small changes
This commit is contained in:
parent
ac4ff1d16b
commit
847ad7e93b
@ -20,54 +20,3 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{Lattice vibrations}
|
||||
\ger{Gitterschwingungen}
|
||||
]{vib}
|
||||
|
||||
\begin{formula}{dispersion_1atom_basis}
|
||||
\desc{Phonon dispersion of a lattice with a one-atom basis}{same as the dispersion of a linear chain}{$C_n$ force constants between layer $s$ and $s+n$, $M$ \qtyRef{mass} of the reference atom, $a$ \qtyRef{lattice_constant}, $q$ phonon \qtyRef{wavevector}, $u$ Ansatz for the atom displacement}
|
||||
\desc[german]{Phonondispersion eines Gitters mit zweiatomiger Basis}{gleich der Dispersion einer linearen Kette}{$C_n$ Kraftkonstanten zwischen Ebene $s$ und $s+n$, $M$ \qtyRef{mass} des Referenzatoms, $a$ \qtyRef{lattice_constant}, $q$ Phonon \qtyRef{wavevector}, $u$ Ansatz für die Atomauslenkung}
|
||||
\begin{gather}
|
||||
\omega^2 = \frac{4C_1}{M}\left[\sin^2 \left(\frac{qa}{2}\right) + \frac{C2}{C1} \sin^2(qa)\right] \\
|
||||
\intertext{\GT{with}}
|
||||
u_{s+n} = U\e^{-i \left[\omega t - q(s+n)a \right]}
|
||||
\end{gather}
|
||||
\newFormulaEntry
|
||||
\fig{img/cm_phonon_dispersion_one_atom_basis.pdf}
|
||||
\end{formula}
|
||||
\begin{formula}{dispersion_2atom_basis}
|
||||
\desc{Phonon dispersion of a lattice with a two-atom basis}{}{$C$ force constant between layers, $M_i$ \qtyRef{mass} of the basis atoms, $a$ \qtyRef{lattice_constant}, $q$ phonon \qtyRef{wavevector}, $u, v$ Ansatz for the displacement of basis atom 1 and 2, respectively}
|
||||
\desc[german]{Phonondispersion eines Gitters mit einatomiger Basis}{}{$C$ Kraftkonstanten zwischen Ebene $s$ und $s+n$, $M_i$ \qtyRef{mass} der Basisatome, $a$ \qtyRef{lattice_constant}, $q$ Phonon \qtyRef{wavevector}, $u, v$ jeweils Ansatz für die Atomauslenkung des Basisatoms 1 und 2}
|
||||
\begin{gather}
|
||||
\omega^2_{\txa,\txo} = C \left(\frac{1}{M_1}+\frac{1}{M_2}\right) \mp C \sqrt{\left(\frac{1}{M_1}+\frac{1}{M_2}\right)^2 - \frac{4}{M_1M_2} \sin^2 \left(\frac{qa}{2}\right)}
|
||||
\intertext{\GT{with}}
|
||||
u_{s} = U\e^{-i \left(\omega t - qsa \right)}, \quad
|
||||
v_{s} = V\e^{-i \left(\omega t - qsa \right)}
|
||||
\end{gather}
|
||||
\newFormulaEntry
|
||||
\fig{img/cm_phonon_dispersion_two_atom_basis.pdf}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{branches}
|
||||
\desc{Vibration branches}{}{}
|
||||
\desc[german]{Vibrationsmoden}{}{}
|
||||
\ttxt{\eng{
|
||||
\textbf{Acoustic}: 3 modes (1 longitudinal, 2 transversal), the two basis atoms oscillate in phase.
|
||||
\\\textbf{Optical}: 3 modes, the two basis atoms oscillate in opposition. A dipole moment is created that can couple to photons.
|
||||
}\ger{
|
||||
\textbf{Akustisch}: 3 Moden (1 longitudinal, 2 transversal), die zwei Basisatome schwingen in Phase.
|
||||
\\ \textbf{Optisch}: 3 Moden, die zwei Basisatome schwingen gegenphasig. Das dadurch entstehende Dipolmoment erlaubt die Wechselwirkung mit Photonen.
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Debye model}
|
||||
\ger{Debye-Modell}
|
||||
]{debye}
|
||||
\begin{ttext}
|
||||
\eng{Atoms behave like coupled \fRef[quantum harmonic oscillators]{sec:qm:hosc}. The finite sample size leads to periodic boundary conditio. The finite sample size leads to periodic boundary conditions for the vibrations.}
|
||||
\ger{Atome verhalten sich wie gekoppelte \fRef[quantenmechanische harmonische Oszillatoren]{sec:qm:hosc}. Die endliche Ausdehnung des Körpers führt zu periodischen Randbedingungen. }
|
||||
\end{ttext}
|
||||
|
||||
|
||||
|
@ -17,7 +17,7 @@
|
||||
\eng[bravais_lattices]{Bravais lattices}
|
||||
\ger[bravais_lattices]{Bravais Gitter}
|
||||
|
||||
\newcommand\bvimg[1]{\begin{center}\includegraphics[width=0.1\textwidth]{img/bravais/#1.pdf}\end{center}}
|
||||
\newcommand\bvimg[1]{\begin{center}\includegraphics[width=0.1\textwidth]{img_static/bravais/#1.pdf}\end{center}}
|
||||
\renewcommand\tabularxcolumn[1]{m{#1}}
|
||||
\newcolumntype{Z}{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}X}
|
||||
|
||||
@ -170,18 +170,34 @@
|
||||
\begin{formula}{zincblende}
|
||||
\desc{Zincblende lattice}{}{}
|
||||
\desc[german]{Zinkblende-Struktur}{}{}
|
||||
\ttxt{
|
||||
\includegraphics[width=0.5\textwidth]{img/cm_zincblende.png}
|
||||
\eng{Like \fRef{:::diamond} but with different species on each basis}
|
||||
\ger{Wie \fRef{:::diamond} aber mit unterschiedlichen Spezies auf den Basen}
|
||||
\fsplit{
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{img/cm_crystal_zincblende.png}
|
||||
}{
|
||||
\ttxt{
|
||||
\eng{Like \fRef{:::diamond} but with different species on each basis}
|
||||
\ger{Wie \fRef{:::diamond} aber mit unterschiedlichen Spezies auf den Basen}
|
||||
}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{rocksalt}
|
||||
\desc{Rocksalt structure}{\elRef{Na}\elRef{Cl}}{}
|
||||
\desc[german]{Kochsalz-Struktur}{}{}
|
||||
\fsplit{
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{img/cm_crystal_NaCl.png}
|
||||
}{
|
||||
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{wurtzite}
|
||||
\desc{Wurtzite structure}{hP4}{}
|
||||
\desc[german]{Wurtzite-Struktur}{hP4}{}
|
||||
\ttxt{
|
||||
\includegraphics[width=0.5\textwidth]{img/cm_wurtzite.png}
|
||||
\TODO{Placeholder}
|
||||
\fsplit{
|
||||
\centering
|
||||
\includegraphics[width=0.9\textwidth]{img/cm_crystal_wurtzite.png}
|
||||
}{
|
||||
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
@ -27,6 +27,7 @@
|
||||
Has a single critical magnetic field, $\Bcth$.
|
||||
\\$B < \Bcth$: \fRef{:::meissner_effect}
|
||||
\\$B > \Bcth$: Normal conductor
|
||||
\\ Very small usable current density because current only flows within the \fRef{cm:super:london:penetration_depth} of the surface.
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
@ -38,6 +39,7 @@
|
||||
\\$B < B_\text{c1}$: \fRef{:::meissner_effect}
|
||||
\\$B_\text{c1} < B < B_\text{c2}$: \fRef{:::shubnikov_phase}
|
||||
\\$B > B_\text{c2}$: Normal conductor
|
||||
\\ In \fRef{:::shubnikov_phase} larger usable current density because current flows within the \fRef{cm:super:london:penetration_depth} of the surface and the penetrating flux lines.
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
@ -75,7 +77,9 @@
|
||||
\desc{Shubnikov phase}{in \fRef{::type2}}{}
|
||||
\desc[german]{Shubnikov-Phase}{}{}
|
||||
\ttxt{\eng{
|
||||
|
||||
Mixed phase in which some magnetic flux penetrates the superconductor.
|
||||
}\ger{
|
||||
Gemischte Phase in der der Supraleiter teilweise von magnetischem Fluss durchdrungen werden kann.
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
@ -92,9 +96,6 @@
|
||||
\eng{London Theory}
|
||||
\ger{London-Theorie}
|
||||
]{london}
|
||||
\begin{ttext}
|
||||
\end{ttext}
|
||||
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
@ -148,7 +149,27 @@
|
||||
\eq{\lambda_\txL(T) = \lambda_\txL(0) \frac{1}{\sqrt{1- \left(\frac{T}{T_\txc}\right)^4}}}
|
||||
\end{formula}
|
||||
|
||||
\TODO{macroscopic wavefunction approach, energy-phase relation, current-phase relation}
|
||||
\Subsubsection[
|
||||
\eng{Macroscopic wavefunction}
|
||||
\ger{Makroskopische Wellenfunktion}
|
||||
]{macro}
|
||||
\begin{formula}{ansatz}
|
||||
\desc{Ansatz}{}{}
|
||||
\desc[german]{Ansatz}{}{}
|
||||
\ttxt{\eng{Alternative derivation of London equations by assuming a macroscopic wavefunction which is uniform in space}\ger{Alternative Herleitung der London-Gleichungen durch Annahme einer makroskopischen Wellenfunktion, welche nicht Ortsabhängig ist}}
|
||||
\eq{\Psi(\vecr,t) = \Psi_0(\vecr,t) \e^{\theta(\vecr,t)}}
|
||||
\end{formula}
|
||||
\begin{formula}{energy-phase_relation}
|
||||
\desc{Energy-phase relation}{}{$\theta$ \qtyRef{phase}, $m_\txs$/$n_\txs$/$q_\txs$ \qtyRef{mass}/\qtyRef{charge_carrier_density}/\qtyRef{charge} \GT{of_sc_particle}, \QtyRef{current_density}, $\phi_\text{el}$ \qtyRef{electric_scalar_potential}, \QtyRef{chemical_potential}}
|
||||
\desc[german]{Energie-Phase Beziehung}{}{}
|
||||
\eq{\hbar \pdv{\theta(\vecr,t)}{t} = - \left(\frac{m_\txs}{n_\txs^2 q_\txs^2} \vecj_\txs^2(\vecr,t) + q_\txs\phi_\text{el}(\vecr,t) + \mu(\vecr,t)\right)}
|
||||
\end{formula}
|
||||
\begin{formula}{current-phase_relation}
|
||||
\desc{Current-phase relation}{}{$\theta$ \qtyRef{phase}, $m_\txs$/$n_\txs$/$q_\txs$ \qtyRef{mass}/\qtyRef{charge_carrier_density}/\qtyRef{charge} \GT{of_sc_particle}, \QtyRef{current_density}, \QtyRef{magnetic_vector_potential}}
|
||||
\desc[german]{Strom-Phase Beziehung}{}{}
|
||||
\eq{\vecj_\txs(\vecr,t) = \frac{q_\txs^2 n_\txs(\vecr,t)}{m_\txs} \left(\frac{\hbar}{q_\txs} \Grad\theta(\vecr,t) - \vecA(\vecr,t)\right) }
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Josephson Effect}
|
||||
@ -167,8 +188,8 @@
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{coupling_energy}
|
||||
\desc{Josephson coupling energy}{}{$A$ junction \qtyRef{area}, \ConstRef{flux_quantum}, \fRef[critical current density]{::1st_relation}, $\phi$ phase differnce accross junction}
|
||||
\desc[german]{Josephson}{}{$A$ junction \qtyRef{area}, \ConstRef{flux_quantum}, \fRef[kritische Stromdichte]{::1st_relation}, $\phi$ Phasendifferenz zwischen den Supraleitern}
|
||||
\desc{Josephson coupling energy}{}{$A$ junction \qtyRef{area}, \ConstRef{flux_quantum}, $\vecj_\txc$ \fRef[critical current density]{::1st_relation}, $\phi$ phase differnce accross junction}
|
||||
\desc[german]{Josephson}{}{$A$ junction \qtyRef{area}, \ConstRef{flux_quantum}, $\vecj_\txc$ \fRef[kritische Stromdichte]{::1st_relation}, $\phi$ Phasendifferenz zwischen den Supraleitern}
|
||||
\eq{\frac{E_\txJ}{A} = \frac{\Phi_0 \vecj_\txc}{2\pi}(1-\cos\phi)}
|
||||
\end{formula}
|
||||
|
||||
@ -217,7 +238,7 @@
|
||||
% \desc[german]{}{}{}
|
||||
\begin{multline}
|
||||
g_\txs = g_\txn + \alpha \abs{\Psi}^2 + \frac{1}{2}\beta \abs{\Psi}^4 +
|
||||
\\ \frac{1}{2\mu_0}(\vecB_\text{ext} -\vecB_\text{inside})^2 + \frac{1}{2m_\txs} \abs{ \left(\frac{\hbar}{t}\Grad - q_\txs \vecA\right)\Psi}^2 + \dots
|
||||
\\ \frac{1}{2\mu_0}(\vecB_\text{ext} -\vecB_\text{inside})^2 + \frac{1}{2m_\txs} \abs{ \left(-\I\hbar\Grad - q_\txs \vecA\right)\Psi}^2 + \dots
|
||||
\end{multline}
|
||||
\end{formula}
|
||||
|
||||
@ -254,9 +275,9 @@
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{boundary_energy}
|
||||
\desc{Boundary energy}{}{$\Delta E_\text{boundary}$ \TODO{TODO}, $\Delta E_\text{cond}$ \fRef{:::condensation_energy}}
|
||||
\desc[german]{Grenzflächenenergie}{}{}
|
||||
\eq{\Delta E_\text{boundary} = \Delta E_\text{con} - \Delta E_\txB = (\xi_\gl - \lambda) \frac{B_\text{c,th}^2}{2\mu_0}}
|
||||
\desc{Boundary energy}{Negative for \fRef{:::type2}, positive for \fRef{:::type1}}{$\Delta E_\text{B}$ energy gained by expelling the external magnetic field, $\Delta E_\text{cond}$ \fRef{:::condensation_energy}}
|
||||
\desc[german]{Grenzflächenenergie}{Negativ für \fRef{:::type2}, positiv für \fRef{:::type1}}{}
|
||||
\eq{\Delta E_\text{boundary} = \Delta E_\text{con} - \Delta E_\txB = (\xi_\gl - \lambda_\gl) \frac{B_\text{c,th}^2}{2\mu_0}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{parameter}
|
||||
@ -276,14 +297,20 @@
|
||||
\abs{\Psi(x)}^2 &= \frac{n_\txs(x)}{n_\txs(\infty)} = \tanh^2 \left(\frac{x}{\sqrt{2}\xi_\gl}\right) \\
|
||||
B_z(x) &= B_z(0) \Exp{-\frac{x}{\lambda_\gl}}
|
||||
}
|
||||
\fig{img/cm_sc_n_s_boundary.pdf}
|
||||
\TODO{plot, slide 106}
|
||||
\fig{img/cm_super_n_s_boundary.pdf}
|
||||
% \TODO{plot, slide 106}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{bcth}
|
||||
\desc{Thermodynamic critical field}{}{}
|
||||
\desc[german]{Thermodynamisches kritisches Feld}{}{}
|
||||
\eq{\Bcth = \frac{\Phi_0}{2\pi \sqrt{2} \xi_\gl \lambda_\gl}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{bc1}
|
||||
\desc{Lower critical magnetic field}{Above $B_\text{c1}$, flux starts to penetrate the superconducting phase}{\ConstRef{flux_quantum}, $\lambda\gl$ \fRef{::penetration_depth} $\kappa$ \fRef{::parameter}}
|
||||
\desc{Lower critical magnetic field}{Above $B_\text{c1}$, flux starts to penetrate the superconducting phase}{\ConstRef{flux_quantum}, $\lambda_\gl$ \fRef{::penetration_depth} $\kappa$ \fRef{::parameter}}
|
||||
\desc[german]{Unteres kritisches Magnetfeld}{Über $B_\text{c1}$ dringt erstmals Fluss in die supraleitende Phase ein}{}
|
||||
\eq{B_\text{c1} = \frac{\Phi_0}{4\pi\lambda\gl^2}(\ln\kappa+0.08) = \frac{1}{\sqrt{2}\kappa}(\ln\kappa + 0.08) \Bcth}
|
||||
\eq{B_\text{c1} = \frac{\Phi_0}{4\pi\lambda_\gl^2}(\ln\kappa+0.08) = \frac{1}{\sqrt{2}\kappa}(\ln\kappa + 0.08) \Bcth}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{bc2}
|
||||
@ -297,7 +324,6 @@
|
||||
% \desc[german]{}{}{}
|
||||
\ttxt{\eng{
|
||||
Superconductor wavefunction extends into the normal conductor or isolator
|
||||
\TODO{clarify}
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
@ -343,6 +369,7 @@
|
||||
\end{itemize}
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\def\BCS{{\text{BCS}}}
|
||||
\begin{formula}{hamiltonian}
|
||||
\desc{BCS Hamiltonian}{for $N$ interacting electrons}{
|
||||
@ -388,11 +415,11 @@
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{gap_at_t0}
|
||||
\desc{BCS Gap at $T=0$}{}{\QtyRef{debye_frequency}, $V_0$ \fRef{::potential}, $D$ \qtyRef{dos}}
|
||||
\desc{BCS Gap at $T=0$}{}{\QtyRef{debye_frequency}, $V_0$ \fRef{::potential}, $D$ \qtyRef{dos}, \TODO{gamma}}
|
||||
\desc[german]{BCS Lücke bei $T=0$}{}{}
|
||||
\eq{
|
||||
\Delta(T=0) &= \frac{\hbar\omega_\txD}{\Sinh{\frac{2}{V_0\.D(E_\txF)}}} \approx 2\hbar \omega_\txD\\
|
||||
\frac{\Delta(T=0)}{\kB T_\txc} &= = \frac{\pi}{\e^\gamma} = 1.764
|
||||
\frac{\Delta(T=0)}{\kB T_\txc} &= \frac{\pi}{\e^\gamma} = 1.764
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
@ -400,30 +427,53 @@
|
||||
\begin{formula}{cooper_pair_binding_energy}
|
||||
\desc{Binding energy of Cooper pairs}{}{$E_\txF$ \absRef{fermi_energy}, \QtyRef{debye_frequency}, $V_0$ retarded potential, $D$ \qtyRef{dos}}
|
||||
\desc[german]{Bindungsenergie von Cooper-Paaren}{}{}
|
||||
\eq{E \approx 2E_\txF - 2\hbar\omega_\txD \Exp{-\frac{4}{V_0D(E_t\txF)}}}
|
||||
\eq{E \approx 2E_\txF - 2\hbar\omega_\txD \Exp{-\frac{4}{V_0 D(E_\txF)}}}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Excitations in BCS}
|
||||
% \ger{}
|
||||
\eng{Excitations and finite temperatures}
|
||||
\ger{Anregungen und endliche Temperatur}
|
||||
]{excite}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
\ttxt{\eng{
|
||||
The ground state consists of \fRef{cm:super:micro:cooper_pairs} and the excited state of Bogoliubov quasi-particles (electron-hole pairs).
|
||||
The states are separated by an energy gap $\Delta$.
|
||||
}\ger{
|
||||
Den Grundzustand bilden \fRef{cm:super:micro:cooper_pairs} und den angeregten Zustands Bogoloiubons (Elektron-Loch Quasipartikel).
|
||||
Die Zustände sind durch eine Energielücke $\Delta$ getrennt.
|
||||
}}
|
||||
\end{formula}
|
||||
\begin{formula}{bogoliubov-valatin}
|
||||
\desc{Bogoliubov-Valatin transformation}{Diagonalization of the \fRef{cm:super:micro:bcs:hamiltonian} to derive excitation energies}{}
|
||||
\desc{Bogoliubov-Valatin transformation}{Diagonalization of the \fRef{cm:super:micro:bcs:hamiltonian} to derive excitation energies}{
|
||||
$\xi_\veck = \epsilon_\veck-\mu$ Energy relative to the \qtyRef{chemical_potential},
|
||||
\\ $E_\veck$ \fRef{::excitation_energy},
|
||||
\\ $\Delta$ Gap
|
||||
\\ $g_\veck$ \fRef{::pairing_amplitude},
|
||||
\\ $\alpha / \beta$ create and destroy symmetric/antisymmetric Bogoliubov quasiparticles
|
||||
}
|
||||
\desc[german]{Bogoliubov-Valatin transformation}{}{}
|
||||
\eq{
|
||||
\hat{H}_\BCS - N\mu = \sum_\veck \big[\xi_\veck - E_\veck + \Delta_\veck g_\veck^*\big] + \sum_\veck \big[E_\veck a_\veck^\dagger a_\veck + E_\veck \beta_{-\veck}^\dagger \beta_{-\veck}\big]
|
||||
\hat{H}_\BCS - N\mu = \sum_\veck \big[\xi_\veck - E_\veck + \Delta_\veck g_\veck^*\big] + \sum_\veck \big[E_\veck \alpha_\veck^\dagger \alpha_\veck + E_\veck \beta_{-\veck}^\dagger \beta_{-\veck}\big]
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{pairing_amplitude}
|
||||
\desc{Pairing amplitude}{Excitation energy}{\TODO{gamma}}
|
||||
\desc[german]{Paarungsamplitude}{Anregungsenergie}{}
|
||||
\desc{Pairing amplitude}{}{}
|
||||
\desc[german]{Paarungsamplitude}{}{}
|
||||
\eq{g_\veck \equiv \Braket{\hat{c}_{-\veck\downarrow} \hat{c}_{\veck\uparrow}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{excitation_energy}
|
||||
\desc{Excitation energy}{}{}
|
||||
\desc[german]{Anregungsenergie}{}{}
|
||||
\eq{E_\veck = \pm \sqrt{\xi^2_\veck + \abs{\Delta_\veck}^2}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{coherence_factors_energy}
|
||||
\desc{Energy dependance of the \fRef{:::coherence_factors}}{}{$E_\veck$ \fRef{::pairing_amplitude}, \GT{see} \fRef{:::coherence_facotrs}}
|
||||
\desc[german]{Energieabhängigkeit der \fRef{:::coherence_factors}}{}{}
|
||||
\desc{Energy dependance of the \fRef{:::bcs:coherence_factors}}{}{$E_\veck$ \fRef{::pairing_amplitude}, \GT{see} \fRef{:::bcs:coherence_factors}}
|
||||
\desc[german]{Energieabhängigkeit der \fRef{:::bcs:coherence_factors}}{}{}
|
||||
\eq{
|
||||
\abs{u_\veck}^2 &= \frac{1}{2} \left(1+\frac{\xi_\veck}{E_\veck}\right) \\
|
||||
\abs{v_\veck}^2 &= \frac{1}{2} \left(1-\frac{\xi_\veck}{E_\veck}\right) \\
|
||||
@ -431,17 +481,18 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\begin{formula}{gap_equation}
|
||||
\desc{BCS-gap equation}{}{}
|
||||
\desc[german]{BCS Energielückengleichung}{}{}
|
||||
\eq{\Delta_\veck^* = -\sum_\veck^\prime V_{\veck,\veck^\prime} \frac{\Delta_{\veck^\prime}}{2E_\veck} \tanh \left(\frac{E_{\veck^\prime}}{2\kB T}\right)}
|
||||
\desc{Self-consistend gap equation}{}{}
|
||||
\desc[german]{Selbstkonsitente Energielückengleichung}{}{}
|
||||
\eq{\Delta_\veck^* = -\sum_{\veck^\prime} V_{\veck,\veck^\prime} \frac{\Delta_{\veck^\prime}}{2E_\veck} \tanh \left(\frac{E_{\veck^\prime}}{2\kB T}\right)}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\begin{formula}{gap_t}
|
||||
\desc{Temperature dependence of the BCS gap}{}{}
|
||||
\desc[german]{Temperaturabhängigkeit der BCS-Lücke}{}{}
|
||||
\eq{\frac{\Delta(T)}{\Delta(T=0)} \approx 1.74 \frac{1}{\sqrt{1-\frac{T}{T_\txC}}}}
|
||||
\eq{\frac{\Delta(T)}{\Delta(T=0)} \approx 1.74 \sqrt{1-\frac{T}{T_\txC}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{dos}
|
||||
@ -456,8 +507,40 @@
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{Bcth_temp}
|
||||
\desc{Temperature dependance of the crictial magnetic field}{}{}
|
||||
\desc[german]{Temperaturabhängigkeit des kritischen Magnetfelds}{}{}
|
||||
\desc{Temperature dependance of the crictial magnetic field}{Jump at $T_\txc$, then exponential decay}{}
|
||||
\desc[german]{Temperaturabhängigkeit des kritischen Magnetfelds}{Sprung bei $T_\txc$, denn exponentieller Abfall}{}
|
||||
\eq{ \Bcth(T) = \Bcth(0) \left[1- \left(\frac{T}{T_\txc}\right)^2 \right] }
|
||||
\TODO{empirical relation, relate to BCS}
|
||||
% \TODO{empirical relation, relate to BCS}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{heat_capacity}
|
||||
\desc{Heat capacity in superconductors}{}{}
|
||||
\desc[german]{Wärmekapazität in Supraleitern}{}{}
|
||||
\fsplit{
|
||||
\fig{img/cm_super_heat_capacity.pdf}
|
||||
}{
|
||||
\eq{c_\txs \propto T^{-\frac{3}{2}} \e^{\frac{\Delta(0)}{\kB T}}}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Flux pinning}
|
||||
\ger{Haftung von Flusslinien}
|
||||
]{pinning}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
\ttxt{\eng{
|
||||
If a current flows in a \fRef{cm:super:type2}s in the \fRef{cm:super:shubnikov_phase} perpendicular to the penetrating flux lines,
|
||||
the lines experience a Lorentz force. This leads to ohmic behaviour of the superconductor.
|
||||
The flux lines can be pinned to defects, in which the superconducting order parameter is reduced.
|
||||
To move the flux line out of the defect, work would have to be spent overcoming the \fRef{cm:super:micro:pinning:potential}.
|
||||
This restores the superconductivity.
|
||||
}\ger{
|
||||
Wenn ein Strom in einem \fRef{cm:super:type2}s in der \fRef{cm:super:shubnikov_phase} senkrecht zu den eindringenden Flusslinien fließt, erfahren die Linien eine Lorentzkraft.
|
||||
Dies führt zu einem ohmschen Verhalten des Supraleiters.
|
||||
Die Flusslinien können an Defekten festgehalten werden, in denen der supraleitende Ordnungsparameter reduziert ist.
|
||||
Um die Flusslinie aus dem Defekt zu bewegen, müsste Arbeit aufgewendet werden, um das \fRef{cm:super:micro:pinning:potential} zu überwinden.
|
||||
Dies stellt die Supraleitfähigkeit wieder her.
|
||||
}}
|
||||
\end{formula}
|
||||
|
@ -55,7 +55,7 @@
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
% \includegraphics[width=0.8\textwidth]{img/cm_amf.pdf}
|
||||
% \includegraphics[width=0.8\textwidth]{img_static/cm_amf.pdf}
|
||||
% \caption{\cite{Bian2021}}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
@ -97,7 +97,7 @@
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{img/cm_amf.pdf}
|
||||
\includegraphics[width=0.8\textwidth]{img_static/cm_amf.pdf}
|
||||
\caption{\cite{Bian2021}}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
@ -122,7 +122,7 @@
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{img/cm_stm.pdf}
|
||||
\includegraphics[width=0.8\textwidth]{img_static/cm_stm.pdf}
|
||||
\caption{\cite{Bian2021}}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
@ -168,7 +168,7 @@
|
||||
\end{minipagetable}
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/cm_cvd_english.pdf}
|
||||
\includegraphics[width=\textwidth]{img_static/cm_cvd_english.pdf}
|
||||
\end{minipage}
|
||||
\end{bigformula}
|
||||
|
||||
|
102
src/cm/vib.tex
Normal file
102
src/cm/vib.tex
Normal file
@ -0,0 +1,102 @@
|
||||
\Section[
|
||||
\eng{Lattice vibrations}
|
||||
\ger{Gitterschwingungen}
|
||||
]{vib}
|
||||
|
||||
\begin{formula}{dispersion_1atom_basis}
|
||||
\desc{Phonon dispersion of a lattice with a one-atom basis}{same as the dispersion of a linear chain}{$C_n$ force constants between layer $s$ and $s+n$, $M$ \qtyRef{mass} of the reference atom, $a$ \qtyRef{lattice_constant}, $q$ phonon \qtyRef{wavevector}, $u$ Ansatz for the atom displacement}
|
||||
\desc[german]{Phonondispersion eines Gitters mit zweiatomiger Basis}{gleich der Dispersion einer linearen Kette}{$C_n$ Kraftkonstanten zwischen Ebene $s$ und $s+n$, $M$ \qtyRef{mass} des Referenzatoms, $a$ \qtyRef{lattice_constant}, $q$ Phonon \qtyRef{wavevector}, $u$ Ansatz für die Atomauslenkung}
|
||||
\begin{gather}
|
||||
\omega^2 = \frac{4C_1}{M}\left[\sin^2 \left(\frac{qa}{2}\right) + \frac{C2}{C1} \sin^2(qa)\right] \\
|
||||
\intertext{\GT{with}}
|
||||
u_{s+n} = U\e^{-i \left[\omega t - q(s+n)a \right]}
|
||||
\end{gather}
|
||||
\newFormulaEntry
|
||||
\fig{img/cm_vib_dispersion_one_atom_basis.pdf}
|
||||
\end{formula}
|
||||
\begin{formula}{dispersion_2atom_basis}
|
||||
\desc{Phonon dispersion of a lattice with a two-atom basis}{}{$C$ force constant between layers, $M_i$ \qtyRef{mass} of the basis atoms, $a$ \qtyRef{lattice_constant}, $q$ phonon \qtyRef{wavevector}, $u, v$ Ansatz for the displacement of basis atom 1 and 2, respectively}
|
||||
\desc[german]{Phonondispersion eines Gitters mit einatomiger Basis}{}{$C$ Kraftkonstanten zwischen Ebene $s$ und $s+n$, $M_i$ \qtyRef{mass} der Basisatome, $a$ \qtyRef{lattice_constant}, $q$ Phonon \qtyRef{wavevector}, $u, v$ jeweils Ansatz für die Atomauslenkung des Basisatoms 1 und 2}
|
||||
\begin{gather}
|
||||
\omega^2_{\txa,\txo} = C \left(\frac{1}{M_1}+\frac{1}{M_2}\right) \mp C \sqrt{\left(\frac{1}{M_1}+\frac{1}{M_2}\right)^2 - \frac{4}{M_1M_2} \sin^2 \left(\frac{qa}{2}\right)}
|
||||
\intertext{\GT{with}}
|
||||
u_{s} = U\e^{-i \left(\omega t - qsa \right)}, \quad
|
||||
v_{s} = V\e^{-i \left(\omega t - qsa \right)}
|
||||
\end{gather}
|
||||
\newFormulaEntry
|
||||
\fig{img/cm_vib_dispersion_two_atom_basis.pdf}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{branches}
|
||||
\desc{Vibration branches}{}{}
|
||||
\desc[german]{Vibrationsmoden}{}{}
|
||||
\ttxt{\eng{
|
||||
\textbf{Acoustic}: 3 modes (1 longitudinal, 2 transversal), the two basis atoms oscillate in phase.
|
||||
\\\textbf{Optical}: 3 modes, the two basis atoms oscillate in opposition. A dipole moment is created that can couple to photons.
|
||||
}\ger{
|
||||
\textbf{Akustisch}: 3 Moden (1 longitudinal, 2 transversal), die zwei Basisatome schwingen in Phase.
|
||||
\\ \textbf{Optisch}: 3 Moden, die zwei Basisatome schwingen gegenphasig. Das dadurch entstehende Dipolmoment erlaubt die Wechselwirkung mit Photonen.
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Einstein model}
|
||||
\ger{Einstein-Modell}
|
||||
]{einstein}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
\ttxt{\eng{
|
||||
All lattice vibrations have the \fRef[same frequency]{:::frequency}.
|
||||
Underestimates the \fRef{:::heat_capacity} for low temperatures.
|
||||
}\ger{
|
||||
Alle Gittereigenschwingungen haben die \fRef[selbe Frequenz]{:::frequency}
|
||||
Sagt zu kleine \fRef[Wärmekapazitäten]{:::heat_capacity} für tiefe Temperaturen voraus.
|
||||
}}
|
||||
\end{formula}
|
||||
\begin{formula}{frequency}
|
||||
\desc{Einstein frequency}{}{}
|
||||
\desc[german]{Einstein-Frequenz}{}{}
|
||||
\eq{\omega_\txE}
|
||||
\end{formula}
|
||||
\begin{formula}{heat_capacity}
|
||||
\desc{\qtyRef{heat_capacity}}{according to the Einstein model}{}
|
||||
\desc[german]{}{nach dem Einstein-Modell}{}
|
||||
\eq{C_V^\txE = 3N\kB \left( \frac{\hbar\omega_\txE}{\kB T}\right)^2 \frac{\e^{\frac{\hbar\omega_\txE}{\kB T}}}{ \left(\e^{\frac{\hbar\omega_\txE}{\kB T}} - 1\right)^2}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Debye model}
|
||||
\ger{Debye-Modell}
|
||||
]{debye}
|
||||
\begin{formula}{description}
|
||||
\desc{Description}{}{}
|
||||
\desc[german]{Beschreibung}{}{}
|
||||
\ttxt{\eng{
|
||||
Atoms behave like coupled \fRef[quantum harmonic oscillators]{sec:qm:hosc}. The finite sample size leads to periodic boundary conditio. The finite sample size leads to periodic boundary conditions for the vibrations.
|
||||
}\ger{
|
||||
Atome verhalten sich wie gekoppelte \fRef[quantenmechanische harmonische Oszillatoren]{sec:qm:hosc}. Die endliche Ausdehnung des Körpers führt zu periodischen Randbedingungen.
|
||||
}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{phonon_dos}
|
||||
\desc{Phonon density of states}{}{\QtyRef{volume}, $v$ \qtyRef{speed_of_sound} of the phonon mode, $\omega$ phonon frequency}
|
||||
\desc[german]{Phononenzustandsdichte}{}{\QtyRef{volume}, $v$ \qtyRef{speed_of_sound} des Dispersionszweigs, $\omega$ Phononfrequenz}
|
||||
\eq{D(\omega) \d \omega = \frac{V}{2\pi^2} \frac{\omega^2}{v^3} \d\omega}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{debye_frequency}
|
||||
\desc{Debye frequency}{Maximum phonon frequency}{$v$ \qtyRef{speed_of_sound}, $N/V$ atom density}
|
||||
\desc[german]{Debye-Frequenz}{Maximale Phononenfrequenz}{$v$ \qtyRef{speed_of_sound}, $N/V$ Atomdichte}
|
||||
\eq{\omega_\txD = v \left(6\pi^2 \frac{N}{V}\right)^{1/3}}
|
||||
\hiddenQuantity{\omega_\txD}{\per\s}{s}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{heat_capacity}
|
||||
\desc{\qtyRef{heat_capacity}}{according to the Debye model}{$N$ number of atoms, \ConstRef{boltzmann}, \QtyRef{debye_frequency}}
|
||||
\desc[german]{}{nach dem Debye-Modell}{$N$ Anzahl der Atome, \ConstRef{boltzmann}, \QtyRef{debye_frequency}}
|
||||
\eq{C_V^\txD = 9N\kB \left(\frac{\kB T}{\hbar \omega_\txD}\right)^3 \int_0^{\frac{\hbar\omega_\txD}{\kB T}} \d x \frac{x^4 \e^x}{(\e^x-1)^2} }
|
||||
\end{formula}
|
||||
|
||||
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 380 KiB After Width: | Height: | Size: 178 KiB |
Binary file not shown.
Before Width: | Height: | Size: 167 KiB After Width: | Height: | Size: 126 KiB |
BIN
src/img/cm_crystal_zincblende.png
Normal file
BIN
src/img/cm_crystal_zincblende.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 149 KiB |
@ -3,7 +3,7 @@
|
||||
\documentclass[11pt, a4paper]{article}
|
||||
% SET LANGUAGE HERE
|
||||
\usepackage[english]{babel}
|
||||
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
|
||||
\usepackage[left=1.6cm,right=1.6cm,top=2cm,bottom=2cm]{geometry}
|
||||
% ENVIRONMENTS etc
|
||||
\usepackage{adjustbox}
|
||||
\usepackage{colortbl} % color table
|
||||
@ -145,6 +145,7 @@
|
||||
\Input{cm/crystal}
|
||||
\Input{cm/egas}
|
||||
\Input{cm/charge_transport}
|
||||
\Input{cm/vib}
|
||||
\Input{cm/superconductivity}
|
||||
\Input{cm/semiconductors}
|
||||
\Input{cm/misc}
|
||||
|
@ -1,7 +1,7 @@
|
||||
\ProvidesPackage{mqformula}
|
||||
|
||||
\def\descwidth{0.3\textwidth}
|
||||
\def\eqwidth{0.69\textwidth}
|
||||
\def\eqwidth{0.65\textwidth}
|
||||
|
||||
\RequirePackage{mqfqname}
|
||||
\RequirePackage{mqconstant}
|
||||
@ -16,14 +16,11 @@
|
||||
% [1]: minipage width
|
||||
% 2: fqname of name
|
||||
% 3: fqname of a translation that holds the explanation
|
||||
\newcommand{\NameWithDescription}[3][\descwidth]{
|
||||
\newcommand{\NameWithDescription}[3][\descwidth]{%
|
||||
\begin{minipage}{#1}
|
||||
\IfTranslationExists{#2}{
|
||||
\raggedright
|
||||
\GT{#2}
|
||||
}{\detokenize{#2}}
|
||||
\IfTranslationExists{#3}{
|
||||
\\ {\color{fg1} \GT{#3}}
|
||||
\raggedright\GT{#2}%
|
||||
\IfTranslationExists{#3}{%
|
||||
\\ {\color{fg1} \GT{#3}}%
|
||||
}{}
|
||||
\end{minipage}
|
||||
}
|
||||
@ -152,12 +149,16 @@
|
||||
}
|
||||
|
||||
\newcommand{\fsplit}[3][0.5]{
|
||||
\begin{minipage}{##1\linewidth}
|
||||
##2
|
||||
\end{minipage}
|
||||
\begin{minipage}{\luavar{0.99-##1}\linewidth}
|
||||
##3
|
||||
\end{minipage}
|
||||
\begingroup
|
||||
\renewcommand{\newFormulaEntry}{}
|
||||
\begin{minipage}{##1\linewidth}
|
||||
##2
|
||||
\end{minipage}
|
||||
\begin{minipage}{\luavar{0.99-##1}\linewidth}
|
||||
##3
|
||||
\end{minipage}
|
||||
\endgroup
|
||||
\newFormulaEntry
|
||||
}
|
||||
}{
|
||||
\mqfqname@leave
|
||||
|
@ -10,7 +10,8 @@ elements = {}
|
||||
elementsOrder = {}
|
||||
|
||||
function elementAdd(symbol, nr, period, column)
|
||||
elementsOrder[nr] = symbol
|
||||
--elementsOrder[nr] = symbol
|
||||
table.insert(elementsOrder, symbol)
|
||||
elements[symbol] = {
|
||||
symbol = symbol,
|
||||
atomic_number = nr,
|
||||
|
@ -119,7 +119,7 @@
|
||||
}
|
||||
|
||||
\newcommand{\fRef}[2][]{
|
||||
\directlua{hyperref(translateRelativeFqname(\luastring{#2}), \luastring{#1})}
|
||||
\directlua{hyperref(translateRelativeFqname(\luastring{#2}), \luastring{#1})}%
|
||||
}
|
||||
% [1]: link text
|
||||
% 2: number of steps to take up
|
||||
@ -145,7 +145,7 @@
|
||||
\newrobustcmd{\qtyRef}[2][]{%
|
||||
% \edef\tempname{\luaDoubleFieldValue{quantities}{"#1"}{"fqname"}}%
|
||||
% \hyperref[qty:#1]{\GT{\tempname}}%
|
||||
\directlua{hyperref(quantityGetFqname(\luastring{#2}), \luastring{#1})}
|
||||
\directlua{hyperref(quantityGetFqname(\luastring{#2}), \luastring{#1})}%
|
||||
}
|
||||
% <symbol> <name>
|
||||
\newrobustcmd{\QtyRef}[2][]{%
|
||||
@ -156,7 +156,7 @@
|
||||
\newrobustcmd{\constRef}[2][]{%
|
||||
% \edef\tempname{\luaDoubleFieldValue{constants}{"#1"}{"linkto"}}%
|
||||
% \hyperref[const:#1]{\GT{\tempname}}%
|
||||
\directlua{hyperref(constantGetFqname(\luastring{#2}), \luastring{#1})}
|
||||
\directlua{hyperref(constantGetFqname(\luastring{#2}), \luastring{#1})}%
|
||||
}
|
||||
% <symbol> <name>
|
||||
\newrobustcmd{\ConstRef}[2][]{%
|
||||
|
@ -4,7 +4,7 @@
|
||||
\Section[
|
||||
\eng{Hydrogen Atom}
|
||||
\ger{Wasserstoffatom}
|
||||
]{h}
|
||||
]{h}
|
||||
|
||||
\begin{formula}{reduced_mass}
|
||||
\desc{Reduced mass}{}{}
|
||||
@ -188,8 +188,8 @@
|
||||
\eq{f &= j \pm i \\ m_f &= -f,-f+1,\dots,f-1,f}
|
||||
\end{formula}
|
||||
\begin{formula}{constant}
|
||||
\desc{Hyperfine structure constant}{}{$B_\textrm{HFS}$ hyperfine field, $\mu_\textrm{K}$ nuclear magneton, $g_i$ nuclear g-factor \ref{qm:h:lande}}
|
||||
\desc[german]{Hyperfeinstrukturkonstante}{}{$B_\textrm{HFS}$ Hyperfeinfeld, $\mu_\textrm{K}$ Kernmagneton, $g_i$ Kern-g-Faktor \ref{qm:h:lande}}
|
||||
\desc{Hyperfine structure constant}{}{$B_\textrm{HFS}$ hyperfine field, $\mu_\textrm{K}$ nuclear magneton, $g_i$ nuclear g-factor \fRef{qm:h:lande}}
|
||||
\desc[german]{Hyperfeinstrukturkonstante}{}{$B_\textrm{HFS}$ Hyperfeinfeld, $\mu_\textrm{K}$ Kernmagneton, $g_i$ Kern-g-Faktor \fRef{qm:h:lande}}
|
||||
\eq{A = \frac{g_i \mu_\textrm{K} B_\textrm{HFS}}{\sqrt{j(j+1)}}}
|
||||
\end{formula}
|
||||
\begin{formula}{energy_shift}
|
||||
|
@ -289,7 +289,7 @@
|
||||
\ger{Ehrenfest-Theorem}
|
||||
]{ehrenfest_theorem}
|
||||
\absLink{}{ehrenfest_theorem}
|
||||
\GT{see_also} \ref{sec:qm:basics:schroedinger_equation:correspondence_principle}
|
||||
\GT{see_also} \fRef{qm:se:time:ehrenfest_theorem:correspondence_principle}
|
||||
\begin{formula}{ehrenfest_theorem}
|
||||
\desc{Ehrenfest theorem}{applies to both pictures}{}
|
||||
\desc[german]{Ehrenfest-Theorem}{gilt für beide Bilder}{}
|
||||
@ -386,8 +386,6 @@
|
||||
\eq{E_n = \hbar\omega \Big(\frac{1}{2} + n\Big)}
|
||||
\end{formula}
|
||||
|
||||
\GT{see_also} \ref{sec:qm:hosc:c_a_ops}
|
||||
|
||||
\Subsection[
|
||||
\ger{Erzeugungs und Vernichtungsoperatoren / Leiteroperatoren}
|
||||
\eng{Creation and Annihilation operators / Ladder operators}
|
||||
@ -525,8 +523,8 @@
|
||||
\ger{Symmetrien}
|
||||
]{symmetry}
|
||||
\begin{ttext}[desc]
|
||||
\eng{Most symmetry operators are unitary \ref{sec:linalg:unitary} because the norm of a state must be invariant under transformations of space, time and spin.}
|
||||
\ger{Die meisten Symmetrieoperatoren sind unitär \ref{sec:linalg:unitary}, da die Norm eines Zustands invariant unter Raum-, Zeit- und Spin-Transformationen sein muss.}
|
||||
\eng{Most symmetry operators are \fRef[unitary]{math:linalg:matrix:unitary} because the norm of a state must be invariant under transformations of space, time and spin.}
|
||||
\ger{Die meisten Symmetrieoperatoren sind \fRef[unitär]{math:linalg:matrix:unitary}, da die Norm eines Zustands invariant unter Raum-, Zeit- und Spin-Transformationen sein muss.}
|
||||
\end{ttext}
|
||||
\begin{formula}{invariance}
|
||||
\desc{Invariance}{$\hat{H}$ is invariant under a symmetrie described by $\hat{U}$ if this holds}{}
|
||||
@ -587,6 +585,7 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\begin{formula}{slater_det}
|
||||
\desc{Slater determinant}{Construction of a fermionic (antisymmetric) many-particle wave function from single-particle wave functions}{}
|
||||
\desc[german]{Slater Determinante}{Konstruktion einer fermionischen (antisymmetrischen) Vielteilchen Wellenfunktion aus ein-Teilchen Wellenfunktionen}{}
|
||||
|
18
src/readme.md
Normal file
18
src/readme.md
Normal file
@ -0,0 +1,18 @@
|
||||
# Formulary tex source
|
||||
|
||||
## Special directories
|
||||
- `pkg`: My custom Latex packages
|
||||
- `img`: Images generated by `../scripts/`
|
||||
- `img_static`: Downloaded or other images not generated by me
|
||||
- `img_static_svgs`: Downloaded or other images not generated by me that need to be converted to pdf
|
||||
|
||||
|
||||
## Subject directories
|
||||
|
||||
- `bib`: bibliography files
|
||||
- `ch`: chemistry
|
||||
- `cm`: condensed matter
|
||||
- `comp`: computational
|
||||
- `ed`: electrodynamics
|
||||
- `math`: mathematics
|
||||
- `qm`: quantum mechanics
|
@ -219,19 +219,19 @@
|
||||
\eng{Material properties}
|
||||
\ger{Materialeigenschaften}
|
||||
]{props}
|
||||
\begin{formula}{heat_cap}
|
||||
\begin{formula}{heat_capacity}
|
||||
\desc{Heat capacity}{}{\QtyRef{heat}}
|
||||
\desc[german]{Wärmekapazität}{}{}
|
||||
\quantity{c}{\joule\per\kelvin}{}
|
||||
\eq{c = \frac{Q}{\Delta T}}
|
||||
\end{formula}
|
||||
\begin{formula}{heat_cap_V}
|
||||
\begin{formula}{heat_capacity_V}
|
||||
\desc{Isochoric heat capacity}{}{\QtyRef{heat}, \QtyRef{internal_energy} \QtyRef{temperature}, \QtyRef{volume}}
|
||||
\desc[german]{Isochore Wärmekapazität}{}{}
|
||||
\eq{c_v = \pdv{Q}{T}_V = \pdv{U}{T}_V}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{heat_cap_p}
|
||||
\begin{formula}{heat_capacity_p}
|
||||
\desc{Isobaric heat capacity}{}{\QtyRef{heat}, \QtyRef{enthalpy} \QtyRef{temperature}, \QtyRef{pressure}}
|
||||
\desc[german]{Isobare Wärmekapazität}{}{}
|
||||
\eq{c_p = \pdv{Q}{T}_p = \pdv{H}{T}_p}
|
||||
@ -832,7 +832,7 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{heat_cap}
|
||||
\begin{formula}{heat_capacity}
|
||||
\desc{Heat capacity}{\gt{low_temps}}{differs from \fRef{td:TODO:petit_dulong}}
|
||||
\desc[german]{Wärmecapacity}{\gt{low_temps}}{weicht ab vom \fRef{td:TODO:petit_dulong}}
|
||||
\fig{img/td_fermi_heat_capacity.pdf}
|
||||
|
@ -30,8 +30,8 @@
|
||||
|
||||
\hypersetup{
|
||||
colorlinks=true,
|
||||
linkcolor=fg-purple,
|
||||
linkcolor=fg-blue,
|
||||
citecolor=fg-green,
|
||||
filecolor=fg-blue,
|
||||
filecolor=fg-purple,
|
||||
urlcolor=fg-orange
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user