fob2/Hv/71Lxw+fBidnZ244IILUF9fj6uuugoZGRl8kz8rA2o0Gr7RNycnB8nJyRgfH0dnZ2dUWqmEYq+v3W7n17DNzMxAIpHwE7T+PnSYRU5VVVXU9c+ZzWY+87d582Z+3eC///u/4+jRozhy5AgKCwtht9thsViiokmfCA0NDQ2oqqris7wGgwGvvPIKDh48iBdffBFpaWnYv38/6uvrUVdXF5FssNDG09G41zcchEr8dXd3Y9++fbj55ptx7733QiQSQafTRdQuSqfTobe3FwBQXV2NBx54ABdeeCGUSiUKCwtx33334ac//SkefvhhlJeX4yc/+QmOHj1KNjCRvglCWDiOQ09PDw4ePIhDhw6hpaUF55xzDurr67F//35+ywhr9GWZsLi4ONhsNmzYsCHqNiqYTCY0NDTwa+dCkaFwfugwjyzW+LyS3c7Q0BD6+/ujcn2U2WxGQ0MDZDIZtmzZwou/73znO3j55Zdx5MiRmDNRJjxjMpnw+uuv4+DBg3juuecQHx+P/fv345prrsHevXsjYpPCyo6spYUZTzNP1JUOgqthr28ocBZ/tbW1gg3b9Pb2Yt++fbj++uvx85//PGrag44ePYoLL7xwyZ9/4QtfwCOPPMIbQf/pT39yMYKOld3hniABeJbDJv2YGDx58iTq6upw4MABHDhwAHl5efykr06nQ1paGubn5/nG7JycHKSmpka0DByJvb4cx/ETxcxux5vBLZuk3L59O+RyecjvzR8sFgsaGhqQmpqKiooKXvz913/9Fw4fPowjR47w/n+RYCX3fiJyWCwWHDlyBP/617/w7LPPwuFw4KqrrsI111yD888/PyI7of0xnl6te32FIFTib3BwEJdffjkOHDiAX//611Ej/ojAIAEYQ3Ach5GREd489vjx46iursbs7CzKy8vx//7f/0NSUhLvJTc1NeXSmJ2TkwOZTBZWMRgNe33ZBC176DCD26ysLBiNRkxMTKCmpibqyghWqxWnTp1CSkoKnzXlOA4//OEP8dhjj+Ho0aMuJsqRYCX3fiI6sNlseOedd3hbKqPRiCuvvBL19fX4xCc+EbEd0c42WM7OB5mZmRgcHDwr9vr6S6jE3+joKC677DJcdtlleOihh0j8nQWQAIxROI5Da2srrr76aszPz0On06GyspLPDDJjYPetG1KplG/MZkMmoSJa9/oyg9vh4WGYTCakpKQgNzc3Yp5mnrBarWhoaEBSUhK2bt3Ki7+f/vSn+Mtf/oK33nor6nZgujduE9GJ3W7HsWPHeCeC+fl5Pit06aWXIjk5OSL3xb6XbNhNLBajqKgI+fn5MdPTGirxNzExgcsuuwznnXce/vKXv5BLwFkCCcAY5sknn8Rzzz2Hv/71r9BqtfwmgSNHjmDjxo04cOAA6uvrsXHjRr50qFarMTU1hZmZGYhEIkGn9JyZmppCe3t72DZo+APrsZyamsK2bdv47CBbw8bek3BnSxlWqxWNjY2Ij49HZWUlL/5++ctf4je/+Q3efPNNVFZWhv2+VoIE4OrD4XDgxIkTvBicmprCJZdcgvr6elx++eVhz4qzvb5GoxG5ublQq9Uuw27RdEgTmlCJv6mpKezbtw87duzAI488QuLvLIIEYIzDcZyLSOE4DhqNBs8++ywOHTqE119/HSUlJThw4ACuueYabNmyBWKx2OuUXk5ODpRKZVBikFmpRKOPHsdx6OzshEqlQm1trUtmgZXOmaeZRCLhe5OEFsjesNlsaGxsRFxcnIv4+81vfoP7778fr7/+OmpqakJ+H4FAAnB143A40NTUxNtSDQ8P4+KLL+aNp0Ph6+eMt72+zHh6amoKarU6qvqbhYJtRRofHxdU/M3OzuKKK67Ali1b8M9//jOqlgEQwUMCkFiW+fl5PP/88zh06BBeffVV5Obm8mKQmcdyHIe5uTleDNpsNt6ywX3/7EoMDg5iYGAAVVVVUCgUIfzJ/IfjOHR0dECj0aCmpmbZshLLlrLSucPhCPg98RWbzYampiZIJBJUVlZCIpHwKwZ//OMf45VXXsGuXbsEf12hIAF49sBxHE6fPo2nn34ahw8fRk9PDy688ELU19fjyiuvhFKpFFR4+brXN9zG0+EgVOJPrVbjyiuvxLp16/DUU09FZAKcCC0kAAmf0el0eOmll3Dw4EG89NJLyMjIcDGPZYKDTc9OTU3BYrH4ZNnAcRzOnDmDiYkJVFdX8xtNogWHw4H29nZotVqft48wmI0FE8hmsxmZmZm8xYwQgdVut6OpqQkikYj3eOM4Dn/7299w991348UXX8Q555wT9OuEEhKAZyccx6Grq4t3Imhra8N5553H21JlZWUFJbwC3evLjKdZSwvL2LP+5tUw5BAq8Tc3N4f9+/cjNzcXhw4disjENxF6SAASAWEwGPDqq6/i4MGDeOGFF5Camoqrr74aBw4cQF1dHaRSKTiOg06n4/27mGVDTk4OMjMzeeHjy17fSOJwONDW1gaDwYCampqggqG3iWJWKg5kmtJut6O5uRkcx6G6upoXf//4xz/w3e9+F8899xwuuOCCgO85XJAAPPthfWpMDDY0NGDPnj2or6/H1VdfjdzcXL/EoFB7fZczns7IyIhKMcjEH3MhECpuLiwsoL6+HnK5HM8++2zEJryJ0EMCkAgak8mEN954gzePjYuL4/3CzjnnHF7oMcuGqakp6PV6ZGRkIDMzE7OzszAajX5n1sIBayo3m83Yvn274CdhNrk4PT2N+fl5yGQy/sHjS0Bn4s/hcKC6upoX3k8++SS+/vWv45lnnsHFF18s6D0LyUru/cTZC8dxGBoa4m2pPvjgA+zcuZOvKhQUFCwr6EK119eT8bSzGIyGPrhQiT+dTodPfvKTiI+Px4svvhgz09OxCglAQlCsVquLeazdbseVV16Ja665BhdccAEvoAwGAyYmJjA0NAS73Q6FQoGcnBxkZ2dHxS5JYFFctbS0wGazobq6OuQ9MM6bWZyb1bOysjxOFDscDjQ3N8Nms2H79u38g+ngwYO47bbb8NRTT+GKK64I6T0Hy0ru/URswHEcxsfHcejQIRw8eBDHjh1DZWUl6uvrceDAAaxbt87l8z8zM4O2traQ7/X1x3g6XIRK/BkMBnzqU5+Cw+HASy+9FFPeibEKCUAiZNhsNrz77ru8eaxer8eVV16JAwcOYPPmzXjkkUdQX1+P9evX89Oz8/PzkMvlvBiMVEbQZrO5lFXDfep3b1aPi4vjsxBso0FLSwssFgu2b9/OP4iee+45fOlLX8Ljjz+OAwcOhPWeCUIIOI7D1NQUnnnmGRw8eBBvv/02Nm3axIvBY8eOISEhARdffHHY9/p6M57OysoKy8E1VOLPZDLh05/+NPR6PV555ZWo68EmQgMJQCIs2O12HD9+HAcPHsTTTz+NiYkJZGdn4+c//zn27dvHBzKTycRbNszNzUEmk/GWDeEqR1itVn6alg1URBL3iWKO4yCRSCASiVBbW8uL5Jdeeglf+MIX8Oijj+JTn/pURO+ZIISA4zio1Wo888wzvBOBw+HAJz/5SXzve9/Dpk2bItaf52w8vbCwwB9cs7KyQhKr2KDc5OSkoOLPbDbjs5/9LGZmZvD666/H1Mq8WIcEIBFWRkZGsGfPHuzYsQMlJSV49tlnMTExgUsvvRQHDhzAvn37ePNYi8XCn7bVajVSU1P5zGCoBkWcTZSXs5OIFGzaV6fTQSKRwGq14rnnnoNIJMJjjz2G//u//8P1118f6dskCMG5//778dOf/hR33nknWltb8eqrr6KgoIA3rGe+l5GAHVynp6dDYjztLP5qa2sF27ZisVhw4403YmRkBG+88QYyMjIEuS6xOiABSIQVm82Gp556Ctdffz2/XaS5uZk3jx0aGsLFF1+Mq6++GldeeSXvzcXMXKenp6FSqZCcnMwHWKHMXC0WC78+bdu2bVE3+ce81XQ6HWpqahAXFwedTofbbrsNzzzzDMRiMS666CLcddddOO+88yJ9uwQhKKdOnUJSUhK/wnBhYQEvvvgiDh06hJdffhlZWVm4+uqrcc0116C2tjZi31+LxYLZ2VlMTU3xsYodXAOJVaESfzabDTfffDO6u7vx1ltvRZ3pPhF6SAASUQMTOP/6179w+PBhdHd344ILLkB9fT2uuuoq3jyW9cdNTU1hdnaWX7+Wk5ODtLS0gMSg2WxGQ0MDUlNTUVFREZXir729HQsLC6itreWHaY4dO4Zrr72Wn5599tlncc4552Dnzp0RvmOCCB+sd+3gwYN48cUXIZfLsX//ftTX12P37t0Ry+QHazwdSvF36623oqWlBW+99VbYeymJ6IAEIBGVcByH7u5u3i+stbUV5557Lm8em52dDZFIBLvdzgfYmZkZxMXF8adtX539TSYTGhoaIJfL/TKSDRdsA8nc3Bxqa2v5ZvMTJ06gvr4eP/nJT3D77bevyi0GBCE0RqMRr7/+Og4ePIjnn38eCQkJ2L9/P6655hrs3bs3YjYudrudH3bzxXg6VOLPbrfjzjvvxPvvv4+jR49G3a51InyQAAwzg4OD+N///V+89dZbmJycRF5eHj73uc/hrrvuIrd1L3Ach/7+fl4Mnjp1Cnv27MGBAwdw9dVXIy8vjy8nswA7PT3tEmAVCoVHgWQ0GtHQ0AClUolNmzZFnYhiu4fVarXLwEdjYyP279+P//7v/8a///u/R/y+H3roIdx///2YmJjAlv/f3v1H53jffxx/3clZSMSChRAW0cqMZusiNBMtybZmIYk7epYqZxanp350qlStZekUrWKMbYyymmy6lXFHq4ixSkLGWtLEGa0RJXdJIj+kzM/8ur9/OLm/jaCS3HHdcT0f5+QP151z5Z0T53O/7s/nc70/Dz2k3/72t3rssccMrQmorKzUnj17nG2pJCk+Pl6JiYkaOnSoYWPuVzWetlgsOn78uM6dO+fS8FdbW6tp06YpIyNDGRkZbtFrk7HDOATAe2znzp3auHGjRo8erd69e+vIkSMaP368xo4dqyVLlhhdnttzOByy2+3O5rEHDhzQwIEDZbVaZbVaFRQU5AyDFRUVzmauFotFnTt3VkBAgDp27CgPDw9duXJFOTk56ty5s/r06WN4iLpZ3RFa5eXl9cLf4cOHFRcXp5kzZ+oXv/iF4XVv3LhRY8eO1cqVKzV48GCtXr1ab731lj755BO3eIMBpBvLnllZWc62VNeuXVN8fLysVqt+8IMfGNZy6uaz1KuqqtSmTRtVVVUpPDzc+VBcc9XW1uqll17S9u3blZmZqV69ernkvs3B2GEsAqAbWLx4sVatWqXPPvvM6FJalbrmsVu2bJHNZlN2drYefvhhZxh88MEHZbFY5HA46n3arms8XVFRocDAwGYdIdVS6pbAS0tLNWDAAGdbiaNHj2r48OGaOnWqUlJS3KLuiIgI9e/fX6tWrXJeq+vbtmDBAgMrA26tpqZG2dnZstls2rJliy5evKhhw4bJarXq8ccfd9mMW2PVnTleWloqLy8vXb9+/ZbHZzblvikpKbLZbMrIyFBISIiLK28axg5jEQDdwCuvvKKdO3fq0KFDRpfSajkcDpWUlDibx2ZmZqpv377OFhF1M3wOh0NFRUX69NNP5eHhUW/pxd/f3y3avtxu78+xY8c0bNgwTZgwQfPmzXOL8FdZWSkfHx9t2rRJI0eOdF6fOnWq8vLylJWVZWB1wFerra3Vv//9b2cYLCkpUUxMjBITExUbG3vPTsRwOBw6fvy4SkpKFB4eLm9v7wbnhtc1nu7SpctdL187HA7NnTtX69evV0ZGhr797W+38G9ydxg7jOdeu91N6OTJk1q+fLkmTZpkdCmtmsViUUBAgCZOnKh//OMfKioq0tSpU/Xxxx87+w6+9tprWr9+vZ577jn17NlTUVFRzqXV/Px8ZWZm6vDhwyouLlZ1dbUhv0ddp/+bw9+JEycUHx+v5ORkzZ071y3CnySVlZWppqZGAQEB9a4HBASouLjYoKrMZ/78+YqMjJSPj89tG/na7XYlJCSoXbt28vf31/PPP6/Kysp7W6gb8vDwUGRkpH7zm984x4Fvfetbev311xUcHKxRo0bpnXfe0YULF9RS8yU3hz8fHx9ZLBb5+vrqgQce0Pe//31FRkaqU6dOKiws1N69e3Xw4EHZ7XZdu3btjvdduHChUlNTtXv3brcJfxJjhzsgALrInDlzZLFY7vh18wxfYWGhYmNjlZSUpGeeecagyu8/FotF3/jGN/T0009r27ZtKi4u1qxZs7R//349++yz+uijj7R+/Xrl5ubK19dXISEhioyM1COPPCJfX1999tlnysrKUl5engoLC1VVVXXPaj958qQKCwudbwKSdOrUKcXHx+vJJ5/UwoUL3e4pZUkNAqnD4XCbkGoGlZWVSkpK0rPPPnvL1+vO5L58+bKys7O1YcMG2Ww2vfjii/e4Uvfm4eGhAQMGaOHChTp27JgOHDig733ve1q2bJmCg4P1k5/8RH/5y190/vx5l4XBW4W/W/Hx8VFwcLAeeeQRPfroo+ratatKS0uVnZ2tDz/8UKdOndLly5fr3Xfp0qVauXKldu3apdDQUJfU62qMHcZhCdhFysrKVFZWdsfvCQ4Odm40LiwsVHR0tCIiIpSamuqWb+r3k7Nnz6pfv36aPXu2evToIZvNpvT0dPn7+2vEiBFKTEzUwIEDnX+HuqWXc+fONXnppbFOnjypM2fOKDw83LnsZLfbFRsbq+HDh2vFihVu9/+EZRz3kpqaqmnTpumLL76odz09PV3x8fH6/PPPnW0/NmzYoHHjxqmkpISzX79C3dP4dT1Kjxw5oqFDhzp7lHbu3LlJoeXL4e/Le30bo7Kysl6TfE9PT23btk0Wi0XvvPOOdu3apYEDBzb6vi2NscN4BEADnD17VtHR0QoPD9fbb7/tFvvOzCA3N1dhYWHOf1+5cqVe89j27dtrxIgRslqtGjRokPPvcuXKFec+nIsXL6pDhw7OXoOuOgD+1KlTKigo0IABA5zhr26GODo6WqtXr3a78FcnIiJC4eHhWrlypfNav379ZLVa2ch9j90uAM6ePVvvvfeeDh8+7LxWUVGhTp06ac+ePYqOjr7HlbZedds06tpS5ebm1mtL1a1bt7sKg64Ifzerrq7Wf/7zHz399NM6fvy4unfvrjFjxmjGjBnq0qVLs+/vaowdxjKmI6aJFRYWKioqSkFBQVqyZIlKS0udr9GNvWV9OfxJN5ZUnnjiCT3xxBO6du2as3nsU089pTZt2ig+Pt7ZPDY4OFjBwcG6du2aSkpKVFxcrP/+97/y8/Nzzgw2dQA/ffq0CgoK6s38FRcXKy4uToMHD9abb77ptuFPkqZPn66xY8dqwIABGjRokNasWSO73c6+VjdSXFzcYK9Vx44d5eXlxX6rRrJYLAoJCdHMmTP18ssvq6CgQDabTTabTS+99JIiIiKcHyS/+c1v3jIM3u4p/+by9PRUbm6uioqKtHv3bl2+fFlpaWlNfnq4pTF2GIsAeI/t2rVL+fn5ys/PV48ePeq91lKTsfPnz9f27duVl5cnLy+vBrMDkNq2bauEhAQlJCSosrJSGRkZ2rx5s8aNGyeHw6G4uDiNHDlSQ4cOVVBQkIKCgnT9+nXnzOCJEyecB8AHBATcdRuJgoICnTp1ql6/r9LSUiUkJKh///5au3at288Qjxo1SuXl5Zo3b56KiooUGhqqHTt2qGfPnkaX1qrNmTNHc+fOveP3HDx4UAMGDLir+90uiLDfquksFouCg4P14osvavr06Tp79qzS0tJks9mUkpKisLAwJSYmymq1qlevXs5OBC0R/hwOh95++23NmjVLW7dudc7qWq1Wl9y/JTB2GIslYBN49dVX1aFDB505c0Zr164lADZCdXW19u7d62wee/XqVcXFxclqteqHP/yhc0/nzftw2rVrV+8A+Fux2+06efKk+vfvLz8/P0lSeXm54uLiFBISog0bNrjtJ3e0vMbuK5ZYAnYXDodD586dc/YozcrK0kMPPaQRI0YoJydHffr0UUpKikvD39///ndNmTJFaWlpiomJccl9cX8jAJrI7d4ccHdqamr0r3/9y9kv7MKFC4qNjZXValVMTIxz1q+qqkplZWU6d+6cysvL5e3t7ZwZ9PX1lcVi0ZkzZ3TixAmFhYU523Z88cUXio+PV48ePbR582aOBkSjfdVDIGfOnFG3bt0k3TiFITk5mYdAWpjD4VB5ebneffddvf766yooKNCDDz6oUaNGKTExUX379m32Fo+0tDRNmjRJGzduVFxcnIsqx/2OJWDgLnl6emrIkCEaMmSIli1bpo8++kibN2/Wr371K02YMEExMTGyWq2KjY1Vt27d1K1bN1VXV6u8vFznzp3TwYMH5eXlJR8fH1VUVKh///7O8Hfx4kUlJiYqICBAmzZtIvyhUex2u86fPy+73a6amhrl5eVJknr37i1fX1/FxMSoX79+Gjt2rBYvXqzz589rxowZGj9+POGvhVksFvn7+6u2tlaSlJeXp8OHD8tms2np0qUKCgpyNqz/7ne/2+gw+P7772vixIn661//SvhDozADaCLMALaM2tpa5ebmavPmzUpLS5PdbtePfvQjWa1WDR8+XH5+frJYLKqpqdGJEyd05swZeXh46Gtf+5rsdrt8fX31+9//Xu3atdP777/vsmUhmMe4ceP05z//ucH1jIwMRUVFSboREn/+859rz5498vb21pgxY7RkyRKXPcmOO7t+/brKysrUvXt357WLFy9q+/btstls2rlzp7p06aIRI0Zo5MiRCg8P/8owmJ6eruTkZK1bt05JSUkt/SvgPkMAbKWaskGcANjyHA6Hjhw5ok2bNmnLli06fvy4oqOjlZiYqLKyMhUXF2vmzJnq0KGDzp8/rwULFuiPf/yjPD099bOf/UzJycl69NFHjf41ANxjly9fVnp6umw2m3bs2CE/Pz9nj9KIiIgGD4N98MEHGj16tNasWaPRo0fzMA8ajQDYSrlygzhahsPh0LFjx2Sz2bR27VqdPn1aoaGhmjBhghISEtS+fXuNGjVKV65c0axZs5Senq727dtr0aJFRpcOwEBXr17Vrl27ZLPZtG3bNmeXgpEjRyoyMlL79+9XUlKSli9fruTkZMIfmoQAaCIEQGNkZmYqPj5ev/vd71RWVqa0tDTl5OTIz89P3bt31759+5xPAQPAl1VWVuqf//ynbDabtm7dqurqal25ckXLly/X+PHjCX9oMgKgCdRtEN+6dasWL16sffv2Sfr/DeJoWVevXtXHH3+swYMHS7oxM1hQUKAZM2Zo4cKF6t27t8EV3hr9IwH3UlVVpU2bNmnfvn1auXIl4Q/NQgA0gbvZIA7cjP6RAHD/ct/zpeAyqampcjgcDb5cHf5WrlypXr16qW3btgoPD3fONKJ1mjt3rl544QV95zvfMboU3McYNwBjEADhEhs3btS0adOUkpKi3NxcPfbYYxo2bJjsdrvRpQFwU4wbgHFYAoZLREREqH///lq1apXzWt++fZWYmKgFCxYYWBmai4eH0FIYNwDjMAOIZqusrFROTk6D8ydjYmK0f/9+g6rCrcyZM0cWi+WOX4cOHTK6TJgA4wZgLI6CQ7OVlZWppqZGAQEB9a4HBASouLjYoKpwK88995yeeuqpO35PcHDwvSkGpsa4ARiLAAiXubklgcPhoE2Bm/H395e/v7/RZQBOjBuAMQiAaDZ/f395eno2+NReUlLS4NM9Wo+6/pF2u101NTXKy8uTRP9IuAbjBmAs9gCi2by8vBQeHq7du3fXu757925FRkYaVBWaa/bs2QoLC9Orr76qS5cuKSwsTGFhYewRhEswbgDGIgDCJaZPn6633npLf/rTn/Tpp5/qhRdekN1u16RJk4wuDU10r/pHwrwYN9zX/PnzFRkZKR8fH3Xo0OGW32O325WQkKB27drJ399fzz//vCorK+9toWgyloDhEqNGjVJ5ebnmzZunoqIihYaGaseOHerZs6fRpQFwU4wb7quyslJJSUkaNGiQ1q5d2+D1mpoaxcXFqXPnzsrOzlZ5ebmSk5PlcDi0fPlyAypGY9EHEK3W3r17tXjxYuXk5KioqEhbtmxRYmKi0WUBwH3jdn1A09PTFR8fr88//1yBgYGSpA0bNmjcuHEqKSnR17/+dQOqRWOwBIxW6/Lly3r44Ye1YsUKo0sBAFM5cOCAQkNDneFPkn784x/r+vXrysnJMbAy3C2WgNFqDRs2TMOGDTO6DAAwneLi4gZPa3fs2FFeXl70cWwlmAEEAMAEXH0S0K36NdLHsfVgBhAAABNw5UlAXbt21YcffljvWkVFhaqqqujj2EoQAIH7zOnTp/Xaa69pz549Ki4uVmBgoH76058qJSVFXl5eRpcHwCCuPAlo0KBBmj9/voqKitStWzdJ0q5du9SmTRuFh4e75GegZbEEDNxnjh07ptraWq1evVpHjx7VsmXL9Oabb+qXv/yl0aUBrdrevXuVkJCgwMBAWSwWvfvuu/VedzgcmjNnjgIDA+Xt7a2oqCgdPXrUmGKbyW63Ky8vr95JQHl5ebp06ZIkKSYmRv369dPYsWOVm5urDz74QDNmzND48eN5AriVIAAC95nY2FitW7dOMTExeuCBBzRixAjNmDFDaWlpRpcGtGpf1Xng17/+tZYuXaoVK1bo4MGD6tq1qx5//HH973//u8eVNt9XnQTk6emp7du3q23btho8eLCefPJJJSYmasmSJQZXjrtFH0C0WpcuXVJ+fr4kKSwsTEuXLlV0dLQ6deqkoKAgg6tzL6+88op27tzJMW6Ai1gslnq9Rx0OhwIDAzVt2jS9/PLLkqTr168rICBAixYt0sSJEw2sFmiIGUC0WocOHXJ+KpVuHCsVFham2bNnG1yZezl58qSWL1/O8VpACzp16pSKi4sVExPjvNamTRsNHTpU+/fvN7Ay4NYIgGi1oqKibnlWbWpqqtGltYimtHAoLCxUbGyskpKS9MwzzxhUOXD/q+t9d/MTsAEBAfTFg1viKWCgCRYsWKC0tDQdO3ZM3t7eioyM1KJFi9SnT58W+5mNbeFQWFio6OhoDRo0SGvWrGmxugD8v5t74NEXD+6KAAg0QVZWliZPnqyBAwequrpaKSkpiomJ0SeffKJ27dq1yM9sTAuHs2fPKjo6WuHh4Vq3bp08PJjsB1pS165dJd2YCaxriyJJJSUl9MWDWyIAAk2wc+fOev9et26dunTpopycHA0ZMsSgqm4oLCxUVFSUgoKCtGTJEpWWljpfq3uTAuBavXr1UteuXbV7927nvuTKykplZWVp0aJFBlcHNEQABFzgwoULkqROnToZXMmNZqz5+fnKz89Xjx496r3GQ/9A032584B048GPvLw8Z+eBadOm6Y033lBISIhCQkL0xhtvyMfHR2PGjDGwauDWaAMDNJPD4ZDValVFRYX27dtndDkAWkhmZqaio6MbXE9OTlZqaqocDofmzp2r1atXq6KiQhEREfrDH/6g0NBQA6oF7owACDTT5MmTtX37dmVnZzeYcQMAwB2xBAw0w5QpU7R161bt3buX8AcAaDUIgEATOBwOTZkyRVu2bFFmZqZ69epldEkAANw1AiDQBJMnT9bf/vY3vffee2rfvr2z0aufn5+8vb0Nrg4AgDtjDyDQBLdr7Lpu3TqNGzfu3hYDAEAjMQMINAGfmwAArRnHAwAAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJgMARAAAMBkCIAAAAAmQwAEAAAwGQIgAACAyRAAAQAATIYACAAAYDIEQAAAAJMhAAIAAJjM/wEulW5A9bS2KQAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9a136d5a50f749dbb2e429adbd10f48e", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACpsElEQVR4nOydd3hb9dn+76PhPeTt2PGK40wntuMsO4xAIZDtQGkpLaNQoC20jO7S9geltFDK6ltWBwRKW5YTdoBABmQQgme84xHvKclDkjXP+f1hzkFSZFvjaDh6PtfF9b517KNjWXp0f59xPwzHcRwIgiAIgiCIoEHi7xsgCIIgCIIgfAsJQIIgCIIgiCCDBCBBEARBEESQQQKQIAiCIAgiyCABSBAEQRAEEWSQACQIgiAIgggySAASBEEQBEEEGSQACYIgCIIgggwSgARBEARBEEEGCUCCIAiCIIgggwQgQRAEQRBEkEECkCAIgiAIIsggAUgQBEEQBBFkkAAkCIIgCIIIMkgAEgRBEARBBBkkAAmCIAiCIIIMEoAEQRAEQRBBBglAgiAIgiCIIIMEIEEQBEEQRJBBApAgCIIgCCLIIAFIEARBEAQRZJAAJAiCIAiCCDJIABIEQRAEQQQZJAAJgiAIgiCCDBKABEEQBEEQQQYJQIIgCIIgiCCDBCBBEARBEESQQQKQIAiCIAgiyCABSBAEQRAEEWSQACQIgiAIgggySAASBEEQBEEEGSQACYIgCIIgggwSgARBEARBEEEGCUCCIAiCIIgggwQgQRAEQRBEkEECkCAIgiAIIsggAUgQBEEQBBFkkAAkCIIgCIIIMkgAEgRBEARBBBkkAAmCIAiCIIIMEoAEQRAEQRBBBglAgiAIgiCIIIMEIEEQBEEQRJBBApAgCIIgCCLIIAFIEARBEAQRZJAAJAiCIAiCCDJIABIEQRAEQQQZJAAJgiAIgiCCDBKABEEQBEEQQQYJQIIgCIIgiCCDBCBBEARBEESQQQKQIAiCIAgiyCABSBAEQRAEEWSQACQIgiAIgggySAASBEEQBEEEGSQACYIgCIIgggwSgARBEARBEEEGCUCCIAiCIIgggwQgQRAEQRBEkEECkCAIgiAIIsggAUgQBEEQBBFkkAAkCIIgCIIIMkgAEgRBEARBBBkkAAmCIAiCIIIMEoAEQRAEQRBBBglAgiAIgiCIIIMEIEEQBEEQRJBBApAgCIIgCCLIIAFIEARBEAQRZJAAJAiCIAiCCDJIABIEQRAEQQQZJAAJgiAIgiCCDBKABEEQBEEQQQYJQIIgCIIgiCCDBCBBEARBEESQQQKQIAiCIAgiyCABSBAEQRAEEWSQACQIgiAIgggySAASBEEQBEEEGSQACYIgCIIgggwSgARBEARBEEEGCUCCIAiCIIgggwQgQRAEQRBEkEECkCAIgiAIIsggAUgQBEEQBBFkkAAkCIIgCIIIMkgAEgRBEARBBBkkAAmCIAiCIIIMEoAEQRAEQRBBBglAgiAIgiCIIIMEIEEQBEEQRJBBApAgCIIgCCLIIAFIEARBEAQRZJAAJAiCIAiCCDJIABIEQRAEQQQZJAAJgiAIgiCCDBKABEEQBEEQQQYJQIIgCIIgiCCDBCBBEARBEESQQQKQIAiCIAgiyCABSBAEQRAEEWSQACQIgiAIgggySAASBEEQBEEEGSQACYIgCIIgggwSgARBEARBEEEGCUCCIAiCIIgggwQgQRAEQRBEkEECkCAIgiAIIsggAUgQBEEQBBFkkAAkCIIgCIIIMkgAEgRBEARBBBkkAAmCIAiCIIIMEoAEQRAEQRBBBglAgiAIgiCIIIMEIEEQBEEQRJBBApAgCIIgCCLIIAFIEARBEAQRZJAAJAiCIAiCCDJIABIEQRAEQQQZJAAJgiAIgiCCDBKABEEQBEEQQQYJQIIgCIIgiCCDBCBBEARBEESQQQKQIAiCIAgiyCABSBAEQRAEEWSQACQIgiAIgggySAASBEEQBEEEGSQACYIgCIIgggwSgARBEARBEEEGCUCCIAiCIIgggwQgQRAEQRBEkEECkCAIgiAIIsggAUgQBEEQBBFkkAAkCIIgCIIIMkgAEgRBEARBBBkkAAmCIAiCIIIMEoAEQRAEQRBBBglAgiAIgiCIIIMEIEEQBEEQRJBBApAgCIIgCCLIIAFIEARBEAQRZJAAJAiCIAiCCDJIABIEQRAEQQQZJAAJgiAIgiCCDBKABEEQBEEQQYbM3zdAELPBcRzMZjMAQCaTgWEYP98RQRCBDsdxQuyQSqWQSCQUOwjCChKAREBjsVhgMpkwOTkJjuMgkUggk8mE/6RSKQV1giBs4IWf0WiEXq+HRCKBVCq1iRskCIlgh+E4jvP3TRCEPXwAN5vNwv/Pn+j5/xiGEQK7XC6HVColQUgQQQ7LsjCZTLBYLAAAg8EAiUQCjuPAsiwAQCKR2BwmSRASwQgJQCLgYFkWZrNZCOAWiwW9vb2IiIhATEwMJJKp1lU+oNsLQuugToKQIIIDjuNgsVhgNpvBsiwkEglYloXRaIRUKrX5PmsxCMBh7CBBSJzrkAAkAgY+KJtMJkHQaTQaVFdXg+M4GI1GcBwHhUKBuLg4KBQKREdHg2EY8C9jEoQEEXxwHGeT9WMYBgzDwGKxnCUAHf2sI0HIMAxkMhnkcrnQe0yxgziXIAFIBAT2ARwAenp60NzcjOzsbMyfPx8Mw0Cr1UKtVkOtVmN0dBQMwwiCMC4uDpGRkSQICSKI4LN8fNbP+v3MsiwMBsOMAtAePl709/djYGAABQUFYBjmrB5CEoTEXIeGQAi/Y92zI5FIYDKZUF9fj9HRUaxatQrx8fEwGo0AgOjoaERHRyMzMxMsy0Kj0UCtVkOpVKK9vR0SicRGEEZERAiCkP/PYDAI1yNBSBBzE77ky1cMxCrZ8sKOv55UKhX6kE0mk/Dv9r3HfGsKQcwVKANI+A1HPTujo6OoqalBdHQ0VqxYgZCQECE7yGfxpoNlWUxMTAgZwrGxMchkMhtBGB4efpYg5Es/fNDng7pMJqM+IIIIQDiOw9jYmPB+nS4bx2cH3RFnAwMD6O3tRXFx8VmPbd1/TIKQmKtQBpDwC456dtrb29HW1oZFixYhKyvLZeElkUgQGxuL2NhYZGdng2VZjI2NQa1WY3BwEC0tLQgJCRH6B3lByJ/w+f+am5vBMAyysrKEDxhqDCeIwIDP+tXW1mL+/PlIT0/36eNbZwgBW79Bk8kEwHFlgQQhEWiQACR8jn3PjsFgQG1tLfR6PdatW4fY2FhRHkcikQiZP2Dqg4MXhH19fWhubkZoaKjwPXFxcQgNDQXLskKA5zgOer0eABz2AZEgJAjfYG0NBcCm19efTCcITSYTjEajzUAJCUIikCABSPgMRz07IyMjqK2tRVJSElatWgWZzHsvSalUivj4eMTHxwMAzGazIAi7u7vR0NCA8PBwSCQShIWFwWw2IyQkxCZDyLKsIAjJS4wgfAPfJ2zv4+dNAeju+9iRIOTvn88Q2gtC2nBE+AMSgIRPsPf2A4Dm5mZ0d3dj2bJlPi/jAFNr5RISEpCQkAAAMJlMGBsbQ3t7O8bHx3HkyBFERkba9BDyPT7WgtBgMAjbBkgQEoR4WIsn+ylfX2QAxbg+Xzmwvib/OznKENKGI8JXkAAkvIojb7/JyUnB26+kpARRUVH+vk0AgFwuR2JiIlQqFSQSCbKysgS7mY6ODtTV1SEqKkroIVQoFJDL5QC+KvtYLBZYLBYYDAaHQyVkHUEQzmHfJ2x/mHJGAI6OjmJkZATx8fGIiooKiLKrM4KQNhwRvoAEIOE1+J6duro6pKWlITY2Fv39/WhoaEBaWhoWL17skj+Xr5HL5UhOTkZycjIAwGg0ChPGbW1t0Ol0iI6OFrKDsbGxQgnbWhCazWabSUHyEiOImbG3hnL0HplJAHIcJwyVKRQKdHV1AYBDz9Dp8NX70llBSHZVhNiQACS8gnXZRq1WIy4uDt3d3RgaGsKKFSuQkpLi71t0mZCQEKSkpAj3bjAYBEHY3NwMg8EwqyB05CVmXzImiGDFkTXUdEJnOgHID5VNTk5i7dq1CAsLA8MwgkWUUqlEW1sbpFKpzQAYbxFlfz++xloQWhvaG41Gm8oCCULCU0gAEqIy3T7OpqYmREREoLS0FOHh4f6+TVEIDQ1FamoqUlNTAQCTk5MYHR2FWq1GY2MjjEYjYmJiXBaE5CVGBCOzlXztYRjGZn0bACiVStTW1iIuLg5FRUWQSCRCFi0mJgYxMTHIysoCy7IYHx93aBFl7Rzgb/jfnwQh4Q1IABKi4cjbr7u7G1qtFikpKSgoKPBI0MxmBO1vwsPDER4ejnnz5oHjOExOTgo9hH19fTCbzYiNjYVCoUB8fDyio6OnFYSTk5OYmJjA/PnzyTqCOOfh3QFmy/pZY50B5DgOra2tOHPmDJYsWSKsjrQXiDz8xiCFQoGcnBwbi6je3l40NjYKJvRDQ0NQKBQICQkR9Xd2B0eC0H7D0eDgIGJiYoQDJwlCYjpIABKiMNM6t6ioKCQnJweVeGEYBhEREYiIiEB6ejo4joNOpxNKxj09PWBZFrGxsULGISoqShCEKpUKfX19SElJIS8x4pzF3tvPlal5a5/O2tpaGAwGrF+/HtHR0S7fhyOLqM7OTvT19eHMmTPQaDTCABg/BOZNyypnse4h5t0J+vv7BSur6YbRyJ2AAEgAEh7iyNvPep3bhg0bhInfYIZhGERGRiIyMhLz588Hx3HQarWCIOzs7ATHcUKTOp+5sM4QkpcYcS5hbw3l6kAUwzDQarU4duwYEhMTRfURlclkiImJgVKpxNq1a2E0GoX2jtOnT0Ov15/V7xsIA218VlQmk0Eul9tkCK0N7WnDEQGQACQ8wNl1bt42bBUbX9wrwzCIiopCVFQUMjIywHEcNBqNIAjVajU4jsOpU6cEUWg9tUheYsRcxZE1lKuvU37N48TEBJYvX4758+d76W6nCAkJsXEE0Ov1wvuU7/e1zubHxMT4LTtv3SrjKEPoSBDShqPghAQg4Rb2PTszrXObqReHmIJhGERHRyM6OhqZmZno6+tDT08PoqOjMTIyctbUokKhQERExIyCkLzEiEDD0aHR1dfk5OQkampqMDk5iXnz5nlN/M10X2FhYZg3b95Z/b7TtXdER0f77L03U6/0dIKQNhwFJyQACZdw1LMz2zq3uZYBDBTkcjmys7ORnZ191tTi6dOnIZPJbKYWebsLgLzEiMDDGW+/2RgaGsKpU6eQkpKCmJgYL9ylLc7ELUf9vtbtHWfOnAHDMMLwV1xcnM3hzRv37Oy1ZxKEtOHo3IcEIOE09vs4OY5DS0vLrOvcAmVp+1yC76fkcTS1yAvC/v5+NDc3n2VjERYWJlwLIOsIwj+44u03HSzLCrFm+fLlSEtLQ3Nzs3AQDSTs2ztYloVGo4FKpcLw8DBaW1vPOryJaY3liVuCfUaWNhyd25AAJGbF0T5OV9a5UQnYdWYL4tblYGCqJD86OorR0VH09vaiqakJYWFhNpsPQkNDhWsDJAgJ7+Oqt58jdDodampqwLIsSktLERkZKVzLmwdLsV77EolE8CDks/m85Qx/eAsNDbURhPx71R3EtMvihR1/GKUNR+cWJACJGXEUwF1d5+ZpoA7GYOJqEJdKpUhISEBCQgKAKRsLfmqxu7sbDQ0NiIiIsOkh5H3NrAUh7yUGgAQh4RH8AcPdrB8ADA4O4tSpUw5jjS8qC964vkQicXh4m+69GhcXJ+wcd/aevfU+nU4Q0oajuQkJQGJa7Ht2LBYLGhsbXV7n5mkG0GAwoKmpCQzDICEhAQqFwqWAOBfxNIjLZDIkJiYiMTERAGAymYQPmY6ODmi1WkRGRtoIQr6kYz0pOD4+jqamJhQWFpKXGOEUjqyh3Cn5NjU1oa+vD/n5+cK2HWvOldYS+8Ob/Xu1rq7OJQ9CXxrmuyIIacNR4EECkDgLRz07Go0G1dXVCAkJcXmdmycZQJVKhZqaGsTExCAkJARtbW3Q6XRnrVgLBA8uMWFZVtQgLpfLkZSUhKSkJACw8TXjn9PpPmS0Wq2N6S5AXmKEY+y9/dx5TWi1WtTU1AAASktLERER4fD7zhUBaI+j9yo/UGLvQRgfH4+YmBib+OfPjUmzCULAcWWBBKF/IAFI2DDdOrfm5mZkZ2cjNzfX5TerOxlAjuPQ0dEheArOmzfPxnJGpVJBrVajoaFBWLHGB0RfWi54C28HcXtfM4PBIKyts/6Q4T98OY4TgjWZyxL2iOHtBwD9/f2or69Heno6Fi9ePGOs8bYADJTXbkhICFJSUoSKC79zXKVSob6+3ib+8SbygXLv0wnC6fxLSRD6FhKAhIDFYsHAwABUKhXy8vJs1rmtWrVKKFG4iqsC0Gg04tSpU5iYmMDatWsRGxsrZCMBIDQ01MaDi1+xplKp0NXVBQBCMIyPj0d4eLjLAdHfAdTXp/jQ0FCkpqYKpTbe6HZwcBAWiwWffPKJkHVVKBRC1pXMZQk+w1NXV4e0tDTExsa6/Hfm20sGBwedbi9xVgB68poLxAyj/c5x6xWT3d3dsFgsaGlpQWJiorBiMlDed44EofWGo4mJCRiNRqSmptKGIx9AApCw8fbjP/jt17l5sgid7x90hrGxMVRVVSE6OhqlpaWzPi7D2K5Yc2S5IJfLBTHo6YSdr/BnGQf4yug2NDQUer0eBQUFwodMX18fzGazTRmeL0ORl1hwYd0nrFarkZiY6PLflG8vkUqlLrWXOHuw5EXcufhas49/HMfh0KFDiI2NFXoIGYaxGSjxpgehq/AHRZ6JiQmMjo4iISGBNhz5ABKAQY6jnh2dToeTJ0/arHPzBGdO6hzHoaurCy0tLVi4cCGys7PP8qNyBnvLBYvFgrGxMahUKmHCznr4IS4uLiCWutvjbwHIw5fd+axDWlqaw80HFovlrM0HfGCfyUuMBOHcxFGfsEQicbnVo7e3Fw0NDcjMzEReXp5LpT9flIADMQM4E/w9p6WlITw8HCzLYmJiAmq12icehJ7CsqwQEwDacORtAu+Tj/AJjnp2DAYDOjo6YDQasX79ept1bp4w20mdLx+p1WoUFxcjPj5elMcFpibs4uPjhWuaTCZBuLS1tWFyctKmoVqs39lTAk0AWjPd5gN+qKSrqwscxwnG1bwgtA7qM3mJkblsYDOdt58rAtBsNguOAoWFhcLAgyvQhqGzsc92SiQSxMbGIjY2VjgQ2xvIi+lB6Cm84wSPfYaQNhyJCwnAIMTRoAe/zi06Ohrh4eGiCqGZAvX4+Diqq6sRHh6O0tJSrwcfuVzucKm7dUO1XC5HeHg4JiYm/NY/E8gC0B7rzQd8GUqj0QitBNarsPgPmcjIyLMEobV1xMcff4y33noLL774oi9+TcJJZvL2c7bVY2JiAjU1NZDL5diwYYOwscZV5mKGztvwz8d071l7A3mz2SyYUjuqkPjacotl2RkdHawF4XSG9rfeeituueUWXHLJJT6557kMCcAgw97bj+M4NDc3C+vcwsPDcerUKVEf01EGkOM49Pb2orGxETk5OcjNzfWL4LFf6q7T6dDU1ASDwYDKykqhf4bvH3RnoMQd7FfB+Qv7E7kzMAyD6OhoREdHIzMzU+jLVKvVUCqVaG9vF1bbWfclWQvC/v5+9PT0eONXItzAGW+/2TKA1u95dx0FrAmWKWBXcLXfUSaTneVBaF0h0el0QoWEF4TetNyyWCxOC07+d7QXhDU1NcIwGjEzJACDBEc9O47WuY2Ojoq+ts0+UJvNZjQ0NGBkZARFRUWCWbG/4Ruqo6KiIJPJkJOTg4mJCahUKgwODqKlpQUhISGCGIyPj/doOGYm5lIGcDas+zKzsrKm7UviBWFERAQmJiaElV/e4E9/+hP27NmDpqYmIfv80EMPYfHixV57zLmKs+vcZhKAZrMZ9fX1UCqVor3nnRGAnr6H5lqG0dOBF/sKCW8PpVar0dzcDIPBcJYHq5gH1dkygDPBvx60Wi2io6NFu6dzGRKAQYAr69zcaeSeDesSMD/xJ5fLUVpa6nb5x5tYl1H4/pmcnByHK5siIyMFQTibQ7+r93CuCEB77PuS+N2oo6OjGBwcxBNPPIEPPvgASUlJeP7553HxxRcjKytL1Hs4fPgwbrvtNqxZswZmsxn33HMPNm3aJPxNiSn4rJ8z69ykUqnD2MG3eYSFhWHDhg2itXlQCfhsxJ54treHsh7+4t0ArD1Yo6KiPIoX7lQc7OG3HBGzQwLwHMe+Z2e2dW7eEIB8Cbivrw/19fVuT/z5G0crm/j+Qd48WazT8bksAO2x3o2ak5ODJ598Et///vfR2dmJf/7zn3jrrbewd+9eUR/z/ffft/nfzz//PJKTk1FRUYELLrhA1Meai1hbQwHObfSwjx0cxwkm8t5o8/C2D2AgvP9cxduWN/ZuANYehPzwl/VASWRkpEv34kkGkIcvWxOzQwLwHMVRz44z69xc8exzBY1Gg8bGRhQUFAjlhbmOfbnE+nTc29sLi8UChUIhZAhdGSgJJAHo6zV7UVFRSE1NRU5ODh5//HGfZHnGxsYAQNQJ9LkK3yfMizlnDwDWApA3kffGZD+PpzvGnWGuZRh96XnoyIOQ7/VVqVRCr6+95cxM9+ZpBtBoNMJoNCIqKsrtawQTJADPQTxZ58Z/XazMj06nQ3t7O8xmMzZs2DDtXs9zAfvTsVarFYJhR0eHTTDkN5RMR6AMgfgiA+gIrVYr9Il5+8OM4zjcfffdOO+885Cfn+/VxwpkrC02nCn52sMLwLGxMVRXVyMyMtJjE/mZoBLw2fjT9NrR8JejHmprQWjfAuTpgVOr1QIACUAnIQF4DuHI28/VdW5iCsDBwUGcOnVKsBLwRPwFQjbMFaytUTIyMsCyrOC/NTAwgJaWFsF/i88QWn9QBlIG0B9G2Vqt1mdB/Pbbb0dtbS2OHDnik8cLRJwd9JgJhmEwOjqKnp4e5ObmIicnx6uvYW/7AAbC+89VAiVuAI57qHnLmd7eXjQ1NSEsLMxGEHqaAdRoNABAPYBOQgLwHMG+Z4cPxq6uc+NPX56UVliWRUtLC7q7u5Gfnw+JRIK2tja3r3cuwNueKBQK5OTkCP5bKpUKnZ2dqK+vR1RUlCAIA2Whu78ygDqdzicC8Ec/+hHeeustfPLJJ5g/f77XHy8QsbeGcud1ZzQaMTQ0BL1ej9WrVws+c97EFxnAuZZhDCQBaI+9Kb/ZbBaG6vgYyDAM+vv7AcCtoTqdToeIiIiAqJ7MBUgAngPY9+wwDIP29na0tbW5vM7NOgPoDpOTk6ipqYHFYkFpaSkiIyMxNDTk9V6duYa9/5bRaLSxW9Dr9dDpdDCZTMKuXX8ENX+WgL15iuc4Dj/60Y+wd+9eHDp0CDk5OV57rEDFkTWUO+JBrVajpqYGUqkUiYmJPhF/AJWAHRHIAtAemUyGxMREodXDaDTis88+AwC0trbabGnih+pmKw9rNBqXB0+CGRKAcxhHPTsGgwG1tbXQ6/VYt26dyxs9+PVb7gi24eFh1NbWIiUlBUuXLrWxlhEjUJ/LwT4kJAQpKSnCVPYXX3yBiIgIaLVa9PT0gGVZwScvPj7eZ0HOXwJQo9F4dZLvtttuw3//+1+8+eabiI6OxsDAAAAgNjY2oHajegsxSr4cx6GjowOtra1YtGgROI7D6OioF+7WMSQAz2YuCUB7+ApVTk4OoqKiYDAYoFKpoFar0djYCKPRaLNv3NGhmCxgXIME4BzFUQDn17klJSVh1apVbvduuWoFw3EcWltbcebMGSxbtgzp6ek2/y5GoPZ1oPd3EOUHRvgNJfx0nVqtFgZK+N5Bby5094cA5O0lvBnIn376aQDAxo0bbb7+/PPP44YbbvDa4wYCrnj7TYfRaERtbS20Wi3Wrl0LhUKBrq4un2b6aRPI2QRK64i7WPcAhoaG2mxpsnZZ6OnpEVwW+BgYHR0tegbwk08+wcMPP4yKigr09/dj7969KCsrE/6d4zjcd999+Pvf/w61Wo1169bhySefxPLly0V5fG9DAnAOwmf9Dh06hOLiYkRGRtqsc7MXYK7iigA0GAyoqamBwWDA+vXrHWZtfGHXcK5hfZJ3NF03Pj4OlUolLHTnm6nj4+OhUChEm7wUw5jVHbw9BBKMmSPrPuHp1rk5g0qlQk1NDRQKBUpLS4XVXd7wEJ0J6gE8m7mcAWRZFhzHOSzzMgyDiIgIREREID093cZlge8hPHbsGMrLy6HT6VBfX49ly5Z5/FxotVoUFBTgu9/9Lq688sqz/v3Pf/4zHn30UezevRuLFi3CH/7wB1x66aVobm6eE16EJADnEPbefizLQqfT4dSpUzbr3DzF2UCuVCpRW1uL+Pj4GTOO3p7WOxeZKZBbD5QAts3UHR0dgniy3lDirrXCudoDGGywLAuz2exxybe9vR3t7e1YtGgRMjMzba7hDwFIB0tb5roABJzznbR3WeA4DrGxsThx4gQqKyuxZs0aLF++HCdPnvTonjZv3ozNmzc7/DeO4/D444/jnnvuwRVXXAEAeOGFF5CSkoL//ve/uPXWWz16bF9AAnCO4Kjky3EcamtrkZ6ebrPOzVOcWerOfxAsXrwYGRkZMwYdMQK1Wq2GVqtFQkKCaKukAhlXArmjZmq+d4bf32m9rik6OtppUecPI2gAtM9TJBxZQ7kjEPje4snJSaxbtw4xMTFnfY+3TOSnw5kMoMViQV9fHyIiIlzezDMXhdS5IADdiTcMw6CgoABf+9rXEBERgddeew1dXV1i36INHR0dGBgYwKZNm4SvhYaG4sILL8SxY8dIABLiYN+zw69zM5lMyM3NRV5enqiPN5MAtO/9cWbIxJMMIMdxaGtrQ0dHByIiItDU1CTs3+XLnWILlEDIVnoSyENCQoT9nfa9M93d3S6ta/JHBtBoNMJsNpOZq4c4MoR35zWlVCpRU1OD+Ph4FBUVzZjp92VGbra4otPpUFVVZRM/rY3YIyIiZn0+AiEWuEKgGMi7g8Vicfs1ysPbR4WGhor+uWgPPzhmv041JSUFnZ2dXn1ssSABGMA42sdpvc6N7wsTm+kC+ejoKKqrqxETE2PT+zMb7vbqmEwm1NbWQqPRYPXq1QgLCwPLssJ2jaamJphMJsTGxgqC0JV1a4GMWCd5R70zGo0GKpUKSqUSbW1tkMlkNobU1u78/hCAvJkrCUD3EcPbz3q4a8mSJZg/f/6M15FKpQHTAzg8PIyamhqkpaVhwYIFACD0jI2MjKCtrQ1yuVyIG/Hx8U7Hs0BmrmcA3X2t8vijdcT+fufS34AEYIBi7+0H4Kx1bidPnvRKycXRUvfOzk60tLQgLy8P2dnZLr3A3SkBT0xMoKqqCpGRkSgtLRW2mljv3+WzWyqVCiqVCmfOnBGmY/n/5mq52FtBxHqgJCsrS1jdZe3OHx4eLpozvztoNBpBuBKuIZa3n16vR01NDYxG47TDXfb4owcQsH2vWFcMli9fjnnz5gnlb+tBKovFcpYJcXR0tBA3XLXPChTmkviwR4xYo9FofHZwTE1NBTCVCZw3b57w9aGhobOygoEKCcAAw5G333Tr3KRSqdcFoMlkQl1dHcbGxrBmzRq3TF75Uo2zwamvrw/19fXIyclBbm4uGIZx+HtaZ7fmz59vMx3b29uLxsZGr5eLvYWvArn1fuIFCxYIAyX8/mKTyYTGxkYkJCQIH4zefg75U/xcLWX5C77kW1VVhczMTMTFxbn1GuL9PJOSklBcXOy0nZS/BSBfMdBqtYJonS5DKJVKbYzYec85lUqF+vp6WCwWREdHg2VZaLVap8rFgcBcF4CexhatVusz8ZWTk4PU1FTs378fRUVFAKbaVw4fPoyHHnrIJ/fgKSQAAwhHgx4zrXPzVsmF7zMcHx9HdXU1IiIiUFpa6ra1iLMBiWVZNDc3o7e3F4WFhUhKSnLpcaynYxcsWACTySSUi5ubmwUj0blQLvZXL4/9QMnBgwcxb948aDQaoe/UfqBE7OdwLn3gBgosy8JoNArOACaTyeXnj2VZnD59Gl1dXW7ZSflTAFpXDEpKSlwu59p7zmm1WgwMDGB0dBQnT56cM+XiuSwAxRg441fBiYVGo0Fra6vwvzs6OlBdXY34+HhkZmbizjvvxB//+Efk5eUhLy8Pf/zjHxEREYFrrrlGtHvwJiQAAwT7nh0As65z81YGkGEYKJVKNDU1YcGCBViwYIFHQcV6vdx0b3C+5GQ2m1FaWirKm3gul4sDIZDzWdvk5GRkZmbaPIdqtVqYslMoFEL/oBjCjSxgnMfeGkoikbgVF/gVjmaz2W07KX8JwL6+PjQ1NdlUDDy9blRUFObNm4eenh6cf/75Z+3tti8XB0q2OhDihruI0W8stnvAF198gYsuukj433fffTcA4Prrr8fu3bvx85//HJOTk/jhD38oGEF/+OGHc8bBgASgn3HUs+PsOjdvCECz2QyNRgOTyWRTbvYE65O6I9RqNaqrq5GQkIDly5dPawTq6T04Wy7W6/V+P+EHQiC39+Wyfw75zItarcbw8DBaW1shk8kEMeiuqKZ9ns4xnbefq3FhaGgIp06dOmuFo6vwAtBXr10+njQ3N7tVMZgN/neQSqWC2AOmysV8ZYEvF/OHIGeni71FIMQNdxGjB1Dsw+PGjRtnHGBkGAb33nsv7r33XtEe05eQAPQjnq5zE9t3S6PRoKqqCizLIjMzUxTxB3wVSO2zAxzHoaurCy0tLQ6NZae7jhjMVC4eHx+HWq3GxMSE38rFgRDIZzNmZRgGMTExiImJQVZWFiwWi81ASWNjIyIiImwMqZ0R1pQBnJnZvP2cFYAsy6KlpQXd3d1Yvnw50tLSPLov/nXii9euXq9HdXU1AGD16tWCKbrYOPrwDw0NtbFZ0mq1NlP11uXiuLg40bbyOHu//o4b7iJWDyC5BzgPCUA/Ye/tx3Gcy+vcpFIpjEajKPfT29uLhoYGZGVlwWAwiFrSsP5g4LFYLKirq4NKpcLq1avdGi4RE+tyMV+qjoyM9Fu5OBACuSvO/MDZmRKTySRMWra1tWFychLR0dHC0Ml0AyUkAKfH3hrKkW+aMwJQp9OhpqYGLMuitLRUlOfbutXDmyVR64rB6OiojW2Rr7HeSMFPF/uzXBwIccNdPO0B9MUO8XMNEoA+xtE+zsnJSVRXV7u8zk2MIRDeVHpwcFAoozQ0NIjay2NfAuYNWmUyGUpLSwOq9w6Yul+5XI758+c7LBc3NTUJmS1vTRcHwlJ3/h7c/cCSy+VISkoSSnP8pKVarUZDQwPMZrMwlMMvc2cYxuun+NkWvAcq1n3CM/1dpFKpIBAdMTAwgLq6OqSlpYm+QYi/T29gXzHIyMhAX1+fUx6j7ggjd95/9ocgfiuPr8rFgRA33EUsG5i50n8XCJAA9DH2Jd/+/n40NDQI69xceQN42gOo1WpRXV0NiUSC0tJShIeHC/flDQHIsiyGhoZs1tcFSvP0TMw2XWwwGGyCuhjl4kA4yYudybGftNTpdMLzyDvnNzY2Yv/+/YiMjPTaczDbgvdAxHrKdzZvv+nigsViQXNzM/r6+pCfny/4mImFNwXgdBUDd03mncXTa9tv5fF2uTgQ4oa7iDUEQiVg5yEB6Ad4X7vGxkYMDQ1h5cqVSE5Odvk6nghAPgvgSIjx3oNiwjAMzpw5g97eXlH6jbzNTEHU2elifhDCnRJVIARyb5byGIZBZGQkIiMjhSyrRqNBU1MTGhsbMTw8jKysLPzgBz/Ar371K1Efe6YF74EMXzGY7XUhlUrPev9qtVrU1NSAYRjRpuzt4cvRYgvAmSoG3haAYuKLcnEgxA138bQHkD9UkgB0HhKAPkYikQj+eiEhIdiwYYPbPSzuCEBrr73psgBiZwD5ZvWhoSGntwrMFWaaLu7r60Nzc7PL5WL+A83fgdyXa+AkEgliYmJwyy23oKmpCWFhYdixY4dPbUUCGYlE4vTfQiaT2cQF3lh9/vz5Xs+6iz2YNlvFYC4JQHtmKxebzWbhEOnK7mJ/xw13YVnWadNxRxgMBtoh7iIkAH1MT08P6urqhHVungRjV4Otda/hTFkAMQXg+Pg4qqqqwDAMVq5ceU6JP0dMVy5Wq9VCuZjve0tISHBYLg4UAeiPNXDAVLZq3rx5uPTSS33+2IGMs2KHPxha9/cWFBS4VWVwFbFih/Ue4pkqBt4UgL5+/zlbLuZFoaNy8VwWgBaLxaMSuFarBUA7xF2BBKCPiYyMFM1fz5UhEN7rKzU1FUuWLJkxCyVWELde6dbZ2Tln1rCJiXW5GJgqZ/GDEJ2dncIqNv6UHxYWFjAC0JcZQGv4TSCEe/DuAMePHxfKpnx/r7cRI3Y4Wuk2Hd4oOdvjD1E1U7m4q6sLDQ0NDsvFc1kAejoFTDvEXYcEoI+Jj4+fcULPFZwpAbMsi9bWVnR2djrde+dpEGdZFk1NTejv7xcmi7u7u6mcB5xVLp6YmIBSqUR/fz+am5sRHh4uNLj7+/nylwCkPh7PGBsbw9jYGHJycpCXl+fTv6GnzgR8xSAqKsqplW686PEGgSSknC0X8yJqLgpBTysOvAXMXPu9/QkJwDnMbAKQX69mMplcspfxRADyBq0WiwUlJSXCacybgVpsxL7P888/HzU1NaioqEBeXp7wdYlEgtjYWGHTC++bNzw8DAA4fvy4ze5ib+zdnQl/ZgBJAJ7NbOVOs9mMhoYGDA0NISwsDIsXL/bh3U3hSezgKwaurJ+c7Tlx5JPoKoEopqYrF/f09MBgMODo0aM2vqW+NKN2FzEygCQAXYMEoI8R88U5kwBUKpWoqalBYmIiiouLXWqudTeIq1QqVFdXIzEx8ayVbnO5WdsT8vPzp3bmMgxaW1ttBKA9vG9ebGwsBgYGsGbNGpuyD8MwZ5WLvcm5KgBnW/A+F5mYmBAGy/Lz89Hc3OyX+3AndjiqGDhLsMYVa6zLxUajERaLBUlJSVCpVOju7kZDQwOioqJsBtEC0X7L0wwgGci7DgnAOQw/BGJ9QuU4Dm1tbejo6MCSJUswf/58l0Wnq8MlHMehs7MTp0+fxuLFi5GRkXHWY/p6Uby/0ev1yM7Ohk6nm/oCxzlteM1/oEVGRiIqKgrp6elCuVilUtmUi62DuicTdI7w9ETuDnw2w5uBfLYF73MJjuPQ09ODpqYmYbBsYmJC9B3hzuLq+5yvGLAsa1MxcBYSgLbwVkHTlYsbGxthMplsfEsDJWtGGUDfQwJwDsO/WXgBaDQaUVNTg8nJSaxbtw4xMTFuXdeVIG42m1FfXz/rSrdgCtSNjY0oKS0Fy38IMxKAY10WgNZYl4tzcnJgNpsFE+XTp09Dr9eLXi72ZwbQm9Pisy14nyvw7z2lUomioiIkJiYC8Nwg3hNciR18xSApKQnLli1z68P/XJoCFgNeAFpjXy7mB9FUKhXa29shk8kColwsVg8g4TwkAH2M2CVgAMKEWHV1NRQKhVPN07Nd15kgrtVqUVVVBblcPutKN0+n9dRqNQYGBry2ek0sXn31VXzvllsBhgHAABIJ4i6+BeqPnnZJAM7WuySTyWzWrFmbUYtVLj5XS8BzFevXA+8lGh4ejg0bNti8tngB6I/eNWcEoDMVA2fx1RTwXGG2v7m1AXtGRgZYlhXaTByVi6fb1+0NxMoAEs5DAnAOw79Zzpw5gzNnziAvLw9ZWVkeB31ngjhv0Dp//nwsWrRoVqHgyRBIV1cXmpqakJiYiObmZhiNRqGEkZCQIPo+TXf55S9/iaeeeRaS8BiEZxVA23AIEYvPgzRyasjD2ZO1Ox/c4eHhSE9PF7Vc7A8B6IsS8FyG4zh0d3ejubl52mEJ64Oh2G0BszFb7LCuGKxZswYKhcLjx5strgRCbPAVrsYO3oYqLi4Oubm5MBqNQmXB1+ViMXoA6eDoGiQA5zC8nUxPT48owZRnpiBubdCan5+PefPmOXVNd0o1LMsKU43FxcVC8JmcnIRSqRRKGHK5HAkJCUKQ8vWHHgBs2bIFR44egzwpC/FfuxmDr/4OkIUgacfPoG38FABczgC6i1jlYn8IQL1eD5Zlz3nDcHcwmUyoqanB6OgoiouLhR4ve/jXf6AJQFcqBs5CJWBbPI0dISEhSElJQUpKis/LxZ5mAMk+ynVIAPoYsYIKX/LlN2yIJf6A6YO40WhEbW0tdDqdyyvdXC3VGAwGVFVVCc3hoaGhMBqNNqvXMjIyhPK3UqlER0cH6uvrERMTg4SEhGk3bYjN4sWL0d/fj/CFa5G47acYfO13AMch9YYnpr6Bm/q9nS3Dsiwr6j3PVi4GYBPU+fv0hwAkN//p6ejogMViwYYNG2b84OXbB/zRBzhd7HC1YuAszghATwXiXCoBixk7fFku5jjO43hDJWDXIQE4x7AuAeXm5uLMmTOi92g4CuK8QWt0dLRbPYaulIDHxsZQVVWFuLg45Ofnz9iTaG+Qqtfrhewgv2nDOjso5ol1dHQUeXmLYDDoEbNmFxQbb8BE1Xsw9jYhPK8EoYkZAADuSwHo7HPm7d4tZ8vF3h7GcIRGo4FEIvHZ5oq5RF5eHiwWy6yvDYZh/DYIYh873K0YOCIqKgpmC4sQuQwbNmzA3/72N78Olx0+fBj33HMPGhoaYGY5gOMQHRWJSy65BE888YSoh3Jn8Wbs8Ga5mH/NePJZptVqBU9VwjlIAPoBd4OW2WxGXV0d1Gq1UALq6ekRPdDzQZwPJr29vWhoaHDJoNUeZzOAvBnswoULkZ2d7fJjhYWF2YibwsJCdHd325SbJBLJjEMW/IfsTKdRlmWh0WgBcIi/7DZEF26GaXQA6oPPAVI5kq+456tvdjED6Mvm/ZnKxePj41Cr1RgfH/eZGTXf/zcXy2/expUJ20AQgJ5UDBzBcRzwpdvBwYMHsTw/HwzDICkxET/60Y/ws5/9TIxfYVo0Gg3uvvtuvPfeexjXaAF26vmVxacjesFqWLRqaNorsHfvXux9401IGAaZmRm466678N3vfter98bjy9ghZrmYf616OgWcnp7u9s8HIyQA5wi80WtoaKhN/4w3Aj3/JrRYLGhpaXHLoNXRNWcSvRzHobm5GT09PR4/FjAllpcvX47+/n4woZHQwyr7NutnqATgZvs+CSCRQhqdgLDsInAcB+V7jwMci5TrHrP91i8/EL05BCIW1uVio9GIyMhIhIaGOiwXx8XFiZ6pIwE4Pa48J/4UgBaLxeOKgSNCQ0NhiEyCRdUPWIwAx0ESlYChESV++9vf4rf/716EymVYs2YNnnrqKSxatMijx2MYBocPH8bdd9+Nzs5OWFgO4FgwIeEIX7gO4QtWIzynCLKYr2IVx1pgHGjFZEclJtu+wJkzLbjjjjtwx113IyxEjvXr1+Pxxx/HggULPH06HOKv2OFpuZg/NJARtG8hATgH6OnpQWNjI7Kzs7Fw4UKbN7g3BeDJkyfBcZxbBq32zJT1NJlMqK6uhl6vR0lJicdv4oGBASzPz4fJaET0mjLEbfwuGIn4VgamkW4Mlf8eAy/ejcj8r8HQXYewnGKEpdgGd74E7KxYCpTVUyw75V3IZ1Q5jsP4+LhXzagpiIuDPwXg2NgYTpw44VHFwBEMw0AqD8f8n+7B0BsPYvL0cVh0o4gt+QZCkhdg8kwVJls/x5EjR7CyoAAMI0FyUiJuuukm3H333U4dwHp6enDnnXfiyJEj0OkNQpYvJGUhonLXICxnFULTFk0bTxiJFKFpixGathiKDd+CRa+B/kw19B2V0LWdxKFDh1BYVCTc2w033IBf/OIXog3rBErscLVczP+MJ/dOscN1SAD6AWdLwBaLRZiCnS4r5o1APzo6CgCIiIgQevA8ZboS8MTEhM3y95kCoTPB4eOPP8auK78OcBwSNv8YUSs3eXTfMyFPzEDqdY9g+I0HMXHyDQBAyjfuO/sbv/xbO/s8BkoQt2/KZhhm1unimJgYwZ7HnXKxVqsNGFufuYxUKhVcAnwFy7JQKpWYmJjAqlWrBGNqsZBIJIIgSy77JQwj3Rh44Q6MHf0fQublIXHr3Yi/9Acwq3ox2V6BybaTGOyuwx//+Ef88cGHECKToqioCI899hjy8/MBTL3XHn/8cTzzzDMYGByaisscC0l4DCKXlSA8ZxXCsgshjXCvt0waFoXIJechcsl5iOc4mEa6oO+oxGT7FxjsrsdDDz2Ehx7+C+QyKVbk5+PPf/4z1q5d6/ZzFCixw56ZysUdHR1ChWhgYABxcXFuTYiTDYzrkAAMUDQaDaqrqyGTTTU8T9c/JuaKNWuDVgBYtGiRaAMmjkrAg4ODqK2tdZjZnOkep/u+e++9F48+/gQkIeFIuvK3CJu/XJR7nwlpeAxSvvF7qD7+OzRV76H7r9cg7fv/gjTEKtvHufb3CZQgPttU3kzTxd3d3QBgY0btTAZUo9FQEJ+GQC4B8yvd9Ho9EhISRBd/wJcxhP1K1IYmZiDrJ3sw/NbD0DUfQd9zt0NxwbWIWbMLMWt2ImbNTrBGPfTdp6Bvr4Cu9XOcOHECpaUbMNXjAUAinRKVjASh85chPHc1wnNWQZ6UI/p7kGEYhCRlISQpCzFrd4E16WHoqvuyXPw5KisrcckllwBgIJNJoVQqXb6HQIkdM+GoXNzb24v29naPpotJALoOCcAApL+/H3V1dcjIyJjVMkGsQG89YLJmzRqcOHFC1Ok666yn9b7iFStWIDU11alrzBTcNm/ejKPHjkMen47kq+6FLDZFtHufDUYqQ8KmHyIkMQuqj55Bz1+vwbzrHkVIcs6XN84CcD4oB0oQd9WWwXq6mOM4TExMQKlUYmBgAC0tLQgPDxcEYVxcnMNsLwVxcfClALRe6ZacnCxUEMRGKpWCs5yd1Uza8TMYVd9G//M/wuih3dA1HUXi1rshT8yAJCQMEblrEJG7BvGXfh8mVS8mOyqhPvBPgGMRVXA5whesQljmSkhCfDt5LpGHTQnO3NXAJbfAPDaIyY5KjB19GWaNEr/85S/x0EMPuXTNQIkdriCRSIRe4zVr1sBkMp21uzg2NlZwc3DUI8xnFSl2uIbv9zwR075BeePj+vp6rFy5EkuWLJn1A1iMQK/VavHZZ5/BaDSitLQUCoVCaOYWCz5TaTabUV1djd7eXqxfv95p8TcdZrMZubm5OHr0KMJzVyP12kd8Kv6siV61FcnfuB+MVIb+F+7ERO1+AADHsq7oP4f7PP2BJ75cDMMgJiYGOTk5KC4uxvnnny9kedva2vDpp5+ioqICHR0dGBsbEw4Hvujjeeqpp5CTk4OwsDAUFxfj008/9erj+QNfCECO43DmzBlUVFQgLy8P+fn5kMlkXlvNJpVKhRKwPSHxacj6STkilm6Ecagdfc/fjrHPXgdn9/3y+HTEFG8HGAZMSAQSNv0AEQvX+Vz8OUIWm4Lows2QJ2UDmKqQuEqgxA5Xsd4CIpfLkZKSgqVLl6K0tBRr1qxBYmIi1Go1KioqcPToUdTX16O/vx8Gg0G4hi+qB+da7KAMYICg0+lQXV0NACgtLXV66MLTQD+dQauYpWVgShAYjUZ89tlnCA0NRUlJiceefD09PVi5sgBmswkx66+C4oJrwTD+DX7h2YWYd/3jGHrtXqje/z8YehsRkpiJuZgB9HQ1kzUymQyJiYlCaXByclLoH+TLxU1NTfj4448RExMjymM64pVXXsGdd96Jp556Chs2bMCzzz6LzZs3o6GhAZmZmV57XF/jbQHIVwxGR0dtthA5u0fcHexLwI5I2vFTGFXXoH/3jzB6eDd0TZ8iYevdCEnKsv1GlgMjDcyPP0Y+FRcnJydd/tlAiR2uMt0WkJmmi/nhyIiICJSXl2NsbMyrm2/Oxdgx944K5yBDQ0M4duwYFAoF1q9f79LErbuBnuM4tLS0oKamBvn5+WdlG8UO5Hq9Hv39/UhISEBxcbHH4u/dd9/FsvwVMLMcErb9BHEXXu938ccjj0/HvOsfQ1hWAbS1H2Ls8z0ApnzRnCFQgrg3N4GEh4cjLS0N+fn5OP/881FYWAgAqK+vx9tvv428vDw8/vjjoj/uo48+iptuugnf+973sHTpUjz++OPIyMjA008/LfpjiU2g9ABaVwxKSkpsDI/FPjhaM1MG0JqQ+DRk3V2OiGUXwzh8Bv27f4yx46/aZQM5MFLPrWm8ASOb6vfW6XQu/2ygxA5XcfawyU8X5+bmYs2aNTj//PORlpaG/v5+6PV6XHDBBbj00kvR1tYm+j3O5dgxHYF5BDrH4d+gLMvi9OnT6OrqctslXyKRwGQyufQzRqMRNTU1mJycRElJicO0uViBnB8sGRoaQlxcHJYuXerxNX/961/jb089DUloJJKv/B1C05d4fE2xkYRFIfmqe6E+8C9MVLwFAHjnnXeQkZEhTMnGxMQ4DHqBEsR9tQqOLxffcsstaGhoQGRkJC699FJRvOOsMRqNqKiowC9/+Uubr2/atAnHjh0T9bG8hbMOAjKZzKY8JhaDg4M4deoUMjIykJeXd9brw9sC0L6kOxNJ2++G+fxr0PvcbRj95EVom48icetdCEnKBjgOjCxABSBlAJ1GLpcjMzMTzz77LN566y0cOHAAVVVVHvvI2nMuxA5HkAD0E3q9HjU1NTCZTNOKMGdw9aTPr1mLjY1FaWnptClzMQK5xWJBfX09lEol0tLSPApM/M/+6U9/wt/+9jdAFoJ5NzxhY8IaaDASKeIvuQWQh2Lis9dxww03oKWlBUqlEqdOnQLHcYiLixOam/lJ70AJ4v7YBazT6ZCRkYHt27eLfu2RkRFYLBakpNj2iKakpGBgYED0x/MnYmcAOY7D6dOn0dnZOePgltczgC7+TjJFKrLuLsfIu49D23AQ/bvvgOK8b2MqAyjeWkgxkcim7ssdAR8oscNVPG034XeIFxYWYsOGDWLdlsC5GjtIAPqBkZERVFRUIDk5GcuWLfPIasWVQM/3TOTm5iInZ2abA08DuV6vR2VlJRiGQUlJCXp6etwqaVjDMMzUqZiRAGYj+l/6GTJ+uNuja3obTf1BTJwoBzC1xio1NRWpqanClKy1qXJERATi4+MDYvm8GMvZ3UGj0XhsOj4bjiYI5+KH5kyIKQD5igFv1D7TYdWbAlAmk4Hj3PudErfeCcWGq9H73O0Y/eRFAAjgDODUQdDZlhFr5upr2d0MII9Go4FUKnV63aa7nGuxgwSgH5DL5Vi8eDHmz5/v8bWcCfQsy6KxsREDAwMoKipyyqPLk0CuVqtRVVUlCFyJRDLrKjhnSU1NFXz12IkRdD56JdJ//B/IZN5947uD8sBz0HzxBiShkZBGxQNjfcK/8WXPmJgYZGdnw2QyQa1WQ6lUYnh4GGazGTU1NUJ20NuiyB7+byWWD6SzeNPKITExEVKp9KwT+9DQ0Fkn+0DF2RKwWALQumIwm1E74H0B6EwP4LQ/r0hF1t2vY+S9J6A9tT9gM4C8AHS1tQeYivVzUZB4mgHU6XSIjIz02oH1XIgdjgiMrvkgQ6FQiCL+gNkDvV6vx4kTJzA2NobS0lKnDVrdDeTd3d344osvkJubi+XLlwtvSGc/uGbDengkYtmFgMmA3se+CfNoYKXhB1/9HTRfvAFZbApSr38Msrh5wAyBWS6XIzk5GUuXLkV2djYUCgXi4uIwPDyMEydO4Pjx42hubsbIyIhPNjyIsZvTHbzpAxgSEoLi4mLs37/f5uv79+9HaWmpVx7TX4ixCaSnpweff/45MjMzUVhY6NSEpdczgCJcO3HLHQAARu76tglfIAmdsqQJphKwGBlAb9pHnauxgzKAc5yZpnWVSiVqamoEYeHKG8zVQM6yLJqamtDf349Vq1YhISHB5t+nWwXnKvyHkCQ8GtLwWCSW/Qojbz+M3r/fguRv3I/w7AKPH8NTev9+C8yj/QiZtxjJX/9/kIZHA6zFFStAobk5MzMTFovlrJVr/B7NhIQEh8aonuJPAejNQH733Xfj2muvxerVq1FSUoK///3v6Orqwve//32vPaY/8CQD6E7FgEds/1Br5HI5IKY1lSwwM4AS+ZQADKYSsMVi8cjCxRf+oedi7CABOMdxFHB5g9bW1lYsWbIEGRkZbl3XWcFmMBhQXV0Ns9mMkpISh+VKMUrARqNRyACGZayEtukTxF18E1Ku/hOGXr8XQ6/9DnEX34yY4m0ePY4ndD32DXBGHSIWb0Ditp8IHzKcC6UZ+yAulUptPPT4PZpKpRIdHR2QyWRISEhAQkIC4uLiRJme5f/2vvww4TgOWq0W0dHRXnuMb37zm1Aqlfj973+P/v5+5Ofn47333kNWVtbsPxwAOPv3cFcA6vV6VFVVgeM4lJaWOrW+zxpvZgDlcjnAWUQTOabxIZjNZq96x7kD+6XX4cTEhMs/O1cFoKcZQF4AevN3n+uxwxGB9coPEsR8kdoH+ukMWl3F2UA+Pj6OyspKKBQKFBcXTxtMPckAchyHpqYmdHZ2orOzEwAQmrUSupaj0HfWIjynCPOuexSDr/wG6o//DtNIJxIuu82tx3IXs1mP3ke/AXAsYtZeAcXGG2x9CTn3BaA9ERERiIiIwPz588GyLEZHR4Wl6vX19YiJiRGyg9HR0W693vieHF9/mPhindMPf/hD/PCHP/TqY/gbdwSgJxUDHv6g5w0hIsQWjgUYz3tTzUMd6H3syqk9wGmLEbfpdoQmitOa4yoTdR9j7Mj/YBkfAjgOAAOdTocYRRyiIsKxadMmPP7447PG87kqAMWYAvZ2BhA492IHCcA5jnWg12g0qKqqQmhoKEpLSz0yW3ZGAPI7ixcsWIAFCxbMOlXsTgaQH4bQ6XRYu3Yt+vv7AUw1dMvi0qBtOIzwnKIp8+XrHsPQa/dCU/M+jCNdmPdt1/Zouot5dAC9z94MAIi/9PuIXuUgA+lBBnAmJBKJsDR94cKF0Ov1wh7N7u5uMAwj/HtCQoLTrwl/TAADtAtYLFwRgGJUDHj414ynGR1HCK9d1gJIPL02A0lkHNjJMcBigqG7DgPP/UD4eszaKxC7ZqentzwtZr0Gqvf/hsn2LwCL6cvhFgYhaYsQnrsGY5++hMjlF4FjWWjbv8CePXuwZ+8bkEgY5GRn49e//jWuuuqqs647lwWgpxlAihuuQwJwjsMH+tkMWl1lJgHIbxHp7u5GQUEBkpOTZ72eO0MgOp0OlZWVCAsLw7p162A2mxEbGzt1PY5D5LKNGD+5F+ymH0AiD4U0UoGUbz+Ikbf+jMnWz9HzzI2Y//3nXHpMV9G1V2D49fsAqQxJO3+BiLz1Dr+P45zvAfQkiIeFhSEtLQ1paWlgWRYTExNQKpWCBVB0dPSsRtSAfwQgXwL2xUn+XIePC7O9lqwrBmvXrhXeX548LuAdAci3NnAWs+f9ewwQlrEccRd9F+rDL0LXcGgq8yaVgdWqMXrgHxg99BwgkSIsYwUSLvsRZLHO90I6Qtt8DOpPXoBFPQCAAzgWktBIhC8qQfiC1QjLWQVpeDQ4iwljn76EsKxCRK34GjjWAuNAKybbKzDZ9jna2lpx00034aabb0FkeBguvvhiPPHEE0hMTJyzAtDTeOPtIZBzFRKAfkDMNygv1Gpra2c0aHX3uvaYTCZhi8j69eudPnW52hukUqlQVVWFtLQ0LFq0SBCPfBaA41hELrsQY0f/i8m2k4hcct7U48jDkLTrHqg++js0Ve+i88+7ELf9Tkgl4r/Uda1fQFe3/8utH/chNG3x9N/sYglYDPElkUgQGxuL2NhYLFiwAEajUcgOnjp1CizL2mQHrT20/GUCzXGcV3sA5zrOvob4culMQoyvGISFhXlcMeCxzgCKidFoFMx+XdkGMi0cAI6DLCYZSdt/CkPxdqgP/AuG3gaEzl+G8JximMcGoWs9AX1HBXqfvREAII1JREzJNxFTcNmsD2HWa6D+6B+YPH0cnNkgWNiEpOQifOFahC9YjZB5eWevsOQPyryDgkSK0LTFCE1bDMV518CiG4P+TBV07RWYbDuJt99+G2+/8y4kDIOkpET8+te/xne/+13PnyMf4umBwRetI+ciJADnMEajEbW1tQAgyundGkfDJRqNBpWVlYiMjMT69etdGjZwJQPIZ6sWL16MjIwMWCwWsCwLuVz+1ZucYyGPT0fIvDxoGw4JAhD4cgPHpd/HZPsXsIwNQf3Ww07fp8vIQpF63WOQx828xs+TIRCxCAkJsTGi1mg0UCqVGBgYQEtLC8LDwwXfQW9kcGaD/4CnQO45/N9uutKa2BUDHus1l2IxMTGByspKhIZ+adsihgD8MgPHE5q2GCnffgi6lmMYPfQ8Ro/8B1GFlyPtxidh0aqmsm+tn8PQ1wT1+/8H9YdPAVI5wnNWIf7SH0IWpQAA6DoqMXrgXzApewBm6l6ZkHBELNqA8NzVCM9ZBWmkYuY742YewJJGxCJy2UZELtsIjmNhHGjDZEcFJltPYrC/BXfccQfuuOtuRISF4sILL8QTTzwhWmLAW8yVHsBzDRKAfsJTXzzeoDUmJgYAXJ7Wmw2JRGLjIzY0NITa2lpkZmYiLy/PZYHizBAIx3Fobm5Gb28vioqKEB8fL4g/fiBB+D2/DJKRSzdCffh5WPQaSMO+Eg49T98IdmIYABBVcDnCF6516X5nwjjUjrFPXwIYCUKSsmcVf1P363yA80UZh2EYREdHIzo6GtnZ2TCbzUJ2sKmpCUajERKJBN3d3UhISEB4eLjX70mr1UIqlX71QU+4Df9ac+QQYL1/XGxhwDCMqJPAQ0NDqKmpQU5OjhCPev72HQCAJCIWyd/+C0LjXd+hDnwltHgYhkHk4g2IyF2Licp3MHrsZWjrDyG25BuIWb0TseuvgkWvgb6jCpPtJzHZehKTLcfQe/qzr7J2mPq/8sQshOetQ/iC1QhNWwzGlZ5F4bmb/f3GMBKEzstD6Lw8KEqvhmVyAvozVZhsr8Rk2+fYt28f9u3bBwC49NJLUV5e7vx9+BBPewA1Gs1Z1mPE7JAAnINYr3TLzs7Ghx9+KLr3Fu8vyHEc2tvb0d7ejvz8fMyb516wnW0IhB/20Gq1WLduHcLDw4XfyXoalRcHvCFsxNLzoT74L+iajyK64DKY9Rr0/u06wGJEdPEOaGrehzwxAxEiCUBDfwvGT5SDCQkHB4CROpcFdTUD6Ovyq0wmQ3JyMpKTk8FxHLq6utDb24uRkRG0tbUhJCREyA7GxcV5xTqD7+Pxx/DJXMHZ1xDDMGcNglivdHOlfcNVxBCA1nGHb2156623kJKSIvjjsboxDPxjavgKDIOY0msQd963XHkQh19mZHLErN2FyBVfw9jR/2H0039jouo9xF14PSKWXoDIpecjcun5X2Xf2r+AtuEQzOo+yJMWIPnrv4Ms2pN+Qb4E7LogkoZHI3LpBYhcegE4joWhux7De/8IVj+BgwcPenBP3kUMG5i5bMfiL0gAziFYlkVDQwMGBwdtzJbFXvwOfJUBrKmpwejoKNatWydkG91hpownP+wRGhqK9evX23yA2IsBoU/py9O7LCoeYZkroW04DHlqHgZfuAvgWGEaV1P7oRBPPUXf04ChV38LSKRIu/FJ9O++Y8btHja4kNXzdyM3wzAICQlBeHg4ioqKYLFYMDo6CqVSidbWVuj1esTGxgreg2L5b9Ekn7hYxwVXV7p5gqcC0GKxoK6uDmq12ibuhIeHY3x8HMDU71NcXIyenp6pH+I4jB/9D8aP/gcAIEvMQsp3/gxZ6PRlwdl6CaXhMYi/5FZEr9oG9aHnMfL2wwipeAvxF38PoelLbbJvseu+DuX7f4W2/iBG3vwzkq/5IyRu9h0L2048fE8ZB9owVH4/OLMRjDwUsTGB+97ytOeYXwVHuAYJQD/hagl4cnIS1dXVAHCWQas3BKDJZIJKpUJMTIwoDeLTlYD5vcGpqalYvHgxOI6zKfnaI5QHrco3kcsuhHLfExh88S4wMhmSyn6N8AXF/ANDDAWo76rF0Gv3ArIQpN34FGTR8VbXdwLO4rRICoR9ntYBWSqVCmIPmHotKpVKqFQqnDlzRvh3fqDEXSNq6uMRF34dHF8xWLhwIbKzs73+2vJEAPJG1AzDoKSkZNp2gNjYWLS2tqK3txc9PT343//+h2eeeUb4d/NIJ3of/+bU/5DKkbjtZ4hcYreyy8n4K49PR/IVv4G+sxaqA//EwEs/Q8SS86G48HrIFVMldEYmR8LWuyFPysLood3oe/ompN7wBGSz9Ps5ROgBdF8QjVftg/qjZyEJj0bK1Q9g5K2HIJF4Z0OLp3AcRz2AfoIE4BxAqVSiuroaKSkpDg1axXbfVyqV6OzshFwux+rVq0WbSLUXvL29vWhoaLAZ9uDLn9N9SPGTqtbX0nfXA4wU0ohYJH/j9whJyrb6CcZGLLrDZEclhsp/D0lIBOZ972nIIr4ctuE4pwUg58IJ198ZQGDmE3l4eDjmz58vGFGPjY0Jr5mGhgZER0cLgtEVI2qtVouIiAi//+6BjCvPjUQiQUdHB8bGxhyuZ/QW7sajsbExVFZWIjEx0WaP+GxwHIeHH34YDz/8MBiGQUNDAy6++GJoNJqpb7CYMPLmHzHy5tT/DMtdA3fiQljWSsy7/jFo6w9i9JMX0ffP7yOmeAdiS78JSehUFjx23dchj0vHyNsPo+/Z7yHl6j8iNG2RS48jCFM3BeDw249A13AIIemLkbzrHkgj48BZzJCGBebHPf9aIR9A3xOYrwgCwFRg6+joQFtbG5YuXYr58x271IuVAeR7v1paWpCamorJyUlRpwN50WbtIzjdsMd0CJnPL4NG/79/CmN/C0KSc5D89XshjYqzf2BnD/oO0bV+juG9D0ASFo30m5+BxGrQBBwHxll3PxE3gfgCZ0/kEokEcXFxiIubet4NBoOQHezu7gYAwWYmPj5+xgEPjUZDQVwkJicnodfr3V7p5gnuCMC+vj7U19e7lKXkOA5SqRRjY2Oorq5GUlISkpKSsHz5cgwODgrft23bNpv+N33byamfd2OamJFIEbXiEkQsPg/jn+/B+Ofl0Jz6CIrzvo2owsvBSKSIWFSC1Gv/gqHX7sXAf36O+MtvQ/SKS51+DGE4xcUYwBp16H/xJzAruxFVtAXxX7tZ6FHmWAssFgZdXV1ISEgIqIMWCUD/QQLQT8z25jObzTh16hTGxsZmtXgRQwCyLIv6+nqMjIxg9erV0Ov1wto1MeA/FMxmM2pra6HRaLB+/fpphz2mgy9Fm00GdP/fd8DqRhG+qASJ234CiTzsrO+fup57GUBd8zEMv/kgJJGKKfEXYrvjmIPzGUBwLBjJ3BGA7vbkhIaGOjSi7u3tRWNjI6KiogQxGBsba/MY/ujjeeCBB/Duu++iuroaISEhGB0d9enjewO+YiCTyZCdne1T8Qe4JgCtp5ILCwuRlJTk9M9ZLBbEx8dj3bp1gp1Rc3MzIiMjkZiYiKSkJMTGxuKdd94Rfm7Pnj248cYbYTKZPKoMSELCoDjvGkQVXIbRT/8N1f6nMf7Fm4j72s1T/n7JCzDv+icwtOf3UO37K0yDHYi/5BbnLu5GCdg4fAYD//kFOOMk4i//EaLtfQpZC0JCIqBSqdDe3i4MdfH7w31t+WRza9P0ezsLx3HkA+gmJAADEFcNWj0VgHzfDQCUlJQgLCwMg4ODopaV+R7AEydOICQkBOvWrRMmjQHn3/z8czH20TNTe3fXfx2KC66bIVgybrUAahsOY+Sdv0AanYi0m56GJORscQkXBCDHspDIz40SsLPMZERdX18Pi8WCuLg4YSuJP9z8jUYjrrrqKpSUlOBf//qXTx/bHWZ6XdhXDAYHBz2ymnIXRx6ijrA/DDr7Ac6LP/41am1nZDKZMDIygpGREaFnOiEhAUlJSUhISMAVV1yBK664Yup1JkJ8k0UnIHHLnZhs/RwW3TiGX78PYVkFiLv4JoQkL0DqNQ9h5L0nMFHxFoxD7Ui++o+zv69czABqTn0E5ft/gyQsEinffgih6UsdXNKM0NBQFBYW2gx1nT59Gnq9HgqFQhCEvs4OirF3nDKA7kECMMAYGBjAqVOnkJWV5bTfnicCcHR0FFVVVUhISMDy5cuFk6DYfYUTExNgWRYKhQJLliwB4N4bv6KiQuiNib/8x4gu2DTzDzCu9/poTn0M5XuPQ6ZIwbybnoJkurVTXy5tdwqOBcA45XcVKALQG7tcHRlRDw4O4re//S0+/PBDpKWl4YMPPsAFF1zgk8zVfffdBwDYvXu31x/LmziqGIyMjIg+HOYMzsQO+8l/Z4bMOI4ThsSmaxeRy+WYN28e5s2bB47jMDY2huHhYXR0dKCurg6xsbFCltHeB9ATGKkM0rgUKEq+DvXB59H//B2IWnkpYs//DhK3/xTjiZkY/fTf6Hvmy+GQiBkcFTjnbWCU7/8fNLUfIiRlIZKu+A1k0dP0ebIWYTjLfqhLp9NBqVRCqVT6JTvo6QAIQALQXUgA+gn7wMWyLE6fPo3u7m6sXLkSKSkpTl/LXQHITwfm5eUhKyvL5p7EFIB9fX2oq6sDACxdunTGAD4bF33ta2DkoUi64jcIzyqY/QdcvP5E9ftQffA3yOLTMe+mJ2e3cnChBGyxAJ9++qmQ9eINls/61gARgN60CrE3ov7LX/6Cm266CX19fbjllluwceNGvPDCC157/LmMvYPAdBUDmUwWkAKQX/M4b948LFmyxKkPf2vhxz/GbO8RhmGgUCigUCiQl5eHyclJITs4dVFx19UxDIOIhesQnlOMiep9GDv6P2gbP0HMuisRs3YXZAnzMfL2X9D37E1I+dafEJq6cNrf9csLTvtYrFGPgf/8HKahdkSuuAQJm24DI5t++p6b4UAXERGBiIgIYRBPrVZDpVKhpaUFBoPB69lBTw+bLMuSAHQTEoABgNFoRHV1NYxGo1sGra6KNZZl0dzcjL6+vmmnA8Uyc7XeOlBbW+vUpO/MSBC1cpNz4g/4MgPoXBlsvOJtqD96FvKkbKTe8Pjs4s+VDCDLISwsHKtXr4ZSqcTQ0BBOnz6NiIgIIbjyPXGBIgB9acgcHx+PjIwMFBUV4c9//jN0Op3PHnsuM1PFwBv2UM4wU+zo7u5GU1MTlixZgoyMDKeux5d8eWHk7usyPDwcGRkZSEtL+/LC4gpAHkYqQ0zxdkQtvwhjx1/F2PFXoKl+H4oLr0Pqt/+MofL7MPDvnyJhyx2IWn7R2Rf4cjhluhhgVPZg8KWfgTVoEX/p9xFVtHX2eMGxTtkzSaVSJCYmIjExURDN3s4OepoB5GMFCUDXIQHoZ3iDVoVCgVWrVrmVdXEl0FuLzZKSEkRERDj8Pk8FIF+SmpiYwLp16xASEgKGYVBZWSlM60332DPBuFjSZcA4VeoZO7EHo4eeQ0jKQqRc96hzAclJoWbRjYE16jA4OI6wsDBkZGQgKytLWL+mVCqFnrj4+Hjo9Xq/fHBb42sBCEyVcfgJUE96Ae+9916htDsdJ0+exOrVq91+DH/jTMVAKpVODTv4GEexg2VZNDU1ob+/H8XFxYiPj3fqWvb9fp4ejPR6vdAbyInY4uIISVgU4i66EVFFWzB6aDeU7z6GkJRcxF98M8Y/3wPlu4/BONiO+Itvsv3BGWxgtA2fYOS9xyCRhyLl6gcQlrli1vvgOO7LIRDXvFwZhnGYHVQqlWhpaYHRaBSyg/Hx8W5nB8XYAgKQAHQHEoB+gmEY4TTsqUGrswKQX6oeExMzq9h0tpHbEZOTk6isrIRcLheGPTiOQ0lJiVCC4bNf1tN6TgkOBq6d3J14TkePvYyxT19CSPoypFzzoAvCZ/YhENPoAAZf/jU4sxEbv3bxWWWshIQEJCYmgmEYaDQajIyMQKVSobW1FQMDA0hMTBSGJHyZFfSHABRrCvj222/H1VdfPeP3ZGdne/w4/sJoNKKqqmrWioFUKoVer/fx3Z0tAPkVdAaDYcZDpz3WmT8xxN/ExASqq6sFyyJvZQDtkStSkVT2S+h7GqA+8E+MvP0wwnJWQZ6cg4mTe2EaakfSN+4X3m9f2cDYvv9U+5/BRNV7kCdlIfnK30IWk+zcDfBbkzxs6bDODvKTt/wB1npdpKvZQTFMoOVyOe0QdwMSgH6iv78fp0+fFsWglV/bNhN8qSgnJwe5ubmzBlN3M4Cjo6OorKxEcnIyli6dmkbj3+CRkZGIjIwUsl9KpRIjIyOora0Fy7JCcElMTJyxXOHayX36jCHHcRj99CWMH38FoVkFSL36AVd+1S8vP33gMg62Y/CV34DVa/Dgn/6IH/3oR2BZVsho8H1NwFen7aysLKhUKqSkpEAmk0GpVKK2thYcxwnBNT4+3uPNLLMhRmO2q4jVx8O/hs5FOI5DRUUFwsLCZj3EBUIJWKPRoLKyElFRUVi/fr3TIoQ/KImV+RsZGRFK5Tk5OVNf9JEA5Ambvwyp1/4FusZPoT68G5YJJcBIoO+sQd+z30Pad/865TNqZwPDmo0Y/O8vYexvQcSyjUi4/EeQyJ0XO5xl6rPB3Q09juCz9JGRkbNmB/le5+n+hmJkAMVaRxlskAD0E6mpqYiKihI2W3iCVCqFwWBw+G/WfXgFBQVITnbu1Mhn7VzpR+PNXPPy8pCZmTljAJfJZEhJSUFKSgo4jsP4+DiGh4dx5swZ1NfXC9N6fKmY/3kGcD0D6KAFkOM4jB56HuOf70HYgtVIuepe569pdY3pMoD6rloMvf57cBYT/vPSv1FWVgZg6sORF1a8COQFIf9hbTabIZVKkZycLEzMjo+PQ6lUoru7G42NjcK2jcTERERFRXmlMdsfAtDXNjBdXV1QqVTo6uqCxWIRyoMLFy4MyJISwzBYtWoV5HL5rH9zfhWcr+HtnYaHh1FTU4PMzEynHQ3cGfaYje7ubrS0tGDZsmWYN2+e9YN5dF13YBgJIpddiPC89ZioeAtjx18FZ5yEZXwIPU/fiNRrHvqqrZhhYBodwMCLPwE7OY64i25C9Joy15+PL3sKvXlonC47ODIygtbWVoSGhk6bHfT0sKnRaNxqJyJIAPoNiUQiivgDYOOnZ43JZEJtbS20Wq3LwyXWIsUZ25LW1lZ0dnaisLAQCQkJLp3eGYYR/OIWLlwIvV6P4eFhjIyMoK2tDaGhoUhKShKyOi5lAB30DHIcC9VHf4em8h2EL9qA5F2/cv56tleCoyEQbdMRjLz9MBgARz/9BIWFhQ5/2nrXLjAVCFtbW2E0GhEZGSl8eDMMg6ioKERHR2PBggXCtg2lUomuri4bW4f4+HhRpnf9JQB9Lbp+97vf2UwbFxUVAQAOHjyIjRs3+vRenMXaPH0m/JUBZBgGo6Oj6O7uxvLly78aupgFsYY9rK93+vRpYdhNKP0K/+7bDKA1EnkoYtdfhagVl2D0yH+gqfkAnFGH/n/fBcWGbwMAJrvrMfbpv8HI5Ej+5v0Izy5067E4diqO+KpE6mp20BlrrJng4wZlAF2HBOA5gKNAr9VqUVlZifDwcJSUlLic/ndWAPLDHuPj41i3bh0iIyNd2uzhCH5Qgg8eKpUKw8PDgpWMayd3xiYByHEslO8/CW3tB4hYthFJ23/q8v19dTGctd1jovJdqPY/DalUhpaWZqSmpjp3KY5Dc3MzlEol1qxZg/DwcJsymPXfVyqVIjU1Vdi2we/i7ejoELKnfHB1tzTiawHIcRy0Wi2io6N99pjAlP/fXPcAnA5/CECWZaFUKqHVarFu3boZNxhZM5u/n6tYLBacOnUKWq0Wa9ascZxZ9qMA5JFGxiHhstsRvWo7VB89A0PXKYx++iIAYOzwbsjj05H09f8HucK5OOKQL18DcrkcFosFDMP49L3tKDvIt/+0trZCKpUiJCQEIyMjbk0W+6NycK5AAvAcwD7Q86WXjIwMLFq0yK1gai0Ap0Ov16OyshJSqRTr16+3uQ+GYUQ5kUmlUqEULPhjcS58qFllADnWAuW+J6CtO4DIlZuQuPnHnt2clQ0Mx3EYO/IfjB17GWFhYejt7XU6w8uyLOrq6jAxMYHVq1cL3oD2pWL+A5LjOJvsYExMjJA9nZycFBqzOzo6IJfLhUESV4Krv4ZAArHsOlfxtQA0GAzCcAo/2OUMYk/6GgwGVFdXQyKRYM2aNdOWPs2jAxj4368RkbcO4blrIY+b5/D7fIE8YT4UG67BeMibmGw9MfVFjkVo5gpYxocgi04EI3Xv45rfeRwaGmrzeuDbUXz5PrfODmZmZsJsNqOxsRE6nc5hdtCZ0i4JQPchAXgOwAd661VQrpReHMEH4ekEIL9BJCkpCUuXLhUEihgBfKZ7ctbWxfpnAA6cxYyRdx6BrulTRK/ahvhLvy/CHU31AHKsBcoPnoK29gMkJCSgvb3d6TKs2WxGTU0NzGbztB9W9qViPiPIP+fWQZ3fhJCenu5w5ZO1CfVMwdUbm0BmgwK5uPhSAI6Pj6OyshJxcXFISkrCxMSEUz8n9rAHb4odFxeHZcuWTStunnnmGdx5553Qd5+CoesU1B//A7K4eYjIK0H4wrUITV8KxolNHJ5g0Wugb/8CutbPMdl2Epxx8svtH1Ym3zUfQFP1Hhh5GMIXFCM8dy3CFxRDGqlw+nH4EnBERARCQkKmPUjyz78vBaFMJkNoaCjCwsKwcOHCs7KDYWFhQrxSKBQOYxLFDfchAegnxBRJ/BRwTU0NRkdHhVVQnsAHAkcCsL+/H3V1dU4Ne4gOAxd3eDIAa8Hwmw9h8vRniFl7BeIuulGce+E4gGUxvPcBTLZ+joULF6KmpsbpH+ftPGQyGYqLi50WjdMNktg30PObEOLi4rBo0SKblU+zBVdfZwAtFgtlAJ3E2feYrzaB8A4Dubm5yMnJQVdX16wOAvyAmaftItbwE/OZmZlYsGDBjNe79tprce211wIAqqurcccdd6C6uhrjX7yJ8c/3gAkJR3juWkQsXIuwBcWQhnn+uuQ4DmZVz5TgO30Chr7GqRgikQKsBRkZGTh27JiNR+L4+DhKS0vR0dEBXctx6JqPAgBCUhYiPG8dwnPXICRlwQy70CEMgYSFhUEqlTp1kPRldpBlWcEn1j47yB9gm5ubp80OajQar8aNBx54AO+++y6qq6sREhKC0dHRs76nq6sLt912Gw4cOIDw8HBcc801+Mtf/uJ1twZPIQHoR+xXOrmL2WyGTqdDSEgISkpKRGv2tReAng57iIHLU8DgoG0+Bsv4EGJKv4m4878j4t1w0LV+BrAWnHfeefjggw+c/km+fB4ZGYn8/Hy3s23OZgcZhkFISAjS09PPasxuamqCyWRCfHy8MEjiawHIm7n6ugfwXMbbGUA+Hpw5c8bGYWA2D1H7YQ8x2kV6enrQ3Nx89qSvExQWFuLw4cMApt6Xd955J9544w1MNB+BrvEwwDAITV+K8IXrEbFwDWTx852+X85igr67HpOtn0N3+jNYxocEZwKGAb79ne/g/vvvF4beampqEB8fLwy9xcTEfNX7DOBXv/oV/u///g/GwVYYh9oxduQ/kETETq2gy12NsKxCSEIj7O5hKstnv3bS2YMkH9u9lR2cbgpYJpPN2DvIt9pUVFR4NW4YjUZcddVVKCkpwb/+9S+H979161YkJSXhyJEjUCqVuP7668FxHP7v//7Pa/clBiQA5zgqlQoNDQ1gGAZr1qwR9Q1qLQD5puqxsTHRhj3cgYHz03usQTf13+Q4AGD82MsYP/ayuDdkMePqq692GBimgx/QiY+Px7Jly0TPBk9nM2Mf1OPi4hAfH49FixZBq9VCqVRicHAQLS0t4DgO3d3dSElJcd6k2wP4dU5UyhEP3srJG2Leevhr/fr1Nh/AM3mIij3sMdukr6uEhYXhmWeewTPPPAMAeOmll/DAAw+gu6cZht5GjB56DtLY5KlSce4ahGUsByO1HbCz6MYw2fYFdG0noG+rAGc2CFm+yMhIvPTSS9i0aZPNzyQnJ4PjOExMTGB4eBjd3d3CQBcvgqKionDzzTdj06ZNKCwsxODgIC655BKo1Wpo6j6GpvZDgJEgNCNfEITy+HQhAzhTYmC2g6R1VYEXgmK9ppxpN3GUHVSr1Th8+DA+/vhjGAwGqNVq3Hzzzdi1a5co98XDbxWabljsww8/RENDA7q7u4W2q0ceeQQ33HADHnjgAcTExIh6P2JCAnCOwn9ANzc3Izs7G52dnaIHeT6Q2w97WJeWxBr2cBonS8DmiREMvfr/wOo1Xr2dHTt2uCT++F6p9PR0LFy40KvP3XRB3ZEJNb8nNSsrCwaDAUePHoXZbLZZUceXXrxhJ0Fu/s7j7GvG2l5IzNjAb/qRyWQoKSk5q8w1nQAUe9jDYrEIw1PTTvp6yHe+8x185ztTVYOWlhbcdttt+OKLLzBR+Q4mvnhT6M1jjZPgxgbQ/+LdMPa3TP0wIwU4C5YuXYojR47MOhTGD3TFxMQgNzcXBoNB2Jx05swZAFPP4cKFCxEdHY24uDj09PQIP3/llVfi/fffh6Hry77GA/+ANDYFoakLAcAl2zFXDpKeZgfdeX3KZDIkJSXhl7/8JXp7eyGRSLB8+fJp/XC9yfHjx5Gfn2/Tc3/ZZZfBYDCgoqICF13kYN9zgEAC0I+4WwJmWRYNDQ0YGhrC6tWrERoaivb2dtHvTyKRCOuTEhMTsWzZMiEQ+LpZmMeZErBxuBNDr/4WFt0YigoLcOTIEYffx1uPjIyMYHh4GGNjY4iKihLW04m9fk2lUqGmpgY5OTl+WUXmjAm1NYsXL4ZMJsPExASUSiX6+vrQ3NyMqKgoQQyK9RxpNBpy8xcZawEo1hYItVqNqqoqpKSkYOnSpQ5jwHS7gMXM/FlP+q5du9YnvVaLFi3C/v37AUxlQH/+85/jlVdewejpqTYQzqiHUaOCRCLBD3/4Qzz00EMePV5oaCjS09Mxb9481NfXQ6VSISEhAd3d3Th9+jTi4+OF7GBERATKy8uFn927dy9uuukmGMYGoZsYAeCaALTGlYOkO4MkYmwCWblyJX7yk5+4fQ1PGBgYOGsXd1xcHEJCQjAwMOCXe3IWEoBzDN5qgWVZlJSUIDw8HHq93iulHovFgqamJuTl5SErK8vn/X6OmBLNM1jTdNZiqHxqA8eNN1w/Yw8Gb7AcFRWF7OxsmEwmQQxWVlZCIpEIYtBTg+WhoSHU1dVh8eLFSE9Pd/s6YmEd1K0b8lmWxcjICBiGEURhZGQkoqKikJOTA6PRKNjM1NTUgGEYm+ygu0KDJvnEh/8gFmsbSE9PDxobG7Fo0SJkZmZOGwOsBaA3hj34SV+FQoHly5f75SAqk8nw6KOP4tFHHwUA/O9//0Nubi7Wrl0r6uNYLBbU1tZCr9dj/fr1Qobc+uDa0tIi7FVPTEyEQqHArl27hFKoXq/H66+/LmQyPcXZg6SzgySeZqgnJyddjh333nuvUNqdjpMnT2L16tVOXc/Ra9qVLVr+ggTgHGJsbAyVlZVISEjA8uXLhVOT9clMjGDIcRza2tpgMBiwYMECZGdni1q68QSGYYSeFnu0DYcw8s5UQH72maddDni8hcq8efPAsixGR0cxMjKC06dPY3JyUjhxJyUlndVQPRN9fX1obGzEihUrnF7F50usSzjDw8Nobm7G0qVLIZfLHQZ1b6yoo32ezuPKcyTGIAhvUt7b2+vU7nJeAHpj2MOVSV9f8q1vfUv0a5pMJmE14erVq20OV9Z71U0mk7B2zXpveFJSEhISEhAWFiaa+LPH+iBp3S/uis2MpxlAvnrgCrfffjuuvvrqGb/H2SpNamoqTpw4YfM1tVoNk8l0VmYw0CABOEfo7e1FQ0MDFi5ciOzsbJvAZ13q8XQNmPWwR3R0tDDsEQjiD5gKJPblJY7jMH7idYwenlrpVVFRgSVLlnj0OBKJBPHx8TZDEtYn7sjISEEMxsbGTvu8dHZ2oq2tDUVFRTb2DoHI0NAQTp06hfz8fCFwzWZCLdaKOsoAegdPBaDJZEJNTQ0mJyexfv16p/5GvAAUO27wk75Lly71yON0LsBXekJCQlBQUDCjQJLL5Q73qnd2dqK+vh4xMTHCVLE3V6bxws46OzjdNiPr7KCnGUB3Ngjx2VIxKCkpwQMPPID+/n5hAv3DDz9EaGgoiouLRXkMb0EC0I8480ZkWRYtLS3o6elBYWEhkpKSzvoePsB6etLX6/WoqqoCwzBYt24damtroVaroVAoEBoa6nfxJ2QTrDKAHGuB6qNnoal6D8BUhkCsHcvW2J+4eTsC/oRuXSqWy+WCRUZvby+Ki4s99mX0NoODg6ivrz8rS+mKCbUnK+q87eVlz5kzZ3D//ffjwIEDGBgYQFpaGr7zne/gnnvuCXjvLlfwRADy0+oRERFYv3690+V9vuysUqkQFxcnyqRva2srenp65sRBylMmJydRUVGB2NhYl0vcjvaq84MkHR0dgrUKH6u8afbuqFTs6CDJvz7drWB5+/DY1dUFlUqFrq4uWCwWIeYvXLgQUVFR2LRpE5YtW4Zrr70WDz/8MFQqFX7605/i5ptvDugJYIAEYEBjNBpRU1MDg8GAkpKSGV/knp707cvLHMchLS0NXV1dOHLkCGJjY4WVbP7I1PBN39Y9gKxRj5G3HsJk20kwDAONxrsTvzxyuRypqalCGXRsbAzDw8Noa2vDqVOnoFAowLIsJicnvTadKCb9/f1obGzEypUrZz0VuzIdaL+ijs8OOlpRp9PpfPo8NTU1gWVZPPvss1i4cCHq6upw8803Q6vV4i9/+YvP7sMdfFEC5j3p0tPTsXjxYqcfk2VZhIaGIjk5GadOnQIAIW4kJCS4LDisJ33Xrl0b8O8lT9FoNKisrERycrJLz/t0hIWFYf78+Zg/fz5YloVarRbaPAwGg80giSttLa4y3UGyp6cHLMtCLpcLgtAVE2reH9Cbh8ff/e53eOGFF4T/XVRUBAA4ePAgNm7cCKlUinfffRc//OEPsWHDBhsj6ECH4cRwIibcwmw2TxucJyYmUFlZiejoaKxcuXLW0u7BgwexatUqtzJNvJP/woULHQ576PV6DA8PY3h4GCqVChEREUJQn6n8KRZarRZVVVWIjY3F1772NZhi5iP5yt9i6LX/B+NQByLCwzA8POzVe3AWrVaL2tpaTE5OgmVZhIeHC+UXhULhl4b1mejr60NTUxMKCgpm7e2aDfvpQOveL+v+H+sVdUqlEnv37sU777yDuLg47NmzBwsXLhTjV3OZhx9+GE8//bRXJurFxlm7ixMnTmD+/PlODx5xHIeuri60tLRg2bJlLv2c9bAHHxNGR0eF2KHX6wWT46SkpFktfwwGgzBoVFBQcE5lZh3Br9f0RX+jtQPCyMgIRkdHhbaWxMREn3h/dnV1oa2tDYWFhYiJibGJHTyz2cxwHIfc3Fy88847WLdunVfv91yEMoB+ZLo3+ODgIGpra5Gdne20V9xs7vuO4DgO7e3taG9vR0FBAZKSkmxOYfzjhoWFISMjAxkZGTCbzVAqlRgeHkZVVRUkEokQ0L1RUlCr1UImYuHChVO/p1aF/hfvgmVChYW5C1xav+ZNzGYzmpqaIJFIcN5550EikUClUmF4eBinTp0Cy7JCgE1MTBTNmsNdenp60NLSgsLCQlHKaq5MB8bFxQkr6uLi4lBTU4MzZ85g+fLluOGGG/Dss896fD+uMjY2NmfKi85aSLmyDs7eXspZU+XpzIIBCH/nvLw8aLVaDA8PC4cOvjeNryrYtwTwhz7rgbdzFX6AY+HChcjMzPT64zlyQODbWmpqasBxnFdjFS/+rJMW7trMaLVaWiHpJpQB9CMWi8XGosF6tdKKFSuQmprq9LWOHDmCxYsXO+wRnO6x6+rqoFarsWrVKkRFRbls88JPyvInfIPBIEyfJSUleXxiHxgYQH19PRYvXoz58+cDAGJjY6eeM4kUO7dvw3//+1+PHkMsrPf6FhQUnJWxtW7OHhkZgUajEcrqiYmJPp+A7e7uRmtrKwoLCz3enuAMs2UHf/WrX0EikeChhx6CUqlEVlaW1+/JGv7D6JFHHsH3vvc9nz62OxiNRqcEYHV1NWJjY5GTkzPr9aqqqmCxWFBUVOR0OdBa5Lvi/2YwGGyqCmFhYULc4AfRMjIykJub6/feY2/Dxzl31th5A76thR9602q1wkYSR2LdVRyJv+mwP0jaZwf5Q/WZM2d8HjPOBSgDGCCYzWbU1tZiYmLirNVKzuBKr4/BYEBlZSUYhhGau93x6bKflNVoNBgeHhb8wtztG+Q4Dp2dnWhvb8fKlSttRO1UAGDwwP2/x5133un0Nb2J9V7fFStWOPwQnK45m+8dDA0NFcRgXFycV8sv/HNbVFQEhULhtcexxj47aD8d+NlnnyEtLU3ISriLO/5efX19uPzyy3HVVVfNCfHnCs7EBb7dJDY2Fvn5+U47CXiy2SM0NFToTbNYLDZVBYvFAoVCgZiYGI8tQgId3tS5oKBAtKlUT2EYBgqFAgqF4qxY1d7ejpCQEEEMxsXFufT3cUX8AbObUPPtGiaTyY3flKAMoB9hWRYmk0nocQsNDXW71+Xzzz9Henr6rD07/Coyfg8tAOFUJabo4IPG0NCQS32DvOfY4OAgioqKAn6Kip+UTEhIwNKlS906GVssFqFUPDIyArPZLGRSExMTRe19OnPmDDo6OtzuFxUblmXxyCOP4NFHH8VTTz2Fb3/72x5dj+9pmons7GxhUryvrw8XXXQR1q1bh927dwdcj+Z0mEymafftWtPQ0ACpVIrFixc7/He+3SQnJ8elbJvYa9346kd3d7cgOtzpG5wrcByHjo4OdHZ2+vQg5ikWi0UYJBkZGYHRaBT+PomJiTM6MPAHT7Fiz+DgIC6//HLExsbi008/PWdeG76EBKAfYVkW/f39qKmpQVpaGhYvXuz2B1BFRQWSkpJm7B/hg31ubi6ys7OFIO5tfz/rvsHh4WFhw0ZycrJN3yBf+tHpdC6VofyFN/b6Wi+EHxkZwcTEhGg+Xu3t7ejq6kJxcbHLGWZvwHEc/vrXv+Lhhx/Ghx9+6LTrvlj09vbioosuQnFxMV566aU5lWlyVgA2NzfDYrEIhz0e6/5fV9pN+PK9mFuBLBYL6uvrMT4+jqKiIqFawA8q8HFjfHx8xr7BuQLHcWhpacHAwABWrVoVEO9Fd7D++4yMjGBsbAyRkZFCrLI+6Ist/kZGRrBlyxYsW7YM//3vfz32vw1WSAD6kaGhIXz++ecuTdtNR1VVFeLi4hy6l1sH+5UrVyI5Odlv5s7T9Q3GxcWhr68PcrkcBQUFfh+QmA1f7fXlF8IPDw9DqVS6VX7hN7vwnoSB0DDNcRyeeeYZ3H///Xj//fexfv16nz5+X18fLrzwQmRmZuLFF1+0eR5d6b31F84KwNbWVuh0OqxcuVL4mn3/r7NZ9pmGPdzFaDQKvmqFhYUzZrvt+wZ5u5mkpCQoFIo5IQb5QZvR0VGsWrUKERER/r4l0eBXafL/MQwjlLWHhoZE80NVqVTYtm0bcnJy8Morr5zz0+HehASgH+HT6WKcAGtraxEZGYnc3NyzHsPTYQ9vwZ8ge3t70d3dDY7jEBsbKwT1QPX88tdeX/71wgtCo9FoUyp2VALhS2t9fX1YvXp1QDynHMfhueeewz333IP33nsP5513ns/vYffu3fjud7/r8N/mQkicyULKmo6ODoyOjgreZXy/qkQiQVFRkdNlM/u1bmKUyjUaDaqrqxETE+PypK913yBvAcVXFdzxG/QF1nt9V61adU6XLHkj+La2NqjVaqGvkJ8qdjd7OzY2hu3btyMlJQV79uw5p59DX0AC0I9wHAej0SjKterr6yGXy7Fo0SLha/ywBzBlXhkSEmLj0xUIJ2Zrm5eMjAy3+gZ9SW9vL5qbm5Gfn+/Xvb4cx0Gj0QhicHx8HNHR0UJ2kD9UtLS0YHBwEMXFxQEj/v7973/jZz/7Gd5++21s3LjR37c0J3FWAHZ1dQm2LrzPXGJioksbJsTu9wO+yqCLMenLcZxHfoO+wHqvb2FhYcBXOMSAL/sWFxdDLpcLmUE+e2tdyXDmtTgxMYGdO3ciJiYGb731llc2PgUbJAD9iJgCsKmpCRzHYenSpQC+6k+Li4vD8uXLhccDxB328AR+/diiRYsEmxce675B63KCfd+gL+EHKAoKCgLOL85oNNqUX2QyGWQyGYxGY0D1/L3yyiv48Y9/jD179mDTpk3+vqU5i7MCsLe3Fz09PcjIyEB9fT3y8vKQlZXl0rCH9e5nMcRfb28vmpqasGTJEq9k0LVaLYaGhgKmb5A/iIeFhWHlypUBmZ0UGz5WFhcXn9Vi4GjozXojiSNhp9VqccUVV0Aul+Ptt98OiMPsuQAJQD/jrKP/bJw+fRoGgwH5+fnCsMeCBQuQk5Pjs2EPZ7G2eVmxYsWs3oXe9ht05n75vb6u9Ez5C4vFgpqaGoyOjkIulwuTevyJ218n5z179uD73/8+Xn31VWzZssUv93CuYO8hOh38mj+WZQWzd2fwxrAH34va3d2NlStXerx5xhn4Hlq+quDrvkFP9vrOVWYSf/Y4qmRERUUJbS3R0dHQ6/W46qqrYLFY8N577wVED/O5AglAPyOWAGxra4NGo0F0dDTa2tqwYsUKpKSk+G3YYzo8tXnh+wb5E/7ExIRX9xRzHIfGxkYolUqsWrUq4E+eHMehvr4eY2NjKC4uRmhoKHQ6nSCex8bGEBUVJYjBmJgYn7wu3n77bdx4443473//i507d3r98c51nBGAZrMZJ0+exPj4ODZs2OD0B6c3hj34Sd+xsTEUFRX55UPc132DGo0GFRUVSElJEWWv71zAFfHnCOtKxsDAAG677TaYzWbExsbiwIEDZ1WKCM8gAehnnHX0nw3e4oPjOMFaIFCGPXi8YfPirt+gM7Asi1OnTkGr1WLVqlUB33PCsizq6+sxMTEhiD977Cf1eEuexMREJCQkeMVOYd++fbjuuuvwwgsv4Otf/7ro1w9GZhOAOp1OGPYwGAy46KKLnLquN4Y9XJn09RXe7hv05V7fQMFT8WePRqPBli1b0N3djbi4OLS3t6Ours6mz53wDBKAfkYMAWgwGHDixAkYjUacd955ATnsYTAYUF1dDalU6jWbl+n6BpOSklw+4ZvNZtTU1MBsNgsDNIEMy7Koq6uDVqtFcXGxU/fLT+rxz5dOp7MpFYsh0D/++GN861vfwj/+8Q9861vf8vh6xBS8ibwjlEolqqurkZaWhrS0NHzxxRf42te+Nus1+cyfmO0ivMm9O5O+vkTMvkF+r29eXh4yMjK8eNeBw5kzZ3DmzBnRWmRMJhOuu+46dHZ24uOPP0ZCQgLa29uRnZ0dFGV0X0EC0M94KgAnJiZQUVGB0NBQMAyD1atX2+xZDQTxx38I+LIPxpO+wdn2+gYaLMva2Eu4K1b5UvHIyAjUarXH2dRPPvkEV111Ff72t7/huuuuC4jX4rnCdAKwq6sLzc3NWLJkCTIyMqDVanH06NFZB268Oek7f/580YzSfYGjvsGkpCQkJycjNjZ2xvgVaHt9fYHY4s9sNuPGG29EU1MTDh486HTfKuE6JAD9jLOGro4YGhoSzIgjIyPR2tqKNWvWQCaTBUywtbZ58deHgLVj/dDQ0Ix9g87s9Q0keG8xo9GIVatWiZZZNZlMNpN6AGxKxbM9ztGjR3HllVfikUcewfe+972AeT2eK9gLQJZl0dTUhP7+fhQVFQlT6nq9HocOHcJll1027d/Aei+zWOKvr68PjY2NXpv09RWu9A3ye31XrlwZMHt9vY3Y4s9iseDWW29FVVUVDh48OCdM2ecyJAD9jDsCkOM4nDlzBq2trcKwB58JtFgswmnV34aoM9m8+BPr5eYqlQphYWFITk5GVFQUTp8+jcTERLf3+voSftqXL1N7y1uM4zibUrFWq4VCoRAm9ewHY06cOIGysjI88MADuO222wL+eZyLWAtAvseOPwRYb5cwmUz4+OOPcckll5yVyeYnfcVsF/HHpK+vmKlvUKfTobe3d07t9fUUfpexWDZTFosFP/rRj3D06FEcOnRoTh8c5gokAP2MqwKQb/QfGRk5a9iDYRiMj49jeHgYg4ODMBgMQj9XUlKSz8xHXbV58Sd832BfX58wFJGamupW36AvsVgsqK6uBsuyKCoq8mmZenJy0kZAh4eHIykpCd3d3YiMjMSVV16J3/3ud7jzzjtJ/HkJ3kNUo9GgsrISUVFRWLly5VmvA5Zl8eGHH2Ljxo02Q0zeGPawWCzCmjN/Tfr6Er5vsKurC0ajEVFRUULsmKt7ip1FbPHHsizuuusufPzxxzh48CCysrJEuEtiNgK7uSkIcCVI8L1pFosF69evR2hoqHB650s3CoUCCoUCCxcutAlQDQ0NiIuLQ3JyMpKTk73mjm9t87J69eqA98yTyWSQy+UYHR3FwoULERsbi+HhYbS0tPjcb9BZzGYzqqqqwDAMVq1a5XORGh4ejoyMDGRkZMBsNkOlUqGjowPf/va3MTExIfjN6XS6gLfNmcsMDw+jpqYGmZmZyMvLcxhL+LhgbRottr8fMBWbampqwLIs1q5dGxDbN7xNeHg4tFotpFIp1qxZI7SZtLe3u9Q3ONfwhvj7xS9+gQ8++ACHDh0i8edDKAPoZ5x19J+YmEBlZSViY2ORn58vBHW+bDNbEJ+cnMTQ0BCGhoYwNjaGmJgYQQyKtZDcGzYv3obf67tkyRKkpaUJX3elb9CXmEwmVFVVQSqVorCwMGAylA0NDbjssstwxRVXIDU1Fe+++y727duHlJQUf9/aOYlWq8WhQ4ewfPnyWYcNPvroI6xduxYxMTFeGfbgh7yio6ORn58fMK9JbzLTXt/p+gb5qkKgD5XNhDfE329+8xu89tprOHToEPLy8kS4S8JZSAD6GWcE4NDQEGpra5GdnY0FCxbYlHzdOVkaDAZB2KhUKkRGRgpiMCoqyq0PBV/YvIiNK3t9p+sb9OWeYpPJhMrKSoSEhATUSqmmpiZs3rwZN998M+6///5zuvQVSExMTDiVlT548CAKCwsRGxsreuYvEIa8fI0re335/lneYiYQ9xQ7i9jij+M4/P73v8cLL7yAQ4cOYcmSJSLcJeEKJAD9zEwC0HrYIz8/H6mpqaKf3nljYL7BPyQkRChdOLsqyR82L57iyV5fMf0GncVoNNrsEw2U57i1tRWXX345vvOd7+DBBx8MmPsKBpy1kPrkk0+wdOlSYThBLHsoftJ38eLFATXk5U083etrXVUIhD3FzuIN8ffggw/imWeewcGDB5Gfny/CXRKuQgLQz0zn6G8/7BETE+P1tW78km7+tMowjCAG4+PjHX64z7UMgNh7fX2xp9hoNKKiogIREREBZU3T0dGBzZs3Y9euXXjssccC5r6CBWcEIMdxOHbsGOLj45GVlYWQkBBRJn35zUPn2qTvTPB7fRUKBZYtW+bx6533GxweHoZSqQzYvkFviL/HHnsMjz32GD7++GMUFhZ6fpOEW5AA9DOOBKD1sEdRUZHNsIevzJ15YcP3DVosFhv/K5lMFrA2L9Ph7b2+jvoG+V5Ld/sGDQYDKioqEB0dHVDZ1a6uLlx++eXYvHkznnzyyYC5r2BiNgHI9/sNDAygq6sLExMTHg+C8QfTYJn05eF7sL211zdQ+wZ5oS+m+Pvb3/6Ghx56CB988AHWrFkjwl0S7kIC0M/YC0B+gXhMTAxWrFgBhmFEXcruDhzHYXx8XMgMTk5OIjw8HDqdzqkm9EDAH3t9+V5Ld/sG9Xo9KioqhNJ6oGRX+/r6cPnll2Pjxo34+9//TuLPT8wkAB0Ne9gPgsXGxgpi0JmBLetJ38LCwjnVv+YJ/F7frKws5OTkeP19GCh9g94Qf3//+99x3333Yd++fSgpKRHhLglPIAHoZ6wNXXlbh6ysLOTm5oJlWVF9usSA4zjU1dVheHgYYWFh0Ol0UCgUwgeJL4SVqwTCXl/7vkEAQkB31DfIl5vi4+MDypR6YGAAmzdvxrp16/D8888HzCBKMDKdh6gzmz3sB8GioqKQnJyMlJQUh5lqrVaL6upqREVFBc2kLxAYe3390TfoDfG3e/du/OpXv8I777yDCy64QIS7JDyFBKCfYVkWRqMRnZ2dOH36tJBR83a/nzs4snnR6/VCVmF0dBTR0dGCGAwED7hA3OvLsqzNCd++b9BiseCLL75AYmIilixZEjB//+HhYWzZsgUrV67Ev//974B4LoMZewHo7mYPk8kkCAylUonw8HDhPRwdHY3R0VHU1NQgLS1tWr/Bc5H+/n40NDRg+fLlAbOSzGg0ClUF677BpKQkKBQKURIF3hB///nPf/CTn/wEb731Fi666CKPr0mIAwlAP8Nnp4aHh1FUVITY2NiAFH/O2LzwwYnPKth/kPj6d+H3+vJZi0DJolpj3Tc4PDyMsbExMAyD2NhYLF26NGB6rJRKJbZu3Yq8vDy8/PLLc8Lm51zHWgDab/Zwt12Ez1QPDg4Km3FMJhMyMzOxaNGigIlH3mYu7PX1Rt8gL/5Wr14tSuzhOA6vvfYabr/9dpSXl+Oyyy7z+JqEeJAA9DMqlQq1tbVCT43YPl1i4I7Ni/0HiVwuFybc4uLivP67abVaVFZWIiEhIaBKqDOh1Wpx8uRJQSyr1WqEhYXZTAb64/cYHR3Ftm3bkJ6ejvLy8oDZiBLs8BZS1v1+7nqD2sNPy3d1dUGhUGBiYgIMwwgHuri4uIA8UHmK9YTzXNrra72ve2hoyK2+QX6Hs1jiDwD27t2LW2+9FS+//DK2bdsmyjUJ8SAB6Gc4joNerxfWMwH+G/ZwhBg2LyzLCvYyQ0NDAGBjLyN2P9HY2Biqqqowf/585ObmBsxzORP88E96erpwz672DXqD8fFx7Ny5E3FxcXjjjTcCssczWDGbzYIIFPPQyLIsGhoaoFarUVhYKOwbV6vVwnuY4zivvof9gfUay+Li4oDJvruDfd8g35ozXd+gN8TfO++8g+9+97t46aWXsGvXLlGuSYgLCUA/MzExAY7jhNN0IJ2qvWHzwnGcjb2MyWQS7GUSExM97itTqVSoqanBggUL5sxOyYmJCVRUVCAzMxMLFixw+D2z9Q16Iyun0Wiwa9cuhIWF4Z133pkTq/2CCb4HjI8fYhnDV1dX21hQ2WM9pTo4OCj6e9gf8PY2Y2NjKC4uPqde67P1DXZ0dIgu/t5//31cd911eO655/CNb3xDlGvOxieffIKHH34YFRUV6O/vx969e1FWVib8O8dxuO+++/D3v/8darUa69atw5NPPonly5f75P4CERKAfuYXv/gFXnrpJezYsQM7d+5EaWmp3wMox3Ho7OxEe3s7VqxYgaSkJK89zsTEhCAGdTqdIGqSk5NdFjVDQ0M4deoUli5darPXN5AZHx9HZWWlYDHhDPZ9g/xkoCd+g/bodDpceeWVAIB33313TmdDzkX0ej2Sk5NRUFCAsrIy7NixA2lpaR6JQJ1Oh6qqKkRGRmLFihVOZfXs38OTk5NISEgQXotzoVd0pr2+5xr2fYN8C0FeXh7S09NF+ew5cOAArr76ajz77LO45pprfFaB2bdvH44ePYpVq1bhyiuvPEsAPvTQQ3jggQewe/duLFq0CH/4wx/wySefoLm5WZRhl7kICUA/YzAY8NFHH6G8vBxvvfUWpFIptm3bhl27duH888/3eQC1LoMUFRV5vCnDFezLFq74lLmy1zdQGBsbQ2VlpcfZSkd+g570DU5OTuKb3/wmJicnsW/fPp++Bgjn6ezsxJ49e7Bnzx4cP34ca9aswY4dO1BWVobMzEyX/u58q4enk75arVbIDGo0Go+Np72NK3t9zzVaW1vR3d2N5ORkjI6OiuI3+Mknn+Cqq67CX//6V9xwww1+a79hGMZGAHIch7S0NNx55534xS9+AWAqbqakpOChhx7Crbfe6pf79DckAAMIk8mEQ4cO4fXXX8ebb74Jk8mEbdu2oaysDBs3bvR6AHVk8+Iv9Hq9IAbVarXgU8bby1gHFk/2+voL3lw2NzcXmZmZol3X075Bg8GAa665BkqlEh9++OGcaYIPZjiOQ19fH/bu3Yvy8nIcOXIEK1euRFlZGXbu3DlrHyxvd7Jo0SJRve48NZ72Np7u9Z3LtLW1oaenx6bX0d6NYLa+QXuOHTuGK664Ag8//DBuueUWv/Ze2wvA9vZ25ObmorKyEkVFRcL37dy5EwqFAi+88IKf7tS/kAAMUMxmM44cOYLXX38db7zxBjQaDbZs2YKysjJ87WtfEz2A8n55M9m8+At7nzLrjRpDQ0Po6+sTZa+vr1CpVKiurvb6Cj1HfYPx8fFCr5b9gcJoNOLaa69Fb28vPvroozkjpomv4DgOQ0NDeOONN1BeXo5Dhw5hyZIlKCsrQ1lZmc0aM47j0NHRgTNnznjd7sRgMAhikD/QpaSk+M0vVKfTobKyUrS9vnMJR+LPHlf9Bj///HOUlZXhD3/4A2677Ta/D97ZC8Bjx45hw4YN6O3ttWkPuuWWW9DZ2YkPPvjAT3fqX0gAzgEsFguOHz+O8vJy7N27FyqVCpdddhnKysqwadMmjwOoOzYv/sJisWBkZEQoM3Ech9TUVKSlpc0JawqlUomamhosXrwY6enpPnvc6foG+VJPYmIibrrpJpw+fRoHDhwIWO8zwnk4joNKpcKbb76J8vJyfPzxx1iwYAF27tyJLVu24Pnnn8eWLVtw/vnn+7QHajbjaW+LB36vb2pqalB5G/IWN7OJP3um8xuMi4tDREQEOjo6sH37dvz2t7/FXXfdFRDP53QCsK+vz2Z16c0334zu7m68//77frpT/0ICcI7BsixOnjwpiMG+vj5ceuml2LlzJzZv3uxyFkwMmxdfY7FYUFdXB41GgwULFghTxRzHCdOIvrJJcQV+rdTSpUv9vj/Zum/wxhtvRE9PD8LCwvD8889j69atAffcEZ4zOjqKt99+Gy+//DLef/99SKVS3HDDDbjuuutQWFjol8OT2WwWDnQjIyMICQkRxKA3fC99vdc3UHBX/Dm6Du83ePDgQfz0pz8FwzDYtm0bnnzyyYAZvqMSsHOQAJzDsCyLmpoavP7669izZw86OjpwySWXYMeOHdi6dSsUCsWMAc4bNi/eht+cYrFYUFhYKEwKW1tTDA0NwWAw2FhT+LukPTw8jFOnTmHZsmUBs1YKmBLTN998Mw4fPowLLrgABw4cwD333IM777zTp/cxm4UDIQ4WiwXFxcVIT0/HVVddhffeew/79u1DYmKiMECyZs0av4hBi8Vi4xcqkUhENZ4OhL2+/oDjOLS1taG3t1dUf8OGhgZceumlKC4uhsFgEDZaBcKwz3RDIHfddRd+/vOfA5gqcycnJ9MQiL9vgvAcjuNQX1+P119/HXv37kVjYyM2btyIsrIybNu2DQkJCTa9P76weREbZ/f6chwHjUYjfJBotVqh983d6TZPGBwcRF1dHVasWBFQE8osy+KOO+7AoUOHcPDgQWRmZsJiscBoNPq8SX82CwdCPCoqKlBYWChkeXU6Hd5//32Ul5fj3XffRXR0NLZv346ysjKUlJT4JRsstvF0IO719QXeEn/Nzc3YvHkzbrzxRjzwwANgGAYajcavdlEajQatra0AgKKiIjz66KO46KKLEB8fj8zMTDz00EP405/+hOeffx55eXn44x//iEOHDpENjL9vghAXjuPQ0tKC8vJy7NmzBzU1NTjvvPNQVlaGLVu24Nlnn8X555+PdevWzZnBCb1ej4qKCkRHR7u811en0wmDEPw0Iv9hEhER4cW7BgYGBlBfX4+VK1cGlNBmWRY/+9nPsG/fPhw8eNBpD0JfYH96J3yHXq/H/v37BVuqkJAQbN++Hbt27cKGDRv8kknns/uDg4M25vEpKSlO7bydC3t9vYG1+Fu9erVowzatra3YvHkzvvWtb+HPf/5zwPRdHzp0CBdddNFZX7/++uuxe/duwQj62WeftTGCzs/P98PdBgYkAM9x+Em/8vJyvPbaazh58iRCQ0Nx11134cYbb/TYPNYXiLnXl+99GxoagkqlQmRkpFBmioqKEvW56O/vR2NjY8B98LAsi1//+tfYu3cvDh48iIULF/r7lmwgARgYGI1GHDx4ULClYllW8Ci98MIL/bIT2hXj6bm611cMvCX+zpw5g8svvxw7d+7EE088ETDij3APEoBBgtlsxvnnnw8A2L59O95//30cO3YMq1evxs6dO7Fz505kZWUFnBj05l5fk8lk04AeGhoqWgM6b0xdUFCAhIQE0e7ZUziOw7333ouXXnoJhw4dwuLFi/19S2dBAjDwMJvN+OSTTwRbqsnJSWzduhVlZWW4+OKL/bYj2rrVQ6PR2NgcnTlz5pzY6+sq3hJ/PT09uOyyy3DZZZfhqaeeIvF3DkACMIjYt28fLr74YmF/KN9sX15ejk8//RQrV64UxGAgTAT7cq8vb3XAi0GGYdxuQO/p6UFLSwsKCwsDykuP4zj86U9/wj/+8Q8cOHAgYHdgkgAMbCwWC44ePSo4EYyNjQlZoU2bNnm9rWI6eOPpwcFBjI2NQSKRICsrC+np6QFhPO0LvCX++vv7cdlll+GCCy7AP/7xD3IJOEcgAUiA4ziMjIwIYvDgwYNYsmQJdu7cibKyMixZssTnYpCfUF6yZInPrQX4BnS+VGyxWAQT1MTExBmDX1dXF9ra2gKu5MRxHB555BH89a9/xccff4yCggJ/39K0kACcO7AsixMnTghicHBwEJdeeinKyspw+eWX+7y5nt/rOzk5iXnz5kGlUkGtVgtbLfxlPO0LvCX+BgcHsXnzZqxZswa7d+8m8XcOQQKQsIHjOKjVarz55pvYs2cP9u/fj5ycHOzcuRO7du3yiVE0Xz4NhAlljuMwPj4ulJn0ev20PUf8ZPWqVasQGxvrx7u2heM4/PWvf8XDDz+M/fv3o7i42N+3NCMkAOcmLMuiqqpKsKXq6urCJZdcIhhPe8PXz5rp9vryxtODg4NQqVSC8XRKSorofb/+guM4tLa2oq+vT1TxNzIygi1btmD58uX4z3/+M+vADTG3IAFIzMjY2Bjefvtt7NmzBx988AHmzZsniEFvmMfye30LCwsRFxcn6rU9hd+mYd1zxC+71+v16O3tDbiVdBzH4ZlnnsEf/vAHvP/++1i3bp2/b8khs1k4EHMLjuNQV1eH1157DXv37kVLSwsuuugilJWVYevWrYiPjxdVeDm719fXxtO+wFviT6VSYevWrViwYAFeffVVv3upEuJDApBwGo1Gg/feew/l5eV47733kJCQYGMe60lpgOM4nD59Gv39/SgqKgooETUdfM9RV1cX9Ho9oqKiMG/ePGF5ur/hOA7PPfccfvOb3+Ddd9/Feeed5+9bmpbZLByIuQvHcWhqahJsqU6dOoULLrgAZWVl2L59O5KSkjwSXu7u9eWNpwcHBzE8PAypVCqIQUf7bgMRb4m/0dFRbN++HfPmzcOePXv8MvFNeB8SgIRb6HQ6fPDBBygvL8c777yDqKgo7NixAzt37kRJSYlLpQKWZdHY2AiVSoVVq1YFhHhyBuuem5UrVwq7dpVKJSIiIny639TRvf373//Gz3/+c7z11lvYuHGjTx+fIBzBv2d4MVhRUYHS0lKUlZVhx44dmDdvnkvvFbH2+s5kPJ2QkBCQYpAXf/39/SguLhYtbo6Pj6OsrAyxsbF48803/TbhTXgfEoCEx+j1enz00UeCeaxcLhf8ws4777wZSwf8Xl+tVotVq1bNmWDDZywHBgbOCr72ZSa5XG6TWfC2GOQ4Dq+88gp+/OMf44033sAll1zi1ccjCHfgNxLt2bMHe/bswWeffYa1a9cKVYWMjIwZ3yve2uvryHjaWgwGQh+ct8SfRqPBFVdcgZCQELz77rtBMz0drJAAJETFZDLZmMdaLBZs3boVu3btwsaNG21KCdZ7fYuKiuZMjwnHcWhubsbw8DCKi4tntL2w3m86PDwMhmFsVlp5I7NQXl6OH/zgB3j11VexZcsW0a9PEGLDcRz6+vqwZ88elJeX4+jRoygoKEBZWRl27tyJBQsW2Ag8fre2t/f6umI87Su8Jf50Oh2+/vWvg2VZvPfee0HlnRiskAAkvIbZbMann34qmMdqtVps3boVO3fuxLJly7B7926UlZWhoKBgzlgL8P1MIyMjWL16tUsnZJZlMTo6KohBV1daOcNbb72Fm266Cf/973+xc+dOj69HEL6G4zgMDg7ijTfeQHl5OQ4fPoylS5cKYvDo0aMIDQ3FJZdc4vO9vtMZT/tqx7i3xJ9er8c3v/lNaLVavP/++3OiB5vwHBKAhE+wWCw4duyYsJKuv78fycnJ+POf/4zNmzfPib4/juPQ0NAAtVqN4uJij8ojjjIL1h8m7jRdv/fee7j++uvxwgsv4Otf/7rb90YQgQLHcVCpVHjjjTcEJwKWZXHFFVfgF7/4BZYuXeq3/jxr4+nx8XHExsYiJSUFSUlJXimdztR24gkGgwHf/va3MTw8jP379weUfynhXUgAEj6lu7sbpaWlWLNmDXJycvDmm2+iv78fmzZtws6dO7F582afm8c6A8dxqK+vx9jYGIqLi0XvVbS2l5mYmIBCoRD6Bp15rI8++gjXXHMN/vGPf+Bb3/qWqPdGEIHAww8/jD/96U+4/fbbUVtbiw8++AAZGRmCYX1BQYHfxKBerxeM471hPG0t/lavXi3athWj0YjrrrsO3d3d+OijjwJqbSXhfUgAEj7FbDbj1Vdfxbe+9S0wDAOWZVFdXS2Yx3Z2duKSSy7Bjh07sHXr1oDw5mJZFnV1ddBoNCguLvZ6qUev1wticHR0dNYPk8OHD+Mb3/gGnnzySVx77bV+f74Iwht88cUXCA8PF1YYjo+P491338WePXuwb98+JCUlYceOHdi1axdWr17tNzFoNBoxMjKCwcFBwREgJSUFycnJbhlPe0v8mc1m3HjjjWhubsaBAwf8brpP+B4SgETAwJvHvv7669i7dy+am5uxceNGlJWVYdu2baKbxzoDy7I4deoUdDodiouLfe6HZf1hwm8xSEpKQlxcHOLj43H8+HFceeWVePTRR3HTTTeR+COCEr53rby8HO+++y5iY2Oxfft2lJWVYf369X7rMfbUeNqb4u/WW29FTU0NDhw44PNeSiIwIAFIBCT8pC3vF1ZbW4vzzz9fMI9NTk72uthhWRa1tbXQ6/VYtWqV381QzWYzlEolhoaG8NJLL+Gll16CVqvFD37wA/zlL3+ZM1PUBOFNJicnsX//fpSXl+Ptt99GaGgotm/fjl27dmHDhg1+s3GxWCzC+9cZ42lviT+LxYLbb78dx48fx6FDh3y+a50IHEgAEgEPx3Fob28XxOAXX3yB0tJS7Ny5Ezt27EBaWproYtBisaCmpgYmkwmrVq0KOHF1/Phx7NixAytXrkRHRwfi4+NRX1/vtwzgU089hYcffhj9/f1Yvnw5Hn/8cZx//vl+uReC4DEajThw4IBgSwUA27ZtQ1lZGS688EK/HepmM55mGAYtLS0YHBwUVfyxLIs777wTBw8exMGDBwNizSLFDv9BApCYU3Ach66uLsE89vjx41izZg127tyJnTt3IjMz02MRZLFYUF1dHbD+hDU1Ndi6dSt++ctf4mc/+xlYlsWZM2eQm5vrl/t55ZVXcO211+Kpp57Chg0b8Oyzz+Kf//wnGhoaAuIDhiCAqQz64cOHBVsqvV6Pbdu2YefOnbj44ov9ZkLPcZxgD8UbT4eGhsJkMqG4uFi0oTiWZfHzn/8c7777Lg4dOoScnBxRrusJFDv8CwlAYs7Cm8fu3bsX5eXlOHLkCAoKCgQxmJub67IYNJvNqK6uBsdxKCoqCgjXf2vq6+uxZcsW3HHHHbjnnnsCoudv3bp1WLVqFZ5++mnha7xv25/+9Cc/3hlBOMZiseDIkSMoLy/H3r17MT4+js2bN2Pnzp249NJLRcu4uQrLsqivr8fw8DBCQkJgMBiQkJCAlJQUJCYmun0YZVkW99xzD8rLy3Hw4EHk5eWJfOfuQbHDv5AAJM4JOI7D0NCQYB576NAhLF26VLCIWLx48axiyWw2o6qqChKJBIWFhQFnTt3U1ITNmzfjlltuwe9///uAEH9GoxERERF47bXXsGvXLuHrd9xxB6qrq3H48GE/3h1BzA7Lsvjss88EMTg0NIRNmzahrKwMl19+uc82YnAch5aWFgwNDQk+o9b2UNbG08nJyU6XrzmOw3333Yd///vfOHjwIJYsWeLl38Q5KHb4n8DbcE0QbsAwDFJSUnDrrbfigw8+QH9/P+644w5UVlYKvoP3338/6urqwLLsWT9vMplQWVkJqVQakOLv9OnT2LZtG66//nrcd999ASH+AGBkZAQWiwUpKSk2X09JScHAwICf7ir4eOCBB1BaWoqIiIhpjXy7urqwfft2REZGIjExET/+8Y9hNBp9e6MBiEQiQWlpKR555BG0trbi0KFDWLRoEf7whz8gOzsb3/zmN/G///0PY2Nj8Fa+xF78RUREgGEYREVFYcGCBVi/fj1KS0sRHx+Pvr4+fPLJJzh58iS6urqg1+tnvO6DDz6I3bt3Y//+/QEj/gCKHYEACUDinINhGCQkJODGG2/EO++8g4GBAfzqV79CU1MTNm7ciKKiIvy///f/UFlZCZZlMTQ0hEOHDkEulwfkWrqOjg5s27YN3/jGN/Dggw/6zd9sJuwFKcdxASNSgwGj0YirrroKP/jBDxz+O7+TW6vV4siRI3j55ZdRXl6On/zkJz6+08BGIpFg9erVePDBB9HU1ITjx4+jsLAQjz32GLKzs/H1r38dL774IlQqlWhi0JH4c0RERASys7Oxdu1anHfeeUhNTcXw8DCOHDmCEydOoKOjA1qt1ua6jz76KJ566il8+OGHyM/PF+V+xYZih/+gEjARVExMTOC9995DeXk59u3bh7i4OExMTKCkpAQvv/xywPX8dXV14fLLL8eWLVvwt7/9LeDEH5VxAovdu3fjzjvvxOjoqM3X9+3bh23btqG7u1uw/Xj55Zdxww03YGhoiHa/zgLHcWhsbBQ8Suvq6nDhhRcKHqVJSUluiRZr8efqbnEeo9EobCFRKpWQSqV45513wDAM/ve//+HDDz/EmjVrXL6ut6HY4X8C69OEILxMdHQ0vvnNb+LVV19FbW0tACAqKgpHjx7F8uXL8bOf/QxHjhyBxWLx850CfX192LZtGy699NKAFH8AEBISguLiYuzfv9/m6/v370dpaamf7oqw5/jx48jPz7fxfLvssstgMBhQUVHhxzubGzAMg2XLluF3v/sdKisr0dDQgEsuuQQvvvgi8vLysGXLFjzzzDPo6+tzOjMohvgDpt6D6enpKCoqwsaNG6FQKHDgwAE8/fTTiIyMxGuvvYahoSG3ru1NKHb4n8D7RCE8xpl+IGJqqOLiiy9GR0cHBgcH8dRTT0Gr1eLqq6/GokWLcMcdd+DQoUMwmUw+v7eBgQFs3boVGzZswDPPPBOQ4o/n7rvvxj//+U8899xzaGxsxF133YWuri58//vf9/etEV8yMDBwVq9VXFwcQkJCqN/KRRiGQV5eHn75y1/ixIkTOH36NHbs2IHy/9/e3cdUWf9/HH+d4QRyxWKnQFwJm6w0toanjWGLwOoUnQ7nsGamy8E/TG3ZiNhaYxG6tDvX1lBbLbrZ3NLwgGFCQWhK0ZoyTsvWzWrGaQ1EiFLUQOn6/tGP85s3KcqR63A+z8fmH1yyw9tNL5/nXJ/rcwUCuvXWW+V2u1VbW6tQKPSfMTi+0f1k4+9ccXFx6u7uVm9vr9ra2rR582YdOXIk6rayGse5w17Rdb0LETG+Hig3N1d1dXV2jxO1CgsLVVhYKEmaMWOGvF6vvF6vRkdHtXfvXu3YsUOlpaWyLEsej0fFxcVTsnns0aNH5fV6tXDhQtXV1UXdmsRzLV26VIODg1q3bp16e3uVlZWl5uZmzZ071+7RprWamhqtXbv2ot9z4MAB3XHHHRN6vQtdomS91eQ4HA6lp6fr6aefVkVFhX7//Xc1NDQoEAioqqpK2dnZ8vv98vl8ysjIkMPhCMff0aNHIxp/lmVp69atevbZZ9XU1KSCggJJks/ni8jrXw2cO+zFGsAY9l/rgTBxZ86c0f79+8Obx546dUoej0c+n0/33HNPxDePHRwclMfjUWZmprZt2xa179xx9Q0MDGhgYOCi35Oenn7W38H/+jdfXV2tjz76SN9880342NDQkJKTk7Vnz55wLCAyLMvSkSNHwnuU7tu3T7fddpuKiorU1dWlW265RVVVVRGNvw8//FBr1qxRQ0OD3G53RF4XsY1PAIGLmDFjhhYvXqzFixertrZWX375Zfjuyb/++ksPPPCAfD6f3G73pDeP/fPPP+Xz+ZSenq4PPviA+DOc0+mU0+mMyGvl5uZq/fr16u3t1ezZsyVJra2tio+Pl8vlisjPwP9zOBxKTU3V6tWrtWrVKg0ODmrnzp164YUX1NPTox9//FGJiYny+/2aP3/+pJd4NDY2as2aNdq+fTvxhwmL3oVFQJSJi4tTXl6eXn/9df3666/69NNPddNNN+m5555Tenq6HnvsMdXX1+v48eOX/drHjh2T3+9XSkqK6uvrbXtGKaanUCikYDCoUCgUfpRhMBjU8PCwJMntdmvBggVasWKFuru71d7ersrKSpWVlXEH8FXmcDjkdDrD+48Gg0FVV1fr0KFDysvLk8vlUk1NjYLB4AX3KL2UXbt2aeXKldq6das8Hk+kx0cM4xLwNHEl64G4BDw1/vnnH3V3d2vHjh1qaGhQKBTSvffeK5/PpwcffFBJSUkXXWc1PDys4uJiJSYmateuXRG7LARzlJaW6v333z/v+N69e5Wfny/p30h8/PHHtWfPHiUmJmr58uXauHGj4uPjp3haM42MjGhgYEBz5swJHzt27Jh2796tQCCgTz75RDfeeKOKiopUXFwsl8t1yU8GW1paVFJSonfffVdLliy52n8ExBgCcJqI5HogXD2WZenQoUOqr69XY2OjfvrpJxUUFMjv98vj8Sg5OfmsGDx58qQefvhhSVJzc7NmzZpl1+gAbHTixAm1tLQoEAioublZSUlJKioqkt/vV05Oznk3g7W3t2vZsmV66623tGzZMm7mwWUjAGMYAWgvy7L0ww8/KBAIqKGhQd9++63y8vLk9/vl9XrDexL+/fffamlp0bXXXmv3yACiwKlTp9Ta2qpAIKCPP/5YCQkJ8nq9Ki4u1qJFi9TZ2aklS5aotrZWJSUlxB+uCAEYg0KhkP744w81NTXp1VdfVUdHhyRp3rx5U/Zgc5zNsiz98ssv4Rjs6upSUlKS5syZo46ODiUlJdk9IoAoNDo6qs8++0yBQEBNTU06c+aMTp48qdraWpWVlRF/uGIEYAyayHog2MeyLPX09KiyslIvvfSS5s2bZ/dIAKaB06dPq76+Xh0dHdqyZQvxh0khAAEAAAzDNjCImC1btigjI0MJCQlyuVzhS8+YPniMIKYa5w3AHgQgImL79u0qLy9XVVWVuru7ddddd6mwsFChUMju0XAZxh8juHr1artHgQE4bwD24RIwIiInJ0cLFy7UG2+8ET42f/58+f1+vfjiizZOhivBHeSYCpw3APvwCSAmbXR0VF1dXec9gsjtdquzs9OmqQBEM84bgL0IQEzawMCAxsbGlJKSctbxlJQU9fX12TQVgGjGeQOwFwGIiDl3SwLLstimIArU1NTI4XBc9NfBgwftHhOG4rwB2GOG3QNg+nM6nYqLizvvXXt/f/957+4x9Z544gk9+uijF/2e9PT0qRkG+D+cNwB7EYCYtJkzZ8rlcqmtrU3FxcXh421tbfL5fDZOBunf/2idTqfdYwBn4bwB2ItLwIiIiooKvf3223rnnXf0/fff66mnnlIoFNKqVavsHg2XIRQKKRgMKhQKaWxsTMFgUMFgUMPDw3aPhhjEeSN6TWRP0FAoJK/Xq1mzZsnpdOrJJ5/U6Ojo1A6KK8YngIiIpUuXanBwUOvWrVNvb6+ysrLU3NysuXPn2j0aLkN1dfVZjxHMzs6WxGMEcXVw3ohe43uC5ubmqq6u7rzfHxsbk8fj0Q033KAvvvhCg4ODKikpkWVZqq2ttWFiXC72AQQAABf0X3uCtrS06KGHHtJvv/2mtLQ0SdK2bdtUWlqq/v5+XXfddTZMi8vBJWAAAHBZvvrqK2VlZYXjT5Luv/9+jYyMqKury8bJMFEEIGLK/v375fV6lZaWJofDoZ07d9o9EgDEnL6+vvPu1r7++us1c+ZM9nGcJghAxJQTJ07o9ttv16ZNm+weBQCiSqT3BL3Qfo3s4zh9cBMIYkphYaEKCwvtHgMAok4k9wRNTU3V119/fdaxoaEhnT59mn0cpwkCEAAAA0RyT9Dc3FytX79evb29mj17tiSptbVV8fHxcrlcEfkZuLq4BAwAwARcao2xZVmqqalRWlqaEhMTlZ+fr++++86eYSfpUnuCut1uLViwQCtWrFB3d7fa29tVWVmpsrIy7gCeJghAAAAm4FJrjF955RW99tpr2rRpkw4cOKDU1FTdd999On78+BRPOnnV1dXKzs7W888/r+HhYWVnZys7Ozu8RjAuLk67d+9WQkKC7rzzTj3yyCPy+/3auHGjzZNjotgHEDHL4XCosbFRfr/f7lEAxJhzzy+WZSktLU3l5eV65plnJEkjIyNKSUnRyy+/rJUrV9o4LXA+PgEEAGCSDh8+rL6+Prnd7vCx+Ph43X333ers7LRxMuDCuAkEMWV4eFg///xz+OvDhw8rGAwqOTlZN998s42TAYhl43vfnXsHbEpKinp6euwYCbgoAhAx5eDBgyooKAh/XVFRIUkqKSnRe++9Z9NUAExx7h547IuHaEUAIqbk5+eLZa0Aplpqaqqkfz8JHN8WRZL6+/vZFw9RiTWAAABMUkZGhlJTU9XW1hY+Njo6qn379mnRokU2TgZcGJ8AAgAwAZdaY1xeXq4NGzYoMzNTmZmZ2rBhg6655hotX77cxqmBC2MbGAAAJuDzzz8/a43xuPE1xpZlae3atXrzzTc1NDSknJwcbd68WVlZWTZMC1wcAQgAAGAY1gACAAAYhgAEAAAwDAEIAABgGAIQAADAMAQgAACAYQhAAAAAwxCAAAAAhiEAAQAADEMAAgAAGIYABAAAMAwBCAAAYBgCEAAAwDAEIAAAgGEIQAAAAMMQgAAAAIYhAAEAAAxDAAIAABiGAAQAADAMAQgAAGAYAhAAAMAwBCAAAIBhCEAAAADDEIAAAACGIQABAAAMQwACAAAYhgAEAAAwDAEIAABgGAIQAADAMAQgAACAYQhAAAAAwxCAAAAAhiEAAQAADEMAAgAAGIYABAAAMAwBCAAAYBgCEAAAwDAEIAAAgGEIQAAAAMMQgAAAAIYhAAEAAAxDAAIAABiGAAQAADAMAQgAAGAYAhAAAMAwBCAAAIBhCEAAAADDEIAAAACGIQABAAAMQwACAAAYhgAEAAAwDAEIAABgGAIQAADAMAQgAACAYQhAAAAAwxCAAAAAhiEAAQAADEMAAgAAGIYABAAAMAwBCAAAYBgCEAAAwDAEIAAAgGEIQAAAAMMQgAAAAIYhAAEAAAxDAAIAABiGAAQAADAMAQgAAGAYAhAAAMAwBCAAAIBhCEAAAADDEIAAAACGIQABAAAMQwACAAAYhgAEAAAwDAEIAABgGAIQAADAMAQgAACAYQhAAAAAwxCAAAAAhiEAAQAADEMAAgAAGIYABAAAMAwBCAAAYBgCEAAAwDAEIAAAgGEIQAAAAMMQgAAAAIYhAAEAAAxDAAIAABiGAAQAADAMAQgAAGAYAhAAAMAwBCAAAIBhCEAAAADDEIAAAACGIQABAAAMQwACAAAYhgAEAAAwDAEIAABgGAIQAADAMAQgAACAYQhAAAAAwxCAAAAAhiEAAQAADEMAAgAAGIYABAAAMAwBCAAAYBgCEAAAwDAEIAAAgGEIQAAAAMP8DwZjeuqTxXe1AAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_lattice(simple_cubic);\n", + "plot_lattice(graphite);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c6512444-6c86-4e31-bc6a-2c8b1e00c28d", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2dce1256-7afa-4e86-8aff-5db7b13b4d4d", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "conda", + "language": "python", + "name": "conda" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/src/scripts/distributions.py b/src/scripts/distributions.py new file mode 100644 index 0000000..242d5e7 --- /dev/null +++ b/src/scripts/distributions.py @@ -0,0 +1,106 @@ +from numpy import fmax +from plot import * + + +def get_fig(): + fig, ax = plt.subplots(figsize=size_half_half) + ax.grid() + ax.set_xlabel(f"$x$") + ax.set_ylabel("PDF") + return fig, ax + +# GAUSS / NORMAL +def fgauss(x, mu, sigma_sqr): + return 1 / (np.sqrt(2 * np.pi * sigma_sqr)) * np.exp(-(x - mu)**2 / (2 * sigma_sqr)) + +def gauss(): + fig, ax = get_fig() + x = np.linspace(-5, 5, 300) + for mu, sigma_sqr in [(0, 1), (0, 0.2), (0, 5), (-2, 2)]: + y = fgauss(x, mu, sigma_sqr) + label = texvar("mu", mu) + ", " + texvar("sigma^2", sigma_sqr) + ax.plot(x, y, label=label) + ax.legend() + return fig +export(gauss(), "distribution_gauss") + +# CAUCHY / LORENTZ +def fcauchy(x, x_0, gamma): + return 1 / (np.pi * gamma * (1 + ((x - x_0)/gamma)**2)) + +def cauchy(): + fig, ax = get_fig() + x = np.linspace(-5, 5, 300) + for x_0, gamma in [(0, 1), (0, 0.5), (0, 2), (-2, 1)]: + y = fcauchy(x, x_0, gamma) + label = f"$x_0 = {x_0}$ , {texvar('gamma', gamma)}" + ax.plot(x, y, label=label) + ax.legend() + return fig +export(cauchy(), "distribution_cauchy") + +# MAXWELL-BOLTZMANN +def fmaxwell(x, a): + return np.sqrt(2/np.pi) * x**2 / a**3 * np.exp(-x**2 /(2*a**2)) + +def maxwell(): + fig, ax = get_fig() + x = np.linspace(0, 20, 300) + for a in [1, 2, 5]: + y = fmaxwell(x, a) + label = f"$a = {a}$" + ax.plot(x, y, label=label) + ax.legend() + return fig + +export(maxwell(), "distribution_maxwell-boltzmann") + + +# POISSON +def fpoisson(k, l): + return l**k * np.exp(-l) / scp.special.factorial(k) + +def poisson(): + fig, ax = get_fig() + k = np.arange(0, 21, dtype=int) + for l in [1, 4, 10]: + y = fpoisson(k, l) + label = texvar("lambda", l) + ax.plot(k, y, color="#555") + ax.scatter(k, y, label=label) + ax.set_xlabel(f"$k$") + ax.set_ylabel(f"PMF") + ax.legend() + return fig + +export(poisson(), "distribution_poisson") + +# BINOMIAL +def binom(n, k): + return scp.special.factorial(n) / ( + scp.special.factorial(k) * + scp.special.factorial((n-k)) + ) +def fbinomial(k, n, p): + return binom(n, k) * p**k * (1-p)**(n-k) + +def binomial(): + fig, ax = get_fig() + n = 20 + k = np.arange(0, n+1, dtype=int) + for p in [0.3, 0.5, 0.7]: + y = fbinomial(k, n, p) + label = f"$n={n}$, $p={p}$" + ax.plot(k, y, color="#555") + ax.scatter(k, y, label=label) + ax.set_xlabel(f"$k$") + ax.set_ylabel(f"PMF") + ax.legend() + return fig + +export(binomial(), "distribution_binomial") + +# FERMI-DIRAC + +# BOSE-EINSTEIN + diff --git a/src/scripts/plot.py b/src/scripts/plot.py new file mode 100644 index 0000000..77a2041 --- /dev/null +++ b/src/scripts/plot.py @@ -0,0 +1,34 @@ +import os +import matplotlib.pyplot as plt +import numpy as np +import math +import scipy as scp + +outdir = "../img/" +filetype = ".pdf" +skipasserts = False + +full = 8 +size_half_half = (full/2, full/2) +size_third_half = (full/3, full/2) +size_half_third = (full/2, full/3) + +def texvar(var, val, math=True): + s = "$" if math else "" + s += f"\\{var} = {val}" + if math: s += "$" + return s + +def export(fig, name): + if not skipasserts: + assert os.path.abspath(".").endswith("scripts"), "Please run from the `scripts` directory" + filename = os.path.join(outdir, name + filetype) + fig.savefig(filename, bbox_inches="tight") + + +@np.vectorize +def smooth_step(x: float, left_edge: float, right_edge: float): + x = (x - left_edge) / (right_edge - left_edge) + if x <= 0: return 0. + elif x >= 1: return 1. + else: return 3*(x**2) - 2*(x**3) diff --git a/src/scripts/qubits.py b/src/scripts/qubits.py new file mode 100644 index 0000000..99d5661 --- /dev/null +++ b/src/scripts/qubits.py @@ -0,0 +1,90 @@ +from plot import * +import scqubits as scq +import qutip as qt + +# flux = scq.FluxQubit() +fluxonium = scq.Fluxonium(EJ=9, EC=3, EL=0.5, flux=1, cutoff=100) + + + +def _plot_transmon_n_wavefunctions(qubit: scq.Transmon, fig_ax, which=[0,1]): + fig, ax = fig_ax + ax.set_ylabel(r"$|\psi_i(n)|^2$") + ax.set_xlabel(r"$n$") + colors = "brgy" + for i in which: + wf = qubit.numberbasis_wavefunction(which=i) + x = wf.basis_labels + y = wf.amplitudes + offset = (len(which)/2 - i) * 0.2 + ax.bar(x-offset, y, width=0.2, align='center', label=f"$i={i}$") + xlim = (-4, 4) + ax.set_xlim(*xlim) + ax.set_xticks(np.arange(xlim[0], xlim[1]+1)) + +def _plot_transmon(qubit: scq.Transmon, ngs, fig, axs): + _,_ = qubit.plot_evals_vs_paramvals("ng", ngs, fig_ax=(fig, axs[0]), evals_count=5, subtract_ground=False) + _,_ = qubit.plot_wavefunction(fig_ax=(fig, axs[1]), which=[0, 1, 2], mode="abs_sqr") + _plot_transmon_n_wavefunctions(qubit, (fig, axs[2]), which=[0, 1, 2]) + qubit.ng = 0.5 + _plot_transmon_n_wavefunctions(qubit, (fig, axs[3]), which=[0, 1, 2]) + qubit.ng = 0 + + +def transmon_cpb(): + EC = 1 + qubit = scq.Transmon(EJ=30, EC=EC, ng=0, ncut=30) + ngs = np.linspace(-2, 2, 200) + fig, axs = plt.subplots(4, 3, squeeze=True, figsize=(full,full)) + axs = axs.T + qubit.ng = 0 + qubit.EJ = 0.1 * EC + title = lambda x: f"$E_J/E_C = {x}$" + _plot_transmon(qubit, ngs, fig, axs[0]) + axs[0][0].set_title("Cooper-Pair-Box\n"+title(qubit.EJ)) + + qubit.EJ = EC + _plot_transmon(qubit, ngs, fig, axs[1]) + axs[1][0].set_title("Quantronium\n"+title(qubit.EJ)) + + qubit.EJ = 20 * EC + _plot_transmon(qubit, ngs, fig, axs[2]) + axs[2][0].set_title("Transmon\n"+title(qubit.EJ)) + + for ax in axs[1:,:].flatten(): ax.set_ylabel("") + for ax in axs[:,0].flatten(): + ax.set_xticks([-2, -1, -0.5, 0, 0.5, 1, 2]) + ax.set_xticklabels(["-2", "-1", "", "0", "", "1", "2"]) + ylim = ax.get_ylim() + ax.vlines([-1, -0.5], ymin=ylim[0], ymax=ylim[1], color="#aaa", linestyle="dotted") + axs[0][2].legend() + fig.tight_layout() + return fig + +export(transmon_cpb(), "qubit_transmon") + + +def flux_onium(): + fig, axs = plt.subplots(1, 2, squeeze=True, figsize=(full,full)) + fluxs = np.linspace(-2, 2, 101) + EJ = 35.0 + alpha = 0.6 + fluxqubit = scq.FluxQubit(EJ1 = EJ, + EJ2 = EJ, + EJ3 = alpha*EJ, + ECJ1 = 1.0, + ECJ2 = 1.0, + ECJ3 = 1.0/alpha, + ECg1 = 50.0, + ECg2 = 50.0, + ng1 = 0.0, + ng2 = 0.0, + flux = 0.5, + ncut = 10) + fluxqubit.plot_evals_vs_paramvals("flux", fluxs, evals_count=5, subtract_ground=True, fig_ax=(fig, axs[0])) + + fluxonium = scq.Fluxonium(EJ=9, EC=3, EL=0.5, flux=1, cutoff=100) + fluxonium.plot_evals_vs_paramvals("flux", fluxs, evals_count=5, subtract_ground=True, fig_ax=(fig, axs[1])) + return fig + +export(flux_onium(), "qubit_flux_onium") diff --git a/src/scripts/requirements.txt b/src/scripts/requirements.txt new file mode 100644 index 0000000..d93e9c5 --- /dev/null +++ b/src/scripts/requirements.txt @@ -0,0 +1,5 @@ +numpy +matplotlib +scqubits +qutip + diff --git a/src/scripts/stat-mech.py b/src/scripts/stat-mech.py new file mode 100644 index 0000000..e642825 --- /dev/null +++ b/src/scripts/stat-mech.py @@ -0,0 +1,120 @@ +from plot import * + +def flennard_jones(r, epsilon, sigma): + return 4 * epsilon * ((sigma/r)**12 - (sigma/r)**6) + +def lennard_jones(): + fig, ax = plt.subplots(figsize=size_half_half) + ax.grid() + ax.set_xlabel(r"$r$") + ax.set_ylabel(r"$V(r)$") + + r = np.linspace(0.5, 4, 300) + for epsilon, sigma in [(1, 1), (1, 2)]: + y = flennard_jones(r, epsilon, sigma) + label = texvar("epsilon", epsilon) + ", " + texvar("sigma", sigma) + ax.plot(r, y, label=label) + ax.legend() + ax.set_ylim(-1.1, 1.1) + return fig +export(lennard_jones(), "potential_lennard_jones") + +# BOLTZMANN / FERMI-DIRAC / BOSE-EINSTEN DISTRIBUTIONS +def fboltzmann(x): + return 1 / np.exp(x) +def fbose_einstein(x): + return 1 / (np.exp(x) -1) +def ffermi_dirac(x): + return 1 / (np.exp(x) + 1) + + +def id_qgas(): + fig, ax = plt.subplots(figsize=size_half_half) + ax.grid() + ax.set_xlabel(r"$\beta(\epsilon-\mu)$") + ax.set_ylabel(r"$\langle n(\epsilon)\rangle$") + x = np.linspace(-4, 4, 300) + xbe = np.linspace(0.01, 4, 300) + yb = fboltzmann(x) + ybe = fbose_einstein(xbe) + yfd = ffermi_dirac(x) + ax.vlines([0], ymin=-10, ymax=10, color="black", linestyle="dashed") + ax.plot(xbe, ybe, label="Bose-Einstein") + ax.plot(x, yb, label="Boltzmann") + ax.plot(x, yfd, label="Fermi-Dirac") + ax.legend() + ax.set_ylim(-0.1, 4) + return fig +export(id_qgas(), "td_id_qgas_distributions") + +@np.vectorize +def fstep(x): + return 1 if x >= 0 else 0 + +def fermi_occupation(): + fig, ax = plt.subplots(figsize=size_half_third) + # ax.grid() + # ax.set_xlabel(r"$\beta(\epsilon-\mu)$") + ax.set_xticks([0]) + ax.set_xticklabels([r"$\epsilon=\mu$"]) + ax.set_ylabel(r"$\langle n(\epsilon)\rangle$") + x = np.linspace(-4, 4, 300) + ystep = fstep(-x) + yfd = ffermi_dirac(x) + ax.vlines([0], ymin=-10, ymax=10, color="black", linestyle="dashed") + ax.plot(x, ystep, label="$T = 0$") + ax.plot(x, yfd, label=r"$T > 0$") + ax.legend() + ax.set_ylim(-0.1, 1.1) + return fig +export(fermi_occupation(), "td_fermi_occupation") + +def fermi_heat_capacity(): + fig, ax = plt.subplots(figsize=size_half_third) + # ax.grid() + # ax.set_xlabel(r"$\beta(\epsilon-\mu)$") + x = np.linspace(0, 4, 100) + T_F = 1 + a = np.pi**2 / (2 * T_F) + + def linear(x): + return x * a + X_32 = 3/2 /(np.pi**2 / (2 * T_F)) + + + low_temp_Cv = linear(x) + ax.plot(x, low_temp_Cv, color="orange", linestyle="dashed", label=r"${\pi^2}/{2}\,{T}/{T_\text{F}}$") + ax.hlines([3/2], xmin=0, xmax=10, color="blue", linestyle="dashed", label="Petit-Dulong") + @np.vectorize + def unphysical_f(x): + # exponential + # find ṕoint where unshifted exponential has slope of the linear + # f = 3/2 - exp(-A*x) + # f' = A exp(-A*x) = a + # x = -log(a/A) / A + A = 5 + x_unshifted = -np.log(a/A) / A + # shift so that this the exponential intersects the linear at this point + y_intersect = 3/2 - np.exp(-A*x_unshifted) + # find intersect x value of linear + # x = y/a + x_intersect = y_intersect / a + # shift exp so that x_intersect becomes x_unshifted + if x > x_intersect: return 3/2 - np.exp(-A * (x-(x_intersect - x_unshifted))) + else: return a * x + # ax.plot(x, smoothing, label="smooth") + y = unphysical_f(x) + ax.plot(x, y, color="black") + ax.legend(loc="lower right") + + + ax.set_xticks([0, T_F]) + ax.set_xticklabels(["0", r"$T_F$"]) + ax.set_yticks([0, 3/2]) + ax.set_yticklabels(["0", r"$3/2$"]) + ax.set_ylabel(r"${C_V}/{N k_\text{B}}$") + ax.set_xlim(0, 1.4 * T_F) + ax.set_ylim(0, 2) + return fig +export(fermi_heat_capacity(), "td_fermi_heat_capacity") + diff --git a/src/statistical_mechanics.tex b/src/statistical_mechanics.tex new file mode 100644 index 0000000..184f6db --- /dev/null +++ b/src/statistical_mechanics.tex @@ -0,0 +1,757 @@ +\Part[ + \eng{Statistichal Mechanics} + \ger{Statistische Mechanik} + ]{stat} + + \begin{ttext} + \eng{ + \textbf{Intensive quantities:} Additive for subsystems (system size dependent): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$\\ + \textbf{Extensive quantities:} Independent of system size, ratio of two intensive quantities + } + \ger{ + \textbf{Intensive Größen:} Additiv für Subsysteme (Systemgrößenabhänig): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$\\ + \textbf{Extensive Größen:} Unabhängig der Systemgröße, Verhältnis zweier intensiver Größen + } + \end{ttext} + + \begin{formula}{liouville} + \desc{Liouville equation}{}{$\{\}$ poisson bracket} + \desc[german]{Liouville-Gleichung}{}{$\{\}$ Poisson-Klammer} + \eq{\pdv{\rho}{t} = - \sum_{i=1}^{N} \left(\pdv{\rho}{q_i} \pdv{H}{p_i} - \pdv{\rho}{p_i} \pdv{H}{q_i} \right) = \{H, \rho\}} + \end{formula} + + \Section[ + \eng{Entropy} + \ger{Entropie} + ]{entropy} + + \begin{formula}{properties} + \desc{Positive-definite and additive}{}{} + \desc[german]{Positiv Definit und Additiv}{}{} + \eq{ + S &\ge 0 \\ + S(E_1, E_2) &= S_1 + S_2 + } + \end{formula} + + \begin{formula}{von_neumann} + \desc{Von-Neumann}{}{$\rho$ density matrix} + \desc[german]{Von-Neumann}{}{$\rho$ Dichtematrix} + \eq{S = - \kB \braket{\log \rho} = - \kB \tr(\rho \log\rho)} + \end{formula} + + \begin{formula}{gibbs} + \desc{Gibbs}{}{$p_n$ probability for micro state $n$} + \desc[german]{Gibbs}{}{$p_n$ Wahrscheinlichkeit für Mikrozustand $n$} + \eq{S = - \kB \sum_n p_n \log p_n} + \end{formula} + + \begin{formula}{boltzmann} + \desc{Boltzmann}{}{$\Omega$ \#micro states} + \desc[german]{Boltzmann}{}{$\Omega$ \#Mikrozustände} + \eq{S = \kB \log\Omega} + \end{formula} + + \begin{formula}{temp} + \desc{Temperature}{}{} + \desc[german]{Temperatur}{}{} + \eq{\frac{1}{T} \coloneq \pdv{S}{E}_V} + \end{formula} + + \begin{formula}{pressure} + \desc{Pressure}{}{} + \desc[german]{Druck}{}{} + \eq{p = T \pdv{S}{V}_E} + \end{formula} + +\Part[ + \eng{Thermodynamics} + \ger{Thermodynamik} + ]{td} + + \begin{formula}{therm_wavelength} + \desc{Thermal wavelength}{}{} + \desc[german]{Thermische Wellenlänge}{}{} + \eq{\lambda = \frac{\hbar}{\sqrt{2\pi m \kB T}}} + \end{formula} + + \Section[ + \eng{Processes} + \ger{Prozesse} + ]{process} + \begin{ttext} + \eng{ + \begin{itemize} + \item \textbf{isobaric}: constant pressure $p = \const$ + \item \textbf{isochoric}: constant volume $V = \const$ + \item \textbf{isothermal}: constant temperature $T = \const$ + \item \textbf{isentropic}: constant entropy $S = \const$ + \item \textbf{isenthalpic}: constant entalphy $H = \const$ + \item \textbf{adiabatic}: no heat transfer $\Delta Q=0$ + \item \textbf{quasistatic}: happens so slow, the system always stays in td. equilibrium + \item \textbf{reversivle}: reversible processes are always quasistatic and no entropie is created $\Delta S = 0$ + \end{itemize} + } + \ger{ + \begin{itemize} + \item \textbf{isobar}: konstanter Druck $p = \const$ + \item \textbf{isochor}: konstantes Volumen $V = \const$ + \item \textbf{isotherm}: konstante Temperatur $T = \const$ + \item \textbf{isentrop}: konstante Entropie $S = \const$ + \item \textbf{isenthalp}: konstante Entalphie $H = \const$ + \item \textbf{adiabatisch}: kein Wärmeübertrag $\Delta Q=0$ + \item \textbf{quasistatsch}: läuft so langsam ab, dass das System durchgehend im t.d Equilibrium bleibt + \item \textbf{reversibel}: reversible Prozesse sind immer quasistatisch und es wird keine Entropie erzeugt $Delta S = 0$ + \end{itemize} + } + \end{ttext} + + \Subsection[ + \eng{Irreversible gas expansion (Gay-Lussac experiment)} + \ger{Irreversible Gasexpansion (Gay-Lussac-Versuch)} + ]{gay} + + \begin{minipage}{0.6\textwidth} + \vfill + \begin{ttext} + \eng{ + A classical gas in a system with volume $V_1$ is separated from another system with volume $V_2$. + In the Gay-Lussac experiment, the separation is removed and the gas flows into $V_2$. + } + \ger{ + Ein klassisches Gas in einem System mit Volumen $V_1$ ist getrennt von einem zweiten System mit Volumen $V_2$. + Beim Gay-Lussac Versuch wird die Trennwand entfern und das Gas fließt in das Volumen $V_2$. + } + \end{ttext} + \vfill + \end{minipage} + \hfill + \begin{minipage}{0.3\textwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/td_gay_lussac.pdf} + \end{figure} + \end{minipage} + + \begin{formula}{entropy} + \desc{Entropy change}{}{} + \desc[german]{Entropieänderung}{}{} + \eq{\Delta S=N\kB \ln \left(\frac{V_1 + V_2}{V_1}\right) > 0} + \end{formula} + + \TODO{Reversible} + + \TODO{Quasistatischer T-Ausgleich} + + \TODO{Joule-Thompson Prozess} + + + \Section[ + \eng{Phase transitions} + \ger{Phasenübergänge} + ]{phases} + + \begin{ttext} + \eng{ + A phase transition is a discontinuity in the free energy $F$ or Gibbs energy $G$ or in one of their derivatives. + The degree of the phase transition is the degree of the derivative which exhibits the discontinuity. + } + \ger{ + Ein Phasenübergang ist eine Unstetigkeit in the Freien Energie $F$ oder in der Gibbs-Energie $G$ oder in ihrer Ableitungen. + Die Ordnung des Phasenübergangs ist die Ordnung der Ableitung, in welcher die Unstetigkeit auftritt. + } + \end{ttext} + + \begin{formula}{latent_heat} + \desc{Latent heat}{Heat required to bring substance from phase 1 to phase 2}{$\Delta S$ entropy change of the phase transition} + \desc[german]{Latente Wärme}{Für den Phasenübergang von Phase 1 nach Phase 2 benötigte Wärme}{$\Delta S$ Entropieänderung des Phasenübergangs} + \eq{Q_\text{L} = T \Delta S} + \end{formula} + \begin{formula}{clausis_clapeyron} + \desc{Clausius-Clapyeron equation}{Slope of the coexistence curve}{$\Delta V$ Volume change of the phase transition} + \desc[german]{Clausius-Clapeyron Gleichung}{Steigung der Phasengrenzlinie}{$\Delta V$ Volumenänderung des Phasenübergangs} + \eq{\odv{p}{T} = \frac{Q_\text{L}}{T\Delta V}} + \end{formula} + \begin{formula}{coexistence} + \desc{Phase transition}{At the coexistence curve}{} + \desc[german]{Phasenübergang}{Im Koexistenzbereich}{} + \eq{G_1 = G_2 \\ \shortintertext{\GT{and_therefore}} \mu_1 = \mu_2} + \end{formula} + + \begin{formula}{gibbs_phase_rule} + \desc{Gibbs rule / Phase rule}{}{$c$ \#components, $f$ \#degrees of freedom, $p$ \#phases} + \desc[german]{Gibbsche Phasenregel}{}{$c$ \#Komponenten, $f$ \#Freiheitsgrade, $p$ \#Phasen} + \eq{f = c - p + 2} + \end{formula} + + \Subsubsection[ + \eng{Osmosis} + \ger{Osmose} + ]{osmosis} + \begin{ttext} + \eng{ + Osmosis is the spontaneous net movement or diffusion of solvent molecules + through a selectively-permeable membrane, which allows through the solvent molecules, but not the solute molecules. + The direction of the diffusion is from a region of high water potential + (region of lower solute concentration) to a region of low water potential + (region of higher solute concentration), in the direction that tends to equalize the solute concentrations on the two sides. + } + \ger{ + Osmosis ist die spontane Passage oder Diffusion Lösungsmittelmolekülen durch eine semi-permeable Membran + die für das Lösungsmittel, jedoch nicht die darin gelösten Stoffe durchlässig ist. + Die Richtung der Diffusion ist vom Gebiet mit hohem chemischen Potential (niedrigere Konzentration des gelösten Stoffes) + in das mit niedrigem chemischem Potential (höherere Konzentraion des gelösten Stoffes), sodass die Konzentration des gelösten Stoffes ausgeglichen wird. + } + \end{ttext} + \begin{formula}{osmosis} + \desc{Osmotic pressure}{}{$N_c$ \#dissolved particles} + \desc[german]{Osmotischer Druck / Van-\'t-hoffsches Gesetz}{}{$N_c$ \#gelöster Teilchen} + \eq{p_\text{osm} = \kB T \frac{N_c}{V}} + \end{formula} + + + \Subsection[ + \eng{Material properties} + \ger{Materialeigenschaften} + ]{} + \begin{formula}{heat_cap} + \desc{Heat capacity}{}{$Q$ heat} + \desc[german]{Wärmekapazität}{}{$Q$ Wärme} + \eq{c = \frac{Q}{\Delta T}} + \end{formula} + \begin{formula}{heat_cap_V} + \desc{Isochoric heat capacity}{}{$U$ internal energy} + \desc[german]{Isochore Wärmekapazität}{}{$U$ innere Energie} + \eq{c_v = \pdv{Q}{T}_V = \pdv{U}{T}_V} + \end{formula} + + \begin{formula}{heat_cap_p} + \desc{Isobaric heat capacity}{}{$H$ enthalpy} + \desc[german]{Isobare Wärmekapazität}{}{$H$ Enthalpie} + \eq{c_p = \pdv{Q}{T}_P = \pdv{H}{T}_P} + \end{formula} + + \begin{formula}{bulk_modules} + \desc{Bulk modules}{}{$p$ pressure, $V$ initial volume} + \desc[german]{Kompressionsmodul}{}{$p$ Druck, $V$ Anfangsvolumen} + \eq{K = -V \odv{p}{V} } + \end{formula} + + \begin{formula}{compressibility} + \desc{Compressibility}{}{} + \desc[german]{Kompressibilität}{}{} + \eq{\kappa = -\frac{1}{V} \pdv{V}{p} } + \end{formula} + + \begin{formula}{compressibility_T} + \desc{Isothermal compressibility}{}{} + \desc[german]{Isotherme Kompressibilität}{}{} + \eq{\kappa_T = -\frac{1}{V} \pdv{V}{p}_{T} = \frac{1}{K}} + \end{formula} + + \begin{formula}{compressibility_S} + \desc{Adiabatic compressibility}{}{} + \desc[german]{Adiabatische Kompressibilität}{}{} + \eq{\kappa_S = -\frac{1}{V} \pdv{V}{p}_{S}} + \end{formula} + + \begin{formula}{therm_expansion} + \desc{Thermal expansion coefficient}{}{} + \desc[german]{Thermaler Ausdehnungskoeffizient}{}{} + \eq{\alpha = \frac{1}{V} \pdv{V}{T}_{p,N}} + \end{formula} + + + +\Section[ + \eng{Laws of thermodynamics} + \ger{Hauptsätze der Thermodynamik} + ]{laws} + + \Subsection[ + \eng{Zeroeth law} + \ger{Nullter Hauptsatz} + ]{law0} + \begin{ttext} + \eng{If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.} + \ger{Wenn sich zwei Siesteme jeweils im thermischen Gleichgewicht mit einem dritten befinden, befinden sie sich auch untereinander im thermischen Gleichgewicht.} + \end{ttext} + + \Eng[teq]{th. eq.} + \Ger[teq]{th. GGW.} + \def\ggwarrow{\overset{\GT{teq}}{\leftrightarrow}} + \begin{equation} + \label{eq:\fqname} + A \ggwarrow C \quad\wedge\quad B \ggwarrow C \quad\Rightarrow\quad A \ggwarrow B + \end{equation} + + \Subsection[ + \eng{First law} + \ger{Erster Hauptsatz} + ]{law1} + \begin{ttext} + \eng{In a process without transfer of matter, the change in internal energy, $\Delta U$, of a thermodynamic system is equal to the energy gained as heat, $Q$, less the thermodynamic work, W, done by the system on its surroundings.} + \ger{In einem abgeschlossenem System ist die Änderung der inneren Energie $U$ gleich der gewonnenen Wärme $Q$ minus der vom System an der Umgebung verrichteten Arbeit $W$.} + \end{ttext} + + \begin{formula}{internal_energy} + \desc{Internal energy change}{}{} + \desc[german]{Änderung der inneren Energie}{}{} + \eq{ + \Delta U &= \delta Q - \delta W \\ + \d U &= T \d S - p \d V + } + \end{formula} + + + \Subsection[ + \eng{Second law} + \ger{Zweiter Hauptsatz} + ]{law2} + \begin{ttext} + \eng{ + \textbf{Clausius}: Heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at the same time.\\ + \textbf{Kelvin}: It is impossible for a self-acting machine, unaided by any external agency, to convey heat from one body to another at a higher temperature. + } + \ger{ + \textbf{Clausius}: Es gibt keine Zustansänderung, deren einziges Ergebnis die Übertragung von Wärme von einem Körper niederer Temperatur auf einen Körper höherer Temperatur ist.\\ + \textbf{Kelvin}: Es ist unmöglich, eine periodisch arbeitende Maschine zu konstruieren, die weiter nichts bewirkt als Hebung einer Last und Abkühlung eines Wärmereservoirs. + } + \end{ttext} + \Subsection[ + \eng{Third law} + \ger{Dritter Hauptsatz} + ]{law3} + \begin{ttext} + \eng{It is impussible to cool a system to absolute zero.} + \ger{Es ist unmöglich, ein System bis zum absoluten Nullpunkt abzukühlen.} + \end{ttext} + + \begin{formula}{3d_law} + \desc{Entropy density}{}{$s = \frac{S}{N}$} + \desc[german]{Entropiedichte}{}{$s = \frac{S}{N}$} + \eq{ + \lim_{T\to 0} s(T) &= 0 \\ + \shortintertext{\GT{and_therefore_also}} \\ + \lim_{T\to 0} c_V &= 0 + } + \end{formula} + +\Section[ + \eng{Ensembles} + \ger{Ensembles} + ]{ensembles} + + + + \begin{table}[H] + \centering + \caption{caption} + \label{tab:\fqname} + + \begin{tabular}{l|c|c|c} + & \gt{mk} & \gt{k} & \gt{gk} \\ \hline + \GT{variables} & $E$, $V,$ $N$ & $T$, $V$, $N$ & $T$, $V$, $\mu$ \\ \hline + \GT{partition_sum} & $\Omega = \sum_n 1$ & $Z = \sum_n \e^{-\beta E_n}$ & $Z_\text{g} = \sum_{n} \e^{-\beta(E_n - \mu N_n)}$ \\ \hline + \GT{probability} & $p_n = \frac{1}{\Omega}$ & $p_n = \frac{\e^{-\beta E_n}}{Z}$ & $p_n = \frac{\e^{-\beta (E_n - \mu N_n}}{Z_\text{g}}$ \\ \hline + \GT{td_pot} & $S = \kB\ln\Omega$ & $F = - \kB T \ln Z$ & $ \Phi = - \kB T \ln Z$ \\ \hline + \GT{pressure} & $p = T \pdv{S}{V}_{E,N}$ &$p = -\pdv{F}{V}_{T,N}$ & $p = -\pdv{\Phi}{V}_{T,\mu} = -\frac{\Phi}{V}$ \\ \hline + \GT{entropy} & $S = \kB = \ln\Omega$ & $S = -\pdv{F}{T}_{V,N}$ & $S = -\pdv{\Phi}{T}_{V,\mu}$ \\ \hline + \end{tabular} + \end{table} + + \begin{formula}{ergodic_hypo} + \desc{Ergodic hypothesis}{Over a long periode of time, all accessible microstates in the phase space are equiprobable}{$A$ Observable} + \desc[german]{Ergodenhypothese}{Innerhalb einer langen Zeitspanne sind alle energetisch erreichbaren Mikrozustände im Phasenraum gleich wahrscheinlich}{$A$ Messgröße} + \eq{\braket{A}_\text{\GT{time}} = \braket{A}_\text{\GT{ensemble}}} + \end{formula} + + + \Subsection[ + \eng{Potentials} + \ger{Potentiale} + ]{pots} + \begin{formula}{internal_energy} + \desc{Internal energy}{}{} + \desc[german]{Innere Energie}{}{} + \eq{\d U(S,V,N) = T\d S -p\d V + \mu\d N} + \end{formula} + \begin{formula}{enthalpy} + \desc{Enthalpy}{}{} + \desc[german]{Enthalpie}{}{} + \eq{\d H(S,p,N) = T\d S +V\d p + \mu\d N} + \end{formula} + \begin{formula}{gibbs_energy} + \desc{Gibbs energy}{}{} + \desc[german]{Gibbsche Energie}{}{} + \eq{\d G(T,p,N) = -S\d T + V\d p + \mu\d N} + \end{formula} + \begin{formula}{free_energy} + \desc{Free energy / Helmholtz energy }{}{} + \desc[german]{Freie Energie / Helmholtz Energie}{}{} + \eq{\d F(T,V,N) = -S\d T -p\d V + \mu\d N} + \end{formula} + \begin{formula}{grand_canon_pot} + \desc{Grand canonical potential}{}{} + \desc[german]{Großkanonisches Potential}{}{} + \eq{\d \Phi(T,V,\mu) = -S\d T -p\d V - N\d\mu} + \end{formula} + + \TODO{Maxwell Relationen, TD Quadrat} + +\Section[ + \eng{Ideal gas} + \ger{Ideales Gas} + ]{id_gas} + \begin{ttext} + \eng{The ideal gas consists of non-interacting, undifferentiable particles.} + \ger{Das ideale Gas besteht aus nicht-wechselwirkenden, ununterscheidbaren Teilchen.} + \end{ttext} + + \begin{formula}{phase_space_vol} + \desc{Phase space volume}{$3N$ sphere}{$N$ \#particles, $h^{3N}$ volume of a microstate, $N!$ particles are undifferentiable} + \desc[german]{}{$3N$ Kugel}{$N$ \#Teilchen, $h^{3N}$ Volumen eines Mikrozustandes, $N!$ Teilchen sind ununterscheidbar} + \eq{ + \Omega(E) &= \int_V\d^3q_1 \sdots \int_V\d^3q_N \int \d^3p_1 \sdots \int\d^3p_N \frac{1}{N!\,h^{3N}} \Theta\left(E - \sum_{i} \frac{\vec{p_i}^2}{2m}\right) \\ + &= \left(\frac{V}{N}\right)^N \left(\frac{4\pi m E}{3 h^2 N}\right)^{\frac{3N}{2}} \e^\frac{5N}{2} + } + \end{formula} + \begin{formula}{entropy} + \desc{Entropy}{}{} + \desc[german]{Entropie}{}{} + \eq{ + S = \frac{5}{2} N\kB + N\kB\ln\left(\frac{V}{N}\left(\frac{2\pi m E}{3 h^2 N}\right)^{\frac{3}{2}}\right) + } + \end{formula} + + \begin{formula}{id_gas_eq} + \desc{Ideal gas equation}{}{} + \desc[german]{Ideale Gasgleichung}{Thermische Zustandsgleichung idealer Gase}{} + \eq{pV &= nRT \\ &= N\kB T} + \end{formula} + + \begin{formula}{equation_of_state} + \desc{Equation of state}{}{} + \desc[german]{Kalorische Zustangsgleichung}{}{} + \eq{U = \frac{3}{2} N\kB T} + \end{formula} + + % \Subsubsection[ + % \eng{Equipartitiontheorem} + % \ger{Äquipartitionstheorem} + % ]{equipart} + \begin{formula}{equipart} + \desc{Equipartitiontheorem}{Each degree of freedom contributes $U_\text{D}$ (for classical particle systems)}{} + \desc[german]{Äquipartitionstheorem}{Jedem Freiheitsgrad steht die Energie $U_\text{D}$ zur Verfügung}{} + \eq{U_\text{D} = \frac{1}{2} \kB T} + \end{formula} + + + \begin{formula}{maxwell_velocity} + \desc{Maxwell velocity distribution}{See also \ref{sec:pt:distributions::maxwell-boltzmann}}{} + \desc[german]{Maxwellsche Geschwindigkeitsverteilung}{Siehe auch \ref{sec:pt:distributions::maxwell-boltzmann}}{} + \eq{w(v) \d v = 4\pi \left(\frac{\beta m}{2\pi}\right)^\frac{3}{2} v^2 \e^{-\frac{\beta m v^2}{2}} \d v} + \end{formula} + + \begin{formula}{avg_velocity} + \desc{Average quadratic velocity}{per particle in a 3D gas}{} + \desc[german]{Mittlere quadratosche Geschwindigkeit}{pro Teilchen im 3D-Gas}{} + \eq{\braket{v^2} = \int_0^\infty \d v\,v^2 w(v) = \frac{3\kB T}{m}} + \end{formula} + + \Subsubsection[ + \eng{Molecule gas} + \ger{Molekülgas} + ]{molecule_gas} + + \begin{formula}{desc} + \desc{Molecule gas}{2 particles of mass $M$ connected by a ``spring'' with distance $L$}{} + \desc[german]{Molekülgas}{2 Teilchen der Masse $M$ sind verbunden durch eine ``Feder'' mit Länge $L$}{} + \content{ + % \begin{figure}[h] + \centering + \tikzstyle{spring}=[thick,decorate,decoration={coil,aspect=0.8,amplitude=5,pre length=0.1cm,post length=0.1cm,segment length=10}] + \begin{tikzpicture} + \def\radius{0.5} + \coordinate (left) at (-3, 0); + \coordinate (right) at (3, 0); + \draw (left) circle (\radius); + \draw[spring] ($(left) + (\radius,0)$) -- ($(right) - (\radius,0)$); + \draw (right) circle (\radius); + \end{tikzpicture} + % \end{figure} + } + \end{formula} + + \begin{formula}{translation} + \desc{Translation}{}{$n_i \in \N_0$, $i=x,\,y,\,z$} + \desc[german]{Translation}{}{$n_i \in \N_0$, $i=x,\,y,\,z$} + \eq{p_i &= \frac{2\pi\hbar}{L}n_i \\ + E_\text{kin} &= \frac{\vec{p}_r^2}{2M} + } + \end{formula} + \begin{formula}{vibration} + \desc{Vibration}{}{$n \in \N_0$} + \desc[german]{Schwingungen}{}{$n \in \N_0$} + \eq{E_\text{vib} = \hbar \omega \left(n+\frac{1}{2}\right)} + \end{formula} + \begin{formula}{rotation} + \desc{Rotation}{}{$j\in \N_0$} + \desc[german]{Rotation}{}{$j\in \N_0$} + \eq{E_\text{rot} = \frac{\hbar^2}{2I}j(j+1)} + \end{formula} + \TODO{Diagram für verschiedene Temperaturen, Weiler Skript p.83} + + +\Section[ + \eng{Real gas} + \ger{Reales Gas} + ]{real_gas} + + \Subsection[ + \eng{Virial expansion} + \ger{Virialentwicklung} + ]{virial} + \begin{ttext} + \eng{Expansion of the pressure $p$ in a power series of the density $\rho$.} + \ger{Entwicklung desw Drucks $p$ in eine Potenzreihe der Dichte $\rho$.} + \end{ttext} + + \begin{formula}{series} + \desc{Virial expansion}{The 2\ts{nd} and 3\ts{d} virial coefficient are tabelated for many substances}{$B$ and $C$ 2\ts{nd} and 3\ts{d} virial coefficient, $\rho = \frac{N}{V}$} + \desc[german]{Virialentwicklung}{Der zweite und dritte Virialkoeffizient ist für viele Substanzen tabelliert}{$B$ und $C$ 2. und 3. Virialkoeffizient, $\rho = \frac{N}{V}$} + \eq{p = \kB T \rho\,[1 + B(T) \rho + C(T) \rho^2 + \dots]} + \end{formula} + + \begin{formula}{mayer_function} + \desc{Mayer function}{}{$V(i,j)$ pair potential} + \desc[german]{Mayer-Funktion}{}{$V(i,j)$ Paarpotential} + \eq{f(\vec{r}) = \e^{-\beta V(i,j)} - 1} + \end{formula} + + \begin{formula}{second_coefficient} + \desc{Second virial coefficient}{Depends on pair potential between two molecules}{} + \desc[german]{Zweiter Virialkoeffizient}{Hängt vom Paarpotential zweier Moleküle ab}{} + \eq{B = -\frac{1}{2} \int_V \d^3 \vec{r} f(\vec{r})} + % b - \frac{a}{\kB T}} + \end{formula} + + \begin{formula}{lennard_jones} + \desc{Lennard-Jones potential}{Potential between two molecules. Attractive for $r > \sigma$, repulsive for $r < \sigma$}{} + \desc[german]{Lennard-Jones-Potential}{Potential zwischen zwei Molekülen. Attraktiv für $r > \sigma$, repulsiv für $r < \sigma$}{} + \figeq{img/potential_lennard_jones.pdf}{V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6}\right]} + \end{formula} + + \Subsection[ + \eng{Van der Waals equation} + \ger{Van der Waals Gleichung} + ]{vdw} + \begin{ttext} + \eng{Assumes a hard-core potential with a weak attraction.} + \ger{Annahme eines Harte-Kugeln Potentials mit einer schwachen Anziehung} + \end{ttext} + \begin{formula}{partition_sum} + \desc{Partition sum}{}{$a$ internal pressure} + \desc[german]{Zustandssumme}{}{$a$ Kohäsionsdruck} + \eq{Z_N = \frac{(V-V_0)^N}{\lambda^{3N}N!} \e^{\frac{\beta N^2 a}{V}}} + \end{formula} + \begin{formula}{equation} + \desc{Van der Waals equation}{}{$b$ co-volume?} + \desc[german]{Van der Waals-Gleichung}{}{$b$ Kovolumen} + \eq{p = \frac{N \kB T}{V-b} - \frac{N^2 a}{V^2}} + \end{formula} + \TODO{sometimes N is included in a, b} + + +\Section[ + \eng{Ideal quantum gas} + \ger{Ideales Quantengas} + ]{id_qgas} + \def\bosfer{$\pm$: {$\text{bos} \atop \text{fer}$}} + + \begin{formula}{fugacity} + \desc{Fugacity}{}{} + \desc[german]{Fugazität}{}{} + \eq{z = \e^{\mu\beta} = \e^\frac{\mu}{\kB T}} + \end{formula} + + \begin{formula}{occupation} + \desc{Occupation number}{}{$r$ states} + \desc[german]{Besetzungszahl}{}{$r$ Zustände} + \eq{\sum_{r} n_r = N} + \end{formula} + \begin{formula}{undiff_particles} + \desc{Undifferentiable particles}{}{$p_i$ state} + \desc[german]{Ununterscheidbare Teilchen}{}{$p_i$ Zustand} + \eq{\ket{p_1,p_2,\dots,p_N} = \ket{p_1}\ket{p_2}\dots \ket{p_N}} + \end{formula} + \begin{formula}{parity} + \desc{Applying the parity operator}{yields a \textit{symmetric} (Bosons) and a \textit{antisymmetic} (Fermions) solution}{$\hat{P}_{12}$ parity operator swaps $1$ and $2$, \bosfer} + \desc[german]{Anwenden des Paritätsoperators}{gibt eine \textit{symmetrische} (Bosonen) und eine \textit{antisymmetrische} (Fermionen) Lösung}{$\hat{O}_{12}$ Paritätsoperator tauscht $1$ und $2$, \bosfer} + \eq{\hat{P}_{12} \psi(p_i(\vec{r}_1),\,p_j(\vec{r}_2)) = \pm \psi(p_i(\vec{r}_1),\,p_j(\vec{r}_2))} + \end{formula} + + \begin{formula}{spin_degeneracy_factor} + \desc{Spin degeneracy factor}{}{$s$ spin} + \desc[german]{Spinentartungsfaktor}{}{$s$ Spin} + \eq{g_s = 2s+1} + \end{formula} + \begin{formula}{dos} + \desc{Density of states}{}{$g_s$ \fqEqRef{td:id_qgas:spin_degeneracy_factor}} + \desc[german]{Zustandsdichte}{}{$g_s$ \fqEqRef{td:id_qgas:spin_degeneracy_factor}} + \eq{g(\epsilon) = g_s \frac{V}{4\pi} \left(\frac{2m}{\hbar^2}\right)^\frac{3}{2} \sqrt{\epsilon}} + \end{formula} + + \begin{formula}{occupation_number_per_e} + \desc{Occupation number per energy}{}{\fqEqRef{td:id_qgas:dos}, \bosfer} + \desc[german]{Besetzungszahl pro Energie}{}{\fqEqRef{td:id_qgas:dos}, \bosfer} + \eq{n(\epsilon)\, \d\epsilon &= \frac{g(\epsilon)}{\e^{\beta(\epsilon - \mu)} \mp 1}\,\d\epsilon} + \end{formula} + + \begin{formula}{occupation_number} + \desc{Occupation number}{}{\bosfer} + \desc[german]{Besetzungszahl}{}{\bosfer} + \figeq{img/td_id_qgas_distributions.pdf}{% + \braket{n(\epsilon)} &= \frac{1}{\e^{\beta(\epsilon - \mu)} \mp 1} \\ + \shortintertext{\GT{for} $\epsilon - \mu \gg \kB T$} + &= \frac{1}{\e^{\beta(\epsilon - \mu)}} + } + + \end{formula} + + + \begin{formula}{particle_number} + \desc{Number of particles}{}{} + \desc[german]{Teilchenzahl}{}{} + \eq{\braket{N} = \int_0^\infty n(\epsilon) \d\epsilon} + \end{formula} + + \begin{formula}{energy} + \desc{Energy}{Equal to the classical ideal gas}{} + \desc[german]{Energie}{Gleich wie beim klassischen idealen Gas}{} + \eq{\braket{E} = \int_0^\infty \epsilon n(\epsilon)\,\d\epsilon = \frac{3}{2} pV} + \end{formula} + + + \begin{formula}{equation_of_state} + \desc{Equation of state}{Bosons: decreased pressure, they like to cluster\\Fermions: increased pressure because of the Pauli principle}{\bosfer, $v = \frac{V}{N}$ specific volume} + \desc[german]{Zustandsgleichung}{Bosonen: verringerter Druck da sie clustern\\Fermionen: erhöhter Druck durch das Pauli-Prinzip}{\bosfer, $v = \frac{V}{N}$ spezifisches Volumen} + \eq{ + pV &= \kB T \ln Z_g \\ + \shortintertext{\GT{after} \GT{td:real_gas:virial}} + &= N \kB T \left[1 \mp \frac{\lambda^3}{2^{5/2} g v} + \Order\left(\left(\frac{\lambda^3}{v}\right)^2\right)\right] + } + \end{formula} + \begin{formula}{relevance} + \desc{Relevance of qm. corrections}{Corrections become relevant when the particle distance is in the order of the thermal wavelength}{} + \desc[german]{Relevanz der qm. Korrekturen}{Korrekturen werden relevant, wenn der Teilchenabstand in der Größenordnung der thermischen Wellenlänge ist}{} + \eq{\left(\frac{V}{N}\right)^\frac{1}{3} \sim \frac{\lambda}{g_s^\frac{1}{3}}} + \end{formula} + + \begin{formula}{generalized_zeta} + \desc{Generalized zeta function}{}{} + \desc[german]{Verallgemeinerte Zeta-Funktion}{}{} + \eq{\left \begin{array}{l}g_\nu(z)\\f_\nu(z)\end{array}\right\} \coloneq \frac{1}{\Gamma(\nu)} \int_0^\infty \d x\, \frac{x^{\nu-1}}{\e^x z^{-1} \mp 1}} + \end{formula} + + \Subsection[ + \eng{Bosons} + \ger{Bosonen} + ]{bos} + \begin{formula}{partition_sum} + \desc{Partition sum}{}{$p \in\N_0$} + \desc[german]{Zustandssumme}{}{$p \in\N_0$} + \eq{Z_\text{g} = \prod_{p} \frac{1}{1-\e^{-\beta(\epsilon_p - \mu)}}} + \end{formula} + \begin{formula}{occupation} + \desc{Occupation number}{Bose-Einstein distribution}{} + \desc[german]{Besetzungszahl}{Bose-Einstein Verteilung}{} + \eq{\braket{n_p} = \frac{1}{\e^{\beta(\epsilon-\mu)}-1}} + \end{formula} + + + \Subsection[ + \eng{Fermions} + \ger{Fermionen} + ]{fer} + \begin{formula}{partition_sum} + \desc{Partition sum}{}{$p = 0,\,1$} + \desc[german]{Zustandssumme}{}{$p = 0,\,1$} + \eq{Z_\text{g} = \prod_{p} \left(1+\e^{-\beta(\epsilon_p - \mu)\right)}} + \end{formula} + \begin{formula}{occupation} + \desc{Occupation number}{Fermi-Dirac distribution. At $T=0$ \textit{Fermi edge} at $\epsilon=\mu$}{} + \desc[german]{Besetzungszahl}{Fermi-Dirac Verteilung}{Bei $T=0$ \textit{Fermi-Kante} bei $\epsilon=\mu$} + \figeq{img/td_fermi_occupation.pdf}{\braket{n_p} = \frac{1}{\e^{\beta(\epsilon-\mu)}+1}} + \end{formula} + + \begin{formula}{slater_determinant} + \desc{Slater determinant}{}{} + \desc[german]{Slater-Determinante}{}{} + \eq{ + \psi(\vecr_1,\vecr_2,\dots,\vecr_N) = \frac{1}{\sqrt{N!}} + \begin{vmatrix} + p_1(\vecr_1) & p_2(\vecr_1) & \dots & p_N(\vecr_1) \\ + p_1(\vecr_2) & p_2(\vecr_2) & \dots & p_N(\vecr_2) \\ + \vdots & \vdots & \ddots & \vdots \\ + p_1(\vecr_N) & p_2(\vecr_N) & \dots & p_N(\vecr_N) \\ + \end{vmatrix} + } + \end{formula} + + \begin{formula}{fermi_energy} + \desc{Fermi energy}{}{} + \desc[german]{Fermienergie}{}{} + \eq{\epsilon_\text{F} \coloneq \mu(T = 0)} + \end{formula} + \begin{formula}{fermi_temperature} + \desc{Fermi temperature}{}{} + \desc[german]{Fermi Temperatur}{}{} + \eq{T_\text{F} \coloneq \frac{\epsilon_\text{F}}{\kB}} + \end{formula} + + \begin{formula}{fermi_impulse} + \desc{Fermi impulse}{Radius of the \textit{Fermi sphere} in impulse space. States with $p_\text{F}$ are in the \textit{Fermi surface}}{} + \desc[german]{Fermi-Impuls}{Radius der \textit{Fermi-Kugel} im Impulsraum. Zustände mit $P_\text{F}$ sind auf der \textit{Fermi-Fläche}}{} + \eq{p_\text{F} = \hbar k_\text{F} = (2mE_\text{F})^\frac{1}{2}} + \end{formula} + + \begin{formula}{specific_density} + \desc{Specific density}{}{$f$ \fqEqRef{td:id_qgas:generalized_zeta}, $g$ degeneracy factor, $z$ \fqEqRef{td:id_qgas:fugacity}} + \desc[german]{Spezifische Dichte}{}{$f$ \fqEqRef{td:id_qgas:generalized_zeta}, $g$ Entartungsfaktor, $z$ \fqEqRef{td:id_qgas:fugacity}} + \eq{v = \frac{N}{V} = \frac{g}{\lambda^3}f_{3/2}(z)} + \end{formula} + + \Subsubsection[ + \eng{Strong degeneracy} + \ger{Starke Entartung} + ]{degenerate} + \eng[low_temps]{for low temperatures $T \ll T_\text{F}$} + \ger[low_temps]{für geringe Temperaturen $T\ll T_\text{F}$} + + \begin{formula}{sommerfeld} + \desc{Sommerfeld expansion}{\gt{low_temps}}{} + \desc[german]{Sommerfeld-Entwicklung}{\gt{low_temps}}{} + \eq{f_\nu(z) = \frac{(\ln z)^\nu}{\Gamma(\nu+1)} \left(1+\frac{\pi^6}{6}\frac{\nu(\nu-1)}{(\ln z)^2} + \dots\right)} + \end{formula} + + \begin{formula}{energy_density} + \desc{Energy density}{}{} + \desc[german]{Energiedichte}{}{} + \eq{ + \frac{E}{V} &= \frac{3}{2}\frac{g}{\lambda^3} \kB T f_{5/2}(z) \\ + \shortintertext{\GT{td:id_qgas:fer:degenerate:sommerfeld}} + &\approx \frac{3}{5} \frac{N}{V} E_\text{F} \left(1+\frac{5\pi^2}{12}\left(\frac{\kB T}{E_\text{F}}\right)^2 \right) + } + \end{formula} + + \begin{formula}{heat_cap} + \desc{Heat capacity}{\gt{low_temps}}{differs from \fqEqRef{td:TODO:petit_dulong}} + \desc[german]{Wärmecapacity}{\gt{low_temps}}{weicht ab vom \fqEqRef{td:TODO:petit_dulong}} + \figeq{img/td_fermi_heat_capacity.pdf}{C_V = \pdv{E}{T}_V = N\kB \frac{\pi}{2} \left(\frac{T}{T_\text{F}}\right)} + \end{formula} + + + \TODO{Entartung und Sommerfeld} + \TODO{DULONG-PETIT Gesetz} + diff --git a/src/svgs/bravais/aP.svg b/src/svgs/bravais/aP.svg new file mode 100644 index 0000000..a64a12c --- /dev/null +++ b/src/svgs/bravais/aP.svg @@ -0,0 +1,118 @@ + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/svgs/bravais/cF.svg b/src/svgs/bravais/cF.svg new file mode 100644 index 0000000..f12d89b --- /dev/null +++ b/src/svgs/bravais/cF.svg @@ -0,0 +1,161 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/svgs/bravais/cI.svg b/src/svgs/bravais/cI.svg new file mode 100644 index 0000000..02cda80 --- /dev/null +++ b/src/svgs/bravais/cI.svg @@ -0,0 +1,149 @@ + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/svgs/bravais/cP.svg b/src/svgs/bravais/cP.svg new file mode 100644 index 0000000..7e7be45 --- /dev/null +++ b/src/svgs/bravais/cP.svg @@ -0,0 +1,34 @@ + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/src/svgs/bravais/fix.sh b/src/svgs/bravais/fix.sh new file mode 100644 index 0000000..efa8f32 --- /dev/null +++ b/src/svgs/bravais/fix.sh @@ -0,0 +1,6 @@ +mkdir -p out +for file in bravais/*; do + link=https:$(grep "Original file" "$file" | grep -Po '(?<=href=")[^"]+') + wget "$link" -O "$file" + sleep 1 +done diff --git a/src/svgs/bravais/hP.svg b/src/svgs/bravais/hP.svg new file mode 100644 index 0000000..8065fba --- /dev/null +++ b/src/svgs/bravais/hP.svg @@ -0,0 +1,344 @@ + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 2 + 1 + + 0 + + + diff --git a/src/svgs/bravais/hR.svg b/src/svgs/bravais/hR.svg new file mode 100644 index 0000000..5f6b43e --- /dev/null +++ b/src/svgs/bravais/hR.svg @@ -0,0 +1,181 @@ + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/svgs/bravais/hp.svg b/src/svgs/bravais/hp.svg new file mode 100644 index 0000000..a97f9e5 --- /dev/null +++ b/src/svgs/bravais/hp.svg @@ -0,0 +1,635 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 120° + a + + a + + + + + + + + + + + diff --git a/src/svgs/bravais/mP.svg b/src/svgs/bravais/mP.svg new file mode 100644 index 0000000..392642d --- /dev/null +++ b/src/svgs/bravais/mP.svg @@ -0,0 +1,110 @@ + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/svgs/bravais/mS.svg b/src/svgs/bravais/mS.svg new file mode 100644 index 0000000..9f9d5b0 --- /dev/null +++ b/src/svgs/bravais/mS.svg @@ -0,0 +1,134 @@ + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/svgs/bravais/mp.svg b/src/svgs/bravais/mp.svg new file mode 100644 index 0000000..ad10b44 --- /dev/null +++ b/src/svgs/bravais/mp.svg @@ -0,0 +1,614 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + θ + a + b + + + + + + diff --git a/src/svgs/bravais/oF.svg b/src/svgs/bravais/oF.svg new file mode 100644 index 0000000..9b091a7 --- /dev/null +++ b/src/svgs/bravais/oF.svg @@ -0,0 +1,162 @@ + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/svgs/bravais/oI.svg b/src/svgs/bravais/oI.svg new file mode 100644 index 0000000..71f9549 --- /dev/null +++ b/src/svgs/bravais/oI.svg @@ -0,0 +1,110 @@ + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/svgs/bravais/oP.svg b/src/svgs/bravais/oP.svg new file mode 100644 index 0000000..51078c1 --- /dev/null +++ b/src/svgs/bravais/oP.svg @@ -0,0 +1,90 @@ + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/svgs/bravais/oS.svg b/src/svgs/bravais/oS.svg new file mode 100644 index 0000000..624dc53 --- /dev/null +++ b/src/svgs/bravais/oS.svg @@ -0,0 +1,114 @@ + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/svgs/bravais/oc.svg b/src/svgs/bravais/oc.svg new file mode 100644 index 0000000..2e05c4c --- /dev/null +++ b/src/svgs/bravais/oc.svg @@ -0,0 +1,609 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + b + + a + + + + + + + diff --git a/src/svgs/bravais/op.svg b/src/svgs/bravais/op.svg new file mode 100644 index 0000000..11ef0b2 --- /dev/null +++ b/src/svgs/bravais/op.svg @@ -0,0 +1,602 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + b + + a + + + + + + diff --git a/src/svgs/bravais/tI.svg b/src/svgs/bravais/tI.svg new file mode 100644 index 0000000..6873dba --- /dev/null +++ b/src/svgs/bravais/tI.svg @@ -0,0 +1,110 @@ + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/svgs/bravais/tP.svg b/src/svgs/bravais/tP.svg new file mode 100644 index 0000000..7385d2d --- /dev/null +++ b/src/svgs/bravais/tP.svg @@ -0,0 +1,90 @@ + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/svgs/bravais/tp.svg b/src/svgs/bravais/tp.svg new file mode 100644 index 0000000..aade05e --- /dev/null +++ b/src/svgs/bravais/tp.svg @@ -0,0 +1,602 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + a + a + + + + + + + diff --git a/src/svgs/convertToPdf.sh b/src/svgs/convertToPdf.sh new file mode 100755 index 0000000..d5705ce --- /dev/null +++ b/src/svgs/convertToPdf.sh @@ -0,0 +1,7 @@ +IFS=$'\n' +for d in $(find . -type d); do + mkdir -p "../img/$d" +done +for file in $(find . -type f -name '*.svg'); do + inkscape -o "../img/${file%.*}.pdf" "$file" +done diff --git a/src/svgs/td_gay_lussac.svg b/src/svgs/td_gay_lussac.svg new file mode 100644 index 0000000..fa563c3 --- /dev/null +++ b/src/svgs/td_gay_lussac.svg @@ -0,0 +1,208 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/topo.tex b/src/topo.tex index a8b1c4b..c11d900 100644 --- a/src/topo.tex +++ b/src/topo.tex @@ -1,3 +1,85 @@ \Part{Topo} -\Section{berry_phase} +\Section[ + \eng{Berry phase / Geometric phase} + \ger{Berry-Phase / Geometrische Phase} + ]{berry_phase} + \begin{ttext}[desc] + \eng{ + While adiabatically traversing a closed through the parameter space $R(t)$, the wave function of a systems + may pick up an additional phase $\gamma$.\\ + If $\vec{R}(t)$ varies adiabatically (slowly) and the system is initially in eigenstate $\ket{n}$, + it will stay in an Eigenstate throughout the process (quantum adiabtic theorem). + } + \ger{ + Beim adiabatischem Durchlauf eines geschlossenen Weges durch den Parameterraum $R(t)$ kann die Wellenfunktion eines Systems + eine zusätzliche Phase $\gamma$ erhalten.\\ + Wenn $\vec{R}(t)$ adiabatisch (langsam) variiert und das System anfangs im Eigenzustand $\ket{n}$ ist, + bleibt das System während dem Prozess in einem Eigenzustand (Adiabatisches Theorem der Quantenmechanik). + } + \end{ttext} + \Eng[dynamic_phase]{Dynamical Phase} + \Eng[berry_phase]{Berry Phase} + \Ger[dynamic_phase]{Dynamische Phase} + \Ger[berry_phase]{Berry Phase} + \begin{formula}{schroedinger_equation} + \desc{Schrödinger equation}{}{} + \desc[german]{Schrödinger Gleichung}{}{} + \eq{H(\vec{R}(t)) \ket{n(\vec{R}(t))} = \epsilon(\vec{R}(t)) \ket{n(\vec{R}(t))}} + \end{formula} + \begin{formula}{wavefunction} + \desc{Wave function}{After full adiabtic loop in $\vec{R}$}{} + \desc[german]{Wellenfunktion}{Nach vollem adiabtischem Umlauf in $\vec{R}$}{} + \eq{\ket{\psi_n(t)} = \underbrace{\e^{i\gamma_n(t)}}_\text{\GT{berry_phase}} + \underbrace{\e^{\frac{-i}{\hbar} \int^r \epsilon_n(\vec{R}(t`))\d t}}_\text{\GT{dynamic_phase}} \ket{n(\vec{R}(t))} + } + \end{formula} + + \begin{formula}{berry_connection} + \desc{Berry connection}{}{} + \desc[german]{Berry connection}{}{} + \eq{A_n(\vec{R}) = i\braket{\psi | \nabla_R | \psi}} + \end{formula} + + \begin{formula}{berry_curve} + \desc{Berry curvature}{Gauge invariant}{} + \desc[german]{Berry-Krümmung}{Eichinvariant}{} + \eq{\vec{\Omega}_n = \Grad_R \times A_n(\vec{R})} + \end{formula} + + \begin{formula}{berry_phase} + \desc{Berry phase}{Gauge invariant up to $2\pi$}{} + \desc[german]{Berry-Phase}{Eichinvariant bis auf $2\pi$}{} + \eq{\gamma_n = \oint_C \d \vec{R} \cdot A_n(\vec{R}) = \int_S \d\vec{S} \cdot \vec{\Omega}_n(\vec{R})} + \end{formula} + + \begin{ttext}[chern_number_desc] + \eng{The Berry flux through any 2D closed surface is quantized by the \textbf{Chern number}. + If there is time-reversal symmetry, the Chern-number is 0. + } + \ger{Der Berry-Fluß durch eine geschlossene 2D Fl[cher is quantisiert durch die \textbf{Chernzahl} + Bei erhaltener Zeitumkehrungssymmetrie ist die Chernzahl 0. + } + \end{ttext} + \begin{formula}{chern_number} + \desc{Chern number}{Eg. number of Berry curvature monopoles in the Brillouin zone (then $\vec{R} = \vec{k}$)}{$\vec{S}$ closed surface in $\vec{R}$-space. A \textit{Chern insulator} is a 2D insulator with $C_n \neq 0$} + \desc[german]{Chernuzahl}{Z.B. Anzahl der Berry-Krümmungs-Monopole in der Brilouinzone (dann ist $\vec{R} = \vec{k}$). Ein \textit{Chern-Isolator} ist ein 2D Isolator mit $C_n\neq0$}{$\vec{S}$ geschlossene Fläche im $\vec{R}$-Raum} + \eq{C_n = \frac{1}{2\pi} \oint \d \vec{S}\ \cdot \vec{\Omega}_n(\vec{R})} + \end{formula} + + \TODO{Hall conductance of 2D band insulator (lecture 4 revision)} + \begin{formula}{hall_conductance} + \desc{Hall conductance of a 2D band insulator}{}{} + \desc[german]{Hall-Leitfähigkeit eines 2D Band-Isolators}{}{} + \eq{\vec{\sigma}_{xy} = \sum_n \frac{e^2}{h} \int_\text{\GT{occupied}} \d^2k\, \frac{\Omega_{xy}^n}{2\pi} = \sum_n C_n \frac{e^2}{h}} + \end{formula} + + \begin{ttext} + \eng{A 2D insulator with a non-zero } + + \end{ttext} + + + + + diff --git a/src/translations.tex b/src/translations.tex index 580a850..18f59bc 100644 --- a/src/translations.tex +++ b/src/translations.tex @@ -1,8 +1,27 @@ -\ENG[angle_deg]{Degree} -\GER[angle_deg]{Grad} +\Eng[angle_deg]{Degree} +\Ger[angle_deg]{Grad} -\ENG[angle_rad]{Radian} -\GER[angle_rad]{Rad} +\Eng[angle_rad]{Radian} +\Ger[angle_rad]{Rad} + +\Eng[see_also]{See also} +\Ger[see_also]{Siehe auch} + +\Eng[and_therefore]{and therefore} +\Ger[and_therefore]{und damit} + +\Eng[and_therefore_also]{and therefore also} +\Ger[and_therefore_also]{und damit auch} + +\Eng[time]{Time} +\Ger[time]{Zeit} + +\Eng[ensemble]{Ensemble} +\Ger[ensemble]{Ensemble} + +\Eng[even]{even} +\Ger[even]{gerade} + +\Eng[odd]{odd} +\Ger[odd]{ungerade} -\ENG[see_also]{See also} -\GER[see_also]{Siehe auch}