formelsammlung/scripts/cm_phonons.py

117 lines
4.0 KiB
Python
Raw Normal View History

2025-02-02 22:59:33 +01:00
#!/usr/bin env python3
2025-02-15 16:01:05 +01:00
from formulary import *
2025-03-09 20:25:09 +01:00
from scipy.constants import Boltzmann as kB, hbar
hbar = 1
kB = 1
2025-02-02 22:59:33 +01:00
def fone_atom_basis(q, a, M, C1, C2):
return np.sqrt(4*C1/M * (np.sin(q*a/2)**2 + C2/C1 * np.sin(q*a)**2))
def one_atom_basis():
a = 1.
C1 = 0.25
C2 = 0
M = 1.
qs = np.linspace(-2*np.pi/a, 2*np.pi/a, 300)
omega = fone_atom_basis(qs, a, M, C1, C2)
2025-03-02 00:32:49 +01:00
fig, ax = plt.subplots(figsize=size_formula_normal_default)
2025-02-02 22:59:33 +01:00
ax.set_xlabel(r"$q$")
ax.set_xticks([i * np.pi/a for i in range(-2, 3)])
ax.set_xticklabels([f"${i}\\pi/a$" if i != 0 else "0" for i in range(-2, 3)])
ax.set_ylabel(r"$\omega$ in $\left[4C_1/M\right]$")
yunit = np.sqrt(4*C1/M)
ax.set_ylim(0, yunit+0.1)
ax.set_yticks([0,yunit])
ax.set_yticklabels(["0","1"])
ax.plot(qs, omega)
ax.text(-1.8*np.pi/a, 0.8, "NN\n$C_2=0$", ha='center')
ax.text(0, 0.8, "1. BZ", ha='center')
ax.vlines([-np.pi/a, np.pi/a], ymin=-2, ymax=2, color="black")
ax.grid()
return fig
def ftwo_atom_basis_acoustic(q, a, M1, M2, C):
return np.sqrt(C*(1/M1+1/M2) - C * np.sqrt((1/M1+1/M2)**2 - 4/(M1*M2) * np.sin(q*a/2)**2))
def ftwo_atom_basis_optical(q, a, M1, M2, C):
return np.sqrt(C*(1/M1+1/M2) + C * np.sqrt((1/M1+1/M2)**2 - 4/(M1*M2) * np.sin(q*a/2)**2))
def two_atom_basis():
a = 1.
C = 0.25
M1 = 1.
M2 = 0.7
qs = np.linspace(-2*np.pi/a, 2*np.pi/a, 300)
omega_a = ftwo_atom_basis_acoustic(qs, a, M1, M2, C)
omega_o = ftwo_atom_basis_optical(qs, a, M1, M2, C)
2025-03-02 00:32:49 +01:00
fig, ax = plt.subplots(figsize=size_formula_normal_default)
2025-02-02 22:59:33 +01:00
ax.plot(qs, omega_a, label="acoustic")
ax.plot(qs, omega_o, label="optical")
ax.text(0, 0.8, "1. BZ", ha='center')
ax.vlines([-np.pi/a, np.pi/a], ymin=-2, ymax=2, color="black")
ax.set_ylim(-0.03, 1.03)
ax.set_ylabel(r"$\omega$ in $\left[\sqrt{2C\mu^{-1}}\right]$")
yunit = np.sqrt(2*C*(1/M1+1/M2))
ax.set_ylim(0, yunit+0.1)
ax.set_yticks([0,yunit])
ax.set_yticklabels(["0","1"])
ax.set_xlabel(r"$q$")
ax.set_xticks([i * np.pi/a for i in range(-2, 3)])
ax.set_xticklabels([f"${i}\\pi/a$" if i != 0 else "0" for i in range(-2, 3)])
ax.legend()
ax.grid()
2025-03-09 20:25:09 +01:00
return fig
def fcv_einstein(T, N, omegaE):
ThetaT = hbar * omegaE / (kB * T)
return 3 * N * kB * ThetaT**2 * np.exp(ThetaT) / (np.exp(ThetaT) - 1)**2
def fcv_debye_integral(x):
print(np.exp(x), (np.exp(x) - 1)**2)
return x**4 * np.exp(x) / ((np.exp(x) - 1)**2)
2025-02-02 22:59:33 +01:00
2025-03-09 20:25:09 +01:00
def heat_capacity_einstein_debye():
Ts = np.linspace(0, 10, 500)
omegaD = 1e1
omegaE = 1
# N = 10**23
N = 1
cvs_einstein = fcv_einstein(Ts, N, omegaE)
cvs_debye = np.zeros(Ts.shape, dtype=float)
integral = np.zeros(Ts.shape, dtype=float)
# cvs_debye = [0.0 for _ in range(Ts.shape[0])] # np.zeros(Ts.shape, dtype=float)
# integral = [0.0 for _ in range(Ts.shape[0])] # np.zeros(Ts.shape, dtype=float)
dT = Ts[1] - Ts[0]
dThetaT = kB*dT/(hbar*omegaD)
for i, T in enumerate(Ts):
if i == 0: continue
ThetaT = kB*T/(hbar*omegaD)
dIntegral = fcv_debye_integral(ThetaT) * dThetaT
integral[i] = dIntegral
# print(integral)
integral[i] += integral[i-1]
C_debye = 9 * N * kB * ThetaT**3 * integral[i]
cvs_debye[i] = C_debye
print(i, T, ThetaT, dIntegral, C_debye, integral[i])
fig, ax = plt.subplots(1, 1, figsize=size_formula_normal_default)
ax.set_xlabel("$T$")
ax.set_ylabel("$c_V$")
ax.plot(Ts, cvs_einstein, label="Einstein")
ax.plot(Ts, cvs_debye, label="Debye")
ax.plot(Ts, integral, label="integral")
ax.hlines([3*N*kB], xmin=0, xmax=Ts[-1], colors=COLORSCHEME["fg1"], linestyles="dashed")
# print(cvs_debye)
ax.legend()
2025-02-02 22:59:33 +01:00
return fig
2025-03-09 20:25:09 +01:00
2025-02-02 22:59:33 +01:00
if __name__ == '__main__':
2025-03-09 20:25:09 +01:00
export(one_atom_basis(), "cm_vib_dispersion_one_atom_basis")
export(two_atom_basis(), "cm_vib_dispersion_two_atom_basis")
export(heat_capacity_einstein_debye(), "cm_vib_heat_capacity_einstein_debye")
print(kB)