\Section{optics} \desc{Optics}{}{} \desc[german]{Optik}{}{} \Subsection{insulator} \desc{Dielectrics and Insulators}{}{} \desc[german]{Dielektrika und Isolatoren}{}{} \begin{formula}{eom} \desc{Equation of motion}{Nuclei remain quasi static, electrons respond to field}{$u$ \GT{dislocation}, $\gamma = \frac{1}{\tau}$ \GT{dampening}, \QtyRef{momentum_relaxation_time}, \QtyRef{electric_field}, \ConstRef{charge}, $\omega_0$ \GT{resonance_frequency}, \ConstRef{electron_mass}} \desc[german]{Bewegungsgleichung}{Kerne bleiben quasi-statisch, Elektronen beeinflusst durch äußeres Feld}{} \eq{m_\txe \odv{u}{t^2} = -e\E - m_\txe \gamma \pdv{u}{t} - m_\txe\omega_0^2 u} \end{formula} \begin{formula}{lorentz} \desc{Drude-Lorentz model}{Dipoles treated as classical harmonic oscillators}{$N$ number of oscillators (atoms), $\omega_0$ resonance frequency } \desc[german]{Drude-Lorentz-Model}{Dipole werden als klassische harmonische Oszillatoren behandelt}{} \eq{\epsilon_\txr(\omega) = 1+\chi + \frac{Ne^2}{\epsilon_0 m_\txe} \left(\frac{1}{\omega^2-\omega^2-i\gamma\omega}\right)} \eq{ \complex{\epsilon}_\txr(0) &\to 1+\chi + \frac{Ne^2}{\epsilon_0 m_\txe \omega_0^2} \\ \complex{\epsilon}_\txr(\infty) &= \epsilon_\infty = 1+\chi } \fig{img/cm_optics_absorption_dielectric.pdf} \end{formula} \begin{formula}{clausius-mosotti} \desc{Clausius-Mosotti relation}{for dense optical media: local field from external contribution + field from other dipoles}{$\chi_\txA$ \qtyRef[susecptibility]{susecptibility} of one atom, \QtyRef{relative_permittivity}, $N$ number of dipoles (atoms)} \desc[german]{Clausius-Mosotti Beziehung}{}{} \eq{\frac{(\epsilon_\txr - 1)}{\epsilon_\txr + 2} = \frac{N\chi_\txA}{3}} \end{formula} \Subsection{metal} \desc{Metals and doped semiconductors}{}{} \desc[german]{Metalle und gedopte Halbleiter}{}{} \begin{formula}{plasma_frequency} \desc{Plasma frequency}{For metals and doped semiconductors.}{$\epsilon_\infty$ high frequency \qtyRef[permittivity]{permittivity}, \ConstRef{vacuum_permittivity}, \QtyRef{effetive_mass}, \ConstRef{charge}, $n$ \qtyRef{charge_carrier_density}} \desc[german]{Plasmafrequenz}{In Metallen dotierten Halbleitern}{$\epsilon_\infty$ Hochfrequenz-\qtyRef{permittivity}, \ConstRef{vacuum_permittivity}, \QtyRef{effetive_mass}, \ConstRef{charge}, $n$ \qtyRef{charge_carrier_density}} \eq{\omega_\txp = \left(\frac{en^2}{\epsilon_0 \epsilon_\infty \meff}\right)^{1/2}} \ttxt{\eng{ Characteristic frequency for collective motion in external field.\\ For free charge carriers: perfect screening (reflection) of the external field for $\omega < \omega_\txp$. }\ger{ Charakteristische Frequenz der kollektiven Bewegung im externen Feld.\\ Für freie Ladungsträger: perfekte Abschirmung (Reflektion) des äußeren Feldes bei $\omega<\omega_\txp$ }} \end{formula} \begin{formula}{dielectric_function} \desc{\qtyRef{complex_dielectric_function}}{for a free electon plasma}{$\omega_\txp$ \fRef{::plasma_frequency}, $\omega_0$ \GT{resonance_frequency}, $\gamma = \frac{1}{\tau}$ \GT{dampening}, \QtyRef{momentum_relaxation_time}} \desc[german]{}{für ein Plasma aus freien Elektronen}{} \eq{ \complex{\epsilon}_\txr(\omega) = 1 - \frac{\omega_\txp}{\omega_0^2 + i\gamma\omega} \\ } \end{formula} \begin{formula}{absorption} \desc{Free charge carrier absorption}{Exemplary values}{$\omega_\txp$ \fRef{::plasma_frequency}, \QtyRef{refraction_index_real}, \QtyRef{refraction_index_complex}, \QtyRef{absorption_coefficient}, $R$ \fRef{ed:optics:reflectivity}} \desc[german]{Freie Ladungsträger}{Beispielwerte}{} \fig{img/cm_optics_absorption_free_electrons.pdf} \TODO{Include equations? aus adv sc ex 10/1c} \end{formula} \TODO{relation to AC and DC conductivity} \Subsubsection{sc_interband} \desc{Interband transitions in semiconductors}{}{} % \desc[german] \begin{formula}{selection} \desc{Selection rule}{}{} \desc[german]{Auswahlregel}{}{} \ttxt{\eng{ Parity of wave functions must be opposite for the transition to occur }\ger{ Die Wellenfunktionen müssen unterschiedliche Parität haben, damit der Übergang möglich ist }} \end{formula} \begin{formulagroup}{transition_rate} \desc{Transition rate}{}{} \desc[german]{Übergangsrate}{}{} \begin{formula}{absorption} \desc{Absorption}{}{} \desc[german]{Absorption}{}{} \eq{W_{1\to2} = \frac{2\pi}{\hbar} \abs{M_{12}}^2 \delta(E_1-E_2+\hbar\omega)} \end{formula} \begin{formula}{emission} \desc{Emission}{}{} \desc[german]{Emission}{}{} \eq{W_{2\to1} = \frac{2\pi}{\hbar} \abs{M_{12}}^2 \delta(E_1-E_2-\hbar\omega)} \end{formula} \TODO{stimulated vs spontaneous} \TODO{matrix element stuff, kane energy} \begin{formula}{possible_matrix_elements} \desc{Matrix elements}{}{} \desc[german]{}{}{} \eq{\Braket{p_x|\hat{p}_x|s} = \Braket{p_y|\hat{p}_y|s} = \Braket{p_z|\hat{p}_z|s} \neq 0} \TODO{heavy holes, light holes} \end{formula} \end{formulagroup} \begin{formula}{jdos} \desc{Joint density of states}{}{} % \desc[german]{}{}{} \ttxt{\eng{ Desribes the density of states of an optical transition by combining the electron states in the valence band and hole states in the conduction band. }\ger{ Beschreibt die Zustandsdichte eines optischen Übergangs durch kombinieren der Elektronenzustände im Valenzband und der Lochzustände im Leitungsband. }} \eq{} \end{formula} \begin{formula}{absorption_coefficient_direct} \desc{\qtyRef{absorption_coefficient}}{For a direct semiconductor}{\QtyRef{angular_frequency}, \QtyRef{refraction_index_real}, \QtyRef{permittivity_complex}} \desc[german]{}{Für direkte Halbleiter}{} \eq{ \alpha &= \frac{\omega}{\nreal c} \epsreal \\ \left(\hbar\omega\alpha\right)^2 \propto \hbar\omega-\Egap } \end{formula} \begin{formula}{absorption_coefficient_indirect} \desc{\qtyRef{absorption_coefficient}}{For an indirect semiconductor}{\QtyRef{angular_frequency}, $E_\txp$ phonon energy, $E_\text{ig}$ indirect gap} \desc[german]{}{Für indirekte Halbleiter}{\QtyRef{angular_frequency}, $E_\txp$ Phononenergie, $E_\text{ig}$ indirekte Bandlücke} \eq{ \sqrt{\hbar\omega\alpha} \propto \hbar\omega \mp E_\txp - E_\text{ig} } \end{formula} \begin{formulagroup}{quantum_well} \desc{Interband absorption in quantum wells}{}{} \desc[german]{Interbandabsorption in Quantum Wells}{}{} \TODO{TODO} \end{formulagroup} \begin{formulagroup}{exciton} \desc{\fRef{cm:sc:exciton} absorption}{}{\QtyRef{band_gap}, $E_\text{binding}$ \fRef{cm:sc:exciton:binding_energy}} \desc[german]{\fRef{cm:sc:exciton} Absorption}{}{} \begin{formula}{absorption} \desc{Absorption}{}{} \desc[german]{Absorption}{}{} \ttxt{\eng{ Due to binding energy, exciton absorption can happen below the \absRef[band gap energy]{band_gap} \Rightarrow Sharp absorption peak below $\Egap$. At high (room) temperatures, excitons are ionized by collisions with phonons. }\ger{ Aufgrund der Bindungsenergie kann die Exzitonenabsorption unterhalb der \absRef[Bandlückenenergie]{band_gap} auftreten \Rightarrow scharfer Absorptionspeak unterhalb von $\Egap$. Bei hohen (Raum) Temperaturen werden Exzitons durch Kollisionen mit Phononen ionisiert. }} \eq{\hbar\omega = \Egap - E_\text{binding}} \end{formula} \end{formulagroup} \TODO{dipole approximation}