Compare commits

...

3 Commits

Author SHA1 Message Date
Matthias@Dell
13d436acef Added rnn 2023-04-28 16:04:11 +02:00
Matthias@Dell
98a07fd64f Added Dataloader 2023-04-28 16:03:31 +02:00
Matthias@Dell
2aba5fcd0f Added PeakIdentifier 2023-04-28 16:03:19 +02:00
4 changed files with 240 additions and 25 deletions

View File

@ -1,6 +1,3 @@
import matplotlib.pyplot as plt
import pandas as pd
if __name__ == "__main__": if __name__ == "__main__":
if __package__ is None: if __package__ is None:
# make relative imports work as described here: https://peps.python.org/pep-0366/#proposed-change # make relative imports work as described here: https://peps.python.org/pep-0366/#proposed-change
@ -10,10 +7,18 @@ if __name__ == "__main__":
filepath = path.realpath(path.abspath(__file__)) filepath = path.realpath(path.abspath(__file__))
sys.path.insert(0, path.dirname(path.dirname(filepath))) sys.path.insert(0, path.dirname(path.dirname(filepath)))
from .util.transform import ConstantInterval import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
if __name__ == "__main__":
file = "/home/matth/data/2023-04-25_kapton_8.2V_179mm002.csv" from .util.transform import ConstantInterval
from .util.data_loader import load_datasets, LabelConverter
def test_interpol():
file = "/home/matth/data/2023-04-27_glass_8.2V_179mm000.csv"
# file = "/home/matth/data/test001.csv" # file = "/home/matth/data/test001.csv"
df = pd.read_csv(file) df = pd.read_csv(file)
array = df.to_numpy() array = df.to_numpy()
@ -27,3 +32,104 @@ if __name__ == "__main__":
ax1.legend() ax1.legend()
plt.show() plt.show()
if __name__ == "__main__":
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
print(f"Using device: {device}")
labels = LabelConverter(["foam", "glass", "kapton", "foil"])
train_set, test_set = load_datasets("/home/matth/data", labels, voltage=8.2)
# train_loader = iter(DataLoader(train_set))
# test_loader = iter(DataLoader(test_set))
# sample = next(train_loader)
# print(sample)
train_loader = iter(DataLoader(train_set))
test_loader = iter(DataLoader(test_set))
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes, if_bidirectional):
super(RNN, self).__init__()
self.num_layers = num_layers
self.hidden_size = hidden_size
self.if_bidirectional = if_bidirectional
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=if_bidirectional)
if if_bidirectional == True:
self.fc = nn.Linear(hidden_size * 2, num_classes)
else:
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
D = 2 if self.if_bidirectional == True else 1
Batch = x.batch_sizes[0]
h0 = torch.zeros(D * self.num_layers, Batch, self.hidden_size).to(device)
c0 = torch.zeros(D * self.num_layers, Batch, self.hidden_size).to(device)
x.to(device)
_, (h_n, _) = self.lstm(x, (h0, c0))
final_state = h_n.view(self.num_layers, D, Batch, self.hidden_size)[-1] # num_layers, num_directions, batch, hidden_size
if D == 1:
X = final_state.squeeze()
elif D == 2:
h_1, h_2 = final_state[0], final_state[1] # forward & backward pass
#X = h_1 + h_2 # Add both states
X = torch.cat((h_1, h_2), 1) # Concatenate both states, X-size: (Batch, hidden_size * 2
output = self.fc(X) # fully-connected layer
return output
model = RNN(input_size = 1, hidden_size = 8, num_layers = 3, num_classes = 18, if_bidirectional = True).to(device)
loss_func = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95)
print(model)
# training
for ep in range(40):
train_correct = 0
train_total = 0
val_correct = 0
val_total = 0
for (x, y), length in train_loader:
batch_size = x.shape[0]
v = x.view(batch_size, -1, nFeatrue)
data = rnn_utils.pack_padded_sequence(v.type(torch.FloatTensor), length, batch_first=True).to(device)
# print(data.batch_sizes[0])
# print(data)
out = model(data)
loss = loss_func(out, y)
# print(loss)
optimizer.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
predicted = torch.max(torch.nn.functional.softmax(out), 1)[1]
train_total += y.size(0)
train_correct += (predicted == y).sum().item()
scheduler.step()
for (x, y), length in test_loader:
batch_size = x.shape[0]
v = x.view(batch_size, -1, nFeatrue)
data = rnn_utils.pack_padded_sequence(v.type(torch.FloatTensor), length, batch_first=True).to(device)
out = model(data)
loss = loss_func(out, y)
predicted = torch.max(torch.nn.functional.softmax(out), 1)[1]
val_total += y.size(0)
val_correct += (predicted == y).sum().item()
print("epoch: ", ep + 1, 'Accuracy of the Train: %.2f %%' % (100 * train_correct / train_total), 'Accuracy of the Test: %.2f %%' % (100 * val_correct / val_total))

View File

@ -6,7 +6,6 @@ from time import sleep
from random import choice as r_choice from random import choice as r_choice
from sys import exit from sys import exit
from .util.transform import Normalize
if __name__ == "__main__": if __name__ == "__main__":
if __package__ is None: if __package__ is None:
@ -16,7 +15,8 @@ if __name__ == "__main__":
from os import path from os import path
filepath = path.realpath(path.abspath(__file__)) filepath = path.realpath(path.abspath(__file__))
sys.path.insert(0, path.dirname(path.dirname(filepath))) sys.path.insert(0, path.dirname(path.dirname(filepath)))
from .utility.data import load_dataframe
from .util.transform import Normalize
file = "/home/matth/data/2023-04-25_kapton_8.2V_179mm002.csv" file = "/home/matth/data/2023-04-25_kapton_8.2V_179mm002.csv"
@ -101,7 +101,7 @@ if __name__ == "__main__":
Peak identification: Peak identification:
plot, let user choose first, second, last and lowest peak for identification plot, let user choose first, second, last and lowest peak for identification
""" """
df = load_dataframe(file) df = pd.read_csv(file)
a = df.to_numpy() a = df.to_numpy()
# a2 = interpolate_to_linear_time() # a2 = interpolate_to_linear_time()

39
teng-ml/rnn.py Normal file
View File

@ -0,0 +1,39 @@
import torch
import torch.nn as nn
# BiLSTM Model
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes, if_bidirectional):
super(RNN, self).__init__()
self.num_layers = num_layers
self.hidden_size = hidden_size
self.if_bidirectional = if_bidirectional
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=if_bidirectional)
if if_bidirectional == True:
self.fc = nn.Linear(hidden_size * 2, num_classes)
else:
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
D = 2 if self.if_bidirectional == True else 1
Batch = x.batch_sizes[0]
h0 = torch.zeros(D * self.num_layers, Batch, self.hidden_size).to(device)
c0 = torch.zeros(D * self.num_layers, Batch, self.hidden_size).to(device)
x.to(device)
_, (h_n, _) = self.lstm(x, (h0, c0))
final_state = h_n.view(self.num_layers, D, Batch, self.hidden_size)[-1] # num_layers, num_directions, batch, hidden_size
if D == 1:
X = final_state.squeeze()
elif D == 2:
h_1, h_2 = final_state[0], final_state[1] # forward & backward pass
#X = h_1 + h_2 # Add both states
X = torch.cat((h_1, h_2), 1) # Concatenate both states, X-size: (Batch, hidden_size * 2
output = self.fc(X) # fully-connected layer
return output

View File

@ -1,25 +1,95 @@
def load_data(): from os import path, listdir
# Build the category_lines dictionary, a list of names per language import re
category_lines = {} import numpy as np
all_categories = [] import pandas as pd
def find_files(path): from sklearn.model_selection import train_test_split
return glob.glob(path)
# Read a file and split into lines # groups: date, name, voltage, distance, index
def read_lines(filename): re_filename = r"(\d{4}-\d{2}-\d{2})_([a-zA-Z]+)_(\d{1,2}(?:\.\d*)?)V_(\d+(?:\.\d*)?)mm(\d+).csv"
lines = io.open(filename, encoding='utf-8').read().strip().split('\n')
return [unicode_to_ascii(line) for line in lines]
for filename in find_files('data/names/*.txt'): class LabelConverter:
category = os.path.splitext(os.path.basename(filename))[0] def __init__(self, class_labels):
all_categories.append(category) self.class_labels = class_labels.copy()
self.class_labels.sort()
lines = read_lines(filename) def get_one_hot(self, label):
category_lines[category] = lines """return one hot vector for given label"""
vec = np.zeros(len(self.class_labels), dtype=np.float32)
vec[self.class_labels.index(label)] = 1.0
return vec
return category_lines, all_categories def __getitem__(self, index):
return self.class_labels[index]
def __contains__(self, value):
return value in self.class_labels
def get_labels(self):
return self.class_labels.copy()
class Datasample:
def __init__(self, date: str, label: str, voltage: str, distance: str, index: str, label_vec, datapath: str):
self.date = date
self.label = label
self.voltage = float(voltage)
self.distance = float(distance)
self.index = int(index)
self.label_vec = label_vec
self.datapath = datapath
self.data = None
def __repr__(self):
size = self.data.size if self.data else "Unknown"
return f"{self.label}-{self.index}: dimension={size}, recorded at {self.date} with U={self.voltage}V, d={self.distance}mm"
def _load_data(self):
df = pd.read_csv(self.datapath)
self.data = df.to_numpy()
def get_data(self):
"""[[timestamps, idata, vdata]]"""
if not self.data:
self._load_data()
return self.data
class Dataset:
"""
Store the whole dataset, compatible with torch.data.Dataloader
"""
def __init__(self, datasamples):
self.datasamples = datasamples
# self.labels = [ d.label_vec for d in datasamples ]
# self.data = [ d.get_data() for d in datasamples ]
def __getitem__(self, index):
return self.datasamples[index].get_data(), self.datasamples[index].label_vec
def __len__(self):
return len(self.datasamples)
def load_datasets(datadir, labels: LabelConverter, voltage=None, train_to_test_ratio=0.7, random_state=None):
"""
load all data from datadir that are in the format: yyyy-mm-dd_label_x.xV_xxxmm.csv
"""
datasamples = []
files = listdir(datadir)
files.sort()
for file in files:
match = re.fullmatch(re_filename, file)
if not match: continue
label = match.groups()[1]
if label not in labels: continue
sample_voltage = float(match.groups()[2])
if voltage and voltage != sample_voltage: continue
datasamples.append(Datasample(*match.groups(), labels.get_one_hot(label), datadir + "/" + file))
train_samples, test_samples = train_test_split(datasamples, train_size=train_to_test_ratio, shuffle=True, random_state=random_state)
train_dataset = Dataset(train_samples)
test_dataset = Dataset(test_samples)
return train_dataset, test_dataset