removed util directory

This commit is contained in:
matthias@arch 2022-11-01 18:16:32 +01:00
parent 570466b06c
commit aeba6ffc31
9 changed files with 0 additions and 1059 deletions

View File

@ -1,59 +0,0 @@
#include "string.hpp"
#include <sstream>
#include <iostream>
namespace gz::util {
std::vector<std::string> splitStringInVector(std::string& s, char separator) {
// remove linebreaks from the end
if (*(s.end()) == '\n') { s.erase(s.end()); }
/* std::unique_ptr<std::unordered_map<Entity, std::string>> params (new std::unordered_map<Entity, std::string>); */
std::vector<std::string> v;
std::stringstream ss(s);
std::string temp;
while (std::getline(ss, temp, separator)) {
// if has "=": store latter part in vector
if (temp.find("=") != std::string::npos) {
int eqPos = temp.find("=");
v.emplace_back(temp.substr(eqPos + 1, temp.length()));
}
else {
v.emplace_back(temp);
}
}
return v;
}
template<SplitStringInVectorImplemented T>
std::vector<T> splitStringInVector(const std::string_view& s, const std::string& separator, bool skipEmptyStrings) {
std::vector<T> v;
std::string::size_type posStart = 0;
std::string::size_type posEnd = s.find(separator, posStart);
while (posEnd != std::string::npos) {
if (!(skipEmptyStrings and posStart == posEnd)) {
v.emplace_back(T(s.begin() + posStart, s.begin() + posEnd));
}
posStart = posEnd + 1;
posEnd = s.find(separator, posStart);
}
// last element
if (posStart < s.size()) {
v.emplace_back(T(s.begin() + posStart, s.end()));
}
// if last char is separator, append empty string
else if (!skipEmptyStrings and posStart == s.size()) {
v.emplace_back(T(s.begin(), s.begin()));
}
return v;
}
template std::vector<std::string_view> splitStringInVector<std::string_view>(const std::string_view&, const std::string&, bool);
template std::vector<std::string> splitStringInVector<std::string>(const std::string_view&, const std::string&, bool);
} // namespace gz::util

View File

@ -1,77 +0,0 @@
#pragma once
#include <string>
#include <vector>
#include <unordered_map>
#include <map>
namespace gz::util {
template<typename T>
concept SplitStringInVectorImplemented = std::same_as<T, std::string_view> || std::same_as<T, std::string>;
/**
* @brief Split a string at a separator into a vector
* @details
* Splits a string at a separator.\n
* Two templates exist, one where the vector will hold std::string_views into s
* and one where it will hold std::strings.
* Behavior:
* - the elements of the returned vector will not contain the separator.
* - if the separator is not in s, the vector will contain s as only element.
* - empty elements will occur if:
* - separator is the first char
* - separator is the last char
* - two or more separator appear after each other\n
* You can turn this behaviour off by setting skipEmptyStrings to true
* @note
* The string_view variant has the advantage of being faster, however:\n
* The string_views will reference the original string, so it must not be changed or destroyed
* as long as the string_views are used!
*/
template<SplitStringInVectorImplemented T>
std::vector<T> splitStringInVector(const std::string_view& s, const std::string& separator, bool skipEmptyStrings=false);
/**
* @name Map with string type as key, works with strings, string_view and char*
* @{
*/
struct string_hash
{
using hash_type = std::hash<std::string_view>;
using is_transparent = void;
size_t operator()(const char* str) const { return hash_type{}(str); }
size_t operator()(std::string_view str) const { return hash_type{}(str); }
size_t operator()(std::string const& str) const { return hash_type{}(str); }
};
/**
* @brief A unordered_map where you can use string_views to access elements
* @details
* To retrieve an element using a string view, you need to do this:
* @code
* std::string_view sv = ...;
* gz::util::unordered_string_map<T> smap = { ... };
* ...
* if (smap.contains(sv)) {
* return smap.find(sv)->second;
* }
* @endcode
* The at() member and [] operator do not work with the string_view.
*/
template<typename T>
using unordered_string_map = std::unordered_map<std::string, T, util::string_hash, std::equal_to<>>;
/**
* @brief same as unordered_string_map, but using std::map instead of std::unordered_map
*/
template<typename T>
using string_map = std::map<std::string, T, util::string_hash, std::equal_to<>>;
/**
* @}
*/
} // namespace gz::util
/**
* @file
* @brief Contains utility for strings
*/

View File

@ -1,177 +0,0 @@
#pragma once
#include<ranges>
#include <concepts>
#include <string>
#include <string_view>
#define GZ_UTIL_STRING_CONCEPTS
namespace gz::util {
//
// CONVERT TO STRING CONCEPTS
//
// ELEMENTARY TYPES
/// same as std::string
template<typename T>
concept Stringy = std::same_as<T, std::string> || std::convertible_to<T, std::string_view>;
/// can construct std::string from T
template<typename T>
concept CanConstructString = !Stringy<T> && requires(const T& t) {
{ std::string(t) } -> std::same_as<std::string>;
};
/// has .to_string() const member
template<typename T>
concept HasToStringMember = !Stringy<T> && requires(const T& t) { { t.toString() }-> Stringy; };
/// works with std::to_string(), except bool
template<typename T>
concept WorksWithStdToString = !std::same_as<T, bool> && !Stringy<T> && !HasToStringMember<T> && requires(const T& t) { { std::to_string(t) } -> Stringy; };
template<typename T>
concept _ElementaryTypeConvertibleToString = Stringy<T> || HasToStringMember<T> || WorksWithStdToString<T>;
// CONTAINER
/// Forward range having string-convertible elements
template<typename T>
concept ContainerConvertibleToString = !_ElementaryTypeConvertibleToString<T> and std::ranges::forward_range<T> and _ElementaryTypeConvertibleToString<std::ranges::range_reference_t<T>>;
template<typename T>
concept _ElementaryTypeOrForwardRangeConvertibleToString = _ElementaryTypeConvertibleToString<T> || ContainerConvertibleToString<T>;
/// Pair having string-convertible elements
template<typename T>
concept PairConvertibleToString = !ContainerConvertibleToString<T> and requires(const T& p) {
requires _ElementaryTypeOrForwardRangeConvertibleToString<decltype(p.first)>;
requires _ElementaryTypeOrForwardRangeConvertibleToString<decltype(p.second)>;
};
/// Container having string-convertible pairs
template<typename T>
concept MapConvertibleToString = !PairConvertibleToString<T> and !_ElementaryTypeOrForwardRangeConvertibleToString<T> and
std::ranges::forward_range<T> and PairConvertibleToString<std::ranges::range_reference_t<T>>;
template<typename T>
concept _ContainerTypeConvertibleToString = PairConvertibleToString<T> || ContainerConvertibleToString<T> || MapConvertibleToString<T>;
template<typename T>
concept _ElementaryTypeOrContainerConvertibleToString = _ElementaryTypeConvertibleToString<T> || _ContainerTypeConvertibleToString<T>;
// VECTOR
/// Type having string-convertible x, y members and sizeof(T) == 2 * sizeof(x)
template<typename T>
concept Vector2ConvertibleToString = !_ElementaryTypeOrContainerConvertibleToString<T> &&
requires(T t) {
{ t.x } -> _ElementaryTypeOrContainerConvertibleToString;
{ t.y } -> _ElementaryTypeOrContainerConvertibleToString;
requires sizeof(t.x) * 2 == sizeof(T);
};
/// Type having string-convertible x, y, z members and sizeof(T) == 3 * sizeof(x)
template<typename T>
concept Vector3ConvertibleToString = !_ElementaryTypeOrContainerConvertibleToString<T> &&
requires(T t) {
{ t.x } -> _ElementaryTypeOrContainerConvertibleToString;
{ t.y } -> _ElementaryTypeOrContainerConvertibleToString;
{ t.z } -> _ElementaryTypeOrContainerConvertibleToString;
requires sizeof(t.x) * 3 == sizeof(T);
};
/// Type having string-convertible x, y, z, w members and sizeof(T) == 4 * sizeof(x)
template<typename T>
concept Vector4ConvertibleToString = !_ElementaryTypeOrContainerConvertibleToString<T> &&
requires(T t) {
{ t.x } -> _ElementaryTypeOrContainerConvertibleToString;
{ t.y } -> _ElementaryTypeOrContainerConvertibleToString;
{ t.z } -> _ElementaryTypeOrContainerConvertibleToString;
{ t.w } -> _ElementaryTypeOrContainerConvertibleToString;
requires sizeof(t.x) * 4 == sizeof(T);
};
/// Type having string-convertible width, height members and sizeof(T) == 2 * sizeof(width)
template<typename T>
concept Extent2DConvertibleToString = !_ElementaryTypeOrContainerConvertibleToString<T> &&
requires(T t) {
{ t.width } -> _ElementaryTypeOrContainerConvertibleToString;
{ t.height } -> _ElementaryTypeOrContainerConvertibleToString;
requires sizeof(t.width) * 2 == sizeof(T);
};
/// Type having string-convertible width, height, depth members and sizeof(T) == 3 * sizeof(width)
template<typename T>
concept Extent3DConvertibleToString = !_ElementaryTypeOrContainerConvertibleToString<T> &&
requires(T t) {
{ t.width } -> _ElementaryTypeOrContainerConvertibleToString;
{ t.height } -> _ElementaryTypeOrContainerConvertibleToString;
{ t.depth } -> _ElementaryTypeOrContainerConvertibleToString;
requires sizeof(t.width) * 3 == sizeof(T);
};
// POINTER
/// Everything from string-convertibleNoPtr but "behind" a pointer
template<typename T>
concept PointerConvertibleToString = !_ElementaryTypeOrContainerConvertibleToString<T> and
requires(const T t) { { *t } -> _ElementaryTypeOrContainerConvertibleToString; };
// HEX/OCT/BIN
// Forward range holding integers
template<typename T>
concept IntegralForwardRange = std::ranges::forward_range<T> and std::integral<std::ranges::range_value_t<T>>;
} // namespace gz::util
//
// CONVERT TO STRING
//
template<typename T>
concept False = false;
/**
* @brief Declaration of fromString in global namespace, so that concepts can use it
* @details
* This declaration only exists so that ::fromString can be used in concepts.
*/
template<False T>
T fromString(const std::string& s);
/**
* @brief Declaration of toString in global namespace, so that concepts can use it
* This declaration only exists so that ::toString can be used in concepts.
*/
template<False T>
std::string toString(const T& s);
namespace gz::util {
template<typename T>
concept ConstructibleFromStringGlobal = requires(const std::string& s) {
{ ::fromString<T>(s) } -> std::same_as<T>;
};
template<typename T>
concept ConvertibleToStringGlobal = requires(const T& t) {
{ ::toString(t) } -> Stringy;
};
/**
* @brief toString is implemented for these types
*/
template<typename T>
concept GetTypeFromStringImplemented =
std::same_as<T, int> or
std::same_as<T, long> or
std::same_as<T, long long> or
std::same_as<T, unsigned int> or
std::same_as<T, unsigned long> or
std::same_as<T, unsigned long long> or
std::same_as<T, float> or
std::same_as<T, double> or
std::same_as<T, long double> or
std::same_as<T, bool>;
}
/**
* @file
* @brief Concepts used for the to_string() functions
* @details
* These concepts are used
*/

View File

@ -1,119 +0,0 @@
#include "string_conversion.hpp"
#include "../exceptions.hpp"
#include "regex.hpp"
namespace gz {
bool isInt(const std::string& s) {
return std::regex_match(s, re::types::intT);
}
bool isInt(const std::string_view& s) {
return re::regex_match(s, re::types::intT);
}
bool isUInt(const std::string& s) {
return std::regex_match(s, re::types::uintT);
}
bool isUInt(const std::string_view& s) {
return re::regex_match(s, re::types::uintT);
}
bool isFloal(const std::string& s) {
return std::regex_match(s, re::types::floatT);
}
bool isFloat(const std::string_view& s) {
return re::regex_match(s, re::types::floatT);
}
int getIntOr(const std::string& s, int fallback) noexcept {
try {
fallback = std::stoi(s);
}
catch (...) {}
return fallback;
}
unsigned int getUnsignedIntOr(const std::string& s, unsigned int fallback) noexcept {
try {
fallback = std::stoul(s);
}
catch (...) {}
return fallback;
}
double getDoubleOr(const std::string& s, double fallback) noexcept {
try {
fallback = std::stod(s);
}
catch (...) {}
return fallback;
}
float getFloatOr(const std::string& s, float fallback) noexcept {
try {
fallback = std::stof(s);
}
catch (...) {}
return fallback;
}
bool getBoolOr(const std::string& s, bool fallback) noexcept {
if (s == "true" or s == "True" or s == "1") {
fallback = true;
}
else if (s == "false" or s == "False" or s == "0") {
fallback = false;
}
return fallback;
}
std::string getStringOr(const std::string& s, const std::string& fallback) noexcept {
if (s == "") { return fallback; }
else { return s; }
}
// TODO: remove?
/* // int = 0, double = 1, string = 2 */
/* std::variant<std::string, int, double, bool> getVariant(std::string value, GetVariantType type, bool bFallback, int iFallback, double dFallback, const char* sFallback) { */
/* std::variant<std::string, int, double, bool> val = value; */
/* /1* cout << "id-attr" << id << attr << "val: " << std::get<string>(val); *1/ */
/* switch (type) { */
/* // to integer */
/* case INT: */
/* val = getIntOr(value, iFallback); */
/* break; */
/* case DOUBLE: */
/* val = getDoubleOr(value, dFallback); */
/* break; */
/* case BOOL: */
/* val = getBoolOr(value, bFallback); */
/* break; */
/* case STRING: */
/* val = getStringOr(value, sFallback); */
/* break; */
/* } */
/* return val; */
/* } */
//
// CONVERT FROM STRING
//
template<>
bool fromString<bool>(const std::string& s) {
if (s == "true" or s == "True" or s == "1") {
return true;
}
else if (s == "false" or s == "False" or s == "0") {
return false;
}
throw InvalidArgument("s is not a bool: '" + s + "'", "fromString<bool>");
}
} // namespace gz

View File

@ -1,627 +0,0 @@
#pragma once
#include "string_concepts.hpp"
#include <string>
#include <bitset>
#ifdef FORMAT
#include <format>
#else
#include <sstream>
#include <iomanip>
#endif
namespace gz {
/**
* @name Functions that determine if s is a string representation of a certain type, using regex.
* @{
*/
bool isInt(const std::string& s);
bool isInt(const std::string_view& s);
bool isUInt(const std::string& s);
bool isUInt(const std::string_view& s);
bool isFloat(const std::string& s);
bool isFloat(const std::string_view& s);
/**
* @}
*/
/**
* @name Convert to type or return fallback
* @todo Use string_views without constructing a std::string
* @{
*/
int getIntOr(const std::string& s, int fallback=0) noexcept;
inline int getIntOr(const std::string_view& s, int fallback=0) noexcept { return getIntOr(std::string(s), fallback); }
unsigned int getUnsignedIntOr(const std::string& s, unsigned int fallback=0) noexcept;
/* inline unsigned int getUnsignedIntOr(const std::string&& s, unsigned int fallback=0) { return getUnsignedIntOr(s, fallback); } */
inline unsigned int getUnsignedIntOr(const std::string_view& s, unsigned int fallback=0) noexcept { return getUnsignedIntOr(std::string(s), fallback); }
double getDoubleOr(const std::string& s, double fallback=0) noexcept;
/* inline double getDoubleOr(const std::string&& s, double fallback=0) { return getDoubleOr(s, fallback); } */
inline double getDoubleOr(const std::string_view& s, double fallback=0) noexcept { return getDoubleOr(std::string(s), fallback); }
float getFloatOr(const std::string& s, float fallback=0) noexcept;
/* inline float getFloatOr(const std::string&& s, float fallback=0) { return getDoubleOr(s, fallback); } */
inline float getFloatOr(const std::string_view& s, float fallback=0) noexcept { return getDoubleOr(std::string(s), fallback); }
bool getBoolOr(const std::string& s, bool fallback=false) noexcept;
/* inline bool getBoolOr(const std::string&& s, bool fallback=false) { return getBoolOr(s, fallback); } */
inline bool getBoolOr(const std::string_view& s, bool fallback=false) noexcept { return getBoolOr(std::string(s), fallback); }
/**
* @brief Returns the string or fallback if string is empty.
*/
std::string getStringOr(const std::string& s, const std::string& fallback="none") noexcept;
/**
* @}
*/
// TODO: remove?
/* enum GetVariantType { */
/* INT, DOUBLE, STRING, BOOL, */
/* }; */
/*
* @brief Converts the given string to the requested type and puts returns it in a variant
* @details
* Tries to convert the string to the specified type.
* If that fails a default value is returned.
* This is either 1 for int or double or "none" for strings.
*
* @param value String which should be converted
* @param type GetVariantType datatype to return in the variant
*
* @returns Variant containing the value in the given datatype.
*/
/* std::variant<std::string, int, double, bool> getVariant(std::string value, GetVariantType type=STRING, bool bFallback=false, int iFallback=0, double dFallback=0, const char* sFallback="none"); */
//
// CONVERT TO STRING
//
/**
* @name Converting a type to string
* @{
*/
/**
* @brief Return the string
* @returns static_cast<std::string>(t)
*/
template<util::Stringy T>
inline std::string toString(const T& t) {
return static_cast<std::string>(t);
}
/**
* @brief Construct a string from a string like-type
* @returns std::string(t)
*/
template<util::CanConstructString T>
inline std::string toString(const T& t) {
return std::string(t);
}
/**
* @overload
* @brief Construct a string from a type having a toString() const member function
* @returns t.toString()
*/
template<util::HasToStringMember T>
inline std::string toString(const T& t) {
return t.toString();
}
/**
* @overload
* @brief Construct a string from a number
* @returns std::to_string(t)
*/
template<util::WorksWithStdToString T>
inline std::string toString(const T& t) {
return std::to_string(t);
}
/**
* @brief Construct a string from a boolean
* @details
* Unlike std::to_string(bool), which returns 0 or 1, this function returns "true" or "false"
* @returns "true" or "false"
*/
inline std::string toString(const bool& b) {
return b ? "true" : "false";
}
/**
* @overload
* @brief Construct a string from a forward range
* @returns [ x1, x2, ... ]
*/
template<util::ContainerConvertibleToString T>
std::string toString(const T& t) {
std::string s = "[ ";
for (auto it = t.begin(); it != t.end(); it++) {
s += toString(*it) + ", ";
}
if (s.size() > 2) {
s.erase(s.size() - 2);
}
s += " ]";
return s;
}
/**
* @overload
* @brief Construct a string from a pair
* @returns ( first, second )
*/
template<util::PairConvertibleToString T>
inline std::string toString(const T& t) {
return "( " + toString(t.first) + ", " + toString(t.second) + " )";
}
/**
* @overload
* @brief Construct a string from a forward range holding a pair, eg a map
* @returns { first: second, first: second, ... }
*/
template<util::MapConvertibleToString T>
std::string toString(const T& t) {
std::string s = "{ ";
for (const auto& [k, v] : t) {
s += toString(k) + ": ";
s += toString(v) + ", ";
}
if (s.size() > 2) {
s.erase(s.size() - 2);
}
s += " }";
return s;
}
/**
* @overload
* @brief Construct a string from the element the pointer points at
* @returns *t
*/
template<util::PointerConvertibleToString T>
inline std::string toString(const T& t) {
return toString(*t);
}
/**
* @overload
* @brief Construct a string from a vector with x, y members
* @returns ( x, y )
*/
template<util::Vector2ConvertibleToString T>
inline std::string toString(const T& t) {
std::string s = "( ";
s += toString(t.x) + ", ";
s += toString(t.y) + " )";
return s;
}
/**
* @overload
* @brief Construct a string from a vector with x, y members
* @returns ( x, y, z )
*/
template<util::Vector3ConvertibleToString T>
inline std::string toString(const T& t) {
std::string s = "( ";
s += toString(t.x) + ", ";
s += toString(t.y) + ", ";
s += toString(t.z) + " )";
return s;
}
/**
* @overload
* @brief Construct a string from a vector with x, y, z, w members
* @returns ( x, y, z, w )
*/
template<util::Vector4ConvertibleToString T>
inline std::string toString(const T& t) {
std::string s = "( ";
s += toString(t.x) + ", ";
s += toString(t.y) + ", ";
s += toString(t.z) + ", ";
s += toString(t.w) + " )";
return s;
}
/**
* @overload
* @brief Construct a string from a type having width and height members
* @returns ( width, height )
*/
template<util::Extent2DConvertibleToString T>
inline std::string toString(const T& t) {
std::string s = "( ";
s += toString(t.width) + ", ";
s += toString(t.height) + " ) ";
return s;
}
/**
* @overload
* @brief Construct a string from a type having width and height members
* @returns ( width, height, depth )
*/
template<util::Extent3DConvertibleToString T>
inline std::string toString(const T& t) {
std::string s = "( ";
s += toString(t.width) + ", ";
s += toString(t.height) + ", ";
s += toString(t.depth) + " ) ";
return s;
}
/**
* @overload
* @brief Construct a string from a type that has toString declared in global namespace
*/
template<util::ConvertibleToStringGlobal T>
inline std::string toString(const T& t) {
return ::toString(t);
}
/**
* @}
*/
//
// CONVERT FROM STRING
//
/**
* @name Construct a type from a string
* @note
* The fromString() functions (except for the bool one) simply return std::stoXX. These can throw std::invalid_argument and std::out_of_range.
* See https://en.cppreference.com/w/cpp/string/basic_string/stol
*/
/// @{
/**
* @brief Declaration of fromString, but only for the types for which it is implemented
*/
template<util::GetTypeFromStringImplemented T>
T fromString(const std::string& s);
/// @returns std::stoi(s)
template<> inline int fromString<int>(const std::string& s) {
return std::stoi(s);
}
/// @returns std::stol(s)
template<> inline long fromString<long>(const std::string& s) {
return std::stol(s);
}
/// @returns std::stoll(s)
template<> inline long long fromString<long long>(const std::string& s) {
return std::stoll(s);
}
/// @returns std::stoul(s)
template<> inline unsigned int fromString<unsigned int>(const std::string& s) {
return std::stoul(s);
}
/// @returns std::stoul(s)
template<> inline unsigned long fromString<unsigned long>(const std::string& s) {
return std::stoul(s);
}
/// @returns std::stoull(s)
template<> inline unsigned long long fromString<unsigned long long>(const std::string& s) {
return std::stoull(s);
}
/// @returns std::stof(s)
template<> inline float fromString<float>(const std::string& s) {
return std::stof(s);
}
/// @returns std::stod(s)
template<> inline double fromString<double>(const std::string& s) {
return std::stod(s);
}
/// @returns std::stold(s)
template<> inline long double fromString<long double>(const std::string& s) {
return std::stold(s);
}
/**
* @brief Convert a string to bool
* @details
* - returns true if s = "true" or "True" or "1"
* - returns false if s = "false" or "False" or "0"
* - throws InvalidArgument otherwise
*/
template<> bool fromString<bool>(const std::string& s);
/**
* @overload
* @brief Construct T from a string using a fromString that is declared in global namespace
*/
template<util::ConstructibleFromStringGlobal T>
inline T fromString(const std::string& s) {
return ::fromString<T>(s);
}
/// @}
//
// CONCEPTS
//
/**
* @brief Any type where toString(t) const exists returns a string-like type
* @note The function only has to exist, it does not have to be noexcept!
*/
template<typename T>
concept ConvertibleToString = requires(const T& t) {
{ toString(t) } -> util::Stringy;
};
/* concept CovertibleToString = requires(const T& t) { { toString(t) }; }; */
/**
* @brief Any type where fromString(string) exists and returns T
* @note The function only has to exist, it does not have to be noexcept!
*/
template<typename T>
concept ConstructibleFromString = requires(const std::string& s) {
{ fromString<T>(s) } -> std::same_as<T>;
};
/**
* @brief Any type where toString(t) and fromString(string) exist
*/
template<typename T>
concept StringConvertible = ConvertibleToString<T> and ConstructibleFromString<T>;
//
// HEX/OCT
//
/**
* @name Converting an integer to/from a hex/oct/bin string
* @todo Move to std::format, when P0645R10 is implemented in gcc libstd
* @note
* The fromHexString() and fromOctString() functions use `std::hex`, while fromBinString() uses `std::bitset`. Both can throw `std::invalid_argument` and the latter can also throw `std::out_of_range`.
* See https://en.cppreference.com/w/cpp/utility/bitset/bitset and https://en.cppreference.com/w/cpp/io/manip/hex
*/
/// @{
/**
* @brief Convert an integer to hexdecimal string (prefixed with 0x)
* @param digits
* Minimum number of digits. Defaults to the amount of digits required to represent the largest possible number of type T.
* If digits is smaller than the needed amount to represent t, the needed amount is used.
*/
template<std::integral T>
std::string toHexString(const T& t, char digits=sizeof(T)*2) {
#ifdef FORMAT
return std::format("{:#0" + std::to_string(digits) + "x}", t);
#endif
std::stringstream ss;
ss << "0x" << std::setfill('0') << std::setw(digits) << std::hex << t;
return std::string(ss.str());
}
/**
* @brief Convert a hexadecimal string (may be prefixed with 0x) to integer
*/
template<std::integral T>
T fromHexString(const std::string& s) {
T t;
std::stringstream ss;
ss << std::hex << s;
ss >> t;
return t;
}
/**
* @brief Convert an integer to octal string (prefixed with 0)
* @param digits
* Minimum number of digits. Defaults to the amount of digits required to represent the largest possible number of type T.
* If digits is smaller than the needed amount to represent t, the needed amount is used.
*/
template<std::integral T>
std::string toOctString(const T& t, char digits=sizeof(T)*4) {
#ifdef FORMAT
// TODO test when possible
return std::format("{:#0" + std::to_string(digits) + "o}", t);
#endif
std::stringstream ss;
ss << "0" << std::setfill('0') << std::setw(digits) << std::oct << t;
return std::string(ss.str());
}
/**
* @brief Convert an octal string (may be prefixed with 0) to integer
*/
template<std::integral T>
T fromOctString(const std::string& s) {
T t;
std::stringstream ss;
ss << std::oct << s;
ss >> t;
return t;
}
/**
* @brief Convert an integer to binary string (prefixed with 0b)
*/
template<std::integral T>
std::string toBinString(const T& t) {
#ifdef FORMAT
// TODO test when possible
return std::format("{:#0" + std::to_string(digits) + "b}", t);
#endif
return std::string("0b") + std::bitset<sizeof(T)*8>(t).to_string();
}
/**
* @brief Convert binary string (may be prefixed with 0b) to integer
*/
template<std::integral T>
T fromBinString(const std::string& s) {
if (s.starts_with("0b")) {
return static_cast<T>(std::bitset<sizeof(T)*8>(s, 2).to_ullong());
}
else {
return static_cast<T>(std::bitset<sizeof(T)*8>(s).to_ullong());
}
}
/**
* @overload
* @brief Construct a string where the elements from a forward range are in hexadecimal format
* @returns [ 0x0001, 0x0002, ... ]
*/
template<util::IntegralForwardRange T>
std::string toHexString(const T& t) {
std::string s = "[ ";
for (auto it = t.begin(); it != t.end(); it++) {
s += toHexString(*it) + ", ";
}
if (s.size() > 2) {
s.erase(s.size() - 2);
}
s += " ]";
return s;
}
/**
* @overload
* @brief Construct a string where the elements from a forward range are in octal format
* @returns [ 00001, 00002, ... ]
*/
template<util::IntegralForwardRange T>
std::string toOctString(const T& t) {
std::string s = "[ ";
for (auto it = t.begin(); it != t.end(); it++) {
s += toOctString(*it) + ", ";
}
if (s.size() > 2) {
s.erase(s.size() - 2);
}
s += " ]";
return s;
}
/**
* @overload
* @brief Construct a string where the elements from a forward range are in octal format
* @returns [ 0b0001, 0b0010, ... ]
*/
template<util::IntegralForwardRange T>
std::string toBinString(const T& t) {
std::string s = "[ ";
for (auto it = t.begin(); it != t.end(); it++) {
s += toBinString(*it) + ", ";
}
if (s.size() > 2) {
s.erase(s.size() - 2);
}
s += " ]";
return s;
}
/// @}
} // namespace gz
/**
* @file
* @brief Contains utilities for type conversions from string
*/
namespace gz {
/**
* @page string_conversion String conversion
* @section sc_about About
* This library provides utility for string conversion, from and to std::string.
* The string conversion functions are declared in string_conversion.hpp and can be imported with `#include <gz-util/util/string_conversion.hpp>`.
*
* There also three important concepts, ConvertibleToString, ConstructibleFromString and @ref StringConvertible which are
* used in the @ref Log "logger" and the @ref SettingsManager "settings manager" to log and store types.
*
* If you want to use your own data type with one of these,
* you can easily @ref sc_overloads "write your own string conversion" function for your custom datatype.
*
* @section sc_toString Convert to string
* You can use the toString() function to turn certain types into strings.
* Concepts are used to determine the correct overload of the function.
*
* The concept ConvertibleToString is satisfied for types that can be converted to string
* using toString().
*
* @section sc_fromString Construct from string
* You can use the fromString() function to create certain types from a string.
*
* The concept ConstructibleFromString is satisfied for types that can be constructed from a string with fromString().
*
* When constructing something from a string, there is of course the problem that errors occur at runtime when
* the string is unsuitable for construction. In this case, the fromString functions from this library throw a InvalidArgument exception.
*
* @section sc_overloads Overloading the string conversion functions
* @subsection sc_toString_ov Overload for toString
* If you want your custom type to be convertible to string, you have different options.
* You can either add an <code>toString() const</code> member to your class or overload
* <code>std::string toString(const T&)</code>.
* Example for a class called <code>Custom</code>
* @code
* std::string toString(const Custom& c) {
* std::string s;
* ...
* return s;
* }
* @endcode
* @note
* To satisfy the concept, any overload must be visible to the compiler when the concept is processed,
* so you have to declare it before including `util/string_concepts.hpp` (which is also included by `util/string_conversion.hpp`, `settings_manager.hpp` and `log.hpp`).
* To ease troubleshooting the include order, `util/string_conversion.hpp` defines the macro `GZ_UTIL_STRING_CONCEPTS`,
* so you can place an assertion like this before declaring your overloads:
* @code
* #ifdef GZ_UTIL_STRING_CONCEPTS
* static_assert(false, "gz-util/util/string_conversion.hpp must not be included before this file!");
* #endif
* @endcode
*
* @subsection sc_fromString_ov Overload for fromString
* Writing an overload for fromString needs a little bit more boiler plate.
* Since fromString is a templated function, you need to declare it as such.
* The function declaration in this library uses a concept so that it is only
* declared for the types that are actully implemented.
* Example for a class called <code>Custom</code>
* @code
* // declare as template, but only for Custom
* template<std::same_as<Custom> T>
* Custom fromString(const std::string& s);
*
* // instantiation/definition, but only for Custom
* template<>
* Custom fromString<Custom>(const std::string& s) {
* ...
* return Custom(...);
* };
* @endcode
*
* @subsection sc_notes Notes
* You should write your function so that the output of one can be used as input of the other.
* In other words:
* @code
* Custom c1;
* Custom c2 = fromString(toString(c1));
* assert(c1 == c2);
* @endcode
*
* SettingsManager expects the strings from toString() to be a single line.
* If it has multiple lines, it will not load it correctly when loading from a file.
*
* @todo Implement fromString for vectors that hold ConstructibleFromString types
* @todo Make macro for all types/concepts where someone would want to implement fromString and toString explicitly, eg vectors
*
* @section sc_int_types Converting integers to/from strings with different base
* The functions toHexString(), toOctString() and toBinString() can be used to get a
* string of an integers representation in 16 / 8 / 2 basis.
*
* The functions fromHexString<T>(), fromOctString<T>() and fromBinString<T>() can be used to get an integer
* from a string representation of an integer in 16 / 8 / 2 basis.
* These function can throw std::invalid_argument and std::out_of_range.
*
* @note toHexString() and toOctString() do not work well with `(unsigned) char` (`(u)int8_t`).
*
*
*/
} // namespace gz