\def\sigmaxmatrix{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}} \def\sigmaymatrix{\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}} \def\sigmazmatrix{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}} \def\sigmaxbraket{\ket{0}\bra{1} + \ket{1}\bra{0}} \def\sigmaybraket{-i \ket{0}\bra{1} + i \ket{1}\bra{0}} \def\sigmazbraket{\ket{0}\bra{0} - \ket{1}\bra{1}} \Part[ \eng{Quantum Mechanics} \ger{Quantenmechanik} ]{qm} \Section[ \eng{Basics} \ger{Basics} ]{basics} \Subsection[ \eng{Operators} \ger{Operatoren} ]{op} \GER[row_vector]{Zeilenvektor} \GER[column_vector]{Spaltenvektor} \ENG[column_vector]{Column vector} \ENG[row_vector]{Row vector} \begin{formula}{dirac_notation} \desc{Dirac notation}{}{} \desc[german]{Dirac-Notation}{}{} \eq{ \bra{x} \vspace*{1cm} \text{"Bra" \GT{row_vector}} \\ \ket{x} \vspace*{1cm} \text{"Ket" \GT{column_vector}} \\ \hat{A}\ket{\beta} = \ket{\alpha} \Rightarrow \bra{\alpha} = \bra{\beta} \hat{A}^\dagger } \end{formula} \begin{formula}{dagger} \desc{Dagger}{}{} \desc[german]{Dagger}{}{} \eq{ \hat{A}^\dagger &= (\hat{A}^*)^\mathrm{T} \\ (c \hat{A})^\dagger &= c^* \hat{A}^\dagger \\ (\hat{A}\hat{B})^\dagger &= \hat{B}^\dagger \hat{A}^\dagger \\ } \end{formula} \begin{formula}{adjoint_op} \desc{Adjoint operator}{}{} \desc[german]{Adjungierter operator}{}{} \eq{\braket{\alpha|\hat{A}^\dagger|\beta} = \braket{\beta|\hat{A}|\alpha}^*} \end{formula} \begin{formula}{hermitian_op} \desc{Hermitian operator}{}{} \desc[german]{Hermitescher operator}{}{} \eq{\hat{A} = \hat{A}^\dagger} \end{formula} \Subsection[ \ger{Wahrscheinlichkeitstheorie} \eng{Probability theory} ]{probability} \begin{formula}{conservation_of_probability} \desc{Continuity equation}{}{$\rho$ density of a conserved quantity $q$, $j$ flux density of $q$} \desc[german]{Kontinuitätsgleichung}{}{$\rho$ Dichte einer Erhaltungsgröße $q$, $j$ Fluß von $q$} \eq{\frac{\partial\rho(\vec{x}, t)}{\partial t} + \nabla \cdot \vec{j}(\vec{x},t) = 0} \end{formula} \begin{formula}{state_probability} \desc{State probability}{}{} \desc[german]{Zustandswahrscheinlichkeit}{}{} \eq{TODO} \end{formula} \begin{formula}{dispersion} \desc{Dispersion}{}{} \desc[german]{Dispersion}{}{} \eq{\Delta \hat{A} = \hat{A} - \braket{\hat{A}}} \end{formula} \begin{formula}{variance} \desc{Variance}{}{} \desc[german]{Varianz}{}{} \eq{\sigma^2 = \braket{(\Delta \hat{A})^2} = \braket{\hat{A}^2} - \braket{\hat{A}}^2} \end{formula} \begin{formula}{generalized_uncertainty} \desc{Generalized uncertainty principle}{}{} \desc[german]{Allgemeine Unschärferelation}{}{} % \eq{\braket{(\Delta \hat{A})^2} \braket{(\Delta \hat{B})^2} \ge \frac{1}{4} \braket{[\hat{A},\hat{B}]}^2} \eq{ \sigma_A \sigma_B &\ge \frac{1}{4} \braket{[\hat{A},\hat{B}]}^2 \\ \sigma_A \sigma_B &\ge \frac{1}{2} \abs{\braket{[\hat{A},\hat{B}]}} } \end{formula} \Subsubsection[ \eng{Pauli matrices} \ger{Pauli-Matrizen} ]{pauli_matrices} \begin{formula}{pauli_matrices} \desc{Pauli matrices}{}{} \desc[german]{Pauli Matrizen}{}{} \eqAlignedAt{2}{ \sigma_x &= \sigmaxmatrix &&= \sigmaxbraket \label{eq:pauli_x} \\ \sigma_y &= \sigmaymatrix &&= \sigmaybraket \label{eq:pauli_y} \\ \sigma_z &= \sigmazmatrix &&= \sigmazbraket \label{eq:pauli_z} } \end{formula} % $\sigma_x$ NOT % $\sigma_y$ PHASE % $\sigma_z$ Sign \Subsection[ \eng{Commutator} \ger{Kommutator} ]{commutator} \begin{formula}{commutator} \desc{Commutator}{}{} \desc[german]{Kommutator}{}{} \eq{[a,b] = ab - ba} \end{formula} \begin{formula}{anticommutator} \desc{Anticommutator}{}{} \desc[german]{Antikommmutator}{}{} \eq{\{a,b\} = ab + ba} \end{formula} \begin{formula}{commutation_relations}\ \desc{Commutation relations}{}{} \desc[german]{Kommutatorrelationen}{}{} \eq{[a, bc] = \{a, b\}c - b\{a,c\}} \end{formula} \begin{formula}{jacobi_identity} \desc{Jacobi identity}{}{} \desc[german]{Jakobi-Identität}{}{} \eq{[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0} \end{formula} \begin{formula}{canon_comm_relation} \desc{Canonical commutation relation}{}{$x$, $p$ canonical conjugates} \desc[german]{Kanonische Vertauschungsrelationen}{}{$x$, $p$ kanonische konjugierte} \eq{ [x_i, x_j] &= 0 \\ [p_i, p_j] &= 0 \\ [x_i, p_j] &= i \hbar \delta_{ij} } \end{formula} \Subsection[ \eng{Schrödinger equation} \ger{Schrödingergleichung} ]{schroedinger_equation} \begin{formula}{energy_operator} \desc{Energy operator}{}{} \desc[german]{Energieoperator}{}{} \eq{E = i\hbar \frac{\partial}{\partial t}} \end{formula} \begin{formula}{momentum_operator} \desc{Momentum operator}{}{} \desc[german]{Impulsoperator}{}{} \eq{\vec{p} = -i\hbar \vec{\nabla_x}} \end{formula} \begin{formula}{space_operator} \desc{Space operator}{}{} \desc[german]{Ortsoperator}{}{} \eq{\vec{x} = i\hbar \vec{\nabla_p}} \end{formula} \begin{formula}{stationary_schroedinger_equation} \desc{Stationary Schrödingerequation}{}{} \desc[german]{Stationäre Schrödingergleichung}{}{} \eq{\hat{H}\ket{\psi} = E\ket{\psi}} \end{formula} \begin{formula}{schroedinger_equation} \desc{Schrödinger equation}{}{} \desc[german]{Schrödingergleichung}{}{} \eq{i\hbar\frac{\partial}{\partial t}\psi(x, t) = (- \frac{\hbar^2}{2m} \vec{\nabla}^2 + \vec{V}(x)) \psi(x)} \end{formula} The time evolution of the Hamiltonian is given by: \begin{formula}{time_evolution_op} \desc{Time evolution operator}{}{$U$ unitary} \desc[german]{Zeitentwicklungsoperator}{}{$U$ unitär} \eq{\ket{\psi(t)} = \hat{U}(t, t_0) \ket{\psi(t_0)}} \end{formula} \Subsubsection[ \eng{Schrödinger- and Heisenberg-pictures} \ger{Schrödinger- und Heisenberg-Bild} ]{s_h_pictures} \eng[s_h_pictures_desc]{ In the \textbf{Schrödinger picture}, the time dependecy is in the states while in the \textbf{Heisenberg picture} the observables (operators) are time dependent. } \ger[s_h_pictures_desc]{Im Schrödinger-Bild sind die Zustände zeitabhänig, im Heisenberg-Bild sind die Observablen (Operatoren) zeitabhänig } \gt{s_h_pictures_desc}\\ \begin{formula}{schroediner_time_evolution} \desc{Schrödinger time evolution}{}{} \desc[german]{Schrödinger Zeitentwicklug}{}{} \eq{ \ket{\psi(t)_\textrm{S}} = \hat{U}(t,t_0)\ket{\psi(t_0)} } \end{formula} \begin{formula}{heisenberg_time_evolution} \desc{Heisenberg time evolution}{}{\textrm{H} and \textrm{S} being the Heisenberg and Schrödinger picture, respectively} \desc[german]{Heisenberg Zeitentwicklung}{}{mit \textrm{H} und \textrm{S} dem Heisenberg- und Schrödinger-Bild} \eq{ \ket{\psi_\mathrm{H}} = \ket{\psi_\mathrm{S}(t_0)} \\ A_\textrm{H} = U^\dagger(t,t_0)A_\textrm{S}U(t,t_0) \\ \diff{\hat{A}_\textrm{H}}{t} = \frac{1}{i\hbar}[\hat{A}_\textrm{H}, \hat{H}_\textrm{H}] + \Big(\diffp{\hat{A}_\textrm{S}}{t}\Big)_\textrm{H} } \end{formula} \Subsubsection[ \ger{Korrespondenzprinzip} \eng{Correspondence principle} ]{correspondence_principle} \begin{ttext}{desc} \ger{Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenmechanik ableiten.} \eng{The classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.} \end{ttext} \Subsubsection[ \eng{Ehrenfest theorem} \ger{Ehrenfest-Theorem} ]{ehrenfest_theorem} \GT{see_also} \ref{sec:qm:basics:schroedinger_equation:correspondence_principle} \begin{formula}{ehrenfest_theorem} \desc{Ehrenfesttheorem}{applies to both pictures}{} \desc[german]{Ehrenfest-Theorem}{gilt für beide Bilder}{} \eq{ \diff{}{t} \braket{\hat{A}} = \frac{1}{i\hbar}\braket{[\hat{A},\hat{H}]} + \Braket{\diffp{\hat{A}}{t}} } \end{formula} \begin{formula}{ehrenfest_theorem_x} \desc{}{Example for $x$}{} \desc[german]{}{Beispiel für $x$}{} \eq{m\diff[2]{}{t}\braket{x} = -\braket{\nabla V(x)} = \braket{F(x)}} \end{formula} % \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time} \Section[ \eng{Pertubation theory} \ger{Störungstheorie} ]{qm_pertubation} \eng[desc]{The following holds true if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.} \ger[desc]{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.} \gt{desc} \begin{formula}{pertubation_hamiltonian} \desc{Hamiltonian}{}{} \desc[german]{Hamiltonian}{}{} \eq{\hat{H} = \hat{H_0} + \lambda \hat{H_1}} \end{formula} \begin{formula}{pertubation_series} \desc{Power series}{}{} \desc[german]{Potenzreihe}{}{} \eq{ E_n &= E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + ... \\ \ket{\psi_n} &= \ket{\psi_n^{(0)}} + \lambda \ket{\psi_n^{(1)}} + \lambda^2 \ket{\psi_n^{(2)}} + ... } \end{formula} \begin{formula}{1o_energy} \desc{1. order energy shift}{}{} \desc[german]{Energieverschiebung 1. Ordnung}{}{} \eq{E_n^{(1)} = \Braket{\psi_n^{(0)}|\hat{H_1}|\psi_n^{(0)}}} \end{formula} \begin{formula}{1o_state} \desc{1. order states}{}{} \desc[german]{Zustände}{}{} \eq{\ket{\psi_n^{(1)}} = \sum_{k\neq n}\frac{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}{E_n^{(0)} - E_k^{(0)}}\ket{\psi_k^{(0)}}} \end{formula} \begin{formula}{2o_energy} \desc{2. order energy shift}{}{} \desc[german]{Energieverschiebung 2. Ordnung}{}{} % \eq{E_n^{(1)} = \Braket{\psi_n^{(0)}|\hat{H_1}|\psi_n^{(0)}}} \eq{E_n^{(2)} = \sum_{k\neq n}\frac{\abs*{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}^2}{E_n^{(0)} - E_k^{(0)}}} \end{formula} % \begin{formula}{qm:pertubation:} % \desc{1. order states}{}{} % \desc[german]{Zustände}{}{} % \eq{\ket{\psi_n^{(1)}} = \sum_{k\neq n}\frac{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}{E_n^{(0)} - E_k^{(0)}}\ket{\psi_k^{(0)}}} % \end{formula} \Section[ \eng{Harmonic oscillator} \ger{Harmonischer Oszillator} ]{qm_hosc} \begin{formula}{hamiltonian} \desc{Hamiltonian}{}{} \desc[german]{Hamiltonian}{}{} \eq{ H&=\frac{p^2}{2m}+\frac{1}{2} m\omega^2 x^2\\ &=\frac{1}{2} \hbar\omega+\omega a^\dagger a } \end{formula} \begin{formula}{hosc_spectrum} \desc{Energy spectrum}{}{} \desc[german]{Energiespektrum}{}{} \eq{E_n = \hbar\omega \Big(\frac{1}{2} + n\Big)} \end{formula} \GT{see_also} \ref{sec:qm:hosc:c_a_ops} \Subsection[ \ger{Erzeugungs und Vernichtungsoperatoren} \eng{Creation and Annihilation operators} ]{c_a_ops} \begin{formula}{c_a_ops_def} \desc{Particle number operator/occupation number operator}{}{$\ket{n}$ = Fock states, $\hat{a}$ = Annihilation operator, $\hat{a}^\dagger$ = Creation operator} \desc[german]{Teilchenzahloperator/Besetzungszahloperator}{}{$\ket{n}$ = Fock-Zustände, $\hat{a}$ = Vernichtungsoperator, $\hat{a}^\dagger$ = Erzeugungsoperator} \eq{ \hat{N} &:= a^\dagger a \\ \hat{N}\ket{n} &= n \ket{N} } \end{formula} \begin{formula}{c_a_commutator} \desc{Commutator}{}{} \desc[german]{Kommutator}{}{} \eq{ [\hat{a},\hat{a}^\dagger] &= 1 \\ [N, \hat{a}] &= -\hat{a} \\ [N, \hat{a}^\dagger] &= \hat{a}^\dagger } \end{formula} \begin{formula}{c_a_on_state} \desc{Application on states}{}{} \desc[german]{Anwendung auf Zustände}{}{} \eq{ \hat{a} \ket{n} &= \sqrt{n}\ket{n-1} \\ \hat{a}^\dagger \ket{n} &= \sqrt{n+1}\ket{n+1} \\ \ket{n} &= \frac{1}{\sqrt{n!}} (\hat{a}^\dagger)^n \ket{0} } \end{formula} \Subsubsection[ \eng{Harmonischer Oszillator} \ger{Harmonic Oscillator} ]{hosc} \begin{formula}{c_a_ops} \desc{Harmonic oscillator}{}{} \desc[german]{Harmonischer Oszillator}{}{} \eq{ % \tilde{X} &= \sqrt{\frac{m\omega}{\hbar}} \hat{x} &= \frac{1}{\sqrt{2}} (\hat{a} + \hat{a}^\dagger) \\ % \tilde{P} &= \frac{1}{\sqrt{m\omega\hbar}} \hat{p} &= \frac{-i}{\sqrt{2}} (\hat{a} - \hat{a}^\dagger) \\ \hat{x} &= \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^\dagger) \\ \hat{p} &= -i\sqrt{\frac{m\omega\hbar}{2}} (\hat{a} - \hat{a}^\dagger) \\ \hat{H} &= \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} &= \hbar\omega\Big(a^\dagger a + \frac{1}{2}\Big) \\ a &= \frac{1}{\sqrt{2}} (\tilde{X} + i\tilde{P}) \\ a^\dagger &= \frac{1}{\sqrt{2}} (\tilde{X} - i\tilde{P}) % \hat{a}^\dagger ? \sqrt{\frac{}{}} } \end{formula} % \eq{Heisenberg}{\frac{dA}{dt}=\frac{\partial A}{\partial t}+\frac{[A,H]}{i\hbar}}{heisenberg} % \begin{align} % \label{eq:k} % A=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x+\frac{ip}{\sqrt{2m\omega}} \\ % A^\dagger=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x-\frac{ip}{\sqrt{2m\omega}} \\ % HAu_E=(E-\hbar\omega)Au_E \\ % u_n=\frac{1}{\sqrt{n!}}\left(\frac{A^\dagger}{\sqrt{\hbar}}\right)^nu_0 \\ % u_0=\sqrt[4]{\frac{m\omega}{\pi\hbar}}\exp\left(-\frac{m\omega x^2}{2\hbar}\right) \\ % E_n=( \frac{1}{2} +n)\hbar\omega % \end{equation} \Section{angular_momentum} \times \begin{formula}{bloch_waves} \desc{Bloch waves}{ Solve the stat. SG in periodic potential with period $\vec{R}$: $V(\vec{r}) = V(\vec{r} + \vec{R})$\\ }{ $\vec{k}$ arbitrary, $u$ periodic function } \desc[german]{Blochwellen}{ Lösen stat. SG im periodischen Potential mit Periode $\vec{R}$: $V(\vec{r}) = V(\vec{r} + \vec{R})$\\ }{ $\vec{k}$ beliebig, $u$ periodische Funktion } \eq{\psi_k(\vec{r}) = e^{i \vec{k}\cdot \vec{r}} \cdot u_{\vec{k}}(\vec{r})} \end{formula}