128 lines
4.0 KiB
Python
128 lines
4.0 KiB
Python
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import scipy.signal as signal
|
||
|
import matplotlib.pyplot as plt
|
||
|
from time import sleep
|
||
|
from random import choice as r_choice
|
||
|
from sys import exit
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if __package__ is None:
|
||
|
# make relative imports work as described here: https://peps.python.org/pep-0366/#proposed-change
|
||
|
__package__ = "teng_ml"
|
||
|
import sys
|
||
|
from os import path
|
||
|
filepath = path.realpath(path.abspath(__file__))
|
||
|
sys.path.insert(0, path.dirname(path.dirname(filepath)))
|
||
|
|
||
|
from .util.transform import Normalize
|
||
|
from .util.data_loader import get_datafiles
|
||
|
|
||
|
file = "/home/matth/Uni/TENG/teng_2/data/2023-06-28_foam_black_1_188mm_06V001.csv"
|
||
|
|
||
|
class InteractiveDataSelector:
|
||
|
"""
|
||
|
Helper class for "iterating" through selected peaks.
|
||
|
"""
|
||
|
def __init__(self, out_name, out_dir, fig, ax):
|
||
|
self._out_dir = out_dir
|
||
|
self._out_name = out_name
|
||
|
self._fig = fig
|
||
|
self._ax = ax
|
||
|
|
||
|
self._fig.canvas.mpl_connect("button_press_event", lambda ev: self._fig_on_button_press(ev))
|
||
|
self._fig.canvas.mpl_connect("key_press_event", lambda ev: self._fig_on_key_press(ev))
|
||
|
|
||
|
self._splits_lines = None # vlines
|
||
|
self._excludes_lines = None
|
||
|
self._excludes_areas = [] # list of areas
|
||
|
|
||
|
self._splits: list[int] = []
|
||
|
self._excludes: list[int] = []
|
||
|
self._mode = None # split or exclude
|
||
|
self._set_mode("split")
|
||
|
|
||
|
def run(self):
|
||
|
while plt.fignum_exists(self._fig.number):
|
||
|
plt.pause(0.01)
|
||
|
|
||
|
def _fig_on_button_press(self, event):
|
||
|
if event.xdata in self._excludes or event.xdata in self._splits: return
|
||
|
if event.button == 1: # left click, add position
|
||
|
if self._mode == "split":
|
||
|
self._splits.append(event.xdata)
|
||
|
else:
|
||
|
self._excludes.append(event.xdata)
|
||
|
elif event.button == 3: # right click, undo
|
||
|
if self._mode == "split":
|
||
|
if len(self._splits) > 0:
|
||
|
self._splits.pop()
|
||
|
else:
|
||
|
if len(self._excludes) > 0:
|
||
|
self._excludes.pop()
|
||
|
self._update_lines()
|
||
|
|
||
|
def _fig_on_key_press(self, event):
|
||
|
if event.key == 'S':
|
||
|
self._set_mode("split")
|
||
|
elif event.key == 'e':
|
||
|
self._set_mode("exclude")
|
||
|
|
||
|
def _set_mode(self, mode):
|
||
|
help_str = "[(e)xclude - (S)plit]"
|
||
|
if mode == "split":
|
||
|
self._mode = "split"
|
||
|
fig.suptitle(f"-> split mode {help_str}")
|
||
|
else:
|
||
|
self._mode = "exclude"
|
||
|
fig.suptitle(f"-> exclude mode {help_str}")
|
||
|
|
||
|
def _update_lines(self):
|
||
|
print(self._splits, self._excludes)
|
||
|
ymin, ymax = self._ax.get_ylim()
|
||
|
|
||
|
if self._splits_lines is not None: self._splits_lines.remove()
|
||
|
self._splits_lines = self._ax.vlines(self._splits, ymin, ymax, color="b")
|
||
|
|
||
|
if self._excludes_lines is not None: self._excludes_lines.remove()
|
||
|
self._excludes_lines = self._ax.vlines(self._excludes, ymin, ymax, color="r")
|
||
|
|
||
|
for area in self._excludes_areas:
|
||
|
area.remove()
|
||
|
self._excludes_areas.clear()
|
||
|
excludes = self._excludes.copy()
|
||
|
if len(excludes) % 2 == 1: excludes.pop() # only draw pairs
|
||
|
excludes.sort()
|
||
|
for i in range(1, len(excludes), 2):
|
||
|
self._excludes_areas.append(self._ax.axvspan(excludes[i-1], excludes[i], facecolor='r', alpha=0.3))
|
||
|
|
||
|
self._ax.set_ylim(ymin, ymax) # reset, since margins are added to lines
|
||
|
self._fig.canvas.draw()
|
||
|
|
||
|
def _save_as_new_files(self):
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
"""
|
||
|
Peak identification:
|
||
|
plot, let user choose first, second, last and lowest peak for identification
|
||
|
"""
|
||
|
df = pd.read_csv(file)
|
||
|
a = df.to_numpy()
|
||
|
|
||
|
# a2 = interpolate_to_linear_time()
|
||
|
# print(a2)
|
||
|
# exit()
|
||
|
|
||
|
vdata = Normalize(0, 1)(a[:,2])
|
||
|
plt.ion()
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.plot(vdata)
|
||
|
ax.grid(True)
|
||
|
selector = InteractiveDataSelector("bla", "test", fig, ax)
|
||
|
selector.run()
|
||
|
|