teng-ml/teng_ml/rnn/training.py

156 lines
6.6 KiB
Python
Raw Normal View History

2023-05-10 22:44:14 +02:00
from os import makedirs, path
import torch
import pickle
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from ..util.settings import MLSettings
from ..tracker.epoch_tracker import EpochTracker
from ..util.file_io import get_next_digits
2023-08-10 17:29:09 +02:00
from ..util.string import class_str, optimizer_str
2023-05-10 22:44:14 +02:00
from ..util import model_io as mio
def select_device(force_device=None):
"""
Select best device and move model
"""
if force_device is not None:
device = force_device
else:
device = torch.device(
"cuda"
if torch.cuda.is_available()
# else "mps"
# if torch.backends.mps.is_available()
else "cpu"
)
# print(device, torch.cuda.get_device_name(device), torch.cuda.get_device_properties(device))
return device
2023-08-10 17:29:09 +02:00
def train(model, optimizer, scheduler, loss_func, train_loader: DataLoader, st: MLSettings, print_interval=1, print_continuous=False, training_cancel_points=[]) -> EpochTracker:
2023-05-10 22:44:14 +02:00
epoch_tracker = EpochTracker(st.labels)
epoch_tracker.begin()
for ep in range(st.num_epochs):
loss = -1
2023-08-10 17:29:09 +02:00
for i, (data, lengths, y) in enumerate(train_loader):
2023-05-10 22:44:14 +02:00
# data = batch, seq, features
x = data[:,:,[2]].float() # select voltage data
# print(f"x({x.shape}, {x.dtype})=...")
# print(f"y({y.shape}, {y.dtype})=...")
2023-08-10 17:29:09 +02:00
# pack = torch.nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True)
# out = model(pack) # really slow
out = model(x, lengths)
2023-05-10 22:44:14 +02:00
with torch.no_grad():
predicted = torch.argmax(out, dim=1, keepdim=False) # -> [ label_indices ]
correct = torch.argmax(y, dim=1, keepdim=False) # -> [ label_indices ]
# print(f"predicted={predicted}, correct={correct}")
# train_total += y.size(0)
# train_correct += (predicted == correct).sum().item()
epoch_tracker.add_prediction(correct, predicted)
# predicted2 = torch.argmax(out, dim=1, keepdim=True) # -> [ label_indices ]
# print(f"correct={correct}, y={y}")
loss = loss_func(out, correct)
# loss = loss_func(out, y)
optimizer.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
# predicted = torch.max(torch.nn.functional.softmax(out), 1)[1]
epoch_tracker.end_epoch(loss, optimizer.param_groups[0]["lr"])
2023-08-10 17:29:09 +02:00
if (ep+1) % print_interval == 0:
if print_continuous: end='\r'
else: end='\n'
print(f"Training:", epoch_tracker.get_epoch_summary_str(), end=end)
# cancel training if model is not good enough
if len(training_cancel_points) > 0 and ep == training_cancel_points[0][0]:
print(f"Checking training cancel point: epoch={ep}, point={training_cancel_points[0]}, accuracy={epoch_tracker.accuracies[-1]}")
if epoch_tracker.accuracies[-1] < training_cancel_points[0][1]:
print(f"Training cancelled because the models accuracy={epoch_tracker.accuracies[-1]:.2f} < {training_cancel_points[0][1]} after {ep} epochs.")
break;
training_cancel_points.pop(0)
if scheduler is not None:
scheduler.step()
2023-05-10 22:44:14 +02:00
print("Training:", epoch_tracker.end())
return epoch_tracker
def validate(model, test_loader: DataLoader, st: MLSettings) -> EpochTracker:
epoch_tracker = EpochTracker(st.labels)
epoch_tracker.begin()
with torch.no_grad():
for i, (data, y) in enumerate(test_loader):
# print(ep, "Test")
2023-08-10 17:29:09 +02:00
x = data[:,[2]].float()
2023-05-10 22:44:14 +02:00
out = model(x)
predicted = torch.argmax(out, dim=1, keepdim=False) # -> [ label_indices ]
2023-08-10 17:29:09 +02:00
if y.shape[0] == 2: # batched
correct = torch.argmax(y, dim=1, keepdim=False) # -> [ label_indices ]
else: # unbatched
correct = torch.argmax(y, dim=0, keepdim=True) # -> [ label_indices ]
2023-05-10 22:44:14 +02:00
epoch_tracker.add_prediction(correct, predicted)
print("Validation:", epoch_tracker.end())
return epoch_tracker
2023-08-10 17:29:09 +02:00
def train_validate_save(model, optimizer, scheduler, loss_func, train_loader: DataLoader, test_loader: DataLoader, st: MLSettings, models_dir, print_interval=1, print_continuous=False, show_plots=False, training_cancel_points=[]):
2023-05-10 22:44:14 +02:00
# assumes model and data is already on correct device
# train_loader.to(device)
# test_loader.to(device)
# store optimizer, scheduler and loss_func in settings
2023-08-10 17:29:09 +02:00
st.optimizer = optimizer_str(optimizer)
2023-05-10 22:44:14 +02:00
st.scheduler = class_str(scheduler)
st.loss_func = class_str(loss_func)
model_name = st.get_name()
def add_tab(s):
return "\t" + str(s).replace("\n", "\n\t")
print(100 * '=')
2023-08-10 17:29:09 +02:00
print("model name:", model_name)
2023-05-10 22:44:14 +02:00
print(f"model:\n", add_tab(model))
2023-08-10 17:29:09 +02:00
print(f"loss_func: {st.loss_func}")
print(f"optimizer: {st.optimizer}")
print(f"scheduler: {st.scheduler}")
2023-05-10 22:44:14 +02:00
print(100 * '-')
2023-08-10 17:29:09 +02:00
training_tracker = train(model, optimizer, scheduler, loss_func, train_loader, st, print_interval=print_interval, print_continuous=print_continuous, training_cancel_points=training_cancel_points)
2023-05-10 22:44:14 +02:00
# print("Training: Count per label:", training_tracker.get_count_per_label())
# print("Training: Predictions per label:", training_tracker.get_predictions_per_label())
print(100 * '-')
validation_tracker = validate(model, test_loader, st)
# print("Validation: Count per label:", validation_tracker.get_count_per_label())
# print("Validation: Predictions per label:", validation_tracker.get_predictions_per_label())
digits = get_next_digits(f"{model_name}_", models_dir)
model_dir = f"{models_dir}/{model_name}_{digits}"
# do not put earlier, since the dir should not be created if training is interrupted
if not path.isdir(model_dir): # should always run, if not the digits function did not work
makedirs(model_dir)
fig, _ = validation_tracker.plot_predictions("Validation: Predictions", model_dir=model_dir, name="img_validation_predictions")
fig, _ = training_tracker.plot_predictions("Training: Predictions", model_dir=model_dir, name="img_training_predictions")
fig, _ = training_tracker.plot_training(model_dir=model_dir)
if show_plots:
plt.show()
plt.close('all')
# save the settings, results and model
mio.save_settings(model_dir, st)
mio.save_tracker_validation(model_dir, validation_tracker)
mio.save_tracker_training(model_dir, training_tracker)
mio.save_model(model_dir, model)