Compare commits
No commits in common. "c4f90ff281246a5736c5f8501612271ede8d618a" and "1260298a42f26afabef8c48297bef87cd701b76e" have entirely different histories.
c4f90ff281
...
1260298a42
@ -1,127 +0,0 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import scipy.signal as signal
|
||||
import matplotlib.pyplot as plt
|
||||
from time import sleep
|
||||
from random import choice as r_choice
|
||||
from sys import exit
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if __package__ is None:
|
||||
# make relative imports work as described here: https://peps.python.org/pep-0366/#proposed-change
|
||||
__package__ = "teng_ml"
|
||||
import sys
|
||||
from os import path
|
||||
filepath = path.realpath(path.abspath(__file__))
|
||||
sys.path.insert(0, path.dirname(path.dirname(filepath)))
|
||||
|
||||
from .util.transform import Normalize
|
||||
from .util.data_loader import get_datafiles
|
||||
|
||||
file = "/home/matth/Uni/TENG/teng_2/data/2023-06-28_foam_black_1_188mm_06V001.csv"
|
||||
|
||||
class InteractiveDataSelector:
|
||||
"""
|
||||
Helper class for "iterating" through selected peaks.
|
||||
"""
|
||||
def __init__(self, out_name, out_dir, fig, ax):
|
||||
self._out_dir = out_dir
|
||||
self._out_name = out_name
|
||||
self._fig = fig
|
||||
self._ax = ax
|
||||
|
||||
self._fig.canvas.mpl_connect("button_press_event", lambda ev: self._fig_on_button_press(ev))
|
||||
self._fig.canvas.mpl_connect("key_press_event", lambda ev: self._fig_on_key_press(ev))
|
||||
|
||||
self._splits_lines = None # vlines
|
||||
self._excludes_lines = None
|
||||
self._excludes_areas = [] # list of areas
|
||||
|
||||
self._splits: list[int] = []
|
||||
self._excludes: list[int] = []
|
||||
self._mode = None # split or exclude
|
||||
self._set_mode("split")
|
||||
|
||||
def run(self):
|
||||
while plt.fignum_exists(self._fig.number):
|
||||
plt.pause(0.01)
|
||||
|
||||
def _fig_on_button_press(self, event):
|
||||
if event.xdata in self._excludes or event.xdata in self._splits: return
|
||||
if event.button == 1: # left click, add position
|
||||
if self._mode == "split":
|
||||
self._splits.append(event.xdata)
|
||||
else:
|
||||
self._excludes.append(event.xdata)
|
||||
elif event.button == 3: # right click, undo
|
||||
if self._mode == "split":
|
||||
if len(self._splits) > 0:
|
||||
self._splits.pop()
|
||||
else:
|
||||
if len(self._excludes) > 0:
|
||||
self._excludes.pop()
|
||||
self._update_lines()
|
||||
|
||||
def _fig_on_key_press(self, event):
|
||||
if event.key == 'S':
|
||||
self._set_mode("split")
|
||||
elif event.key == 'e':
|
||||
self._set_mode("exclude")
|
||||
|
||||
def _set_mode(self, mode):
|
||||
help_str = "[(e)xclude - (S)plit]"
|
||||
if mode == "split":
|
||||
self._mode = "split"
|
||||
fig.suptitle(f"-> split mode {help_str}")
|
||||
else:
|
||||
self._mode = "exclude"
|
||||
fig.suptitle(f"-> exclude mode {help_str}")
|
||||
|
||||
def _update_lines(self):
|
||||
print(self._splits, self._excludes)
|
||||
ymin, ymax = self._ax.get_ylim()
|
||||
|
||||
if self._splits_lines is not None: self._splits_lines.remove()
|
||||
self._splits_lines = self._ax.vlines(self._splits, ymin, ymax, color="b")
|
||||
|
||||
if self._excludes_lines is not None: self._excludes_lines.remove()
|
||||
self._excludes_lines = self._ax.vlines(self._excludes, ymin, ymax, color="r")
|
||||
|
||||
for area in self._excludes_areas:
|
||||
area.remove()
|
||||
self._excludes_areas.clear()
|
||||
excludes = self._excludes.copy()
|
||||
if len(excludes) % 2 == 1: excludes.pop() # only draw pairs
|
||||
excludes.sort()
|
||||
for i in range(1, len(excludes), 2):
|
||||
self._excludes_areas.append(self._ax.axvspan(excludes[i-1], excludes[i], facecolor='r', alpha=0.3))
|
||||
|
||||
self._ax.set_ylim(ymin, ymax) # reset, since margins are added to lines
|
||||
self._fig.canvas.draw()
|
||||
|
||||
def _save_as_new_files(self):
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
Peak identification:
|
||||
plot, let user choose first, second, last and lowest peak for identification
|
||||
"""
|
||||
df = pd.read_csv(file)
|
||||
a = df.to_numpy()
|
||||
|
||||
# a2 = interpolate_to_linear_time()
|
||||
# print(a2)
|
||||
# exit()
|
||||
|
||||
vdata = Normalize(0, 1)(a[:,2])
|
||||
plt.ion()
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(vdata)
|
||||
ax.grid(True)
|
||||
selector = InteractiveDataSelector("bla", "test", fig, ax)
|
||||
selector.run()
|
||||
|
@ -10,7 +10,7 @@ from sys import exit
|
||||
if __name__ == "__main__":
|
||||
if __package__ is None:
|
||||
# make relative imports work as described here: https://peps.python.org/pep-0366/#proposed-change
|
||||
__package__ = "teng_ml"
|
||||
__package__ = "teng-ml"
|
||||
import sys
|
||||
from os import path
|
||||
filepath = path.realpath(path.abspath(__file__))
|
||||
|
@ -9,37 +9,20 @@ class Normalize:
|
||||
assert(low < high)
|
||||
self.low = low
|
||||
self.high = high
|
||||
def __call__(self, data):
|
||||
min_ = np.min(data)
|
||||
data = data - min_ # smallest point is 0 now
|
||||
max_ = np.max(data)
|
||||
def __call__(self, a):
|
||||
min_ = np.min(a)
|
||||
a = a - min_
|
||||
max_ = np.max(a)
|
||||
if max_ != 0:
|
||||
data = (data / max_)
|
||||
a = (a / max_)
|
||||
# now normalized between 0 and 1
|
||||
data *= (self.high - self.low)
|
||||
data += self.low
|
||||
return data
|
||||
a *= (self.high - self.low)
|
||||
a -= self.low
|
||||
return a
|
||||
|
||||
def __repr__(self):
|
||||
return f"Normalize(low={self.low}, high={self.high})"
|
||||
|
||||
class NormalizeAmplitude:
|
||||
"""
|
||||
scale data so that all values are between -high and high
|
||||
"""
|
||||
def __init__(self, high=1):
|
||||
self.high = high
|
||||
|
||||
def __call__(self, data):
|
||||
min_ = np.min(data)
|
||||
max_ = np.max(data)
|
||||
scale = np.max([np.abs(min_), np.abs(max_)])
|
||||
if scale != 0:
|
||||
data = data / scale * self.high
|
||||
return data
|
||||
def __repr__(self):
|
||||
return f"NormalizeAmplitude(high={self.high})"
|
||||
|
||||
|
||||
class ConstantInterval:
|
||||
"""
|
||||
@ -49,15 +32,15 @@ class ConstantInterval:
|
||||
def __init__(self, interval):
|
||||
self.interval = interval
|
||||
|
||||
def __call__(self, data):
|
||||
def __call__(self, a):
|
||||
"""
|
||||
array: [timestamps, data1, data2...]
|
||||
"""
|
||||
timestamps = data[:,0]
|
||||
timestamps = a[:,0]
|
||||
new_stamps = np.arange(timestamps[0], timestamps[-1], self.interval)
|
||||
ret = new_stamps
|
||||
for i in range(1, data.shape[1]): #
|
||||
interp = interp1d(timestamps, data[:,i])
|
||||
for i in range(1, a.shape[1]): #
|
||||
interp = interp1d(timestamps, a[:,i])
|
||||
new_vals = interp(new_stamps)
|
||||
ret = np.vstack((ret, new_vals))
|
||||
return ret.T
|
||||
|
Loading…
Reference in New Issue
Block a user