160 lines
4.2 KiB
Python
160 lines
4.2 KiB
Python
#!/usr/bin env python3
|
|
from formulary import *
|
|
from scipy.constants import Boltzmann as kB, hbar, electron_volt
|
|
|
|
|
|
# DEVICES
|
|
# metal sc: schottky barrier
|
|
def schottky_barrier():
|
|
fig, axs = plt.subplots(1, 3, figsize=(width_formula, height_default*0.6))
|
|
WD = 5
|
|
q = 1
|
|
ND = 1
|
|
eps = 11
|
|
dx = WD/10
|
|
xs = np.linspace(-WD/5, 6/5*WD, 300)
|
|
rho_S = q*ND
|
|
Q = rho_S * WD
|
|
rho_M = -Q/dx
|
|
@np.vectorize
|
|
def rho_approx(x):
|
|
if x < -dx: return 0.0
|
|
if x < 0: return rho_M
|
|
if x < WD: return rho_S
|
|
return 0.0
|
|
rhos_approx = rho_approx(xs)
|
|
|
|
@np.vectorize
|
|
def E(x):
|
|
if x < -dx: return 0.0
|
|
if x < 0: return -rho_M/eps * (-dx-x)
|
|
if x < WD: return -rho_S/eps * (WD-x)
|
|
return 0.0
|
|
Es = E(xs)
|
|
|
|
@np.vectorize
|
|
def phi(x):
|
|
# if x < -dx: return 0.0
|
|
# if x < 0: return -rho_M/(2*eps) * (dx**2-(dx-x)**2)
|
|
if x < 0: return 0.0
|
|
if x < WD: return rho_S/(2*eps) * (WD**2-(WD-x)**2)
|
|
return q*ND/(2*eps) * WD**2
|
|
phis = phi(xs)
|
|
|
|
for ax in axs:
|
|
ax.set_xlabel("$x$")
|
|
ax.set_xticks([0,WD])
|
|
ax.set_xticklabels(["0", r"$W_\text{D}$"])
|
|
ax.set_yticks([0])
|
|
ax.set_yticklabels(["0"])
|
|
axs[0].plot(xs, rhos_approx)
|
|
axs[0].set_ylabel(r"$\rho(x)$")
|
|
axs[1].plot(xs, Es)
|
|
axs[1].set_ylabel(r"$\mathcal{E}(x)$")
|
|
|
|
axs[2].plot(xs, phis)
|
|
axs[2].set_ylabel(r"$\phi(x)$")
|
|
|
|
return fig
|
|
|
|
|
|
|
|
|
|
|
|
# Charge carrier density
|
|
def fn_i(T, NV, NC, Egap):
|
|
return np.sqrt(NV*NC) * np.exp(-Egap*electron_volt/(2*kB*T))
|
|
|
|
def fn_freeze(T, NV, NC, Egap):
|
|
return np.sqrt(NV*NC) * np.exp(-0.07*Egap*electron_volt/(2*kB*T))
|
|
|
|
def charge_carrier_density():
|
|
fig, ax = plt.subplots(1, 1, figsize=size_formula_normal_default)
|
|
# Ts = np.power(10, np.linspace(-4, 0, 100))
|
|
N = 500
|
|
ts = np.linspace(0.01, 20, N)
|
|
Ts = 1000/ts
|
|
# Ts = np.linspace(2000, 50, N)
|
|
# ts = 1000/Ts
|
|
# ts = 1/Ts
|
|
|
|
NV = 1e23
|
|
NC = 1e21
|
|
Egap = 2.4
|
|
|
|
n_is = fn_i(Ts, NV, NC, Egap)
|
|
|
|
n_sat = np.empty(Ts.shape)
|
|
n_sat.fill(1e15)
|
|
|
|
|
|
idx1 = np.argmin(np.abs(n_is-n_sat))
|
|
print(idx1, N)
|
|
# TODO make quadratic simple
|
|
n_total = blend_arrays(n_is, n_sat, idx1, idx1+10, "linear")
|
|
|
|
n_freeze = fn_freeze(Ts, NV, NC, Egap)
|
|
idx2 = np.argmin(np.abs(n_freeze-n_sat))
|
|
|
|
print(idx1, idx2, N)
|
|
n_total = blend_arrays(n_total, n_freeze, idx2-10, idx2+10, "quadratic_simple")
|
|
|
|
# ax.plot(ts, n_is, label="Intrinsic")
|
|
# ax.plot(ts, n_sat, label="Saturation")
|
|
# ax.plot(ts, n_freeze, label="Freeze-out")
|
|
# ax.plot(ts, n_total, label="Total", linestyle="dashed", color="black")
|
|
n_total2 = n_is.copy()
|
|
n_total2[idx1:idx2] = n_sat[idx1:idx2]
|
|
n_total2[idx2:] = n_freeze[idx2:]
|
|
ax.plot(ts, n_is, label="Intrinsic", linestyle="dashed")
|
|
ax.plot(ts, n_total2, label="Total", color="black")
|
|
ax.set_yscale("log")
|
|
ax.set_ylim(1e13, 1e17)
|
|
|
|
idx = int(N*0.9)
|
|
ax.text(ts[idx], n_freeze[idx], "Freeze-out", ha="right", va="top")
|
|
idx = int(N*0.5)
|
|
ax.text(ts[idx], n_sat[idx], "Saturation", ha="center", va="bottom")
|
|
idx = np.argmin(np.abs(n_is-3e16))
|
|
ax.text(ts[idx+10], n_is[idx], "Intrinsic", ha="left", va="bottom")
|
|
# ax.set_xlim(ts[0], ts[idx1+N//6])
|
|
# ax.legend()
|
|
ax.set_xlabel(r"$1000/T\,[\si{\per\kelvin}]$")
|
|
ax.set_ylabel(r"$n\,[\si{\per\cm^3}]$")
|
|
|
|
|
|
return fig
|
|
|
|
|
|
def test():
|
|
fig, ax = plt.subplots()
|
|
N = 100
|
|
left = np.empty(N)
|
|
left.fill(4.0)
|
|
left = np.linspace(5.0, 0.0, N)
|
|
right = np.empty(N)
|
|
right.fill(2.5)
|
|
right = np.linspace(3.0, 2.0, N)
|
|
ax.plot(left, label="l",linestyle="dashed")
|
|
ax.plot(right, label="r",linestyle="dashed")
|
|
|
|
total_lin = blend_arrays(left, right, 40, 60, "linear")
|
|
ax.plot(total_lin, label="lin")
|
|
# total_tanh = blend_arrays(left, right, 40, 60, "tanh")
|
|
# ax.plot(total_tanh)
|
|
total_q = blend_arrays(left, right, 40, 60, "quadratic_simple")
|
|
ax.plot(total_q, label="q")
|
|
ax.legend()
|
|
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# export(test(), "cm_sc_charge_carrier_density")
|
|
export(schottky_barrier(), "cm_sc_devices_metal-n-sc_schottky")
|
|
# export(charge_carrier_density(), "cm_sc_charge_carrier_density")
|
|
|