if __name__ == "__main__": if __package__ is None: # make relative imports work as described here: https://peps.python.org/pep-0366/#proposed-change __package__ = "teng_ml" import sys from os import path filepath = path.realpath(path.abspath(__file__)) sys.path.insert(0, path.dirname(path.dirname(filepath))) from sys import exit import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.utils.data import DataLoader import itertools import time from os import makedirs, path from .util.transform import ConstantInterval, Normalize from .util.data_loader import load_datasets, LabelConverter from .util.split import DataSplitter from .util.settings import MLSettings from .rnn.rnn import RNN from .rnn.training import train_validate_save, select_device def test_interpol(): file = "/home/matth/data/2023-04-27_glass_8.2V_179mm000.csv" # file = "/home/matth/data/test001.csv" df = pd.read_csv(file) array = df.to_numpy() print(ConstantInterval.get_average_interval(array[:,0])) transformer = ConstantInterval(0.05) interp_array = transformer(array[:,[0,2]]) fig1, ax1 = plt.subplots() ax1.plot(interp_array[:,0], interp_array[:,1], color="r", label="Interpolated") ax1.scatter(array[:,0], array[:,2], color="g", label="Original") ax1.legend() # plt.show() if __name__ == "__main__": labels = LabelConverter(["white_foam", "glass", "Kapton", "bubble_wrap", "cloth", "black_foam"]) models_dir = "/home/matth/Uni/TENG/models" # where to save models, settings and results if not path.isdir(models_dir): makedirs(models_dir) data_dir = "/home/matth/Uni/TENG/data" # Test with num_layers = [ 3 ] hidden_size = [ 8 ] bidirectional = [ True ] t_const_int = ConstantInterval(0.01) t_norm = Normalize(0, 1) transforms = [[ t_const_int ]] #, [ t_const_int, t_norm ]] batch_sizes = [ 64 ] # , 16] splitters = [ DataSplitter(100) ] num_epochs = [ 80 ] # num_layers=1, # hidden_size=1, # bidirectional=True, # optimizer=None, # scheduler=None, # loss_func=None, # transforms=[], # splitter=None, # num_epochs=10, # batch_size=5, args = [num_layers, hidden_size, bidirectional, [None], [None], [None], transforms, splitters, num_epochs, batch_sizes] # create settings for every possible combination settings = [ MLSettings(1, *params, labels) for params in itertools.product(*args) ] loss_func = nn.CrossEntropyLoss() optimizers = [ lambda model: torch.optim.Adam(model.parameters(), lr=0.03), # lambda model: torch.optim.Adam(model.parameters(), lr=0.25), # lambda model: torch.optim.Adam(model.parameters(), lr=0.50), ] schedulers = [ # lambda optimizer, st: torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9), lambda optimizer, st: torch.optim.lr_scheduler.StepLR(optimizer, step_size=st.num_epochs // 10, gamma=0.40, verbose=False), # lambda optimizer, st: torch.optim.lr_scheduler.StepLR(optimizer, step_size=st.num_epochs // 10, gamma=0.75, verbose=False), ] n_total = len(settings) * len(optimizers) * len(schedulers) print(f"Testing {n_total} possible configurations") # scheduler2 = def create_model(st, optimizer_f, scheduler_f): model=RNN(input_size=st.num_features, hidden_size=st.hidden_size, num_layers=st.num_layers, num_classes=len(labels), bidirectional=st.bidirectional) optimizer = optimizer_f(model) scheduler = scheduler_f(optimizer, st) return model, optimizer, scheduler t_begin = time.time() n = 1 for o in range(len(optimizers)): for s in range(len(schedulers)): for i in range(len(settings)): st = settings[i] # print(st.get_name()) train_set, test_set = load_datasets(data_dir, labels, voltage=8.2, transforms=st.transforms, split_function=st.splitter, train_to_test_ratio=0.7, random_state=42, num_workers=4) generator = torch.manual_seed(42) # train_loader = iter(DataLoader(train_set)) # test_loader = iter(DataLoader(test_set)) train_loader = DataLoader(train_set, batch_size=st.batch_size, shuffle=True, generator=generator) test_loader = DataLoader(test_set, batch_size=st.batch_size, shuffle=True, generator=generator) print(f"Testing {n}/{n_total}: (o={o}, s={s}, i={i})") model, optimizer, scheduler = create_model(st, optimizers[o], schedulers[s]) device = select_device(force_device="cpu") try: train_validate_save(model, optimizer, scheduler, loss_func, train_loader, test_loader, st, models_dir, print_interval=1) except KeyboardInterrupt: if input("Cancelled current training. Quit? (q/*): ") == "q": t_end = time.time() print(f"Testing took {t_end - t_begin:.2f}s = {(t_end-t_begin)/60:.1f}m") exit() n += 1 t_end = time.time() print(f"Testing took {t_end - t_begin:.2f}s = {(t_end-t_begin)/60:.1f}m")