m-teng/k-teng/utility/testing.py

39 lines
1.6 KiB
Python
Raw Normal View History

2023-04-13 11:09:40 +02:00
import pandas as pd
import numpy as np
def collect_buffer(instr, buffer_nr=1):
"""
Get the buffer as 2D - np.array
@param instr : pyvisa instrument
@param buffer_nr : 1 or 2, for smua.nvbuffer1 or 2
@returns 2D numpy array:
i - ith reading:
0: timestamps
1: readings
"""
if buffer_nr == 2: buffername = "smua.nvbuffer2"
else: buffername = "smua.nvbuffer1"
# instr.write("format.data = format.DREAL\nformat.byteorder = format.LITTLEENDIAN")
# buffer = instr.query_binary_values(f"printbuffer(1, {buffername}.n, {buffername})", datatype='d', container=np.array)
instr.write("format.data = format.ASCII\nformat.asciiprecision = 7")
timestamps = instr.query_ascii_values(f"printbuffer(1, {buffername}.n, {buffername}.timestamps)", container=np.array)
readings = instr.query_ascii_values(f"printbuffer(1, {buffername}.n, {buffername}.readings)", container=np.array)
print(f"readings: {readings}, \ntimestamps: {timestamps}")
buffer = np.vstack((timestamps, readings)).T
return buffer
def testcurve(x, frequency=10, peak_width=2, amplitude=20, bias=0):
# want peak at n*time == frequency
nearest_peak = np.round(x / frequency, 0)
# if not peak at 0 and within peak_width
if nearest_peak > 0 and abs((x - nearest_peak * frequency)) < peak_width:
# return sin that does one period within 2*peak_width
return amplitude * np.sin(2*np.pi * (x - nearest_peak * frequency - peak_width) / (2*peak_width)) + bias
else:
return bias
# 0 = pk - width
# 2pi = pk + width