refactor sectioning
This commit is contained in:
parent
2674545117
commit
702fc1eb33
@ -24,6 +24,20 @@ def gauss():
|
||||
ax.legend()
|
||||
return fig
|
||||
|
||||
# LAPLACE
|
||||
def flaplace(x, mu, b):
|
||||
return 1 / (2*b) * np.exp(-np.abs(x - mu) / b)
|
||||
|
||||
def laplace():
|
||||
fig, ax = get_fig()
|
||||
x = np.linspace(-5, 5, 300)
|
||||
for mu, b in [(0, 1), (0, 2), (0, 5), (-2, 2)]:
|
||||
y = flaplace(x, mu, b)
|
||||
label = texvar("mu", mu) + ", " + texvar("b", b)
|
||||
ax.plot(x, y, label=label)
|
||||
ax.legend()
|
||||
return fig
|
||||
|
||||
# CAUCHY / LORENTZ
|
||||
def fcauchy(x, x_0, gamma):
|
||||
return 1 / (np.pi * gamma * (1 + ((x - x_0)/gamma)**2))
|
||||
@ -128,6 +142,7 @@ def binomial():
|
||||
|
||||
if __name__ == '__main__':
|
||||
export(gauss(), "distribution_gauss")
|
||||
export(laplace(), "distribution_laplace")
|
||||
export(cauchy(), "distribution_cauchy")
|
||||
export(maxwell(), "distribution_maxwell-boltzmann")
|
||||
export(gamma(), "distribution_gamma")
|
||||
|
@ -1,9 +1,8 @@
|
||||
\Part[
|
||||
\eng{Chemistry}
|
||||
\ger{Chemie}
|
||||
]{ch}
|
||||
\Section[
|
||||
\eng{Periodic table}
|
||||
\ger{Periodensystem}
|
||||
]{ptable}
|
||||
\Part{ch}
|
||||
\desc{Chemistry}{}{}
|
||||
\desc[german]{Chemie}{}{}
|
||||
|
||||
\Section{ptable}
|
||||
\desc{Periodic table}{}{}
|
||||
\desc[german]{Periodensystem}{}{}
|
||||
\drawPeriodicTable
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Electrochemistry}
|
||||
\ger{Elektrochemie}
|
||||
]{el}
|
||||
\Section{el}
|
||||
\desc{Electrochemistry}{}{}
|
||||
\desc[german]{Elektrochemie}{}{}
|
||||
|
||||
\begin{formula}{chemical_potential}
|
||||
\desc{Chemical potential}{of species $i$\\Energy involved when the particle number changes}{\QtyRef{free_enthalpy}, \QtyRef{amount}}
|
||||
\desc[german]{Chemisches Potential}{der Spezies $i$\\Involvierte Energie, wenn sich die Teilchenzahl ändert}{}
|
||||
@ -38,10 +38,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Electrochemical cell}
|
||||
\ger{Elektrochemische Zelle}
|
||||
]{cell}
|
||||
\Subsection{cell}
|
||||
\desc{Electrochemical cell}{}{}
|
||||
\desc[german]{Elektrochemische Zelle}{}{}
|
||||
\eng[galvanic]{galvanic}
|
||||
\ger[galvanic]{galvanisch}
|
||||
\eng[electrolytic]{electrolytic}
|
||||
@ -162,10 +161,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Ionic conduction in electrolytes}
|
||||
\ger{Ionische Leitung in Elektrolyten}
|
||||
]{ion_cond}
|
||||
\Subsection{ion_cond}
|
||||
\desc{Ionic conduction in electrolytes}{}{}
|
||||
\desc[german]{Ionische Leitung in Elektrolyten}{}{}
|
||||
\eng[z]{charge number}
|
||||
\ger[z]{Ladungszahl}
|
||||
\eng[of_i]{of ion $i$}
|
||||
@ -280,10 +278,9 @@
|
||||
\eq{\Ln{\gamma_{\pm}} = -A \abs{z_+ \, z_-} \sqrt{I_b}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Kinetics}
|
||||
\ger{Kinetik}
|
||||
]{kin}
|
||||
\Subsection{kin}
|
||||
\desc{Kinetics}{}{}
|
||||
\desc[german]{Kinetik}{}{}
|
||||
\begin{formula}{transfer_coefficient}
|
||||
\desc{Transfer coefficient}{}{}
|
||||
\desc[german]{Durchtrittsfaktor}{Transferkoeffizient\\Anteil des Potentials der sich auf die freie Reaktionsenthalpie des anodischen Prozesses auswirkt}{}
|
||||
@ -307,10 +304,9 @@
|
||||
\eq{\eta_\text{act} = E_\text{electrode} - E_\text{ref}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Mass transport}
|
||||
\ger{Massentransport}
|
||||
]{mass}
|
||||
\Subsubsection{mass}
|
||||
\desc{Mass transport}{}{}
|
||||
\desc[german]{Massentransport}{}{}
|
||||
\begin{formula}{concentration_overpotential}
|
||||
\desc{Concentration overpotential}{Due to concentration gradient near the electrode, the ions need to \fRef[diffuse]{ch:el:ion_cond:diffusion} to the electrode before reacting}{\ConstRef{universal_gas}, \QtyRef{temperature}, $\c_{0/\txS}$ ion concentration in the electrolyte / at the double layer, $z$ \qtyRef{charge_number}, \ConstRef{faraday}}
|
||||
\desc[german]{Konzentrationsüberspannung}{Durch einen Konzentrationsgradienten an der Elektrode müssen Ionen erst zur Elektrode \fRef[diffundieren]{ch:el:ion_cond:diffusion}, bevor sie reagieren können}{}
|
||||
@ -488,15 +484,13 @@
|
||||
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Techniques}
|
||||
\ger{Techniken}
|
||||
]{tech}
|
||||
\Subsection{tech}
|
||||
\desc{Techniques}{}{}
|
||||
\desc[german]{Techniken}{}{}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Reference electrodes}
|
||||
\ger{Referenzelektroden}
|
||||
]{ref}
|
||||
\Subsubsection{ref}
|
||||
\desc{Reference electrodes}{}{}
|
||||
\desc[german]{Referenzelektroden}{}{}
|
||||
\begin{ttext}
|
||||
\eng{Defined as reference for measuring half-cell potententials}
|
||||
\ger{Definiert als Referenz für Messungen von Potentialen von Halbzellen}
|
||||
@ -522,10 +516,9 @@
|
||||
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Cyclic voltammetry}
|
||||
\ger{Zyklische Voltammetrie}
|
||||
]{cv}
|
||||
\Subsubsection{cv}
|
||||
\desc{Cyclic voltammetry}{}{}
|
||||
\desc[german]{Zyklische Voltammetrie}{}{}
|
||||
\begin{bigformula}{duck}
|
||||
\desc{Cyclic voltammogram}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
@ -647,10 +640,9 @@
|
||||
\eq{j_\infty = nFD \frac{c^0}{\delta_\text{diff}} = \frac{1}{1.61} nFD^{\frac{2}{3}} v^{\frac{-1}{6}} c^0 \sqrt{\omega}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{AC-Impedance}
|
||||
\ger{AC-Impedanz}
|
||||
]{ac}
|
||||
\Subsubsection{ac}
|
||||
\desc{AC-Impedance}{}{}
|
||||
\desc[german]{AC-Impedanz}{}{}
|
||||
\begin{formula}{nyquist}
|
||||
\desc{Nyquist diagram}{Real and imaginary parts of \qtyRef{impedance} while varying the frequency}{}
|
||||
\desc[german]{Nyquist-Diagram}{Real und Imaginaärteil der \qtyRef{impedance} während die Frequenz variiert wird}{}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Thermoelectricity}
|
||||
\ger{Thermoelektrizität}
|
||||
]{thermo}
|
||||
\Section{thermo}
|
||||
\desc{Thermoelectricity}{}{}
|
||||
\desc[german]{Thermoelektrizität}{}{}
|
||||
|
||||
\begin{formula}{seebeck}
|
||||
\desc{Seebeck coefficient}{Thermopower}{$V$ voltage, \QtyRef{temperature}}
|
||||
\desc[german]{Seebeck-Koeffizient}{}{}
|
||||
@ -35,10 +35,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{misc}
|
||||
\ger{misc}
|
||||
]{misc}
|
||||
\Section{misc}
|
||||
\desc{misc}{}{}
|
||||
\desc[german]{misc}{}{}
|
||||
|
||||
% TODO: hide
|
||||
\begin{formula}{stoichiometric_coefficient}
|
||||
|
@ -1,11 +1,10 @@
|
||||
\Section[
|
||||
\eng{Charge transport}
|
||||
\ger{Ladungstransport}
|
||||
]{charge_transport}
|
||||
\Subsection[
|
||||
\eng{Drude model}
|
||||
\ger{Drude-Modell}
|
||||
]{drude}
|
||||
\Section{charge_transport}
|
||||
\desc{Charge transport}{}{}
|
||||
\desc[german]{Ladungstransport}{}{}
|
||||
|
||||
\Subsection{drude}
|
||||
\desc{Drude model}{}{}
|
||||
\desc[german]{Drude-Modell}{}{}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
@ -48,10 +47,9 @@
|
||||
\eq{\sigma = \frac{\vec{j}}{\vec{\E}} = \frac{n e^2 \tau}{\masse} = n e \mu}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Sommerfeld model}
|
||||
\ger{Sommerfeld-Modell}
|
||||
]{sommerfeld}
|
||||
\Subsection{sommerfeld}
|
||||
\desc{Sommerfeld model}{}{}
|
||||
\desc[german]{Sommerfeld-Modell}{}{}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
@ -66,10 +64,9 @@
|
||||
\eq{\vec{j} = -en\braket{v} = -e n \frac{\hbar}{\masse}\braket{\vec{k}} = -e \frac{1}{V} \sum_{\vec{k},\sigma} \frac{\hbar \vec{k}}{\masse}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Boltzmann-transport}
|
||||
\ger{Boltzmann-Transport}
|
||||
]{boltzmann}
|
||||
\Subsection{boltzmann}
|
||||
\desc{Boltzmann-transport}{}{}
|
||||
\desc[german]{Boltzmann-Transport}{}{}
|
||||
\begin{ttext}
|
||||
\eng{Semiclassical description using a probability distribution (\fRef{cm:sc:fermi_dirac}) to describe the particles.}
|
||||
\ger{Semiklassische Beschreibung, benutzt eine Wahrscheinlichkeitsverteilung (\fRef{cm:sc:fermi_dirac}).}
|
||||
@ -82,10 +79,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Magneto-transport}
|
||||
\ger{Magnetotransport}
|
||||
]{mag}
|
||||
\Subsection{mag}
|
||||
\desc{Magneto-transport}{}{}
|
||||
\desc[german]{Magnetotransport}{}{}
|
||||
\begin{formula}{cyclotron_frequency}
|
||||
\desc{Cyclotron frequency}{Moving charge carriers move in cyclic orbits under applied magnetic field}{$q$ \qtyRef{charge}, \QtyRef{magnetic_flux_density}, m \qtyRef[effective]{mass}}
|
||||
\desc[german]{Zyklotronfrequenz}{Ladungstraäger bewegen sich in einem Magnetfeld auf einer Kreisbahn}{}
|
||||
@ -98,13 +94,96 @@
|
||||
% \desc[german]{}{}{}
|
||||
% \eq{}
|
||||
% \end{formula}
|
||||
\TODO{move hall here}
|
||||
|
||||
\Subsubsection{hall}
|
||||
\desc{Hall-Effect}{}{}
|
||||
\desc[german]{Hall-Effekt}{}{}
|
||||
|
||||
|
||||
\Paragraph{classic}
|
||||
\desc{Classical Hall-Effect}{Current flowing in $x$ direction in a conductor ($l \times b \times d$) with a magnetic field $B$ in $z$ direction leads to a hall voltage $U_\text{H}$ in $y$ direction.}{}
|
||||
\desc[german]{Klassischer Hall-Effekt}{Fließt in einem Leiter ($l \times b \times d$) ein Strom in $x$ Richtung, während der Leiter von einem Magnetfeld $B$ in $z$-Richtung durchdrungen, wird eine Hallspannung $U_\text{H}$ in $y$-Richtung induziert.}{}
|
||||
\begin{formula}{voltage}
|
||||
\desc{Hall voltage}{}{$n$ charge carrier density}
|
||||
\desc[german]{Hallspannung}{}{$n$ Ladungsträgerdichte}
|
||||
\eq{U_\text{H} = \frac{I B}{ne d}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{coefficient}
|
||||
\desc{Hall coefficient}{Sometimes $R_\txH$}{}
|
||||
\desc[german]{Hall-Koeffizient}{Manchmal $R_\txH$}{}
|
||||
\eq{A_\text{H} := -\frac{E_y}{j_x B_z} \explOverEq{\GT{metals}} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity}
|
||||
\desc{Resistivity}{}{}
|
||||
\desc[german]{Spezifischer Widerstand}{}{}
|
||||
\eq{\rho_{xx} &= \frac{\masse}{ne^2\tau} \\ \rho_{xy} &= \frac{B}{ne}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Paragraph{quantum}
|
||||
\desc{Quantum hall effects}{}{}
|
||||
\desc[german]{Quantenhalleffekte}{}{}
|
||||
\begin{formula}{types}
|
||||
\desc{Types of quantum hall effects}{}{}
|
||||
\desc[german]{Arten von Quantenhalleffekten}{}{}
|
||||
\ttxt{\eng{
|
||||
\begin{itemize}
|
||||
\item \textbf{Integer} (QHE): filling factor $\nu$ is an integer
|
||||
\item \textbf{Fractional} (FQHE): filling factor $\nu$ is a fraction
|
||||
\item \textbf{Spin} (QSHE): spin currents instead of charge currents
|
||||
\item \textbf{Anomalous} (QAHE): symmetry breaking by internal effects instead of external magnetic fields
|
||||
\end{itemize}
|
||||
}\ger{
|
||||
\begin{itemize}
|
||||
\item \textbf{Integer} (QHE): Füllfaktor $\nu$ ist ganzzahlig
|
||||
\item \textbf{Fractional} (FQHE): Füllfaktor $\nu$ ist ein Bruch
|
||||
\item \textbf{Spin} (QSHE): Spin Ströme anstatt Ladungsströme
|
||||
\item \textbf{Anomalous} (QAHE): Symmetriebruch durch interne Effekte anstatt druch ein externes Magnetfeld
|
||||
\end{itemize}
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
\begin{formula}{conductivity}
|
||||
\desc{Conductivity tensor}{}{}
|
||||
\desc[german]{Leitfähigkeitstensor}{}{}
|
||||
\eq{\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity_tensor}
|
||||
\desc{Resistivity tensor}{}{}
|
||||
\desc[german]{Spezifischer Widerstands-tensor}{}{}
|
||||
\eq{
|
||||
\rho = \sigma^{-1}
|
||||
% \sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity}
|
||||
\desc{Resistivity}{}{$\nu \in \mathbb{Z}$ filing factor}
|
||||
\desc[german]{Spezifischer Hallwiderstand}{}{$\nu \in \mathbb{Z}$ Füllfaktor}
|
||||
\eq{\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}}
|
||||
\end{formula}
|
||||
|
||||
% \begin{formula}{qhe}
|
||||
% \desc{Integer quantum hall effect}{}{}
|
||||
% \desc[german]{Ganzahliger Quanten-Hall-Effekt}{}{}
|
||||
% \fig{img/qhe-klitzing.jpeg}
|
||||
% \end{formula}
|
||||
|
||||
\begin{formula}{fqhe}
|
||||
\desc{Fractional quantum hall effect}{}{$\nu$ fraction of two numbers without shared divisors}
|
||||
\desc[german]{Fraktionaler Quantum-Hall-Effekt}{}{$\nu$ Bruch aus Zahlen ohne gemeinsamen Teiler}
|
||||
\eq{\nu = \frac{1}{3},\frac{2}{5},\frac{3}{7},\frac{2}{3}...}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{misc}
|
||||
\ger{misc}
|
||||
]{misc}
|
||||
\Subsection{misc}
|
||||
\desc{misc}{}{}
|
||||
\desc[german]{misc}{}{}
|
||||
\begin{formula}{tsu_esaki}
|
||||
\desc{Tsu-Esaki tunneling current}{Describes the current $I_{\txL \leftrightarrow \txR}$ through a barrier}{$\mu_i$ \qtyRef{chemical_potential} at left/right side, $U_i$ voltage on left/right side. Electrons occupy region between $U_i$ and $\mu_i$}
|
||||
\desc[german]{Tsu-Esaki Tunnelstrom}{Beschreibt den Strom $I_{\txL \leftrightarrow \txR}$ durch eine Barriere }{$\mu_i$ \qtyRef{chemical_potential} links/rechts, $U_i$ Spannung links/rechts. Elektronen besetzen Bereich zwischen $U_i$ und $\mu_i$}
|
||||
|
@ -1,8 +1,8 @@
|
||||
\Part[
|
||||
\eng{Condensed matter physics}
|
||||
\ger{Festkörperphysik}
|
||||
]{cm}
|
||||
\TODO{van hove singularities, debye frequency}
|
||||
\Part{cm}
|
||||
\desc{Condensed matter physics}{}{}
|
||||
\desc[german]{Festkörperphysik}{}{}
|
||||
|
||||
\TODO{van hove singularities}
|
||||
|
||||
\begin{formula}{dos}
|
||||
\desc{Density of states (DOS)}{}{\QtyRef{volume}, $N$ number of energy levels, \QtyRef{energy}}
|
||||
@ -11,12 +11,9 @@
|
||||
\eq{D(E) = \frac{1}{V}\sum_{i=1}^{N} \delta(E-E(\vec{k_i}))}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Bonds}
|
||||
\ger{Bindungen}
|
||||
]{bond}
|
||||
\Section{bond}
|
||||
\desc{Bonds}{}{}
|
||||
\desc[german]{Bindungen}{}{}
|
||||
\begin{formula}{metallic}
|
||||
\desc{Metallic bond}{}{}
|
||||
\desc[german]{Metallbindung}{}{}
|
||||
|
@ -1,11 +1,11 @@
|
||||
\Section[
|
||||
\eng{Crystals}
|
||||
\ger{Kristalle}
|
||||
]{crystal}
|
||||
\Subsection[
|
||||
\eng{Bravais lattice}
|
||||
\ger{Bravais-Gitter}
|
||||
]{bravais}
|
||||
\Section{crystal}
|
||||
\desc{Crystals}{}{}
|
||||
\desc[german]{Kristalle}{}{}
|
||||
|
||||
\Subsection{bravais}
|
||||
\desc{Bravais lattice}{}{}
|
||||
\desc[german]{Bravais-Gitter}{}{}
|
||||
|
||||
\Eng[lattice_system]{Lattice system}
|
||||
\Ger[lattice_system]{Gittersystem}
|
||||
\Eng[crystal_family]{Crystal system}
|
||||
@ -197,14 +197,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Reciprocal lattice}
|
||||
\ger{Reziprokes Gitter}
|
||||
]{reci}
|
||||
\begin{ttext}
|
||||
\eng{The reciprokal lattice is made up of all the wave vectors $\vec{k}$ that ressemble standing waves with the periodicity of the Bravais lattice.}
|
||||
\ger{Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren $\vec{k}$, die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.}
|
||||
\end{ttext}
|
||||
\Subsection{reci}
|
||||
\desc{Reciprocal lattice}{The reciprokal lattice is made up of all the wave vectors $\vec{k}$ that ressemble standing waves with the periodicity of the Bravais lattice.}{}
|
||||
\desc[german]{Reziprokes Gitter}{Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren $\vec{k}$, die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.}{}
|
||||
|
||||
\begin{formula}{vectors}
|
||||
\desc{Reciprocal lattice vectors}{}{$a_i$ real-space lattice vectors, $V_c$ volume of the primitive lattice cell}
|
||||
@ -222,10 +217,9 @@
|
||||
\eq{\vec{G}_{{hkl}} = h \vec{b_1} + k \vec{b_2} + l \vec{b_3}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Scattering processes}
|
||||
\ger{Streuprozesse}
|
||||
]{scatter}
|
||||
\Subsection{scatter}
|
||||
\desc{Scattering processes}{}{}
|
||||
\desc[german]{Streuprozesse}{}{}
|
||||
\begin{formula}{matthiessen}
|
||||
\desc{Matthiessen's rule}{Approximation, only holds if the processes are independent of each other}{\QtyRef{mobility}, \QtyRef{scattering_time}}
|
||||
\desc[german]{Matthiessensche Regel}{Näherung, nur gültig wenn die einzelnen Streuprozesse von einander unabhängig sind}{}
|
||||
@ -235,10 +229,10 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Lattices}
|
||||
\ger{Gitter}
|
||||
]{lat}
|
||||
\Subsection{lat}
|
||||
\desc{Lattices}{}{}
|
||||
\desc[german]{Gitter}{}{}
|
||||
|
||||
\begin{formula}{sc}
|
||||
\desc{Simple cubic (SC)}{Reciprocal: Simple cubic}{\QtyRef{lattice_constant}}
|
||||
\desc[german]{Einfach kubisch (SC)}{Reziprok: Einfach kubisch}{}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Free electron gas}
|
||||
\ger{Freies Elektronengase}
|
||||
]{egas}
|
||||
\Section{egas}
|
||||
\desc{Free electron gas}{}{}
|
||||
\desc[german]{Freies Elektronengase}{}{}
|
||||
|
||||
\begin{formula}{desc}
|
||||
\desc{Description}{\GT{see_also}: \fRef{td:id_qgas}}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
@ -31,20 +31,18 @@
|
||||
\eq{\mu = \frac{q \tau}{m}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{3D electron gas}
|
||||
\ger{3D Elektronengas}
|
||||
]{3deg}
|
||||
\Subsection{3deg}
|
||||
\desc{3D electron gas}{}{}
|
||||
\desc[german]{3D Elektronengas}{}{}
|
||||
\begin{formula}{dos}
|
||||
\desc{Density of states}{}{}
|
||||
\desc[german]{Zustandsdichte}{}{}
|
||||
\eq{D_\text{3D}(E) = \frac{1}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{2D electron gas}
|
||||
\ger{2D Elektronengas}
|
||||
]{2deg}
|
||||
\Subsection{2deg}
|
||||
\desc{2D electron gas}{}{}
|
||||
\desc[german]{2D Elektronengas}{}{}
|
||||
\begin{ttext}
|
||||
\eng{Lower dimension gases can be obtained by restricting a 3D gas with infinetly high potential walls on a narrow area with the width $L$.}
|
||||
\ger{
|
||||
@ -71,10 +69,9 @@
|
||||
\eq{D_\text{2D}(E) = \frac{m}{\pi\hbar^2}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{1D electron gas / quantum wire}
|
||||
\ger{1D Eleltronengas / Quantendraht}
|
||||
]{1deg}
|
||||
\Subsection{1deg}
|
||||
\desc{1D electron gas / quantum wire}{}{}
|
||||
\desc[german]{1D Eleltronengas / Quantendraht}{}{}
|
||||
|
||||
\begin{formula}{energy}
|
||||
\desc{Energy}{}{}
|
||||
@ -90,10 +87,9 @@
|
||||
|
||||
\TODO{condunctance}
|
||||
|
||||
\Subsection[
|
||||
\eng{0D electron gas / quantum dot}
|
||||
\ger{0D Elektronengase / Quantenpunkt}
|
||||
]{0deg}
|
||||
\Subsection{0deg}
|
||||
\desc{0D electron gas / quantum dot}{}{}
|
||||
\desc[german]{0D Elektronengase / Quantenpunkt}{}{}
|
||||
\begin{formula}{dos}
|
||||
\desc{Density of states}{}{}
|
||||
\desc[german]{Zustandsdichte}{}{}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Material physics}
|
||||
\ger{Materialphysik}
|
||||
]{mat}
|
||||
\Section{mat}
|
||||
\desc{Material physics}{}{}
|
||||
\desc[german]{Materialphysik}{}{}
|
||||
|
||||
|
||||
\begin{formula}{tortuosity}
|
||||
\desc{Tortuosity}{Degree of the winding of a transport path through a porous material. \\ Multiple definitions exist}{$l$ path length, $L$ distance of the end points}
|
||||
|
@ -1,15 +1,10 @@
|
||||
\Section[
|
||||
\eng{Band theory}
|
||||
\ger{Bändermodell}
|
||||
]{band}
|
||||
\Subsection[
|
||||
\eng{Hybrid orbitals}
|
||||
\ger{Hybridorbitale}
|
||||
]{hybrid_orbitals}
|
||||
\begin{ttext}
|
||||
\eng{Hybrid orbitals are linear combinations of other atomic orbitals.}
|
||||
\ger{Hybridorbitale werden durch Linearkombinationen von anderen atomorbitalen gebildet.}
|
||||
\end{ttext}
|
||||
\Section{band}
|
||||
\desc{Band theory}{}{}
|
||||
\desc[german]{Bändermodell}{}{}
|
||||
|
||||
\Subsection{hybrid_orbitals}
|
||||
\desc{Hybrid orbitals}{Hybrid orbitals are linear combinations of other atomic orbitals.}{}
|
||||
\desc[german]{Hybridorbitale}{Hybridorbitale werden durch Linearkombinationen von anderen atomorbitalen gebildet.}{}
|
||||
|
||||
% chemmacros package
|
||||
\begin{formula}{sp}
|
||||
@ -51,10 +46,9 @@
|
||||
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Diffusion}
|
||||
\ger{Diffusion}
|
||||
]{diffusion}
|
||||
\Section{diffusion}
|
||||
\desc{Diffusion}{}{}
|
||||
\desc[german]{Diffusion}{}{}
|
||||
\begin{formula}{diffusion_coefficient}
|
||||
\desc{Diffusion coefficient}{}{}
|
||||
\desc[german]{Diffusionskoeffizient}{}{}
|
||||
@ -91,10 +85,10 @@
|
||||
\eq{\pdv{c}{t} = D \pdv[2]{c}{x}}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{\GT{misc}}
|
||||
\ger{\GT{misc}}
|
||||
]{misc}
|
||||
\Section{misc}
|
||||
% \desc{\GT{misc}}{}{}
|
||||
% \desc[german]{\GT{misc}}{}{}
|
||||
|
||||
|
||||
\begin{formula}{vdw_material}
|
||||
\desc{Van-der-Waals material}{2D materials}{}
|
||||
|
@ -1,8 +1,7 @@
|
||||
\def\meff{m^{*}}
|
||||
\Section[
|
||||
\eng{Semiconductors}
|
||||
\ger{Halbleiter}
|
||||
]{sc}
|
||||
\Section{sc}
|
||||
\desc{Semiconductors}{}{}
|
||||
\desc[german]{Halbleiter}{}{}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{$n,p$ \fRef{cm:sc:charge_carrier_density:equilibrium}}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
@ -137,10 +136,9 @@
|
||||
\end{formula}
|
||||
\TODO{effective mass approx}
|
||||
|
||||
\Subsection[
|
||||
\eng{Doping}
|
||||
\ger{Dotierung}
|
||||
]{dope}
|
||||
\Subsection{dope}
|
||||
\desc{Doping}{}{}
|
||||
\desc[german]{Dotierung}{}{}
|
||||
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
@ -183,14 +181,12 @@
|
||||
\TODO{plot}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Defects}
|
||||
\ger{Defekte}
|
||||
]{defect}
|
||||
\Subsubsection[
|
||||
\eng{Point defects}
|
||||
\ger{Punktdefekte}
|
||||
]{point}
|
||||
\Subsection{defect}
|
||||
\desc{Defects}{}{}
|
||||
\desc[german]{Defekte}{}{}
|
||||
\Subsubsection{point}
|
||||
\desc{Point defects}{}{}
|
||||
\desc[german]{Punktdefekte}{}{}
|
||||
\begin{formula}{vacancy}
|
||||
\desc{Vacancy}{}{}
|
||||
\desc[german]{Fehlstelle}{}{}
|
||||
@ -245,10 +241,9 @@
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Line defects}
|
||||
\ger{Liniendefekte}
|
||||
]{line}
|
||||
\Subsubsection{line}
|
||||
\desc{Line defects}{}{}
|
||||
\desc[german]{Liniendefekte}{}{}
|
||||
\begin{formula}{edge}
|
||||
\desc{Edge distortion}{}{}
|
||||
\desc[german]{Stufenversetzung}{}{}
|
||||
@ -279,10 +274,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Area defects}
|
||||
\ger{Flächendefekte}
|
||||
]{area}
|
||||
\Subsubsection{area}
|
||||
\desc{Area defects}{}{}
|
||||
\desc[german]{Flächendefekte}{}{}
|
||||
\begin{formula}{grain_boundary}
|
||||
\desc{Grain boundary}{}{}
|
||||
\desc[german]{Korngrenze}{}{}
|
||||
@ -303,10 +297,9 @@
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Devices and junctions}
|
||||
\ger{Bauelemente und Kontakte}
|
||||
]{junctions}
|
||||
\Subsection{junctions}
|
||||
\desc{Devices and junctions}{}{}
|
||||
\desc[german]{Bauelemente und Kontakte}{}{}
|
||||
\begin{formula}{metal-sc}
|
||||
\desc{Metal-semiconductor junction}{}{}
|
||||
\desc[german]{Metall-Halbleiter Kontakt}{}{}
|
||||
@ -350,10 +343,9 @@
|
||||
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Excitons}
|
||||
\ger{Exzitons}
|
||||
]{exciton}
|
||||
\Subsection{exciton}
|
||||
\desc{Excitons}{}{}
|
||||
\desc[german]{Exzitons}{}{}
|
||||
\begin{formula}{desc}
|
||||
\desc{Exciton}{}{}
|
||||
\desc[german]{Exziton}{}{}
|
||||
|
@ -4,21 +4,15 @@
|
||||
\def\Tcrit{T_\text{c}}
|
||||
\def\Bcth{B_\text{c,th}}
|
||||
|
||||
\Section[
|
||||
\eng{Superconductivity}
|
||||
\ger{Supraleitung}
|
||||
]{super}
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
\Section{super}
|
||||
\desc{Superconductivity}{
|
||||
Materials for which the electric resistance jumps to 0 under a critical temperature $\Tcrit$.
|
||||
Below $\Tcrit$ they have perfect conductivity and perfect diamagnetism, up until a critical magnetic field $\Bcth$.
|
||||
}
|
||||
\ger{
|
||||
}{}
|
||||
\desc[german]{Supraleitung}{
|
||||
Materialien, bei denen der elektrische Widerstand beim unterschreiten einer kritischen Temperatur $\Tcrit$ auf 0 springt.
|
||||
Sie verhalten sich dann wie ideale Leiter und ideale Diamagnete, bis zu einem kritischen Feld $\Bcth$.
|
||||
|
||||
}
|
||||
\end{ttext}
|
||||
}{}
|
||||
|
||||
\begin{formula}{type1}
|
||||
\desc{Type-I superconductor}{}{}
|
||||
@ -92,10 +86,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{London Theory}
|
||||
\ger{London-Theorie}
|
||||
]{london}
|
||||
\Subsection{london}
|
||||
\desc{London Theory}{}{}
|
||||
\desc[german]{London-Theorie}{}{}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
@ -148,10 +141,9 @@
|
||||
\eq{\lambda_\txL(T) = \lambda_\txL(0) \frac{1}{\sqrt{1- \left(\frac{T}{T_\txc}\right)^4}}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Macroscopic wavefunction}
|
||||
\ger{Makroskopische Wellenfunktion}
|
||||
]{macro}
|
||||
\Subsubsection{macro}
|
||||
\desc{Macroscopic wavefunction}{}{}
|
||||
\desc[german]{Makroskopische Wellenfunktion}{}{}
|
||||
\begin{formula}{ansatz}
|
||||
\desc{Ansatz}{}{}
|
||||
\desc[german]{Ansatz}{}{}
|
||||
@ -170,10 +162,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Josephson Effect}
|
||||
\ger{Josephson Effekt}
|
||||
]{josephson}
|
||||
\Subsubsection{josephson}
|
||||
\desc{Josephson Effect}{}{}
|
||||
\desc[german]{Josephson Effekt}{}{}
|
||||
\begin{formula}{1st_relation}
|
||||
\desc{1. Josephson relation}{Dissipationless supercurrent accros junction at zero applied voltage}{$\vecj_\text{C}=\frac{2e}{\hbar}E_\text{J}$ critical current, $\phi$ phase difference accross junction}
|
||||
\desc[german]{1. Josephson Gleichung}{Dissipationsloser Suprastrom durch die Kreuzung ohne angelegte Spannung}{$\vecj_\text{C}=\frac{2e}{\hbar}E_\text{J}$ kritischer Strom, $\phi$ Phasendifferenz zwischen den Supraleitern}
|
||||
@ -195,10 +186,9 @@
|
||||
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{\GL Theory (GLAG)}
|
||||
\ger{\GL Theorie (GLAG)}
|
||||
]{gl}
|
||||
\Subsection{gl}
|
||||
\desc{\GL Theory (GLAG)}{}{}
|
||||
\desc[german]{\GL Theorie (GLAG)}{}{}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
@ -326,10 +316,9 @@
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Microscopic theory}
|
||||
\ger{Mikroskopische Theorie}
|
||||
]{micro}
|
||||
\Subsection{micro}
|
||||
\desc{Microscopic theory}{}{}
|
||||
\desc[german]{Mikroskopische Theorie}{}{}
|
||||
\begin{formula}{isotop_effect}
|
||||
\desc{Isotope effect}{Superconducting behaviour depends on atomic mass and thereby on the lattice \Rightarrow Microscopic origin}{$\Tcrit$ critial temperature, $M$ isotope mass, $\omega_\text{ph}$}
|
||||
\desc[german]{Isotopeneffekt}{Supraleitung hängt von der Atommasse und daher von den Gittereigenschaften ab \Rightarrow Mikroskopischer Ursprung}{$\Tcrit$ kritische Temperatur, $M$ Isotopen-Masse, $\omega_\text{ph}$}
|
||||
@ -347,10 +336,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{BCS-Theory}
|
||||
\ger{BCS-Theorie}
|
||||
]{bcs}
|
||||
\Subsubsection{bcs}
|
||||
\desc{BCS-Theory}{}{}
|
||||
\desc[german]{BCS-Theorie}{}{}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
@ -429,10 +417,9 @@
|
||||
\eq{E \approx 2E_\txF - 2\hbar\omega_\txD \Exp{-\frac{4}{V_0 D(E_\txF)}}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Excitations and finite temperatures}
|
||||
\ger{Anregungen und endliche Temperatur}
|
||||
]{excite}
|
||||
\Subsubsection{excite}
|
||||
\desc{Excitations and finite temperatures}{}{}
|
||||
\desc[german]{Anregungen und endliche Temperatur}{}{}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
@ -522,10 +509,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Flux pinning}
|
||||
\ger{Haftung von Flusslinien}
|
||||
]{pinning}
|
||||
\Subsubsection{pinning}
|
||||
\desc{Flux pinning}{}{}
|
||||
\desc[german]{Haftung von Flusslinien}{}{}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
|
@ -1,22 +1,20 @@
|
||||
\Section[
|
||||
\eng{Techniques}
|
||||
\ger{Techniken}
|
||||
]{tech}
|
||||
\Section{tech}
|
||||
\desc{Techniques}{}{}
|
||||
\desc[german]{Techniken}{}{}
|
||||
|
||||
\Subsection[
|
||||
\eng{Measurement techniques}
|
||||
\ger{Messtechniken}
|
||||
]{meas}
|
||||
|
||||
\Subsection{meas}
|
||||
\desc{Measurement techniques}{}{}
|
||||
\desc[german]{Messtechniken}{}{}
|
||||
|
||||
\Eng[name]{Name}
|
||||
\Ger[name]{Name}
|
||||
\Eng[application]{Application}
|
||||
\Ger[application]{Anwendung}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Raman spectroscopy}
|
||||
\ger{Raman Spektroskopie}
|
||||
]{raman}
|
||||
\Subsubsection{raman}
|
||||
\desc{Raman spectroscopy}{}{}
|
||||
\desc[german]{Raman Spektroskopie}{}{}
|
||||
|
||||
% TODO remove fqname from minipagetable?
|
||||
|
||||
@ -66,19 +64,17 @@
|
||||
\end{bigformula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{ARPES}
|
||||
\ger{ARPES}
|
||||
]{arpes}
|
||||
\Subsubsection{arpes}
|
||||
\desc{ARPES}{}{}
|
||||
\desc[german]{ARPES}{}{}
|
||||
what?
|
||||
in?
|
||||
how?
|
||||
plot
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Scanning probe microscopy SPM}
|
||||
\ger{Rastersondenmikroskopie (SPM)}
|
||||
]{spm}
|
||||
\Subsubsection{spm}
|
||||
\desc{Scanning probe microscopy SPM}{}{}
|
||||
\desc[german]{Rastersondenmikroskopie (SPM)}{}{}
|
||||
\begin{ttext}
|
||||
\eng{Images of surfaces are taken by scanning the specimen with a physical probe.}
|
||||
\ger{Bilder der Oberfläche einer Probe werden erstellt, indem die Probe mit einer Sonde abgetastet wird.}
|
||||
@ -132,10 +128,9 @@
|
||||
\end{minipage}
|
||||
\end{bigformula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Fabrication techniques}
|
||||
\ger{Herstellungsmethoden}
|
||||
]{fab}
|
||||
\Subsection{fab}
|
||||
\desc{Fabrication techniques}{}{}
|
||||
\desc[german]{Herstellungsmethoden}{}{}
|
||||
|
||||
\begin{bigformula}{cvd}
|
||||
\desc{Chemical vapor deposition (CVD)}{}{}
|
||||
@ -177,10 +172,9 @@
|
||||
\end{bigformula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Epitaxy}
|
||||
\ger{Epitaxie}
|
||||
]{epitaxy}
|
||||
\Subsubsection{epitaxy}
|
||||
\desc{Epitaxy}{}{}
|
||||
\desc[german]{Epitaxie}{}{}
|
||||
\begin{ttext}
|
||||
\eng{A type of crystal groth in which new layers are formed with well-defined orientations with respect to the crystalline seed layer.}
|
||||
\ger{Eine Art des Kristallwachstums, bei der mindestens eine kristallographische Ordnung der wachsenden Schicht der des Substrates entspricht.}
|
||||
|
@ -1,26 +1,20 @@
|
||||
\Section[
|
||||
\eng{Topological Materials}
|
||||
\ger{Topologische Materialien}
|
||||
]{topo}
|
||||
\Subsection[
|
||||
\eng{Berry phase / Geometric phase}
|
||||
\ger{Berry-Phase / Geometrische Phase}
|
||||
]{berry_phase}
|
||||
\Section{topo}
|
||||
\desc{Topological Materials}{}{}
|
||||
\desc[german]{Topologische Materialien}{}{}
|
||||
|
||||
\begin{ttext}[desc]
|
||||
\eng{
|
||||
\Subsection{berry_phase}
|
||||
\desc{Berry phase / Geometric phase}{
|
||||
While adiabatically traversing a closed through the parameter space $R(t)$, the wave function of a systems
|
||||
may pick up an additional phase $\gamma$.\\
|
||||
If $\vec{R}(t)$ varies adiabatically (slowly) and the system is initially in eigenstate $\ket{n}$,
|
||||
it will stay in an Eigenstate throughout the process (quantum adiabtic theorem).
|
||||
}
|
||||
\ger{
|
||||
}{}
|
||||
\desc[german]{Berry-Phase / Geometrische Phase}{
|
||||
Beim adiabatischem Durchlauf eines geschlossenen Weges durch den Parameterraum $R(t)$ kann die Wellenfunktion eines Systems
|
||||
eine zusätzliche Phase $\gamma$ erhalten.\\
|
||||
Wenn $\vec{R}(t)$ adiabatisch (langsam) variiert und das System anfangs im Eigenzustand $\ket{n}$ ist,
|
||||
bleibt das System während dem Prozess in einem Eigenzustand (Adiabatisches Theorem der Quantenmechanik).
|
||||
}
|
||||
\end{ttext}
|
||||
}{}
|
||||
\Eng[dynamic_phase]{Dynamical Phase}
|
||||
\Eng[berry_phase]{Berry Phase}
|
||||
\Ger[dynamic_phase]{Dynamische Phase}
|
||||
|
@ -1,7 +1,12 @@
|
||||
\Section[
|
||||
\eng{Lattice vibrations}
|
||||
\ger{Gitterschwingungen}
|
||||
]{vib}
|
||||
\Section{vib}
|
||||
\desc{Lattice vibrations}{}{}
|
||||
\desc[german]{Gitterschwingungen}{}{}
|
||||
|
||||
\begin{formula}{speed_of_sound}
|
||||
\desc{Speed of sound}{Speed with which vibrations propagate through an elastic medium}{}
|
||||
\desc[german]{Schallgeschwindigkeit}{Geschwindigkeit, mit der sich Vibrationen in einem elastischem Medium ausbreiten}{}
|
||||
\quantity{v}{\m\per\s}{s}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{dispersion_1atom_basis}
|
||||
\desc{Phonon dispersion of a lattice with a one-atom basis}{same as the dispersion of a linear chain}{$C_n$ force constants between layer $s$ and $s+n$, $M$ \qtyRef{mass} of the reference atom, $a$ \qtyRef{lattice_constant}, $q$ phonon \qtyRef{wavevector}, $u$ Ansatz for the atom displacement}
|
||||
@ -46,10 +51,9 @@
|
||||
\eq{C_\txm = 3\NA \kB = 3R \approx \SI{25}{\joule\per\mol\kelvin}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Einstein model}
|
||||
\ger{Einstein-Modell}
|
||||
]{einstein}
|
||||
\Subsection{einstein}
|
||||
\desc{Einstein model}{}{}
|
||||
\desc[german]{Einstein-Modell}{}{}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
@ -72,10 +76,9 @@
|
||||
\eq{C_V^\txE = 3N\kB \left( \frac{\hbar\omega_\txE}{\kB T}\right)^2 \frac{\e^{\frac{\hbar\omega_\txE}{\kB T}}}{ \left(\e^{\frac{\hbar\omega_\txE}{\kB T}} - 1\right)^2}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Debye model}
|
||||
\ger{Debye-Modell}
|
||||
]{debye}
|
||||
\Subsection{debye}
|
||||
\desc{Debye model}{}{}
|
||||
\desc[german]{Debye-Modell}{}{}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Atomic dynamics}
|
||||
% \ger{}
|
||||
]{ad}
|
||||
\Section{ad}
|
||||
\desc{Atomic dynamics}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
|
||||
\begin{formula}{hamiltonian}
|
||||
\desc{Electron Hamiltonian}{}{$\hat{T}$ \fRef{comp:est:kinetic_energy}, $\hat{V}$ \fRef{comp:est:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}}
|
||||
\desc[german]{Hamiltonian der Elektronen}{}{}
|
||||
@ -29,10 +29,9 @@
|
||||
\end{multline}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Born-Oppenheimer Approximation}
|
||||
\ger{Born-Oppenheimer Näherung}
|
||||
]{bo}
|
||||
\Subsection{bo}
|
||||
\desc{Born-Oppenheimer Approximation}{}{}
|
||||
\desc[german]{Born-Oppenheimer Näherung}{}{}
|
||||
\begin{formula}{adiabatic_approx}
|
||||
\desc{Adiabatic approximation}{Electronic configuration remains the same when atoms move (\absRef{adiabatic_theorem})}{$\Lambda_{ij}$ \fRef{comp:ad:coupling_operator}}
|
||||
\desc[german]{Adiabatische Näherung}{Elektronenkonfiguration bleibt gleich bei Bewegung der Atome gleichl (\absRef{adiabatic_theorem})}{}
|
||||
@ -81,10 +80,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Structure optimization}
|
||||
\ger{Strukturoptimierung}
|
||||
]{opt}
|
||||
\Subsection{opt}
|
||||
\desc{Structure optimization}{}{}
|
||||
\desc[german]{Strukturoptimierung}{}{}
|
||||
\begin{formula}{forces}
|
||||
\desc{Forces}{}{}
|
||||
\desc[german]{Kräfte}{}{}
|
||||
@ -139,10 +137,9 @@
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Lattice vibrations}
|
||||
\ger{Gitterschwingungen}
|
||||
]{latvib}
|
||||
\Subsection{latvib}
|
||||
\desc{Lattice vibrations}{}{}
|
||||
\desc[german]{Gitterschwingungen}{}{}
|
||||
\begin{formula}{force_constant_matrix}
|
||||
\desc{Force constant matrix}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
@ -159,10 +156,9 @@
|
||||
% -> DFPT
|
||||
|
||||
% finite-difference method
|
||||
\Subsubsection[
|
||||
\eng{Finite difference method}
|
||||
% \ger{}
|
||||
]{fin_diff}
|
||||
\Subsubsection{fin_diff}
|
||||
\desc{Finite difference method}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
|
||||
\begin{formula}{approx}
|
||||
\desc{Approximation}{Assume forces in equilibrium structure vanish}{$\Delta s$ displacement of atom $J$}
|
||||
@ -181,10 +177,9 @@
|
||||
\eq{\omega^2 \vecc(\vecq) = \mat{D}(\vecq) \vecc(\vecq) }
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Anharmonic approaches}
|
||||
\ger{Anharmonische Ansätze}
|
||||
]{anharmonic}
|
||||
\Subsubsection{anharmonic}
|
||||
\desc{Anharmonic approaches}{}{}
|
||||
\desc[german]{Anharmonische Ansätze}{}{}
|
||||
|
||||
\begin{formula}{qha}
|
||||
\desc{Quasi-harmonic approximation}{}{}
|
||||
@ -205,10 +200,9 @@
|
||||
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Molecular Dynamics}
|
||||
\ger{Molekulardynamik}
|
||||
]{md} \abbrLink{md}{MD}
|
||||
\Subsection{md}
|
||||
\desc{Molecular Dynamics}{}{}
|
||||
\desc[german]{Molekulardynamik}{}{} \abbrLink{md}{MD}
|
||||
\begin{formula}{desc}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
@ -236,10 +230,9 @@
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Ab-initio molecular dynamics}
|
||||
\ger{Ab-initio molecular dynamics}
|
||||
]{ab-initio}
|
||||
\Subsubsection{ab-initio}
|
||||
\desc{Ab-initio molecular dynamics}{}{}
|
||||
\desc[german]{Ab-initio molecular dynamics}{}{}
|
||||
\begin{formula}{bomd}
|
||||
\abbrLabel{BOMD}
|
||||
\desc{Born-Oppenheimer MD (BOMD)}{}{}
|
||||
@ -271,10 +264,9 @@
|
||||
\end{gather}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Force-field MD}
|
||||
\ger{Force-field MD}
|
||||
]{ff}
|
||||
\Subsubsection{ff}
|
||||
\desc{Force-field MD}{}{}
|
||||
\desc[german]{Force-field MD}{}{}
|
||||
|
||||
\begin{formula}{ffmd}
|
||||
\desc{Force field MD (FFMD)}{}{}
|
||||
@ -291,13 +283,9 @@
|
||||
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Integration schemes}
|
||||
% \ger{}
|
||||
]{scheme}
|
||||
\begin{ttext}
|
||||
\eng{Procedures for updating positions and velocities to obey the equations of motion.}
|
||||
\end{ttext}
|
||||
\Subsubsection{scheme}
|
||||
\desc{Integration schemes}{Procedures for updating positions and velocities to obey the equations of motion.}{}
|
||||
\desc[german]{Integrationsmethoden}{Prozeduren zum stückweisen numerischen Lösung der Bewegungsgleichungen}{}
|
||||
|
||||
\begin{formula}{euler}
|
||||
\desc{Euler method}{First-order procedure for solving \abbrRef{ode}s with a given initial value.\\Taylor expansion of $\vecR/\vecv (t+\Delta t)$}{}
|
||||
@ -337,10 +325,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Thermostats and barostats}
|
||||
\ger{Thermostate und Barostate}
|
||||
]{stats}
|
||||
\Subsubsection{stats}
|
||||
\desc{Thermostats and barostats}{}{}
|
||||
\desc[german]{Thermostate und Barostate}{}{}
|
||||
\begin{formula}{velocity_rescaling}
|
||||
\desc{Velocity rescaling}{Thermostat, keep temperature at $T_0$ by rescaling velocities. Does not allow temperature fluctuations and thus does not obey the \absRef{c_ensemble}}{$T$ target \qtyRef{temperature}, $M$ \qtyRef{mass} of nucleon $I$, $\vecv$ \qtyRef{velocity}, $f$ number of degrees of freedom, $\lambda$ velocity scaling parameter, \ConstRef{boltzmann}}
|
||||
% \desc[german]{}{}{}
|
||||
@ -367,10 +354,9 @@
|
||||
\end{gather}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Calculating observables}
|
||||
\ger{Berechnung von Observablen}
|
||||
]{obs}
|
||||
\Subsubsection{obs}
|
||||
\desc{Calculating observables}{}{}
|
||||
\desc[german]{Berechnung von Observablen}{}{}
|
||||
\begin{formula}{spectral_density}
|
||||
\desc{Spectral density}{Wiener-Khinchin theorem\\\absRef{fourier_transform} of \absRef{autocorrelation}}{$C$ \absRef{autocorrelation}}
|
||||
\desc[german]{Spektraldichte}{Wiener-Khinchin Theorem\\\absRef{fourier_transform} of \absRef{autocorrelation}}{}
|
||||
|
@ -1,4 +1,4 @@
|
||||
\Part[
|
||||
\eng{Computational Physics}
|
||||
\ger{Computergestützte Physik}
|
||||
]{comp}
|
||||
\Part{comp}
|
||||
\desc{Computational Physics}{}{}
|
||||
\desc[german]{Computergestützte Physik}{}{}
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Electronic structure theory}
|
||||
% \ger{}
|
||||
]{est}
|
||||
\Section{est}
|
||||
\desc{Electronic structure theory}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
|
||||
|
||||
\begin{formula}{kinetic_energy}
|
||||
\desc{Kinetic energy}{of species $i$}{$i$ = nucleons/electrons, $N$ number of particles, $m$ \qtyRef{mass}}
|
||||
@ -26,10 +26,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Tight-binding}
|
||||
\ger{Modell der stark gebundenen Elektronen / Tight-binding}
|
||||
]{tb}
|
||||
\Subsection{tb}
|
||||
\desc{Tight-binding}{}{}
|
||||
\desc[german]{Modell der stark gebundenen Elektronen / Tight-binding}{}{}
|
||||
\begin{formula}{assumptions}
|
||||
\desc{Assumptions}{}{}
|
||||
\desc[german]{Annahmen}{}{}
|
||||
@ -49,15 +48,13 @@
|
||||
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Density functional theory (DFT)}
|
||||
\ger{Dichtefunktionaltheorie (DFT)}
|
||||
]{dft}
|
||||
\Subsection{dft}
|
||||
\desc{Density functional theory (DFT)}{}{}
|
||||
\desc[german]{Dichtefunktionaltheorie (DFT)}{}{}
|
||||
\abbrLink{dft}{DFT}
|
||||
\Subsubsection[
|
||||
\eng{Hartree-Fock}
|
||||
\ger{Hartree-Fock}
|
||||
]{hf}
|
||||
\Subsubsection{hf}
|
||||
\desc{Hartree-Fock}{}{}
|
||||
\desc[german]{Hartree-Fock}{}{}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
@ -117,10 +114,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Hohenberg-Kohn Theorems}
|
||||
\ger{Hohenberg-Kohn Theoreme}
|
||||
]{hk}
|
||||
\Subsubsection{hk}
|
||||
\desc{Hohenberg-Kohn Theorems}{}{}
|
||||
\desc[german]{Hohenberg-Kohn Theoreme}{}{}
|
||||
\begin{formula}{hk1}
|
||||
\desc{Hohenberg-Kohn theorem (HK1)}{}{}
|
||||
\desc[german]{Hohenberg-Kohn Theorem (HK1)}{}{}
|
||||
@ -144,10 +140,9 @@
|
||||
\eq{n(\vecr) = \Braket{\psi_0|\sum_{i=1}^N \delta(\vecr-\vecr_i)|\psi_0}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Kohn-Sham DFT}
|
||||
\ger{Kohn-Sham DFT}
|
||||
]{ks}
|
||||
\Subsubsection{ks}
|
||||
\desc{Kohn-Sham DFT}{}{}
|
||||
\desc[german]{Kohn-Sham DFT}{}{}
|
||||
\abbrLink{ksdft}{KS-DFT}
|
||||
\begin{formula}{map}
|
||||
\desc{Kohn-Sham map}{}{}
|
||||
@ -194,10 +189,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Exchange-Correlation functionals}
|
||||
\ger{Exchange-Correlation Funktionale}
|
||||
]{xc}
|
||||
\Subsubsection{xc}
|
||||
\desc{Exchange-Correlation functionals}{}{}
|
||||
\desc[german]{Exchange-Correlation Funktionale}{}{}
|
||||
\begin{formula}{xc}
|
||||
\desc{Exchange-Correlation functional}{}{}
|
||||
\desc[german]{Exchange-Correlation Funktional}{}{}
|
||||
@ -250,10 +244,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Basis sets}
|
||||
\ger{Basis-Sets}
|
||||
]{basis}
|
||||
\Subsubsection{basis}
|
||||
\desc{Basis sets}{}{}
|
||||
\desc[german]{Basis-Sets}{}{}
|
||||
\begin{formula}{plane_wave}
|
||||
\desc{Plane wave basis}{Plane wave ansatz in \fRef{comp:est:dft:ks:equation}\\Good for periodic structures, allows computation parallelization over a sample points in the \abbrRef{brillouin_zone}}{}
|
||||
\desc[german]{Ebene Wellen als Basis}{}{}
|
||||
@ -265,10 +258,9 @@
|
||||
\eq{E_\text{cutoff} = \frac{\hbar^2 \abs{\veck+\vecG}^2}{2m}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Pseudo-Potential method}
|
||||
\ger{Pseudopotentialmethode}
|
||||
]{pseudo}
|
||||
\Subsubsection{pseudo}
|
||||
\desc{Pseudo-Potential method}{}{}
|
||||
\desc[german]{Pseudopotentialmethode}{}{}
|
||||
\begin{formula}{ansatz}
|
||||
\desc{Ansatz}{}{}
|
||||
\desc[german]{Ansatz}{}{}
|
||||
|
@ -1,11 +1,11 @@
|
||||
\Section[
|
||||
\eng{Machine-Learning}
|
||||
\ger{Maschinelles Lernen}
|
||||
]{ml}
|
||||
\Subsection[
|
||||
\eng{Performance metrics}
|
||||
\ger{Metriken zur Leistungsmessung}
|
||||
]{performance}
|
||||
\Section{ml}
|
||||
\desc{Machine-Learning}{}{}
|
||||
\desc[german]{Maschinelles Lernen}{}{}
|
||||
|
||||
\Subsection{performance}
|
||||
\desc{Performance metrics}{}{}
|
||||
\desc[german]{Metriken zur Leistungsmessung}{}{}
|
||||
|
||||
\eng[cp]{correct predictions}
|
||||
\ger[cp]{richtige Vorhersagen}
|
||||
\eng[fp]{false predictions}
|
||||
@ -16,13 +16,14 @@
|
||||
\ger[y]{Wahrheit}
|
||||
\ger[yhat]{Vorhersage}
|
||||
|
||||
\eng[n_desc]{Number of data points}
|
||||
\ger[n_desc]{Anzahl der Datenpunkte}
|
||||
|
||||
\begin{formula}{accuracy}
|
||||
\desc{Accuracy}{}{}
|
||||
\desc[german]{Genauigkeit}{}{}
|
||||
\eq{a = \frac{\tGT{::cp}}{\tGT{::fp} + \tGT{::cp}}}
|
||||
\end{formula}
|
||||
\eng{n_desc}{Number of data points}
|
||||
\ger{n_desc}{Anzahl der Datenpunkte}
|
||||
\begin{formula}{mean_abs_error}
|
||||
\desc{Mean absolute error (MAE)}{}{$y$ \GT{::y}, $\hat{y}$ \GT{::yhat}, $n$ \GT{::n_desc}}
|
||||
\desc[german]{Mittlerer absoluter Fehler (MAE)}{}{}
|
||||
@ -39,14 +40,12 @@
|
||||
\eq{\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^n \left(y_i - \hat{y}_i\right)^2}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Regression}
|
||||
\ger{Regression}
|
||||
]{reg}
|
||||
\Subsubsection[
|
||||
\eng{Linear Regression}
|
||||
\ger{Lineare Regression}
|
||||
]{linear}
|
||||
\Subsection{reg}
|
||||
\desc{Regression}{}{}
|
||||
\desc[german]{Regression}{}{}
|
||||
\Subsubsection{linear}
|
||||
\desc{Linear Regression}{}{}
|
||||
\desc[german]{Lineare Regression}{}{}
|
||||
\begin{formula}{eq}
|
||||
\desc{Linear regression}{Fits the data under the assumption of \fRef[normally distributed errors]{math:pt:distributions:cont:normal}}{$\mat{x}\in\R^{N\times M}$ input data, $\mat{y}\in\R^{N\times L}$ output data, $\mat{b}$ bias, $\vec{\beta}$ weights, $N$ samples, $M$ features, $L$ output variables}
|
||||
\desc[german]{Lineare Regression}{Fitted Daten unter der Annahme \fRef[normalverteilter Fehler]{math:pt:distributions:cont:normal}}{}
|
||||
@ -70,10 +69,9 @@
|
||||
\eq{\vec{\beta} = \left(\mat{X}^\T \mat{X}\right)^{-1} \mat{X}^T \mat{y}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Kernel method}
|
||||
\ger{Kernelmethode}
|
||||
]{kernel}
|
||||
\Subsubsection{kernel}
|
||||
\desc{Kernel method}{}{}
|
||||
\desc[german]{Kernelmethode}{}{}
|
||||
\begin{formula}{kernel_trick}
|
||||
\desc{Kernel trick}{}{$\vecx_i \in \R^{M_1}$ input vectors, $M_1$ dimension of data vector space, $M_2$ dimension of feature space}
|
||||
% \desc[german]{}{}{}
|
||||
@ -103,10 +101,9 @@
|
||||
\eq{k(\vecx_i, \vecx_j) = \Exp{-\frac{\norm{\vecx_i - \vecx_j}_2^2}{\sigma}}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Bayesian regression}
|
||||
\ger{Bayes'sche Regression}
|
||||
]{bayes}
|
||||
\Subsubsection{bayes}
|
||||
\desc{Bayesian regression}{}{}
|
||||
\desc[german]{Bayes'sche Regression}{}{}
|
||||
|
||||
\begin{formula}{linear_regression}
|
||||
\desc{Bayesian linear regression}{}{}
|
||||
@ -185,9 +182,8 @@
|
||||
\eq{V_\text{BondOrder}(\vecR_M, \vecR_N) = V_\text{rep}(\vecR_M, \vecR_N) + b_{MNK} V_\text{attr}(\vecR_M, \vecR_N)}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Gradient descent}
|
||||
\ger{Gradientenverfahren}
|
||||
]{gd}
|
||||
\Subsection{gd}
|
||||
\desc{Gradient descent}{}{}
|
||||
\desc[german]{Gradientenverfahren}{}{}
|
||||
\TODO{in lecture 30 CMP}
|
||||
|
||||
|
@ -1,11 +1,10 @@
|
||||
\Section[
|
||||
\eng{Quantum many-body physics}
|
||||
\ger{Quanten-Vielteilchenphysik}
|
||||
]{qmb}
|
||||
\Subsection[
|
||||
\eng{Quantum many-body models}
|
||||
\ger{Quanten-Vielteilchenmodelle}
|
||||
]{models}
|
||||
\Section{qmb}
|
||||
\desc{Quantum many-body physics}{}{}
|
||||
\desc[german]{Quanten-Vielteilchenphysik}{}{}
|
||||
|
||||
\Subsection{models}
|
||||
\desc{Quantum many-body models}{}{}
|
||||
\desc[german]{Quanten-Vielteilchenmodelle}{}{}
|
||||
\begin{formula}{heg}
|
||||
\desc{Homogeneous electron gas (HEG)}{Also "Jellium"}{}
|
||||
% \desc[german]{}{}{}
|
||||
@ -14,26 +13,22 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Methods}
|
||||
\ger{Methoden}
|
||||
]{methods}
|
||||
\Subsubsection[
|
||||
\eng{Quantum Monte-Carlo}
|
||||
\ger{Quantum Monte-Carlo}
|
||||
]{qmonte-carlo}
|
||||
\Subsection{methods}
|
||||
\desc{Methods}{}{}
|
||||
\desc[german]{Methoden}{}{}
|
||||
\Subsubsection{qmonte-carlo}
|
||||
\desc{Quantum Monte-Carlo}{}{}
|
||||
\desc[german]{Quantum Monte-Carlo}{}{}
|
||||
|
||||
|
||||
\TODO{TODO}
|
||||
\Subsection[
|
||||
\eng{Importance sampling}
|
||||
\ger{Importance sampling / Stichprobenentnahme nach Wichtigkeit}
|
||||
]{importance_sampling}
|
||||
\Subsection{importance_sampling}
|
||||
\desc{Importance sampling}{}{}
|
||||
\desc[german]{Importance sampling / Stichprobenentnahme nach Wichtigkeit}{}{}
|
||||
\TODO{Monte Carlo}
|
||||
|
||||
\Subsection[
|
||||
\eng{Matrix product states}
|
||||
\ger{Matrix Produktzustände}
|
||||
]{mps}
|
||||
\Subsection{mps}
|
||||
\desc{Matrix product states}{}{}
|
||||
\desc[german]{Matrix Produktzustände}{}{}
|
||||
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Constants}
|
||||
\ger{Konstanten}
|
||||
]{constants}
|
||||
\Section{constants}
|
||||
\desc{Constants}{}{}
|
||||
\desc[german]{Konstanten}{}{}
|
||||
|
||||
\begin{formula}{planck}
|
||||
\desc{Planck Constant}{}{}
|
||||
\desc[german]{Plancksches Wirkumsquantum}{}{}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Part[
|
||||
\eng{Electrodynamics}
|
||||
\ger{Elektrodynamik}
|
||||
]{ed}
|
||||
\Part{ed}
|
||||
\desc{Electrodynamics}{}{}
|
||||
\desc[german]{Elektrodynamik}{}{}
|
||||
|
||||
|
||||
% pure electronic stuff in el
|
||||
% pure magnetic stuff in mag
|
||||
|
@ -1,8 +1,7 @@
|
||||
|
||||
\Section[
|
||||
\eng{Electric field}
|
||||
\ger{Elektrisches Feld}
|
||||
]{el}
|
||||
\Section{el}
|
||||
\desc{Electric field}{}{}
|
||||
\desc[german]{Elektrisches Feld}{}{}
|
||||
\begin{formula}{electric_field}
|
||||
\desc{Electric field}{Surrounds charged particles}{}
|
||||
\desc[german]{Elektrisches Feld}{Umgibt geladene Teilchen}{}
|
||||
@ -29,8 +28,8 @@
|
||||
\quantity{\epsilon}{\ampere\s\per\volt\m=\farad\per\m=\coulomb\per\volt\m=C^2\per\newton\m^2=\ampere^2\s^4\per\kg\m^3}{}
|
||||
\end{formula}
|
||||
\begin{formula}{relative_permittivity}
|
||||
\desc{Relative permittivity / Dielectric constant}{}{\QtyRef{permittivity}, \ConstRef{vacuum_permittivity}}
|
||||
\desc[german]{Relative Permittivität / Dielectric constant}{}{}
|
||||
\desc{Relative permittivity}{Dielectric constant}{\QtyRef{permittivity}, \ConstRef{vacuum_permittivity}}
|
||||
\desc[german]{Relative Permittivität}{Dielectric constant}{}
|
||||
\eq{
|
||||
\epsilon(\omega)_\txr = \frac{\epsilon(\omega)}{\epsilon_0}
|
||||
}
|
||||
@ -62,7 +61,7 @@
|
||||
|
||||
\begin{formula}{electric_displacement_field}
|
||||
\desc{Electric displacement field}{}{\ConstRef{vacuum_permittivity}, \QtyRef{electric_field}, \QtyRef{dielectric_polarization_density}}
|
||||
\desc[german]{Elektrische Flussdichte / dielektrische Verschiebung}{}{}
|
||||
\desc[german]{Elektrische Flussdichte}{Dielektrische Verschiebung}{}
|
||||
\quantity{\vec{D}}{\coulomb\per\m^2=\ampere\s\per\m^2}{v}
|
||||
\eq{\vec{D} = \epsilon_0 \vec{\E} + \vec{P}}
|
||||
\end{formula}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Electromagnetism}
|
||||
\ger{Elektromagnetismus}
|
||||
]{em}
|
||||
\Section{em}
|
||||
\desc{Electromagnetism}{}{}
|
||||
\desc[german]{Elektromagnetismus}{}{}
|
||||
|
||||
\begin{formula}{vacuum_speed_of_light}
|
||||
\desc{Speed of light}{in the vacuum}{}
|
||||
\desc[german]{Lightgeschwindigkeit}{in the vacuum}{}
|
||||
@ -46,10 +46,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Maxwell-Equations}
|
||||
\ger{Maxwell-Gleichungen}
|
||||
]{maxwell}
|
||||
\Subsection{maxwell}
|
||||
\desc{Maxwell-Equations}{}{}
|
||||
\desc[german]{Maxwell-Gleichungen}{}{}
|
||||
\begin{formula}{vacuum}
|
||||
\desc{Vacuum}{microscopic formulation}{}
|
||||
\desc[german]{Vakuum}{Mikroskopische Formulierung}{}
|
||||
@ -73,10 +72,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Gauges}
|
||||
\ger{Eichungen}
|
||||
]{gauge}
|
||||
\Subsubsection{gauge}
|
||||
\desc{Gauges}{}{}
|
||||
\desc[german]{Eichungen}{}{}
|
||||
\begin{formula}{coulomb}
|
||||
\desc{Coulomb gauge}{}{\QtyRef{magnetic_vector_potential}}
|
||||
\desc[german]{Coulomb-Eichung}{}{}
|
||||
@ -88,10 +86,9 @@
|
||||
|
||||
\TODO{Polarization}
|
||||
|
||||
\Subsection[
|
||||
\eng{Induction}
|
||||
\ger{Induktion}
|
||||
]{induction}
|
||||
\Subsection{induction}
|
||||
\desc{Induction}{}{}
|
||||
\desc[german]{Induktion}{}{}
|
||||
\begin{formula}{farady_law}
|
||||
\desc{Faraday's law of induction}{}{}
|
||||
\desc[german]{Faradaysche Induktionsgesetz}{}{}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Magnetic field}
|
||||
\ger{Magnetfeld}
|
||||
]{mag}
|
||||
\Section{mag}
|
||||
\desc{Magnetic field}{}{}
|
||||
\desc[german]{Magnetfeld}{}{}
|
||||
|
||||
|
||||
\begin{formula}{magnetic_flux}
|
||||
\desc{Magnetic flux}{}{$\vec{A}$ \GT{area}}
|
||||
@ -98,10 +98,9 @@
|
||||
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Magnetic materials}
|
||||
\ger{Magnetische Materialien}
|
||||
]{materials}
|
||||
\Subsection{materials}
|
||||
\desc{Magnetic materials}{}{}
|
||||
\desc[german]{Magnetische Materialien}{}{}
|
||||
\begin{formula}{paramagnetism}
|
||||
\desc{Paramagnetism}{Magnetic field strengthend in the material}{$\mu$ \fRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fRef{ed:mag:magnetic_susceptibility}}
|
||||
\desc[german]{Paramagnetismus}{Magnetisches Feld wird im Material verstärkt}{}
|
||||
|
115
src/ed/misc.tex
115
src/ed/misc.tex
@ -1,108 +1,6 @@
|
||||
% TODO move
|
||||
\Section[
|
||||
\eng{Hall-Effect}
|
||||
\ger{Hall-Effekt}
|
||||
]{hall}
|
||||
|
||||
\begin{formula}{cyclotron}
|
||||
\desc{Cyclontron frequency}{}{}
|
||||
\desc[german]{Zyklotronfrequenz}{}{}
|
||||
\eq{\omega_\text{c} = \frac{e B}{\masse}}
|
||||
\end{formula}
|
||||
\TODO{Move}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Classical Hall-Effect}
|
||||
\ger{Klassischer Hall-Effekt}
|
||||
]{classic}
|
||||
\begin{ttext}
|
||||
\eng{Current flowing in $x$ direction in a conductor ($l \times b \times d$) with a magnetic field $B$ in $z$ direction leads to a hall voltage $U_\text{H}$ in $y$ direction.}
|
||||
\ger{Fließt in einem Leiter ($l \times b \times d$) ein Strom in $x$ Richtung, während der Leiter von einem Magnetfeld $B$ in $z$-Richtung durchdrungen, wird eine Hallspannung $U_\text{H}$ in $y$-Richtung induziert.}
|
||||
\end{ttext}
|
||||
\begin{formula}{voltage}
|
||||
\desc{Hall voltage}{}{$n$ charge carrier density}
|
||||
\desc[german]{Hallspannung}{}{$n$ Ladungsträgerdichte}
|
||||
\eq{U_\text{H} = \frac{I B}{ne d}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{coefficient}
|
||||
\desc{Hall coefficient}{Sometimes $R_\txH$}{}
|
||||
\desc[german]{Hall-Koeffizient}{Manchmal $R_\txH$}{}
|
||||
\eq{A_\text{H} := -\frac{E_y}{j_x B_z} \explOverEq{\GT{metals}} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity}
|
||||
\desc{Resistivity}{}{}
|
||||
\desc[german]{Spezifischer Widerstand}{}{}
|
||||
\eq{\rho_{xx} &= \frac{\masse}{ne^2\tau} \\ \rho_{xy} &= \frac{B}{ne}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Quantum hall effects}
|
||||
\ger{Quantenhalleffekte}
|
||||
]{quantum}
|
||||
\begin{formula}{types}
|
||||
\desc{Types of quantum hall effects}{}{}
|
||||
\desc[german]{Arten von Quantenhalleffekten}{}{}
|
||||
\ttxt{\eng{
|
||||
\begin{itemize}
|
||||
\item \textbf{Integer} (QHE): filling factor $\nu$ is an integer
|
||||
\item \textbf{Fractional} (FQHE): filling factor $\nu$ is a fraction
|
||||
\item \textbf{Spin} (QSHE): spin currents instead of charge currents
|
||||
\item \textbf{Anomalous} (QAHE): symmetry breaking by internal effects instead of external magnetic fields
|
||||
\end{itemize}
|
||||
}\ger{
|
||||
\begin{itemize}
|
||||
\item \textbf{Integer} (QHE): Füllfaktor $\nu$ ist ganzzahlig
|
||||
\item \textbf{Fractional} (FQHE): Füllfaktor $\nu$ ist ein Bruch
|
||||
\item \textbf{Spin} (QSHE): Spin Ströme anstatt Ladungsströme
|
||||
\item \textbf{Anomalous} (QAHE): Symmetriebruch durch interne Effekte anstatt druch ein externes Magnetfeld
|
||||
\end{itemize}
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
\begin{formula}{conductivity}
|
||||
\desc{Conductivity tensor}{}{}
|
||||
\desc[german]{Leitfähigkeitstensor}{}{}
|
||||
\eq{\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity_tensor}
|
||||
\desc{Resistivity tensor}{}{}
|
||||
\desc[german]{Spezifischer Widerstands-tensor}{}{}
|
||||
\eq{
|
||||
\rho = \sigma^{-1}
|
||||
% \sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity}
|
||||
\desc{Resistivity}{}{$\nu \in \mathbb{Z}$ filing factor}
|
||||
\desc[german]{Spezifischer Hallwiderstand}{}{$\nu \in \mathbb{Z}$ Füllfaktor}
|
||||
\eq{\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}}
|
||||
\end{formula}
|
||||
|
||||
% \begin{formula}{qhe}
|
||||
% \desc{Integer quantum hall effect}{}{}
|
||||
% \desc[german]{Ganzahliger Quanten-Hall-Effekt}{}{}
|
||||
% \fig{img/qhe-klitzing.jpeg}
|
||||
% \end{formula}
|
||||
|
||||
\begin{formula}{fqhe}
|
||||
\desc{Fractional quantum hall effect}{}{$\nu$ fraction of two numbers without shared divisors}
|
||||
\desc[german]{Fraktionaler Quantum-Hall-Effekt}{}{$\nu$ Bruch aus Zahlen ohne gemeinsamen Teiler}
|
||||
\eq{\nu = \frac{1}{3},\frac{2}{5},\frac{3}{7},\frac{2}{3}...}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Dipole-stuff}
|
||||
\ger{Dipol-zeug}
|
||||
]{dipole}
|
||||
\Section{dipole}
|
||||
\desc{Dipoles}{}{}
|
||||
\desc[german]{Dipole}{}{}
|
||||
|
||||
\begin{formula}{poynting}
|
||||
\desc{Dipole radiation Poynting vector}{}{}
|
||||
@ -116,10 +14,9 @@
|
||||
\eq{P = \frac{\mu_0\omega^4 p_0^2}{12\pi c}}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{misc}
|
||||
\ger{misc}
|
||||
]{misc}
|
||||
\Section{misc}
|
||||
\desc{misc}{}{}
|
||||
\desc[german]{misc}{}{}
|
||||
\begin{formula}{impedance_r}
|
||||
\desc{Impedance of an ohmic resistor}{}{\QtyRef{resistance}}
|
||||
\desc[german]{Impedanz eines Ohmschen Widerstands}{}{}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Optics}
|
||||
\ger{Optik}
|
||||
]{optics}
|
||||
\Section{optics}
|
||||
\desc{Optics}{}{}
|
||||
\desc[german]{Optik}{}{}
|
||||
|
||||
\begin{ttext}
|
||||
\eng{Properties of light and its interactions with matter}
|
||||
\ger{Ausbreitung von Licht und die Interaktion mit Materie}
|
||||
|
16
src/main.tex
16
src/main.tex
@ -122,7 +122,7 @@
|
||||
|
||||
\input{util/translations.tex}
|
||||
|
||||
% \InputOnly{cm}
|
||||
% \InputOnly{test}
|
||||
|
||||
\Input{math/math}
|
||||
\Input{math/linalg}
|
||||
@ -171,10 +171,9 @@
|
||||
\Input{ch/misc}
|
||||
|
||||
\newpage
|
||||
\Part[
|
||||
\eng{Appendix}
|
||||
\ger{Anhang}
|
||||
]{appendix}
|
||||
\Part{appendix}
|
||||
\desc{Appendix}{}{}
|
||||
\desc[german]{Anhang}{}{}
|
||||
\begin{formula}{world}
|
||||
\desc{World formula}{}{}
|
||||
\desc[german]{Weltformel}{}{}
|
||||
@ -186,10 +185,9 @@
|
||||
% \listofquantities
|
||||
\listoffigures
|
||||
\listoftables
|
||||
\Section[
|
||||
\eng{List of elements}
|
||||
\ger{Liste der Elemente}
|
||||
]{elements}
|
||||
\Section{elements}
|
||||
\desc{List of elements}{}{}
|
||||
\desc[german]{Liste der Elemente}{}{}
|
||||
\printAllElements
|
||||
\newpage
|
||||
\Input{test}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Calculus}
|
||||
\ger{Analysis}
|
||||
]{cal}
|
||||
\Section{cal}
|
||||
\desc{Calculus}{}{}
|
||||
\desc[german]{Analysis}{}{}
|
||||
|
||||
|
||||
% \begin{formula}{shark}
|
||||
% \desc{Shark-midnight formula}{\emoji{shark}-s}{}
|
||||
@ -12,14 +12,12 @@
|
||||
% \end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Fourier analysis}
|
||||
\ger{Fourieranalyse}
|
||||
]{fourier}
|
||||
\Subsubsection[
|
||||
\eng{Fourier series}
|
||||
\ger{Fourierreihe}
|
||||
]{series}
|
||||
\Subsection{fourier}
|
||||
\desc{Fourier analysis}{}{}
|
||||
\desc[german]{Fourieranalyse}{}{}
|
||||
\Subsubsection{series}
|
||||
\desc{Fourier series}{}{}
|
||||
\desc[german]{Fourierreihe}{}{}
|
||||
\begin{formula}{series} \absLabel[fourier_series]
|
||||
\desc{Fourier series}{Complex representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
|
||||
\desc[german]{Fourierreihe}{Komplexe Darstellung}{}
|
||||
@ -53,35 +51,33 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Fourier transformation}
|
||||
\ger{Fouriertransformation}
|
||||
]{trafo}
|
||||
\Subsubsection{trafo}
|
||||
\desc{Fourier transformation}{}{}
|
||||
\desc[german]{Fouriertransformation}{}{}
|
||||
\begin{formula}{transform} \absLabel[fourier_transform]
|
||||
\desc{Fourier transform}{}{$\hat{f}:\R^n \mapsto \C$, $\forall f\in L^1(\R^n)$}
|
||||
\desc[german]{Fouriertransformierte}{}{}
|
||||
\eq{\hat{f}(k) \coloneq \frac{1}{\sqrt{2\pi}^n} \int_{\R^n} \e^{-\I kx}f(x)\d x}
|
||||
\end{formula}
|
||||
|
||||
\Eng[linear_in]{linear in}
|
||||
\Ger[linear_in]{linear in}
|
||||
\GT{for} $f\in L^1(\R^n)$:
|
||||
\begin{enumerate}[i)]
|
||||
\item $f \mapsto \hat{f}$ \GT{linear_in} $f$
|
||||
\item $g(x) = f(x-h) \qRarrow \hat{g}(k) = \e^{-\I kn}\hat{f}(k)$
|
||||
\item $g(x) = \e^{ih\cdot x}f(x) \qRarrow \hat{g}(k) = \hat{f}(k-h)$
|
||||
\item $g(\lambda) = f\left(\frac{x}{\lambda}\right) \qRarrow \hat{g}(k)\lambda^n \hat{f}(\lambda k)$
|
||||
\end{enumerate}
|
||||
\begin{formula}{properties}
|
||||
\desc{Properties}{}{\GT{for} $f\in L^1(\R^n)$}
|
||||
\desc[german]{Eigenschaften}{}{}
|
||||
\Eng[linear_in]{linear in}
|
||||
\Ger[linear_in]{linear in}
|
||||
\begin{enumerate}[i)]
|
||||
\item $f \mapsto \hat{f}$ \GT{linear_in} $f$
|
||||
\item $g(x) = f(x-h) \qRarrow \hat{g}(k) = \e^{-\I kn}\hat{f}(k)$
|
||||
\item $g(x) = \e^{ih\cdot x}f(x) \qRarrow \hat{g}(k) = \hat{f}(k-h)$
|
||||
\item $g(\lambda) = f\left(\frac{x}{\lambda}\right) \qRarrow \hat{g}(k)\lambda^n \hat{f}(\lambda k)$
|
||||
\end{enumerate}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Convolution}
|
||||
\ger{Faltung / Konvolution}
|
||||
]{conv}
|
||||
\begin{ttext}
|
||||
\eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.}
|
||||
\ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}}
|
||||
\end{ttext}
|
||||
|
||||
\Subsubsection{conv}
|
||||
\desc{Convolution}{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.}{}
|
||||
\desc[german]{Faltung / Konvolution}{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}}{}
|
||||
\begin{formula}{def}
|
||||
\desc{Definition}{}{}
|
||||
\desc[german]{Definition}{}{}
|
||||
@ -120,10 +116,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Misc}
|
||||
\ger{Verschiedenes}
|
||||
]{misc}
|
||||
\Subsection{misc}
|
||||
\desc{Misc}{}{}
|
||||
\desc[german]{Verschiedenes}{}{}
|
||||
|
||||
\begin{formula}{stirling-approx}
|
||||
\desc{Stirling approximation}{}{}
|
||||
@ -154,10 +149,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Logarithm}
|
||||
\ger{Logarithmus}
|
||||
]{log}
|
||||
\Subsection{log}
|
||||
\desc{Logarithm}{}{}
|
||||
\desc[german]{Logarithmus}{}{}
|
||||
\begin{formula}{identities}
|
||||
\desc{Logarithm identities}{}{}
|
||||
\desc[german]{Logarithmus Identitäten}{Logarithmus Rechenregeln}{}
|
||||
@ -178,19 +172,17 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Vector calculus}
|
||||
\ger{Vektor Analysis}
|
||||
]{vec}
|
||||
\Subsection{vec}
|
||||
\desc{Vector calculus}{}{}
|
||||
\desc[german]{Vektor Analysis}{}{}
|
||||
\begin{formula}{laplace}
|
||||
\desc{Laplace operator}{}{}
|
||||
\desc[german]{Laplace-Operator}{}{}
|
||||
\eq{\laplace = \Grad^2 = \pdv[2]{}{x} + \pdv[2]{}{y} + \pdv[2]{}{z}}
|
||||
\end{formula}
|
||||
\Subsubsection[
|
||||
\eng{Spherical symmetry}
|
||||
\ger{Kugelsymmetrie}
|
||||
]{sphere}
|
||||
\Subsubsection{sphere}
|
||||
\desc{Spherical symmetry}{}{}
|
||||
\desc[german]{Kugelsymmetrie}{}{}
|
||||
\begin{formula}{coordinates}
|
||||
\desc{Spherical coordinates}{}{}
|
||||
\desc[german]{Kugelkoordinaten}{}{}
|
||||
@ -214,10 +206,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Integrals}
|
||||
\ger{Integralrechnung}
|
||||
]{integral}
|
||||
\Subsection{integral}
|
||||
\desc{Integrals}{}{}
|
||||
\desc[german]{Integralrechnung}{}{}
|
||||
\begin{formula}{partial}
|
||||
\desc{Partial integration}{}{}
|
||||
\desc[german]{Partielle integration}{}{}
|
||||
@ -247,10 +238,9 @@
|
||||
\desc[german]{Klassischer Satz von Stokes}{}{}
|
||||
\eq{\int_A (\Rot{\vec{F}}) \cdot \d\vec{S} = \oint_{S} \vec{F} \cdot \d \vec{r}}
|
||||
\end{formula}
|
||||
\Subsubsection[
|
||||
\eng{List of common integrals}
|
||||
\ger{Liste nützlicher Integrale}
|
||||
]{list}
|
||||
\Subsubsection{list}
|
||||
\desc{List of common integrals}{}{}
|
||||
\desc[german]{Liste nützlicher Integrale}{}{}
|
||||
% Put links to other integrals here
|
||||
\fRef{math:cal:log:integral}
|
||||
|
||||
|
@ -1,12 +1,11 @@
|
||||
\Section[
|
||||
\eng{Geometry}
|
||||
\ger{Geometrie}
|
||||
]{geo}
|
||||
\Section{geo}
|
||||
\desc{Geometry}{}{}
|
||||
\desc[german]{Geometrie}{}{}
|
||||
|
||||
\Subsection[
|
||||
\eng{Trigonometry}
|
||||
\ger{Trigonometrie}
|
||||
]{trig}
|
||||
|
||||
\Subsection{trig}
|
||||
\desc{Trigonometry}{}{}
|
||||
\desc[german]{Trigonometrie}{}{}
|
||||
|
||||
\begin{formula}{exponential_function}
|
||||
\desc{Exponential function}{}{}
|
||||
@ -41,10 +40,9 @@
|
||||
\eq{\cosh(x) &= \cos{ix} \\ &= \frac{e^{x}+e^{-x}}{2}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Various theorems}
|
||||
\ger{Verschiedene Theoreme}
|
||||
]{theorems}
|
||||
\Subsection{theorems}
|
||||
\desc{Various theorems}{}{}
|
||||
\desc[german]{Verschiedene Theoreme}{}{}
|
||||
\begin{formula}{sum}
|
||||
\desc{Hypthenuse in the unit circle}{}{}
|
||||
\desc[german]{Hypothenuse im Einheitskreis}{}{}
|
||||
@ -78,10 +76,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Table of values}
|
||||
\ger{Wertetabelle}
|
||||
]{value_table}
|
||||
\Subsubsection{value_table}
|
||||
\desc{Table of values}{}{}
|
||||
\desc[german]{Wertetabelle}{}{}
|
||||
\begingroup
|
||||
\setlength{\tabcolsep}{0.9em} % horizontal
|
||||
\renewcommand{\arraystretch}{2} % vertical
|
||||
|
@ -1,12 +1,11 @@
|
||||
\Section[
|
||||
\eng{Linear algebra}
|
||||
\ger{Lineare Algebra}
|
||||
]{linalg}
|
||||
\Section{linalg}
|
||||
\desc{Linear algebra}{}{}
|
||||
\desc[german]{Lineare Algebra}{}{}
|
||||
|
||||
\Subsection[
|
||||
\eng{Matrix basics}
|
||||
\ger{Matrizen Basics}
|
||||
]{matrix}
|
||||
|
||||
\Subsection{matrix}
|
||||
\desc{Matrix basics}{}{}
|
||||
\desc[german]{Matrizen Basics}{}{}
|
||||
|
||||
\begin{formula}{matrix_matrix_product}
|
||||
\desc{Matrix-matrix product as sum}{}{}
|
||||
@ -31,10 +30,9 @@
|
||||
\eq{U ^\dagger U = \id}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Transposed matrix}
|
||||
\ger{Transponierte Matrix}
|
||||
]{transposed}
|
||||
\Subsubsection{transposed}
|
||||
\desc{Transposed matrix}{}{}
|
||||
\desc[german]{Transponierte Matrix}{}{}
|
||||
\begin{formula}{sum}
|
||||
\desc{Sum}{}{}
|
||||
\desc[german]{Summe}{}{}
|
||||
@ -57,10 +55,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Determinant}
|
||||
\ger{Determinante}
|
||||
]{determinant}
|
||||
\Subsection{determinant}
|
||||
\desc{Determinant}{}{}
|
||||
\desc[german]{Determinante}{}{}
|
||||
\begin{formula}{2x2}
|
||||
\desc{2x2 matrix}{}{}
|
||||
\desc[german]{2x2 Matrix}{}{}
|
||||
@ -95,10 +92,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Misc}
|
||||
\ger{Misc}
|
||||
]{misc}
|
||||
\Subsection{misc}
|
||||
\desc{Misc}{}{}
|
||||
\desc[german]{Misc}{}{}
|
||||
|
||||
\begin{formula}{normal_equation}
|
||||
\desc{Normal equation}{Solves a linear regression problem}{\mat{\theta} hypothesis / weight matrix, \mat{X} design matrix, \vec{y} output vector}
|
||||
@ -157,10 +153,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Eigenvalues}
|
||||
\ger{Eigenwerte}
|
||||
]{eigen}
|
||||
\Subsection{eigen}
|
||||
\desc{Eigenvalues}{}{}
|
||||
\desc[german]{Eigenwerte}{}{}
|
||||
\begin{formula}{values}
|
||||
\desc{Eigenvalue equation}{}{$\lambda$ eigenvalue, $v$ eigenvector}
|
||||
\desc[german]{Eigenwert-Gleichung}{}{$\lambda$ Eigenwert, $v$ Eigenvektor}
|
||||
|
@ -1,5 +1,5 @@
|
||||
\Part[
|
||||
\eng{Mathematics}
|
||||
\ger{Mathematik}
|
||||
]{math}
|
||||
\Part{math}
|
||||
\desc{Mathematics}{}{}
|
||||
\desc[german]{Mathematik}{}{}
|
||||
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Probability theory}
|
||||
\ger{Wahrscheinlichkeitstheorie}
|
||||
]{pt}
|
||||
\Section{pt}
|
||||
\desc{Probability theory}{}{}
|
||||
\desc[german]{Wahrscheinlichkeitstheorie}{}{}
|
||||
|
||||
|
||||
\begin{formula}{mean}
|
||||
\absLabel
|
||||
@ -70,33 +70,30 @@
|
||||
\eq{\binom{n}{k} = \frac{n!}{k!(n-k)!}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Distributions}
|
||||
\ger{Verteilungen}
|
||||
]{distributions}
|
||||
\Subsubsection[
|
||||
\eng{Continuous probability distributions}
|
||||
\ger{Kontinuierliche Wahrscheinlichkeitsverteilungen}
|
||||
]{cont}
|
||||
\Subsection{distributions}
|
||||
\desc{Distributions}{}{}
|
||||
\desc[german]{Verteilungen}{}{}
|
||||
\Subsubsection{cont}
|
||||
\desc{Continuous probability distributions}{}{}
|
||||
\desc[german]{Kontinuierliche Wahrscheinlichkeitsverteilungen}{}{}
|
||||
\begin{bigformula}{normal}
|
||||
\absLabel[normal_distribution]
|
||||
\desc{Gauß/Normal distribution}{}{}
|
||||
\desc[german]{Gauß/Normal-Verteilung}{}{}
|
||||
\begin{minipage}{\distleftwidth}
|
||||
\begin{figure}[H]
|
||||
\fsplit[\distleftwidth]{
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/distribution_gauss.pdf}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{\mu \in \R,\quad \sigma^2 \in \R}
|
||||
\disteq{support}{x \in \R}
|
||||
\disteq{pdf}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}
|
||||
\disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]}
|
||||
\disteq{mean}{\mu}
|
||||
\disteq{median}{\mu}
|
||||
\disteq{variance}{\sigma^2}
|
||||
\end{distribution}
|
||||
\includegraphics{img/distribution_gauss.pdf}
|
||||
}{
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{\mu \in \R,\quad \sigma^2 \in \R}
|
||||
\disteq{support}{x \in \R}
|
||||
\disteq{pdf}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}
|
||||
\disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]}
|
||||
\disteq{mean}{\mu}
|
||||
\disteq{median}{\mu}
|
||||
\disteq{variance}{\sigma^2}
|
||||
\end{distribution}
|
||||
}
|
||||
\end{bigformula}
|
||||
|
||||
\begin{formula}{standard_normal}
|
||||
@ -110,63 +107,77 @@
|
||||
\absLabel[multivariate_normal_distribution]
|
||||
\desc{Multivariate normal distribution}{Multivariate Gaussian distribution}{$\vec{\mu}$ \absRef{mean}, $\mat{\Sigma}$ \absRef{covariance}}
|
||||
\desc[german]{Mehrdimensionale Normalverteilung}{Multivariate Normalverteilung}{}
|
||||
\TODO{k-variate normal plot}
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{\vec{\mu} \in \R^k,+\quad \mat{\Sigma} \in \R^{k\times k}}
|
||||
\disteq{support}{\vec{x} \in \vec{\mu} + \text{span}(\mat{\Sigma})}
|
||||
\disteq{pdf}{\mathcal{N}(\vec{\mu}, \mat{\Sigma}) = \frac{1}{(2\pi)^{k/2}} \frac{1}{\sqrt{\det{\Sigma}}} \Exp{-\frac{1}{2} \left(\vecx-\vec{\mu}\right)^\T \mat{\Sigma}^{-1} \left(\vecx-\vec{\mu}\right)}}
|
||||
\disteq{mean}{\vec{\mu}}
|
||||
\disteq{variance}{\mat{\Sigma}}
|
||||
\end{distribution}
|
||||
\fsplit[0.3]{
|
||||
\TODO{k-variate normal plot}
|
||||
}{
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{\vec{\mu} \in \R^k,+\quad \mat{\Sigma} \in \R^{k\times k}}
|
||||
\disteq{support}{\vec{x} \in \vec{\mu} + \text{span}(\mat{\Sigma})}
|
||||
\disteq{pdf}{\mathcal{N}(\vec{\mu}, \mat{\Sigma}) = \frac{1}{(2\pi)^{k/2}} \frac{1}{\sqrt{\det{\Sigma}}} \Exp{-\frac{1}{2} \left(\vecx-\vec{\mu}\right)^\T \mat{\Sigma}^{-1} \left(\vecx-\vec{\mu}\right)}}
|
||||
\disteq{mean}{\vec{\mu}}
|
||||
\disteq{variance}{\mat{\Sigma}}
|
||||
\end{distribution}
|
||||
}
|
||||
\end{bigformula}
|
||||
|
||||
\begin{formula}{laplace}
|
||||
\begin{bigformula}{laplace}
|
||||
\absLabel[laplace_distribution]
|
||||
\desc{Laplace-distribution}{}{}
|
||||
\desc[german]{Laplace-Verteilung}{}{}
|
||||
\TODO{TODO}
|
||||
\end{formula}
|
||||
\desc{Laplace-distribution}{Double exponential distribution}{}
|
||||
\desc[german]{Laplace-Verteilung}{Doppelexponentialverteilung}{}
|
||||
\fsplit[\distleftwidth]{
|
||||
\centering
|
||||
\includegraphics{img/distribution_laplace.pdf}
|
||||
}{
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{\mu \in \R,\quad b > 0 \in \R}
|
||||
\disteq{support}{x \in \R}
|
||||
\disteq{pdf}{\frac{1}{\sqrt{2b}}\Exp{-\frac{\abs{x-\mu}}{b}}}
|
||||
% \disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]}
|
||||
\disteq{mean}{\mu}
|
||||
\disteq{median}{\mu}
|
||||
\disteq{variance}{2b^2}
|
||||
\end{distribution}
|
||||
}
|
||||
\end{bigformula}
|
||||
|
||||
\begin{bigformula}{cauchy}
|
||||
\absLabel[lorentz_distribution]
|
||||
\desc{Cauchys / Lorentz distribution}{Also known as Cauchy-Lorentz distribution, Lorentz(ian) function, Breit-Wigner distribution.}{}
|
||||
\desc[german]{Cauchy / Lorentz-Verteilung}{Auch bekannt als Cauchy-Lorentz Verteilung, Lorentz Funktion, Breit-Wigner Verteilung.}{}
|
||||
\begin{minipage}{\distleftwidth}
|
||||
\begin{figure}[H]
|
||||
\fsplit[\distleftwidth]{
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/distribution_cauchy.pdf}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{x_0 \in \R,\quad \gamma \in \R}
|
||||
\disteq{support}{x \in \R}
|
||||
\disteq{pdf}{\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}}
|
||||
\disteq{cdf}{\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}}
|
||||
\disteq{mean}{\text{\GT{undefined}}}
|
||||
\disteq{median}{x_0}
|
||||
\disteq{variance}{\text{\GT{undefined}}}
|
||||
\end{distribution}
|
||||
\includegraphics{img/distribution_cauchy.pdf}
|
||||
}{
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{x_0 \in \R,\quad \gamma \in \R}
|
||||
\disteq{support}{x \in \R}
|
||||
\disteq{pdf}{\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}}
|
||||
\disteq{cdf}{\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}}
|
||||
\disteq{mean}{\text{\GT{undefined}}}
|
||||
\disteq{median}{x_0}
|
||||
\disteq{variance}{\text{\GT{undefined}}}
|
||||
\end{distribution}
|
||||
}
|
||||
\end{bigformula}
|
||||
|
||||
\begin{bigformula}{maxwell-boltzmann}
|
||||
\absLabel[maxwell-boltzmann_distribution]
|
||||
\desc{Maxwell-Boltzmann distribution}{}{}
|
||||
\desc[german]{Maxwell-Boltzmann Verteilung}{}{}
|
||||
\begin{minipage}{\distleftwidth}
|
||||
\begin{figure}[H]
|
||||
\fsplit[\distleftwidth]{
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/distribution_maxwell-boltzmann.pdf}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{a > 0}
|
||||
\disteq{support}{x \in (0, \infty)}
|
||||
\disteq{pdf}{\sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp\left(-\frac{x^2}{2a^2}\right)}
|
||||
\disteq{cdf}{\erf \left(\frac{x}{\sqrt{2} a}\right) - \sqrt{\frac{2}{\pi}} \frac{x}{a} \exp\left({\frac{-x^2}{2a^2}}\right)}
|
||||
\disteq{mean}{2a \frac{2}{\pi}}
|
||||
\disteq{median}{}
|
||||
\disteq{variance}{\frac{a^2(3\pi-8)}{\pi}}
|
||||
\end{distribution}
|
||||
\includegraphics{img/distribution_maxwell-boltzmann.pdf}
|
||||
}{
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{a > 0}
|
||||
\disteq{support}{x \in (0, \infty)}
|
||||
\disteq{pdf}{\sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp\left(-\frac{x^2}{2a^2}\right)}
|
||||
\disteq{cdf}{\erf \left(\frac{x}{\sqrt{2} a}\right) - \sqrt{\frac{2}{\pi}} \frac{x}{a} \exp\left({\frac{-x^2}{2a^2}}\right)}
|
||||
\disteq{mean}{2a \frac{2}{\pi}}
|
||||
% \disteq{median}{}
|
||||
\disteq{variance}{\frac{a^2(3\pi-8)}{\pi}}
|
||||
\end{distribution}
|
||||
}
|
||||
\end{bigformula}
|
||||
|
||||
|
||||
@ -174,48 +185,45 @@
|
||||
\absLabel[gamma_distribution]
|
||||
\desc{Gamma Distribution}{with $\lambda$ parameter}{$\Gamma$ \fRef{math:cal:integral:list:gamma_function}, $\gamma$ \fRef{math:cal:integral:list:lower_incomplete_gamma_function}}
|
||||
\desc[german]{Gamma Verteilung}{mit $\lambda$ Parameter}{}
|
||||
\begin{minipage}{\distleftwidth}
|
||||
\begin{figure}[H]
|
||||
\fsplit[\distleftwidth]{
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/distribution_gamma.pdf}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{\alpha > 0, \lambda > 0}
|
||||
\disteq{support}{x\in(0,1)}
|
||||
\disteq{pdf}{\frac{\lambda^\alpha}{\Gamma(\alpha) x^{\alpha-1} \e^{-\lambda x}}}
|
||||
\disteq{cdf}{\frac{1}{\Gamma(\alpha) \gamma(\alpha, \lambda x)}}
|
||||
\disteq{mean}{\frac{\alpha}{\lambda}}
|
||||
\disteq{variance}{\frac{\alpha}{\lambda^2}}
|
||||
\end{distribution}
|
||||
\includegraphics{img/distribution_gamma.pdf}
|
||||
}{
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{\alpha > 0, \lambda > 0}
|
||||
\disteq{support}{x\in(0,1)}
|
||||
\disteq{pdf}{\frac{\lambda^\alpha}{\Gamma(\alpha) x^{\alpha-1} \e^{-\lambda x}}}
|
||||
\disteq{cdf}{\frac{1}{\Gamma(\alpha) \gamma(\alpha, \lambda x)}}
|
||||
\disteq{mean}{\frac{\alpha}{\lambda}}
|
||||
\disteq{variance}{\frac{\alpha}{\lambda^2}}
|
||||
\end{distribution}
|
||||
}
|
||||
\end{bigformula}
|
||||
|
||||
\begin{bigformula}{beta}
|
||||
\absLabel[beta_distribution]
|
||||
\desc{Beta Distribution}{}{$\txB$ \fRef{math:cal:integral:list:beta_function} / \fRef{math:cal:integral:list:incomplete_beta_function}}
|
||||
\desc[german]{Beta Verteilung}{}{}
|
||||
\begin{minipage}{\distleftwidth}
|
||||
\begin{figure}[H]
|
||||
\fsplit[\distleftwidth]{
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/distribution_beta.pdf}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{\alpha \in \R, \beta \in \R}
|
||||
\disteq{support}{x\in[0,1]}
|
||||
\disteq{pdf}{\frac{x^{\alpha-1} (1-x)^{\beta-1}}{\txB(\alpha,\beta)}}
|
||||
\disteq{cdf}{\frac{\txB(x;\alpha,\beta)}{\txB(\alpha,\beta)}}
|
||||
\disteq{mean}{\frac{\alpha}{\alpha+\beta}}
|
||||
% \disteq{median}{\frac{}{}} % pretty complicated, probably not needed
|
||||
\disteq{variance}{\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}}
|
||||
\end{distribution}
|
||||
\includegraphics{img/distribution_beta.pdf}
|
||||
}{
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{\alpha \in \R, \beta \in \R}
|
||||
\disteq{support}{x\in[0,1]}
|
||||
\disteq{pdf}{\frac{x^{\alpha-1} (1-x)^{\beta-1}}{\txB(\alpha,\beta)}}
|
||||
\disteq{cdf}{\frac{\txB(x;\alpha,\beta)}{\txB(\alpha,\beta)}}
|
||||
\disteq{mean}{\frac{\alpha}{\alpha+\beta}}
|
||||
% \disteq{median}{\frac{}{}} % pretty complicated, probably not needed
|
||||
\disteq{variance}{\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}}
|
||||
\end{distribution}
|
||||
}
|
||||
\end{bigformula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Discrete probability distributions}
|
||||
\ger{Diskrete Wahrscheinlichkeitsverteilungen}
|
||||
]{discrete}
|
||||
\Subsubsection{discrete}
|
||||
\desc{Discrete probability distributions}{}{}
|
||||
\desc[german]{Diskrete Wahrscheinlichkeitsverteilungen}{}{}
|
||||
\begin{bigformula}{binomial}
|
||||
\absLabel[binomial_distribution]
|
||||
\desc{Binomial distribution}{}{}
|
||||
@ -224,42 +232,40 @@
|
||||
\eng{For the number of trials going to infinity ($n\to\infty$), the binomial distribution converges to the \absRef[poisson distribution]{poisson_distribution}}
|
||||
\ger{Geht die Zahl der Versuche gegen unendlich ($n\to\infty$), konvergiert die Binomualverteilung gegen die \absRef[Poissonverteilung]{poisson_distribution}}
|
||||
\end{ttext}\\
|
||||
\begin{minipage}{\distleftwidth}
|
||||
\begin{figure}[H]
|
||||
\fsplit[\distleftwidth]{
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/distribution_binomial.pdf}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{n \in \Z, \quad p \in [0,1],\quad q = 1 - p}
|
||||
\disteq{support}{k \in \{0,\,1,\,\dots,\,n\}}
|
||||
\disteq{pmf}{\binom{n}{k} p^k q^{n-k}}
|
||||
% \disteq{cdf}{\text{regularized incomplete beta function}}
|
||||
\disteq{mean}{np}
|
||||
\disteq{median}{\floor{np} \text{ or } \ceil{np}}
|
||||
\disteq{variance}{npq = np(1-p)}
|
||||
\end{distribution}
|
||||
\includegraphics{img/distribution_binomial.pdf}
|
||||
}{
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{n \in \Z, \quad p \in [0,1],\quad q = 1 - p}
|
||||
\disteq{support}{k \in \{0,\,1,\,\dots,\,n\}}
|
||||
\disteq{pmf}{\binom{n}{k} p^k q^{n-k}}
|
||||
% \disteq{cdf}{\text{regularized incomplete beta function}}
|
||||
\disteq{mean}{np}
|
||||
\disteq{median}{\floor{np} \text{ or } \ceil{np}}
|
||||
\disteq{variance}{npq = np(1-p)}
|
||||
\end{distribution}
|
||||
}
|
||||
\end{bigformula}
|
||||
|
||||
\begin{bigformula}{poisson}
|
||||
\absLabel[poisson_distribution]
|
||||
\desc{Poisson distribution}{}{}
|
||||
\desc[german]{Poissonverteilung}{}{}
|
||||
\begin{minipage}{\distleftwidth}
|
||||
\begin{figure}[H]
|
||||
\fsplit[\distleftwidth]{
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/distribution_poisson.pdf}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{\lambda \in (0,\infty)}
|
||||
\disteq{support}{k \in \N}
|
||||
\disteq{pmf}{\frac{\lambda^k \e^{-\lambda}}{k!}}
|
||||
\disteq{cdf}{\e^{-\lambda} \sum_{j=0}^{\floor{k}} \frac{\lambda^j}{j!}}
|
||||
\disteq{mean}{\lambda}
|
||||
\disteq{median}{\approx\floor*{\lambda + \frac{1}{3} - \frac{1}{50\lambda}}}
|
||||
\disteq{variance}{\lambda}
|
||||
\end{distribution}
|
||||
\includegraphics{img/distribution_poisson.pdf}
|
||||
}{
|
||||
\begin{distribution}
|
||||
\disteq{parameters}{\lambda \in (0,\infty)}
|
||||
\disteq{support}{k \in \N}
|
||||
\disteq{pmf}{\frac{\lambda^k \e^{-\lambda}}{k!}}
|
||||
\disteq{cdf}{\e^{-\lambda} \sum_{j=0}^{\floor{k}} \frac{\lambda^j}{j!}}
|
||||
\disteq{mean}{\lambda}
|
||||
\disteq{median}{\approx\floor*{\lambda + \frac{1}{3} - \frac{1}{50\lambda}}}
|
||||
\disteq{variance}{\lambda}
|
||||
\end{distribution}
|
||||
}
|
||||
\end{bigformula}
|
||||
|
||||
|
||||
@ -277,10 +283,9 @@
|
||||
% \end{distribution}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Central limit theorem}
|
||||
\ger{Zentraler Grenzwertsatz}
|
||||
]{cls}
|
||||
\Subsection{cls}
|
||||
\desc{Central limit theorem}{}{}
|
||||
\desc[german]{Zentraler Grenzwertsatz}{}{}
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
Suppose $X_1, X_2, \dots$ is a sequence of independent and identically distributed random variables with $\braket{X_i} = \mu$ and $(\Delta X_i)^2 = \sigma^2 < \infty$.
|
||||
@ -294,10 +299,9 @@
|
||||
}
|
||||
\end{ttext}
|
||||
|
||||
\Subsection[
|
||||
\eng{Propagation of uncertainty / error}
|
||||
\ger{Fehlerfortpflanzung}
|
||||
]{error}
|
||||
\Subsection{error}
|
||||
\desc{Propagation of uncertainty / error}{}{}
|
||||
\desc[german]{Fehlerfortpflanzung}{}{}
|
||||
\begin{formula}{generalised}
|
||||
\desc{Generalized error propagation}{}{$V$ \fRef{math:pt:covariance} matrix, $J$ \fRef{math:cal:jacobi-matrix}}
|
||||
\desc[german]{Generalisiertes Fehlerfortpflanzungsgesetz}{$V$ \fRef{math:pt:covariance} Matrix, $J$ \fRef{cal:jacobi-matrix}}{}
|
||||
@ -328,10 +332,9 @@
|
||||
\eq{\sigma^2_{\overline{x}} = \frac{1}{\sum_i w_i}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Maximum likelihood estimation}
|
||||
\ger{Maximum likelihood Methode}
|
||||
]{mle}
|
||||
\Subsection{mle}
|
||||
\desc{Maximum likelihood estimation}{}{}
|
||||
\desc[german]{Maximum likelihood Methode}{}{}
|
||||
\begin{formula}{likelihood}
|
||||
\desc{Likelihood function}{Likelihood of observing $x$ when parameter is $\theta$\\in general not normalized!}{$\rho$ \fRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ depending on parameter $\theta$, $\Theta$ parameter space}
|
||||
\desc[german]{Likelihood Funktion}{"Plausibilität" $x$ zu messen, wenn der Parameter $\theta$ ist\\nicht normalisiert!}{$\rho$ \fRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ hängt ab von Parameter $\theta$, $\Theta$ Parameterraum}
|
||||
@ -348,10 +351,9 @@
|
||||
\eq{\theta_\text{ML} &= \argmax_\theta L(\theta)\\ &= \argmax_\theta \log \big(L(\theta)\big)}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Bayesian probability theory}
|
||||
\ger{Bayessche Wahrscheinlichkeitstheorie}
|
||||
]{bayesian}
|
||||
\Subsection{bayesian}
|
||||
\desc{Bayesian probability theory}{}{}
|
||||
\desc[german]{Bayessche Wahrscheinlichkeitstheorie}{}{}
|
||||
\begin{formula}{prior}
|
||||
\desc{Prior distribution}{Expected distribution before conducting the experiment}{$\theta$ parameter}
|
||||
\desc[german]{Prior Verteilung}{}{}
|
||||
|
@ -1,12 +1,11 @@
|
||||
\Part[
|
||||
\eng{Mechanics}
|
||||
\ger{Mechanik}
|
||||
]{mech}
|
||||
\Part{mech}
|
||||
\desc{Mechanics}{}{}
|
||||
\desc[german]{Mechanik}{}{}
|
||||
|
||||
\Section[
|
||||
\eng{Newton}
|
||||
\ger{Newton}
|
||||
]{newton}
|
||||
|
||||
\Section{newton}
|
||||
\desc{Newton}{}{}
|
||||
\desc[german]{Newton}{}{}
|
||||
\begin{formula}{newton_laws}
|
||||
\desc{Newton's laws}{}{}
|
||||
\desc[german]{Newtonsche Gesetze}{}{}
|
||||
@ -31,10 +30,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{Misc}
|
||||
\ger{Verschiedenes}
|
||||
]{misc}
|
||||
\Section{misc}
|
||||
\desc{Misc}{}{}
|
||||
\desc[german]{Verschiedenes}{}{}
|
||||
\begin{formula}{hook}
|
||||
\desc{Hooke's law}{}{$F$ \qtyRef{force}, $D$ \qtyRef{spring_constant}, $\Delta l$ spring length}
|
||||
\desc[german]{Hookesches Gesetz}{}{$F$ \qtyRef{force}, $D$ \qtyRef{spring_constant}, $\Delta l$ Federlänge}
|
||||
@ -50,28 +48,36 @@
|
||||
\end{formula}
|
||||
|
||||
\def\lagrange{\mathcal{L}}
|
||||
\Section[
|
||||
\eng{Lagrange formalism}
|
||||
\ger{Lagrange Formalismus}
|
||||
]{lagrange}
|
||||
\begin{ttext}[desc]
|
||||
\eng{The Lagrange formalism is often the most simple approach the get the equations of motion,
|
||||
because with suitable generalied coordinates obtaining the Lagrange function is often relatively easy.
|
||||
\Section{lagrange}
|
||||
\desc{Lagrange formalism}{}{}
|
||||
\desc[german]{Lagrange Formalismus}{}{}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
\ttxt{
|
||||
\eng{The Lagrange formalism is often the most simple approach the get the equations of motion,
|
||||
because with suitable generalied coordinates obtaining the Lagrange function is often relatively easy.
|
||||
}
|
||||
\ger{Der Lagrange-Formalsismus ist oft der einfachste Weg die Bewegungsgleichungen zu erhalten,
|
||||
da das Aufstellen der Lagrange-Funktion mit geeigneten generalisierten Koordinaten oft relativ einfach ist.
|
||||
}
|
||||
}
|
||||
\ger{Der Lagrange-Formalsismus ist oft der einfachste Weg die Bewegungsgleichungen zu erhalten,
|
||||
da das Aufstellen der Lagrange-Funktion mit geeigneten generalisierten Koordinaten oft relativ einfach ist.
|
||||
}
|
||||
\end{ttext}
|
||||
\begin{ttext}[generalized_coords]
|
||||
\eng{
|
||||
The generalized coordinates are choosen so that the cronstraints are automatically fullfilled.
|
||||
For example, the generalized coordinate for a 2D pendelum is $q=\varphi$, with $\vec{x} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \end{pmatrix}$.
|
||||
}
|
||||
\ger{
|
||||
Die generalisierten Koordinaten werden so gewählt, dass die Zwangsbedingungen automatisch erfüllt sind.
|
||||
Zum Beispiel findet man für ein 2D Pendel die generalisierte Koordinate $q=\varphi$, mit $\vec{x} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \end{pmatrix}$.
|
||||
}
|
||||
\end{ttext}
|
||||
\end{formula}
|
||||
\begin{formula}{generalized_coordinates}
|
||||
\desc{Generalized coordinates}{}{}
|
||||
\desc[german]{Generalisierte Koordinaten}{}{}
|
||||
\absLabel
|
||||
\begin{ttext}[generalized_coords]
|
||||
\eng{
|
||||
The generalized coordinates are choosen so that the cronstraints are automatically fullfilled.
|
||||
For example, the generalized coordinate for a 2D pendelum is $q=\varphi$, with $\vec{x} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \end{pmatrix}$.
|
||||
}
|
||||
\ger{
|
||||
Die generalisierten Koordinaten werden so gewählt, dass die Zwangsbedingungen automatisch erfüllt sind.
|
||||
Zum Beispiel findet man für ein 2D Pendel die generalisierte Koordinate $q=\varphi$, mit $\vec{x} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \end{pmatrix}$.
|
||||
}
|
||||
\end{ttext}
|
||||
\end{formula}
|
||||
\begin{formula}{lagrangian} \absLabel
|
||||
\desc{Lagrange function}{}{$T$ kinetic energy, $V$ potential energy }
|
||||
\desc[german]{Lagrange-Funktion}{}{$T$ kinetische Energie, $V$ potentielle Energie}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Part[
|
||||
\eng{Particle physics}
|
||||
\ger{Teilchenphysik}
|
||||
]{particle}
|
||||
\Part{particle}
|
||||
\desc{Particle physics}{}{}
|
||||
\desc[german]{Teilchenphysik}{}{}
|
||||
|
||||
|
||||
\begin{formula}{electron_mass}
|
||||
\desc{Electron mass}{}{}
|
||||
|
@ -54,16 +54,6 @@
|
||||
% 1: key
|
||||
\newenvironment{formulainternal}[1]{
|
||||
\mqfqname@enter{#1}
|
||||
% [1]: language
|
||||
% 2: name
|
||||
% 3: description
|
||||
% 4: definitions/links
|
||||
\newcommand{\desc}[4][english]{
|
||||
% language, name, description, definitions
|
||||
\ifblank{##2}{}{\dt{##1}{##2}}
|
||||
\ifblank{##3}{}{\dt[desc]{##1}{##3}}
|
||||
\ifblank{##4}{}{\dt[defs]{##1}{##4}}
|
||||
}
|
||||
\directlua{n_formulaEntries = 0}
|
||||
|
||||
% makes this formula referencable with \abbrRef{<name>}
|
||||
@ -196,11 +186,10 @@
|
||||
\par\noindent\ignorespaces
|
||||
% \textcolor{gray}{\hrule}
|
||||
% \vspace{0.5\baselineskip}
|
||||
\textbf{
|
||||
\raggedright
|
||||
\GT{\fqname}
|
||||
}
|
||||
\IfTranslationExists{\fqname:desc}{
|
||||
\textbf{%
|
||||
\raggedright\GT{\fqname}\ignorespaces%
|
||||
}%
|
||||
\IfTranslationExists{\fqname:desc}{\ignorespaces%
|
||||
: {\color{fg1} \GT{\fqname:desc}}
|
||||
}{}
|
||||
\hfill
|
||||
@ -228,13 +217,6 @@
|
||||
\newenvironment{formulagroup}[1]{
|
||||
\mqfqname@enter{#1}
|
||||
|
||||
\newcommand{\desc}[4][english]{
|
||||
% language, name, description, definitions
|
||||
\ifblank{##2}{}{\dt{##1}{##2}}
|
||||
\ifblank{##3}{}{\dt[desc]{##1}{##3}}
|
||||
\ifblank{##4}{}{\dt[defs]{##1}{##4}}
|
||||
}
|
||||
|
||||
\par\noindent
|
||||
\begin{minipage}{\textwidth} % using a minipage to now allow line breaks within the bigformula
|
||||
\mqfqname@label
|
||||
|
@ -93,45 +93,57 @@
|
||||
\directlua{fqnameLeaveOnlyFirstN(#1)}%
|
||||
}
|
||||
|
||||
|
||||
% Define translations for the current fqname
|
||||
% [1]: language
|
||||
% 2: name
|
||||
% 3: description -> :desc
|
||||
% 4: definitions/links -> :defs
|
||||
\newcommand{\desc}[4][english]{
|
||||
% language, name, description, definitions
|
||||
\ifblank{#2}{}{\dt{#1}{#2}}
|
||||
\ifblank{#3}{}{\dt[desc]{#1}{#3}}
|
||||
\ifblank{#4}{}{\dt[defs]{#1}{#4}}
|
||||
}
|
||||
|
||||
% SECTIONING
|
||||
% start <section>, get heading from translation, set label
|
||||
% fqname is the fully qualified name of all sections and formulas, the keys of all previous sections joined with a ':'
|
||||
% fqname is secFqname:<key> where <key> is the key/id of some environment, like formula
|
||||
% [1]: code to run after setting \fqname, but before the \part, \section etc
|
||||
% 2: key
|
||||
\newcommand{\Part}[2][desc]{
|
||||
\newpage
|
||||
\mqfqname@leaveOnlyFirstN{0}
|
||||
|
||||
% 1: depth
|
||||
% 2: key
|
||||
% 3: Latex section command
|
||||
\newcommand\mqfqname@section[3]{
|
||||
\mqfqname@leaveOnlyFirstN{#1}
|
||||
\mqfqname@enter{#2}
|
||||
#1
|
||||
% this is necessary so that \part/\section... takes the fully expanded string. Otherwise the pdf toc will have just the fqname
|
||||
\edef\fqnameText{\GT{\fqname}}
|
||||
\part{\fqnameText}
|
||||
#3{\fqnameText}
|
||||
\mqfqname@label
|
||||
\IfTranslationExists{\fqname:desc}{
|
||||
{\color{fg1} \GT{\fqname:desc}}
|
||||
}{}
|
||||
}
|
||||
\newcommand{\Section}[2][]{
|
||||
\mqfqname@leaveOnlyFirstN{1}
|
||||
\mqfqname@enter{#2}
|
||||
#1
|
||||
\edef\fqnameText{\GT{\fqname}}
|
||||
\section{\fqnameText}
|
||||
\mqfqname@label
|
||||
|
||||
|
||||
\newcommand{\Part}[1]{
|
||||
\newpage
|
||||
\mqfqname@section{0}{#1}{\part}
|
||||
}
|
||||
\newcommand{\Subsection}[2][]{
|
||||
\mqfqname@leaveOnlyFirstN{2}
|
||||
\mqfqname@enter{#2}
|
||||
#1
|
||||
\edef\fqnameText{\GT{\fqname}}
|
||||
\subsection{\fqnameText}
|
||||
\mqfqname@label
|
||||
\newcommand{\Section}[1]{
|
||||
\mqfqname@section{1}{#1}{\section}
|
||||
}
|
||||
\newcommand{\Subsubsection}[2][]{
|
||||
\mqfqname@leaveOnlyFirstN{3}
|
||||
\mqfqname@enter{#2}
|
||||
#1
|
||||
\edef\fqnameText{\GT{\fqname}}
|
||||
\subsubsection{\fqnameText}
|
||||
\mqfqname@label
|
||||
\newcommand{\Subsection}[1]{
|
||||
\mqfqname@section{2}{#1}{\subsection}
|
||||
}
|
||||
\newcommand{\Subsubsection}[1]{
|
||||
\mqfqname@section{3}{#1}{\subsubsection}
|
||||
}
|
||||
\newcommand{\Paragraph}[1]{
|
||||
\mqfqname@section{4}{#1}{\paragraph}
|
||||
}
|
||||
|
||||
\newcommand\printFqName{\expandafter\detokenize\expandafter{\fqname}}
|
||||
|
@ -33,15 +33,13 @@ end
|
||||
% 3: period
|
||||
% 4: column
|
||||
\newenvironment{element}[4]{
|
||||
% [1]: language
|
||||
% 2: name
|
||||
% 3: description
|
||||
% 4: definitions/links
|
||||
\newcommand{\desc}[4][english]{
|
||||
\ifblank{##2}{}{\DT[el:#1]{##1}{##2}}
|
||||
\ifblank{##3}{}{\DT[el:#1_desc]{##1}{##3}}
|
||||
\ifblank{##4}{}{\DT[el:#1_defs]{##1}{##4}}
|
||||
% force the fqname to el
|
||||
\directlua{
|
||||
old_sections = sections
|
||||
sections = {}
|
||||
table.insert(sections, "el")
|
||||
}
|
||||
\mqfqname@update
|
||||
\directLuaAuxExpand{
|
||||
elementAdd(\luastring{#1}, \luastring{#2}, \luastring{#3}, \luastring{#4})
|
||||
}
|
||||
@ -55,6 +53,11 @@ end
|
||||
\edef\lastElementName{#1}
|
||||
}{
|
||||
\ignorespacesafterend
|
||||
% restore fqname
|
||||
\directlua{
|
||||
sections = old_sections
|
||||
}
|
||||
\mqfqname@update
|
||||
}
|
||||
|
||||
% LIST
|
||||
|
241
src/qm/atom.tex
241
src/qm/atom.tex
@ -1,100 +1,114 @@
|
||||
\def\vecr{{\vec{r}}}
|
||||
\def\abohr{a_\textrm{B}}
|
||||
|
||||
\Section[
|
||||
\eng{Hydrogen Atom}
|
||||
\ger{Wasserstoffatom}
|
||||
]{h}
|
||||
\Section{h}
|
||||
\desc{Hydrogen Atom}{}{}
|
||||
\desc[german]{Wasserstoffatom}{}{}
|
||||
|
||||
\begin{formula}{reduced_mass}
|
||||
\desc{Reduced mass}{}{}
|
||||
\desc[german]{Reduzierte Masse}{}{}
|
||||
\eq{\mu = \frac{\masse m_\textrm{K}}{\masse + m_\textrm{K}} \explOverEq[\approx]{$\masse \ll m_\textrm{K}$} \masse}
|
||||
\end{formula}
|
||||
\begin{formula}{reduced_mass}
|
||||
\desc{Reduced mass}{}{}
|
||||
\desc[german]{Reduzierte Masse}{}{}
|
||||
\eq{\mu = \frac{\masse m_\textrm{K}}{\masse + m_\textrm{K}} \explOverEq[\approx]{$\masse \ll m_\textrm{K}$} \masse}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{potential}
|
||||
\desc{Coulumb potential}{For a single electron atom}{$Z$ atomic number}
|
||||
\desc[german]{Coulumb potential}{Für ein Einelektronenatom}{$Z$ Ordnungszahl/Kernladungszahl}
|
||||
\eq{V(\vecr) = \frac{Z\,e^2}{4\pi\epsilon_0 r}}
|
||||
\end{formula}
|
||||
\begin{formula}{hamiltonian}
|
||||
\desc{Hamiltonian}{}{}
|
||||
\desc[german]{Hamiltonian}{}{}
|
||||
% \eq{V(\vecr) = \frac{Z\,e^2}{4\pi\epsilon_0 r}}
|
||||
\eq{
|
||||
\hat{H} &= -\frac{\hbar^2}{2\mu} {\Grad_\vecr}^2 - V(\vecr) \\
|
||||
&= \frac{\hat{p}_r^2}{2\mu} + \frac{\hat{L}^2}{2\mu r} + V(r)
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{potential}
|
||||
\desc{Coulumb potential}{For a single electron atom}{$Z$ atomic number}
|
||||
\desc[german]{Coulumb potential}{Für ein Einelektronenatom}{$Z$ Ordnungszahl/Kernladungszahl}
|
||||
\eq{V(\vecr) = \frac{Z\,e^2}{4\pi\epsilon_0 r}}
|
||||
\end{formula}
|
||||
\begin{formula}{hamiltonian}
|
||||
\desc{Hamiltonian}{}{}
|
||||
\desc[german]{Hamiltonian}{}{}
|
||||
% \eq{V(\vecr) = \frac{Z\,e^2}{4\pi\epsilon_0 r}}
|
||||
\eq{
|
||||
\hat{H} &= -\frac{\hbar^2}{2\mu} {\Grad_\vecr}^2 - V(\vecr) \\
|
||||
&= \frac{\hat{p}_r^2}{2\mu} + \frac{\hat{L}^2}{2\mu r} + V(r)
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{wave_function}
|
||||
\desc{Wave function}{}{$R_{nl}(r)$ \fRef{qm:h:radial}, $Y_{lm}$ \fRef{qm:spherical_harmonics}}
|
||||
\desc[german]{Wellenfunktion}{}{}
|
||||
\eq{\psi_{nlm}(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta,\phi)}
|
||||
\end{formula}
|
||||
\begin{formula}{wave_function}
|
||||
\desc{Wave function}{}{$R_{nl}(r)$ \fRef{qm:h:radial}, $Y_{lm}$ \fRef{qm:spherical_harmonics}}
|
||||
\desc[german]{Wellenfunktion}{}{}
|
||||
\eq{\psi_{nlm}(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta,\phi)}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{radial}
|
||||
\desc{Radial part}{}{$L_r^s(x)$ Laguerre-polynomials}
|
||||
\desc[german]{Radialanteil}{}{$L_r^s(x)$ Laguerre-Polynome}
|
||||
\eq{
|
||||
R_{nl} &= - \sqrt{\frac{(n-l-1)!(2\kappa)^3}{2n[(n+l)!]^3}} (2\kappa r)^l \e^{-\kappa r} L_{n+1}^{2l+1}(2\kappa r)
|
||||
\shortintertext{\GT{with}}
|
||||
\kappa &= \frac{\sqrt{2\mu\abs{E}}}{\hbar} = \frac{Z}{n \abohr}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{radial}
|
||||
\desc{Radial part}{}{$L_r^s(x)$ Laguerre-polynomials}
|
||||
\desc[german]{Radialanteil}{}{$L_r^s(x)$ Laguerre-Polynome}
|
||||
\eq{
|
||||
R_{nl} &= - \sqrt{\frac{(n-l-1)!(2\kappa)^3}{2n[(n+l)!]^3}} (2\kappa r)^l \e^{-\kappa r} L_{n+1}^{2l+1}(2\kappa r)
|
||||
\shortintertext{\GT{with}}
|
||||
\kappa &= \frac{\sqrt{2\mu\abs{E}}}{\hbar} = \frac{Z}{n \abohr}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{energy}
|
||||
\desc{Energy eigenvalues}{}{}
|
||||
\desc[german]{Energieeigenwerte}{}{}
|
||||
\eq{E_n &= \frac{Z^2\mu e^4}{n^2(4\pi\epsilon_0)^2 2\hbar^2} = -E_\textrm{H}\frac{Z^2}{n^2}}
|
||||
\end{formula}
|
||||
\begin{formula}{energy}
|
||||
\desc{Energy eigenvalues}{}{}
|
||||
\desc[german]{Energieeigenwerte}{}{}
|
||||
\eq{E_n &= \frac{Z^2\mu e^4}{n^2(4\pi\epsilon_0)^2 2\hbar^2} = -E_\textrm{H}\frac{Z^2}{n^2}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{rydberg_constant_heavy}
|
||||
\desc{Rydberg constant}{for heavy atoms}{\ConstRef{electron_mass}, \ConstRef{charge}, \ConstRef{vacuum_permittivity}, \ConstRef{planck}, \ConstRef{vacuum_speed_of_light}}
|
||||
\desc[german]{Rydberg-Konstante}{für schwere Atome}{}
|
||||
\constant{R_\infty}{exp}{
|
||||
\val{10973731.568157(12)}{\per\m}
|
||||
}
|
||||
\eq{
|
||||
R_\infty = \frac{m_e e^4}{8\epsilon_0^2 h^3 c}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{rydberg_constant_heavy}
|
||||
\desc{Rydberg constant}{for heavy atoms}{\ConstRef{electron_mass}, \ConstRef{charge}, \ConstRef{vacuum_permittivity}, \ConstRef{planck}, \ConstRef{vacuum_speed_of_light}}
|
||||
\desc[german]{Rydberg-Konstante}{für schwere Atome}{}
|
||||
\constant{R_\infty}{exp}{
|
||||
\val{10973731.568157(12)}{\per\m}
|
||||
}
|
||||
\eq{
|
||||
R_\infty = \frac{m_e e^4}{8\epsilon_0^2 h^3 c}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{rydberg_constant_corrected}
|
||||
\desc{Rydberg constant}{corrected for nucleus mass $M$}{\ConstRef{rydberg_constant_heavy}, $\mu = \left(\frac{1}{m_\txe} + \frac{1}{M}\right)^{-1}$ \GT{reduced_mass}, \ConstRef{electron_mass}}
|
||||
\desc[german]{Rydberg Konstante}{korrigiert für Kernmasse $M$}{}
|
||||
\eq{R_\txM = \frac{\mu}{m_\txe} R_\infty}
|
||||
\end{formula}
|
||||
\begin{formula}{rydberg_constant_corrected}
|
||||
\desc{Rydberg constant}{corrected for nucleus mass $M$}{\ConstRef{rydberg_constant_heavy}, $\mu = \left(\frac{1}{m_\txe} + \frac{1}{M}\right)^{-1}$ \GT{reduced_mass}, \ConstRef{electron_mass}}
|
||||
\desc[german]{Rydberg Konstante}{korrigiert für Kernmasse $M$}{}
|
||||
\eq{R_\txM = \frac{\mu}{m_\txe} R_\infty}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{rydberg_energy}
|
||||
\desc{Rydberg energy}{Energy unit}{\ConstRef{rydberg_constant_heavy}, \ConstRef{planck}, \ConstRef{vacuum_speed_of_light}}
|
||||
\desc[german]{Rydberg-Energy}{Energie Einheit}{}
|
||||
\eq{1\,\text{Ry} = hc\,R_\infty}
|
||||
\end{formula}
|
||||
\begin{formula}{rydberg_energy}
|
||||
\desc{Rydberg energy}{Energy unit}{\ConstRef{rydberg_constant_heavy}, \ConstRef{planck}, \ConstRef{vacuum_speed_of_light}}
|
||||
\desc[german]{Rydberg-Energy}{Energie Einheit}{}
|
||||
\eq{1\,\text{Ry} = hc\,R_\infty}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{bohr_radius}
|
||||
\desc{Bohr radius}{}{\ConstRef{vacuum_permittivity}, \ConstRef{electron_mass}}
|
||||
\desc[german]{Bohrscher Radius}{}{}
|
||||
\constant{a_0}{exp}{
|
||||
\val{5.29177210544(82) \xE{-11}}{\m}
|
||||
}
|
||||
\eq{a_0 = \frac{4\pi \epsilon_0 \hbar^2}{e^2 m_\txe}}
|
||||
\end{formula}
|
||||
\begin{formula}{bohr_radius}
|
||||
\desc{Bohr radius}{}{\ConstRef{vacuum_permittivity}, \ConstRef{electron_mass}}
|
||||
\desc[german]{Bohrscher Radius}{}{}
|
||||
\constant{a_0}{exp}{
|
||||
\val{5.29177210544(82) \xE{-11}}{\m}
|
||||
}
|
||||
\eq{a_0 = \frac{4\pi \epsilon_0 \hbar^2}{e^2 m_\txe}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{hunds_rules}
|
||||
\desc{Hund's rules}{Angular momentum configuration rules for electrons in atomic orbitals in the atom's ground state}{}
|
||||
\desc[german]{Hundsche Regeln}{Drehimpulskonfiguration für Elektronen in Atomorbitalen im Grundzustand des Atoms }{}
|
||||
\ttxt{\eng{
|
||||
\begin{enumerate}
|
||||
\item Full shells: $J=0$
|
||||
\item $S$ takes the maximum possible value
|
||||
\item For equal $S$ configurations, the one where $L$ is maximized is taken
|
||||
\item Outermost shell half filled or less \Rightarrow $J$ minimized: $J=\abs{L-S}$ \\
|
||||
Outermost shell more than half filled \Rightarrow $J$ maximized $J=L+S$
|
||||
\end{enumerate}
|
||||
}\ger{
|
||||
\begin{enumerate}
|
||||
\item Volle Schalen haben Gesamtdrehimpuls 0: $J=0$
|
||||
\item $S$ nimmt den höchstmöglichsten Wert an
|
||||
\item Für gleiche $S$ wird $L$ maximiert
|
||||
\item Äußerste Schale halb oder weniger gefüllt \Rightarrow $J$ minimiert: $J=\abs{L-S}$\\
|
||||
Äußerste Schale mehr als halb gefüllt \Rightarrow $J$ maximiert: $J=L+S$
|
||||
\end{enumerate}
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Corrections}
|
||||
\ger{Korrekturen}
|
||||
]{corrections}
|
||||
\Subsection{corrections}
|
||||
\desc{Corrections}{}{}
|
||||
\desc[german]{Korrekturen}{}{}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Darwin term}
|
||||
\ger{Darwin-Term}
|
||||
]{darwin}
|
||||
\begin{ttext}[desc]
|
||||
\eng{Relativisitc correction: Accounts for interaction with nucleus (non-zero wavefunction at nucleaus position)}
|
||||
\ger{Relativistische Korrektur: Berücksichtigt die Interatkion mit dem Kern (endliche Wellenfunktion bei der Kernposition)}
|
||||
\end{ttext}
|
||||
\Subsubsection{darwin}
|
||||
\desc{Darwin term}{Relativisitc correction: Accounts for interaction with nucleus (non-zero wavefunction at nucleaus position)}{}
|
||||
\desc[german]{Darwin-Term}{Relativistische Korrektur: Berücksichtigt die Interatkion mit dem Kern (endliche Wellenfunktion bei der Kernposition)}{}
|
||||
\begin{formula}{energy_shift}
|
||||
\desc{Energy shift}{}{}
|
||||
\desc[german]{Energieverschiebung}{}{}
|
||||
@ -107,14 +121,9 @@
|
||||
\eq{\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \approx \frac{1}{137}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Spin-orbit coupling (LS-coupling)}
|
||||
\ger{Spin-Bahn-Kopplung (LS-Kopplung)}
|
||||
]{ls_coupling}
|
||||
\begin{ttext}[desc]
|
||||
\eng{The interaction of the electron spin with the electrostatic field of the nuclei lead to energy shifts.}
|
||||
\ger{The Wechselwirkung zwischen dem Elektronenspin und dem elektrostatischen Feld des Kerns führt zu Energieverschiebungen.}
|
||||
\end{ttext}
|
||||
\Subsubsection{ls_coupling}
|
||||
\desc{Spin-orbit coupling (LS-coupling)}{The interaction of the electron spin with the electrostatic field of the nuclei lead to energy shifts.}{}
|
||||
\desc[german]{Spin-Bahn-Kopplung (LS-Kopplung)}{The Wechselwirkung zwischen dem Elektronenspin und dem elektrostatischen Feld des Kerns führt zu Energieverschiebungen.}{}
|
||||
|
||||
\begin{formula}{energy_shift}
|
||||
\desc{Energy shift}{}{}
|
||||
@ -122,20 +131,15 @@
|
||||
\eq{\Delta E_\text{LS} = \frac{\mu_0 Z e^2}{8\pi \masse^2\,r^3} \braket{\vec{S} \cdot \vec{L}}}
|
||||
\end{formula}
|
||||
\begin{formula}{sl}
|
||||
\desc{\TODO{name}}{}{}
|
||||
\desc[german]{??}{}{}
|
||||
\desc{Spin-orbit coupling}{}{}
|
||||
\desc[german]{Spin-Bahn-Kopplung}{}{}
|
||||
\eq{\braket{\vec{S} \cdot \vec{L}} &= \frac{1}{2} \braket{[J^2-L^2-S^2]} \nonumber \\
|
||||
&= \frac{\hbar^2}{2}[j(j+1) -l(l+1) -s(s+1)]}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Fine-structure}
|
||||
\ger{Feinstruktur}
|
||||
]{fine_structure}
|
||||
\begin{ttext}[desc]
|
||||
\eng{The fine-structure combines \fRef[relativistic corrections]{qm:h:corrections:darwin} and \fRef{qm:h:corrections:ls_coupling}.}
|
||||
\ger{Die Feinstruktur vereint \fRef[relativistische Korrekturen]{qm:h:corrections:darwin} und \fRef{qm:h:corrections:ls_coupling}.}
|
||||
\end{ttext}
|
||||
\Subsubsection{fine_structure}
|
||||
\desc{Fine-structure}{The fine-structure combines \fRef[relativistic corrections]{qm:h:corrections:darwin} and \fRef{qm:h:corrections:ls_coupling}.}{}
|
||||
\desc[german]{Feinstruktur}{Die Feinstruktur vereint \fRef[relativistische Korrekturen]{qm:h:corrections:darwin} und \fRef{qm:h:corrections:ls_coupling}.}{}
|
||||
\begin{formula}{energy_shift}
|
||||
\desc{Energy shift}{}{}
|
||||
\desc[german]{Energieverschiebung}{}{}
|
||||
@ -143,28 +147,18 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Lamb-shift}
|
||||
\ger{Lamb-Shift}
|
||||
]{lamb_shift}
|
||||
\begin{ttext}[desc]
|
||||
\eng{The interaction of the electron with virtual photons emitted/absorbed by the nucleus leads to a (very small) shift in the energy level.}
|
||||
\ger{The Wechselwirkung zwischen dem Elektron und vom Kern absorbierten/emittierten virtuellen Photonen führt zu einer (sehr kleinen) Energieverschiebung.}
|
||||
\end{ttext}
|
||||
\Subsubsection{lamb_shift}
|
||||
\desc{Lamb-shift}{The interaction of the electron with virtual photons emitted/absorbed by the nucleus leads to a (very small) shift in the energy level.}{}
|
||||
\desc[german]{Lamb-Shift}{The Wechselwirkung zwischen dem Elektron und vom Kern absorbierten/emittierten virtuellen Photonen führt zu einer (sehr kleinen) Energieverschiebung.}{}
|
||||
\begin{formula}{energy}
|
||||
\desc{Potential energy}{}{$\delta r$ pertubation of $r$}
|
||||
\desc[german]{Potentielle Energy}{}{$\delta r$ Schwankung von $r$}
|
||||
\eq{\braket{E_\textrm{pot}} = -\frac{Z e^2}{4\pi\epsilon_0} \Braket{\frac{1}{r+\delta r}}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Hyperfine structure}
|
||||
\ger{Hyperfeinstruktur}
|
||||
]{hyperfine_structure}
|
||||
\begin{ttext}[desc]
|
||||
\eng{Interaction of the nucleus spin with the magnetic field created by the electron leads to energy shifts. (Lifts degeneracy) }
|
||||
\ger{Wechselwirkung von Kernspin mit dem vom Elektron erzeugten Magnetfeld spaltet Energieniveaus}
|
||||
\end{ttext}
|
||||
\Subsubsection{hyperfine_structure}
|
||||
\desc{Hyperfine structure}{Interaction of the nucleus spin with the magnetic field created by the electron leads to energy shifts. (Lifts degeneracy) }{}
|
||||
\desc[german]{Hyperfeinstruktur}{Wechselwirkung von Kernspin mit dem vom Elektron erzeugten Magnetfeld spaltet Energieniveaus}{}
|
||||
\begin{formula}{nuclear_spin}
|
||||
\desc{Nuclear spin}{}{}
|
||||
\desc[german]{Kernspin}{}{}
|
||||
@ -199,17 +193,14 @@
|
||||
\end{formula}
|
||||
\TODO{landé factor}
|
||||
|
||||
\Subsection[
|
||||
\eng{Effects in magnetic field}
|
||||
\ger{Effekte im Magnetfeld}
|
||||
]{mag_effects}
|
||||
\Subsection{mag_effects}
|
||||
\desc{Effects in magnetic field}{}{}
|
||||
\desc[german]{Effekte im Magnetfeld}{}{}
|
||||
\TODO{all}
|
||||
\\\TODO{Hunds rules}
|
||||
|
||||
\Subsection[
|
||||
\eng{misc}
|
||||
\ger{Sonstiges}
|
||||
]{other}
|
||||
\Subsection{other}
|
||||
\desc{misc}{}{}
|
||||
\desc[german]{Sonstiges}{}{}
|
||||
\begin{formula}{auger_effect}
|
||||
\desc{Auger-Meitner-Effekt}{Auger-Effect}{}
|
||||
\desc[german]{Auger-Meitner-Effekt}{Auger-Effekt}{}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Other}
|
||||
\ger{Sonstiges}
|
||||
]{misc}
|
||||
\Section{misc}
|
||||
\desc{Other}{}{}
|
||||
\desc[german]{Sonstiges}{}{}
|
||||
|
||||
\begin{formula}{RWA}
|
||||
\desc{Rotating Wave Approximation (RWS)}{Rapidly oscilating terms are neglected}{$\omega_\text{L}$ light frequency, $\omega_0$ transition frequency}
|
||||
\desc[german]{Rotating Wave Approximation / Drehwellennäherung (RWS)}{Schnell oscillierende Terme werden vernachlässigt}{$\omega_\text{L}$ Frequenz des Lichtes, $\omega_0$ Übergangsfrequenz}
|
||||
|
196
src/qm/qm.tex
196
src/qm/qm.tex
@ -5,18 +5,23 @@
|
||||
\def\sigmaybraket{-i \ket{0}\bra{1} + i \ket{1}\bra{0}}
|
||||
\def\sigmazbraket{\ket{0}\bra{0} - \ket{1}\bra{1}}
|
||||
|
||||
\Part[
|
||||
\eng{Quantum Mechanics}
|
||||
\ger{Quantenmechanik}
|
||||
]{qm}
|
||||
\Section[
|
||||
\eng{Basics}
|
||||
\ger{Basics}
|
||||
]{basics}
|
||||
\Subsection[
|
||||
\eng{Operators}
|
||||
\ger{Operatoren}
|
||||
]{op}
|
||||
\Part{qm}
|
||||
\desc{Quantum Mechanics}{}{}
|
||||
\desc[german]{Quantenmechanik}{}{}
|
||||
\Section{basics}
|
||||
\desc{Basics}{}{}
|
||||
\desc[german]{Basics}{}{}
|
||||
\begin{formula}{correspondence_principle}
|
||||
\desc{Correspondence principle}{}{}
|
||||
\desc[german]{Korrespondenzprinzip}{}{}
|
||||
\ttxt{
|
||||
\ger{Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenmechanik ableiten.}
|
||||
\eng{The equations of motion of classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.}
|
||||
}
|
||||
\end{formula}
|
||||
\Subsection{op}
|
||||
\desc{Operators}{}{}
|
||||
\desc[german]{Operatoren}{}{}
|
||||
\Ger[row_vector]{Zeilenvektor}
|
||||
\Ger[column_vector]{Spaltenvektor}
|
||||
\Eng[column_vector]{Column vector}
|
||||
@ -53,14 +58,9 @@
|
||||
\eq{\hat{A} = \hat{A}^\dagger}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Measurement}
|
||||
\ger{Messung}
|
||||
]{measurement}
|
||||
\begin{ttext}
|
||||
\eng{An observable is a hermition operator acting on $\hat{H}$. The measurement randomly yields one of the eigenvalues of $\hat{O}$ (all real).}
|
||||
\ger{Eine Observable ist ein hermitscher Operator, der auf $\hat{H}$ wirkt. Die Messung ergibt zufällig einen der Eigenwerte von $\hat{O}$, welche alle reell sind.}
|
||||
\end{ttext}
|
||||
\Subsubsection{measurement}
|
||||
\desc{Measurement}{An observable is a hermition operator acting on $\hat{H}$. The measurement randomly yields one of the eigenvalues of $\hat{O}$ (all real).}{}
|
||||
\desc[german]{Messung}{Eine Observable ist ein hermitscher Operator, der auf $\hat{H}$ wirkt. Die Messung ergibt zufällig einen der Eigenwerte von $\hat{O}$, welche alle reell sind.}{}
|
||||
\begin{formula}{name}
|
||||
\desc{Measurement probability}{Probability to measure $\psi$ in state $\lambda$}{}
|
||||
\desc[german]{Messwahrscheinlichkeit}{Wahrscheinlichkeit, $\psi$ im Zustand $\lambda$ zu messen}{}
|
||||
@ -73,10 +73,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Pauli matrices}
|
||||
\ger{Pauli-Matrizen}
|
||||
]{pauli_matrices}
|
||||
\Subsubsection{pauli_matrices}
|
||||
\desc{Pauli matrices}{}{}
|
||||
\desc[german]{Pauli-Matrizen}{}{}
|
||||
\begin{formula}{pauli_matrices}
|
||||
\desc{Pauli matrices}{}{}
|
||||
\desc[german]{Pauli Matrizen}{}{}
|
||||
@ -91,10 +90,10 @@
|
||||
% $\sigma_y$ PHASE
|
||||
% $\sigma_z$ Sign
|
||||
|
||||
\Subsection[
|
||||
\ger{Wahrscheinlichkeitstheorie}
|
||||
\eng{Probability theory}
|
||||
]{probability}
|
||||
\Subsection{probability}
|
||||
\desc{Wahrscheinlichkeitstheorie}{}{}
|
||||
\desc[german]{Probability theory}{}{}
|
||||
|
||||
\begin{formula}{conservation_of_probability}
|
||||
\desc{Continuity equation}{}{$\rho$ density of a conserved quantity $q$, $j$ flux density of $q$}
|
||||
\desc[german]{Kontinuitätsgleichung}{}{$\rho$ Dichte einer Erhaltungsgröße $q$, $j$ Fluß von $q$}
|
||||
@ -102,9 +101,9 @@
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{state_probability}
|
||||
\desc{State probability}{}{}
|
||||
\desc[german]{Zustandswahrscheinlichkeit}{}{}
|
||||
\eq{TODO}
|
||||
\desc{State probability}{Probability to measure eigenvale $n$}{$P_n$ projector, $n$ normalized eigenvalue of measurement operator with one-dimensional eigenspace}
|
||||
\desc[german]{Zustandswahrscheinlichkeit}{Wahrscheinlicht, den Eigenwert $n$ zu messen}{$P_n$ Projektor, $n$ normalisierter Eigenwert des Messoperators mit ein-dimensionalem Eigenraum}
|
||||
\eq{p_n = \Braket{\psi|P_n|\psi} = \Braket{\psi|n}\Braket{n|\psi} = \abs{\Braket{n|\psi}}^2 }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{dispersion}
|
||||
@ -124,10 +123,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Commutator}
|
||||
\ger{Kommutator}
|
||||
]{commutator}
|
||||
\Subsection{commutator}
|
||||
\desc{Commutator}{}{}
|
||||
\desc[german]{Kommutator}{}{}
|
||||
\begin{formula}{commutator}
|
||||
\desc{Commutator}{}{}
|
||||
\desc[german]{Kommutator}{}{}
|
||||
@ -174,10 +172,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{Schrödinger equation}
|
||||
\ger{Schrödingergleichung}
|
||||
]{se}
|
||||
\Section{se}
|
||||
\desc{Schrödinger equation}{}{}
|
||||
\desc[german]{Schrödingergleichung}{}{}
|
||||
\abbrLink{se}{SE}
|
||||
\begin{formula}{energy_operator}
|
||||
\desc{Energy operator}{}{}
|
||||
@ -228,11 +225,9 @@
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Time evolution}
|
||||
\ger{Zeitentwicklug}
|
||||
]{time}
|
||||
The time evolution of the Hamiltonian is given by:
|
||||
\Subsection{time}
|
||||
\desc{Time evolution}{}{}
|
||||
\desc[german]{Zeitentwicklug}{}{}
|
||||
\begin{formula}{time_evolution_op}
|
||||
\desc{Time evolution operator}{}{$U$ unitary}
|
||||
\desc[german]{Zeitentwicklungsoperator}{}{$U$ unitär}
|
||||
@ -255,18 +250,15 @@
|
||||
|
||||
\TODO{unitary transformation of time dependent H}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Schrödinger- and Heisenberg-pictures}
|
||||
\ger{Schrödinger- und Heisenberg-Bild}
|
||||
]{s_h_pictures}
|
||||
\eng[s_h_pictures_desc]{
|
||||
\Subsubsection{s_h_pictures}
|
||||
\desc{Schrödinger- and Heisenberg-pictures}{
|
||||
In the \textbf{Schrödinger picture}, the time dependecy is in the states
|
||||
while in the \textbf{Heisenberg picture} the observables (operators) are time dependent.
|
||||
}
|
||||
\ger[s_h_pictures_desc]{Im Schrödinger-Bild sind die Zustände zeitabhänig, im Heisenberg-Bild
|
||||
}{}
|
||||
\desc[german]{Schrödinger- und Heisenberg-Bild}{
|
||||
Im Schrödinger-Bild sind die Zustände zeitabhänig, im Heisenberg-Bild
|
||||
sind die Observablen (Operatoren) zeitabhänig
|
||||
}
|
||||
\gt{s_h_pictures_desc}\\
|
||||
}{}
|
||||
\begin{formula}{schroediner_time_evolution}
|
||||
\desc{Schrödinger time evolution}{}{}
|
||||
\desc[german]{Schrödinger Zeitentwicklug}{}{}
|
||||
@ -285,12 +277,11 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Ehrenfest theorem}
|
||||
\ger{Ehrenfest-Theorem}
|
||||
]{ehrenfest_theorem}
|
||||
\Subsubsection{ehrenfest_theorem}
|
||||
\desc{Ehrenfest theorem}{\GT{see_also} \fRef{qm:se:time:ehrenfest_theorem:correspondence_principle}}{}
|
||||
\desc[german]{Ehrenfest-Theorem}{}{}
|
||||
\absLink{}{ehrenfest_theorem}
|
||||
\GT{see_also} \fRef{qm:se:time:ehrenfest_theorem:correspondence_principle}
|
||||
|
||||
\begin{formula}{ehrenfest_theorem}
|
||||
\desc{Ehrenfest theorem}{applies to both pictures}{}
|
||||
\desc[german]{Ehrenfest-Theorem}{gilt für beide Bilder}{}
|
||||
@ -304,27 +295,13 @@
|
||||
\eq{m\odv[2]{}{t}\braket{x} = -\braket{\nabla V(x)} = \braket{F(x)}}
|
||||
\end{formula}
|
||||
% \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time}
|
||||
|
||||
% TODO: wo gehört das hin?
|
||||
\begin{formula}{correspondence_principle}
|
||||
\desc{Correspondence principle}{}{}
|
||||
\desc[german]{Korrespondenzprinzip}{}{}
|
||||
\ttxt{
|
||||
\ger{Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenmechanik ableiten.}
|
||||
\eng{The classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Pertubation theory}
|
||||
\ger{Störungstheorie}
|
||||
]{qm_pertubation}
|
||||
\begin{ttext}
|
||||
\eng{The following holds true if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.}
|
||||
\ger{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.}
|
||||
\end{ttext}
|
||||
\Section{qm_pertubation}
|
||||
\desc{Pertubation theory}{Applies if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.}{}
|
||||
\desc[german]{Störungstheorie}{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.}{}
|
||||
|
||||
\begin{formula}{pertubation_hamiltonian}
|
||||
\desc{Hamiltonian}{}{}
|
||||
\desc[german]{Hamiltonian}{}{}
|
||||
@ -368,10 +345,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Harmonic oscillator}
|
||||
\ger{Harmonischer Oszillator}
|
||||
]{hosc}
|
||||
\Section{hosc}
|
||||
\desc{Harmonic oscillator}{}{}
|
||||
\desc[german]{Harmonischer Oszillator}{}{}
|
||||
\begin{formula}{hamiltonian}
|
||||
\desc{Hamiltonian}{}{}
|
||||
\desc[german]{Hamiltonian}{}{}
|
||||
@ -387,10 +363,9 @@
|
||||
\eq{E_n = \hbar\omega \Big(\frac{1}{2} + n\Big)}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\ger{Erzeugungs und Vernichtungsoperatoren / Leiteroperatoren}
|
||||
\eng{Creation and Annihilation operators / Ladder operators}
|
||||
]{c_a_ops}
|
||||
\Subsection{c_a_ops}
|
||||
\desc{Erzeugungs und Vernichtungsoperatoren / Leiteroperatoren}{}{}
|
||||
\desc[german]{Creation and Annihilation operators / Ladder operators}{}{}
|
||||
\begin{formula}{c_a_ops_def}
|
||||
\desc{Particle number operator/occupation number operator}{}{$\ket{n}$ = Fock states, $\hat{a}$ = Annihilation operator, $\hat{a}^\dagger$ = Creation operator}
|
||||
\desc[german]{Teilchenzahloperator/Besetzungszahloperator}{}{$\ket{n}$ = Fock-Zustände, $\hat{a}$ = Vernichtungsoperator, $\hat{a}^\dagger$ = Erzeugungsoperator}
|
||||
@ -445,10 +420,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Harmonischer Oszillator}
|
||||
\ger{Harmonic Oscillator}
|
||||
]{hosc}
|
||||
\Subsubsection{hosc}
|
||||
\desc{Harmonischer Oszillator}{}{}
|
||||
\desc[german]{Harmonic Oscillator}{}{}
|
||||
\begin{formula}{c_a_ops}
|
||||
\desc{Harmonic oscillator}{}{}
|
||||
\desc[german]{Harmonischer Oszillator}{}{}
|
||||
@ -475,24 +449,21 @@
|
||||
% E_n=( \frac{1}{2} +n)\hbar\omega
|
||||
% \end{equation}
|
||||
|
||||
\Section[
|
||||
\eng{Angular momentum}
|
||||
\ger{Drehmoment}
|
||||
]{angular_momentum}
|
||||
\Section{angular_momentum}
|
||||
\desc{Angular momentum}{}{}
|
||||
\desc[german]{Drehmoment}{}{}
|
||||
|
||||
\Subsection[
|
||||
\eng{Aharanov-Bohm effect}
|
||||
\ger{Aharanov-Bohm Effekt}
|
||||
]{aharanov_bohm}
|
||||
\Subsection{aharanov_bohm}
|
||||
\desc{Aharanov-Bohm effect}{}{}
|
||||
\desc[german]{Aharanov-Bohm Effekt}{}{}
|
||||
\begin{formula}{phase}
|
||||
\desc{Acquired phase}{Electron along a closed loop aquires a phase proportional to the enclosed magnetic flux}{\QtyRef{magnetic_vector_potential}, \QtyRef{magnetic_flux}}
|
||||
\desc[german]{Erhaltene Phase}{Elektron entlang eines geschlossenes Phase erhält eine Phase die proportional zum eingeschlossenen magnetischem Fluss ist}{}
|
||||
\eq{\delta = \frac{2 e}{\hbar} \oint \vec{A}\cdot \d\vec{s} = \frac{2 e}{\hbar} \Phi}
|
||||
\end{formula}
|
||||
\Section[
|
||||
\eng{Periodic potentials}
|
||||
\ger{Periodische Potentiale}
|
||||
]{periodic}
|
||||
\Section{periodic}
|
||||
\desc{Periodic potentials}{}{}
|
||||
\desc[german]{Periodische Potentiale}{}{}
|
||||
\begin{formula}{bloch_waves}
|
||||
\desc{Bloch waves}{
|
||||
Solve the stat. SG in periodic potential with period
|
||||
@ -519,24 +490,18 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Symmetries}
|
||||
\ger{Symmetrien}
|
||||
]{symmetry}
|
||||
\begin{ttext}[desc]
|
||||
\eng{Most symmetry operators are \fRef[unitary]{math:linalg:matrix:unitary} because the norm of a state must be invariant under transformations of space, time and spin.}
|
||||
\ger{Die meisten Symmetrieoperatoren sind \fRef[unitär]{math:linalg:matrix:unitary}, da die Norm eines Zustands invariant unter Raum-, Zeit- und Spin-Transformationen sein muss.}
|
||||
\end{ttext}
|
||||
\Section{symmetry}
|
||||
\desc{Symmetries}{Most symmetry operators are \fRef[unitary]{math:linalg:matrix:unitary} because the norm of a state must be invariant under transformations of space, time and spin.}{}
|
||||
\desc[german]{Symmetrien}{Die meisten Symmetrieoperatoren sind \fRef[unitär]{math:linalg:matrix:unitary}, da die Norm eines Zustands invariant unter Raum-, Zeit- und Spin-Transformationen sein muss.}{}
|
||||
\begin{formula}{invariance}
|
||||
\desc{Invariance}{$\hat{H}$ is invariant under a symmetrie described by $\hat{U}$ if this holds}{}
|
||||
\desc[german]{Invarianz}{$\hat{H}$ is invariant unter der von $\hat{U}$ beschriebenen Symmetrie wenn gilt:}{}
|
||||
\eq{\hat{U}\hat{H}\hat{U}^\dagger = \hat{H} \Leftrightarrow [\hat{U}, \hat{H}] = 0}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Time-reversal symmetry}
|
||||
\ger{Zeitumkehrungssymmetrie}
|
||||
]{time_reversal}
|
||||
\Subsection{time_reversal}
|
||||
\desc{Time-reversal symmetry}{}{}
|
||||
\desc[german]{Zeitumkehrungssymmetrie}{}{}
|
||||
|
||||
\begin{formula}{time}
|
||||
\desc{Time-reversal symmetry}{}{}
|
||||
@ -550,10 +515,9 @@
|
||||
\eq{T^2 = -1}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{Two-level systems (TLS)}
|
||||
\ger{Zwei-Niveau System (TLS)}
|
||||
]{tls}
|
||||
\Section{tls}
|
||||
\desc{Two-level systems (TLS)}{}{}
|
||||
\desc[german]{Zwei-Niveau System (TLS)}{}{}
|
||||
\begin{formula}{james_cummings}
|
||||
\desc{James-Cummings Hamiltonian}{TLS interacting with optical cavity}{$\hat{E} = E_\text{ZPF}(\hat{a} + \hat{a}^\dagger)$ field operator with bosonic ladder operators, $\hat{S} = \hat{\sigma}^\dagger + \hat{\sigma}$ polarization operator with ladder operators of the TLS}
|
||||
\desc[german]{James-Cummings Hamiltonian}{TLS interagiert mit resonantem Lichtfeld}{$\hat{E} = E_\text{ZPF}(\hat{a} + \hat{a}^\dagger)$ Feldoperator mit bosonischen Leiteroperatoren, $\hat{S} = \hat{\sigma}^\dagger + \hat{\sigma}$ Polarisationsoperator mit Leiteroperatoren des TLS}
|
||||
|
@ -3,15 +3,13 @@
|
||||
% Put quantites here that are referenced often, even if they are not exciting themselves.
|
||||
% This could later allow making a list of all links to this quantity, creating a list of releveant formulas
|
||||
|
||||
\Section[
|
||||
\eng{Physical quantities}
|
||||
\ger{Physikalische Größen}
|
||||
]{quantities}
|
||||
\Section{quantities}
|
||||
\desc{Physical quantities}{}{}
|
||||
\desc[german]{Physikalische Größen}{}{}
|
||||
|
||||
\Subsection[
|
||||
\eng{SI quantities}
|
||||
\ger{SI-Basisgrößen}
|
||||
]{si}
|
||||
\Subsection{si}
|
||||
\desc{SI quantities}{}{}
|
||||
\desc[german]{SI-Basisgrößen}{}{}
|
||||
\begin{formula}{time}
|
||||
\desc{Time}{}{}
|
||||
\desc[german]{Zeit}{}{}
|
||||
@ -54,10 +52,9 @@
|
||||
\quantity{I_\text{V}}{\candela}{s}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Mechanics}
|
||||
\ger{Mechanik}
|
||||
]{mech}
|
||||
\Subsection{mech}
|
||||
\desc{Mechanics}{}{}
|
||||
\desc[german]{Mechanik}{}{}
|
||||
\begin{formula}{force}
|
||||
\desc{Force}{}{}
|
||||
\desc[german]{Kraft}{}{}
|
||||
@ -89,10 +86,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Thermodynamics}
|
||||
\ger{Thermodynamik}
|
||||
]{td}
|
||||
\Subsection{td}
|
||||
\desc{Thermodynamics}{}{}
|
||||
\desc[german]{Thermodynamik}{}{}
|
||||
\begin{formula}{volume}
|
||||
\desc{Volume}{$d$ dimensional Volume}{}
|
||||
\desc[german]{Volumen}{$d$ dimensionales Volumen}{}
|
||||
@ -110,10 +106,9 @@
|
||||
\quantity{\rho}{\kg\per\m^3}{s}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Electrodynamics}
|
||||
\ger{Elektrodynamik}
|
||||
]{el}
|
||||
\Subsection{el}
|
||||
\desc{Electrodynamics}{}{}
|
||||
\desc[german]{Elektrodynamik}{}{}
|
||||
\begin{formula}{charge}
|
||||
\desc{Charge}{}{}
|
||||
\desc[german]{Ladung}{}{}
|
||||
@ -197,10 +192,9 @@
|
||||
\quantity{L}{\henry=\kg\m^2\per\s^2\ampere^2=\weber\per\ampere=\volt\s\per\ampere=\ohm\s}{s}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Others}
|
||||
\ger{Sonstige}
|
||||
]{other}
|
||||
\Subsection{other}
|
||||
\desc{Others}{}{}
|
||||
\desc[german]{Sonstige}{}{}
|
||||
\begin{formula}{area}
|
||||
\desc{Area}{}{}
|
||||
\desc[german]{Fläche}{}{}
|
||||
|
@ -1,12 +1,11 @@
|
||||
\Part[
|
||||
\eng{Quantum Computing}
|
||||
\ger{Quantencomputing}
|
||||
]{qc}
|
||||
\Part{qc}
|
||||
\desc{Quantum Computing}{}{}
|
||||
\desc[german]{Quantencomputing}{}{}
|
||||
|
||||
\Section[
|
||||
\eng{Qubits}
|
||||
\ger{Qubits}
|
||||
]{qubit}
|
||||
|
||||
\Section{qubit}
|
||||
\desc{Qubits}{}{}
|
||||
\desc[german]{Qubits}{}{}
|
||||
\begin{formula}{bloch_sphere}
|
||||
\desc{Bloch sphere}{}{}
|
||||
\desc[german]{Bloch-Sphäre}{}{}
|
||||
@ -17,10 +16,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{Gates}
|
||||
\ger{Gates}
|
||||
]{gates}
|
||||
\Section{gates}
|
||||
\desc{Gates}{}{}
|
||||
\desc[german]{Gates}{}{}
|
||||
\begin{formula}{gates}
|
||||
\desc{Gates}{}{}
|
||||
\desc[german]{Gates}{}{}
|
||||
@ -40,23 +38,16 @@
|
||||
% \item \gt{bitphaseflip}: $\hat{Y} = \sigma_y = \sigmaymatrix$
|
||||
% \item \gt{phaseflip}: $\hat{Z} = \sigma_z = \sigmazmatrix$ \item \gt{hadamard}: $\hat{H} = \frac{1}{\sqrt{2}}(\hat{X}-\hat{Z}) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
|
||||
% \end{itemize}
|
||||
\Section[
|
||||
\eng{Superconducting qubits}
|
||||
\ger{Supraleitende qubits}
|
||||
]{scq}
|
||||
\Section{scq}
|
||||
\desc{Superconducting qubits}{}{}
|
||||
\desc[german]{Supraleitende qubits}{}{}
|
||||
|
||||
\Subsection[
|
||||
\eng{Building blocks}
|
||||
\ger{Bauelemente}
|
||||
]{elements}
|
||||
\Subsubsection[
|
||||
\eng{Josephson Junction}
|
||||
\ger{Josephson-Kontakt}
|
||||
]{josephson_junction}
|
||||
\begin{ttext}[desc]
|
||||
\eng{When two superconductors are separated by a thin isolator, Cooper pairs can tunnel through the insulator. The Josephson junction is a non-linear inductor.}
|
||||
\ger{Wenn zwei Supraleiter durch einen dünnen Isolator getrennt sind, können Cooper-Paare durch den Isolator tunneln. Der Josephson-Kontakt ist ein nicht-linearer Induktor.}
|
||||
\end{ttext}
|
||||
\Subsection{elements}
|
||||
\desc{Building blocks}{}{}
|
||||
\desc[german]{Bauelemente}{}{}
|
||||
\Subsubsection{josephson_junction}
|
||||
\desc{Josephson Junction}{When two superconductors are separated by a thin isolator, Cooper pairs can tunnel through the insulator. The Josephson junction is a non-linear inductor.}{}
|
||||
\desc[german]{Josephson-Kontakt}{Wenn zwei Supraleiter durch einen dünnen Isolator getrennt sind, können Cooper-Paare durch den Isolator tunneln. Der Josephson-Kontakt ist ein nicht-linearer Induktor.}{}
|
||||
|
||||
\begin{formula}{hamiltonian}
|
||||
\desc{Josephson-Hamiltonian}{}{}
|
||||
@ -78,10 +69,9 @@
|
||||
\eq{\odv{\hat{\delta}}{t}=\frac{1}{i\hbar}[\hat{H},\hat{\delta}] = -\frac{2eU}{i\hbar}[\hat{n},\hat{\delta}] = \frac{1}{\varphi_0} U}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{SQUID}
|
||||
\ger{SQUID}
|
||||
]{squid}
|
||||
\Subsubsection{squid}
|
||||
\desc{SQUID}{}{}
|
||||
\desc[german]{SQUID}{}{}
|
||||
\ctikzsubcircuitdef{squidloop}{n, s, nw, ne, se, sw}{
|
||||
% start at top
|
||||
coordinate(#1-n)
|
||||
@ -107,10 +97,9 @@
|
||||
\eq{\hat{H} &= -E_{\text{J}1} \cos\hat{\phi}_{1} - E_{\text{J}2} \cos\hat{\phi}_{2}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Josephson junction based qubits}
|
||||
\ger{Qubits mit Josephson-Junctions}
|
||||
]{josephson_qubit}
|
||||
\Subsection{josephson_qubit}
|
||||
\desc{Josephson junction based qubits}{}{}
|
||||
\desc[german]{Qubits mit Josephson-Junctions}{}{}
|
||||
|
||||
\begin{formula}{circuit}
|
||||
\desc{General circuit}{}{}
|
||||
@ -194,20 +183,18 @@
|
||||
\end{bigformula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Charge based qubits}
|
||||
\ger{Ladungsbasierte Qubits}
|
||||
]{charge}
|
||||
\Subsection{charge}
|
||||
\desc{Charge based qubits}{}{}
|
||||
\desc[german]{Ladungsbasierte Qubits}{}{}
|
||||
\begin{bigformula}{comparison}
|
||||
\desc{Comparison of charge qubit states}{}{}
|
||||
\desc[german]{Vergleich der Zustände von Ladungsbasierten Qubits}{}{}
|
||||
\fig{img/qubit_transmon.pdf}
|
||||
\end{bigformula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Cooper Pair Box (CPB) qubit}
|
||||
\ger{Cooper Paar Box (QPB) Qubit}
|
||||
]{cpb}
|
||||
\Subsubsection{cpb}
|
||||
\desc{Cooper Pair Box (CPB) qubit}{}{}
|
||||
\desc[german]{Cooper Paar Box (QPB) Qubit}{}{}
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
= voltage bias junction\\= charge qubit?
|
||||
@ -245,10 +232,9 @@
|
||||
&=\sum_n \left[4 E_C (n-n_\text{g})^2 \ket{n}\bra{n} - \frac{E_\text{J}}{2}\ket{n}\bra{n+1}+\ket{n+1}\bra{n}\right] }
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Transmon qubit}
|
||||
\ger{Transmon Qubit}
|
||||
]{transmon}
|
||||
\Subsubsection{transmon}
|
||||
\desc{Transmon qubit}{}{}
|
||||
\desc[german]{Transmon Qubit}{}{}
|
||||
\begin{formula}{circuit}
|
||||
\desc{Transmon qubit}{
|
||||
Josephson junction with a shunt \textbf{capacitance}.
|
||||
@ -279,10 +265,9 @@
|
||||
\eq{\hat{H} &= 4 E_C\hat{n}^2 - E_\text{J} \cos\hat{\phi}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Tunable Transmon qubit}
|
||||
\ger{Tunable Transmon Qubit}
|
||||
]{tunable}
|
||||
\Subsubsection{tunable}
|
||||
\desc{Tunable Transmon qubit}{}{}
|
||||
\desc[german]{Tunable Transmon Qubit}{}{}
|
||||
\begin{formula}{circuit}
|
||||
\desc{Frequency tunable transmon}{By using a \fRef{qc:scq:elements:squid} instead of a \fRef{qc:scq:elements:josephson_junction}, the qubit is frequency tunable through an external field}{}
|
||||
\desc[german]{}{Durch Nutzung eines \fRef{qc:scq:elements:squid} anstatt eines \fRef{qc:scq:elements:josephson_junction}s, ist die Frequenz des Qubits durch ein externes Magnetfeld einstellbar}{}
|
||||
@ -309,19 +294,17 @@
|
||||
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Inductive qubits}
|
||||
\ger{Induktive Qubits}
|
||||
]{inductive}
|
||||
\Subsection{inductive}
|
||||
\desc{Inductive qubits}{}{}
|
||||
\desc[german]{Induktive Qubits}{}{}
|
||||
\begin{bigformula}{comparison}
|
||||
\desc{Comparison of other qubit states}{}{}
|
||||
\desc[german]{Vergleich der Zustände von anderen Qubits}{}{}
|
||||
\fig{img/qubit_flux_onium.pdf}
|
||||
\end{bigformula}
|
||||
\Subsubsection[
|
||||
\eng{Phase qubit}
|
||||
\ger{Phase Qubit}
|
||||
]{phase}
|
||||
\Subsubsection{phase}
|
||||
\desc{Phase qubit}{}{}
|
||||
\desc[german]{Phase Qubit}{}{}
|
||||
\begin{formula}{circuit}
|
||||
\desc{Phase qubit}{}{}
|
||||
\desc[german]{Phase Qubit}{}{}
|
||||
@ -348,10 +331,9 @@
|
||||
\eq{\hat{H} = E_C \hat{n}^2 - E_J \cos \hat{\delta} + E_L(\hat{\delta} - \delta_s)^2}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Flux qubit}
|
||||
\ger{Flux Qubit}
|
||||
]{flux}
|
||||
\Subsubsection{flux}
|
||||
\desc{Flux qubit}{}{}
|
||||
\desc[german]{Flux Qubit}{}{}
|
||||
\begin{formula}{circuit}
|
||||
\desc{Flux qubit / Persistent current qubit}{}{}
|
||||
\desc[german]{Flux Qubit / Persistent current qubit}{}{}
|
||||
@ -384,10 +366,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Fluxonium qubit}
|
||||
\ger{Fluxonium Qubit}
|
||||
]{fluxonium}
|
||||
\Subsubsection{fluxonium}
|
||||
\desc{Fluxonium qubit}{}{}
|
||||
\desc[german]{Fluxonium Qubit}{}{}
|
||||
\begin{formula}{circuit}
|
||||
\desc{Fluxonium qubit}{
|
||||
Josephson junction with a shunt \textbf{inductance}. Instead of having to tunnel, cooper pairs can move to the island via the inductance.
|
||||
@ -418,10 +399,9 @@
|
||||
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Two-level system}
|
||||
\ger{Zwei-Niveau System}
|
||||
]{stuff}
|
||||
\Section{stuff}
|
||||
\desc{Two-level system}{}{}
|
||||
\desc[german]{Zwei-Niveau System}{}{}
|
||||
|
||||
\begin{formula}{resonance_frequency}
|
||||
\desc{Resonance frequency}{}{}
|
||||
@ -444,10 +424,9 @@
|
||||
\end{ttext}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{Noise and decoherence}
|
||||
\ger{Noise und Dekohärenz}
|
||||
]{noise}
|
||||
\Section{noise}
|
||||
\desc{Noise and decoherence}{}{}
|
||||
\desc[german]{Noise und Dekohärenz}{}{}
|
||||
\begin{formula}{long}
|
||||
\desc{Longitudinal relaxation rate}{$\Gamma_{1\downarrow}$: $\ket{1}\rightarrow \ket{0}$ \\ $\Gamma_{1\uparrow}$: $\ket{0}\rightarrow \ket{1}$}{}
|
||||
\desc[german]{Longitudinale Relaxationsrate}{$\Gamma_{1\downarrow}$: $\ket{1}\rightarrow \ket{0}$ \\ $\Gamma_{1\uparrow}$: $\ket{0}\rightarrow \ket{1}$}{}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Section[
|
||||
\eng{Surface-Photovoltage}
|
||||
\ger{Oberflächen-Photospannung}
|
||||
]{spv}
|
||||
\Section{spv}
|
||||
\desc{Surface-Photovoltage}{}{}
|
||||
\desc[german]{Oberflächen-Photospannung}{}{}
|
||||
|
||||
Mechanisms:
|
||||
\begin{formula}{scr}
|
||||
\desc{Space-charge regions}{}{}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\Part[
|
||||
\eng{Statistichal Mechanics}
|
||||
\ger{Statistische Mechanik}
|
||||
]{stat}
|
||||
\Part{stat}
|
||||
\desc{Statistichal Mechanics}{}{}
|
||||
\desc[german]{Statistische Mechanik}{}{}
|
||||
|
||||
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
@ -20,10 +20,9 @@
|
||||
\eq{\pdv{\rho}{t} = - \sum_{i=1}^{N} \left(\pdv{\rho}{q_i} \pdv{H}{p_i} - \pdv{\rho}{p_i} \pdv{H}{q_i} \right) = \{H, \rho\}}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{Entropy}
|
||||
\ger{Entropie}
|
||||
]{entropy}
|
||||
\Section{entropy}
|
||||
\desc{Entropy}{}{}
|
||||
\desc[german]{Entropie}{}{}
|
||||
|
||||
\begin{formula}{properties}
|
||||
\desc{Positive-definite and additive}{}{}
|
||||
@ -64,10 +63,9 @@
|
||||
\eq{p = T \pdv{S}{V}_E}
|
||||
\end{formula}
|
||||
|
||||
\Part[
|
||||
\eng{Thermodynamics}
|
||||
\ger{Thermodynamik}
|
||||
]{td}
|
||||
\Part{td}
|
||||
\desc{Thermodynamics}{}{}
|
||||
\desc[german]{Thermodynamik}{}{}
|
||||
|
||||
\begin{formula}{therm_wavelength}
|
||||
\desc{Thermal wavelength}{}{}
|
||||
@ -75,10 +73,9 @@
|
||||
\eq{\lambda = \frac{\hbar}{\sqrt{2\pi m \kB T}}}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{Processes}
|
||||
\ger{Prozesse}
|
||||
]{process}
|
||||
\Section{process}
|
||||
\desc{Processes}{}{}
|
||||
\desc[german]{Prozesse}{}{}
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
@ -106,10 +103,9 @@
|
||||
}
|
||||
\end{ttext}
|
||||
|
||||
\Subsection[
|
||||
\eng{Irreversible gas expansion (Gay-Lussac experiment)}
|
||||
\ger{Irreversible Gasexpansion (Gay-Lussac-Versuch)}
|
||||
]{gay}
|
||||
\Subsection{gay}
|
||||
\desc{Irreversible gas expansion (Gay-Lussac experiment)}{}{}
|
||||
\desc[german]{Irreversible Gasexpansion (Gay-Lussac-Versuch)}{}{}
|
||||
|
||||
\begin{bigformula}{experiment}
|
||||
\desc{Gay-Lussac experiment}{}{}
|
||||
@ -151,10 +147,9 @@
|
||||
\TODO{Joule-Thompson Prozess}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Phase transitions}
|
||||
\ger{Phasenübergänge}
|
||||
]{phases}
|
||||
\Section{phases}
|
||||
\desc{Phase transitions}{}{}
|
||||
\desc[german]{Phasenübergänge}{}{}
|
||||
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
@ -189,10 +184,9 @@
|
||||
\eq{f = c - p + 2}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Osmosis}
|
||||
\ger{Osmose}
|
||||
]{osmosis}
|
||||
\Subsubsection{osmosis}
|
||||
\desc{Osmosis}{}{}
|
||||
\desc[german]{Osmose}{}{}
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
Osmosis is the spontaneous net movement or diffusion of solvent molecules
|
||||
@ -215,10 +209,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Material properties}
|
||||
\ger{Materialeigenschaften}
|
||||
]{props}
|
||||
\Subsection{props}
|
||||
\desc{Material properties}{}{}
|
||||
\desc[german]{Materialeigenschaften}{}{}
|
||||
\begin{formula}{heat_capacity}
|
||||
\desc{Heat capacity}{}{\QtyRef{heat}}
|
||||
\desc[german]{Wärmekapazität}{}{}
|
||||
@ -269,15 +262,13 @@
|
||||
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Laws of thermodynamics}
|
||||
\ger{Hauptsätze der Thermodynamik}
|
||||
]{laws}
|
||||
\Section{laws}
|
||||
\desc{Laws of thermodynamics}{}{}
|
||||
\desc[german]{Hauptsätze der Thermodynamik}{}{}
|
||||
|
||||
\Subsection[
|
||||
\eng{Zeroeth law}
|
||||
\ger{Nullter Hauptsatz}
|
||||
]{law0}
|
||||
\Subsection{law0}
|
||||
\desc{Zeroeth law}{}{}
|
||||
\desc[german]{Nullter Hauptsatz}{}{}
|
||||
\begin{ttext}
|
||||
\eng{If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.}
|
||||
\ger{Wenn sich zwei Siesteme jeweils im thermischen Gleichgewicht mit einem dritten befinden, befinden sie sich auch untereinander im thermischen Gleichgewicht.}
|
||||
@ -291,10 +282,9 @@
|
||||
A \ggwarrow C \quad\wedge\quad B \ggwarrow C \quad\Rightarrow\quad A \ggwarrow B
|
||||
\end{equation}
|
||||
|
||||
\Subsection[
|
||||
\eng{First law}
|
||||
\ger{Erster Hauptsatz}
|
||||
]{law1}
|
||||
\Subsection{law1}
|
||||
\desc{First law}{}{}
|
||||
\desc[german]{Erster Hauptsatz}{}{}
|
||||
\begin{ttext}
|
||||
\eng{In a process without transfer of matter, the change in internal energy, $\Delta U$, of a thermodynamic system is equal to the energy gained as heat, $Q$, less the thermodynamic work, W, done by the system on its surroundings.}
|
||||
\ger{In einem abgeschlossenem System ist die Änderung der inneren Energie $U$ gleich der gewonnenen Wärme $Q$ minus der vom System an der Umgebung verrichteten Arbeit $W$.}
|
||||
@ -310,10 +300,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Second law}
|
||||
\ger{Zweiter Hauptsatz}
|
||||
]{law2}
|
||||
\Subsection{law2}
|
||||
\desc{Second law}{}{}
|
||||
\desc[german]{Zweiter Hauptsatz}{}{}
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
\textbf{Clausius}: Heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at the same time.\\
|
||||
@ -324,10 +313,9 @@
|
||||
\textbf{Kelvin}: Es ist unmöglich, eine periodisch arbeitende Maschine zu konstruieren, die weiter nichts bewirkt als Hebung einer Last und Abkühlung eines Wärmereservoirs.
|
||||
}
|
||||
\end{ttext}
|
||||
\Subsection[
|
||||
\eng{Third law}
|
||||
\ger{Dritter Hauptsatz}
|
||||
]{law3}
|
||||
\Subsection{law3}
|
||||
\desc{Third law}{}{}
|
||||
\desc[german]{Dritter Hauptsatz}{}{}
|
||||
\begin{ttext}
|
||||
\eng{It is impussible to cool a system to absolute zero.}
|
||||
\ger{Es ist unmöglich, ein System bis zum absoluten Nullpunkt abzukühlen.}
|
||||
@ -343,10 +331,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{Ensembles}
|
||||
\ger{Ensembles}
|
||||
]{ensembles}
|
||||
\Section{ensembles}
|
||||
\desc{Ensembles}{}{}
|
||||
\desc[german]{Ensembles}{}{}
|
||||
\Eng[const_variables]{Constant variables}
|
||||
\Ger[const_variables]{Konstante Variablen}
|
||||
|
||||
@ -425,10 +412,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Potentials}
|
||||
\ger{Potentiale}
|
||||
]{pots}
|
||||
\Subsection{pots}
|
||||
\desc{Potentials}{}{}
|
||||
\desc[german]{Potentiale}{}{}
|
||||
\begin{formula}{internal_energy}
|
||||
\desc{Internal energy}{}{}
|
||||
\desc[german]{Innere Energie}{}{}
|
||||
@ -484,10 +470,9 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{Ideal gas}
|
||||
\ger{Ideales Gas}
|
||||
]{id_gas}
|
||||
\Section{id_gas}
|
||||
\desc{Ideal gas}{}{}
|
||||
\desc[german]{Ideales Gas}{}{}
|
||||
\begin{ttext}
|
||||
\eng{The ideal gas consists of non-interacting, undifferentiable particles.}
|
||||
\ger{Das ideale Gas besteht aus nicht-wechselwirkenden, ununterscheidbaren Teilchen.}
|
||||
@ -550,10 +535,9 @@
|
||||
\eq{\braket{v^2} = \int_0^\infty \d v\,v^2 w(v) = \frac{3\kB T}{m}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Molecule gas}
|
||||
\ger{Molekülgas}
|
||||
]{molecule_gas}
|
||||
\Subsubsection{molecule_gas}
|
||||
\desc{Molecule gas}{}{}
|
||||
\desc[german]{Molekülgas}{}{}
|
||||
|
||||
\begin{formula}{desc}
|
||||
\desc{Molecule gas}{2 particles of mass $M$ connected by a ``spring'' with distance $L$}{}
|
||||
@ -592,15 +576,13 @@
|
||||
\TODO{Diagram für verschiedene Temperaturen, Weiler Skript p.83}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Real gas}
|
||||
\ger{Reales Gas}
|
||||
]{real_gas}
|
||||
\Section{real_gas}
|
||||
\desc{Real gas}{}{}
|
||||
\desc[german]{Reales Gas}{}{}
|
||||
|
||||
\Subsection[
|
||||
\eng{Virial expansion}
|
||||
\ger{Virialentwicklung}
|
||||
]{virial}
|
||||
\Subsection{virial}
|
||||
\desc{Virial expansion}{}{}
|
||||
\desc[german]{Virialentwicklung}{}{}
|
||||
\begin{ttext}
|
||||
\eng{Expansion of the pressure $p$ in a power series of the density $\rho$.}
|
||||
\ger{Entwicklung desw Drucks $p$ in eine Potenzreihe der Dichte $\rho$.}
|
||||
@ -633,10 +615,9 @@
|
||||
\eq{V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6}\right]}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Van der Waals equation}
|
||||
\ger{Van der Waals Gleichung}
|
||||
]{vdw}
|
||||
\Subsection{vdw}
|
||||
\desc{Van der Waals equation}{}{}
|
||||
\desc[german]{Van der Waals Gleichung}{}{}
|
||||
\begin{ttext}
|
||||
\eng{Assumes a hard-core potential with a weak attraction.}
|
||||
\ger{Annahme eines Harte-Kugeln Potentials mit einer schwachen Anziehung}
|
||||
@ -654,10 +635,9 @@
|
||||
\TODO{sometimes N is included in a, b}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Ideal quantum gas}
|
||||
\ger{Ideales Quantengas}
|
||||
]{id_qgas}
|
||||
\Section{id_qgas}
|
||||
\desc{Ideal quantum gas}{}{}
|
||||
\desc[german]{Ideales Quantengas}{}{}
|
||||
\def\bosfer{$\pm$: {$\text{bos} \atop \text{fer}$}}
|
||||
|
||||
\begin{formula}{fugacity}
|
||||
@ -746,10 +726,9 @@
|
||||
\eq{\left. \begin{array}{l}g_\nu(z)\\f_\nu(z)\end{array}\right\} \coloneq \frac{1}{\Gamma(\nu)} \int_0^\infty \d x\, \frac{x^{\nu-1}}{\e^x z^{-1} \mp 1}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Bosons}
|
||||
\ger{Bosonen}
|
||||
]{bos}
|
||||
\Subsection{bos}
|
||||
\desc{Bosons}{}{}
|
||||
\desc[german]{Bosonen}{}{}
|
||||
\begin{formula}{partition-sum}
|
||||
\desc{Partition sum}{}{$p \in\N_0$}
|
||||
\desc[german]{Zustandssumme}{}{$p \in\N_0$}
|
||||
@ -762,10 +741,9 @@
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Fermions}
|
||||
\ger{Fermionen}
|
||||
]{fer}
|
||||
\Subsection{fer}
|
||||
\desc{Fermions}{}{}
|
||||
\desc[german]{Fermionen}{}{}
|
||||
\begin{formula}{partition_sum}
|
||||
\desc{Partition sum}{}{$p = 0,\,1$}
|
||||
\desc[german]{Zustandssumme}{}{$p = 0,\,1$}
|
||||
@ -815,10 +793,9 @@
|
||||
\eq{v = \frac{N}{V} = \frac{g}{\lambda^3}f_{3/2}(z)}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Strong degeneracy}
|
||||
\ger{Starke Entartung}
|
||||
]{degenerate}
|
||||
\Subsubsection{degenerate}
|
||||
\desc{Strong degeneracy}{}{}
|
||||
\desc[german]{Starke Entartung}{}{}
|
||||
\eng[low_temps]{for low temperatures $T \ll T_\text{F}$}
|
||||
\ger[low_temps]{für geringe Temperaturen $T\ll T_\text{F}$}
|
||||
|
||||
|
30
src/test.tex
30
src/test.tex
@ -103,3 +103,33 @@ Link to defined quantity: \qtyRef{mass}
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
||||
\newpage
|
||||
\Section{layout}
|
||||
\desc{Layout Test}{}{}
|
||||
\desc[german]{}{}{}
|
||||
|
||||
\begin{formula}{tt1}
|
||||
\desc{Formula}{Desc}{Defs}
|
||||
\eq{E=mc^2}
|
||||
\end{formula}
|
||||
|
||||
\begin{bigformula}{tt2}
|
||||
\desc{Big formula}{Desc}{Defs}
|
||||
\eq{E=mc^3}
|
||||
\end{bigformula}
|
||||
|
||||
|
||||
\begin{formulagroup}{tt3}
|
||||
\desc{Formula group}{Desc}{Defs}
|
||||
\begin{formula}{tt1}
|
||||
\desc{Formula}{Desc}{Defs}
|
||||
\eq{E=mc^2}
|
||||
\end{formula}
|
||||
|
||||
\begin{bigformula}{tt2}
|
||||
\desc{Big formula}{Desc}{Defs}
|
||||
\eq{E=mc^3}
|
||||
\end{bigformula}
|
||||
|
||||
\end{formulagroup}
|
||||
|
@ -29,8 +29,8 @@
|
||||
%
|
||||
% DISTRIBUTION
|
||||
%
|
||||
\def\distrightwidth{0.45\textwidth}
|
||||
\def\distleftwidth{0.45\textwidth}
|
||||
\def\distrightwidth{0.45}
|
||||
\def\distleftwidth{0.45}
|
||||
|
||||
% Table for distributions
|
||||
% create entries for parameters using \disteq
|
||||
@ -57,16 +57,14 @@
|
||||
& ##2 \\ \hline
|
||||
}
|
||||
\hfill
|
||||
\begin{minipage}{\distrightwidth}
|
||||
\begingroup
|
||||
\setlength{\tabcolsep}{0.9em} % horizontal
|
||||
\renewcommand{\arraystretch}{2} % vertical
|
||||
\begin{tabular}{|l|>{$\displaystyle}c<{$}|}
|
||||
\hline
|
||||
\begingroup
|
||||
\setlength{\tabcolsep}{0.9em} % horizontal
|
||||
\renewcommand{\arraystretch}{2} % vertical
|
||||
\begin{tabular}{|l|>{$\displaystyle}c<{$}|}
|
||||
\hline
|
||||
}{
|
||||
\end{tabular}
|
||||
\endgroup
|
||||
\end{minipage}
|
||||
\end{tabular}
|
||||
\endgroup
|
||||
}
|
||||
|
||||
% A 2 column table in a minipage
|
||||
|
Loading…
x
Reference in New Issue
Block a user