200 lines
9.5 KiB
TeX
200 lines
9.5 KiB
TeX
\Section[
|
|
\eng{Crystals}
|
|
\ger{Kristalle}
|
|
]{crystal}
|
|
\Subsection[
|
|
\eng{Bravais lattice}
|
|
\ger{Bravais-Gitter}
|
|
]{bravais}
|
|
\eng[table2D]{In 2D, there are 5 different Bravais lattices}
|
|
\ger[table2D]{In 2D gibt es 5 verschiedene Bravais-Gitter}
|
|
|
|
\eng[table3D]{In 3D, there are 14 different Bravais lattices}
|
|
\ger[table3D]{In 3D gibt es 14 verschiedene Bravais-Gitter}
|
|
|
|
\Eng[lattice_system]{Lattice system}
|
|
\Ger[lattice_system]{Gittersystem}
|
|
\Eng[crystal_family]{Crystal system}
|
|
\Ger[crystal_family]{Kristall-system}
|
|
\Eng[point_group]{Point group}
|
|
\Ger[point_group]{Punktgruppe}
|
|
\eng[bravais_lattices]{Bravais lattices}
|
|
\ger[bravais_lattices]{Bravais Gitter}
|
|
|
|
\newcommand\bvimg[1]{\begin{center}\includegraphics[width=0.1\textwidth]{img/bravais/#1.pdf}\end{center}}
|
|
\renewcommand\tabularxcolumn[1]{m{#1}}
|
|
\newcolumntype{Z}{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}X}
|
|
\begin{table}[H]
|
|
\centering
|
|
\expandafter\caption\expandafter{\gt{table2D}}
|
|
\label{tab:bravais2}
|
|
|
|
\begin{adjustbox}{width=\textwidth}
|
|
\begin{tabularx}{\textwidth}{||Z|c|Z|Z||}
|
|
\hline
|
|
\multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{2}{c||}{5 \gt{bravais_lattices}} \\ \cline{3-4}
|
|
& & \GT{primitive} (p) & \GT{centered} (c) \\ \hline
|
|
\GT{monoclinic} (m) & $\text{C}_\text{2}$ & \bvimg{mp} & \\ \hline
|
|
\GT{orthorhombic} (o) & $\text{D}_\text{2}$ & \bvimg{op} & \bvimg{oc} \\ \hline
|
|
\GT{tetragonal} (t) & $\text{D}_\text{4}$ & \bvimg{tp} & \\ \hline
|
|
\GT{hexagonal} (h) & $\text{D}_\text{6}$ & \bvimg{hp} & \\ \hline
|
|
\end{tabularx}
|
|
\end{adjustbox}
|
|
\end{table}
|
|
|
|
|
|
|
|
\begin{table}[H]
|
|
\centering
|
|
\caption{\gt{table3D}}
|
|
\label{tab:bravais3}
|
|
|
|
% \newcolumntype{g}{>{\columncolor[]{0.8}}}
|
|
\begin{adjustbox}{width=\textwidth}
|
|
% \begin{tabularx}{\textwidth}{|c|}
|
|
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
|
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
|
% \end{tabularx}
|
|
% \begin{tabular}{|c|}
|
|
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
|
% asdfasdfadslfasdfaasdofiuapsdoifuapodisufpaoidsufpaoidsufpaoisdfaoisdfpaosidfupaoidsufpaoidsufpaoidsufpaoisdufpaoidsufpoaiudsfpioaspdoifuaposidufpaoisudpfoiaupsdoifupasodf \\
|
|
% \end{tabular}
|
|
% \\
|
|
\begin{tabularx}{\textwidth}{||Z|Z|c|Z|Z|Z|Z||}
|
|
\hline
|
|
\multirow{2}{*}{\GT{crystal_family}} & \multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{4}{c||}{14 \gt{bravais_lattices}} \\ \cline{4-7}
|
|
& & & \GT{primitive} (P) & \GT{base_centered} (S) & \GT{body_centered} (I) & \GT{face_centered} (F) \\ \hline
|
|
\multicolumn{2}{||c|}{\GT{triclinic} (a)} & $\text{C}_\text{i}$ & \bvimg{tP} & & & \\ \hline
|
|
\multicolumn{2}{||c|}{\GT{monoclinic} (m)} & $\text{C}_\text{2h}$ & \bvimg{mP} & \bvimg{mS} & & \\ \hline
|
|
\multicolumn{2}{||c|}{\GT{orthorhombic} (o)} & $\text{D}_\text{2h}$ & \bvimg{oP} & \bvimg{oS} & \bvimg{oI} & \bvimg{oF} \\ \hline
|
|
\multicolumn{2}{||c|}{\GT{tetragonal} (t)} & $\text{D}_\text{4h}$ & \bvimg{tP} & & \bvimg{tI} & \\ \hline
|
|
\multirow{2}{*}{\GT{hexagonal} (h)} & \GT{rhombohedral} & $\text{D}_\text{3d}$ & \bvimg{hR} & & & \\ \cline{2-7}
|
|
& \GT{hexagonal} & $\text{D}_\text{6h}$ & \bvimg{hP} & & & \\ \hline
|
|
\multicolumn{2}{||c|}{\GT{cubic} (c)} & $\text{O}_\text{h}$ & \bvimg{cP} & & \bvimg{cI} & \bvimg{cF} \\ \hline
|
|
\end{tabularx}
|
|
\end{adjustbox}
|
|
\end{table}
|
|
|
|
\begin{formula}{lattice_constant}
|
|
\desc{Lattice constant}{Parameter (length or angle) describing the smallest unit cell}{}
|
|
\desc[german]{Gitterkonstante}{Parameter (Länge oder Winkel) der die Einheitszelle beschreibt}{}
|
|
\quantity{a}{}{s}
|
|
\end{formula}
|
|
|
|
\begin{formula}{lattice_vector}
|
|
\desc{Lattice vector}{}{$n_i \in \Z$}
|
|
\desc[german]{Gittervektor}{}{}
|
|
\quantity{\vec{R}}{}{\angstrom}
|
|
\eq{\vec{R} = n_1 \vec{a_1} + n_2 \vec{a_2} + n_3 \vec{a_3}}
|
|
\end{formula}
|
|
|
|
\TODO{primitive unit cell: contains one lattice point}\\
|
|
\begin{formula}{miller}
|
|
\desc{Miller index}{}{Miller family: planes that are equivalent due to crystal symmetry}
|
|
\desc[german]{Millersche Indizes}{}{}
|
|
\eq{
|
|
(hkl) & \text{\GT{plane}}\\
|
|
[hkl] & \text{\GT{direction}}\\
|
|
\{hkl\} & \text{\GT{millerFamily}}
|
|
}
|
|
\end{formula}
|
|
|
|
|
|
\Subsection[
|
|
\eng{Reciprocal lattice}
|
|
\ger{Reziprokes Gitter}
|
|
]{reci}
|
|
\begin{ttext}
|
|
\eng{The reciprokal lattice is made up of all the wave vectors $\vec{k}$ that ressemble standing waves with the periodicity of the Bravais lattice.}
|
|
\ger{Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren $\vec{k}$, die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.}
|
|
\end{ttext}
|
|
|
|
\begin{formula}{vectors}
|
|
\desc{Reciprocal lattice vectors}{}{$a_i$ real-space lattice vectors, $V_c$ volume of the primitive lattice cell}
|
|
\desc[german]{Reziproke Gittervektoren}{}{$a_i$ Bravais-Gitter Vektoren, $V_c$ Volumen der primitiven Gitterzelle}
|
|
\eq{
|
|
\vec{b_1} &= \frac{2\pi}{V_c} \vec{a_2} \times \vec{a_3} \\
|
|
\vec{b_2} &= \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1} \\
|
|
\vec{b_3} &= \frac{2\pi}{V_c} \vec{a_1} \times \vec{a_2}
|
|
}
|
|
\end{formula}
|
|
\begin{formula}{reciprocal_lattice_vector}
|
|
\desc{Reciprokal attice vector}{}{$n_i \in \Z$}
|
|
\desc[german]{Reziproker Gittervektor}{}{}
|
|
\quantity{\vec{G}}{}{\angstrom}
|
|
\eq{\vec{G}_{{hkl}} = h \vec{b_1} + k \vec{b_2} + l \vec{b_3}}
|
|
\end{formula}
|
|
|
|
\Subsection[
|
|
\eng{Scattering processes}
|
|
\ger{Streuprozesse}
|
|
]{scatter}
|
|
\begin{formula}{matthiessen}
|
|
\desc{Matthiessen's rule}{Approximation, only holds if the processes are independent of each other}{\QtyRef{mobility}, \QtyRef{scattering_time}}
|
|
\desc[german]{Matthiessensche Regel}{Näherung, nur gültig wenn die einzelnen Streuprozesse von einander unabhängig sind}{}
|
|
\eq{
|
|
\frac{1}{\mu} &= \sum_{i = \textrm{\GT{\fqname}}} \frac{1}{\mu_i} \\
|
|
\frac{1}{\tau} &= \sum_{i = \textrm{\GT{\fqname}}} \frac{1}{\tau_i}
|
|
}
|
|
\end{formula}
|
|
|
|
\Subsection[
|
|
\eng{Lattices}
|
|
\ger{Gitter}
|
|
]{lat}
|
|
\begin{formula}{sc}
|
|
\desc{Simple cubic (SC)}{Reciprocal: Simple cubic}{\QtyRef{lattice_constant}}
|
|
\desc[german]{Einfach kubisch (SC)}{Reziprok: Einfach kubisch}{}
|
|
\eq{
|
|
\vec{a}_{1}=a \begin{pmatrix} 1\\0\\0 \end{pmatrix},\,
|
|
\vec{a}_{2}=a \begin{pmatrix} 0\\1\\0 \end{pmatrix},\,
|
|
\vec{a}_{3}=a \begin{pmatrix} 0\\0\\1 \end{pmatrix}
|
|
}
|
|
\end{formula}
|
|
\begin{formula}{bcc}
|
|
\desc{Body centered cubic (BCC)}{Reciprocal: \fqEqRef{cm:bravais:fcc}}{\QtyRef{lattice_constant}}
|
|
\desc[german]{Kubisch raumzentriert (BCC)}{Reziprok: \fqEqRef{cm:bravais:fcc}}{}
|
|
\eq{
|
|
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix},\,
|
|
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix},\,
|
|
\vec{a}_{3}=\frac{a}{2} \begin{pmatrix} 1\\1\\-1 \end{pmatrix}
|
|
}
|
|
\end{formula}
|
|
|
|
\begin{formula}{fcc}
|
|
\desc{Face centered cubic (FCC)}{Reciprocal: \fqEqRef{cm:bravais:bcc}}{\QtyRef{lattice_constant}}
|
|
\desc[german]{Kubisch flächenzentriert (FCC)}{Reziprok: \fqEqRef{cm:bravais:bcc}}{}
|
|
\eq{
|
|
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix},\,
|
|
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix},\,
|
|
\vec{a}_{3}=\frac{a}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix}
|
|
}
|
|
\end{formula}
|
|
|
|
\begin{formula}{diamond}
|
|
\desc{Diamond lattice}{}{}
|
|
\desc[german]{Diamantstruktur}{}{}
|
|
\ttxt{
|
|
\eng{\fqEqRef{cm:bravais:fcc} with basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
|
|
\ger{\fqEqRef{cm:bravais:fcc} mit Basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ und $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
|
|
}
|
|
\end{formula}
|
|
\begin{formula}{zincblende}
|
|
\desc{Zincblende lattice}{}{}
|
|
\desc[german]{Zinkblende-Struktur}{}{}
|
|
\ttxt{
|
|
\includegraphics[width=0.5\textwidth]{img/cm_zincblende.png}
|
|
\eng{Like \fqEqRef{cm:bravais:diamond} but with different species on each basis}
|
|
\ger{Wie \fqEqRef{cm:bravais:diamond} aber mit unterschiedlichen Spezies auf den Basen}
|
|
}
|
|
\end{formula}
|
|
\begin{formula}{wurtzite}
|
|
\desc{Wurtzite structure}{hP4}{}
|
|
\desc[german]{Wurtzite-Struktur}{hP4}{}
|
|
\ttxt{
|
|
\includegraphics[width=0.5\textwidth]{img/cm_wurtzite.png}
|
|
Placeholder
|
|
}
|
|
\end{formula}
|
|
|