formelsammlung/src/quantum_mechanics.tex
Matthias@Dell 6fe5c90ba3 update
2024-05-23 15:00:09 +02:00

397 lines
17 KiB
TeX

\def\sigmaxmatrix{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}
\def\sigmaymatrix{\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}}
\def\sigmazmatrix{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}
\def\sigmaxbraket{\ket{0}\bra{1} + \ket{1}\bra{0}}
\def\sigmaybraket{-i \ket{0}\bra{1} + i \ket{1}\bra{0}}
\def\sigmazbraket{\ket{0}\bra{0} - \ket{1}\bra{1}}
\Part[
\eng{Quantum Mechanics}
\ger{Quantenmechanik}
]{qm}
\Section[
\eng{Basics}
\ger{Basics}
]{basics}
\Subsection[
\eng{Operators}
\ger{Operatoren}
]{op}
\GER[row_vector]{Zeilenvektor}
\GER[column_vector]{Spaltenvektor}
\ENG[column_vector]{Column vector}
\ENG[row_vector]{Row vector}
\begin{formula}{dirac_notation}
\desc{Dirac notation}{}{}
\desc[german]{Dirac-Notation}{}{}
\eq{
\bra{x} \vspace*{1cm} \text{"Bra" \GT{row_vector}} \\
\ket{x} \vspace*{1cm} \text{"Ket" \GT{column_vector}} \\
\hat{A}\ket{\beta} = \ket{\alpha} \Rightarrow \bra{\alpha} = \bra{\beta} \hat{A}^\dagger
}
\end{formula}
\begin{formula}{dagger}
\desc{Dagger}{}{}
\desc[german]{Dagger}{}{}
\eq{
\hat{A}^\dagger &= (\hat{A}^*)^\mathrm{T} \\
(c \hat{A})^\dagger &= c^* \hat{A}^\dagger \\
(\hat{A}\hat{B})^\dagger &= \hat{B}^\dagger \hat{A}^\dagger \\
}
\end{formula}
\begin{formula}{adjoint_op}
\desc{Adjoint operator}{}{}
\desc[german]{Adjungierter operator}{}{}
\eq{\braket{\alpha|\hat{A}^\dagger|\beta} = \braket{\beta|\hat{A}|\alpha}^*}
\end{formula}
\begin{formula}{hermitian_op}
\desc{Hermitian operator}{}{}
\desc[german]{Hermitescher operator}{}{}
\eq{\hat{A} = \hat{A}^\dagger}
\end{formula}
\Subsection[
\ger{Wahrscheinlichkeitstheorie}
\eng{Probability theory}
]{probability}
\begin{formula}{conservation_of_probability}
\desc{Continuity equation}{}{$\rho$ density of a conserved quantity $q$, $j$ flux density of $q$}
\desc[german]{Kontinuitätsgleichung}{}{$\rho$ Dichte einer Erhaltungsgröße $q$, $j$ Fluß von $q$}
\eq{\frac{\partial\rho(\vec{x}, t)}{\partial t} + \nabla \cdot \vec{j}(\vec{x},t) = 0}
\end{formula}
\begin{formula}{state_probability}
\desc{State probability}{}{}
\desc[german]{Zustandswahrscheinlichkeit}{}{}
\eq{TODO}
\end{formula}
\begin{formula}{dispersion}
\desc{Dispersion}{}{}
\desc[german]{Dispersion}{}{}
\eq{\Delta \hat{A} = \hat{A} - \braket{\hat{A}}}
\end{formula}
\begin{formula}{variance}
\desc{Variance}{}{}
\desc[german]{Varianz}{}{}
\eq{\sigma^2 = \braket{(\Delta \hat{A})^2} = \braket{\hat{A}^2} - \braket{\hat{A}}^2}
\end{formula}
\begin{formula}{generalized_uncertainty}
\desc{Generalized uncertainty principle}{}{}
\desc[german]{Allgemeine Unschärferelation}{}{}
% \eq{\braket{(\Delta \hat{A})^2} \braket{(\Delta \hat{B})^2} \ge \frac{1}{4} \braket{[\hat{A},\hat{B}]}^2}
\eq{
\sigma_A \sigma_B &\ge \frac{1}{4} \braket{[\hat{A},\hat{B}]}^2 \\
\sigma_A \sigma_B &\ge \frac{1}{2} \abs{\braket{[\hat{A},\hat{B}]}}
}
\end{formula}
\Subsubsection[
\eng{Pauli matrices}
\ger{Pauli-Matrizen}
]{pauli_matrices}
\begin{formula}{pauli_matrices}
\desc{Pauli matrices}{}{}
\desc[german]{Pauli Matrizen}{}{}
\eqAlignedAt{2}{
\sigma_x &= \sigmaxmatrix &&= \sigmaxbraket \label{eq:pauli_x} \\
\sigma_y &= \sigmaymatrix &&= \sigmaybraket \label{eq:pauli_y} \\
\sigma_z &= \sigmazmatrix &&= \sigmazbraket \label{eq:pauli_z}
}
\end{formula}
% $\sigma_x$ NOT
% $\sigma_y$ PHASE
% $\sigma_z$ Sign
\Subsection[
\eng{Commutator}
\ger{Kommutator}
]{commutator}
\begin{formula}{commutator}
\desc{Commutator}{}{}
\desc[german]{Kommutator}{}{}
\eq{[a,b] = ab - ba}
\end{formula}
\begin{formula}{anticommutator}
\desc{Anticommutator}{}{}
\desc[german]{Antikommmutator}{}{}
\eq{\{a,b\} = ab + ba}
\end{formula}
\begin{formula}{commutation_relations}\
\desc{Commutation relations}{}{}
\desc[german]{Kommutatorrelationen}{}{}
\eq{[a, bc] = \{a, b\}c - b\{a,c\}}
\end{formula}
\begin{formula}{jacobi_identity}
\desc{Jacobi identity}{}{}
\desc[german]{Jakobi-Identität}{}{}
\eq{[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0}
\end{formula}
\begin{formula}{canon_comm_relation}
\desc{Canonical commutation relation}{}{$x$, $p$ canonical conjugates}
\desc[german]{Kanonische Vertauschungsrelationen}{}{$x$, $p$ kanonische konjugierte}
\eq{
[x_i, x_j] &= 0 \\
[p_i, p_j] &= 0 \\
[x_i, p_j] &= i \hbar \delta_{ij}
}
\end{formula}
\Subsection[
\eng{Schrödinger equation}
\ger{Schrödingergleichung}
]{schroedinger_equation}
\begin{formula}{energy_operator}
\desc{Energy operator}{}{}
\desc[german]{Energieoperator}{}{}
\eq{E = i\hbar \frac{\partial}{\partial t}}
\end{formula}
\begin{formula}{momentum_operator}
\desc{Momentum operator}{}{}
\desc[german]{Impulsoperator}{}{}
\eq{\vec{p} = -i\hbar \vec{\nabla_x}}
\end{formula}
\begin{formula}{space_operator}
\desc{Space operator}{}{}
\desc[german]{Ortsoperator}{}{}
\eq{\vec{x} = i\hbar \vec{\nabla_p}}
\end{formula}
\begin{formula}{stationary_schroedinger_equation}
\desc{Stationary Schrödingerequation}{}{}
\desc[german]{Stationäre Schrödingergleichung}{}{}
\eq{\hat{H}\ket{\psi} = E\ket{\psi}}
\end{formula}
\begin{formula}{schroedinger_equation}
\desc{Schrödinger equation}{}{}
\desc[german]{Schrödingergleichung}{}{}
\eq{i\hbar\frac{\partial}{\partial t}\psi(x, t) = (- \frac{\hbar^2}{2m} \vec{\nabla}^2 + \vec{V}(x)) \psi(x)}
\end{formula}
The time evolution of the Hamiltonian is given by:
\begin{formula}{time_evolution_op}
\desc{Time evolution operator}{}{$U$ unitary}
\desc[german]{Zeitentwicklungsoperator}{}{$U$ unitär}
\eq{\ket{\psi(t)} = \hat{U}(t, t_0) \ket{\psi(t_0)}}
\end{formula}
\Subsubsection[
\eng{Schrödinger- and Heisenberg-pictures}
\ger{Schrödinger- und Heisenberg-Bild}
]{s_h_pictures}
\eng[s_h_pictures_desc]{
In the \textbf{Schrödinger picture}, the time dependecy is in the states
while in the \textbf{Heisenberg picture} the observables (operators) are time dependent.
}
\ger[s_h_pictures_desc]{Im Schrödinger-Bild sind die Zustände zeitabhänig, im Heisenberg-Bild
sind die Observablen (Operatoren) zeitabhänig
}
\gt{s_h_pictures_desc}\\
\begin{formula}{schroediner_time_evolution}
\desc{Schrödinger time evolution}{}{}
\desc[german]{Schrödinger Zeitentwicklug}{}{}
\eq{
\ket{\psi(t)_\textrm{S}} = \hat{U}(t,t_0)\ket{\psi(t_0)}
}
\end{formula}
\begin{formula}{heisenberg_time_evolution}
\desc{Heisenberg time evolution}{}{\textrm{H} and \textrm{S} being the Heisenberg and Schrödinger picture, respectively}
\desc[german]{Heisenberg Zeitentwicklung}{}{mit \textrm{H} und \textrm{S} dem Heisenberg- und Schrödinger-Bild}
\eq{
\ket{\psi_\mathrm{H}} = \ket{\psi_\mathrm{S}(t_0)} \\
A_\textrm{H} = U^\dagger(t,t_0)A_\textrm{S}U(t,t_0) \\
\diff{\hat{A}_\textrm{H}}{t} = \frac{1}{i\hbar}[\hat{A}_\textrm{H}, \hat{H}_\textrm{H}] + \Big(\diffp{\hat{A}_\textrm{S}}{t}\Big)_\textrm{H}
}
\end{formula}
\Subsubsection[
\ger{Korrespondenzprinzip}
\eng{Correspondence principle}
]{correspondence_principle}
\begin{ttext}{desc}
\ger{Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenmechanik ableiten.}
\eng{The classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.}
\end{ttext}
\Subsubsection[
\eng{Ehrenfest theorem}
\ger{Ehrenfest-Theorem}
]{ehrenfest_theorem}
\GT{see_also} \ref{sec:qm:basics:schroedinger_equation:correspondence_principle}
\begin{formula}{ehrenfest_theorem}
\desc{Ehrenfesttheorem}{applies to both pictures}{}
\desc[german]{Ehrenfest-Theorem}{gilt für beide Bilder}{}
\eq{
\diff{}{t} \braket{\hat{A}} = \frac{1}{i\hbar}\braket{[\hat{A},\hat{H}]} + \Braket{\diffp{\hat{A}}{t}}
}
\end{formula}
\begin{formula}{ehrenfest_theorem_x}
\desc{}{Example for $x$}{}
\desc[german]{}{Beispiel für $x$}{}
\eq{m\diff[2]{}{t}\braket{x} = -\braket{\nabla V(x)} = \braket{F(x)}}
\end{formula}
% \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time}
\Section[
\eng{Pertubation theory}
\ger{Störungstheorie}
]{qm_pertubation}
\eng[desc]{The following holds true if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.}
\ger[desc]{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.}
\gt{desc}
\begin{formula}{pertubation_hamiltonian}
\desc{Hamiltonian}{}{}
\desc[german]{Hamiltonian}{}{}
\eq{\hat{H} = \hat{H_0} + \lambda \hat{H_1}}
\end{formula}
\begin{formula}{pertubation_series}
\desc{Power series}{}{}
\desc[german]{Potenzreihe}{}{}
\eq{
E_n &= E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + ... \\
\ket{\psi_n} &= \ket{\psi_n^{(0)}} + \lambda \ket{\psi_n^{(1)}} + \lambda^2 \ket{\psi_n^{(2)}} + ...
}
\end{formula}
\begin{formula}{1o_energy}
\desc{1. order energy shift}{}{}
\desc[german]{Energieverschiebung 1. Ordnung}{}{}
\eq{E_n^{(1)} = \Braket{\psi_n^{(0)}|\hat{H_1}|\psi_n^{(0)}}}
\end{formula}
\begin{formula}{1o_state}
\desc{1. order states}{}{}
\desc[german]{Zustände}{}{}
\eq{\ket{\psi_n^{(1)}} = \sum_{k\neq n}\frac{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}{E_n^{(0)} - E_k^{(0)}}\ket{\psi_k^{(0)}}}
\end{formula}
\begin{formula}{2o_energy}
\desc{2. order energy shift}{}{}
\desc[german]{Energieverschiebung 2. Ordnung}{}{}
% \eq{E_n^{(1)} = \Braket{\psi_n^{(0)}|\hat{H_1}|\psi_n^{(0)}}}
\eq{E_n^{(2)} = \sum_{k\neq n}\frac{\abs*{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}^2}{E_n^{(0)} - E_k^{(0)}}}
\end{formula}
% \begin{formula}{qm:pertubation:}
% \desc{1. order states}{}{}
% \desc[german]{Zustände}{}{}
% \eq{\ket{\psi_n^{(1)}} = \sum_{k\neq n}\frac{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}{E_n^{(0)} - E_k^{(0)}}\ket{\psi_k^{(0)}}}
% \end{formula}
\Section[
\eng{Harmonic oscillator}
\ger{Harmonischer Oszillator}
]{qm_hosc}
\begin{formula}{hamiltonian}
\desc{Hamiltonian}{}{}
\desc[german]{Hamiltonian}{}{}
\eq{
H&=\frac{p^2}{2m}+\frac{1}{2} m\omega^2 x^2\\
&=\frac{1}{2} \hbar\omega+\omega a^\dagger a
}
\end{formula}
\begin{formula}{hosc_spectrum}
\desc{Energy spectrum}{}{}
\desc[german]{Energiespektrum}{}{}
\eq{E_n = \hbar\omega \Big(\frac{1}{2} + n\Big)}
\end{formula}
\GT{see_also} \ref{sec:qm:hosc:c_a_ops}
\Subsection[
\ger{Erzeugungs und Vernichtungsoperatoren}
\eng{Creation and Annihilation operators}
]{c_a_ops}
\begin{formula}{c_a_ops_def}
\desc{Particle number operator/occupation number operator}{}{$\ket{n}$ = Fock states, $\hat{a}$ = Annihilation operator, $\hat{a}^\dagger$ = Creation operator}
\desc[german]{Teilchenzahloperator/Besetzungszahloperator}{}{$\ket{n}$ = Fock-Zustände, $\hat{a}$ = Vernichtungsoperator, $\hat{a}^\dagger$ = Erzeugungsoperator}
\eq{
\hat{N} &:= a^\dagger a \\
\hat{N}\ket{n} &= n \ket{N}
}
\end{formula}
\begin{formula}{c_a_commutator}
\desc{Commutator}{}{}
\desc[german]{Kommutator}{}{}
\eq{
[\hat{a},\hat{a}^\dagger] &= 1 \\
[N, \hat{a}] &= -\hat{a} \\
[N, \hat{a}^\dagger] &= \hat{a}^\dagger
}
\end{formula}
\begin{formula}{c_a_on_state}
\desc{Application on states}{}{}
\desc[german]{Anwendung auf Zustände}{}{}
\eq{
\hat{a} \ket{n} &= \sqrt{n}\ket{n-1} \\
\hat{a}^\dagger \ket{n} &= \sqrt{n+1}\ket{n+1} \\
\ket{n} &= \frac{1}{\sqrt{n!}} (\hat{a}^\dagger)^n \ket{0}
}
\end{formula}
\Subsubsection[
\eng{Harmonischer Oszillator}
\ger{Harmonic Oscillator}
]{hosc}
\begin{formula}{c_a_ops}
\desc{Harmonic oscillator}{}{}
\desc[german]{Harmonischer Oszillator}{}{}
\eq{
% \tilde{X} &= \sqrt{\frac{m\omega}{\hbar}} \hat{x} &= \frac{1}{\sqrt{2}} (\hat{a} + \hat{a}^\dagger) \\
% \tilde{P} &= \frac{1}{\sqrt{m\omega\hbar}} \hat{p} &= \frac{-i}{\sqrt{2}} (\hat{a} - \hat{a}^\dagger) \\
\hat{x} &= \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^\dagger) \\
\hat{p} &= -i\sqrt{\frac{m\omega\hbar}{2}} (\hat{a} - \hat{a}^\dagger) \\
\hat{H} &= \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} &= \hbar\omega\Big(a^\dagger a + \frac{1}{2}\Big) \\
a &= \frac{1}{\sqrt{2}} (\tilde{X} + i\tilde{P}) \\
a^\dagger &= \frac{1}{\sqrt{2}} (\tilde{X} - i\tilde{P})
% \hat{a}^\dagger ? \sqrt{\frac{}{}}
}
\end{formula}
% \eq{Heisenberg}{\frac{dA}{dt}=\frac{\partial A}{\partial t}+\frac{[A,H]}{i\hbar}}{heisenberg}
% \begin{align}
% \label{eq:k}
% A=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x+\frac{ip}{\sqrt{2m\omega}} \\
% A^\dagger=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x-\frac{ip}{\sqrt{2m\omega}} \\
% HAu_E=(E-\hbar\omega)Au_E \\
% u_n=\frac{1}{\sqrt{n!}}\left(\frac{A^\dagger}{\sqrt{\hbar}}\right)^nu_0 \\
% u_0=\sqrt[4]{\frac{m\omega}{\pi\hbar}}\exp\left(-\frac{m\omega x^2}{2\hbar}\right) \\
% E_n=( \frac{1}{2} +n)\hbar\omega
% \end{equation}
\Section{angular_momentum}
\times
\begin{formula}{bloch_waves}
\desc{Bloch waves}{
Solve the stat. SG in periodic potential with period
$\vec{R}$: $V(\vec{r}) = V(\vec{r} + \vec{R})$\\
}{
$\vec{k}$ arbitrary, $u$ periodic function
}
\desc[german]{Blochwellen}{
Lösen stat. SG im periodischen Potential mit Periode
$\vec{R}$: $V(\vec{r}) = V(\vec{r} + \vec{R})$\\
}{
$\vec{k}$ beliebig, $u$ periodische Funktion
}
\eq{\psi_k(\vec{r}) = e^{i \vec{k}\cdot \vec{r}} \cdot u_{\vec{k}}(\vec{r})}
\end{formula}