added rnn

This commit is contained in:
matthias@arch 2023-05-05 13:16:39 +02:00
parent 82ed62710f
commit 0b794d1008
5 changed files with 82 additions and 40 deletions

View File

@ -11,10 +11,10 @@ import matplotlib.pyplot as plt
import pandas as pd import pandas as pd
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.utils.rnn as rnn_utils
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from .util.transform import ConstantInterval, Normalize
from .util.transform import ConstantInterval
from .util.data_loader import load_datasets, LabelConverter from .util.data_loader import load_datasets, LabelConverter
def test_interpol(): def test_interpol():
@ -24,7 +24,7 @@ def test_interpol():
array = df.to_numpy() array = df.to_numpy()
print(ConstantInterval.get_average_interval(array[:,0])) print(ConstantInterval.get_average_interval(array[:,0]))
transformer = ConstantInterval(0.05) transformer = ConstantInterval(0.05)
interp_array = transformer(array[:,0], array[:,2]) interp_array = transformer(array[:,[0,2]])
fig1, ax1 = plt.subplots() fig1, ax1 = plt.subplots()
ax1.plot(interp_array[:,0], interp_array[:,1], color="r", label="Interpolated") ax1.plot(interp_array[:,0], interp_array[:,1], color="r", label="Interpolated")
@ -42,15 +42,22 @@ if __name__ == "__main__":
) )
print(f"Using device: {device}") print(f"Using device: {device}")
labels = LabelConverter(["foam", "glass", "kapton", "foil"]) labels = LabelConverter(["foam", "glass", "kapton", "foil", "cloth", "rigid_foam"])
train_set, test_set = load_datasets("/home/matth/data", labels, voltage=8.2) t_const_int = ConstantInterval(0.01)
t_norm = Normalize(0, 1)
train_set, test_set = load_datasets("/home/matth/Uni/TENG/testdata", labels, voltage=8.2, transforms=[t_const_int], train_to_test_ratio=0.7, random_state=42)
# train_loader = iter(DataLoader(train_set)) # train_loader = iter(DataLoader(train_set))
# test_loader = iter(DataLoader(test_set)) # test_loader = iter(DataLoader(test_set))
# sample = next(train_loader) train_loader = iter(DataLoader(train_set, batch_size=3, shuffle=True))
# print(sample) test_loader = iter(DataLoader(test_set, batch_size=3, shuffle=True))
train_loader = iter(DataLoader(train_set))
test_loader = iter(DataLoader(test_set)) sample = next(train_loader)
print(sample)
feature_count = 1
class RNN(nn.Module): class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes, if_bidirectional): def __init__(self, input_size, hidden_size, num_layers, num_classes, if_bidirectional):
super(RNN, self).__init__() super(RNN, self).__init__()
@ -58,6 +65,7 @@ if __name__ == "__main__":
self.hidden_size = hidden_size self.hidden_size = hidden_size
self.if_bidirectional = if_bidirectional self.if_bidirectional = if_bidirectional
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=if_bidirectional) self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=if_bidirectional)
# x = (batch_size, sequence, feature)
if if_bidirectional == True: if if_bidirectional == True:
self.fc = nn.Linear(hidden_size * 2, num_classes) self.fc = nn.Linear(hidden_size * 2, num_classes)
@ -66,14 +74,21 @@ if __name__ == "__main__":
def forward(self, x): def forward(self, x):
print(f"forward pass")
D = 2 if self.if_bidirectional == True else 1 D = 2 if self.if_bidirectional == True else 1
Batch = x.batch_sizes[0]
h0 = torch.zeros(D * self.num_layers, Batch, self.hidden_size).to(device) print(f"x({x.shape})={x}")
c0 = torch.zeros(D * self.num_layers, Batch, self.hidden_size).to(device) batch_size = x.shape[1]
print(f"batch_size={batch_size}")
h0 = torch.zeros(D * self.num_layers, batch_size, self.hidden_size).to(device)
print(f"h0={h0}")
c0 = torch.zeros(D * self.num_layers, batch_size, self.hidden_size).to(device)
x.to(device) x.to(device)
_, (h_n, _) = self.lstm(x, (h0, c0)) _, (h_n, _) = self.lstm(x, (h0, c0))
final_state = h_n.view(self.num_layers, D, Batch, self.hidden_size)[-1] # num_layers, num_directions, batch, hidden_size print(f"h_n={h_n}")
final_state = h_n.view(self.num_layers, D, batch_size, self.hidden_size)[-1] # num_layers, num_directions, batch, hidden_size
print(f"final_state={final_state}")
if D == 1: if D == 1:
X = final_state.squeeze() X = final_state.squeeze()
@ -81,12 +96,14 @@ if __name__ == "__main__":
h_1, h_2 = final_state[0], final_state[1] # forward & backward pass h_1, h_2 = final_state[0], final_state[1] # forward & backward pass
#X = h_1 + h_2 # Add both states #X = h_1 + h_2 # Add both states
X = torch.cat((h_1, h_2), 1) # Concatenate both states, X-size: (Batch, hidden_size * 2 X = torch.cat((h_1, h_2), 1) # Concatenate both states, X-size: (Batch, hidden_size * 2
else:
raise ValueError("D must be 1 or 2")
output = self.fc(X) # fully-connected layer output = self.fc(X) # fully-connected layer
print(f"out={output}")
return output return output
model = RNN(input_size = 1, hidden_size = 8, num_layers = 3, num_classes = 18, if_bidirectional = True).to(device) model=RNN(input_size=1, hidden_size=8, num_layers=3, num_classes=18, if_bidirectional=True).to(device)
loss_func = torch.nn.CrossEntropyLoss() loss_func = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.02) optimizer = torch.optim.Adam(model.parameters(), lr=0.02)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95)
@ -99,34 +116,47 @@ if __name__ == "__main__":
train_total = 0 train_total = 0
val_correct = 0 val_correct = 0
val_total = 0 val_total = 0
for (x, y), length in train_loader: for data, y in train_loader:
# data = batch, seq, features
print(ep, "Train")
print(f"data({data.shape})={data}")
x = data[:,:,2] # select voltage data
print(f"x({x.shape})={x}")
length = torch.tensor([x.shape[1] for _ in range(x.shape[0])], dtype=torch.int64)
print(f"length({length.shape})={length}")
batch_size = x.shape[0] batch_size = x.shape[0]
v = x.view(batch_size, -1, nFeatrue) print(f"batch_size={batch_size}")
data = rnn_utils.pack_padded_sequence(v.type(torch.FloatTensor), length, batch_first=True).to(device) v = x.view(batch_size, -1, feature_count)
data = rnn_utils.pack_padded_sequence(v.type(torch.FloatTensor), length, batch_first=True).to(device)[0]
# print(data.batch_sizes[0]) # print(data.batch_sizes[0])
# print(data) # print(data)
out = model(data) out = model(data)
loss = loss_func(out, y) loss = loss_func(out, y)
# print(loss) # print(loss)
optimizer.zero_grad() # clear gradients for next train optimizer.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients optimizer.step() # apply gradients
predicted = torch.max(torch.nn.functional.softmax(out), 1)[1] predicted = torch.max(torch.nn.functional.softmax(out), 1)[1]
train_total += y.size(0) train_total += y.size(0)
train_correct += (predicted == y).sum().item() train_correct += (predicted == y).sum().item()
scheduler.step() scheduler.step()
for (x, y), length in test_loader: for data, y in test_loader:
print(ep, "Test")
x = data[:,2]
print(f"x({x.shape})={x}")
length = torch.tensor(x.shape[0], dtype=torch.int64)
print(f"length={length}")
batch_size = x.shape[0] batch_size = x.shape[0]
v = x.view(batch_size, -1, nFeatrue) print(f"batch_size={batch_size}")
v = x.view(batch_size, -1, feature_count)
data = rnn_utils.pack_padded_sequence(v.type(torch.FloatTensor), length, batch_first=True).to(device) data = rnn_utils.pack_padded_sequence(v.type(torch.FloatTensor), length, batch_first=True).to(device)
out = model(data) out = model(data)
loss = loss_func(out, y) loss = loss_func(out, y)
predicted = torch.max(torch.nn.functional.softmax(out), 1)[1] predicted = torch.max(torch.nn.functional.softmax(out), 1)[1]
val_total += y.size(0) val_total += y.size(0)
val_correct += (predicted == y).sum().item() val_correct += (predicted == y).sum().item()

View File

@ -31,7 +31,7 @@ class RNN(nn.Module):
X = final_state.squeeze() X = final_state.squeeze()
elif D == 2: elif D == 2:
h_1, h_2 = final_state[0], final_state[1] # forward & backward pass h_1, h_2 = final_state[0], final_state[1] # forward & backward pass
#X = h_1 + h_2 # Add both states # X = h_1 + h_2 # Add both states
X = torch.cat((h_1, h_2), 1) # Concatenate both states, X-size: (Batch, hidden_size * 2 X = torch.cat((h_1, h_2), 1) # Concatenate both states, X-size: (Batch, hidden_size * 2
output = self.fc(X) # fully-connected layer output = self.fc(X) # fully-connected layer

View File

@ -60,18 +60,26 @@ class Dataset:
""" """
Store the whole dataset, compatible with torch.data.Dataloader Store the whole dataset, compatible with torch.data.Dataloader
""" """
def __init__(self, datasamples): def __init__(self, datasamples, transforms=None):
self.datasamples = datasamples self.datasamples = datasamples
self.transforms = transforms
# self.labels = [ d.label_vec for d in datasamples ] # self.labels = [ d.label_vec for d in datasamples ]
# self.data = [ d.get_data() for d in datasamples ] # self.data = [ d.get_data() for d in datasamples ]
def __getitem__(self, index): def __getitem__(self, index):
return self.datasamples[index].get_data(), self.datasamples[index].label_vec data, label = self.datasamples[index].get_data(), self.datasamples[index].label_vec
if type(self.transforms) == list:
for t in self.transforms:
data = t(data)
elif self.transforms:
data = self.transforms(data)
# TODO
return data[:400], label
def __len__(self): def __len__(self):
return len(self.datasamples) return len(self.datasamples)
def load_datasets(datadir, labels: LabelConverter, voltage=None, train_to_test_ratio=0.7, random_state=None): def load_datasets(datadir, labels: LabelConverter, transforms=None, voltage=None, train_to_test_ratio=0.7, random_state=None):
""" """
load all data from datadir that are in the format: yyyy-mm-dd_label_x.xV_xxxmm.csv load all data from datadir that are in the format: yyyy-mm-dd_label_x.xV_xxxmm.csv
""" """
@ -90,6 +98,6 @@ def load_datasets(datadir, labels: LabelConverter, voltage=None, train_to_test_r
datasamples.append(Datasample(*match.groups(), labels.get_one_hot(label), datadir + "/" + file)) datasamples.append(Datasample(*match.groups(), labels.get_one_hot(label), datadir + "/" + file))
train_samples, test_samples = train_test_split(datasamples, train_size=train_to_test_ratio, shuffle=True, random_state=random_state) train_samples, test_samples = train_test_split(datasamples, train_size=train_to_test_ratio, shuffle=True, random_state=random_state)
train_dataset = Dataset(train_samples) train_dataset = Dataset(train_samples, transforms=transforms)
test_dataset = Dataset(test_samples) test_dataset = Dataset(test_samples, transforms=transforms)
return train_dataset, test_dataset return train_dataset, test_dataset

View File

@ -25,20 +25,24 @@ class ConstantInterval:
""" """
Interpolate the data to have a constant interval / sample rate, Interpolate the data to have a constant interval / sample rate,
so that 1 index step is always equivalent to a certain time step so that 1 index step is always equivalent to a certain time step
Expects: timestamps, idata, vdata
""" """
def __init__(self, interval): def __init__(self, interval):
self.interval = interval self.interval = interval
def __call__(self, timestamps, data): def __call__(self, a):
interp = interp1d(timestamps, data) """
new_stamps = np.arange(0, timestamps[-1], self.interval) array: [timestamps, data1, data2...]
print(f"old=({timestamps.size}) {timestamps}, new=({new_stamps.size}){new_stamps}") """
timestamps = a[:,0]
new_stamps = np.arange(timestamps[0], timestamps[-1], self.interval)
ret = new_stamps
for i in range(1, a.shape[1]): #
interp = interp1d(timestamps, a[:,i])
new_vals = interp(new_stamps)
ret = np.vstack((ret, new_vals))
return ret.T
new_vals = interp(new_stamps)
return np.vstack((new_stamps, new_vals)).T
@staticmethod @staticmethod
def get_average_interval(timestamps): def get_average_interval(timestamps):
avg_interval = np.average([ timestamps[i] - timestamps[i-1] for i in range(1, len(timestamps))]) avg_interval = np.average([ timestamps[i] - timestamps[i-1] for i in range(1, len(timestamps))])
return avg_interval return avg_interval