#!/usr/bin env python3 from formulary import * from scipy.constants import Boltzmann as kB, hbar hbar = 1 kB = 1 def fone_atom_basis(q, a, M, C1, C2): return np.sqrt(4*C1/M * (np.sin(q*a/2)**2 + C2/C1 * np.sin(q*a)**2)) def one_atom_basis(): a = 1. C1 = 0.25 C2 = 0 M = 1. qs = np.linspace(-2*np.pi/a, 2*np.pi/a, 300) omega = fone_atom_basis(qs, a, M, C1, C2) fig, ax = plt.subplots(figsize=size_formula_normal_default) ax.set_xlabel(r"$q$") ax.set_xticks([i * np.pi/a for i in range(-2, 3)]) ax.set_xticklabels([f"${i}\\pi/a$" if i != 0 else "0" for i in range(-2, 3)]) ax.set_ylabel(r"$\omega$ in $\left[4C_1/M\right]$") yunit = np.sqrt(4*C1/M) ax.set_ylim(0, yunit+0.1) ax.set_yticks([0,yunit]) ax.set_yticklabels(["0","1"]) ax.plot(qs, omega) ax.text(-1.8*np.pi/a, 0.8, "NN\n$C_2=0$", ha='center') ax.text(0, 0.8, "1. BZ", ha='center') ax.vlines([-np.pi/a, np.pi/a], ymin=-2, ymax=2, color="black") ax.grid() return fig def ftwo_atom_basis_acoustic(q, a, M1, M2, C): return np.sqrt(C*(1/M1+1/M2) - C * np.sqrt((1/M1+1/M2)**2 - 4/(M1*M2) * np.sin(q*a/2)**2)) def ftwo_atom_basis_optical(q, a, M1, M2, C): return np.sqrt(C*(1/M1+1/M2) + C * np.sqrt((1/M1+1/M2)**2 - 4/(M1*M2) * np.sin(q*a/2)**2)) def two_atom_basis(): a = 1. C = 0.25 M1 = 1. M2 = 0.7 qs = np.linspace(-2*np.pi/a, 2*np.pi/a, 300) omega_a = ftwo_atom_basis_acoustic(qs, a, M1, M2, C) omega_o = ftwo_atom_basis_optical(qs, a, M1, M2, C) fig, ax = plt.subplots(figsize=size_formula_normal_default) ax.plot(qs, omega_a, label="acoustic") ax.plot(qs, omega_o, label="optical") ax.text(0, 0.8, "1. BZ", ha='center') ax.vlines([-np.pi/a, np.pi/a], ymin=-2, ymax=2, color="black") ax.set_ylim(-0.03, 1.03) ax.set_ylabel(r"$\omega$ in $\left[\sqrt{2C\mu^{-1}}\right]$") yunit = np.sqrt(2*C*(1/M1+1/M2)) ax.set_ylim(0, yunit+0.1) ax.set_yticks([0,yunit]) ax.set_yticklabels(["0","1"]) ax.set_xlabel(r"$q$") ax.set_xticks([i * np.pi/a for i in range(-2, 3)]) ax.set_xticklabels([f"${i}\\pi/a$" if i != 0 else "0" for i in range(-2, 3)]) ax.legend() ax.grid() return fig def fcv_einstein(T, N, omegaE): ThetaT = hbar * omegaE / (kB * T) return 3 * N * kB * ThetaT**2 * np.exp(ThetaT) / (np.exp(ThetaT) - 1)**2 def fcv_debye_integral(x): print(np.exp(x), (np.exp(x) - 1)**2) return x**4 * np.exp(x) / ((np.exp(x) - 1)**2) def heat_capacity_einstein_debye(): Ts = np.linspace(0, 10, 500) omegaD = 1e1 omegaE = 1 # N = 10**23 N = 1 cvs_einstein = fcv_einstein(Ts, N, omegaE) cvs_debye = np.zeros(Ts.shape, dtype=float) integral = np.zeros(Ts.shape, dtype=float) # cvs_debye = [0.0 for _ in range(Ts.shape[0])] # np.zeros(Ts.shape, dtype=float) # integral = [0.0 for _ in range(Ts.shape[0])] # np.zeros(Ts.shape, dtype=float) dT = Ts[1] - Ts[0] dThetaT = kB*dT/(hbar*omegaD) for i, T in enumerate(Ts): if i == 0: continue ThetaT = kB*T/(hbar*omegaD) dIntegral = fcv_debye_integral(ThetaT) * dThetaT integral[i] = dIntegral # print(integral) integral[i] += integral[i-1] C_debye = 9 * N * kB * ThetaT**3 * integral[i] cvs_debye[i] = C_debye print(i, T, ThetaT, dIntegral, C_debye, integral[i]) fig, ax = plt.subplots(1, 1, figsize=size_formula_normal_default) ax.set_xlabel("$T$") ax.set_ylabel("$c_V$") ax.plot(Ts, cvs_einstein, label="Einstein") ax.plot(Ts, cvs_debye, label="Debye") ax.plot(Ts, integral, label="integral") ax.hlines([3*N*kB], xmin=0, xmax=Ts[-1], colors=COLORSCHEME["fg1"], linestyles="dashed") # print(cvs_debye) ax.legend() return fig if __name__ == '__main__': export(one_atom_basis(), "cm_vib_dispersion_one_atom_basis") export(two_atom_basis(), "cm_vib_dispersion_two_atom_basis") export(heat_capacity_einstein_debye(), "cm_vib_heat_capacity_einstein_debye") print(kB)