added data prep

This commit is contained in:
Matthias@Dell 2023-04-16 17:12:16 +02:00
parent da49bf68d6
commit f8782fb258
5 changed files with 181 additions and 15 deletions

View File

@ -30,6 +30,7 @@ if __name__ == "__main__":
from .keithley import keithley as _keithley from .keithley import keithley as _keithley
from .utility import data as _data from .utility import data as _data
from .utility.data import load_dataframe
from .utility import file_io from .utility import file_io
from .utility import testing from .utility import testing
@ -155,6 +156,15 @@ def measure(max_measurements=None):
You can take the data from the buffer afterwards, using save_csv """ You can take the data from the buffer afterwards, using save_csv """
_measure(max_measurements=max_measurements, monitor=False) _measure(max_measurements=max_measurements, monitor=False)
def automeasure(repeat, repeat_delay=0, max_measurements=None, max_points_shown=120, monitor=True):
"""
Measure and save to csv multiple times
"""
for i in range(repeat):
_measure(max_measurements=max_measurements, max_points_shown=max_points_shown, monitor=monitor)
save_csv()
sleep(repeat_delay)
def get_dataframe(): def get_dataframe():
""" """
@ -199,20 +209,6 @@ def save_pickle():
df.to_pickle(filename) df.to_pickle(filename)
print(f"Saved as '{filename}'") print(f"Saved as '{filename}'")
def load_dataframe(p:str):
"""
Load a dataframe from file.
@param p : path of the file. If it has 'csv' extension, pandas.read_csv is used, pandas.read_pickle otherwise
"""
if not path.isfile(p):
print(f"ERROR: load_dataframe: File does not exist: {p}")
return None
if p.endswith(".csv"):
df = pd.read_csv(p)
else:
df = pd.read_pickle(p)
return df
def run_script(script_path): def run_script(script_path):
""" """
Run a lua script on the Keithley device Run a lua script on the Keithley device
@ -253,6 +249,7 @@ def help(topic=None):
Functions: Functions:
measure - measure the voltage measure - measure the voltage
monitor - measure the voltage with live monitoring in a matplotlib window monitor - measure the voltage with live monitoring in a matplotlib window
automeasure - measure and save to csv multiple times
get_dataframe - return smua.nvbuffer1 as pandas dataframe get_dataframe - return smua.nvbuffer1 as pandas dataframe
save_csv - save the last measurement as csv file save_csv - save the last measurement as csv file
save_pickle - save the last measurement as pickled pandas dataframe save_pickle - save the last measurement as pickled pandas dataframe

View File

@ -14,7 +14,6 @@ for key,val in scripts.items():
scripts[key] = script_dir + scripts[key] scripts[key] = script_dir + scripts[key]
def init_keithley(beep_success=True): def init_keithley(beep_success=True):
rm = pyvisa.ResourceManager('@py') rm = pyvisa.ResourceManager('@py')
resources = rm.list_resources() resources = rm.list_resources()

4
k-teng/materials Normal file
View File

@ -0,0 +1,4 @@
pdms
kapton
plastic

151
k-teng/prepare.py Normal file
View File

@ -0,0 +1,151 @@
import pandas as pd
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt
from time import sleep
from random import choice as r_choice
if __name__ == "__main__":
if __package__ is None:
# make relative imports work as described here: https://peps.python.org/pep-0366/#proposed-change
__package__ = "k-teng"
import sys
from os import path
filepath = path.realpath(path.abspath(__file__))
sys.path.insert(0, path.dirname(path.dirname(filepath)))
from .utility.data import load_dataframe
file = "/home/matth/data/gel_big_gap000.csv"
class PeakInfo:
"""
Helper class for "iterating" through selected peaks.
"""
def __init__(self):
self.reset()
def reset(self):
self._peak_names = [ "first", "second", "last", "lowest" ]
self._peaks = { p: None for p in self._peak_names }
self._iter = 0
def current(self):
# return (self._peak_names[self._iter]), self._peaks[self._peak_names[self._iter]]
return self._peaks[self._peak_names[self._iter]]
def name(self):
return self._peak_names[self._iter]
def next(self):
if self._iter < len(self._peak_names) - 1: self._iter += 1
return self.current()
def prev(self):
if self._iter > 0: self._iter -= 1
return self.current()
def set(self, value):
"""Assign a value to the crrent peak"""
self._peaks[self._peak_names[self._iter]] = value
def is_done(self):
for peak in self._peaks.values():
if peak is None: return False
return True
def __getitem__(self, key):
return self._peaks[key]
def __setitem__(self, key, value):
self._peaks[key] = value
def __repr__(self):
return f"{self._peak_names[self._iter]} peak"
def find_peaks(a):
peaks = signal.find_peaks(a)
def on_click(fig, ax, peaks, event):
"""
Let the user select first, second and last peak by clicking on them in this order.
Right click undos the last selection
"""
select = None
if event.button == 1: # left click
peaks.set((event.xdata, event.ydata))
print(f"{peaks}: {event.xdata} - {event.ydata}")
ax.set_title(f"{peaks}: {event.xdata} - {event.ydata}")
peaks.next()
elif event.button == 3: # right click
ax.set_title(f"Undo {peaks.name()}")
if not peaks.is_done():
peaks.prev()
peaks.set(None)
if peaks.is_done(): message = "Close window when done"
else: message = f"Click on {peaks}"
fig.suptitle(message)
fig.canvas.draw()
# fig1.canvas.flush_events()
def calc_peaks(peaks):
# get the peak points from the information of a Peaks object
# 90% distance between first and second
min_distance = max(1, (peaks["second"][0] - peaks["first"][0]) * 0.9)
min_height = peaks["lowest"][1] * 0.99
vpeaks = signal.find_peaks(vdata, height=min_height, distance=min_distance)
return vpeaks
def normalize(a):
"""
normalize so that all values are between 0 and 1
"""
min_ = np.min(a)
a = a - min_
max_ = np.max(a)
if max_ != 0:
a = a / max_
return a
if __name__ == "__main__":
"""
Peak identification:
plot, let user choose first, second, last and lowest peak for identification
"""
df = load_dataframe(file)
a = df.to_numpy()
vdata = normalize(a[:,2])
plt.ion()
# vpeaks[0] is the list of the peaks
vpeaks = signal.find_peaks(vdata)[0]
fig, ax = plt.subplots()
ax.plot(vdata)
peak_lines = ax.vlines(vpeaks, 0, 1, colors="r")
ax.grid(True)
fig.suptitle("Click on first peak")
peak_info = PeakInfo()
# handle clicks
fig.canvas.mpl_connect("button_press_event", lambda ev: on_click(fig, ax, peak_info, ev))
# run until user closes, events are handled with on_click function
print(vdata.size)
while plt.fignum_exists(fig.number):
plt.pause(0.01)
if (peak_info.is_done()):
vpeaks = calc_peaks(peak_info)[0]
x_margin = (a[-1,0] - a[0,0]) * 0.05 # allow some margin if user clicked not close enough on peak
vpeaks = vpeaks[(vpeaks >= peak_info["first"][0] - x_margin) & (vpeaks <= peak_info["last"][0] + x_margin)] # remove peaks before first and after last
peak_lines.remove()
peak_lines = ax.vlines(vpeaks, 0, 1, colors="r")
peak_info.reset()
print(a[:,0], vpeaks)
# separate peaks
indices = np.arange(0, a[:,0].size)
peak_datas = []
for i in range(len(vpeaks) - 1):
# TODO: user <= or <
peak_datas.append(vdata[(indices >= vpeaks[i]) & (indices < vpeaks[i+1])])
plt.plot(peak_datas[i])
print(peak_datas)
plt.pause(20)

View File

@ -1,5 +1,6 @@
import pandas as pd import pandas as pd
import numpy as np import numpy as np
from os import path
def buffer2dataframe(buffer): def buffer2dataframe(buffer):
df = pd.DataFrame(buffer) df = pd.DataFrame(buffer)
@ -15,3 +16,17 @@ def buffers2dataframe(ibuffer, vbuffer):
df = pd.DataFrame(np.vstack((ibuffer[:,0], ibuffer[:,1], vbuffer[:,1])).T) df = pd.DataFrame(np.vstack((ibuffer[:,0], ibuffer[:,1], vbuffer[:,1])).T)
df.columns = ["Time [s]", "Current [A]", "Voltage [V]"] df.columns = ["Time [s]", "Current [A]", "Voltage [V]"]
return df return df
def load_dataframe(p:str):
"""
Load a dataframe from file.
@param p : path of the file. If it has 'csv' extension, pandas.read_csv is used, pandas.read_pickle otherwise
"""
if not path.isfile(p):
print(f"ERROR: load_dataframe: File does not exist: {p}")
return None
if p.endswith(".csv"):
df = pd.read_csv(p)
else:
df = pd.read_pickle(p)
return df