added rnn
This commit is contained in:
parent
82ed62710f
commit
0b794d1008
@ -11,10 +11,10 @@ import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.utils.rnn as rnn_utils
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
from .util.transform import ConstantInterval
|
||||
from .util.transform import ConstantInterval, Normalize
|
||||
from .util.data_loader import load_datasets, LabelConverter
|
||||
|
||||
def test_interpol():
|
||||
@ -24,7 +24,7 @@ def test_interpol():
|
||||
array = df.to_numpy()
|
||||
print(ConstantInterval.get_average_interval(array[:,0]))
|
||||
transformer = ConstantInterval(0.05)
|
||||
interp_array = transformer(array[:,0], array[:,2])
|
||||
interp_array = transformer(array[:,[0,2]])
|
||||
|
||||
fig1, ax1 = plt.subplots()
|
||||
ax1.plot(interp_array[:,0], interp_array[:,1], color="r", label="Interpolated")
|
||||
@ -42,15 +42,22 @@ if __name__ == "__main__":
|
||||
)
|
||||
print(f"Using device: {device}")
|
||||
|
||||
labels = LabelConverter(["foam", "glass", "kapton", "foil"])
|
||||
train_set, test_set = load_datasets("/home/matth/data", labels, voltage=8.2)
|
||||
labels = LabelConverter(["foam", "glass", "kapton", "foil", "cloth", "rigid_foam"])
|
||||
t_const_int = ConstantInterval(0.01)
|
||||
t_norm = Normalize(0, 1)
|
||||
train_set, test_set = load_datasets("/home/matth/Uni/TENG/testdata", labels, voltage=8.2, transforms=[t_const_int], train_to_test_ratio=0.7, random_state=42)
|
||||
|
||||
# train_loader = iter(DataLoader(train_set))
|
||||
# test_loader = iter(DataLoader(test_set))
|
||||
# sample = next(train_loader)
|
||||
# print(sample)
|
||||
train_loader = iter(DataLoader(train_set))
|
||||
test_loader = iter(DataLoader(test_set))
|
||||
train_loader = iter(DataLoader(train_set, batch_size=3, shuffle=True))
|
||||
test_loader = iter(DataLoader(test_set, batch_size=3, shuffle=True))
|
||||
|
||||
sample = next(train_loader)
|
||||
print(sample)
|
||||
|
||||
feature_count = 1
|
||||
|
||||
|
||||
class RNN(nn.Module):
|
||||
def __init__(self, input_size, hidden_size, num_layers, num_classes, if_bidirectional):
|
||||
super(RNN, self).__init__()
|
||||
@ -58,6 +65,7 @@ if __name__ == "__main__":
|
||||
self.hidden_size = hidden_size
|
||||
self.if_bidirectional = if_bidirectional
|
||||
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=if_bidirectional)
|
||||
# x = (batch_size, sequence, feature)
|
||||
|
||||
if if_bidirectional == True:
|
||||
self.fc = nn.Linear(hidden_size * 2, num_classes)
|
||||
@ -66,14 +74,21 @@ if __name__ == "__main__":
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
print(f"forward pass")
|
||||
D = 2 if self.if_bidirectional == True else 1
|
||||
Batch = x.batch_sizes[0]
|
||||
|
||||
h0 = torch.zeros(D * self.num_layers, Batch, self.hidden_size).to(device)
|
||||
c0 = torch.zeros(D * self.num_layers, Batch, self.hidden_size).to(device)
|
||||
print(f"x({x.shape})={x}")
|
||||
batch_size = x.shape[1]
|
||||
print(f"batch_size={batch_size}")
|
||||
|
||||
h0 = torch.zeros(D * self.num_layers, batch_size, self.hidden_size).to(device)
|
||||
print(f"h0={h0}")
|
||||
c0 = torch.zeros(D * self.num_layers, batch_size, self.hidden_size).to(device)
|
||||
x.to(device)
|
||||
_, (h_n, _) = self.lstm(x, (h0, c0))
|
||||
final_state = h_n.view(self.num_layers, D, Batch, self.hidden_size)[-1] # num_layers, num_directions, batch, hidden_size
|
||||
print(f"h_n={h_n}")
|
||||
final_state = h_n.view(self.num_layers, D, batch_size, self.hidden_size)[-1] # num_layers, num_directions, batch, hidden_size
|
||||
print(f"final_state={final_state}")
|
||||
|
||||
if D == 1:
|
||||
X = final_state.squeeze()
|
||||
@ -81,12 +96,14 @@ if __name__ == "__main__":
|
||||
h_1, h_2 = final_state[0], final_state[1] # forward & backward pass
|
||||
#X = h_1 + h_2 # Add both states
|
||||
X = torch.cat((h_1, h_2), 1) # Concatenate both states, X-size: (Batch, hidden_size * 2)
|
||||
|
||||
else:
|
||||
raise ValueError("D must be 1 or 2")
|
||||
output = self.fc(X) # fully-connected layer
|
||||
print(f"out={output}")
|
||||
|
||||
return output
|
||||
|
||||
model = RNN(input_size = 1, hidden_size = 8, num_layers = 3, num_classes = 18, if_bidirectional = True).to(device)
|
||||
model=RNN(input_size=1, hidden_size=8, num_layers=3, num_classes=18, if_bidirectional=True).to(device)
|
||||
loss_func = torch.nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)
|
||||
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95)
|
||||
@ -99,34 +116,47 @@ if __name__ == "__main__":
|
||||
train_total = 0
|
||||
val_correct = 0
|
||||
val_total = 0
|
||||
for (x, y), length in train_loader:
|
||||
for data, y in train_loader:
|
||||
# data = batch, seq, features
|
||||
print(ep, "Train")
|
||||
print(f"data({data.shape})={data}")
|
||||
x = data[:,:,2] # select voltage data
|
||||
print(f"x({x.shape})={x}")
|
||||
length = torch.tensor([x.shape[1] for _ in range(x.shape[0])], dtype=torch.int64)
|
||||
print(f"length({length.shape})={length}")
|
||||
batch_size = x.shape[0]
|
||||
v = x.view(batch_size, -1, nFeatrue)
|
||||
data = rnn_utils.pack_padded_sequence(v.type(torch.FloatTensor), length, batch_first=True).to(device)
|
||||
print(f"batch_size={batch_size}")
|
||||
v = x.view(batch_size, -1, feature_count)
|
||||
data = rnn_utils.pack_padded_sequence(v.type(torch.FloatTensor), length, batch_first=True).to(device)[0]
|
||||
# print(data.batch_sizes[0])
|
||||
# print(data)
|
||||
out = model(data)
|
||||
loss = loss_func(out, y)
|
||||
loss = loss_func(out, y)
|
||||
# print(loss)
|
||||
|
||||
optimizer.zero_grad() # clear gradients for next train
|
||||
loss.backward() # backpropagation, compute gradients
|
||||
optimizer.step() # apply gradients
|
||||
|
||||
|
||||
predicted = torch.max(torch.nn.functional.softmax(out), 1)[1]
|
||||
train_total += y.size(0)
|
||||
train_correct += (predicted == y).sum().item()
|
||||
|
||||
|
||||
scheduler.step()
|
||||
|
||||
for (x, y), length in test_loader:
|
||||
|
||||
for data, y in test_loader:
|
||||
print(ep, "Test")
|
||||
x = data[:,2]
|
||||
print(f"x({x.shape})={x}")
|
||||
length = torch.tensor(x.shape[0], dtype=torch.int64)
|
||||
print(f"length={length}")
|
||||
batch_size = x.shape[0]
|
||||
v = x.view(batch_size, -1, nFeatrue)
|
||||
print(f"batch_size={batch_size}")
|
||||
v = x.view(batch_size, -1, feature_count)
|
||||
data = rnn_utils.pack_padded_sequence(v.type(torch.FloatTensor), length, batch_first=True).to(device)
|
||||
out = model(data)
|
||||
loss = loss_func(out, y)
|
||||
|
||||
loss = loss_func(out, y)
|
||||
|
||||
predicted = torch.max(torch.nn.functional.softmax(out), 1)[1]
|
||||
val_total += y.size(0)
|
||||
val_correct += (predicted == y).sum().item()
|
||||
|
@ -31,7 +31,7 @@ class RNN(nn.Module):
|
||||
X = final_state.squeeze()
|
||||
elif D == 2:
|
||||
h_1, h_2 = final_state[0], final_state[1] # forward & backward pass
|
||||
#X = h_1 + h_2 # Add both states
|
||||
# X = h_1 + h_2 # Add both states
|
||||
X = torch.cat((h_1, h_2), 1) # Concatenate both states, X-size: (Batch, hidden_size * 2)
|
||||
|
||||
output = self.fc(X) # fully-connected layer
|
||||
|
Binary file not shown.
@ -60,18 +60,26 @@ class Dataset:
|
||||
"""
|
||||
Store the whole dataset, compatible with torch.data.Dataloader
|
||||
"""
|
||||
def __init__(self, datasamples):
|
||||
def __init__(self, datasamples, transforms=None):
|
||||
self.datasamples = datasamples
|
||||
self.transforms = transforms
|
||||
# self.labels = [ d.label_vec for d in datasamples ]
|
||||
# self.data = [ d.get_data() for d in datasamples ]
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self.datasamples[index].get_data(), self.datasamples[index].label_vec
|
||||
data, label = self.datasamples[index].get_data(), self.datasamples[index].label_vec
|
||||
if type(self.transforms) == list:
|
||||
for t in self.transforms:
|
||||
data = t(data)
|
||||
elif self.transforms:
|
||||
data = self.transforms(data)
|
||||
# TODO
|
||||
return data[:400], label
|
||||
|
||||
def __len__(self):
|
||||
return len(self.datasamples)
|
||||
|
||||
def load_datasets(datadir, labels: LabelConverter, voltage=None, train_to_test_ratio=0.7, random_state=None):
|
||||
def load_datasets(datadir, labels: LabelConverter, transforms=None, voltage=None, train_to_test_ratio=0.7, random_state=None):
|
||||
"""
|
||||
load all data from datadir that are in the format: yyyy-mm-dd_label_x.xV_xxxmm.csv
|
||||
"""
|
||||
@ -90,6 +98,6 @@ def load_datasets(datadir, labels: LabelConverter, voltage=None, train_to_test_r
|
||||
|
||||
datasamples.append(Datasample(*match.groups(), labels.get_one_hot(label), datadir + "/" + file))
|
||||
train_samples, test_samples = train_test_split(datasamples, train_size=train_to_test_ratio, shuffle=True, random_state=random_state)
|
||||
train_dataset = Dataset(train_samples)
|
||||
test_dataset = Dataset(test_samples)
|
||||
train_dataset = Dataset(train_samples, transforms=transforms)
|
||||
test_dataset = Dataset(test_samples, transforms=transforms)
|
||||
return train_dataset, test_dataset
|
||||
|
@ -25,20 +25,24 @@ class ConstantInterval:
|
||||
"""
|
||||
Interpolate the data to have a constant interval / sample rate,
|
||||
so that 1 index step is always equivalent to a certain time step
|
||||
Expects: timestamps, idata, vdata
|
||||
"""
|
||||
def __init__(self, interval):
|
||||
self.interval = interval
|
||||
|
||||
def __call__(self, timestamps, data):
|
||||
interp = interp1d(timestamps, data)
|
||||
new_stamps = np.arange(0, timestamps[-1], self.interval)
|
||||
print(f"old=({timestamps.size}) {timestamps}, new=({new_stamps.size}){new_stamps}")
|
||||
def __call__(self, a):
|
||||
"""
|
||||
array: [timestamps, data1, data2...]
|
||||
"""
|
||||
timestamps = a[:,0]
|
||||
new_stamps = np.arange(timestamps[0], timestamps[-1], self.interval)
|
||||
ret = new_stamps
|
||||
for i in range(1, a.shape[1]): #
|
||||
interp = interp1d(timestamps, a[:,i])
|
||||
new_vals = interp(new_stamps)
|
||||
ret = np.vstack((ret, new_vals))
|
||||
return ret.T
|
||||
|
||||
new_vals = interp(new_stamps)
|
||||
return np.vstack((new_stamps, new_vals)).T
|
||||
@staticmethod
|
||||
|
||||
def get_average_interval(timestamps):
|
||||
avg_interval = np.average([ timestamps[i] - timestamps[i-1] for i in range(1, len(timestamps))])
|
||||
return avg_interval
|
||||
|
Loading…
x
Reference in New Issue
Block a user