diff --git a/teng_ml/main.py b/teng_ml/main.py index 4715cb6..1aeb009 100644 --- a/teng_ml/main.py +++ b/teng_ml/main.py @@ -42,9 +42,10 @@ def test_interpol(): if __name__ == "__main__": - labels = LabelConverter(["foam_PDMS_white", "foam_PDMS_black", "foam_PDMS_TX100", "foam_PE", "antistatic_foil", "cardboard", "glass", "kapton", "bubble_wrap_PE", "fabric_PP", ]) - # labels = LabelConverter(["foam_PDMS_white", "foam_PDMS_black", "foam_PDMS_TX100", "foam_PE", "kapton", "bubble_wrap_PE", "fabric_PP", ]) - models_dir = "/home/matth/Uni/TENG/teng_2/models_gen_12" # where to save models, settings and results + # labels = LabelConverter(["foam_PDMS_white", "foam_PDMS_black", "foam_PDMS_TX100", "foam_PE", "antistatic_foil", "cardboard", "glass", "kapton", "bubble_wrap_PE", "fabric_PP" ]) + labels = LabelConverter(["foam_PDMS_white", "foam_PDMS_black", "foam_PDMS_TX100", "foam_PE", "antistatic_foil", "cardboard", "kapton", "bubble_wrap_PE", "fabric_PP" ]) + # labels = LabelConverter(["foam_PDMS_white", "foam_PDMS_black", "foam_PDMS_TX100", "foam_PE", "kapton", "bubble_wrap_PE", "fabric_PP" ]) + models_dir = "/home/matth/Uni/TENG/teng_2/models_gen_15" # where to save models, settings and results if not path.isdir(models_dir): makedirs(models_dir) data_dir = "/home/matth/Uni/TENG/teng_2/sorted_data" @@ -53,18 +54,18 @@ if __name__ == "__main__": # gen_6 best options: no glass, cardboard and antistatic_foil, not bidirectional, lr=0.0007, no datasplitter, 2 layers n_hidden = 10 # Test with - num_layers = [ 2, 3 ] - hidden_size = [ 21, 28 ] - bidirectional = [ False, True ] + num_layers = [ 4, 5 ] + hidden_size = [ 28, 36 ] + bidirectional = [ True ] t_const_int = ConstantInterval(0.01) # TODO check if needed: data was taken at equal rate, but it isnt perfect -> maybe just ignore? t_norm = Normalize(-1, 1) - transforms = [[ t_norm ]] #, [ t_norm, t_const_int ]] + transforms = [[]] #, [ t_norm, t_const_int ]] batch_sizes = [ 4 ] splitters = [ DataSplitter(50, drop_if_smaller_than=30) ] # smallest file has length 68 TODO: try with 0.5-1second snippets num_epochs = [ 80 ] # (epoch, min_accuracy) - training_cancel_points = [(15, 20), (40, 25)] - # training_cancel_points = [] + # training_cancel_points = [(15, 20), (40, 25)] + training_cancel_points = [] args = [num_layers, hidden_size, bidirectional, [None], [None], [None], transforms, splitters, num_epochs, batch_sizes] @@ -81,7 +82,7 @@ if __name__ == "__main__": None, # lambda optimizer, st: torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9), # lambda optimizer, st: torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.5), - lambda optimizer, st: torch.optim.lr_scheduler.StepLR(optimizer, step_size=st.num_epochs // 8, gamma=0.60, verbose=False), + # lambda optimizer, st: torch.optim.lr_scheduler.StepLR(optimizer, step_size=st.num_epochs // 8, gamma=0.60, verbose=False), # lambda optimizer, st: torch.optim.lr_scheduler.StepLR(optimizer, step_size=st.num_epochs // 10, gamma=0.75, verbose=False), ]