teng-ml/teng_ml/main.py

129 lines
5.2 KiB
Python
Raw Normal View History

2023-04-27 01:53:47 +02:00
if __name__ == "__main__":
if __package__ is None:
# make relative imports work as described here: https://peps.python.org/pep-0366/#proposed-change
2023-05-26 14:01:15 +02:00
__package__ = "teng_ml"
2023-04-27 01:53:47 +02:00
import sys
from os import path
filepath = path.realpath(path.abspath(__file__))
sys.path.insert(0, path.dirname(path.dirname(filepath)))
2023-05-10 22:44:14 +02:00
from sys import exit
2023-04-28 16:03:31 +02:00
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
2023-05-10 22:44:14 +02:00
import itertools
2023-05-07 21:40:39 +02:00
import time
2023-05-10 22:44:14 +02:00
from os import makedirs, path
2023-04-28 16:03:31 +02:00
2023-05-05 13:16:39 +02:00
from .util.transform import ConstantInterval, Normalize
2023-04-28 16:03:31 +02:00
from .util.data_loader import load_datasets, LabelConverter
2023-05-10 22:44:14 +02:00
from .util.split import DataSplitter
2023-05-07 21:40:39 +02:00
from .util.settings import MLSettings
2023-05-10 22:44:14 +02:00
from .rnn.rnn import RNN
from .rnn.training import train_validate_save, select_device
2023-04-27 01:53:47 +02:00
2023-04-28 16:03:31 +02:00
def test_interpol():
file = "/home/matth/data/2023-04-27_glass_8.2V_179mm000.csv"
2023-04-27 01:53:47 +02:00
# file = "/home/matth/data/test001.csv"
df = pd.read_csv(file)
array = df.to_numpy()
print(ConstantInterval.get_average_interval(array[:,0]))
transformer = ConstantInterval(0.05)
2023-05-05 13:16:39 +02:00
interp_array = transformer(array[:,[0,2]])
2023-04-27 01:53:47 +02:00
fig1, ax1 = plt.subplots()
ax1.plot(interp_array[:,0], interp_array[:,1], color="r", label="Interpolated")
ax1.scatter(array[:,0], array[:,2], color="g", label="Original")
ax1.legend()
2023-05-10 22:44:14 +02:00
# plt.show()
2023-04-27 01:53:47 +02:00
2023-04-28 16:03:31 +02:00
if __name__ == "__main__":
2023-05-26 14:01:15 +02:00
labels = LabelConverter(["white_foam", "glass", "Kapton", "bubble_wrap", "cloth", "black_foam"])
2023-05-10 22:44:14 +02:00
models_dir = "/home/matth/Uni/TENG/models" # where to save models, settings and results
if not path.isdir(models_dir):
makedirs(models_dir)
data_dir = "/home/matth/Uni/TENG/data"
2023-04-28 16:03:31 +02:00
2023-05-05 18:26:44 +02:00
2023-05-10 22:44:14 +02:00
# Test with
num_layers = [ 3 ]
hidden_size = [ 8 ]
bidirectional = [ True ]
2023-05-05 13:16:39 +02:00
t_const_int = ConstantInterval(0.01)
t_norm = Normalize(0, 1)
2023-05-10 22:44:14 +02:00
transforms = [[ t_const_int ]] #, [ t_const_int, t_norm ]]
batch_sizes = [ 64 ] # , 16]
splitters = [ DataSplitter(100) ]
num_epochs = [ 80 ]
# num_layers=1,
# hidden_size=1,
# bidirectional=True,
# optimizer=None,
# scheduler=None,
# loss_func=None,
# transforms=[],
# splitter=None,
# num_epochs=10,
# batch_size=5,
args = [num_layers, hidden_size, bidirectional, [None], [None], [None], transforms, splitters, num_epochs, batch_sizes]
# create settings for every possible combination
settings = [
MLSettings(1, *params, labels) for params in itertools.product(*args)
]
loss_func = nn.CrossEntropyLoss()
optimizers = [
lambda model: torch.optim.Adam(model.parameters(), lr=0.03),
# lambda model: torch.optim.Adam(model.parameters(), lr=0.25),
# lambda model: torch.optim.Adam(model.parameters(), lr=0.50),
]
schedulers = [
2023-05-26 14:01:15 +02:00
# lambda optimizer, st: torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9),
2023-05-10 22:44:14 +02:00
lambda optimizer, st: torch.optim.lr_scheduler.StepLR(optimizer, step_size=st.num_epochs // 10, gamma=0.40, verbose=False),
# lambda optimizer, st: torch.optim.lr_scheduler.StepLR(optimizer, step_size=st.num_epochs // 10, gamma=0.75, verbose=False),
]
n_total = len(settings) * len(optimizers) * len(schedulers)
print(f"Testing {n_total} possible configurations")
# scheduler2 =
def create_model(st, optimizer_f, scheduler_f):
model=RNN(input_size=st.num_features, hidden_size=st.hidden_size, num_layers=st.num_layers, num_classes=len(labels), bidirectional=st.bidirectional)
optimizer = optimizer_f(model)
scheduler = scheduler_f(optimizer, st)
return model, optimizer, scheduler
t_begin = time.time()
n = 1
for o in range(len(optimizers)):
for s in range(len(schedulers)):
for i in range(len(settings)):
st = settings[i]
# print(st.get_name())
train_set, test_set = load_datasets(data_dir, labels, voltage=8.2, transforms=st.transforms, split_function=st.splitter, train_to_test_ratio=0.7, random_state=42, num_workers=4)
generator = torch.manual_seed(42)
# train_loader = iter(DataLoader(train_set))
# test_loader = iter(DataLoader(test_set))
train_loader = DataLoader(train_set, batch_size=st.batch_size, shuffle=True, generator=generator)
test_loader = DataLoader(test_set, batch_size=st.batch_size, shuffle=True, generator=generator)
print(f"Testing {n}/{n_total}: (o={o}, s={s}, i={i})")
model, optimizer, scheduler = create_model(st, optimizers[o], schedulers[s])
device = select_device(force_device="cpu")
try:
2023-05-26 14:01:15 +02:00
train_validate_save(model, optimizer, scheduler, loss_func, train_loader, test_loader, st, models_dir, print_interval=1)
2023-05-10 22:44:14 +02:00
except KeyboardInterrupt:
if input("Cancelled current training. Quit? (q/*): ") == "q":
t_end = time.time()
print(f"Testing took {t_end - t_begin:.2f}s = {(t_end-t_begin)/60:.1f}m")
exit()
n += 1
2023-05-05 18:26:44 +02:00
2023-05-10 22:44:14 +02:00
t_end = time.time()
print(f"Testing took {t_end - t_begin:.2f}s = {(t_end-t_begin)/60:.1f}m")
2023-04-28 16:03:31 +02:00