\Section{optics} \desc{Optics}{Properties of light and its interactions with matter}{} \desc[german]{Optik}{Ausbreitung von Licht und die Interaktion mit Materie}{} \TODO{adv. sc slide 427 classification} \begin{formulagroup}{refraction_index} \desc{Refraction index}{Macroscopic}{\QtyRef{relative_permittivity}, \QtyRef{relative_permeability}, \ConstRef{vacuum_speed_of_light}, \QtyRef{phase_velocity}} \desc[german]{Brechungsindex}{Macroscopisch}{} \begin{formula}{definition} \desc{Definition}{}{} \desc[german]{Definition}{}{} \quantity{\complex{n}}{}{s} \eq{ \complex{n} = \nreal + i\ncomplex } \end{formula} \begin{formula}{real} \desc{Real part}{}{} \desc[german]{Reller Teil}{}{} \quantity[refraction_index_real]{\nreal}{}{s} \eq{ n = \sqrt{\epsilon_\txr \mu_\txr} } \eq{ n = \frac{c_0}{c_\txM} } \end{formula} \begin{formula}{complex} \desc{Extinction coefficient}{Complex part of the refraction index. Describes absorption in a medium}{\GT{sometimes} $\kappa$} \desc[german]{Auslöschungskoeffizient}{Komplexer Teil des Brechungsindex. Beschreibt Absorption im Medium}{} \quantity[refraction_index_complex]{\ncomplex}{}{s} \end{formula} \end{formulagroup} \begin{formula}{reflectivity} \desc{Reflectivity}{}{\QtyRef{refraction_index}} \desc[german]{Reflektion}{}{} \eq{ R = \abs{\frac{\complex{n}-1}{\complex{n}+1}} } \end{formula} \begin{formula}{snell} \desc{Snell's law}{}{$\nreal_i$ \qtyRef{refraction_index_real}, $\theta_i$ incidence angle (normal to the surface)} \desc[german]{Snelliussches Brechungsgesetz}{}{$n_i$ \qtyRef{refraction_index}, $\theta_i$ Einfallswinkel (normal zur Fläche)} \eq{\nreal_1 \sin\theta_1 = \nreal_2\sin\theta_2} \end{formula} \begin{formula}{group_velocity} \desc{Group velocity}{Velocity with which the envelope of a wave propagates through space}{\QtyRef{angular_frequency}, \QtyRef{angular_wavenumber}} \desc[german]{Gruppengeschwindigkeit}{Geschwindigkeit, mit sich die Einhülende einer Welle ausbreitet}{} \eq{ v_\txg \equiv \pdv{\omega}{k} } \end{formula} \begin{formula}{phase_velocity} \desc{Phase velocity}{Velocity with which a wave propagates through a medium}{\QtyRef{angular_frequency}, \QtyRef{angular_wavenumber}, \QtyRef{wavelength}, \QtyRef{time_period}} \desc[german]{Phasengeschwindigkeit}{Geschwindigkeit, mit der sich eine Welle im Medium ausbreitet}{} \hiddenQuantity{v_\txp}{\m\per\s}{} \eq{ v_\txp = \frac{\omega}{k} = \frac{\lambda}{T} } \end{formula} \begin{formula}{absorption_coefficient} \desc{Absorption coefficient}{Intensity reduction while traversing a medium, not necessarily by energy transfer to the medium}{\QtyRef{refraction_index_complex}, \ConstRef{vacuum_speed_of_light}, \QtyRef{angular_frequency}} \desc[german]{Absoprtionskoeffizient}{Intensitätsverringerung beim Druchgang eines Mediums, nicht zwingend durch Energieabgabe an Medium}{} \quantity{\alpha}{\per\cm}{s} \eq{ \alpha &= 2\ncomplex \frac{\omega}{c} } \TODO{Is this equation really true in general?} \end{formula} \begin{formula}{intensity} \desc{Electromagnetic radiation intensity}{Surface power density}{$S$ \fRef{ed:em:poynting}} \desc[german]{Elektromagnetische Strahlungsintensität}{Flächenleistungsdichte}{} \quantity{I}{\watt\per\m^2=\k\per\s^3}{s} \eq{I = \abs{\braket{S}_t}} \end{formula} % \begin{formula}{lambert_beer_law} % \desc{Beer-Lambert law}{Intensity in an absorbing medium}{$E_\lambda$ extinction, \QtyRef{absorption_coefficient}, \QtyRef{concentration}, $d$ Thickness of the medium} % \desc[german]{Lambert-beersches Gesetz}{Intensität in einem absorbierenden Medium}{$E_\lambda$ Extinktion, \QtyRef{refraction_index_complex}, \QtyRef{concentration}, $d$ Dicke des Mediums} % \eq{ % E_\lambda = \log_{10} \frac{I_0}{I} = \kappa c d \\ % } % \end{formula} \begin{formula}{lambert_beer_law} \desc{Beer-Lambert law}{Intensity in an absorbing medium}{\QtyRef{intensity}, \QtyRef{absorption_coefficient}, $z$ penetration depth} \desc[german]{Lambert-beersches Gesetz}{Intensität in einem absorbierenden Medium}{\QtyRef{intensity}, \QtyRef{absorption_coefficient}, $z$ Eindringtiefe} \eq{ \d I = -I_0 \alpha(\omega) \d z\\ I(z) = I_0 \e^{-\alpha(\omega) z} } \end{formula} \begin{formulagroup}{permittivity_complex} \desc{Complex relative \qtyRef[permittivity]{permittivity}}{Complex dielectric function\\Microscopic, response of a single atom to an EM wave}{\QtyRef{refraction_index_real}, \QtyRef{refraction_index_complex}} \desc[german]{Komplexe relative \qtyRef{permittivity}}{Komplexe dielektrische Funktion\\Mikroskopisch, Verhalten eines Atoms gegen eine EM-Welle}{} \begin{formula}{definition} \desc{Definition}{}{} \desc[german]{Definition}{}{} \eq{\epsilon_\txr &= \epsreal + i\epscomplex} \end{formula} \begin{formula}{real} \desc{Real part}{}{} \desc[german]{Realteil}{}{} \eq{\epsreal &= {\nreal}^2 - {\ncomplex}^2} \hiddenQuantity[permittivity_real]{\epsreal}{}{} \end{formula} \begin{formula}{complex} \desc{Complex part}{}{} \desc[german]{Komplexer Teil}{}{} \eq{\epscomplex &= 2\nreal \ncomplex} \hiddenQuantity[permittivity_complex]{\epscomplex}{}{} \end{formula} \end{formulagroup}