375 lines
15 KiB
Python
375 lines
15 KiB
Python
if __name__ == "__main__":
|
|
import sys
|
|
if __package__ is None:
|
|
# make relative imports work as described here: https://peps.python.org/pep-0366/#proposed-change
|
|
__package__ = "photoreflectance"
|
|
from os import path
|
|
filepath = path.realpath(path.abspath(__file__))
|
|
sys.path.insert(0, 'C:\\Users\Administrator\Desktop\Software\Python\Python\github')
|
|
|
|
from time import sleep
|
|
import pyvisa
|
|
import numpy as np
|
|
import scipy as scp
|
|
|
|
from Bentham import Bentham
|
|
from prsctrl.devices.lamp.impl.xenon import Xenon
|
|
from prsctrl.devices.shutter import Shutter
|
|
from prsctrl.devices.lamp.impl.xenon import Xenon
|
|
|
|
from .update_funcs import Monitor
|
|
from prsctrl.devices.lock_in.impl.sr830 import SR830
|
|
from prsctrl.devices.lock_in.impl.model7260 import Model7260
|
|
|
|
import logging
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
|
|
handlers=[
|
|
# logging.FileHandler(log_path),
|
|
logging.StreamHandler()
|
|
]
|
|
)
|
|
log = logging.getLogger(__name__)
|
|
|
|
def set_measurement_params(lockin: SR830, p: dict={}, **kwargs):
|
|
params = p | kwargs
|
|
key_to_setter = {
|
|
"time_constant_s": lockin.set_time_constant_s,
|
|
"filter_slope": lockin.set_filter_slope,
|
|
"sync_filter": lockin.set_sync_filter,
|
|
"reserve": lockin.set_reserve,
|
|
"sensitivity_volt": lockin.set_sensitivity_volt,
|
|
}
|
|
for k, v in params.items():
|
|
if k not in key_to_setter.keys():
|
|
raise KeyError(f"Invalid parameter {k}")
|
|
key_to_setter[k](v)
|
|
|
|
|
|
def set_offset_laser_only(lockin: SR830, shutter: Shutter, wait_time_s):
|
|
"""
|
|
Set the R offset from the signal when only the laser is on.
|
|
This signal should be stray laser light and laser induced PL
|
|
:return: Offset as percentage of the full scale R
|
|
"""
|
|
log.info("Setting offset when the lamp is off.")
|
|
shutter.close()
|
|
sleep(wait_time_s + 10)
|
|
lockin.run("AOFF 3") # auto offset R
|
|
R_offset_fs = float(lockin.query("OEXP? 3").split(",")[0]) # returns R offset and expand
|
|
return R_offset_fs
|
|
|
|
|
|
def _measure_both_sim(monochromator: Bentham, lockin: SR830, shutter: Shutter, wl_range=(400, 750, 25), aux_DC="Aux In 4", offset_with_laser_only=True, monitor=None):
|
|
data = {}
|
|
lockin_params = {
|
|
"time_constant_s": 10,
|
|
# "time_constant_s": 100e-3,
|
|
"sensitivity_volt": 50e-6,
|
|
"filter_slope": 12,
|
|
"sync_filter": 1,
|
|
"reserve": "Normal",
|
|
}
|
|
measurement_params = {
|
|
"measurement_time_s": 30,
|
|
"sample_rate_Hz": 512,
|
|
}
|
|
|
|
set_measurement_params(lockin, lockin_params)
|
|
|
|
measurement_time_s = measurement_params["measurement_time_s"]
|
|
sample_rate_AC = measurement_params["sample_rate_Hz"]
|
|
n_bins_AC = measurement_time_s * sample_rate_AC # x sec messen mit <sample_rate> werte pro sekunde
|
|
timeout_s = 60
|
|
timeout_interval = 0.5
|
|
# trigger on the falling edge, since the light comes through when the ref signal is low
|
|
# could of course also trigger on rising and apply 180° shift
|
|
lockin.run("RSLP 2")
|
|
# since we dont expect changes in our signal, we can use larger time constants and aggressive filter slope
|
|
# for better signal to noise
|
|
wait_time_s = lockin.get_wait_time_s()
|
|
|
|
def run_lockin_cmd(cmd, n_try=2):
|
|
com_success = n_try
|
|
e = None
|
|
while com_success > 0:
|
|
try:
|
|
return cmd()
|
|
except pyvisa.VisaIOError as e:
|
|
lockin.try_recover_from_communication_error(e)
|
|
com_success -= 1
|
|
raise e
|
|
|
|
# 5s for setting buffer,
|
|
# 5s for get values and plot
|
|
print(f"Time estimate {(measurement_time_s + wait_time_s + 5 + 5)/60 * ((wl_range[1]-wl_range[0])/wl_range[2])} minutes")
|
|
input("Make sure the laser is turned on and press enter > ")
|
|
mon = monitor if monitor is not None else Monitor(r"$\lambda$ [nm]", [
|
|
dict(ax=0, ylabel=r"$\Delta R$", color="green"),
|
|
dict(ax=1, ylabel=r"$\sigma_{\Delta R}$", color="green"),
|
|
dict(ax=2, ylabel=r"$R$", color="blue"),
|
|
dict(ax=3, ylabel=r"$\sigma_R$", color="blue"),
|
|
dict(ax=4, ylabel=r"$\Delta R/R$", color="red"),
|
|
dict(ax=5, ylabel=r"$\sigma_{\Delta R/R}$", color="red"),
|
|
])
|
|
mon.set_fig_title(f"Turn on laser and plug detector into A and {aux_DC} ")
|
|
|
|
data["lock-in-params"] = lockin_params
|
|
data["measurement-params"] = measurement_params
|
|
full_scale_voltage = lockin_params["sensitivity_volt"]
|
|
if offset_with_laser_only:
|
|
mon.set_fig_title(f"Measuring baseline with lamp off")
|
|
R_offset_volt = set_offset_laser_only(lockin, shutter, wait_time_s) * full_scale_voltage
|
|
data["R_offset_volt_before"] = R_offset_volt
|
|
print(f"R_offset_volt_before {R_offset_volt}")
|
|
data["reference_freq_Hz_before"] = lockin.get_frequency()
|
|
|
|
shutter.open()
|
|
for i_wl, wl in enumerate(range(*wl_range)):
|
|
mon.set_ax_title(f"$\\lambda = {wl}$ nm")
|
|
run_lockin_cmd(lambda: lockin.buffer_setup(CH1="R", CH2=aux_DC, length=n_bins_AC, sample_rate=sample_rate_AC))
|
|
mon.set_fig_title(f"Setting wavelength to {wl} nm")
|
|
monochromator.drive(wl)
|
|
mon.set_fig_title(f"Waiting for signal to stabilize")
|
|
# wait the wait time
|
|
sleep(wait_time_s)
|
|
mon.set_fig_title(f"Measuring...")
|
|
run_lockin_cmd(lambda: lockin.buffer_start_fill())
|
|
t = timeout_s
|
|
while t > 0:
|
|
t -= timeout_interval
|
|
sleep(timeout_interval)
|
|
if run_lockin_cmd(lambda: lockin.buffer_is_done()):
|
|
break
|
|
if t < 0: raise RuntimeError("Timed out waiting for buffer measurement to finish")
|
|
# ToDo Phase messen
|
|
arr = run_lockin_cmd(lambda: lockin.buffer_get_data(CH1=True, CH2=True))
|
|
data[wl] = {}
|
|
data[wl]["raw"] = arr
|
|
# calculate means
|
|
means = np.mean(arr, axis=1)
|
|
errs = np.std(arr, axis=1)
|
|
dR = means[0]
|
|
R = means[1]
|
|
sdR = errs[0]
|
|
sR = errs[1]
|
|
data[wl] |= {"dR": dR, "sdR": sdR, "R": R, "sR": sR}
|
|
dR_R = dR / R
|
|
sdR_R = np.sqrt((sdR / R) + (dR * sR/R**2))
|
|
data[wl] |= {"dR_R": dR_R, "sdR_R": sdR_R}
|
|
mon.update(wl, dR, sdR, R, sR, dR_R, sdR_R)
|
|
# if it fails, we still want the data returned
|
|
try:
|
|
if offset_with_laser_only:
|
|
mon.set_fig_title(f"Measuring baseline with lamp off")
|
|
R_offset_volt = set_offset_laser_only(lockin, shutter, wait_time_s) * full_scale_voltage
|
|
data["R_offset_volt_after"] = R_offset_volt
|
|
print(f"R_offset_volt_after {R_offset_volt}")
|
|
data["reference_freq_Hz_after"] = lockin.get_frequency()
|
|
except Exception as e:
|
|
print(e)
|
|
mon.set_fig_title("Photoreflectance")
|
|
mon.set_ax_title("")
|
|
return data, mon
|
|
|
|
def _measure_both(monochromator: Bentham, lockin: SR830, shutter: Shutter, wl_range=(400, 750, 25), AC=True, DC=True, monitor=None):
|
|
mon = monitor if monitor is not None else Monitor(r"$\lambda$ [nm]", [
|
|
# dict(ax=0, ylabel="Wavelength [nm]", color="red"),
|
|
# dict(ax=1, ylabel="Ref", color="blue", lim=(0, 5)),
|
|
dict(ax=0, ylabel=r"$\Delta R$", color="green"),
|
|
dict(ax=1, ylabel=r"$\sigma_{\Delta R}$", color="green"),
|
|
dict(ax=2, ylabel=r"$R$", color="blue"),
|
|
dict(ax=3, ylabel=r"$\sigma_R$", color="blue"),
|
|
dict(ax=4, ylabel=r"$\Delta R/R$", color="red"),
|
|
# dict(ax=3, ylabel="R", color="blue"),
|
|
dict(ax=5, ylabel=r"$\theta$", color="orange", lim=(-180, 180)),
|
|
dict(ax=6, ylabel=r"$\sigma_\theta$", color="orange")
|
|
])
|
|
shutter.open()
|
|
data_raw = []
|
|
data_wl = {}
|
|
# TODO these are only printed, not set!
|
|
time_constant = 30e-3
|
|
filter_slope = 24
|
|
sensitivity = 1.0
|
|
|
|
SYNC = 1
|
|
sample_rate_AC = 64
|
|
sample_rate_DC = 512
|
|
n_bins_AC = 3 * sample_rate_AC # x sec messen mit <sample_rate> werte pro sekunde
|
|
n_bins_DC = 10 * sample_rate_DC
|
|
timeout_s = 60
|
|
timeout_interval = 0.5
|
|
# lockin.run("SENS 17") # 1 mV
|
|
# lockin.run("SENS 20") # 10 mV
|
|
# lockin.run("SENS 21") # 20 mV
|
|
lockin.run("SENS 26") # 1 V
|
|
# trigger on the falling edge, since the light comes through when the ref signal is low
|
|
# could of course also trigger on rising and apply 180° shift
|
|
lockin.run("RSLP 2")
|
|
# since we dont expect changes in our signal, we can use larger time constants and aggressive filter slope
|
|
# for better signal to noise
|
|
# lockin.run("OFLT 5") # 3 ms
|
|
lockin.run("OFLT 7") # 30 ms
|
|
# lockin.run("OFLT 8") # 100 ms
|
|
# lockin.run("OFLT 10") # 1 s
|
|
lockin.run("RMOD 2") # low noise (small reserve)
|
|
# lockin.run("OFSL 0") # 6dB/Oct
|
|
lockin.run("OFSL 3") # 24dB/Oct
|
|
lockin.run(f"SYNC {SYNC}") # sync filter
|
|
|
|
print(f"Time estimate {40 * (wl_range[1]-wl_range[0])/(wl_range[2]*60)} minutes")
|
|
if AC:
|
|
input("Plug the detector into lock-in port 'A/I' (front panel) and press enter > ")
|
|
input("Make sure the laser is turned on and press enter > ")
|
|
mon.set_fig_title("Turn on laser and plug detector into A")
|
|
for i_wl, wl in enumerate(range(*wl_range)):
|
|
mon.set_ax_title(f"$\\lambda = {wl}$ nm")
|
|
lockin.buffer_setup(CH1="R", CH2="Theta", length=n_bins_AC, sample_rate=sample_rate_AC)
|
|
mon.set_fig_title(f"Setting wavelength to {wl} nm")
|
|
monochromator.drive(wl)
|
|
mon.set_fig_title(f"Waiting for signal to stabilize")
|
|
# wait time depends on filter and time constant, for 24dB/Oct and Sync on the minimum is ~12 time constants
|
|
sleep(1.0)
|
|
mon.set_fig_title(f"Measuring...")
|
|
lockin.buffer_start_fill()
|
|
t = timeout_s
|
|
while t > 0:
|
|
t -= timeout_interval
|
|
sleep(timeout_interval)
|
|
if lockin.buffer_is_done():
|
|
break
|
|
if t < 0: raise RuntimeError("Timed out waiting for buffer measurement to finish")
|
|
arr = lockin.buffer_get_data(CH1=True, CH2=True)
|
|
data_raw.append([wl, arr])
|
|
# calculate means, for theta use circular mean
|
|
dR = np.mean(arr[0,:])
|
|
sdR = np.std(arr[0,:])
|
|
theta = scp.stats.circmean(arr[1,:], low=-180, high=180)
|
|
stheta = scp.stats.circstd(arr[1,:], low=-180, high=180)
|
|
data_wl[wl] = {"dR": dR, "Theta": theta, "sdR": sdR, "sTheta": stheta}
|
|
# wl - dR, sdR, R, sR, dR/R, Theta
|
|
mon.update(wl, dR, sdR, None, None, None, theta, stheta)
|
|
if DC:
|
|
mon.set_ax_title("")
|
|
mon.set_fig_title("Turn off laser and plug detector into Aux 1")
|
|
input("Turn off the laser and press enter > ")
|
|
input("Plug the detector into lock-in port 'Aux In 1' (rear panel) and press enter > ")
|
|
for i_wl, wl in enumerate(range(*wl_range)):
|
|
mon.set_ax_title(f"$\\lambda = {wl}$ nm")
|
|
lockin.buffer_setup(CH1="Aux In 1", CH2="Theta", length=n_bins_DC, sample_rate=sample_rate_DC)
|
|
mon.set_fig_title(f"Setting wavelength to {wl} nm")
|
|
monochromator.drive(wl)
|
|
sleep(0.5)
|
|
mon.set_fig_title(f"Measuring...")
|
|
lockin.buffer_start_fill()
|
|
t = timeout_s
|
|
while t > 0:
|
|
t -= timeout_interval
|
|
sleep(timeout_interval)
|
|
if lockin.buffer_is_done():
|
|
break
|
|
if t < 0: raise RuntimeError("Timed out waiting for buffer measurement to finish")
|
|
arr = lockin.buffer_get_data(CH1=True, CH2=False)
|
|
if AC:
|
|
data_raw[i_wl].append(arr)
|
|
else:
|
|
data_raw.append([wl, arr])
|
|
means = np.mean(arr, axis=1)
|
|
errs = np.std(arr, axis=1)
|
|
if not wl in data_wl: data_wl[wl] = {}
|
|
data_wl[wl] |= {"R": means[0], "sR": errs[0]}
|
|
# wl - dR, sdR, R, sR, dR/R, Theta
|
|
if AC:
|
|
dR_R = data_wl[wl]["dR"] / data_wl[wl]["R"]
|
|
mon.override(wl, None, None, data_wl[wl]["R"], data_wl[wl]["sR"], dR_R, None, None)
|
|
else:
|
|
mon.update(wl, None, None, data_wl[wl]["R"], data_wl[wl]["sR"], None, None, None)
|
|
mon.set_fig_title(f"Time constant = {time_constant} s\nFilter slope = {filter_slope} dB/oct\nSync Filter = {SYNC}\nSensitivity = {sensitivity*1e3} mV")
|
|
mon.set_ax_title("")
|
|
return data_wl, data_raw, mon
|
|
|
|
|
|
def _measure(monochromator: Bentham, lamp: Xenon, lockin: SR830, shutter: Shutter, wl_range=(400, 750, 25)):
|
|
data = []
|
|
mon = Monitor(r"$\lambda$ [nm]", [
|
|
# dict(ax=0, ylabel="Wavelength [nm]", color="red"),
|
|
# dict(ax=1, ylabel="Ref", color="blue", lim=(0, 5)),
|
|
dict(ax=0, ylabel=r"$\Delta R$", color="green"),
|
|
dict(ax=1, ylabel=r"$\sigma_{\Delta R}$", color="green"),
|
|
dict(ax=2, ylabel="Phase", color="orange", lim=(-180, 180))
|
|
# dict(ax=3, ylabel="R", color="blue"),
|
|
])
|
|
N_bins = 100
|
|
dt = 0.01
|
|
i = 0
|
|
shutter.open()
|
|
if isinstance(lockin, SR830):
|
|
lockin.run("SENS 17") # 1 mV/nA
|
|
lockin.run("OFLT 5")
|
|
for wl in range(*wl_range):
|
|
arr = np.empty((N_bins, 2))
|
|
monochromator.drive(wl)
|
|
|
|
# lockin.auto_gain()
|
|
for j in range(N_bins):
|
|
dR, theta = lockin.snap(what="3,4")
|
|
arr[j,:] = (dR, theta)
|
|
i += 1
|
|
# sleep(dt)
|
|
means = np.mean(arr, axis=0)
|
|
errs = np.std(arr, axis=0)
|
|
mon.update(wl, means[0], errs[0], means[1])
|
|
data.append((wl, arr))
|
|
elif isinstance(lockin, Model7260):
|
|
# lockin.run("SEN 21") # 10 mV/nA
|
|
lockin.run("SEN 24") # 100 mV/nA
|
|
for wl in range(*wl_range):
|
|
monochromator.drive(wl)
|
|
|
|
lockin.buffer_setup(MAG=1, PHASE=1, ADC1=1, ADC2=1, interval_ms=5, length=1000)
|
|
lockin.buffer_start_fill()
|
|
timeout_s = 60
|
|
timeout_interval = 0.5
|
|
while timeout_s > 0:
|
|
timeout_s -= timeout_interval
|
|
sleep(timeout_interval)
|
|
if lockin.buffer_is_done():
|
|
break
|
|
arr = lockin.buffer_get_data()
|
|
length = arr.shape[0]
|
|
# for j in range(length):
|
|
# # wl, ref, dR, R, theta
|
|
# mon.update(i*length+j, wl, arr[j][3], arr[j][0], arr[j][2], arr[j][1])
|
|
mon.update_array(range(i * length, (i+1)*length), [wl for _ in range(length)], arr[:,3], arr[:,0], arr[:,2], arr[:,1])
|
|
data.append((wl, arr))
|
|
i += 1
|
|
|
|
shutter.close()
|
|
return data, mon
|
|
|
|
lockin = None
|
|
lamp = None
|
|
mcm = None
|
|
shutter = None
|
|
|
|
def measure(wl_range=(400, 500, 2)):
|
|
return _measure(mcm, lamp, lockin, shutter, wl_range=wl_range)
|
|
|
|
def measure_both(**kwargs):
|
|
return _measure_both(mcm, lockin, shutter, **kwargs)
|
|
|
|
def measure_both_sim(**kwargs):
|
|
return _measure_both_sim(mcm, lockin, shutter, **kwargs)
|
|
|
|
if __name__ == "__main__":
|
|
mcm = Bentham()
|
|
shutter = module_shutter.connect_device(module_shutter.TYPENAME_DAQ, "TAS Lamp Shutter")
|
|
# mcm.park()
|
|
lamp = Xenon()
|
|
lockin = SR830.connect_device(SR830.enumerate_devices()[0])
|
|
# lockin = Model7260.connect_device(Model7260.enumerate_devices()[0])
|
|
# mcm = DummyBentham()
|
|
# shutter = DummyShutter()
|