added tracker & settings
This commit is contained in:
parent
341cc39f24
commit
9660de248a
102
teng-ml/main.py
102
teng-ml/main.py
@ -13,9 +13,14 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.utils.rnn as rnn_utils
|
||||
from torch.utils.data import DataLoader
|
||||
import json
|
||||
import time
|
||||
import pickle
|
||||
|
||||
from .util.transform import ConstantInterval, Normalize
|
||||
from .util.data_loader import load_datasets, LabelConverter
|
||||
from .util.epoch_tracker import EpochTracker
|
||||
from .util.settings import MLSettings
|
||||
|
||||
def test_interpol():
|
||||
file = "/home/matth/data/2023-04-27_glass_8.2V_179mm000.csv"
|
||||
@ -40,31 +45,31 @@ if __name__ == "__main__":
|
||||
if torch.backends.mps.is_available()
|
||||
else "cpu"
|
||||
)
|
||||
print(f"Using device: {device}")
|
||||
|
||||
settings = {}
|
||||
|
||||
labels = LabelConverter(["foam", "glass", "kapton", "foil", "cloth", "rigid_foam"])
|
||||
t_const_int = ConstantInterval(0.01)
|
||||
t_norm = Normalize(0, 1)
|
||||
|
||||
transforms = [ t_const_int, t_norm ]
|
||||
st = MLSettings(num_features=1,
|
||||
num_layers=1,
|
||||
hidden_size=1,
|
||||
bidirectional=True,
|
||||
transforms=transforms,
|
||||
num_epochs=40,
|
||||
batch_size=3,
|
||||
labels=labels,
|
||||
)
|
||||
|
||||
settings["transforms"] = str(transforms)
|
||||
print(f"Using device: {device}")
|
||||
|
||||
train_set, test_set = load_datasets("/home/matth/Uni/TENG/data", labels, voltage=8.2, transforms=[t_const_int], train_to_test_ratio=0.7, random_state=42)
|
||||
|
||||
train_set, test_set = load_datasets("/home/matth/Uni/TENG/data", labels, voltage=8.2, transforms=st.transforms, train_to_test_ratio=0.7, random_state=42)
|
||||
|
||||
# train_loader = iter(DataLoader(train_set))
|
||||
# test_loader = iter(DataLoader(test_set))
|
||||
train_loader = DataLoader(train_set, batch_size=3, shuffle=True)
|
||||
test_loader = DataLoader(test_set, batch_size=3, shuffle=True)
|
||||
# , dtype=torch.float32
|
||||
# sample = next(train_loader)
|
||||
# print(sample)
|
||||
|
||||
feature_count = 1
|
||||
settings["feature_count"] = str(feature_count)
|
||||
|
||||
train_loader = DataLoader(train_set, batch_size=st.batch_size, shuffle=True)
|
||||
test_loader = DataLoader(test_set, batch_size=st.batch_size, shuffle=True)
|
||||
|
||||
class RNN(nn.Module):
|
||||
def __init__(self, input_size, hidden_size, num_layers, num_classes, bidirectional):
|
||||
@ -115,7 +120,7 @@ if __name__ == "__main__":
|
||||
# print(f"out({output.shape})={output}")
|
||||
return output
|
||||
|
||||
model=RNN(input_size=1, hidden_size=8, num_layers=3, num_classes=len(labels), bidirectional=True).to(device)
|
||||
model=RNN(input_size=st.num_features, hidden_size=st.hidden_size, num_layers=st.num_layers, num_classes=len(labels), bidirectional=st.bidirectional).to(device)
|
||||
loss_func = torch.nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)
|
||||
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95)
|
||||
@ -125,14 +130,19 @@ if __name__ == "__main__":
|
||||
print(f"optimizer={optimizer}")
|
||||
print(f"scheduler={scheduler}")
|
||||
|
||||
num_epochs = 10
|
||||
|
||||
|
||||
epoch_tracker = EpochTracker(labels)
|
||||
|
||||
print(f"train_loader")
|
||||
for i, (data, y) in enumerate(train_loader):
|
||||
print(y)
|
||||
print(f"{i:3} - {torch.argmax(y, dim=1, keepdim=False)}")
|
||||
|
||||
|
||||
# training
|
||||
for ep in range(num_epochs):
|
||||
train_correct = 0
|
||||
train_total = 0
|
||||
val_correct = 0
|
||||
val_total = 0
|
||||
epoch_tracker.train_begin()
|
||||
for ep in range(st.num_epochs):
|
||||
for i, (data, y) in enumerate(train_loader):
|
||||
# print(data, y)
|
||||
# data = batch, seq, features
|
||||
@ -160,13 +170,15 @@ if __name__ == "__main__":
|
||||
|
||||
# predicted = torch.max(torch.nn.functional.softmax(out), 1)[1]
|
||||
predicted = torch.argmax(out, dim=1, keepdim=False) # -> [ label_indices ]
|
||||
actual = torch.argmax(y, dim=1, keepdim=False) # -> [ label_indices ]
|
||||
# print(f"predicted={predicted}, actual={actual}")
|
||||
train_total += y.size(0)
|
||||
train_correct += (predicted == actual).sum().item()
|
||||
|
||||
print(f"epoch={ep+1:3}: Training accuracy={100 * train_correct / train_total:.2f}%, loss={loss:3f}")
|
||||
correct = torch.argmax(y, dim=1, keepdim=False) # -> [ label_indices ]
|
||||
# print(f"predicted={predicted}, correct={correct}")
|
||||
# train_total += y.size(0)
|
||||
# train_correct += (predicted == correct).sum().item()
|
||||
epoch_tracker.train(correct, predicted)
|
||||
epoch_tracker.next_epoch(loss)
|
||||
print(epoch_tracker.get_last_epoch_summary_str())
|
||||
scheduler.step()
|
||||
t_end = time.time()
|
||||
|
||||
with torch.no_grad():
|
||||
for i, (data, y) in enumerate(test_loader):
|
||||
@ -176,20 +188,34 @@ if __name__ == "__main__":
|
||||
loss = loss_func(out, y)
|
||||
|
||||
predicted = torch.argmax(out, dim=1, keepdim=False) # -> [ label_indices ]
|
||||
actual = torch.argmax(y, dim=1, keepdim=False) # -> [ label_indices ]
|
||||
# print(f"predicted={predicted}, actual={actual}")
|
||||
val_total += y.size(0)
|
||||
val_correct += (predicted == actual).sum().item()
|
||||
correct = torch.argmax(y, dim=1, keepdim=False) # -> [ label_indices ]
|
||||
# print(f"predicted={predicted}, correct={correct}")
|
||||
# val_total += y.size(0)
|
||||
# val_correct += (predicted == correct).sum().item()
|
||||
|
||||
epoch_tracker.test(correct, predicted)
|
||||
|
||||
# print(f"train_total={train_total}, val_total={val_total}")
|
||||
if train_total == 0: train_total = -1
|
||||
if val_total == 0: val_total = -1
|
||||
# if train_total == 0: train_total = -1
|
||||
# if val_total == 0: val_total = -1
|
||||
|
||||
print(f"epoch={ep+1:3}: Testing accuracy={100 * val_correct / val_total:.2f}")
|
||||
print(f"End result: Training accuracy={100 * train_correct / train_total:.2f}%, Testing accuracy={100 * val_correct / val_total:.2f}")
|
||||
settings["model"] = str(model)
|
||||
# print(f"epoch={ep+1:3}: Testing accuracy={100 * val_correct / val_total:.2f}")
|
||||
# print(f"End result: Training accuracy={100 * train_correct / train_total:.2f}%, Testing accuracy={100 * val_correct / val_total:.2f}, training took {t_end - t_begin:.2f} seconds")
|
||||
|
||||
with open("settings.txt", "w") as file:
|
||||
file.write(str(settings))
|
||||
epoch_tracker.get_test_statistics()
|
||||
# epoch_tracker.()
|
||||
|
||||
# print(epoch_tracker.get_training_summary_str())
|
||||
print(epoch_tracker.get_training_count_per_label())
|
||||
|
||||
model_name = st.get_name()
|
||||
# save the settings, results and model
|
||||
with open(model_name + "_settings.pkl", "wb") as file:
|
||||
pickle.dump(st, file)
|
||||
|
||||
with open(model_name + "_results.pkl", "wb") as file:
|
||||
pickle.dump(epoch_tracker, file)
|
||||
|
||||
with open(model_name + "_model.pkl", "wb") as file:
|
||||
pickle.dump(model, file)
|
||||
|
||||
|
@ -7,7 +7,7 @@ import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
# groups: date, name, voltage, distance, index
|
||||
re_filename = r"(\d{4}-\d{2}-\d{2})_([a-zA-Z]+)_(\d{1,2}(?:\.\d*)?)V_(\d+(?:\.\d*)?)mm(\d+).csv"
|
||||
re_filename = r"(\d{4}-\d{2}-\d{2})_([a-zA-Z_]+)_(\d{1,2}(?:\.\d*)?)V_(\d+(?:\.\d*)?)mm(\d+).csv"
|
||||
|
||||
class LabelConverter:
|
||||
def __init__(self, class_labels):
|
||||
@ -46,7 +46,7 @@ class Datasample:
|
||||
self.data = None
|
||||
|
||||
def __repr__(self):
|
||||
size = self.data.size if self.data else "Unknown"
|
||||
size = self.data.size if self.data is not None else "Unknown"
|
||||
return f"{self.label}-{self.index}: dimension={size}, recorded at {self.date} with U={self.voltage}V, d={self.distance}mm"
|
||||
|
||||
def _load_data(self):
|
||||
@ -71,13 +71,14 @@ class Dataset:
|
||||
|
||||
def __getitem__(self, index):
|
||||
data, label = self.datasamples[index].get_data(), self.datasamples[index].label_vec
|
||||
# print(f"loading dataset {self.datasamples[index]}")
|
||||
if type(self.transforms) == list:
|
||||
for t in self.transforms:
|
||||
data = t(data)
|
||||
elif self.transforms:
|
||||
data = self.transforms(data)
|
||||
# TODO
|
||||
return data[:400], label
|
||||
return data[:2000], label
|
||||
|
||||
def __len__(self):
|
||||
return len(self.datasamples)
|
||||
|
83
teng-ml/util/epoch_tracker.py
Normal file
83
teng-ml/util/epoch_tracker.py
Normal file
@ -0,0 +1,83 @@
|
||||
from ..util.data_loader import LabelConverter
|
||||
import time
|
||||
import torch
|
||||
|
||||
class EpochTracker:
|
||||
"""
|
||||
Track progress through epochs and generate statistics
|
||||
"""
|
||||
def __init__(self, labels: LabelConverter):
|
||||
# Training
|
||||
self.accuracy = []
|
||||
self.loss = []
|
||||
self.times = [] # timestamps for each epoch end
|
||||
self.trainings = []
|
||||
self.training_indices = [[]] # epoch, batch_nr, (correct_indices, predicted_indices), ind:ex_nr
|
||||
self._current_epoch = 0
|
||||
|
||||
self.labels = labels
|
||||
|
||||
# Testing
|
||||
self.tests = [] # (correct_indices, predicted_indices)
|
||||
|
||||
def train_begin(self):
|
||||
"""for time tracking"""
|
||||
self.times.append(time.time())
|
||||
|
||||
# TRAINING
|
||||
def train(self, correct_indices: torch.Tensor, predicted_indices: torch.Tensor):
|
||||
self.training_indices[self._current_epoch].append((correct_indices, predicted_indices))
|
||||
|
||||
def next_epoch(self, loss):
|
||||
self.times.append(time.time())
|
||||
self.loss.append(loss)
|
||||
correct_predictions = 0
|
||||
total_predictions = 0
|
||||
for predicted_indices, correct_indices in self.training_indices[self._current_epoch]:
|
||||
correct_predictions += (predicted_indices == correct_indices).sum().item()
|
||||
total_predictions += predicted_indices.size(0)
|
||||
accuracy = 100 * correct_predictions / total_predictions
|
||||
self.accuracy.append(accuracy)
|
||||
self._current_epoch += 1
|
||||
self.training_indices.append([])
|
||||
|
||||
def get_last_epoch_summary_str(self):
|
||||
"""call after next_epoch()"""
|
||||
return f"Epoch {self._current_epoch:3}: Accuracy={self.accuracy[-1]:.2f}, Loss={self.loss[-1]:.3f}, Training duration={self.times[-1] - self.times[0]:.2f}s"
|
||||
def get_last_epoch_summary(self):
|
||||
"""
|
||||
@returns accuracy, loss, training time
|
||||
"""
|
||||
return self.accuracy[-1], self.loss[-1], self.times[-1] - self.times[0]
|
||||
|
||||
def get_training_count_per_label(self):
|
||||
count_per_label = [ 0 for _ in range(len(self.labels)) ]
|
||||
for i in range(len(self.training_indices)):
|
||||
for j in range(len(self.training_indices[i])):
|
||||
for k in range(self.training_indices[i][j][0].size(0)):
|
||||
# epoch, batch_nr, 0 = correct_indices, correct_index_nr
|
||||
count_per_label[self.training_indices[i][j][0][k]] += 1
|
||||
return count_per_label
|
||||
|
||||
def __len__(self):
|
||||
return len(self.accuracy)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return (self.accuracy[idx], self.loss[idx])
|
||||
|
||||
# TESTING
|
||||
def test(self, correct_indices: torch.Tensor, predicted_indices: torch.Tensor):
|
||||
"""
|
||||
@param correct_indices and predicted_indices: 1 dim Tensor
|
||||
"""
|
||||
for i in range(correct_indices.size(0)):
|
||||
self.tests.append((correct_indices[i], predicted_indices[i]))
|
||||
|
||||
|
||||
def get_test_statistics(self):
|
||||
# label i, label_j was predicted when label_i was correct
|
||||
statistics = [ [ 0 for _ in range(len(self.labels))] for _ in range(len(self.labels)) ]
|
||||
for corr, pred in self.tests:
|
||||
statistics[corr][pred] += 1
|
||||
print(statistics)
|
||||
return statistics
|
35
teng-ml/util/settings.py
Normal file
35
teng-ml/util/settings.py
Normal file
@ -0,0 +1,35 @@
|
||||
from ..util.data_loader import LabelConverter
|
||||
|
||||
class MLSettings:
|
||||
"""
|
||||
Manage model and training settings for easy saving and loading
|
||||
"""
|
||||
def __init__(self,
|
||||
num_features=1,
|
||||
num_layers=1,
|
||||
hidden_size=1,
|
||||
bidirectional=True,
|
||||
transforms=[],
|
||||
num_epochs=10,
|
||||
batch_size=5,
|
||||
labels=LabelConverter([]),
|
||||
):
|
||||
self.num_features = num_features
|
||||
self.num_layers = num_layers
|
||||
self.hidden_size = hidden_size
|
||||
self.num_epochs = num_epochs
|
||||
self.bidirectional = bidirectional
|
||||
self.transforms = transforms
|
||||
self.batch_size = batch_size
|
||||
self.labels = labels
|
||||
|
||||
def get_name(self):
|
||||
"""
|
||||
F = num_features
|
||||
L = num_layers
|
||||
H = hidden_size
|
||||
B = bidirectional
|
||||
T = #transforms
|
||||
E = #epochs
|
||||
"""
|
||||
return f"F{self.num_features}L{self.num_layers}H{self.hidden_size}B{'1' if self.bidirectional else '0'}T{len(self.transforms)}"
|
Loading…
Reference in New Issue
Block a user