formelsammlung/src/cm/optics.tex
2025-03-29 10:19:49 +01:00

162 lines
8.9 KiB
TeX

\Section{optics}
\desc{Optics}{}{}
\desc[german]{Optik}{}{}
\Subsection{insulator}
\desc{Dielectrics and Insulators}{}{}
\desc[german]{Dielektrika und Isolatoren}{}{}
\begin{formula}{eom}
\desc{Equation of motion}{Nuclei remain quasi static, electrons respond to field}{$u$ \GT{dislocation}, $\gamma = \frac{1}{\tau}$ \GT{dampening}, \QtyRef{momentum_relaxation_time}, \QtyRef{electric_field}, \ConstRef{charge}, $\omega_0$ \GT{resonance_frequency}, \ConstRef{electron_mass}}
\desc[german]{Bewegungsgleichung}{Kerne bleiben quasi-statisch, Elektronen beeinflusst durch äußeres Feld}{}
\eq{m_\txe \odv{u}{t^2} = -e\E - m_\txe \gamma \pdv{u}{t} - m_\txe\omega_0^2 u}
\end{formula}
\begin{formula}{lorentz}
\desc{Drude-Lorentz model}{Dipoles treated as classical harmonic oscillators}{$N$ number of oscillators (atoms), $\omega_0$ resonance frequency }
\desc[german]{Drude-Lorentz-Model}{Dipole werden als klassische harmonische Oszillatoren behandelt}{}
\eq{\epsilon_\txr(\omega) = 1+\chi + \frac{Ne^2}{\epsilon_0 m_\txe} \left(\frac{1}{\omega^2-\omega^2-i\gamma\omega}\right)}
\eq{
\complex{\epsilon}_\txr(0) &\to 1+\chi + \frac{Ne^2}{\epsilon_0 m_\txe \omega_0^2} \\
\complex{\epsilon}_\txr(\infty) &= \epsilon_\infty = 1+\chi
}
\fig{img/cm_optics_absorption_dielectric.pdf}
\end{formula}
\begin{formula}{clausius-mosotti}
\desc{Clausius-Mosotti relation}{for dense optical media: local field from external contribution + field from other dipoles}{$\chi_\txA$ \qtyRef[susecptibility]{susecptibility} of one atom, \QtyRef{relative_permittivity}, $N$ number of dipoles (atoms)}
\desc[german]{Clausius-Mosotti Beziehung}{}{}
\eq{\frac{(\epsilon_\txr - 1)}{\epsilon_\txr + 2} = \frac{N\chi_\txA}{3}}
\end{formula}
\Subsection{metal}
\desc{Metals and doped semiconductors}{}{}
\desc[german]{Metalle und gedopte Halbleiter}{}{}
\begin{formula}{plasma_frequency}
\desc{Plasma frequency}{For metals and doped semiconductors.}{$\epsilon_\infty$ high frequency \qtyRef[permittivity]{permittivity}, \ConstRef{vacuum_permittivity}, \QtyRef{effetive_mass}, \ConstRef{charge}, $n$ \qtyRef{charge_carrier_density}}
\desc[german]{Plasmafrequenz}{In Metallen dotierten Halbleitern}{$\epsilon_\infty$ Hochfrequenz-\qtyRef{permittivity}, \ConstRef{vacuum_permittivity}, \QtyRef{effetive_mass}, \ConstRef{charge}, $n$ \qtyRef{charge_carrier_density}}
\eq{\omega_\txp = \left(\frac{en^2}{\epsilon_0 \epsilon_\infty \meff}\right)^{1/2}}
\ttxt{\eng{
Characteristic frequency for collective motion in external field.\\
For free charge carriers: perfect screening (reflection) of the external field for $\omega < \omega_\txp$.
}\ger{
Charakteristische Frequenz der kollektiven Bewegung im externen Feld.\\
Für freie Ladungsträger: perfekte Abschirmung (Reflektion) des äußeren Feldes bei $\omega<\omega_\txp$
}}
\end{formula}
\begin{formula}{dielectric_function}
\desc{\qtyRef{complex_dielectric_function}}{for a free electon plasma}{$\omega_\txp$ \fRef{::plasma_frequency}, $\omega_0$ \GT{resonance_frequency}, $\gamma = \frac{1}{\tau}$ \GT{dampening}, \QtyRef{momentum_relaxation_time}}
\desc[german]{}{für ein Plasma aus freien Elektronen}{}
\eq{
\complex{\epsilon}_\txr(\omega) = 1 - \frac{\omega_\txp}{\omega_0^2 + i\gamma\omega} \\
}
\end{formula}
\begin{formula}{absorption}
\desc{Free charge carrier absorption}{Exemplary values}{$\omega_\txp$ \fRef{::plasma_frequency}, \QtyRef{refraction_index_real}, \QtyRef{refraction_index_complex}, \QtyRef{absorption_coefficient}, $R$ \fRef{ed:optics:reflectivity}}
\desc[german]{Freie Ladungsträger}{Beispielwerte}{}
\fig{img/cm_optics_absorption_free_electrons.pdf}
\TODO{Include equations? aus adv sc ex 10/1c}
\end{formula}
\TODO{relation to AC and DC conductivity}
\Subsubsection{sc_interband}
\desc{Interband transitions in semiconductors}{}{}
% \desc[german]
\begin{formula}{selection}
\desc{Selection rule}{}{}
\desc[german]{Auswahlregel}{}{}
\ttxt{\eng{
Parity of wave functions must be opposite for the transition to occur
}\ger{
Die Wellenfunktionen müssen unterschiedliche Parität haben, damit der Übergang möglich ist
}}
\end{formula}
\begin{formulagroup}{transition_rate}
\desc{Transition rate}{}{}
\desc[german]{Übergangsrate}{}{}
\begin{formula}{absorption}
\desc{Absorption}{}{}
\desc[german]{Absorption}{}{}
\eq{W_{1\to2} = \frac{2\pi}{\hbar} \abs{M_{12}}^2 \delta(E_1-E_2+\hbar\omega)}
\end{formula}
\begin{formula}{emission}
\desc{Emission}{}{}
\desc[german]{Emission}{}{}
\eq{W_{2\to1} = \frac{2\pi}{\hbar} \abs{M_{12}}^2 \delta(E_1-E_2-\hbar\omega)}
\end{formula}
\TODO{stimulated vs spontaneous}
\TODO{matrix element stuff, kane energy}
\begin{formula}{possible_matrix_elements}
\desc{Matrix elements}{}{}
\desc[german]{}{}{}
\eq{\Braket{p_x|\hat{p}_x|s} = \Braket{p_y|\hat{p}_y|s} = \Braket{p_z|\hat{p}_z|s} \neq 0}
\TODO{heavy holes, light holes}
\end{formula}
\end{formulagroup}
\begin{formula}{jdos}
\desc{Joint density of states}{}{}
% \desc[german]{}{}{}
\ttxt{\eng{
Desribes the density of states of an optical transition by combining the electron states in the valence band and hole states in the conduction band.
}\ger{
Beschreibt die Zustandsdichte eines optischen Übergangs durch kombinieren der Elektronenzustände im Valenzband und der Lochzustände im Leitungsband.
}}
\eq{}
\end{formula}
\begin{formula}{absorption_coefficient_direct}
\desc{\qtyRef{absorption_coefficient}}{For a direct semiconductor}{\QtyRef{angular_frequency}, \QtyRef{refraction_index_real}, \QtyRef{permittivity_complex}}
\desc[german]{}{Für direkte Halbleiter}{}
\eq{
\alpha &= \frac{\omega}{\nreal c} \epsreal \\
\left(\hbar\omega\alpha\right)^2 \propto \hbar\omega-\Egap
}
\end{formula}
\begin{formula}{absorption_coefficient_indirect}
\desc{\qtyRef{absorption_coefficient}}{For an indirect semiconductor}{\QtyRef{angular_frequency}, $E_\txp$ phonon energy, $E_\text{ig}$ indirect gap}
\desc[german]{}{Für indirekte Halbleiter}{\QtyRef{angular_frequency}, $E_\txp$ Phononenergie, $E_\text{ig}$ indirekte Bandlücke}
\eq{
\sqrt{\hbar\omega\alpha} \propto \hbar\omega \mp E_\txp - E_\text{ig}
}
\end{formula}
\begin{formulagroup}{quantum_well}
\desc{Interband absorption in quantum wells}{}{}
\desc[german]{Interbandabsorption in Quantum Wells}{}{}
\TODO{TODO}
\end{formulagroup}
\begin{formulagroup}{exciton}
\desc{\fRef{cm:sc:exciton} absorption}{}{\QtyRef{band_gap}, $E_\text{binding}$ \fRef{cm:sc:exciton:binding_energy}}
\desc[german]{\fRef{cm:sc:exciton} Absorption}{}{}
\begin{formula}{absorption}
\desc{Absorption}{}{}
\desc[german]{Absorption}{}{}
\ttxt{\eng{
Due to binding energy, exciton absorption can happen below the \absRef[band gap energy]{band_gap} \Rightarrow Sharp absorption peak below $\Egap$.
At high (room) temperatures, excitons are ionized by collisions with phonons.
}\ger{
Aufgrund der Bindungsenergie kann die Exzitonenabsorption unterhalb der \absRef[Bandlückenenergie]{band_gap} auftreten \Rightarrow scharfer Absorptionspeak unterhalb von $\Egap$.
Bei hohen (Raum) Temperaturen werden Exzitons durch Kollisionen mit Phononen ionisiert.
}}
\eq{\hbar\omega = \Egap - E_\text{binding}}
\end{formula}
\end{formulagroup}
\TODO{dipole approximation}