This commit is contained in:
matthias@quintern.xyz 2025-03-21 18:15:11 +01:00
parent 847ad7e93b
commit 2674545117
29 changed files with 1015 additions and 488 deletions

View File

@ -71,15 +71,6 @@
}
\end{formula}
\begin{formula}{covalent_bond}
\desc{Covalent bond}{}{}
\desc[german]{Kolvalente Bindung}{}{}
\ttxt{
\eng{Bonds that involve sharing of electrons to form electron pairs between atoms.}
\ger{Bindungen zwischen Atomen die durch geteilte Elektronen, welche Elektronenpaare bilden, gebildet werden.}
}
\end{formula}
\begin{formula}{grotthuss}
\desc{Grotthuß-mechanism}{}{}
\desc[german]{Grotthuß-Mechanismus}{}{}

View File

@ -71,21 +71,40 @@
\ger{Boltzmann-Transport}
]{boltzmann}
\begin{ttext}
\eng{Semiclassical description using a probability distribution (\fRef{stat:todo:fermi_dirac}) to describe the particles.}
\ger{Semiklassische Beschreibung, benutzt eine Wahrscheinlichkeitsverteilung (\fRef{stat:todo:fermi_dirac}).}
\eng{Semiclassical description using a probability distribution (\fRef{cm:sc:fermi_dirac}) to describe the particles.}
\ger{Semiklassische Beschreibung, benutzt eine Wahrscheinlichkeitsverteilung (\fRef{cm:sc:fermi_dirac}).}
\end{ttext}
\begin{formula}{boltzmann_transport}
\desc{Boltzmann Transport equation}{for charge transport}{$f$ \fRef{stat:todo:fermi-dirac}}
\desc{Boltzmann Transport equation}{for charge transport}{$f$ \fRef{cm:sc:fermi_dirac}}
\desc[german]{Boltzmann-Transportgleichung}{für Ladungstransport}{}
\eq{
\pdv{f(\vec{r},\vec{k},t)}{t} = -\vec{v} \cdot \Grad_{\vec{r}} f - \frac{e}{\hbar}(\vec{\mathcal{E}} + \vec{v} \times \vec{B}) \cdot \Grad_{\vec{k}} f + \left(\pdv{f(\vec{r},\vec{k},t)}{t}\right)_{\text{\GT{scatter}}}
}
\end{formula}
\Subsection[
\eng{Magneto-transport}
\ger{Magnetotransport}
]{mag}
\begin{formula}{cyclotron_frequency}
\desc{Cyclotron frequency}{Moving charge carriers move in cyclic orbits under applied magnetic field}{$q$ \qtyRef{charge}, \QtyRef{magnetic_flux_density}, m \qtyRef[effective]{mass}}
\desc[german]{Zyklotronfrequenz}{Ladungstraäger bewegen sich in einem Magnetfeld auf einer Kreisbahn}{}
\eq{w_\txc = \frac{qB}{m}}
\end{formula}
\TODO{TODO}
% \begin{formula}{cyclotron_resonance}
% \desc{}{}{}
% \desc[german]{}{}{}
% \eq{}
% \end{formula}
\TODO{move hall here}
\Subsection[
\eng{misc}
\ger{misc}
]{misc}
]{misc}
\begin{formula}{tsu_esaki}
\desc{Tsu-Esaki tunneling current}{Describes the current $I_{\txL \leftrightarrow \txR}$ through a barrier}{$\mu_i$ \qtyRef{chemical_potential} at left/right side, $U_i$ voltage on left/right side. Electrons occupy region between $U_i$ and $\mu_i$}
\desc[german]{Tsu-Esaki Tunnelstrom}{Beschreibt den Strom $I_{\txL \leftrightarrow \txR}$ durch eine Barriere }{$\mu_i$ \qtyRef{chemical_potential} links/rechts, $U_i$ Spannung links/rechts. Elektronen besetzen Bereich zwischen $U_i$ und $\mu_i$}
@ -94,6 +113,12 @@
}
\end{formula}
\begin{formula}{diffusion}
\desc{Diffusion current}{Equilibration of concentration gradients}{\QtyRef{diffusion_coefficient}, \ConstRef{charge}, $n,p$ \qtyRef{charge_carrier_density}}
\desc[german]{Diffunsstrom}{Ausgleich von Konzentrationsgradienten}{}
\eq{\vec{j}_\text{diff} = -\abs{e} D_n \left(-\Grad n\right) + \abs{e} D_p \left(-\Grad p\right)}
\end{formula}
\begin{formula}{continuity}
\desc{Charge continuity equation}{Electric charge can only change by the amount of electric current}{\QtyRef{charge_density}, \QtyRef{current_density}}
\desc[german]{Kontinuitätsgleichung der Ladung}{Elektrische Ladung kann sich nur durch die Stärke des Stromes ändern}{}

View File

@ -10,13 +10,84 @@
\quantity{D}{\per\m^3}{s}
\eq{D(E) = \frac{1}{V}\sum_{i=1}^{N} \delta(E-E(\vec{k_i}))}
\end{formula}
\begin{formula}{dos_parabolic}
\desc{Density of states for parabolic dispersion}{Applies to \fRef{cm:egas}}{}
\desc[german]{Zustandsdichte für parabolische Dispersion}{Bei \fRef{cm:egas}}{}
\eq{
D_1(E) &= \frac{1}{2\sqrt{c_k(E-E_0)}} && (\text{1D}) \\
D_2(E) &= \frac{\pi}{2c_k} && (\text{2D}) \\
D_3(E) &= \pi \sqrt{\frac{E-E_0}{c_k^3}}&& (\text{3D})
}
\Section[
\eng{Bonds}
\ger{Bindungen}
]{bond}
\begin{formula}{metallic}
\desc{Metallic bond}{}{}
\desc[german]{Metallbindung}{}{}
\ttxt{\eng{
\begin{itemize}
\item Delocalized electrons form a cloud
\item High \qtyRef[electrical]{conductivity} and \qtyRef[thermal]{thermal_conductivity} conductivity
\item No internal electric field
\end{itemize}
}\ger{
\begin{itemize}
\item Elektronen delokalisiert und bilden Wolke
\item Hohe \qtyRef[elektrische]{conductivity} und \qtyRef[thermische]{thermal_conductivity} Leitfähigkeit
\item Kein internes elektrisches Feld
\end{itemize}
}}
\end{formula}
\begin{formula}{covalent}
\desc{Covalent bond}{}{}
\desc[german]{Kolvalente Bindung}{}{}
\ttxt{\eng{
\begin{itemize}
\item \fRef{cm:band:hybrid_orbitals} of shared electrons
\item Highly directional
\item Varying \qtyRef[electrical]{conductivity} and high \qtyRef[thermal]{thermal_conductivity} conductivity
\end{itemize}
}\ger{
\begin{itemize}
\item \fRef{cm:band:hybrid_orbitals} geteilter Elektronen
\item Richtungsabhängige Bindung
\item Verschiedene \qtyRef[elektrische]{conductivity} und hohe \qtyRef[thermische]{thermal_conductivity} Leitfähigkeiten
\end{itemize}
}}
\end{formula}
\begin{formula}{ionic}
\desc{Ionic bond}{}{}
\desc[german]{Ionenbindung}{}{}
\ttxt{\eng{
\begin{itemize}
\item Charge transfer from anion to cation
\item Non.directional bonding
\item Strong bond
\item Low \qtyRef[electrical]{conductivity} and high \qtyRef[thermal]{thermal_conductivity} conductivity
\item Always in combination with a \fRef{:::covalent}
\end{itemize}
}\ger{
\begin{itemize}
\item Ladungstransfer von Anion zu Kation
\item Richtungsunabängig
\item Starke Bindung
\item Geringe \qtyRef[elektrische]{conductivity} und hohe \qtyRef[thermische]{thermal_conductivity} Leitfähigkeit
\item Immer in Kombination mit einer \fRef[kovalenten Bindung]{:::covalent}
\end{itemize}
}}
\end{formula}
\begin{formula}{van-der-waals}
\desc{Van der Waals bond}{}{}
\desc[german]{Van-der-Waals Bindung}{}{}
\ttxt{\eng{
\begin{itemize}
\item Dipole-dipole interaction from local charge fluctuations
\item Weak bond
\end{itemize}
}\ger{
\begin{itemize}
\item Dipol-Dipol Wechselwirkung durch lokale Ladungsfluktuationen
\item Schwache Bindung
\end{itemize}
}}
\end{formula}

View File

@ -1,203 +1,311 @@
\Section[
\eng{Crystals}
\ger{Kristalle}
\eng{Crystals}
\ger{Kristalle}
]{crystal}
\Subsection[
\eng{Bravais lattice}
\ger{Bravais-Gitter}
\eng{Bravais lattice}
\ger{Bravais-Gitter}
]{bravais}
\Eng[lattice_system]{Lattice system}
\Ger[lattice_system]{Gittersystem}
\Eng[crystal_family]{Crystal system}
\Ger[crystal_family]{Kristall-system}
\Eng[point_group]{Point group}
\Ger[point_group]{Punktgruppe}
\eng[bravais_lattices]{Bravais lattices}
\ger[bravais_lattices]{Bravais Gitter}
\newcommand\bvimg[1]{\begin{center}\includegraphics[width=0.1\textwidth]{img_static/bravais/#1.pdf}\end{center}}
\renewcommand\tabularxcolumn[1]{m{#1}}
\newcolumntype{Z}{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}X}
\Eng[lattice_system]{Lattice system}
\Ger[lattice_system]{Gittersystem}
\Eng[crystal_family]{Crystal system}
\Ger[crystal_family]{Kristall-system}
\Eng[point_group]{Point group}
\Ger[point_group]{Punktgruppe}
\eng[bravais_lattices]{Bravais lattices}
\ger[bravais_lattices]{Bravais Gitter}
\begin{bigformula}{2d}
\desc{2D}{In 2D, there are 5 different Bravais lattices}{}
\desc[german]{2D}{In 2D gibt es 5 verschiedene Bravais-Gitter}{}
\begin{adjustbox}{width=\textwidth}
\begin{tabularx}{\textwidth}{||Z|c|Z|Z||}
\hline
\multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{2}{c||}{5 \gt{bravais_lattices}} \\ \cline{3-4}
& & \GT{primitive} (p) & \GT{centered} (c) \\ \hline
\GT{monoclinic} (m) & $\text{C}_\text{2}$ & \bvimg{mp} & \\ \hline
\GT{orthorhombic} (o) & $\text{D}_\text{2}$ & \bvimg{op} & \bvimg{oc} \\ \hline
\GT{tetragonal} (t) & $\text{D}_\text{4}$ & \bvimg{tp} & \\ \hline
\GT{hexagonal} (h) & $\text{D}_\text{6}$ & \bvimg{hp} & \\ \hline
\end{tabularx}
\end{adjustbox}
\end{bigformula}
\newcommand\bvimg[1]{\begin{center}\includegraphics[width=0.1\textwidth]{img_static/bravais/#1.pdf}\end{center}}
\renewcommand\tabularxcolumn[1]{m{#1}}
\newcolumntype{Z}{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}X}
\begin{bigformula}{3d}
\desc{3D}{In 3D, there are 14 different Bravais lattices}{}
\desc[german]{3D}{In 3D gibt es 14 verschiedene Bravais-Gitter}{}
% \newcolumntype{g}{>{\columncolor[]{0.8}}}
\begin{adjustbox}{width=\textwidth}
\begin{tabularx}{\textwidth}{||Z|Z|c|Z|Z|Z|Z||}
\hline
\multirow{2}{*}{\GT{crystal_family}} & \multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{4}{c||}{14 \gt{bravais_lattices}} \\ \cline{4-7}
& & & \GT{primitive} (P) & \GT{base_centered} (S) & \GT{body_centered} (I) & \GT{face_centered} (F) \\ \hline
\multicolumn{2}{||c|}{\GT{triclinic} (a)} & $\text{C}_\text{i}$ & \bvimg{tP} & & & \\ \hline
\multicolumn{2}{||c|}{\GT{monoclinic} (m)} & $\text{C}_\text{2h}$ & \bvimg{mP} & \bvimg{mS} & & \\ \hline
\multicolumn{2}{||c|}{\GT{orthorhombic} (o)} & $\text{D}_\text{2h}$ & \bvimg{oP} & \bvimg{oS} & \bvimg{oI} & \bvimg{oF} \\ \hline
\multicolumn{2}{||c|}{\GT{tetragonal} (t)} & $\text{D}_\text{4h}$ & \bvimg{tP} & & \bvimg{tI} & \\ \hline
\multirow{2}{*}{\GT{hexagonal} (h)} & \GT{rhombohedral} & $\text{D}_\text{3d}$ & \bvimg{hR} & & & \\ \cline{2-7}
& \GT{hexagonal} & $\text{D}_\text{6h}$ & \bvimg{hP} & & & \\ \hline
\multicolumn{2}{||c|}{\GT{cubic} (c)} & $\text{O}_\text{h}$ & \bvimg{cP} & & \bvimg{cI} & \bvimg{cF} \\ \hline
\end{tabularx}
\end{adjustbox}
\end{bigformula}
\begin{bigformula}{2d}
\desc{2D}{In 2D, there are 5 different Bravais lattices}{}
\desc[german]{2D}{In 2D gibt es 5 verschiedene Bravais-Gitter}{}
\begin{adjustbox}{width=\textwidth}
\begin{tabularx}{\textwidth}{||Z|c|Z|Z||}
\hline
\multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{2}{c||}{5 \gt{bravais_lattices}} \\ \cline{3-4}
& & \GT{primitive} (p) & \GT{centered} (c) \\ \hline
\GT{monoclinic} (m) & $\text{C}_\text{2}$ & \bvimg{mp} & \\ \hline
\GT{orthorhombic} (o) & $\text{D}_\text{2}$ & \bvimg{op} & \bvimg{oc} \\ \hline
\GT{tetragonal} (t) & $\text{D}_\text{4}$ & \bvimg{tp} & \\ \hline
\GT{hexagonal} (h) & $\text{D}_\text{6}$ & \bvimg{hp} & \\ \hline
\end{tabularx}
\end{adjustbox}
\end{bigformula}
\begin{formula}{lattice_constant}
\desc{Lattice constant}{Parameter (length or angle) describing the smallest unit cell}{}
\desc[german]{Gitterkonstante}{Parameter (Länge oder Winkel) der die Einheitszelle beschreibt}{}
\quantity{a}{}{s}
\end{formula}
\begin{bigformula}{3d}
\desc{3D}{In 3D, there are 14 different Bravais lattices}{}
\desc[german]{3D}{In 3D gibt es 14 verschiedene Bravais-Gitter}{}
% \newcolumntype{g}{>{\columncolor[]{0.8}}}
\begin{adjustbox}{width=\textwidth}
\begin{tabularx}{\textwidth}{||Z|Z|c|Z|Z|Z|Z||}
\hline
\multirow{2}{*}{\GT{crystal_family}} & \multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{4}{c||}{14 \gt{bravais_lattices}} \\ \cline{4-7}
& & & \GT{primitive} (P) & \GT{base_centered} (S) & \GT{body_centered} (I) & \GT{face_centered} (F) \\ \hline
\multicolumn{2}{||c|}{\GT{triclinic} (a)} & $\text{C}_\text{i}$ & \bvimg{tP} & & & \\ \hline
\multicolumn{2}{||c|}{\GT{monoclinic} (m)} & $\text{C}_\text{2h}$ & \bvimg{mP} & \bvimg{mS} & & \\ \hline
\multicolumn{2}{||c|}{\GT{orthorhombic} (o)} & $\text{D}_\text{2h}$ & \bvimg{oP} & \bvimg{oS} & \bvimg{oI} & \bvimg{oF} \\ \hline
\multicolumn{2}{||c|}{\GT{tetragonal} (t)} & $\text{D}_\text{4h}$ & \bvimg{tP} & & \bvimg{tI} & \\ \hline
\multirow{2}{*}{\GT{hexagonal} (h)} & \GT{rhombohedral} & $\text{D}_\text{3d}$ & \bvimg{hR} & & & \\ \cline{2-7}
& \GT{hexagonal} & $\text{D}_\text{6h}$ & \bvimg{hP} & & & \\ \hline
\multicolumn{2}{||c|}{\GT{cubic} (c)} & $\text{O}_\text{h}$ & \bvimg{cP} & & \bvimg{cI} & \bvimg{cF} \\ \hline
\end{tabularx}
\end{adjustbox}
\end{bigformula}
\begin{formula}{lattice_vector}
\desc{Lattice vector}{}{$n_i \in \Z$}
\desc[german]{Gittervektor}{}{}
\quantity{\vec{R}}{}{\angstrom}
\eq{\vec{R} = n_1 \vec{a_1} + n_2 \vec{a_2} + n_3 \vec{a_3}}
\end{formula}
\begin{formula}{lattice_constant}
\desc{Lattice constant}{Parameter (length or angle) describing the smallest unit cell}{}
\desc[german]{Gitterkonstante}{Parameter (Länge oder Winkel) der die Einheitszelle beschreibt}{}
\quantity{a}{}{s}
\end{formula}
\begin{formula}{primitive_unit_cell}
\desc{Primitve unit cell}{}{}
\desc[german]{Primitive Einheitszelle}{}{}
\ttxt{\eng{Unit cell containing exactly one lattice point}\ger{Einheitszelle die genau einen Gitterpunkt enthält}}
\end{formula}
\begin{formula}{lattice_vector}
\desc{Lattice vector}{}{$n_i \in \Z$}
\desc[german]{Gittervektor}{}{}
\quantity{\vec{R}}{}{\angstrom}
\eq{\vec{R} = n_1 \vec{a_1} + n_2 \vec{a_2} + n_3 \vec{a_3}}
\end{formula}
\Eng[miller-point]{Point}
\Ger[miller-point]{Punkt}
\Eng[miller-direction]{Direction}
\Ger[miller-direction]{Richtung}
\Eng[miller-direction-family]{Family of directions}
\Ger[miller-direction-family]{Familie von Richtungen}
\Eng[miller-plane]{Plane}
\Ger[miller-plane]{Ebene}
\Eng[miller-plane-family]{Family of planes}
\Ger[miller-plane-family]{Familie von Ebenen}
\begin{formula}{miller}
\desc{Miller indices}{}{
Miller planes: $(hkl)$, $\frac{1}{h}$/$\frac{1}{k}$/$\frac{1}{l}$ give intersection with $x$/$y$/$z$ axes\\
Miller family: planes that are equivalent due to crystal symmetry
}
\desc[german]{Millersche Indizes}{}{
Miller-Ebenen: $(hkl)$, $\frac{1}{h}$/$\frac{1}{k}$/$\frac{1}{l}$ geben die Schnittpunkte mit den $x$/$y$/$z$-Achsen\\
Miller-Familien: Ebenen, die durch Kristallsymmetrie äquivalent sind
}
\centering
\newFormulaEntry
\begin{tabularx}{\textwidth}{clcl}
$(h,k,l)$ & \GT{miller-point} & & \\
$hkl$ & \GT{miller-direction} & $\langle hkl \rangle$ & \GT{miller-direction-family} \\
$(hkl)$ & \GT{miller-plane} & $\{hkl\}$ & \GT{miller-plane-family}
\end{tabularx}
\pgfmathsetmacro{\rectX}{2}
\pgfmathsetmacro{\rectZ}{2}
\newFormulaEntry
\begin{tikzpicture}[3d view={100}{20},perspective={p={(-55,0,0)},q={(0,25,0)},r={(0,0,-30)}}]
% <100> direction family
\begin{scope}
\drawRectCS{1.4*\rectX}{1.4*\rectZ}
\setRectPoints{R1}{(0.5*\rectX,0.5*\rectX,0)}{\rectX}{\rectX}
\setRectPoints{R2}{(0.5*\rectX,0.5*\rectX,\rectZ)}{\rectX}{\rectX}
\drawRectBack{R1}
\drawRectConnectionsBack{R1}{R2}
\draw[miller dir] (0,0,0) -- ++( \rectX,0,0) node[anchor=east] {$[100]$};
\draw[miller dir] (0,0,0) -- ++(-\rectX,0,0) node[anchor=west] {$[\bar{1}00]$};
\draw[miller dir] (0,0,0) -- ++(0, \rectX,0) node[anchor=south] {$[010]$};
\draw[miller dir] (0,0,0) -- ++(0,-\rectX,0) node[anchor=south] {$[0\bar{1}0]$};
\draw[miller dir] (0,0,0) -- ++(0,0, \rectX) node[anchor=east] {$[001]$};
\draw[miller dir] (0,0,0) -- ++(0,0,-\rectX) node[anchor=west] {$[00\bar{1}]$};
\drawRectFront{R1}
\drawRectBack{R2}
\drawRectConnectionsFront{R1}{R2}
\drawRectFront{R2}
\node at (1.5*\rectX,1.5*\rectX, 0) {$\langle100\rangle$};
\end{scope}
\pgfmathsetmacro{\rectDistance}{4.5}
% {100} plane family
\begin{scope}[shift={(0,\rectDistance,0)}]
\drawRectCS{1.4*\rectX}{1.4*\rectZ}
\setRectPoints{R1}{(0.5*\rectX,0.5*\rectX,0)}{\rectX}{\rectX}
\setRectPoints{R2}{(0.5*\rectX,0.5*\rectX,\rectZ)}{\rectX}{\rectX}
\drawRectBack{R1}
\drawRectConnectionsBack{R1}{R2}
\drawRectFront{R1}
\drawRectBack{R2}
\drawRectConnectionsFront{R1}{R2}
\drawRectFront{R2}
\fill[miller plane] (R1-C) -- (R1-D) node[anchor=north,midway] {$(100)$} -- (R2-D) -- (R2-C) -- cycle;
\fill[miller plane] (R1-A) -- (R1-D) node[anchor=west,midway] {$(010)$} -- (R2-D) -- (R2-A) -- cycle node[anchor=north east] {$(010)$};
\fill[miller plane] (R2-A) -- (R2-B) node[midway,anchor=south] {$(001)$} -- (R2-C) -- (R2-D) -- cycle;
\node at (1.5*\rectX,1.5*\rectX, 0) {$\{100\}$};
\end{scope}
\end{tikzpicture}
% describe how to construct miller planes
\end{formula}
\begin{formula}{primitive_unit_cell}
\desc{Primitve unit cell}{}{}
\desc[german]{Primitive Einheitszelle}{}{}
\ttxt{\eng{Unit cell containing exactly one lattice point}\ger{Einheitszelle die genau einen Gitterpunkt enthält}}
\end{formula}
\begin{formula}{miller}
\desc{Miller index}{}{Miller family: planes that are equivalent due to crystal symmetry}
\desc[german]{Millersche Indizes}{}{}
\eq{
(hkl) & \text{\GT{plane}}\\
[hkl] & \text{\GT{direction}}\\
\{hkl\} & \text{\GT{millerFamily}}
}
\end{formula}
\begin{formula}{miller-hexagon}
\desc{Hexagonal miller indices}{}{}
\desc[german]{Hexagonale Millersche Indizes}{}{}
\eq{ (hkil) && \tGT{with}\quad i = h + k }
\centering
\newFormulaEntry
\begin{tikzpicture}[3d view={0}{20}]
\pgfmathsetmacro{\hexxY}{1.5}
\begin{scope}
\drawHexagonCS{1}{\hexxY}
\setHexagonPoints{H1}{(0,0,0)}{1}{1}{1}
\setHexagonPoints{H2}{(0,0,\hexxY)}{1}{1}{1}
\drawHexagonBack{H1}
\drawHexagonConnectionsBack{H1}{H2}
\drawHexagonFront{H1}
\drawHexagonBack{H2}
\drawHexagonConnectionsFront{H1}{H2}
\drawHexagonFront{H2}
\end{scope}
\pgfmathsetmacro{\hexDistance}{3.5}
% 1121
\begin{scope}[shift={(\hexDistance,0,0)}]
\drawHexagonCS{1}{\hexxY}
\setHexagonPoints{H1}{(0,0,0)}{1}{1}{1}
\setHexagonPoints{H2}{(0,0,\hexxY)}{1}{1}{1}
\drawHexagonBack{H1}
\drawHexagonConnectionsBack{H1}{H2}
\fill[miller plane] (H1-A) -- (H2-M) -- (H1-E) -- cycle;
\drawHexagonFront{H1}
\drawHexagonBack{H2}
\drawHexagonConnectionsFront{H1}{H2}
\drawHexagonFront{H2}
\node[anchor=north] at (xyz cylindrical cs:radius=1.5,angle=270) {$(1211)$};
\end{scope}
% 1010
\begin{scope}[shift={(2*\hexDistance,0,0)}]
\drawHexagonCS{1}{\hexxY}
\setHexagonPoints{H1}{(0,0,0)}{1}{1}{1}
\setHexagonPoints{H2}{(0,0,\hexxY)}{1}{1}{1}
\drawHexagonBack{H1}
\drawHexagonConnectionsBack{H1}{H2}
\drawHexagonFront{H1}
\drawHexagonBack{H2}
\drawHexagonConnectionsFront{H1}{H2}
\drawHexagonFront{H2}
\fill[miller plane] (H1-F) -- (H2-F) -- (H2-E) -- (H1-E) -- cycle;
\node[anchor=north] at (xyz cylindrical cs:radius=1.5,angle=270) {$(1010)$};
\end{scope}
\end{tikzpicture}
\end{formula}
\Subsection[
\eng{Reciprocal lattice}
\ger{Reziprokes Gitter}
\eng{Reciprocal lattice}
\ger{Reziprokes Gitter}
]{reci}
\begin{ttext}
\eng{The reciprokal lattice is made up of all the wave vectors $\vec{k}$ that ressemble standing waves with the periodicity of the Bravais lattice.}
\ger{Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren $\vec{k}$, die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.}
\end{ttext}
\begin{ttext}
\eng{The reciprokal lattice is made up of all the wave vectors $\vec{k}$ that ressemble standing waves with the periodicity of the Bravais lattice.}
\ger{Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren $\vec{k}$, die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.}
\end{ttext}
\begin{formula}{vectors}
\desc{Reciprocal lattice vectors}{}{$a_i$ real-space lattice vectors, $V_c$ volume of the primitive lattice cell}
\desc[german]{Reziproke Gittervektoren}{}{$a_i$ Bravais-Gitter Vektoren, $V_c$ Volumen der primitiven Gitterzelle}
\eq{
\vec{b_1} &= \frac{2\pi}{V_c} \vec{a_2} \times \vec{a_3} \\
\vec{b_2} &= \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1} \\
\vec{b_3} &= \frac{2\pi}{V_c} \vec{a_1} \times \vec{a_2}
}
\end{formula}
\begin{formula}{reciprocal_lattice_vector}
\desc{Reciprokal attice vector}{}{$n_i \in \Z$}
\desc[german]{Reziproker Gittervektor}{}{}
\quantity{\vec{G}}{}{\angstrom}
\eq{\vec{G}_{{hkl}} = h \vec{b_1} + k \vec{b_2} + l \vec{b_3}}
\end{formula}
\begin{formula}{vectors}
\desc{Reciprocal lattice vectors}{}{$a_i$ real-space lattice vectors, $V_c$ volume of the primitive lattice cell}
\desc[german]{Reziproke Gittervektoren}{}{$a_i$ Bravais-Gitter Vektoren, $V_c$ Volumen der primitiven Gitterzelle}
\eq{
\vec{b_1} &= \frac{2\pi}{V_c} \vec{a_2} \times \vec{a_3} \\
\vec{b_2} &= \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1} \\
\vec{b_3} &= \frac{2\pi}{V_c} \vec{a_1} \times \vec{a_2}
}
\end{formula}
\begin{formula}{reciprocal_lattice_vector}
\desc{Reciprokal attice vector}{}{$n_i \in \Z$}
\desc[german]{Reziproker Gittervektor}{}{}
\quantity{\vec{G}}{}{\angstrom}
\eq{\vec{G}_{{hkl}} = h \vec{b_1} + k \vec{b_2} + l \vec{b_3}}
\end{formula}
\Subsection[
\eng{Scattering processes}
\ger{Streuprozesse}
]{scatter}
\begin{formula}{matthiessen}
\desc{Matthiessen's rule}{Approximation, only holds if the processes are independent of each other}{\QtyRef{mobility}, \QtyRef{scattering_time}}
\desc[german]{Matthiessensche Regel}{Näherung, nur gültig wenn die einzelnen Streuprozesse von einander unabhängig sind}{}
\eq{
\frac{1}{\mu} &= \sum_{i = \textrm{\GT{:::scatter}}} \frac{1}{\mu_i} \\
\frac{1}{\tau} &= \sum_{i = \textrm{\GT{:::scatter}}} \frac{1}{\tau_i}
}
\end{formula}
\Subsection[
\eng{Scattering processes}
\ger{Streuprozesse}
]{scatter}
\begin{formula}{matthiessen}
\desc{Matthiessen's rule}{Approximation, only holds if the processes are independent of each other}{\QtyRef{mobility}, \QtyRef{scattering_time}}
\desc[german]{Matthiessensche Regel}{Näherung, nur gültig wenn die einzelnen Streuprozesse von einander unabhängig sind}{}
\eq{
\frac{1}{\mu} &= \sum_{i = \textrm{\GT{:::scatter}}} \frac{1}{\mu_i} \\
\frac{1}{\tau} &= \sum_{i = \textrm{\GT{:::scatter}}} \frac{1}{\tau_i}
}
\end{formula}
\Subsection[
\eng{Lattices}
\ger{Gitter}
\eng{Lattices}
\ger{Gitter}
]{lat}
\begin{formula}{sc}
\desc{Simple cubic (SC)}{Reciprocal: Simple cubic}{\QtyRef{lattice_constant}}
\desc[german]{Einfach kubisch (SC)}{Reziprok: Einfach kubisch}{}
\eq{
\vec{a}_{1}=a \begin{pmatrix} 1\\0\\0 \end{pmatrix},\,
\vec{a}_{2}=a \begin{pmatrix} 0\\1\\0 \end{pmatrix},\,
\vec{a}_{3}=a \begin{pmatrix} 0\\0\\1 \end{pmatrix}
}
\end{formula}
\begin{formula}{bcc}
\desc{Body centered cubic (BCC)}{Reciprocal: \fRef{::fcc}}{\QtyRef{lattice_constant}}
\desc[german]{Kubisch raumzentriert (BCC)}{Reziprok: \fRef{::fcc}}{}
\eq{
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix},\,
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix},\,
\vec{a}_{3}=\frac{a}{2} \begin{pmatrix} 1\\1\\-1 \end{pmatrix}
}
\end{formula}
\begin{formula}{sc}
\desc{Simple cubic (SC)}{Reciprocal: Simple cubic}{\QtyRef{lattice_constant}}
\desc[german]{Einfach kubisch (SC)}{Reziprok: Einfach kubisch}{}
\eq{
\vec{a}_{1}=a \begin{pmatrix} 1\\0\\0 \end{pmatrix},\,
\vec{a}_{2}=a \begin{pmatrix} 0\\1\\0 \end{pmatrix},\,
\vec{a}_{3}=a \begin{pmatrix} 0\\0\\1 \end{pmatrix}
}
\end{formula}
\begin{formula}{bcc}
\desc{Body centered cubic (BCC)}{Reciprocal: \fRef{::fcc}}{\QtyRef{lattice_constant}}
\desc[german]{Kubisch raumzentriert (BCC)}{Reziprok: \fRef{::fcc}}{}
\eq{
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix},\,
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix},\,
\vec{a}_{3}=\frac{a}{2} \begin{pmatrix} 1\\1\\-1 \end{pmatrix}
}
\end{formula}
\begin{formula}{fcc}
\desc{Face centered cubic (FCC)}{Reciprocal: \fRef{::bcc}}{\QtyRef{lattice_constant}}
\desc[german]{Kubisch flächenzentriert (FCC)}{Reziprok: \fRef{::bcc}}{}
\eq{
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix},\,
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix},\,
\vec{a}_{3}=\frac{a}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix}
}
\end{formula}
\begin{formula}{fcc}
\desc{Face centered cubic (FCC)}{Reciprocal: \fRef{::bcc}}{\QtyRef{lattice_constant}}
\desc[german]{Kubisch flächenzentriert (FCC)}{Reziprok: \fRef{::bcc}}{}
\eq{
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix},\,
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix},\,
\vec{a}_{3}=\frac{a}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix}
}
\end{formula}
\begin{formula}{diamond}
\desc{Diamond lattice}{}{}
\desc[german]{Diamantstruktur}{}{}
\ttxt{
\eng{\fRef{:::fcc} with basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
\ger{\fRef{:::fcc} mit Basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ und $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
}
\end{formula}
\begin{formula}{zincblende}
\desc{Zincblende lattice}{}{}
\desc[german]{Zinkblende-Struktur}{}{}
\fsplit{
\centering
\includegraphics[width=0.9\textwidth]{img/cm_crystal_zincblende.png}
}{
\ttxt{
\eng{Like \fRef{:::diamond} but with different species on each basis}
\ger{Wie \fRef{:::diamond} aber mit unterschiedlichen Spezies auf den Basen}
}
}
\end{formula}
\begin{formula}{rocksalt}
\desc{Rocksalt structure}{\elRef{Na}\elRef{Cl}}{}
\desc[german]{Kochsalz-Struktur}{}{}
\fsplit{
\centering
\includegraphics[width=0.9\textwidth]{img/cm_crystal_NaCl.png}
}{
}
\end{formula}
\begin{formula}{wurtzite}
\desc{Wurtzite structure}{hP4}{}
\desc[german]{Wurtzite-Struktur}{hP4}{}
\fsplit{
\centering
\includegraphics[width=0.9\textwidth]{img/cm_crystal_wurtzite.png}
}{
}
\end{formula}
\begin{formula}{diamond}
\desc{Diamond lattice}{}{}
\desc[german]{Diamantstruktur}{}{}
\ttxt{
\eng{\fRef{:::fcc} with basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
\ger{\fRef{:::fcc} mit Basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ und $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
}
\end{formula}
\begin{formula}{zincblende}
\desc{Zincblende lattice}{}{}
\desc[german]{Zinkblende-Struktur}{}{}
\fsplit{
\centering
\includegraphics[width=0.9\textwidth]{img/cm_crystal_zincblende.png}
}{
\ttxt{
\eng{Like \fRef{:::diamond} but with different species on each basis}
\ger{Wie \fRef{:::diamond} aber mit unterschiedlichen Spezies auf den Basen}
}
}
\end{formula}
\begin{formula}{rocksalt}
\desc{Rocksalt structure}{\elRef{Na}\elRef{Cl}}{}
\desc[german]{Kochsalz-Struktur}{}{}
\fsplit{
\centering
\includegraphics[width=0.9\textwidth]{img/cm_crystal_NaCl.png}
}{
}
\end{formula}
\begin{formula}{wurtzite}
\desc{Wurtzite structure}{hP4}{}
\desc[german]{Wurtzite-Struktur}{hP4}{}
\fsplit{
\centering
\includegraphics[width=0.9\textwidth]{img/cm_crystal_wurtzite.png}
}{
}
\end{formula}

View File

@ -2,10 +2,14 @@
\eng{Free electron gas}
\ger{Freies Elektronengase}
]{egas}
\begin{ttext}
\eng{Assumptions: electrons can move freely and independent of each other.}
\ger{Annahmen: Elektronen bewegen sich frei und unabhänig voneinander.}
\end{ttext}
\begin{formula}{desc}
\desc{Description}{\GT{see_also}: \fRef{td:id_qgas}}{}
\desc[german]{Beschreibung}{}{}
\ttxt{
\eng{Assumptions: electrons can move freely and independent of each other.}
\ger{Annahmen: Elektronen bewegen sich frei und unabhänig voneinander.}
}
\end{formula}
\begin{formula}{drift_velocity}
\desc{Drift velocity}{Velocity component induced by an external force (eg. electric field)}{$v_\text{th}$ thermal velocity}
@ -14,6 +18,7 @@
\end{formula}
\begin{formula}{mean_free_path}
\abbrLabel{mfp}
\desc{Mean free path}{}{}
\desc[german]{Mittlere freie Weglänge}{}{}
\eq{\ell = \braket{v} \tau}
@ -26,11 +31,20 @@
\eq{\mu = \frac{q \tau}{m}}
\end{formula}
\Subsection[
\eng{3D electron gas}
\ger{3D Elektronengas}
]{3deg}
\begin{formula}{dos}
\desc{Density of states}{}{}
\desc[german]{Zustandsdichte}{}{}
\eq{D_\text{3D}(E) = \frac{1}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E}}
\end{formula}
\Subsection[
\eng{2D electron gas}
\ger{2D Elektronengas}
]{2deg}
\begin{ttext}
\eng{Lower dimension gases can be obtained by restricting a 3D gas with infinetly high potential walls on a narrow area with the width $L$.}
\ger{
@ -51,6 +65,12 @@
\eq{E_n = \underbrace{\frac{\hbar^2 k_\parallel^2}{2\masse}}_\text{$x$-$y$: \GT{plain_wave}} + \underbrace{\frac{\hbar^2 \pi^2}{2\masse L^2} n^2}_\text{$z$}}
\end{formula}
\begin{formula}{dos}
\desc{Density of states}{}{}
\desc[german]{Zustandsdichte}{}{}
\eq{D_\text{2D}(E) = \frac{m}{\pi\hbar^2}}
\end{formula}
\Subsection[
\eng{1D electron gas / quantum wire}
\ger{1D Eleltronengas / Quantendraht}
@ -61,12 +81,25 @@
\desc[german]{Energie}{}{}
\eq{E_n = \frac{\hbar^2 k_x^2}{2\masse} + \frac{\hbar^2 \pi^2}{2\masse L_z^2} n_1^2 + \frac{\hbar^2 \pi^2}{2\masse L_y^2} n_2^2}
\end{formula}
\begin{formula}{dos}
\desc{Density of states}{}{}
\desc[german]{Zustandsdichte}{}{}
\eq{D_\text{1D}(E) = \frac{1}{\pi\hbar} \sqrt{\frac{m}{2}} \frac{1}{\sqrt{E}}}
\end{formula}
\TODO{condunctance}
\Subsection[
\eng{0D electron gas / quantum dot}
\ger{0D Elektronengase / Quantenpunkt}
]{0deg}
\begin{formula}{dos}
\desc{Density of states}{}{}
\desc[german]{Zustandsdichte}{}{}
\eq{D_\text{0D}(E) = 2\delta(E-E_C)}
\end{formula}
\TODO{TODO}

View File

@ -12,29 +12,41 @@
\end{ttext}
% chemmacros package
\begin{formula}{sp}
\desc{sp Orbital}{\GT{eg} \ce{C2H2}}{}
\desc[german]{sp Orbital}{}{}
\ttxt{\eng{Linear with bond angle \SI{180}{\degree}}\ger{Linear mit Bindungswinkel \SI{180}{\degree}}}
\eq{
1\text{s} + 1\text{p} = \text{sp}
\orbital{sp}
}
\end{formula}
\begin{formula}{sp2}
\desc{sp2 Orbital}{\GT{eg} \ce{C2H4}}{}
\desc[german]{sp2 Orbital}{}{}
\ttxt{\eng{Trigonal planar with bond angle \SI{120}{\degree}}\ger{Trigonal planar mit Bindungswinkel \SI{120}{\degree}}}
\eq{
1\text{s} + 2\text{p} = \text{sp2}
\orbital{sp2}
% \\ \ket{p} = \cos\theta \ket{p_x} + \sin\theta \ket{p_y}
}
\end{formula}
\begin{formula}{sp3}
\desc{sp3 Orbital}{\GT{eg} \ce{CH4}}{}
\desc[german]{sp3 Orbital}{}{}
\ttxt{\eng{Tetrahedral with bond angle \SI{109.5}{\degree}}\ger{Tetraedisch mit Bindungswinkel \SI{109.5}{\degree}}}
\eq{
1\text{s} + 3\text{p} = \text{sp3}
\orbital{sp3}
}
\end{formula}
\begin{formula}{sp2}
\desc{sp2 Orbital}{}{}
\desc[german]{sp2 Orbital}{}{}
\eq{
1\text{s} + 2\text{p} = \text{sp2}
\orbital{sp2}
}
\end{formula}
\begin{formula}{sp}
\desc{sp Orbital}{}{}
\desc[german]{sp Orbital}{}{}
\eq{
1\text{s} + 1\text{p} = \text{sp}
\orbital{sp}
}
\begin{formula}{wave_function}
\desc{Wave function}{of a hybrid orbital}{$N$ number of involved $p$ orbitals}
\desc[german]{Wellenfunktion}{eines Hybridorbitals}{$N$ Anzahl der beteiligten $p$ Orbitale}
\eq{\ket{h_{1\dots N+1}} = \frac{1}{\sqrt{N+1}} \left(\ket{s} + \sqrt{N} \ket{p}\right)}
\end{formula}
@ -117,3 +129,18 @@
\eng{\textit{Gain medium} is energized \textit{pumping energy} (electric current or light), light of certain wavelength is amplified in the gain medium}
}
\end{formula}
\begin{formula}{vacuum}
\desc{Vacuum ranges}{}{}
\desc[german]{Vakuumklassen}{}{}
\ttxt{\eng{
\begin{itemize}
\item \textbf{Rough vacuum}: \SI{1}{\atm} - \SI{10e-2}{\milli\bar} \\ viscous flow
\item \textbf{Process vacuum}: \SI{10e-2}{\milli\bar} - \SI{10e-4}{\milli\bar} \\ \abbrRef{mfp} $\le$ chamber size
\item \textbf{High vacuum}: \SI{10e-5}{\milli\bar} - \SI{10e-9}{\milli\bar} \\ \abbrRef{mfp} $>$ chamber size, mostly residual \ce{H20} vapor
\item \textbf{Ultra-high vacuum}: $<$ \SI{10e-9}{\milli\bar} \\ \abbrRef{mfp} $\gg$ chamber size, mostly residual \ce{H2}
\end{itemize}
}\ger{
\TODO{translate}
}}
\end{formula}

View File

@ -1,44 +1,97 @@
\def\meff{m^{*}}
\Section[
\eng{Semiconductors}
\ger{Halbleiter}
]{sc}
\begin{formula}{types}
\desc{Intrinsic/extrinsic}{}{$n,p$ \fRef{cm:sc:charge_density_eq}}
\desc[german]{Intrinsisch/Extrinsisch}{}{}
\begin{formula}{description}
\desc{Description}{}{$n,p$ \fRef{cm:sc:charge_carrier_density:equilibrium}}
\desc[german]{Beschreibung}{}{}
\ttxt{
\eng{
Intrinsic: pure, electron density determiend only by thermal excitation and $n_i^2 = n_0 p_0$\\
Extrinsic: doped
Materials with an electrical conductivity that can be modified through \fRef[doping]{::doping}.\\
\textbf{Intrinsic}: pure, electron density determined only by thermal excitation and $n_i^2 = n_0 p_0$\\
\textbf{Extrinsic}: doped
}
\ger{
Intrirnsisch: Pur, Elektronendichte gegeben durch thermische Anregung und $n_i^2 = n_0 p_0$ \\
Extrinsisch: gedoped
Materialien, bei denen die elektrische Leitfähigkeit durch \fRef[Dotierung]{::doping} verändert werden kann.\\
\textbf{Intrinsisch}: Pur, Elektronendichte gegeben durch thermische Anregung und $n_i^2 = n_0 p_0$ \\
\textbf{Extrinsisch}: dotiert
}
}
\end{formula}
\begin{formula}{charge_density_eq}
\desc{Equilibrium charge densitites}{Holds when $\frac{\Econd-\EFermi}{\kB T}>3.6$ and $\frac{\EFermi-\Evalence}{\kB T} > 3.6$}{}
\desc[german]{Ladungsträgerdichte im Equilibrium}{Gilt wenn $\frac{\Econd-\EFermi}{\kB T}>3.6$ und $\frac{\EFermi-\Evalence}{\kB T} > 3.6$}{}
\begin{formula}{fermi_dirac}
\desc{Fermi-Dirac distribution}{For electrons and holes}{}
\desc[german]{Fermi-Dirac Verteilung}{Für Elektronen und Löcher}{}
\eq{
n_0 &\approx N_\text{c}(T) \Exp{-\frac{E_\text{c} - \EFermi}{\kB T}} \\
p_0 &\approx N_\text{v}(T) \Exp{-\frac{\EFermi - E_\text{v}}{\kB T}}
f_\txe(E) &= \frac{1}{\Exp{\frac{E-\EFermi}{\kB T}+1}}\\
f_\txh(E) &= 1-f_\txe(E)
}
\end{formula}
\begin{formula}{charge_density_intrinsic}
\desc{Intrinsic charge density}{}{}
\desc[german]{Intrinsische Ladungsträgerdichte}{}{}
\begin{formulagroup}{charge_carrier_density}
\desc{Charge carrier density}{}{}
\desc[german]{Ladungsträgerichte}{}{}
\begin{formula}{general}
\desc{Charge carrier density}{General form}{$D$ \qtyRef{dos}, $f$ \fRef{:::fermi_dirac}}
\desc[german]{Ladungsträgerdichte}{Allgemeine Form}{}
\eq{
n &= \int_{\Econd}^\infty D_\txe f_\txe(E)\d E\\
p &= \int_{-\infty}^{\Evalence} D_\txh f_\txh(E)\d E
}
\end{formula}
\begin{formula}{equilibrium}
\desc{Equilibrium charge carrier densities}{\fRef{math:cal:integral:list:boltzmann_approximation}, holds when $\frac{\Econd-\EFermi}{\kB T}>3.6$ and $\frac{\EFermi-\Evalence}{\kB T} > 3.6$}{}
\desc[german]{Ladungsträgerdichte im Equilibrium}{\fRef{math:cal:integral:list:boltzmann_approximation}, gilt wenn $\frac{\Econd-\EFermi}{\kB T}>3.6$ und $\frac{\EFermi-\Evalence}{\kB T} > 3.6$}{}
\eq{
n_0 &\approx N_\txC(T) \Exp{-\frac{\Econd - \EFermi}{\kB T}} \\
p_0 &\approx N_\txV(T) \Exp{-\frac{\EFermi - \Evalence}{\kB T}}
}
\end{formula}
\begin{formula}{intrinsic}
\desc{Intrinsic charge carrier density}{}{$N$ \fRef{:::band_edge_dos}}
\desc[german]{Intrinsische Ladungsträgerdichte}{}{}
\eq{
n_\txi \approx \sqrt{n_0 p_0} = \sqrt{N_\txC(T) N_\txV(T)} \Exp{-\frac{E_\text{gap}}{2\kB T}}
}
\end{formula}
\end{formulagroup}
\begin{formula}{band_edge_dos}
\desc{Band edge density of states}{}{$\meff$ \qtyRef{effective_mass}, \ConstRef{boltzmann}, \QtyRef{temperature}, \ConstRef{planck2pi}}
\desc[german]{Bandkanten-Zustandsdichte}{}{}
\eq{
n_\text{i} \approx \sqrt{n_0 p_0} = \sqrt{N_\text{c}(T) N_\text{v}(T)} \Exp{-\frac{E_\text{gap}}{2\kB T}}
N_\txC &= 2\left(\frac{\meff_\txe\kB T}{2\pi\hbar^2}\right)^{3/2} \\
N_\txV &= 2\left(\frac{\meff_\txh\kB T}{2\pi\hbar^2}\right)^{3/2}
}
\end{formula}
\begin{formula}{mass_action}
\desc{Mass action law}{Charge densities at thermal equilibrium, independent of doping}{}
\desc{Mass action law}{Charge densities at thermal equilibrium, independent of doping}{$n_0/p_0$ \fRef{::charge_carrier_density:equilibrium}, $n_i/p_i$ \fRef{::charge_carrier_density:intrinsic}}
\desc[german]{Massenwirkungsgesetz}{Ladungsträgerdichten im Equilibrium, unabhängig der Dotierung }{}
\eq{np = n_i^2}
\eq{n_0p_0 = n_i^2 = p_i^2 \text{\TODO{check if ni=pi}}}
\end{formula}
\begin{formula}{bandgap}
\desc{Bandgap}{}{}
\desc[german]{Bandlücke}{}{}
\ttxt{\eng{
Energy gap between highest occupied (HO) and lowest unoccupied (LU) band/orbital\\
\begin{itemize}
\item \textbf{direct}: HO and LU at same $\veck$
\item \textbf{indirect} HO and LU at different $\veck$
\end{itemize}
}\ger{
Energielücke zwischen höchstem besetztem (HO) und niedrigsten unbesetzten (LU) Band/Orbital
\begin{itemize}
\item \textbf{direkt}: HO und LU bei gleichem $\veck$
\item \textbf{indirekt}: HO und LU bei unterschiedlichem $\veck$
\end{itemize}
}}
\end{formula}
\begin{formula}{bandgaps}
\desc{Bandgaps of common semiconductors}{}{}
@ -71,8 +124,184 @@
}
}
\end{formula}
\begin{formula}{effective_mass}
\desc{Effective mass}{}{}
\desc[german]{Effektive Masse}{}{}
\quantity{\ten{\meff}}{\kg}{t}
\eq{\left(\frac{1}{\meff}\right)_{ij} = \frac{1}{\hbar^2} \pdv{E}{k_i,k_j}}
\ttxt{\eng{
Approximate effects using a effective mass. \TODO{more detail}
}
}
\end{formula}
\TODO{effective mass approx}
\Subsection[
\eng{Doping}
\ger{Dotierung}
]{dope}
\begin{formula}{description}
\desc{Description}{}{}
\desc[german]{Beschreibung}{}{}
\ttxt{\eng{
Modification of charger carrier densities through defects.
\begin{itemize}
\item $N_\txA \gg N_\txD$ \Rightarrow p-type semiconductor
\item $N_\txA \ll N_\txD$ \Rightarrow n-type semiconductor
\item Else: compensated semiconductor, acceptors filled by electrons from donors:
\end{itemize}
}\ger{
Modifizierung der Ladungsträgerichten durch Einbringung von Fremdatomen.
\begin{itemize}
\item $N_\txA \gg N_\txD$ \Rightarrow p-Typ Halbleiter
\item $N_\txA \ll N_\txD$ \Rightarrow n-Typ Halbleiter
\item Sonst: Kompensierter Halbleiter, Akzeptoren nehmen Elektronen der Donatoren auf
\end{itemize}
}}
\end{formula}
\begin{formula}{charge_neutrality}
\desc{Charge neutrality}{Fermi level must adjust so that charge neutrality is preserved}{$N_{\txd/\txa}^{+/-}$ ionized donor/acceptor density, $n,p$ \fRef{cm:sc:charge_carrier_density}}
\desc[german]{Ladungsneutralität}{Fermi-Level muss sich so anpassen, dass Ladungsneutralität erhalten ist}{$N_{\txd/\txa}^{+/-}$ Dichte der ionisierten Donatoren/Akzeptoren , $n,p$ \fRef{cm:sc:charge_carrier_density}}
\eq{0 = N_\txd^+ + p - N_\txa^- -n}
\end{formula}
\begin{formula}{ionization_ratio}
\desc{Fraction ionized donors/acceptors}{At thermal equilibrium}{$N_{\txd/\txa}^{+/-}$ ionized donor/acceptor density, $N_{\txd/\txa}$ donor/acceptor density, $E_{\txd/\txa}$ donor/acceptor energy level, $g$ spin degeneracy}
\desc[german]{Anteil ionisiserter Akzeptoren/Donatoren}{Im thermischen Equilibrium}{$N_{\txd/\txa}^{+/-}$ ionisierte Donor/Akzeptordichte, $N_{\txd/\txa}$ Donor/Akzeptordichte, $E_{\txd/\txa}$ Energie der Donatoren/Akzeptoren, $g$ Spindegenierung}
\eq{
\frac{N_\txd^+}{N_\txd} &= 1- \frac{1}{1+\frac{1}{g}\Exp{\frac{E_\txD-\Efermi}{\kB T}}} \\
\frac{N_\txa^-}{N_\txa} &= \frac{1}{1+g\Exp{\frac{E_\txA-\Efermi}{\kB T}}}
}
\end{formula}
\begin{formula}{electron_density}
\desc{Charge carrier density}{In a doped semiconductor}{}
\desc[german]{Ladungsträgeridchte}{In einem dotierten Halbleiter}{}
\fig[width=0.5\textwidth]{img_static/cm_sc_doped_TODO.png}
\TODO{plot}
\end{formula}
\Subsection[
\eng{Defects}
\ger{Defekte}
]{defect}
\Subsubsection[
\eng{Point defects}
\ger{Punktdefekte}
]{point}
\begin{formula}{vacancy}
\desc{Vacancy}{}{}
\desc[german]{Fehlstelle}{}{}
\ttxt{\eng{
\begin{itemize}
\item Lattice site missing an atom
\item Low formation energy
\end{itemize}
}\ger{
\begin{itemize}
\item Unbesetzter Gitterpunkt
\item Geringe Formationsenergie
\end{itemize}
}}
\end{formula}
\begin{formula}{interstitial}
\desc{Interstitial}{}{}
\desc[german]{}{}{}
\ttxt{\eng{
\begin{itemize}
\item Extranous atom between lattice atoms
\item High formation energy
\end{itemize}
}\ger{
\begin{itemize}
\item Zusätzliches Atom zwischen Gitteratomen
\item Hohe Formationsenergy
\end{itemize}
}}
\end{formula}
\begin{formula}{schottky}
\desc{Schottky defect}{}{}
\desc[german]{Schottky-Defekt}{}{}
\ttxt{\eng{
Atom type A \fRef{:::vacancy} + atom type B \fRef{:::vacancy}.
Only in (partially) ionic materials.
}\ger{
\fRef{:::vacancy} von Atomsorte A und \fRef{:::vacancy} von Atomsorte B.
Tritt nur in ionischen Materialiern auf.
}}
\end{formula}
\begin{formula}{frenkel}
\desc{Frenkel defect}{}{}
\desc[german]{Frenkel Defekt}{}{}
\ttxt{\eng{
\fRef{:::vacancy} + \fRef{:::interstitial}
}\ger{
\fRef{:::vacancy} + \fRef{:::interstitial}
}}
\end{formula}
\Subsubsection[
\eng{Line defects}
\ger{Liniendefekte}
]{line}
\begin{formula}{edge}
\desc{Edge distortion}{}{}
\desc[german]{Stufenversetzung}{}{}
\ttxt{\eng{
Insertion of an extra plane of atoms
}\ger{
Einschiebung einer zusätzliche Atomebene
}}
\TODO{images}
\end{formula}
\begin{formula}{screw}
\desc{Screw distortion}{}{}
\desc[german]{Schraubenversetzung}{}{}
\ttxt{\eng{
\TODO{TODO}
}\ger{
}}
\end{formula}
\begin{formula}{burgers_vector}
\desc{Burgers vector}{Magnitude and direction of dislocation}{}
\desc[german]{Burgers-Vektor}{Größe und Richtung einer Versetzung}{}
\quantity{\vecb}{units}{ievs}
\eq{
\TODO{TODO}
}
\end{formula}
\Subsubsection[
\eng{Area defects}
\ger{Flächendefekte}
]{area}
\begin{formula}{grain_boundary}
\desc{Grain boundary}{}{}
\desc[german]{Korngrenze}{}{}
\ttxt{\eng{
Lead to
\begin{itemize}
\item Secondary phases
\item Charge carrier trapping, recombination
\item High mass diffusion constants
\end{itemize}
}\ger{
Führen zu
\begin{itemize}
\item Sekundärphasen
\item Separierung, Trapping und Streuung von Ladunsträgern
\item Hohe Massendiffusionskonstante
\end{itemize}
}}
\end{formula}
\Subsection[
\eng{Devices and junctions}
@ -92,8 +321,8 @@
\desc{Schottky barrier}{Rectifying \fRef{cm:sc:junctions:metal-sc}}{}
% \desc[german]{}{}{}
\centering
\resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_metal_n_sc_separate.tex}}
\resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_metal_n_sc.tex}}
\resizebox{0.49\textwidth}{!}{\input{img_static/cm/sc_junction_metal_n_sc_separate.tex}}
\resizebox{0.49\textwidth}{!}{\input{img_static/cm/sc_junction_metal_n_sc.tex}}
\TODO{Work function electron affinity sind doch Energien und keine Potentiale, warum wird also immer $q$ davor geschrieben?}
\end{bigformula}
\begin{formula}{schottky-mott_rule}
@ -106,15 +335,15 @@
\desc{Ohmic contact}{}{}
\desc[german]{Ohmscher Kontakt}{}{}
\centering
\resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_ohmic_separate.tex}}
\resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_ohmic.tex}}
\resizebox{0.49\textwidth}{!}{\input{img_static/cm/sc_junction_ohmic_separate.tex}}
\resizebox{0.49\textwidth}{!}{\input{img_static/cm/sc_junction_ohmic.tex}}
\end{bigformula}
\begin{bigformula}{pn}
\desc{p-n junction}{}{}
\desc[german]{p-n Übergang}{}{}
\centering
\input{img/cm/sc_junction_pn.tex}
\input{img_static/cm/sc_junction_pn.tex}
\resizebox{0.49\textwidth}{!}{\tikzPnJunction{1/3}{0}{0}{1/3}{0}{0}{}}
\resizebox{0.49\textwidth}{!}{\tikzPnJunction{1/2}{0.4}{-0.4}{1/2}{-0.4}{0.4}{}}
\end{bigformula}

View File

@ -128,7 +128,6 @@
\desc[german]{Erste London-Gleichun-}{}{}
\eq{
\pdv{\vec{j}_{\txs}}{t} = \frac{n_\txs q_\txs^2}{m_\txs}\vec{\E} {\color{gray}- \Order{\vec{j}_\txs^2}}
% \\{\color{gray} = \frac{q}{m}\Grad \left(\frac{1}{2} \TODO{FActor} \vec{j}^2\right)}
}
\end{formula}
\begin{formula}{second}
@ -415,7 +414,7 @@
\end{formula}
\begin{formula}{gap_at_t0}
\desc{BCS Gap at $T=0$}{}{\QtyRef{debye_frequency}, $V_0$ \fRef{::potential}, $D$ \qtyRef{dos}, \TODO{gamma}}
\desc{BCS Gap at $T=0$}{}{\QtyRef{debye_frequency}, $V_0$ \fRef{::potential}, $D$ \qtyRef{dos}, $\gamma$ Sommerfeld constant}
\desc[german]{BCS Lücke bei $T=0$}{}{}
\eq{
\Delta(T=0) &= \frac{\hbar\omega_\txD}{\Sinh{\frac{2}{V_0\.D(E_\txF)}}} \approx 2\hbar \omega_\txD\\

View File

@ -1,15 +1,19 @@
\Section[
\eng{Techniques}
\ger{Techniken}
]{tech}
\Subsection[
\eng{Measurement techniques}
\ger{Messtechniken}
]{meas}
\newcommand\newTechnique{\hline}
\Eng[name]{Name}
\Ger[name]{Name}
\Eng[application]{Application}
\Ger[application]{Anwendung}
\Subsection[
\Subsubsection[
\eng{Raman spectroscopy}
\ger{Raman Spektroskopie}
]{raman}
@ -62,7 +66,7 @@
\end{bigformula}
\Subsection[
\Subsubsection[
\eng{ARPES}
\ger{ARPES}
]{arpes}
@ -71,7 +75,7 @@
how?
plot
\Subsection[
\Subsubsection[
\eng{Scanning probe microscopy SPM}
\ger{Rastersondenmikroskopie (SPM)}
]{spm}
@ -128,7 +132,7 @@
\end{minipage}
\end{bigformula}
\Section[
\Subsection[
\eng{Fabrication techniques}
\ger{Herstellungsmethoden}
]{fab}
@ -173,7 +177,7 @@
\end{bigformula}
\Subsection[
\Subsubsection[
\eng{Epitaxy}
\ger{Epitaxie}
]{epitaxy}
@ -206,7 +210,7 @@
\end{minipagetable}
\begin{minipage}{0.45\textwidth}
\centering
\includegraphics[width=\textwidth]{img/cm_mbe_english.pdf}
\includegraphics[width=\textwidth]{img_static/cm_mbe_english.pdf}
\end{minipage}
\end{bigformula}

View File

@ -39,6 +39,13 @@
}}
\end{formula}
\begin{formula}{petit-dulong}
\absLabel
\desc{Petit-Dulong law}{Empirical heat capacity at high temperatures}{$C_\txm$ molar \qtyRef{heat_capacity}, \ConstRef{avogadro}, \ConstRef{boltzmann}, \ConstRef{gas}}
\desc[german]{Petit-Dulong Gesetz}{Empirische Wärmekapazität bei hohen Temperaturen}{}
\eq{C_\txm = 3\NA \kB = 3R \approx \SI{25}{\joule\per\mol\kelvin}}
\end{formula}
\Subsection[
\eng{Einstein model}
\ger{Einstein-Modell}

View File

@ -249,123 +249,6 @@
}}
\end{formula}
\begin{bigformula}{comparison}
\desc{Comparison of DFT functionals}{}{}
\desc[german]{Vergleich von DFT Funktionalen}{}{}
% \begin{tabular}{l|c}
% \fRef[Hartree-Fock]{comp:est:dft:hf:potential} & only exchange, no correlation \Rightarrow upper bound of GS energy \\
% \abbrRef{lda} & understimates e repulsion \Rightarrow Overbinding \\
% \abbrRef{gga} & underestimate band gap \\
% hybrid & underestimate band gap
% \end{tabular}
\TODO{HFtotal energy: upper boundary for GS density $n$}
\newcolumntype{P}[1]{>{\centering\arraybackslash}p{#1}}
% \begin{tabular}{|P{0.15\textwidth}|P{0.2\textwidth}|P{0.1\textwidth}|P{0.2\textwidth}|P{0.1\textwidth}|P{0.1\textwidth}|P{0.15\textwidth}|}
% \hline
% \textbf{Method} & \textbf{Description} & \textbf{Mean Absolute Error (eV)} & \textbf{Band Gap Accuracy} & \textbf{Computational Cost} & \textbf{Usage} & \textbf{Other Notes} \\
% \hline
% Hartree-Fock (HF) &
% $E_C \sim E_C^{HF\text{theory}}$
% $E_X \sim E_X^{FOCK}$
% & 3.1 (Underbinding) & \tabitem no SIE \tabitem correct long-range behaviour \tabitem nonlinear chemical potential (missing DD) \tabitem positive correlation effects & High & Reference for exact exchange, useful for small molecules. & Self-interaction free, but lacks correlation. \\
% \hline
% Local Density Approximation (LDA) &
% $E_x \sim n(r)$
% $E_c \sim n(r)$
% & 1.3 (Overbinding) & \tabitem SIE \tabitem wrong long-range behaviour \tabitem nonlinear chemical potential (missing DD) & Low & Basic solids and metallic systems, where accuracy is not critical. & Simple and computationally cheap. \\
% \hline
% Generalised Gradient Approximation (GGA) &
% $E_x \sim n(r), \nabla n(r)$
% $E_c \sim n(r), \nabla n(r)$
% & 0.3 (Mostly overbinding) & \tabitem SIE \tabitem wrong long-range behaviour \tabitem nonlinear chemical potential (missing DD) & Moderate & More accurate for molecules and chemical bonding studies. & Better than LDA for chemical bonding. \\
% \hline
% Hybrid Functionals &
% $E_x = E_x^{GGA}$
% $E_x = (1-\alpha)E_x^{GGA} + \alpha E_X^{FOCK}$
% \tabitem Add expensive non-local Fock term to reduce self-interaction
% & Lower than GGA (Improved balance) & \tabitem reduced SIE \tabitem wrong long-range behaviour \tabitem nonlinear chemical potential (missing DD) & Higher & Molecular chemistry, solid-state physics requiring better accuracy. & Balances accuracy and cost. \\
% \hline
% Range-Separated Hybrid (RSH) &
% $E_x = E_x^{GGA}$
% $E_{X,SR} = (1-\alpha)E_x^{GGA} + \alpha E_X^{FOCK}$
% $E_{X,LR} = E_x^{GGA}$
% \tabitem Mix-in expensive Fock term only for short-range interactions $\rightarrow$ since for LR the Coulomb interaction gets screening in dielectric substances ($\epsilon > 1$), such as crystalline materials.
% & Lower than Hybrid (Even better balance) & \tabitem reduced SIE \tabitem wrong long-range behaviour \tabitem nonlinear chemical potential (missing DD) & Very High & Semiconductors, materials with screened Coulomb interactions. & Used for dielectric materials. \\
% \hline
% Optimally Tuned RSH (OT-RSH) &
% $E_x = E_x^{GGA}$
% $E_{X,SR} = E_x^{GGA}$ and $E_X^{FOCK}$
% $E_{X,LR} = E_x^{GGA}$ and $E_X^{FOCK}$
% \tabitem More advanced tuning between Fock and GGA. So that set also have the correct asymptotic behaviour of $1/r$ (Coulomb e.g. Fock) instead of $e^{-r}$ from GGA
% & Lowest & \tabitem reduced SIE \tabitem better long-range behaviour \tabitem /+ better chemical potential - they include non-multiplicative, orbital dependent terms. Hence, in principle they allow for including a DD. & Extremely High & Precise calculations for band gap predictions and electronic properties. & Most flexible but computationally expensive. \\
% \hline
% \end{tabular}
% \begin{tabularx}{\textwidth}{lXlllll}
% \toprule
% \textbf{Method} & \textbf{Description} & \textbf{Mean Absolute Error (eV)} & \textbf{Band Gap Accuracy} & \textbf{Computational Cost} & \textbf{Usage} & \textbf{Other Notes} \\
% \midrule
% Hartree-Fock (HF) & $E_C \sim E_C^{HF\text{theory}}$ $E_X \sim E_X^{FOCK}$ & 3.1 (Underbinding) & Overestimates
% \tabitem no SIE
% \tabitem correct long-range behaviour
% \tabitem nonlinear chemical potential (missing DD)
% \tabitem positive correlation effects
% & High & Reference for exact exchange, useful for small molecules. & Self-interaction free, but lacks correlation. \\
% \midrule
% Local Density Approximation (LDA) &
% $E_x \sim n(r)$
% $E_c \sim n(r)$
% & 1.3 (Overbinding) & Underestimates
% \tabitem SIE
% \tabitem wrong long-range behaviour
% \tabitem nonlinear chemical potential (missing DD)
% & Low & Basic solids and metallic systems, where accuracy is not critical. & Simple and computationally cheap. \\
% \midrule
% Generalised Gradient Approximation (GGA) &
% $E_x \sim n(r), \nabla n(r)$
% $E_c \sim n(r), \nabla n(r)$
% & 0.3 (Mostly overbinding) & Improved over LDA
% \tabitem SIE
% \tabitem wrong long-range behaviour
% \tabitem nonlinear chemical potential (missing DD)
% & Moderate & More accurate for molecules and chemical bonding studies. & Better than LDA for chemical bonding. \\
% \midrule
% Hybrid Functionals &
% $E_x = E_x^{GGA}$
% $E_x = (1-\alpha)E_x^{GGA} + \alpha E_X^{FOCK}$
% \tabitem Add expensive non-local Fock term to reduce self-interaction
% & Lower than GGA (Improved balance) & Better than GGA
% \tabitem reduced SIE
% \tabitem wrong long-range behaviour
% \tabitem nonlinear chemical potential (missing DD)
% & Higher & Molecular chemistry, solid-state physics requiring better accuracy. & Balances accuracy and cost. \\
% \midrule
% Range-Separated Hybrid (RSH) &
% $E_x = E_x^{GGA}$
% $E_{X,SR} = (1-\alpha)E_x^{GGA} + \alpha E_X^{FOCK}$
% $E_{X,LR} = E_x^{GGA}$
% \tabitem Mix-in expensive Fock term only for short-range interactions $\rightarrow$ since for LR the Coulomb interaction gets screening in dielectric substances ($\epsilon > 1$), such as crystalline materials.
% & Lower than Hybrid (Even better balance) & Strongly underestimates
% \tabitem reduced SIE
% \tabitem wrong long-range behaviour
% \tabitem nonlinear chemical potential (missing DD)
% & Very High & Semiconductors, materials with screened Coulomb interactions. & Used for dielectric materials. \\
% \midrule
% Optimally Tuned RSH (OT-RSH) &
% $E_x = E_x^{GGA}$
% $E_{X,SR} = E_x^{GGA}$ and $E_X^{FOCK}$
% $E_{X,LR} = E_x^{GGA}$ and $E_X^{FOCK}$
% \tabitem More advanced tuning between Fock and GGA. So that set also have the correct asymptotic behaviour of $1/r$ (Coulomb e.g. Fock) instead of $e^{-r}$ from GGA
% & Lowest & Most accurate
% \tabitem reduced SIE
% \tabitem better long-range behaviour
% \tabitem /+ better chemical potential - they include non-multiplicative, orbital dependent terms. Hence, in principle they allow for including a DD.
% & Extremely High & Precise calculations for band gap predictions and electronic properties. & Most flexible but computationally expensive. \\
% \bottomrule
% \end{tabularx}
\end{bigformula}
\Subsubsection[
\eng{Basis sets}

View File

@ -8,6 +8,8 @@
\usepackage{adjustbox}
\usepackage{colortbl} % color table
\usepackage{tabularx} % bravais table
\usepackage{array} % more array options
\newcolumntype{C}{>{$}c<{$}} % math-mode version of "c" column type
\usepackage{multirow} % for superconducting qubit table
\usepackage{hhline} % for superconducting qubit table
% TOOLING
@ -28,8 +30,6 @@
% \setlist[enumerate]{labelsep=*, leftmargin=1.5pc} % horizontal indent of items
\usepackage{titlesec} % colored titles
\usepackage{array} % more array options
\newcolumntype{C}{>{$}c<{$}} % math-mode version of "c" column type
% \usepackage{sectsty}
% GRAPHICS
\usepackage{pgfplots}
@ -38,6 +38,8 @@
\usetikzlibrary{decorations.pathmorphing}
\usetikzlibrary{decorations.pathreplacing} % braces
\usetikzlibrary{calc}
\usetikzlibrary{3d}
\usetikzlibrary{perspective} % 3d view
\usetikzlibrary{patterns}
\usetikzlibrary{patterns}
\input{util/tikz_macros}
@ -146,11 +148,11 @@
\Input{cm/egas}
\Input{cm/charge_transport}
\Input{cm/vib}
\Input{cm/superconductivity}
\Input{cm/semiconductors}
\Input{cm/misc}
\Input{cm/techniques}
\Input{cm/topo}
\Input{cm/superconductivity}
\Input{cm/mat}
\Input{particle}

View File

@ -320,5 +320,16 @@
\eq{\txB(x; z_1,z_2) = \int_0^x t^{z_1-1} (1-t)^{z_2-1} \d t}
\end{formula}
\begin{formula}{fermi_dirac}
\desc{Fermi-Dirac integral}{}{$\Gamma$ \fRef{::gamma_function}}
\desc[german]{Fermi-Dirac-Integral}{}{}
\eq{F_j(x)= \frac{1}{\Gamma(j+1)} \int_0^\infty \frac{t^j}{\Exp{t-x}+1}\d t}
\end{formula}
\begin{formula}{boltzmann_approximation}
\desc{Boltzmann approximation}{$-x\gg1$}{$F$ \fRef{::fermi_dirac_integral}}
\desc[german]{Boltzmann-Näherung}{}{}
\eq{F_{1/2}(x) \approx \Exp{x}}
\end{formula}
\TODO{differential equation solutions}

View File

@ -43,6 +43,12 @@
}
\end{formula}
\begin{formula}{centripetal_force}
\desc{Centripetal force}{Force that must act to keep a mass on an arc trajectory}{}
\desc[german]{Zentripetalkraft}{Kraft die auf einen Körper wirken muss, damit er sich auf einer gegrümmten Bahn bewegt}{}
\eq{\vecF_\txc = m v^2 (-\vece_r) = m \vec{\omega}\times\vecv = -m\omega^2\vecr}
\end{formula}
\def\lagrange{\mathcal{L}}
\Section[
\eng{Lagrange formalism}

View File

@ -106,10 +106,10 @@
##2%
\end{alignat}
}
\newcommand{\fig}[1]{
\newcommand{\fig}[2][]{
\newFormulaEntry
\centering
\includegraphics{##1}
\includegraphics[##1]{##2}
}
% 1: content for the ttext environment
\newcommand{\ttxt}[2][text]{
@ -224,11 +224,56 @@
\end{formulainternal}
}
% GROUP
\newenvironment{formulagroup}[1]{
\mqfqname@enter{#1}
\newcommand{\desc}[4][english]{
% language, name, description, definitions
\ifblank{##2}{}{\dt{##1}{##2}}
\ifblank{##3}{}{\dt[desc]{##1}{##3}}
\ifblank{##4}{}{\dt[defs]{##1}{##4}}
}
\par\noindent
\begin{minipage}{\textwidth} % using a minipage to now allow line breaks within the bigformula
\mqfqname@label
\par\noindent\ignorespaces
% \textcolor{gray}{\hrule}
% \vspace{0.5\baselineskip}
\textbf{
\raggedright
\GT{\fqname}
}
\IfTranslationExists{\fqname:desc}{
: {\color{fg1} \GT{\fqname:desc}}
}{}
\hfill
\par
}{
\IfTranslationExists{\fqname:defs}{%
\smartnewline
\noindent
\begingroup
\color{fg1}
\GT{\fqname:defs}
% \edef\temp{\GT{#1_defs}}
% \expandafter\StrSubstitute\expandafter{\temp}{:}{\\}
\endgroup
}{}
\end{minipage}
\separateEntries
% \textcolor{fg3}{\hrule}
% \vspace{0.5\baselineskip}
\ignorespacesafterend
\mqfqname@leave
}
\newenvironment{hiddenformula}[1]{
\begin{formulainternal}{#1}
\renewcommand{\eq}[1]{}
\renewcommand{\eqFLAlign}[2]{}
\renewcommand{\fig}[2][1.0]{}
\renewcommand{\fig}[2][]{}
\renewcommand{\ttxt}[2][#1:desc]{}
% 1: symbol
% 2: units

View File

@ -3,7 +3,6 @@
\RequirePackage{mqlua}
\RequirePackage{etoolbox}
\begin{luacode}
sections = sections or {}

View File

@ -171,7 +171,7 @@
% (temporarily change fqname to the \fqname:<env arg> to allow
% the use of \eng and \ger without the key parameter)
% [1]: key
\newenvironment{ttext}[1][desc]{%
\newenvironment{ttext}[1][ttext]{%
\mqfqname@enter{#1}%
}{%
\GT{\fqname}%

41
src/qm/misc.tex Normal file
View File

@ -0,0 +1,41 @@
\Section[
\eng{Other}
\ger{Sonstiges}
]{misc}
\begin{formula}{RWA}
\desc{Rotating Wave Approximation (RWS)}{Rapidly oscilating terms are neglected}{$\omega_\text{L}$ light frequency, $\omega_0$ transition frequency}
\desc[german]{Rotating Wave Approximation / Drehwellennäherung (RWS)}{Schnell oscillierende Terme werden vernachlässigt}{$\omega_\text{L}$ Frequenz des Lichtes, $\omega_0$ Übergangsfrequenz}
\eq{\Delta\omega \coloneq \abs{\omega_0 - \omega_\text{L}} \ll \abs{\omega_0 + \omega_\text{L}} \approx 2\omega_0}
\end{formula}
\begin{formula}{adiabatic_theorem} \absLabel
\desc{Adiabatic theorem}{}{}
\desc[german]{Adiabatentheorem}{}{}
\ttxt{
\eng{A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.}
\ger{Ein quantenmechanisches System bleibt in im derzeitigen Eigenzustand falls eine Störung langsam genug wirkt und der Eigenwert durch eine Lücke vom Rest des Spektrums getrennt ist.}
}
\end{formula}
\begin{formula}{slater_det}
\desc{Slater determinant}{Construction of a fermionic (antisymmetric) many-particle wave function from single-particle wave functions}{}
\desc[german]{Slater Determinante}{Konstruktion einer fermionischen (antisymmetrischen) Vielteilchen Wellenfunktion aus ein-Teilchen Wellenfunktionen}{}
\eq{
\Psi(q_1, \dots, q_N) = \frac{1}{\sqrt{N!}}
\begin{vmatrix}
\phi_a(q_1) & \phi_a(q_2) & \cdots & \phi_a(q_N) \\
\phi_b(q_1) & \phi_b(q_2) & \cdots & \phi_b(q_N) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_z(q_1) & \phi_z(q_2) & \cdots & \phi_z(q_N)
\end{vmatrix}
}
\end{formula}
\begin{formula}{de-borglie_wavelength}
\desc{De-Broglie wavelength}{Matter wavelength}{\ConstRef{planck}, \QtyRef{momentum}}
\desc[german]{De-Broglie Wellenlänge}{Materiewellenlänge}{}
\eq{\lambda = \frac{h}{p}}
\end{formula}

View File

@ -178,6 +178,7 @@
\eng{Schrödinger equation}
\ger{Schrödingergleichung}
]{se}
\abbrLink{se}{SE}
\begin{formula}{energy_operator}
\desc{Energy operator}{}{}
\desc[german]{Energieoperator}{}{}
@ -565,39 +566,3 @@
+ \frac{\hbar\Omega}{2} (\hat{a}\hat{\sigma^\dagger} + \hat{a}^\dagger \hat{\sigma})
}
\end{formula}
\Section[
\eng{Other}
\ger{Sonstiges}
]{other}
\begin{formula}{RWA}
\desc{Rotating Wave Approximation (RWS)}{Rapidly oscilating terms are neglected}{$\omega_\text{L}$ light frequency, $\omega_0$ transition frequency}
\desc[german]{Rotating Wave Approximation / Drehwellennäherung (RWS)}{Schnell oscillierende Terme werden vernachlässigt}{$\omega_\text{L}$ Frequenz des Lichtes, $\omega_0$ Übergangsfrequenz}
\eq{\Delta\omega \coloneq \abs{\omega_0 - \omega_\text{L}} \ll \abs{\omega_0 + \omega_\text{L}} \approx 2\omega_0}
\end{formula}
\begin{formula}{adiabatic_theorem} \absLabel
\desc{Adiabatic theorem}{}{}
\desc[german]{Adiabatentheorem}{}{}
\ttxt{
\eng{A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.}
\ger{Ein quantenmechanisches System bleibt in im derzeitigen Eigenzustand falls eine Störung langsam genug wirkt und der Eigenwert durch eine Lücke vom Rest des Spektrums getrennt ist.}
}
\end{formula}
\begin{formula}{slater_det}
\desc{Slater determinant}{Construction of a fermionic (antisymmetric) many-particle wave function from single-particle wave functions}{}
\desc[german]{Slater Determinante}{Konstruktion einer fermionischen (antisymmetrischen) Vielteilchen Wellenfunktion aus ein-Teilchen Wellenfunktionen}{}
\eq{
\Psi(q_1, \dots, q_N) = \frac{1}{\sqrt{N!}}
\begin{vmatrix}
\phi_a(q_1) & \phi_a(q_2) & \cdots & \phi_a(q_N) \\
\phi_b(q_1) & \phi_b(q_2) & \cdots & \phi_b(q_N) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_z(q_1) & \phi_z(q_2) & \cdots & \phi_z(q_N)
\end{vmatrix}
}
\end{formula}

View File

@ -407,7 +407,6 @@
\draw (0,0) to ++(2,0) to[cute inductor=$E_L$] ++(0,-3) to ++(-2,0);
\node at (1,-0.5) {$\Phi_\text{ext}$};
\end{tikzpicture}
\\\TODO{Ist beim Fluxonium noch die Voltage source dran?}
\end{formula}
\def\temp{$E_\text{C} = \frac{(2e)^2}{2C}, E_\text{L} = \frac{\varphi_0^2}{2L}, \delta_\text{s} = \frac{\varphi_\text{s}}{\varphi_0}$}

View File

@ -358,8 +358,8 @@
\entry{partition_sum} {$\Omega = \sum_n 1$ }
\entry{probability} {$p_n = \frac{1}{\Omega}$}
\entry{td_pot} {$S = \kB\ln\Omega$ }
\entry{pressure} {$p = T \pdv{S}{V}_{E,N}$}
\entry{entropy} {$S = \kB = \ln\Omega$ }
\rentry{\qtyRef{pressure}} {$p = T \pdv{S}{V}_{E,N}$}
\rentry{\qtyRef{entropy}} {$S = \kB = \ln\Omega$ }
\end{minipagetable}
\end{bigformula}
@ -371,8 +371,8 @@
\entry{partition_sum} {$Z = \sum_n \e^{-\beta E_n}$ }
\entry{probability} {$p_n = \frac{\e^{-\beta E_n}}{Z}$}
\entry{td_pot} {$F = - \kB T \ln Z$ }
\entry{pressure} {$p = -\pdv{F}{V}_{T,N}$ }
\entry{entropy} {$S = -\pdv{F}{T}_{V,N}$ }
\rentry{\qtyRef{pressure}} {$p = -\pdv{F}{V}_{T,N}$ }
\rentry{\qtyRef{entropy}} {$S = -\pdv{F}{T}_{V,N}$ }
\end{minipagetable}
\end{bigformula}
@ -382,10 +382,10 @@
\begin{minipagetable}{mvt}
\entry{const_variables} {$T$, $V$, $\mu$ }
\entry{partition_sum} {$Z_\text{g} = \sum_{n} \e^{-\beta(E_n - \mu N_n)}$ }
\entry{probability} {$p_n = \frac{\e^{-\beta (E_n - \mu N_n}}{Z_\text{g}}$}
\entry{probability} {$p_n = \frac{\e^{-\beta (E_n - \mu N_n)}}{Z_\text{g}}$}
\entry{td_pot} {$ \Phi = - \kB T \ln Z$ }
\entry{pressure} {$p = -\pdv{\Phi}{V}_{T,\mu} = -\frac{\Phi}{V}$ }
\entry{entropy} {$S = -\pdv{\Phi}{T}_{V,\mu}$ }
\rentry{\qtyRef{pressure}} {$p = -\pdv{\Phi}{V}_{T,\mu} = -\frac{\Phi}{V}$ }
\rentry{\qtyRef{entropy}} {$S = -\pdv{\Phi}{T}_{V,\mu}$ }
\end{minipagetable}
\end{bigformula}
@ -393,25 +393,25 @@
\desc{Isobaric-isothermal}{Gibbs ensemble}{}
% \desc[german]{Kanonisches Ensemble}{}{}
\begin{minipagetable}{npt}
\entry{const_variables} {$N$, $p$, $T$}
\entry{partition_sum} {}
\entry{probability} {$p_n ? \frac{\e^{-\beta(E_n + pV_n)}}{Z}$}
\entry{td_pot} {}
\entry{pressure} {}
\entry{entropy} {}
\entry{const_variables} {$N$, $p$, $T$}
\entry{partition_sum} {$Z = \sum_{n}\e^{-\beta(E_n+pV)}$}
\entry{probability} {$p_n = \frac{\e^{-\beta(E_n + pV_n-TS)}}{Z}$}
\entry{td_pot} {$G = -\kB \ln Z$}
\rentry{\qtyRef{volume}} {$V = \pdv{G}{V}_{T,N} $}
\rentry{\qtyRef{entropy}} {$S = - \pdv{G}{T}_{p,N}$}
\end{minipagetable}
\end{bigformula}
\begin{bigformula}{nph}
\desc{Isonthalpic-isobaric ensemble}{Enthalpy ensemble}{}
\desc{Isoenthalpic-isobaric ensemble}{Enthalpy ensemble}{}
% \desc[german]{Kanonisches Ensemble}{}{}
\begin{minipagetable}{nph}
\entry{const_variables} {}
\entry{partition_sum} {}
\entry{probability} {}
\entry{td_pot} {}
\entry{pressure} {}
\entry{entropy} {}
\entry{const_variables} {$N$, $p$, $H$}
% \entry{partition_sum} {$ $}
% \entry{probability} {$ $}
\entry{td_pot} {$H$}
% \rentry{\qtyRef{pressure}} {$ $}
% \rentry{\qtyRef{entropy}} {$ $}
\end{minipagetable}
\end{bigformula}
@ -443,7 +443,7 @@
\end{formula}
\begin{formula}{enthalpy}
\desc{Enthalpy}{}{}
\desc[german]{Enthalpie}{}{}
\desc[german]{Enthalpie}{früher "Wärmeinhalt"}{}
\eq{\d H(S,p,N) = T\d S +V\d p + \mu\d N}
\hiddenQuantity{H}{\joule}{s}
\end{formula}
@ -497,10 +497,16 @@
\desc{Phase space volume}{$3N$ sphere}{$N$ \#particles, $h^{3N}$ volume of a microstate, $N!$ particles are undifferentiable}
\desc[german]{}{$3N$ Kugel}{$N$ \#Teilchen, $h^{3N}$ Volumen eines Mikrozustandes, $N!$ Teilchen sind ununterscheidbar}
\eq{
\Omega(E) &= \int_V\d^3q_1 \sdots \int_V\d^3q_N \int \d^3p_1 \sdots \int\d^3p_N \frac{1}{N!\,h^{3N}} \Theta\left(E - \sum_{i} \frac{\vec{p_i}^2}{2m}\right) \\
&= \left(\frac{V}{N}\right)^N \left(\frac{4\pi m E}{3 h^2 N}\right)^{\frac{3N}{2}} \e^\frac{5N}{2}
\begin{split}
\Omega(E) &= \int_V\d^3q_1 \sdots \int_V\d^3q_N \int \d^3p_1 \sdots \int\d^3p_N \\
&\qquad\qquad \frac{1}{N!\,h^{3N}} \Theta\left(E - \sum_{i} \frac{\vec{p_i}^2}{2m}\right)
\end{split}\\
\begin{split}
&= \left(\frac{V}{N}\right)^N \left(\frac{4\pi m E}{3 h^2 N}\right)^{\frac{3N}{2}} \e^\frac{5N}{2}
\end{split}
}
\end{formula}
\begin{formula}{entropy}
\desc{Entropy}{}{}
\desc[german]{Entropie}{}{}
@ -833,13 +839,8 @@
\end{formula}
\begin{formula}{heat_capacity}
\desc{Heat capacity}{\gt{low_temps}}{differs from \fRef{td:TODO:petit_dulong}}
\desc[german]{Wärmecapacity}{\gt{low_temps}}{weicht ab vom \fRef{td:TODO:petit_dulong}}
\desc{Heat capacity}{\gt{low_temps}}{differs from \absRef{petit-dulong}}
\desc[german]{Wärmecapacity}{\gt{low_temps}}{weicht ab vom \absRef{petit-dulong}}
\fig{img/td_fermi_heat_capacity.pdf}
\eq{C_V = \pdv{E}{T}_V = N\kB \frac{\pi}{2} \left(\frac{T}{T_\text{F}}\right)}
\end{formula}
\TODO{Entartung und Sommerfeld}
\TODO{DULONG-PETIT Gesetz}

View File

@ -88,7 +88,7 @@
% 2: entry text
\newcommand{\entry}[2]{
\directlua{
table.insert(entries, {key = "\luaescapestring{##1}", value = [[\detokenize{##2}]]})
table.insert(entries, {key = \luastring{##1}, value = \luastringN{##2}})
}
}
% Translation entry
@ -100,7 +100,15 @@
##2
\edef\fqname{\tmpFqname}
\directlua{
table.insert(entries, {key = "\luaescapestring{##1}", value = "\\gt{" .. table_name .. ":\luaescapestring{##1}}"})
table.insert(entries, {key = \luastring{##1}, value = "\\gt{" .. table_name .. ":\luaescapestring{##1}}"})
}
}
% Entry with raw field, for example a reference
% 1: field text
% 2: entry text
\newcommand{\rentry}[2]{
\directlua{
table.insert(entries, {key = \luastring{##1}, value = \luastringN{##2}, raw = true})
}
}
}{
@ -115,7 +123,11 @@
\hline
\directlua{
for _, kv in ipairs(entries) do
tex.print("\\GT{" .. kv.key .. "} & " .. kv.value .. "\\\\")
if kv.raw == true then
tex.print(kv.key .. " & " .. kv.value .. "\\\\")
else
tex.print("\\GT{" .. kv.key .. "} & " .. kv.value .. "\\\\")
end
end
}
\hline

View File

@ -38,8 +38,8 @@
\newcommand\NA{N_\text{A}} % avogadro
\newcommand\EFermi{E_\text{F}} % fermi energy
\newcommand\Efermi{E_\text{F}} % fermi energy
\newcommand\Evalence{E_\text{v}} % val vand energy
\newcommand\Econd{E_\text{c}} % cond. band nergy
\newcommand\Evalence{E_\text{V}} % val vand energy
\newcommand\Econd{E_\text{C}} % cond. band nergy
\newcommand\Egap{E_\text{gap}} % band gap energy
\newcommand\Evac{E_\text{vac}} % vacuum energy
\newcommand\masse{m_\text{e}} % electron mass

View File

@ -1,4 +1,3 @@
\tikzset{
% bands
sc band con/.style={ draw=fg0, thick},
@ -8,9 +7,9 @@
sc fermi level/.style={draw=fg-aqua,dashed,thick},
% electron filled
sc occupied/.style={
pattern=north east lines,
pattern color=fg-aqua,
draw=none
pattern=north east lines,
pattern color=fg-aqua,
draw=none
},
% materials
sc p type/.style={ draw=none,fill=bg-yellow!20},
@ -18,25 +17,28 @@
sc metal/.style={ draw=none,fill=bg-purple!20},
sc oxide/.style={ draw=none,fill=bg-green!20},
sc separate/.style={ draw=fg0,dotted},
% crystal
miller dir/.style={->,color=fg-purple,draw=fg-purple, thick},
miller plane/.style={fill=bg-purple,fill opacity=0.6,draw=fg-purple,color=fg-purple},
}
\newcommand\drawDArrow[4]{
\draw[<->] (#1,#2) -- (#1,#3) node[midway,right] () {#4};
\draw[<->] (#1,#2) -- (#1,#3) node[midway,right] () {#4};
}
% Band bending down at L-R interface: BendH must be negative
% need two functions for different out= angles, or use if else on the sign of BendH
\newcommand\leftBandAuto[2]{
\directlua{
if \tkLBendH == 0 then
tex.print([[(\tkLx,#2) \ifblank{#1}{}{node[anchor=east] \detokenize{{#1}}} -- (\tkLW,#2) ]])
tex.print([[(\tkLx,#2) \ifblank{#1}{}{node[anchor=east] \detokenize{{#1}}} -- (\tkLW,#2) ]])
else
if \tkLBendH > 0 then
angle = 180+45
else
angle = 180-45
end
tex.sprint([[(\tkLx,#2) \ifblank{#1}{}{node[anchor=east] \detokenize{{#1}}}
-- (\tkLW-\tkLBendW,#2) to[out=0,in=]], angle, [[](\tkLW,#2+\tkLBendH)]])
if \tkLBendH > 0 then
angle = 180+45
else
angle = 180-45
end
tex.sprint([[(\tkLx,#2) \ifblank{#1}{}{node[anchor=east] \detokenize{{#1}}}
-- (\tkLW-\tkLBendW,#2) to[out=0,in=]], angle, [[](\tkLW,#2+\tkLBendH)]])
end
}
% % \ifthenelse{\equal{\tkLBendH}{0}}%
@ -48,21 +50,21 @@
}
\newcommand\rightBandAuto[2]{
\directlua{
if \tkRBendH == 0 then
%-- tex.print([[\rightBand{#1}{#2}]])
tex.print([[(\tkRx,#2) -- (\tkW,#2)]]) %-- \ifblank{#1}{}{node[anchor=west] \{#1\}}]])
else
if \tkRBendH > 0 then
angle = -45
else
angle = 45
end
tex.sprint([[(\tkRx,#2+\tkRBendH) to[out=]], angle, [[,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2) ]])
%-- \ifblank{#1}{}{node[anchor=west] \{#1\}} ]])
end
if "\luaescapestring{#1}" \string~= "" then
tex.print([[node[anchor=west] \detokenize{{#1}} ]])
end
if \tkRBendH == 0 then
%-- tex.print([[\rightBand{#1}{#2}]])
tex.print([[(\tkRx,#2) -- (\tkW,#2)]]) %-- \ifblank{#1}{}{node[anchor=west] \{#1\}}]])
else
if \tkRBendH > 0 then
angle = -45
else
angle = 45
end
tex.sprint([[(\tkRx,#2+\tkRBendH) to[out=]], angle, [[,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2) ]])
%-- \ifblank{#1}{}{node[anchor=west] \{#1\}} ]])
end
if "\luaescapestring{#1}" \string~= "" then
tex.print([[node[anchor=west] \detokenize{{#1}} ]])
end
}
% \ifthenelse{\equal{\tkRBendH}{0}}%
% {\rightBand{#1}{#2}}
@ -75,28 +77,28 @@
% }
}
\newcommand\leftBandDown[2]{
(\tkRx,#2+\tkRBendH) to[out=45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2)
\ifblank{#1}{}{node[anchor=west]{#1}}
(\tkRx,#2+\tkRBendH) to[out=45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2)
\ifblank{#1}{}{node[anchor=west]{#1}}
}
\newcommand\rightBandDown[2]{
(\tkRx,#2+\tkRBendH) to[out=45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2)
\ifblank{#1}{}{node[anchor=west]{#1}}
(\tkRx,#2+\tkRBendH) to[out=45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2)
\ifblank{#1}{}{node[anchor=west]{#1}}
}
% Band bending down at L-R interface: BendH must be positive
\newcommand\leftBandUp[2]{
(\tkLx,#2) \ifblank{#1}{}{node[anchor=east]{#1}}
-- (\tkLW-\tkLBendW,#2) to[out=0,in=180+45] (\tkLW,#2+\tkLBendH)
(\tkLx,#2) \ifblank{#1}{}{node[anchor=east]{#1}}
-- (\tkLW-\tkLBendW,#2) to[out=0,in=180+45] (\tkLW,#2+\tkLBendH)
}
\newcommand\rightBandUp[2]{
(\tkRx,#2+\tkRBendH) to[out=-45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2)
\ifblank{#1}{}{node[anchor=west]{#1}}
(\tkRx,#2+\tkRBendH) to[out=-45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2)
\ifblank{#1}{}{node[anchor=west]{#1}}
}
% Straight band
\newcommand\leftBand[2]{
(\tkLx,#2) \ifblank{#1}{}{node[anchor=east]{#1}} -- (\tkLW,#2)
(\tkLx,#2) \ifblank{#1}{}{node[anchor=east]{#1}} -- (\tkLW,#2)
}
\newcommand\rightBand[2]{
(\tkRx,#2) -- (\tkW,#2) \ifblank{#1}{}{node[anchor=west]{#1}}
(\tkRx,#2) -- (\tkW,#2) \ifblank{#1}{}{node[anchor=west]{#1}}
}
\newcommand\drawAxes{
@ -112,3 +114,70 @@
\pgfmathsetmacro{\tickwidth}{0.1}
\draw (-\tickwidth/2, #1) -- (\tickwidth/2,#1) node[anchor=east] {#2};
}
% 3D HEXAGON
% 1: name
% 2: center
% 3-5: a1-3
\newcommand{\setHexagonPoints}[5]{
\coordinate (#1-M) at #2;
\coordinate (#1-A) at ($#2+(xyz cylindrical cs:radius=#3,angle=0)$);
\coordinate (#1-C) at ($#2+(xyz cylindrical cs:radius=#4,angle=120)$);
\coordinate (#1-E) at ($#2+(xyz cylindrical cs:radius=#5,angle=240)$);
\coordinate (#1-D) at ($#2+(xyz cylindrical cs:radius=#3,angle=180)$);
\coordinate (#1-F) at ($#2+(xyz cylindrical cs:radius=#4,angle=300)$);
\coordinate (#1-B) at ($#2+(xyz cylindrical cs:radius=#5,angle=60)$);
}
\newcommand\drawHexagon[1]{ \draw (#1-A) -- (#1-B) -- (#1-C) -- (#1-D) -- (#1-E) -- (#1-F) -- (#1-A); }
\newcommand\drawHexagonBack[1]{ \draw (#1-A) -- (#1-B) -- (#1-C) -- (#1-D); }
\newcommand\drawHexagonFront[1]{ \draw (#1-D)-- (#1-E) -- (#1-F) -- (#1-A); }
% 1: r
% 2: z
\newcommand\drawHexagonCS[2]{
\draw[->] (0,0,0) -- ++(xyz cylindrical cs:radius=1.5*#1,angle=000) node[anchor=west]{$a_1$};
\draw[->] (0,0,0) -- ++(xyz cylindrical cs:radius=1.5*#1,angle=120) node[anchor=south east]{$a_2$};
\draw[->] (0,0,0) -- ++(xyz cylindrical cs:radius=1.5*#1,angle=240) node[anchor=north east]{$a_3$};
\draw[->] (0,0,0) -- ++(0,0,1.5*#2) node[anchor=south]{$a_4$};
}
% vertically connect two hexagons
\newcommand\drawHexagonConnectionsBack[2]{
\draw (#1-A) -- (#2-A);
\draw (#1-B) -- (#2-B);
\draw (#1-C) -- (#2-C);
\draw (#1-D) -- (#2-D);
}
\newcommand\drawHexagonConnectionsFront[2]{
\draw (#1-E) -- (#2-E);
\draw (#1-F) -- (#2-F);
}
% 3D RECTANGLES
% 1: name
% 2: center
% 3,4: w,l
\newcommand{\setRectPoints}[4]{
\coordinate (#1-M) at #2;
\coordinate (#1-A) at ($#2+(-#3*0.5, #4*0.5,0)$);
\coordinate (#1-B) at ($#2+(-#3*0.5,-#4*0.5,0)$);
\coordinate (#1-C) at ($#2+( #3*0.5,-#4*0.5,0)$);
\coordinate (#1-D) at ($#2+( #3*0.5, #4*0.5,0)$);
}
\newcommand\drawRect[1]{ \draw (#1-A) -- (#1-B) -- (#1-C) -- (#1-D) -- cycle; }
\newcommand\drawRectBack[1]{ \draw (#1-D) -- (#1-A) -- (#1-B) -- (#1-C); }
\newcommand\drawRectFront[1]{ \draw (#1-C)-- (#1-D); }
% Coordinate System
% 1: x,y
% 2: z
\newcommand\drawRectCS[2]{
\draw[->] (0,0,0) -- ++(#1, 0, 0) node[anchor=west]{$x$};
\draw[->] (0,0,0) -- ++( 0,#1, 0) node[anchor=south east]{$y$};
\draw[->] (0,0,0) -- ++( 0, 0,#2) node[anchor=south]{$z$};
}
% vertically connect two rects
\newcommand\drawRectConnectionsBack[2]{
\draw (#1-A) -- (#2-A);
\draw (#1-B) -- (#2-B);
}
\newcommand\drawRectConnectionsFront[2]{
\draw (#1-C) -- (#2-C);
\draw (#1-D) -- (#2-D);
}