formelsammlung/src/ed/optics.tex
2025-03-29 02:06:19 +01:00

125 lines
5.9 KiB
TeX

\Section{optics}
\desc{Optics}{Properties of light and its interactions with matter}{}
\desc[german]{Optik}{Ausbreitung von Licht und die Interaktion mit Materie}{}
\TODO{adv. sc slide 427 classification}
\begin{formulagroup}{refraction_index}
\desc{Refraction index}{Macroscopic}{\QtyRef{relative_permittivity}, \QtyRef{relative_permeability}, \ConstRef{vacuum_speed_of_light}, \QtyRef{phase_velocity}}
\desc[german]{Brechungsindex}{Macroscopisch}{}
\begin{formula}{definition}
\desc{Definition}{}{}
\desc[german]{Definition}{}{}
\quantity{\complex{n}}{}{s}
\eq{
\complex{n} = \nreal + i\ncomplex
}
\end{formula}
\begin{formula}{real}
\desc{Real part}{}{}
\desc[german]{Reller Teil}{}{}
\quantity[refraction_index_real]{\nreal}{}{s}
\eq{
n = \sqrt{\epsilon_\txr \mu_\txr}
}
\eq{
n = \frac{c_0}{c_\txM}
}
\end{formula}
\begin{formula}{complex}
\desc{Extinction coefficient}{Complex part of the refraction index. Describes absorption in a medium}{\GT{sometimes} $\kappa$}
\desc[german]{Auslöschungskoeffizient}{Komplexer Teil des Brechungsindex. Beschreibt Absorption im Medium}{}
\quantity[refraction_index_complex]{\ncomplex}{}{s}
\end{formula}
\end{formulagroup}
\begin{formula}{reflectivity}
\desc{Reflectivity}{}{\QtyRef{refraction_index}}
\desc[german]{Reflektion}{}{}
\eq{
R = \abs{\frac{\complex{n}-1}{\complex{n}+1}}
}
\end{formula}
\begin{formula}{snell}
\desc{Snell's law}{}{$\nreal_i$ \qtyRef{refraction_index_real}, $\theta_i$ incidence angle (normal to the surface)}
\desc[german]{Snelliussches Brechungsgesetz}{}{$n_i$ \qtyRef{refraction_index}, $\theta_i$ Einfallswinkel (normal zur Fläche)}
\eq{\nreal_1 \sin\theta_1 = \nreal_2\sin\theta_2}
\end{formula}
\begin{formula}{group_velocity}
\desc{Group velocity}{Velocity with which the envelope of a wave propagates through space}{\QtyRef{angular_frequency}, \QtyRef{angular_wavenumber}}
\desc[german]{Gruppengeschwindigkeit}{Geschwindigkeit, mit sich die Einhülende einer Welle ausbreitet}{}
\eq{
v_\txg \equiv \pdv{\omega}{k}
}
\end{formula}
\begin{formula}{phase_velocity}
\desc{Phase velocity}{Velocity with which a wave propagates through a medium}{\QtyRef{angular_frequency}, \QtyRef{angular_wavenumber}, \QtyRef{wavelength}, \QtyRef{time_period}}
\desc[german]{Phasengeschwindigkeit}{Geschwindigkeit, mit der sich eine Welle im Medium ausbreitet}{}
\hiddenQuantity{v_\txp}{\m\per\s}{}
\eq{
v_\txp = \frac{\omega}{k} = \frac{\lambda}{T}
}
\end{formula}
\begin{formula}{absorption_coefficient}
\desc{Absorption coefficient}{Intensity reduction while traversing a medium, not necessarily by energy transfer to the medium}{\QtyRef{refraction_index_complex}, \ConstRef{vacuum_speed_of_light}, \QtyRef{angular_frequency}}
\desc[german]{Absoprtionskoeffizient}{Intensitätsverringerung beim Druchgang eines Mediums, nicht zwingend durch Energieabgabe an Medium}{}
\quantity{\alpha}{\per\cm}{s}
\eq{
\alpha &= 2\ncomplex \frac{\omega}{c}
}
\TODO{Is this equation really true in general?}
\end{formula}
\begin{formula}{intensity}
\desc{Electromagnetic radiation intensity}{Surface power density}{$S$ \fRef{ed:em:poynting}}
\desc[german]{Elektromagnetische Strahlungsintensität}{Flächenleistungsdichte}{}
\quantity{I}{\watt\per\m^2=\k\per\s^3}{s}
\eq{I = \abs{\braket{S}_t}}
\end{formula}
% \begin{formula}{lambert_beer_law}
% \desc{Beer-Lambert law}{Intensity in an absorbing medium}{$E_\lambda$ extinction, \QtyRef{absorption_coefficient}, \QtyRef{concentration}, $d$ Thickness of the medium}
% \desc[german]{Lambert-beersches Gesetz}{Intensität in einem absorbierenden Medium}{$E_\lambda$ Extinktion, \QtyRef{refraction_index_complex}, \QtyRef{concentration}, $d$ Dicke des Mediums}
% \eq{
% E_\lambda = \log_{10} \frac{I_0}{I} = \kappa c d \\
% }
% \end{formula}
\begin{formula}{lambert_beer_law}
\desc{Beer-Lambert law}{Intensity in an absorbing medium}{\QtyRef{intensity}, \QtyRef{absorption_coefficient}, $z$ penetration depth}
\desc[german]{Lambert-beersches Gesetz}{Intensität in einem absorbierenden Medium}{\QtyRef{intensity}, \QtyRef{absorption_coefficient}, $z$ Eindringtiefe}
\eq{
\d I = -I_0 \alpha(\omega) \d z\\
I(z) = I_0 \e^{-\alpha(\omega) z}
}
\end{formula}
\begin{formulagroup}{permittivity_complex}
\desc{Complex relative \qtyRef[permittivity]{permittivity}}{Complex dielectric function\\Microscopic, response of a single atom to an EM wave}{\QtyRef{refraction_index_real}, \QtyRef{refraction_index_complex}}
\desc[german]{Komplexe relative \qtyRef{permittivity}}{Komplexe dielektrische Funktion\\Mikroskopisch, Verhalten eines Atoms gegen eine EM-Welle}{}
\begin{formula}{definition}
\desc{Definition}{}{}
\desc[german]{Definition}{}{}
\eq{\epsilon_\txr &= \epsreal + i\epscomplex}
\end{formula}
\begin{formula}{real}
\desc{Real part}{}{}
\desc[german]{Realteil}{}{}
\eq{\epsreal &= {\nreal}^2 - {\ncomplex}^2}
\hiddenQuantity[permittivity_real]{\epsreal}{}{}
\end{formula}
\begin{formula}{complex}
\desc{Complex part}{}{}
\desc[german]{Komplexer Teil}{}{}
\eq{\epscomplex &= 2\nreal \ncomplex}
\hiddenQuantity[permittivity_complex]{\epscomplex}{}{}
\end{formula}
\end{formulagroup}