Formelsammlung

Matthias Quintern

23. Februar 2025

Inhaltsverzeichnis

Ι	Mathematik	1
1	Lineare Algebra 1.1 Matrizen Basics 1.1.1 Transponierte Matrix 1.2 Determinante 1.3 Misc 1.4 Eigenwerte	1 1 1 2 3
2	Geometrie 2.1 Trigonometrie 2.2 Verschiedene Theoreme 2.2.1 Wertetabelle	3 3 4 4
3	Analysis 3.1 Fourieranalyse 3.1.1 Fourierreihe 3.1.2 Fouriertransformation 3.1.3 Faltung / Konvolution 3.2 Verschiedenes 3.3 Logarithmus 3.4 Vektor Analysis 3.5 Integralrechnung 3.5.1 Liste nützlicher Integrale	$ \begin{array}{c} 4 \\ 4 \\ $
4	Wahrscheinlichkeitstheorie 4.1 Verteilungen 4.1.1 Kontinuierliche Wahrscheinlichkeitsverteilungen 4.1.2 Diskrete Wahrscheinlichkeitsverteilungen 4.2 Zentraler Grenzwertsatz 4.3 Fehlerfortpflanzung 4.4 Maximum likelihood Methode 4.5 Bayessche Wahrscheinlichkeitstheorie	8 9 9 12 12 13 13 13
II	Mechanik	15
5	Newton	15
6	Verschiedenes	15

7	Lagrange Formalismus	15
III	Statistische Mechanik	16
8	Entropie	16
IV	Thermodynamik	17
9	Prozesse 9.1 Irreversible Gasexpansion (Gay-Lussac-Versuch)	17 17
10	Phasenübergänge 10.0.1 Osmose 10.1 Materialeigenschaften	17 18 18
11	Hauptsätze der Thermodynamik 11.1 Nullter Hauptsatz 11.2 Erster Hauptsatz 11.3 Zweiter Hauptsatz 11.4 Dritter Hauptsatz	19 19 19 19 19
12	Ensembles 12.1 Potentiale	20 21
13	Ideales Gas 13.0.1 Molekülgas	22 23
14	Reales Gas14.1 Virialentwicklung14.2 Van der Waals Gleichung	23 23 24
15	Ideales Quantengas 15.1 Bosonen	24 26 26 27
\mathbf{V}	Elektrodynamik	29
16	Elektrisches Feld	29
17	Magnetfeld 17.1 Magnetische Materialien	30 31
18	Elektromagnetismus 18.1 Maxwell-Gleichungen 18.1.1 Eichungen 18.2 Induktion	32 32 33 33
19	Optik	33
20	Hall-Effekt 20.1 Klassischer Hall-Effekt 20.2 Ganzahliger Quantenhalleffekt	34 34 35

21 Dipol-zeug	35
22 misc	36
VI Quantenmechanik	37
23 Basics 23.1 Operatoren 23.1.1 Messung 23.1.2 Pauli-Matrizen 23.2 Wahrscheinlichkeitstheorie 23.3 Kommutator	37 37 37 38 38
24 Schrödingergleichung 24.1 Zeitentwicklug 24.1.1 Schrödinger- und Heisenberg-Bild 24.1.2 Ehrenfest-Theorem	38 39 39 40
25 Störungstheorie	40
26 Harmonischer Oszillator 26.1 Erzeugungs und Vernichtungsoperatoren / Leiteroperatoren	41 41 42
27 Drehmoment 27.1 Aharanov-Bohm Effekt	42 42
28 Periodische Potentiale	42
29 Symmetrien 29.1 Zeitumkehrungssymmetrie	42 43
30 Zwei-Niveau System (TLS)	43
31 Sonstiges	43
32 Wasserstoffatom 32.1 Korrekturen 32.1.1 Darwin-Term 32.1.2 Spin-Bahn-Kopplung (LS-Kopplung) 32.1.3 Feinstruktur 32.1.4 Lamb-Shift 32.1.5 Hyperfeinstruktur 32.2 Effekte im Magnetfeld 32.3 Sonstiges	43 45 45 45 45 46 46 46
VII Festkörperphysik	47
33 Gitterschwingungen 33.1 Debye-Modell	47 48

34 Kristalle	48
34.1 Bravais-Gitter	 49
34.2 Reziprokes Gitter	 51
34.3 Streuprozesse	 51
34.4 Gitter	 52
35 Frains Flaktronongaso	59
35 1 2D Elektronengas	53
35.2 1D Electronengas / Quantendraht	 53
35.3 0D Elektronengase / Quantenpunkt	 53
	 00
36 Ladungstransport	53
36.1 Drude-Modell	 53
36.2 Sommerfeld-Modell	 54
36.3 Boltzmann-Transport	 54
36.4 misc	 54
37 Supraleitung	55
$3(.1 \text{ London-Gleichungen} \dots \dots$	 55
37.2 Ginzburg-Landau I neorie (GLAG)	 55 56
37.3 Mikroskopische Theorie	 50 56
37.3.1 BUS-Incorne	 50
38 Halbleiter	57
38.1 Bauelemente und Kontakte	57
38.2 Exzitons	 59
	 00
39 Bändermodell	59
39.1 Hybridorbitale	 59
	~ ~
40 Diffusion	59
41 misc	60
	00
42 Messtechniken	60
42.1 Raman Spektroskopie	 61
42.2 ARPES	 61
42.3 Rastersondenmikroskopie (SPM)	 61
43 Herstellungsmethoden	62
43.1 Epitaxie	 62
44 Topologizaho Matorialion	63
44 Topologische Materianen 44.1 Berry Phase / Ceometrische Phase	63
44.1 Derry-1 hase / Geometrische I hase	 05
45 Materialphysik	64
VIII Teilchenphysik	65
IX Quanton computing	66
IA Quantencomputing	00
46 Qubits	66
•	
47 Gates	66

48	Supraleitende qubits	66
	48.1 Bauelemente	66
	48.1.1 Josephson-Kontakt	66
	48.1.2 SQUID	67
	48.2 TODO	67
	48.3 Cooper Paar Box (QPB) Qubit	68 68
	48.4 Transmon Qubit	68
	48.4.1 Iunable Iransmon Qubit	69 60
	48.5 Flux Oubit	09 60
	48.7 Fluxonium Oubit	09 70
		10
49	Zwei-Niveau System	70
	49.1 Ramsey Interferometrie	71
~ ~		
50	Noise und Dekohärenz	71
\mathbf{X}	Computergestützte Physik	72
51	Quanten-Vielteilchenphysik	72
	51.1 Quanten-Vielteilchenmodelle	72
	51.2 Methoden	72
	51.2.1 Quantum Monte-Carlo	72
	51.3 Importance sampling / Stichprobenentnahme nach Wichtigkeit	72
	51.4 Matrix Produktzustände	72
52	Electronic structure theory	72
02	52.1 Modell der stark gehundenen Elektronen / Tight-binding	72
	52.2 Dichtefunktionaltheorie (DFT)	73
	52.2.1 Hartree-Fock	73
	52.2.2 Hohenberg-Kohn Theoreme	73
	52.2.3 Kohn-Sham DFT	74
	52.2.4 Exchange-Correlation Funktionale	74
	52.2.5 Basis-Sets	75
	52.2.6 Pseudopotentialmethode	75
53	Atomic dynamics	76
	53.1 Born-Oppenheimer Näherung	76
	53.2 Strukturoptimierung	77
	53.3 Gitterschwingungen	18 79
	53.3.1 Finite difference method	18
	53.4 Molokulardunamik	70 70
	53.4.1 Ab initio molecular dynamics	79
	53.4.2 Force-field MD	79
	53.4.3 Integration schemes	80
	53.4.4 Thermostate und Barostate	80
	53.4.5 Berechnung von Observablen	81
		<u> </u>
54	Maschinelles Lernen	81
	54.1 Metriken zur Leistungsmessung	81
	54.2 Regression	81
	54.2.1 Lineare Regression	82
	54.2.2 Kernelmethode	82

54.2.3 Bayes'sche Regression	82
54.3 Gradientenverfahren	83
XI Chemie	84
55 Periodensystem	84
56 Elektrochemie 56.1 Elektrochemische Zelle 56.2 Ionische Leitung in Elektrolyten 56.3 Kinetik 56.3.1 Massentransport 56.4 Techniken 56.4.1 Referenzelektroden 56.4.2 Zyklische Voltammetrie 56.4.3 Rotating disk electrodes	 84 85 86 88 90 90 91 91 92
56.4.4 AC-Impedanz	92 93
58 misc	93
XII Anhang	95
59 Physikalische Größen59.1 SI-Basisgrößen59.2 Mechanik59.3 Thermodynamik59.4 Elektrodynamik59.5 Sonstige	95 95 95 95 96 96
60 Konstanten	96
61 Liste der Elemente	97

Teil I Mathematik

1 Lineare Algebra

1.1 Matrizen Basics

Matrix-Matrix Produkt als Summe	$C_{ij} = \sum_{k} A_{ik} B_{kj}$	(1)
Matrix-Vektor Produkt als Summe	$\vec{c}_i = \sum_j A_{ij} \vec{b}_j$	(2)
Symmetrische matrix	$A^{\mathrm{T}} = A$	(3)
	$A \ n \times n$ matrix	
Unitäre Matrix	$U^{\dagger}U = \mathbb{1}$	(4)

1.1.1 Transponierte Matrix

Summe	$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}$	(5)
Produkt	$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$	(6)
Inverse	$(A^{-1})^{\mathrm{T}} = (A^{\mathrm{T}})^{-1}$	(7)
Exponential	$\exp(A^{\mathrm{T}}) = (\exp A)^{\mathrm{T}}$ $\ln(A^{\mathrm{T}}) = (\ln A)^{\mathrm{T}}$	(8) (9)

1.2 Determinante

2x2 Matrix	$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a d - c b$	(10)
3x3 Matrix (Regel von Sarrus)	$det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a e i + b f g + c d h - g e c - h f a - i d b$	(11)
Leibniz-Formel	$\det(A) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$	(12)
Produkt	$\det(AB) = \det(A)\det(B)$	(13)

Inverse	$\det(A^{-1}) = \det(A)^{-1}$	(14)
Transponiert	$\det(A^{\mathrm{T}}) = \det(A)$	(15)

1.3 Misc

Normal equation	$\underline{\theta} = (\underline{X}^{\mathrm{T}}\underline{X})^{-1}\underline{X}^{\mathrm{T}}\vec{y} $ (1)	.6)
Solves a linear regression problem	$\underline{\theta}$ hypothesis / weight matrix, \underline{X} design matrix, \vec{y} output vector	ec-
Woodbury-Matrix-Identität Inverse einer	$(\underline{A} + \underline{U} + \underline{C} + \underline{V}) - 1 = \underline{A}^{-1} - \underline{A}^{-1}\underline{U}(\underline{C}^{-1} + \underline{V}\underline{A}^{-1}\underline{U})^{-1}\underline{V}\underline{A}^{-1}$ (1)	.7)
Rang-k-Korrektur	$\underline{A}n \times n, \underline{U}n \times k, \underline{C}k \times k, \underline{V}k \times n$	
Inverse 2×2 Matrix	$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} $ (1)	.8)
Singulärwertzerlegung Faktorisierung einer reellen	$A = U\Lambda V \tag{1}$.9)
oder komplexen Matrix durch Rotation \rightarrow Skalierung \rightarrow Rotation.	A: $m \times n$ matrix, U: $m \times m$ unitary matrix, Λ : $m \times n$ rectangul diagonal matrix with non-negative numbers on the diagonal V: $n \times n$ unitary matrix	ar al,
2D Rotationsmatrix	$R = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} $ (2)	20)
	$R_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} $ (2)	:1)
3D Rotationsmatrizen	$R_y = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} $ (2)	2)
	$R_z = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} $ (2)	3)
	$R^{\mathrm{T}} = R^{-1} \tag{2}$	24)
Eigenschaften von	$\det R = 1 \tag{2}$	(5)
Rotationsmatrizen	$R \in \mathrm{SO}(n) \tag{2}$	(6)
	n Dimension, SO(n) spezielle orthognale Gruppe	

1.4 Eigenwerte

Eigenwert-Gleichung	$Av = \lambda v \tag{27}$
	λ Eigenwert, v Eigenvektor
Charakteristisches Polynom Nullstellen sind die Eigenwerte von A	$\chi_A = \det(A - \lambda \mathbb{1}) \stackrel{!}{=} 0 \tag{28}$
Kramers-Theorem Wenn H invariant unter T ist und $ \psi\rangle$ ein Eigenzustand von H ist, dann ist $T \psi\rangle$ auch ein Eigenzustand von H	$THT^{\dagger} = H \wedge H \psi\rangle = E \psi\rangle \implies HT \psi\rangle = ET \psi\rangle $ (29)
Eigenwertzerlegung	$A = V\Lambda V^{-1} $ (30) <i>A</i> diagonalisierbar, Spalten von <i>V</i> sind die Eigenvektoren v_i , Λ Diagonalmatrix mit Eigenwerten λ_i auf der Diagonalen

Γ

 $\operatorname{TODO:Jordan}$ stuff, block diagonal matrices, permutations, skalar product lapace scher entwicklungssatz maybe, cramers rule

2 Geometrie

2.1 Trigonometrie

Exponentialfunktion	$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$	(31)
Sinus	$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n+1)}}{(2n+1)!}$	(32)
	$=\frac{e^{ix}-e^{-ix}}{2i}$	(33)
Kosinus	$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n)}}{(2n)!}$	(34)
	$=\frac{e^{ix}+e^{-ix}}{2}$	(35)
Sinne han ash aliana	$\sinh(x) = -i\sin ix$	(36)
Sinus hyperbolicus	$=\frac{e^x-e^{-x}}{2}$	(37)
Kosinus hyporbolicus	$\cosh(x) = \cos ix$	(38)
Rosmus hyperbolicus	$=\frac{e^x+e^{-x}}{2}$	(39)

2.2 Verschiedene Theoreme

Hypothenuse im Einheitskreis	$1 = \sin^2 x + \cos^2 x$	(40)
Additionstheoreme	$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$ $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$ $\tan(x \pm y) = \frac{\sin(x \pm y)}{\cos(x \pm y)} = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$	(41) (42) (43)
Doppelwinkelfunktionen	$\sin 2x = 2\sin x \cos x$ $\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x$ $\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	(44) (45) (46)
Sonstige	$\cos x + b \sin x = \sqrt{1 + b^2} \cos(x - \theta)$ $\tan \theta = b$	(47)

2.2.1 Wertetabelle

Grad	0°	30°	45°	60°	90°	120°	180°	270°
Rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\sqrt{\pi}}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	$\frac{3\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	0	-1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	-1	0
$\tan(x)$	0	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	∞	$-\sqrt{3}$	0	∞

3 Analysis

3.1 Fourieranalyse

3.1.1 Fourierreihe

Fourierreihe Komplexe Darstellung	$f(t) = \sum_{k=-\infty}^{\infty} c_k \exp\left(\frac{2\pi i k t}{T}\right)$ $f \in \mathcal{L}^2(\mathbb{R}, \mathbb{C}) \text{ T-periodic}$	(48)
	$1 \int \frac{T}{2} (x) \int (2\pi i x) x = 0$	(10)

Fourierkoeffizienten	$c_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \exp\left(-\frac{2\pi i}{T}kt\right) dt \text{für } k \ge 0$	(49)
Komplexe Darstenung	$c_{-k} = \overline{c_k}$ if f reellwertig	(50)

Fourierreihe Sinus und Kosinus Darstellung	$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi}{T}kt\right) + b_k \sin\left(\frac{2\pi}{T}kt\right) \right)$ $f \in \mathcal{L}^2(\mathbb{R}, \mathbb{C}) \text{ T-periodic}$	(51)
Fourierkoeffizienten Sinus und Kosinus	$a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(-\frac{2\pi}{T}kt\right) dt \text{für } k \ge 0$	(52)
Darstellung Wenn f punktsymmetrisch:	$b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(-\frac{2\pi}{T}kt\right) dt \text{für } k \ge 1$	(53)
$a_{k>0} = 0$, wenn f	$a_k = c_k + c_{-k}$ für $k \ge 0$	(54)
achsensymmetrisch: $b_k = 0$		
	$b_k = i(c_k - c_{-k}) \text{fur } k \ge 1$	(55)

TODO:cleanup

3.1.2 Fouriertransformation

 ${\it Fourier transformier te}$

$$\hat{f}(k) \coloneqq \frac{1}{\sqrt{2\pi^n}} \int_{\mathbb{R}^n} e^{-ikx} f(x) dx$$

$$\hat{f} \colon \mathbb{R}^n \mapsto \mathbb{C}, \ \forall f \in L^1(\mathbb{R}^n)$$
(56)

für $f \in L^1(\mathbb{R}^n)$:

i)
$$f \mapsto f$$
 linear in f
ii) $g(x) = f(x-h) \Rightarrow \hat{g}(k) = e^{-ikn} \hat{f}(k)$
iii) $g(x) = e^{ih \cdot x} f(x) \Rightarrow \hat{g}(k) = \hat{f}(k-h)$
iv) $g(\lambda) = f\left(\frac{x}{\lambda}\right) \Rightarrow \hat{g}(k)\lambda^n \hat{f}(\lambda k)$

3.1.3 Faltung / Konvolution

Die Faltung ist ${\bf kommutativ},$ assoziativ und distributiv

Definition	$(f * g)(t) = f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) \mathrm{d}\tau$	(57)
Notation	$f(t) * g(t - t_0) = (f * g)(t - t_0)$ $f(t - t_0) * g(t - t_0) = (f * g)(t - 2t_0)$	(58) (59)
Kommutativität	$f \ast g = g \ast f$	(60)
Assoziativität]	$(f \star g) \star h = f \star (g \star h)$	(61)
Distributivität	f * (g + h) = f * g + f * h	(62)
Komplexe konjugation	$(f \star g)^* = f^* \star g^*$	(63)

3.2 Verschiedenes

Stirlingformel

$$\ln(N!) \approx N \ln(N) - N + \mathcal{O}(() \ln(N)) \tag{64}$$

Fehlerfunktion erf : $\mathbb{C} \to \mathbb{C}$ und komplementäre Fehlerfunktion erfc	$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ $\operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$ $= \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt$	(65)(66)(67)
Dirac-Delta einer Funktion	$\delta(f(x)) = \sum_{i} \frac{\delta(x - x_i)}{ f'(x_i) }$ $f(x_i) = 0$	(68)
Geometrische Reihe	$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$ $ q < 1$	(69)

3.3 Logarithmus

Logarithmus Identitäten Logarithmus Rechenregeln	$\log(xy) = \log(x) + \log(y)$ $\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$ $\log(x^d) = d\log(x)$ $\log\left(\sqrt[q]{x}\right) = \frac{\log(x)}{y}$ $x^{\log(y)} = y^{\log(x)}$	 (70) (71) (72) (73) (74)
	$\int \ln(x) dx - x (\ln(x) - 1)$	(75)

Integral des natürluchen	$\int \ln(x) \mathrm{d}x = x \left(\ln(x) - 1 \right)$	(75)
Logarithmus	$\int \ln(ax+b) \mathrm{d}x = \frac{ax+b}{a} \left(\ln(ax+b) - 1\right)$	(76)

3.4 Vektor Analysis

Laplace-Operator	$\Delta = \vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \tag{(1)}$	77)
------------------	---	-----

3.4.1 Kugelsymmetrie

	$x = r \sin \phi, \cos \theta$	(78)
Kugelkoordinaten	$y = r \cos \phi, \cos \theta$	(79)
	$z = r \sin \theta$	(80)

<i>p</i> -Norm	$\ \vec{x}\ _p \equiv \left(\sum_{i=1}^n x_i ^p\right)^{\frac{1}{p}}$	(82)
----------------	--	------

3.5 Integralrechnung

Partielle integration	$\int_a^b f'(x) \cdot g(x) \mathrm{d}x = \left[f(x) \cdot g(x)\right]_a^b - \int_a^b f(x) \cdot g'(x) \mathrm{d}x (a)$	83)
Integration durch Substitution	$\int_{a}^{b} f(g(x)) g'(x) \mathrm{d}x = \int_{g(a)}^{g(b)} f(z) \mathrm{d}z \tag{4}$	84)
Satz von Gauss Divergenz in einem Volumen ist gleich dem Fluss durch die Oberfläche	$\iiint_{V} \vec{\nabla} \cdot \vec{F} \mathrm{d}V = \oint_{A} \vec{F} \cdot \mathrm{d}\vec{A} \qquad (A = \partial V)$	85)
Klassischer Satz von Stokes	$\int_{A} (\vec{\nabla} \times \vec{F}) \cdot d\vec{S} = \oint_{S} \vec{F} \cdot d\vec{r} \qquad (A = \partial A = \partial $	86)

3.5.1 Liste nützlicher Integrale

cal:log:integral

	$\int \frac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arcsin x$	(87)
Arkussinus, Arkuskosinus, Arkustangens	$\int -\frac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arccos x$	(88)
	$\int \frac{1}{x^2 + 1} \mathrm{d}x = \arctan x$	(89)

Arcsinh, arccosh, arctanh	$\int \frac{1}{\sqrt{x^2 + 1}} \mathrm{d}x = \operatorname{arsinh} x$	(90)
	$\int \frac{1}{\sqrt{x^2 - 1}} \mathrm{d}x = \operatorname{arcosh} x \text{für } (x > 1)$	(91)
	$\int \frac{1}{1-x^2} \mathrm{d}x = \operatorname{artanh} x \text{für } (x < 1)$	(92)
	$\int \frac{1}{1-x^2} \mathrm{d}x = \operatorname{arcoth} x \text{für } (x > 1)$	(93)

Integration in Kugelkoordinaten	$\iiint dx dy dz = \int_0^\infty \int_0^{2\pi} \int_0^\pi dr d\phi d\theta r^2 \sin \theta$	(94)
Riemannsche Zeta-Funktion	$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1 - 2^{(1-s)})\Gamma(s)} \int_0^\infty \mathrm{d}\eta \frac{\eta^{(s-1)}}{\mathrm{e}^{\eta} + 1}$	(95)

	$\Gamma(n) = (n-1)!$	(96)
Gamma-Funktion	$\Gamma(z) = \int_0^\infty t^{z-1} \mathrm{e}^{-t} \mathrm{d}t$	(97)
	$\Gamma(z+1) = z\Gamma(z)$	(98)
Unvollständige Gamma-Funktion der unteren Grenze	$\Gamma(s,x) = \int_x -^\infty t^{s-1} e^{-t} dt$	(99)
Unvollständige Gamma-Funktion der oberen Grenze	$\gamma(s,x) = \int_0^x t^{s-1} e^{-t} dt$	(100)
Beta-Funktion	$B(z_1, z_2) = \int_0^1 t^{z_1 - 1} (1 - t)^{z_2 - 1} dt$	(101)
Complete beta function	$B(z_1, z_2) = \frac{\Gamma(z_1)\Gamma(z_2)}{\Gamma(z_1 + z_2)}$	(102)

Unvollständige Beta-Funktion

$$B(x; z_1, z_2) = \int_0^x t^{z_1 - 1} (1 - t)^{z_2 - 1} dt$$
 (103)

Complete beta function

TODO: differential equation solutions

4 Wahrscheinlichkeitstheorie

Mittelwert Erwartungswert	$\langle x \rangle = \int w(x) x \mathrm{d}x$	(104)
Varianz Quadrat derStandardabweichung	$\sigma^{2} = (\Delta \hat{x})^{2} = \langle \hat{x}^{2} \rangle - \langle \hat{x} \rangle^{2} = \langle (x - \langle x \rangle)^{2} \rangle$	(105)
Kovarianz	$cov(x,y) = \sigma(x,y) = \sigma_{XY} = \langle (x - \langle x \rangle) (y - \langle y \rangle) \rangle$	(106)
Standardabweichung	$\sigma = \sqrt{\sigma^2} = \sqrt{(\Delta x)^2}$	(107)
Median Teilt die untere von der oberen Hälfte	$med(x) = \begin{cases} x_{(n+1)/2} & n \text{ ungerade} \\ \frac{x_{(n/2)} + x_{((n/2)+1)}}{2} & n \text{ gerade} \\ x \text{ Reihe mit } n \text{ Elementen} \end{cases}$	(108)
Wahrscheinlichkeitsdichte- funktion Zufallsvariable hat Dichte f . Das Integral gibt Wahrscheinlichkeit an, dass X einen Wert $x \in [a, b]$ annimmt	$P([a,b]) \coloneqq \int_{a}^{b} f(x) dx$ f normalisiert $\int_{-\infty}^{\infty} f(x) dx = 1$	(109)

Kumulative Verteilungsfunktion	$F(x) = \int_{-\infty}^{x} f(t) dt$ f Wahrscheinlichkeitsdichtefunktion	(110)
Wahrscheinlichkeitsfunktion / Zählfunktion Wahrscheinlichkeit p dass eine diskrete Zufallsvariable X einen exakten Wert x annimmt	$p_X(x) = P(X = x)$ <i>P</i> probability measure	(111)
Autokorrelation Korrelation vonn f zu sich selbst zu einem früheren Zeitpunkt. C ist auch die Kovarianzfunktion	$C_A(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t+\tau) f(t) dt)$ $= \langle f(t+\tau) \cdot f(t) \rangle$ $\tau \text{ Zeitverschiebung}$	(112) (113)
Binomialkoeffizient		

Anzahl der Möglichkeiten, kaus n zu wählen "n über k $\binom{n}{k} = \frac{n!}{k!(n-k)!} \tag{114}$

4.1 Verteilungen

4.1.1 Kontinuierliche Wahrscheinlichkeitsverteilungen

Gauß/Normal-Verteilung

parameters	$\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}$
support	$x \in \mathbb{R}$
pdf	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
cdf	$\frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x - \mu}{\sqrt{2}\sigma} \right) \right]$
mean	μ
median	μ
variance	σ^2

Dichtefunktion der	1	1
${\it Standard-Normalverteilung}$	$\varphi(x) = \frac{1}{\sqrt{2}} e^{-\frac{1}{2}x^2}$ (115)	
$\mu = 0, \ \sigma = 1$	$\sqrt{2\pi}$	

Mehrdimensionale Normalverteilung : Multivariate Normalverteilung

parameters	$\vec{\mu} \in \mathbb{R}^k, + \underline{\Sigma} \in \mathbb{R}^{k \times k}$
support	$\vec{x} \in \vec{\mu} + \operatorname{span}(\underline{\Sigma})$
pdf	$\mathcal{N}(\vec{mu}, \underline{\Sigma}) = \frac{1}{(2\pi)^{k/2}} \frac{1}{\sqrt{\det \Sigma}} \exp\left(\frac{D_{2}}{2} \underbrace{\operatorname{devap}}_{2} \operatorname{tevap}_{2} \underbrace{\operatorname{devap}}_{2} \underbrace{\operatorname{devap}}_{2$
mean	$ec{\mu}$
variance	Σ

 \vec{mu} Mittelwert , $\underline{\Sigma}$ Kovarianz

 ${\it Laplace-Verteilung}$

TODO:TODO

Cauchy / Lorentz-Verteilung : Auch bekannt als Cauchy-Lorentz Verteilung, Lorentz Funktion, Breit-Wigner Verteilung.

parameters	$x_0 \in \mathbb{R}, \gamma \in \mathbb{R}$
support	$x \in \mathbb{R}$
pdf	$\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}$
cdf	$\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}$
mean	undefined
median	x_0
variance	undefined

Maxwell-Boltzmann Verteilung

parameters	<i>a</i> > 0
support	$x \in (0, \infty)$
pdf	$\sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp\left(-\frac{x^2}{2a^2}\right)$
cdf	$\operatorname{erf}\left(\frac{x}{\sqrt{2}a}\right) - \sqrt{\frac{2}{\pi}}\frac{x}{a}\exp\left(\frac{-x^2}{2a^2}\right)$
mean	$2a\frac{2}{\pi}$
median	
variance	$\frac{a^2(3\pi-8)}{\pi}$

Gamma Verteilung : mit λ Parameter

 $\stackrel{x}{\Gamma}$ math:cal:integral:list:gamma, γ Unvollständige Gamma-Funktion der oberen Grenze

Beta Verteilung

parameters	$\alpha \in \mathbb{R}, \beta \in \mathbb{R}$
support	$x \in [0,1]$
pdf	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha,\beta)}$
cdf	$\frac{\mathrm{B}(x;\alpha,\beta)}{\mathrm{B}(\alpha,\beta)}$
mean	$\frac{\alpha}{\alpha + \beta}$
variance	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

11

4.1.2 Diskrete Wahrscheinlichkeitsverteilungen

Binomialverteilung

Geht die Zahl der Versuche gegen unendlich $(n \to \infty)$, konvergiert die Binomualverteilung gegen die Poissonverteilung

parameters	$n \in \mathbb{Z}, p \in [0,1], q = 1-p$
support	$k \in \{0, 1, \ldots, n\}$
pmf	$\binom{n}{k} p^k q^{n-k}$
mean	np
median	$\lfloor np \rfloor$ or $\lceil np \rceil$
variance	npq = np(1-p)

Poissonverteilung

4.2 Zentraler Grenzwertsatz

Sei X_1, X_2, \ldots eine Reihe unabhängiger und gleichverteilter Zufallsvariablen mit $\langle X_i \rangle = \mu$ und $(\Delta X_i)^2 = \sigma^2 < \infty$. Für N gegen unendlich konvergieren die Zufallsvariablen $\sqrt{N}(\bar{X}_N - \mu)$ zu einer Normalverteilung $\mathcal{N}(0, \sigma^2)$.

Das bedeutet, dass die Schwankung mit $\frac{1}{\sqrt{N}}$ wächst und Aussagen für große N scharf werden.

4.3 Fehlerfortpflanzung

Generalisiertes Fehlerfortpflanzungsgesetz V Kovarianz Matrix, $Jcal:jacobi-matrix$	$V_y = J(x) \cdot V_x \cdot J^{\mathrm{T}}(x)$ V Kovarianz matrix, J math:cal:jacobi-matrix	(116)
Fortpflanzung unabhängiger fehlerbehaftete Größen Lineare Näherung	$u_y = \sqrt{\sum_i \left(\frac{\partial y}{\partial x_i} \cdot u_i\right)^2}$	(117)
Gewicht Varianz ist eine mögliche Wahl für ein Gewicht	$w_i = \frac{1}{\sigma_i^2}$ σ Varianz	(118)
Gewichteter Mittelwert	$\overline{x} = \frac{\sum_{i} (x_{i}w_{i})}{\sum_{i} w_{i}}$ $w_{i} \text{ Gewicht}$	(119)
Varianz des gewichteten Mittelwertes	$\sigma_{\overline{x}}^2 = \frac{1}{\sum_i w_i}$ w_i Gewicht	(120)

4.4 Maximum likelihood Methode

Likelihood Funktion Plausibilität" x zu messen, wenn der Parameter θ ist nicht normalisiert!	$L: \Theta \to [0, 1], \theta \mapsto \rho(x \theta) $ (121) $\rho \text{ Wahrscheinlichkeitsdichtefunktion } x \mapsto \rho(x \theta) \text{ hängt ab von}$ Parameter θ, Θ Parameterraum
Likelihood function für unabhängig und identisch verteilte Zufallsvariablen	$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) $ (122) $x_i \ n \ \text{Zufallsvariablen}\rho \ \text{Wahrscheinlichkeitsdichtefunktion} \ x \mapsto f(x \theta) \ \text{hängt ab von Parameter } \theta$
Maximum likelihood-Schätzung (MLE) Paramater, für den das Ergebnis am Wahrscheinlichsten ist	$\theta_{\rm ML} = \underset{\theta}{\arg \max} L(\theta) $ (123) = $\underset{\theta}{\arg \max} \log (L(\theta))$ (124) L Likelihood Funktion, θ Parameter einer Wahrscheinlich- keitsdichtefunktion

4.5 Bayessche Wahrscheinlichkeitstheorie

Prior Verteilung Expected distribution before	p(heta)	(125)
conducting the experiment	θ parameter	

Evidence	$p(\mathcal{D}) = \int d\theta p(\mathcal{D} \theta) p(\theta) \tag{126}$
	$p(\mathcal{D} \theta)$ Likelihood Funktion, $p(\theta)$ Prior Verteilung, \mathcal{D} data set
Satz von Bayes	$p(\theta \mathcal{D}) = \frac{p(\mathcal{D} \theta) p(\theta)}{p(\mathcal{D})} $ (127)
	$p(\theta \mathcal{D})$ posterior distribution, $p(\mathcal{D} \theta)$ Likelihood Funktion, $p(\theta)$ Prior Verteilung, $p(\mathcal{D})$ Evidence, \mathcal{D} data set
Maximum a posterior estimation (MAP)	$\theta_{\text{MAP}} = \arg\max_{\theta} p(\theta \mathcal{D}) = \arg\max_{\theta} p(\mathcal{D} \theta) p(\theta) \qquad (128)$

Teil II Mechanik

5 Newton

	1. Ein kräftefreier Körper bleibt in Ruhe oder bewegt sich geradlinig mit konstanter Geschwindigkeit
Newtonsche Gesetze	2. $\vec{F} = m \cdot \vec{a}$ 3. Eine Kraft von Körper A auf Körper B geht immer mit einer gleich große, aber entgegen gerichteten Kraft von Körper B auf Körper A einher: $\vec{F}_{A \to B} = -\vec{F}_{B \to A}$

6 Verschiedenes

Hookesches Gesetz	$F = D\Delta l$	(129)
	F Kraft, D Federkonstante, Δl Federlänge	

7 Lagrange Formalismus

Der Lagrange-Formalsismus ist oft der einfachste Weg die Bewegungsgleichungen zu erhalten, da das Aufstellen der Lagrange-Funktion mit geeigneten generalisierten Koordinaten oft relativ einfach ist. Die generalisierten Koordinaten werden so gewählt, dass die Zwangsbedingungen automatisch erfüllt

sind. Zum Beispiel findet man für ein 2D Pendel die generalisierte Koordinate q = $\varphi,$ mit \vec{x} = $\cos \varphi$ $\sin \varphi$ $\mathcal{L} = T - V$ (130)Lagrange-Funktion T kinetische Energie, V potentielle Energie $\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial\mathcal{L}}{\partial\dot{q}_i} - \frac{\partial\mathcal{L}}{\partial q_i} = 0$ (131)Lagrange-Gleichungen (zweiter Art) q generalisierte Koordinaten $p = \frac{\partial \mathcal{L}}{\partial \dot{q}}$ Kanonischer Impuls (132)Hamiltonian Den Hamiltonian bekommt $H(q,p) = p \dot{q} - \mathcal{L}(q, \dot{q}(q,p))$ man aus dem Lagrangian (133)über eine Legendre Transformation

TODO:Legendre trafo

Teil III Statistische Mechanik

Extensive Größen: Additiv für Subsysteme (Systemgrößenabhänig): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$ Intensive Größen: Unabhängig der Systemgröße, Verhältnis zweier extensiver Größen

Liouville-Gleichung	$\frac{\partial \rho}{\partial t} = -\sum_{i=1}^{N} \left(\frac{\partial \rho}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial \rho}{\partial p_i} \frac{\partial H}{\partial q_i} \right) = \{H, \rho\} $ (134)
	{} Poisson-Klammer

8 Entropie

Positiv Definit und Additiv	$S \ge 0$ $S(E_1, E_2) = S_1 + S_2$	(135) (136)
Von-Neumann	$S = -k_{\rm B} \langle \log \rho \rangle = -k_{\rm B} \operatorname{tr}(\rho \log \rho)$ $\rho \text{ Dichtematrix}$	(137)
Gibbs	$S = -k_{\rm B} \sum_n p_n \log p_n$ p_n Wahrscheinlichkeit für Mikrozustand n	(138)
Boltzmann	$S = k_{\rm B} \log \Omega$ Ω #Mikrozustände	(139)
Temperatur	$\frac{1}{T} \coloneqq \left(\frac{\partial S}{\partial E}\right)_V$	(140)
Druck	$p = T \left(\frac{\partial S}{\partial V}\right)_E$	(141)

Teil IV Thermodynamik

Thermische Wellenlänge

$$\lambda = \frac{\hbar}{\sqrt{2\pi m k_{\rm B} T}} \tag{142}$$

9 Prozesse

- **isobar**: konstanter Druck p = const
- **isochor**: konstantes Volumen V = const
- **isotherm**: konstante Temperatur T = const
- **isentrop**: konstante Entropie S = const
- isenthalp: konstante Entalphie H = const
- adiabatisch: kein Wärmeübertrag $\Delta Q = 0$
- quasistatsch: läuft so langsam ab, dass das System durchgehend im t.d Equilibrium bleibt
- reversibel: reversible Prozesse sind immer quasistatisch und es wird keine Entropie erzeugtDeltaS=0

9.1 Irreversible Gasexpansion (Gay-Lussac-Versuch)

Gay-Lussac-Versuch

Ein klassisches Gas in einem System mit Volumen V_1 ist getrennt von einem zweiten System mit Volumen V_2 . Beim Gay-Lussac Versuch wird die Trennwand entfern und das Gas fließt in das Volumen V_2 .

TODO:Reversible TODO:Quasistatischer T-Ausgleich TODO:Joule-Thompson Prozess

10 Phasenübergänge

Entropieänderung

Ein Phasenübergang ist eine Unstetigkeit in the Freien Energie F oder in der Gibbs-Energie G oder in ihrer Ableitungen. Die Ordnung des Phasenübergangs ist die Ordnung der Ableitung, in welcher die Unstetigkeit auftritt.

Latente Wärme		(
Für den Phasenübergang von	$Q_{\rm L}$ = $T\Delta S$	(144)
Phase 1 nach Phase 2		
benötigte Wärme	ΔS Entropieänderung des Phasenübergangs	

Clausius-Clapeyron Gleichung	$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{Q_{\mathrm{L}}}{T\Delta V}$	(145)
Steigung der Phasengrenzlinie	ΔV Volumenänderung des Phasenübergangs	
Phasenübergang	$G_1 = G_2$ und damit	(146)
Im Koexistenzbereich	$\mu_1 = \mu_2$	(147)
Gibbsche Phasenregel	f = c - p + 2	(148)
	c#Komponenten, f #Freiheitsgrade, p #Phasen	

10.0.1 Osmose

Osmosis ist die spontane Passage oder Diffusion Lösungsmittelmolekülen durch eine semi-permeable Membran die für das Lösungsmittel, jedoch nicht die darin gelösten Stoffe durchlässig ist. Die Richtung der Diffusion ist vom Gebiet mit hohem chemischen Potential (niedrigere Konzentration des gelösten Stoffes) in das mit niedrigem chemischem Potential (höherere Konzentration des gelösten Stoffes), sodass die Konzentration des gelösten Stoffes ausgeglichen wird.

Osmotischer Druck /	$p_{\rm osm} = k_{\rm B} T \frac{N_c}{V} \tag{149}$	
Van-t-hoffsches Gesetz	N_c #gelöster Teilchen	

10.1 Materialeigenschaften

Wärmekapazität	$c = \frac{Q}{\Delta T}$	(150)
	Q Wärme	
Isochore Wärmekapazität	$c_v = \left(\frac{\partial Q}{\partial T}\right)_V = \left(\frac{\partial U}{\partial T}\right)_V$	(151)
	${\cal U}$ innere Energie	
Isobare Wärmekapazität	$c_p = \left(\frac{\partial Q}{\partial T}\right)_P = \left(\frac{\partial H}{\partial T}\right)_P$	(152)
	HEnthalpie	
Kompressionsmodul	$K = -V \frac{\mathrm{d}p}{\mathrm{d}V}$	(153)
	pDruck, V Anfangsvolumen	
Kompressibilität	$\kappa = -\frac{1}{V}\frac{\partial V}{\partial p}$	(154)

Isotherme Kompressibilität	$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T = \frac{1}{K} \tag{15}$	5)
Adiabatische Kompressibilität	$\kappa_S = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_S \tag{15}$	6)
Thermaler Ausdehnungskoeffizient	$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p,N} \tag{15}$	7)

11 Hauptsätze der Thermodynamik

11.1 Nullter Hauptsatz

Wenn sich zwei Siesteme jeweils im thermischen Gleichgewicht mit einem dritten befinden, befinden sie sich auch untereinander im thermischen Gleichgewicht.

$$A \xrightarrow{th.GGW.} C \wedge B \xrightarrow{th.GGW.} C \Rightarrow A \xrightarrow{th.GGW.} B$$
(158)

11.2 Erster Hauptsatz

In einem abgeschlossenem System ist die Änderung der inneren Energie U gleich der gewonnenen Wärme Q minus der vom System an der Umgebung verrichteten Arbeit W.

Änderung der inneren Energie	$\Delta U = \delta Q - \delta W$	(159)
	$\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$	(160)

11.3 Zweiter Hauptsatz

Clausius: Es gibt keine Zustansänderung, deren einziges Ergebnis die Übertragung von Wärme von einem Körper niederer Temperatur auf einen Körper höherer Temperatur ist.

Kelvin: Es ist unmöglich, eine periodisch arbeitende Maschine zu konstruieren, die weiter nichts bewirkt als Hebung einer Last und Abkühlung eines Wärmereservoirs.

11.4 Dritter Hauptsatz

Es ist unmöglich, ein System bis zum absoluten Nullpunkt abzukühlen.

Entropiedichte	und domit auch	$\lim_{T \to 0} s(T) = 0$	(161)
		$\lim_{T \to 0} c_V = 0$	(162)
	$s = \frac{S}{N}$		

12 Ensembles

Mikrokanonisches Ensemble

Konstante Variablen	E, V, N
partition sum	$\Omega = \sum_n 1$
probability	$p_n = \frac{1}{\Omega}$
td pot	$S=k_{\rm B}\ln\Omega$
pressure	$p = T\left(\frac{\partial S}{\partial V}\right)_{E,N}$
entropy	S = $k_{ m B}$ = $\ln \Omega$

Kanonisches Ensemble

Konstante Variablen	T, V, N
partition sum	$Z = \sum_{n} e^{-\beta E_n}$
probability	$p_n = \frac{\mathrm{e}^{-\beta E_n}}{Z}$
td pot	$F = -k_{\rm B}T\ln Z$
pressure	$p = -\left(\frac{\partial F}{\partial V}\right)_{T,N}$
entropy	$S = -\left(\frac{\partial F}{\partial T}\right)_{V,N}$

Grosskanonisches Ensemble

Konstante Variablen	T,V,μ
partition sum	$Z_{\rm g} = \sum_n {\rm e}^{-\beta (E_n - \mu N_n)}$
probability	$p_n = \frac{\mathrm{e}^{-\beta(E_n - \mu N_n)}}{Z_{\mathrm{g}}}$
td pot	$\Phi = -k_{\rm B}T\ln Z$
pressure	$p = -\left(\frac{\partial \Phi}{\partial V}\right)_{T,\mu} = -\frac{\Phi}{V}$
entropy	$S = -\left(\frac{\partial \Phi}{\partial T}\right)_{V,\mu}$

Isobaric-isothermal	: Gibbs ensemble
Konstante Variablen	N, p, T
partition sum	
probability	$p_n?rac{\mathrm{e}^{-eta(E_n+pV_n)}}{Z}$
td pot	
pressure	
entropy	

Isonthalpic-isobaric ensemble : Enthalpy ensemble

Konstante Variablen		
partition sum		
probability		
td pot		
pressure		
entropy		

A Messgröße

 $\langle A \rangle_{\text{Zeit}} = \langle A \rangle_{\text{Ensemble}}$

(163)

TODO:complete, link potentials Ergodenhypothese Innerhalb einer langen Zeitspanne sind alle energetisch erreichbaren Mikrozustände im Phasenraum gleich wahrscheinlich

12.1 Potentiale

Innere Energie	$dU(S, V, N) = T dS - p dV + \mu dN$	(164)
Freie Energie / Helmholtz Energie	$dF(T, V, N) = -S dT - p dV + \mu dN$	(165)
Enthalpie	$dH(S, p, N) = T dS + V dp + \mu dN$	(166)
Freie Entahlpie / Gibbs-Energie	$dG(T, p, N) = -S dT + V dp + \mu dN$	(167)
Großkanonisches Potential	$\mathrm{d}\Phi(T,V,\mu) = -S\mathrm{d}T - p\mathrm{d}V - N\mathrm{d}\mu$	(168)

TODO:Maxwell Relationen, TD Quadrat

Themodynamisches Quadrat Guggenheim Quadrat	-S	U	V	
	Н		F	Die Ecken gegenüber des Potentials
	$\begin{bmatrix} -p \\ sind d \\ in dor \end{bmatrix}$	<i>G</i> ie Koe Felvo	<i>T</i> effizien	nten, das Differential eines Koeffizienten ist
l	m der	Еске	gegen	uber.

13 Ideales Gas

Das ideale Gas besteht aus nicht-wechselwirkenden, ununterscheidbaren Teilchen.

Phase space volume $3N$ Kugel	$\Omega(E) = \int_{V} d^{3}q_{1} \dots \int_{V} d^{3}q_{N} \int d^{3}p_{1} \dots \int d^{3}p_{N} \frac{1}{N!h^{3N}}$ $= \left(\frac{V}{N}\right)^{N} \left(\frac{4\pi mE}{3h^{2}N}\right)^{\frac{3N}{2}} e^{\frac{5N}{2}}$ $N \ \text{\#Teilchen}, \ h^{3N} \ \text{Volumen eines Mikrozustandes, } N$ chen sind ununterscheidbar	$\nabla \Theta \left(E + (169) \right)$ (170) (170) $T = 1 - 1$	$-\sum_{i} \frac{\vec{p_i}^2}{2m}$
Entropie	$S = \frac{5}{2}Nk_{\rm B} + Nk_{\rm B}\ln\left(\frac{V}{N}\left(\frac{2\pi mE}{3h^2N}\right)^{\frac{3}{2}}\right)$	(171)	
Ideale Gasgleichung Thermische Zustandsgleichung idealer Gase	pV = nRT = $Nk_{\rm B}T$	(172) (173)	
Kalorische Zustangsgleichung	$U = \frac{3}{2}Nk_{\rm B}T$	(174)	
Äquipartitions theorem Jedem Freiheitsgrad steht die Energie $U_{\rm D}$ zur Verfügung	$U_{\rm D} = \frac{1}{2}k_{\rm B}T$	(175)	
Maxwellsche Geschwindigkeitsverteilung Siehe auch Maxwell-Boltzmann Verteilung	$w(v) dv = 4\pi \left(\frac{\beta m}{2\pi}\right)^{\frac{3}{2}} v^2 e^{-\frac{\beta m v^2}{2}} dv$	(176)	
Mittlere quadratosche Geschwindigkeit pro Teilchen im 3D-Gas	$\langle v^2 \rangle = \int_0^\infty \mathrm{d}v v^2 w(v) = \frac{3k_\mathrm{B}T}{m}$	(177)	

13.0.1 Molekülgas

Molekülgas 2 Teilchen der MasseM sind verbunden durch eine "Feder" mit Länge L $p_i = \frac{2\pi\hbar}{L} n_i$ (178) $E_{\rm kin} = \frac{\vec{p}_r^2}{2M}$ Translation (179) $n_i \in \mathbb{N}_0, \ i = x, \ y, \ z$ $E_{\rm vib} = \hbar\omega\left(n + \frac{1}{2}\right)$ (180)Schwingungen $n \in \mathbb{N}_0$ $E_{\rm rot} = \frac{\overline{h^2}}{2I}j(j+1)$ (181)Rotation

TODO:Diagram für verschiedene Temperaturen, Weiler Skript p.83

 $j \in \mathbb{N}_0$

14 Reales Gas

zweier Moleküle ab

14.1 Virialentwicklung

Entwicklung desw Drucks p in ei	ne Potenzreihe der Dichte ρ .	
Virialentwicklung Der zweite und dritte	$p = k_{\rm B} T \rho [1 + B(T) \rho + C(T) \rho^2 + \dots]$	(182)
Virialkoeffizient ist für viele Substanzen tabelliert	B und C 2. und 3. Virialkoeffizient, $\rho = \frac{N}{V}$	
Mayer-Funktion	$f(\vec{r}) = \mathrm{e}^{-\beta V(i,j)} - 1$	(183)
v	V(i,j) Paarpotential	
Zweiter Virialkoeffizient Hängt vom Paarpotential	$B = -\frac{1}{2} \int_V \mathrm{d}^3 \vec{r} f(\vec{r})$	(184)

14.2 Van der Waals Gleichung

Annahme eines Harte-Kugeln Potentials mit einer schwachen Anziehung

Zustandssumme

$$Z_N = \frac{(V - V_0)^N}{\lambda^{3N} N!} e^{\frac{\beta N^2 a}{V}}$$
(186)

a Kohäsionsdruck

Van der Waals-Gleichung

$$p = \frac{Nk_{\rm B}T}{V-b} - \frac{N^2a}{V^2}$$
(187)

b Kovolumen

TODO: sometimes N is included in a, b

15 Ideales Quantengas

Fugazität		$z = e^{\mu\beta} = e^{\frac{\mu}{k_{\rm B}T}}$	(188)
Besetzungszahl	r Zustände	$\sum_{r} n_{r} = N$	(189)
Ununterscheidbare Teilchen	p_i Zustand	$ p_1, p_2, \dots, p_N\rangle = p_1\rangle p_2\rangle \dots p_N\rangle$	(190)

Fnorgio		
mergie	\sim 3	
Gleich wie beim klassischen	$\langle E \rangle = \int_{C} \epsilon n(\epsilon) d\epsilon = \frac{3}{2} pV$	(198)
idealen Gas	<i>J</i> 0	

Zustandsgleichung Bosonen: verringerter Druck	$pV = k_{\rm B}T\ln Z_g$ after Virialentwicklung	(199)
da sie clustern Fermionen: erhöhter Druck durch das Pauli-Prinzip	$= Nk_{\rm B}T \left[1 \mp \frac{\lambda^3}{2^{5/2}gv} + \mathcal{O}\left(\left(\frac{\lambda^3}{v}\right)^2 \right) \right]$	(200)
	\pm : $\frac{\text{bos}}{\text{fer}}$, $v = \frac{V}{N}$ spezifisches Volumen	

Relevanz der qm. Korrekturen

Korrekturen werden relevant, wenn der Teilchenabstand in der Größenordnung der thermischen Wellenlänge ist

$\left(\frac{V}{N}\right)^{\frac{1}{3}} \sim \frac{\lambda}{g_s^{\frac{1}{3}}}$	(201)

Verallgemeinerte Zeta-Funktion	$\left[\begin{array}{c}g_{\nu}(z)\\f_{\nu}(z)\end{array}\right] \coloneqq \frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \mathrm{d}x \frac{x^{\nu-1}}{\mathrm{e}^{x} z^{-1} \mp 1}$	(202)
-----------------------------------	--	-------

15.1 Bosonen

Zustandssumme	$Z_{g} = \prod_{p} \frac{1}{1 - e^{-\beta(\epsilon_{p} - \mu)}} $ (203) $p \in \mathbb{N}_{0}$	
Besetzungszahl Bose-Einstein Verteilung	$\langle n_p \rangle = \frac{1}{\mathrm{e}^{\beta(\epsilon-\mu)} - 1} \tag{204}$	

15.2 Fermionen

Zustandssumme	$Z_{g} = \prod_{p} \left(1 + e^{-\beta(\epsilon_{p} - \mu)} \right) $ (205)	
	p = 0, 1	

15.2.1 Starke Entartung

Sommerfeld-Entwicklung für geringe Temperaturen $T \ll T_{\rm F}$	$f_{\nu}(z) = \frac{(\ln z)^{\nu}}{\Gamma(\nu+1)} \left(1 + \frac{\pi^6}{6} \frac{\nu(\nu-1)}{(\ln z)^2} + \dots \right)$	(212)
Energiedichte	$\frac{E}{V} = \frac{3}{2} \frac{g}{\lambda^3} k_{\rm B} T f_{5/2}(z)$ Sommerfeld-Entwicklung	(213)

 $\approx \frac{3}{5} \frac{N}{V} E_{\rm F} \left(1 + \frac{5\pi^2}{12} \left(\frac{k_{\rm B}T}{E_{\rm F}} \right)^2 \right)$

(214)

TODO: Entartung und Sommerfeld TODO: DULONG-PETIT Gesetz

Teil V Elektrodynamik

16 Elektrisches Feld

Elektrisches Feld Umgibt geladene Teilchen	Symbol: $\vec{\mathcal{E}}$	Unit: $1 \mathrm{V}\mathrm{m}^{-1} = 1 \mathrm{kgm/s^3A}$	
Elektrisches Potential Benötigte Arbeit um eine	Symbol: ϕ	Unit: $1 \text{ V} = 1 \text{ kgm}^2/\text{s}^3 \text{A}$	
Einheitsladung zwischen zwei Punkten zu bewegen		$\phi = -\int \vec{\mathcal{E}} \cdot \mathrm{d}\vec{r}$	(216)
Gaußsches Gesetz für elektrische Felder Der magnetische Fluss durch eine geschlossene Fläche ist proportional zur elektrischen Ladung	S geschlossene Fläc	$\Phi_{\rm E} = \iint_{S} \vec{\mathcal{E}} \cdot \mathrm{d}\vec{S} = \frac{Q}{\varepsilon_0}$ the	(217)
Permitivität Dielektrische Konstante / Dielektrische Funktion Elektrische Polarisierbarkeit eines dielektrischen Materials	Symbol: ϵ 1 A s V ⁻¹ m = 1 F m ⁻¹	$^{-1} = 1 \mathrm{C} \mathrm{V}^{-1} \mathrm{m} = 1 \mathrm{C}^2 / \mathrm{Nm}^2 =$	Unit: = 1 A ² s ⁴ /kgm ³
Relative Permittivität / Dielectric constant	ϵ Permitivität, ϵ_0 V	$\epsilon(\omega)_{\rm r} = rac{\epsilon(\omega)}{\epsilon_0}$ Vakuum Permittivität	(218)
Vakuum Permittivität Elektrische Feldkonstante	Symbol: ϵ_0 Experimenteller We 8.8541878188	ert $(14) \cdot 10^{-1} \mathrm{AsV^{-1}m}$	
Elektrische Suszeptibilität Beschreibt wie stark ein dielektrisches Material polarisiert wird, wenn ein elektrisches Feld angelegt wird	Symbol: $\chi_{\rm e}$		Unit:
		$\epsilon_{ m r}$ = 1 + $\chi_{ m e}$	(219)
	$\epsilon_{\rm r}$ Relative Permittivität / Dielectric constant		
	Symbol: \vec{P}	Unit: 1 C/m ²	
Dielektrische Polarisationsdichte		$ec{P}$ = $\epsilon_0 \chi_{ m e} ec{\mathcal{E}}$	(220)
	ϵ_0 Vakuum Permittivität, $\chi_{\rm e}$ Elektrische Suszeptibilität, $\vec{\mathcal{E}}$ Elektrisches Feld		

	Symbol: \vec{D}	Unit: $1 \text{ C/m}^2 = 1 \text{ As/m}^2$	
Elektrische Flussdichte / dielektrische Verschiebung		$\vec{D} = \epsilon_0 \vec{\mathcal{E}} + \vec{P}$	(221)
	ϵ_0 Vakuum Permittivität, $\vec{\mathcal{E}}$ Elektrisches Feld, \vec{P} Dielektrische Polarisationsdichte		
Elektrischer Fluss durch die Fläche \vec{A}	Φ $ec{D}$ Elektrische Flussdicht	$E = \int_{A} \vec{D} \cdot d\vec{A}$ e / dielektrische Verschiebung	(222) g
Elektrische Leistung		$P_{\rm el}$ = UI	(223)
	U Elektrisches Potential,	I Elektrischer Strom	

17 Magnetfeld

Magnetischer Fluss	Symbol: Φ_B	Unit: 1 Wb = $1 \text{ V s}^{-1} = 1 \text{ kgm}^2$	Unit: $1 \text{ Wb} = 1 \text{ V s}^{-1} = 1 \text{ kgm}^2/\text{s}^2\text{A}$	
		$\Phi_{\rm B} = \iint_A \vec{B} \cdot \mathrm{d}\vec{A}$	(224)	
	\vec{A} Fläche			
Magnetische Flussdichte Definiert über Lorentzkraft	Symbol: \vec{B}	Unit: $1 \text{ T} = 1 \text{ Vs/m}^2 = 1 \text{ N A}^{-1} \text{ m} = 1 \text{ kg}$	$/As^2$	
		$\vec{B} = \mu_0 (\vec{H} + \vec{M})$	(225)	
	\vec{H} Magnetische Feldstärke, \vec{M} Magnetisierung, μ_0 Magnetische Vakuumpermeabilität			
Magnetisches Vektorpotential	Symbol: \vec{A}	Unit: $1 \mathrm{Tm} = 1 \mathrm{Vsm^{-1}} = 1 \mathrm{kgm}$	Unit: $1 \text{ Tm} = 1 \text{ Vsm}^{-1} = 1 \text{ kgm/s}^2 \text{A}$	
		$ec{ abla} imes ec{A}(ec{r})$ = $ec{B}(ec{r})$	(226)	
Magnetische Feldstärke	Symbol: \vec{H}	Unit: 1 A	Unit: $1 \mathrm{A}\mathrm{m}^{-1}$	
		$\vec{H} \equiv \frac{1}{\mu_0}\vec{B} - \vec{M}$	(227)	
Lorentzkraft Kraft auf geladenes Teilchen		$\vec{F} = q\vec{\mathcal{E}} + q\vec{v} \times \vec{B}$	(228)	
Magnetisch Permeabilität	Symbol: μ	Unit: $1 \mathrm{H}\mathrm{m}^{-1} = 1 \mathrm{V}\mathrm{s}\mathrm{A}^{-1}\mathrm{m}$		
		$\mu = \frac{B}{H}$	(229)	
	${\cal B}$ Magnetische Flussdichte, ${\cal H}$ Magnetische Feldstärke			
Magnetische Vakuumpermeabilität	Symbol: μ_0 Experimenteller Wert 1.25663706127(20) H/m = N/A ²			
---	--	---		
Realtive Permeabilität	$\mu_{\rm r} = \frac{\mu}{\mu_0}$	(230)		
Gaußsches Gesetz für Magnetismus Der magnetische Fluss durch eine geschlossene Fläche ist 0 ⇒es gibt keine magnetischen Monopole	$\Phi_{\rm B} = \iint_S \vec{B} \cdot {\rm d}\vec{S} = 0$ S geschlossene Fläche	(231)		
Magnetisierung Vektorfeld, welches die Dichte von magnetischen Dipolen beschreibt.	Symbol: \vec{M} $\vec{M} = \frac{\mathrm{d}\vec{m}}{\mathrm{d}V} = \chi_{\mathrm{m}} \cdot \vec{H}$	Unit: $1 \mathrm{A}\mathrm{m}^{-1}$ (232)		
Magnetisches Moment Stärke und Richtung eines magnetischen Dipols	Symbol: \vec{m}	Unit: $1 \mathrm{Am^2}$		
Drehmoment	$\vec{\tau} = \vec{m} \times \vec{B}$ m Magnetisches Moment	(233)		
Suszeptibilität	$\chi_{\rm m} = \frac{\partial M}{\partial B} = \mu_{\rm r} - 1$ $\mu_{\rm r}$ Realtive Permeabilität	(234)		

17.1 Magnetische Materialien

Paramagnetismus Magnetisches Feld wird im Material verstärkt	$$\mu_{\rm r}>1$$\chi_{\rm m}>0$$$ $$\mu$$ Magnetisch Permeabilität, $\chi_{\rm m}$ Suszeptibilität	(235) (236)
Diamagnetismus Magnetisches Feld wird aus dem Material gedrängt	$0 < \mu_{\rm r} < 1$ $-1 < \chi_{\rm m} < 0$ μ Magnetisch Permeabilität, $\chi_{\rm m}$ Suszeptibilität	(237) (238)
Ferromagnetismus Magnetische Momente werden am äußeren Feld ausgerichtet und behalten diese ausrichtung auch wenn das Feld abgeschaltet wird (Remanenz)	$\label{eq:magnetisch} \begin{split} \mu_{\rm r} \gg 1 \\ \mu \mbox{ Magnetisch Permeabilität, } \chi_{\rm m} \mbox{ Suszeptibilität} \end{split}$	(239)

18 Elektromagnetismus

Lightgeschwindigkeit in the vacuum	
Vakuum Permittivität - Permeabilität Beziehung TODO:Does this have a name?	$\epsilon_0 \mu_0 = \frac{1}{c^2} $ (240) ϵ_0 Vakuum Permittivität, μ_0 Magnetische Vakuumpermeabi- lität, c Lightgeschwindigkeit
Poisson Gleichung in der Elektrostatik	$\Delta \Phi(\vec{r}) = -\frac{\rho(\vec{r})}{\epsilon} $ (241) TODO: double check Φ ρ Ladungsdichte, ϵ Permitivität, Φ Potential
Poynting-Vektor Gerichteter Energiefluss oder Leistungsfluss eines elektromgnetischen Feldes [W/m ²]	$\vec{S} = \vec{E} \times \vec{H} $ (242)
Elektrisches Feld	$\vec{\mathcal{E}} = -\vec{\nabla}\phi - \frac{\partial\vec{A}}{\partial t} $ (243) $\vec{\mathcal{E}}$ Elektrisches Feld, ϕ Elektrisches Potential, \vec{A} Magnetisches Vektorpotential
Hamiltonian eines Teilchens im elektromagnetischen Feld In der ed:em:gauge:coulomb	$\hat{H} = \frac{1}{2m} \left[\hat{p} \; \frac{e\vec{A}}{c} \right]^2 $ (244) m Masse, \hat{p} Impulsoperator, q Ladung, \vec{A} Magnetisches Vek- torpotential, c Lightgeschwindigkeit

18.1 Maxwell-Gleichungen

	$ec{ abla}\cdotec{\mathcal{E}}=rac{ ho_{ ext{el}}}{\epsilon_0}$	(245)
Vakuum	$\vec{\nabla} \cdot \vec{B} = 0$	(246)
Mikroskopische Formulierung	$\vec{\nabla} \times \vec{\mathcal{E}} = -\frac{\mathrm{d}\vec{B}}{\mathrm{d}t}$	(247)
	$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\mathrm{d}\vec{\mathcal{E}}}{\mathrm{d}t}$	(248)

	$\vec{\nabla} \cdot \vec{D} = \rho_{\rm el}$	(249)
Materie	$\vec{\nabla} \cdot \vec{B} = 0$	(250)
Makroskopische Formulierung	$\vec{\nabla} \times \vec{\mathcal{E}} = -\frac{\mathrm{d}\vec{B}}{\mathrm{d}t}$	(251)
	$\vec{\nabla} imes \vec{H} = \vec{j} + \frac{\mathrm{d}\vec{D}}{\mathrm{d}t}$	(252)

18.1.1 Eichungen

Coulomb-Eichung	$\vec{\nabla} \cdot \vec{A} = 0$	(253)
	\vec{A} Magnetisches Vektorpotential	

TODO:Polarization

18.2 Induktion

Faradaysche Induktionsgesetz	$U_{\rm ind} = -\frac{\mathrm{d}}{\mathrm{d}t} \Phi_{\rm B} = -\frac{\mathrm{d}}{\mathrm{d}t} \iint_{A} \vec{B} \cdot \mathrm{d}\vec{A} \tag{254}$
Lenzsche Regel	Die Änderung des magnetischen Flußes durch einen Leiter induziert einen Strom der der Änderung entgegenwirkt.

19 Optik

Ausbreitung von Licht und die Interaktion mit Materie

	Symbol: \tilde{n}	Unit:
	$\tilde{n} = n' + in''$	(255)
Brechungsindex	$n = \sqrt{\epsilon_{\rm r} \mu_{\rm r}}$	(256)
	$n = \frac{c_0}{c_{\rm M}}$	(257)
	??? ???:relative permittivity, ??? ???:relati Lightgeschwindigkeit, $c_{\rm M}$ Lichtgeschwindig	ve permeability, c keit im Medium
TODO:what does the com	plex part of the dielectric function represent?	
Reller Teil des Brechungsindex	Symbol: n'	Unit:
Auslöschungskoeffizient Komplexer Teil des Brechungsindex	Symbol: n'' manchmal κ	Unit:

Reflectio	\tilde{n} Brechungsindex	$R = \left \frac{\tilde{n} - 1}{\tilde{n} + 1} \right $	(258)	
Snelliussches Brechungsgesetz	n_i Brechungsindex, θ	$n'_1 \sin \theta_1 = n'_2 \sin \theta_2$ <i>i</i> Einfallswinkel (normal)	(259) zur Fläche)	
Gruppengeschwindigkeit Geschwindigkeit, mit sich die Einhülende einer Welle ausbreitet	ω Kreisfrequenz, ???	$v_{\rm g} \equiv \frac{\partial \omega}{\partial k}$???:angular wavenumber	(260)	
Phasengeschwindigkeit Geschwindigkeit, mit der sich eine Welle im Medium ausbreitet	ω Kreisfrequenz, ??? length, T Periodenda	$v_{\rm p} = \frac{\omega}{k} = \frac{\lambda}{T}$???:angular wavenumber	(261) , ??? ???:wave-	
Absoprtionskoeffizient Intensitätsverringerung beim Druchgang eines Mediums, nicht zwingend durch Energieabgabe an Medium	$\frac{\text{Symbol: } \alpha}{\alpha = 2n''\frac{\omega}{c}}$ $\alpha = \frac{\omega}{nc}\epsilon'\text{TODO:For d}$ $n'' \text{Auslöschungskoeff}$ frequenz	U lirect band gaps; from ad fizient, <i>c</i> Lightgeschwindi	$\frac{\text{Init: 1 cm}^{-1}}{(262)}$ v. sc: sheet 10 2b) (263) (263) gkeit, ω Kreis-	. Check wh
Elektromagnetische Strahlungsintensität Flächenleistungsdichte	$\begin{tabular}{ c c c c c } \hline S & \end{tabular} \\ \hline S & \end{tabular} & \end{tabular} \\ \hline S & \end{tabular} \\ \hline \end{array} \end{tabular}$	Unit: 1 W $I = \langle S \rangle_t $	$\frac{V/m^2 = 1/s^3}{(264)}$	
Lambert-beersches Gesetz Intensität in einem absorbierenden Medium	I Elektromagnetische effizient, z Eindringti	$I(z) = I_0 e^{-\kappa z}$ e Strahlungsintensität, α efe	(265) Absoprtionsko-	

20 Hall-Effekt

Zyklotronfrequenz	$\omega_{\rm c} = \frac{eB}{m_{\rm e}}$	(266)
-------------------	---	-------

TODO:Move

20.1 Klassischer Hall-Effekt

Fließt in einem Leiter $(l \times b \times d)$ ein Strom in x Richtung, während der Leiter von einem Magnetfeld

B in z-Richtung durchdrungen, wird eine Hallspannung $U_{\rm H}$ in y-Richtung induziert.

Hallspannung	$U_{\rm H} = \frac{IB}{ned}$	(267)
	<i>n</i> Ladungstragerdicite	
Hall-Koeffizient Manchmal $R_{\rm H}$	$A_{\rm H} \coloneqq -\frac{E_y}{j_x B_z} \stackrel{\rm metals}{\stackrel{\perp}{=}} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}$	(268)
Spezifischer Widerstand	$\rho_{xx} = \frac{m_{\rm e}}{ne^2\tau}$ $\rho_{xy} = \frac{B}{ne}$	(269) (270)

20.2 Ganzahliger Quantenhalleffekt

Leitfähigkeitstensor	$\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix}$	(271)
Spezifischer Widerstands-tensor	$\rho = \sigma^{-1}$	(272)
Spezifischer Hallwiderstand	$\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}$ $\nu \in \mathbb{Z}$ Füllfaktor	(273)
Fraktionaler Quantum-Hall-Effekt	$\nu = \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{2}{3}$ ν Bruch aus Zahlen ohne gemeinsamen Teiler	(274)

- Integer (QHE): Füllfaktor ν ist ganzzahlig
- Fractional (FQHE): Füllfaktor ν ist ein Bruch
- Spin (QSHE): Spin Ströme anstatt Ladungsströme
- Anomalous (QAHE): Symmetriebruch durch interne Effekte anstatt druch ein externes Magnetfeld

TODO:sort

21 Dipol-zeug

Dipolsrahlung Poynting-Vektor	$\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right) \frac{\sin^2 \theta}{r^2} \vec{r}$	(275)
Zeitlich mittlere Leistung	$P = \frac{\mu_0 \omega^4 p_0^2}{12\pi c}$	(276)

22 misc

Impedanz eines Ohmschen Widerstands	$Z_R = R$	(277)
	??? ???:resistance	
Impedanz eines Kondensators	$Z_C = \frac{1}{i\omega C}$	(278)
	???? ???:capacity, ??? ???:angular velocity	
Impedanz eines Induktors	$Z_L = i\omega L$	(279)
	???? ???:inductance, ???? ???:angular velocity	

TODO: impedance addition for parallel / linear

Teil VI Quantenmechanik

23 Basics

23.1 Operatoren

Dirac-Notation	$\langle x $ "Bra"Zeilenvektor $ x \rangle$ "Ket"Spaltenvektor $\hat{A} \beta \rangle = \alpha \rangle \Rightarrow \langle \alpha = \langle \beta \hat{A}^{\dagger}$	(280) (281) (282)
Dagger	$\hat{A}^{\dagger} = (\hat{A}^{*})^{\mathrm{T}}$ $(c\hat{A})^{\dagger} = c^{*}\hat{A}^{\dagger}$ $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$	(283) (284) (285) (286)
Adjungierter operator	$\langle \alpha \hat{A}^{\dagger} \beta \rangle = \langle \beta \hat{A} \alpha \rangle^{*}$	(287)
Hermitescher operator	$\hat{A}=\hat{A}^{\dagger}$	(288)

23.1.1 Messung

Eine Observable ist ein hermitscher Operator, der auf \hat{H} wirkt. Die Messung ergibt zufällig einen der Eigenwerte von \hat{O} , welche alle reell sind. Messwahrscheinlichkeit

Messwall Schennichken		
Wahrscheinlichkeit, ψ im	$p(\lambda) = \langle \psi \hat{P}_{\lambda} \psi \rangle$	(289)
Zustand λ zu messen]

Zustand nach der Messung	$\left \psi\right\rangle_{\text{post}} = \frac{1}{\sqrt{p(\lambda)}} \hat{P}_{\lambda} \left \psi\right\rangle \tag{290}$)
--------------------------	---	---

23.1.2 Pauli-Matrizen

Pauli Matrizen	$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 0\rangle \langle 1 + 1\rangle \langle 0 $	(291)
	$\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = -i 0\rangle \langle 1 + i 1\rangle \langle 0 $	(292)
	$\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = 0\rangle \langle 0 - 1\rangle \langle 1 $	(293)

23.2 Wahrscheinlichkeitstheorie

-

Kontinuitätsgleichung	$\frac{\partial \rho(\vec{x},t)}{\partial t} + \nabla \cdot \vec{j}(\vec{x},t) = 0$ ρ Dichte einer Erhaltungsgröße q, j Fluß von q	(294)
Zustandswahrscheinlichkeit	ТОДО	(295)
Dispersion	$\Delta \hat{A} = \hat{A} - \langle \hat{A} \rangle$	(296)
Allgemeine Unschärferelation	$\sigma_{A}\sigma_{B} \geq \frac{1}{4} \left\langle [\hat{A}, \hat{B}] \right\rangle^{2}$ $\sigma_{A}\sigma_{B} \geq \frac{1}{2} \left \left\langle [\hat{A}, \hat{B}] \right\rangle \right $	(297) (298)

23.3 Kommutator

Kommutator	$[A,B] = AB - BA \tag{(}$	(299)
Antikommutator	$\{A,B\} = AB + BA $	(300)
Kommutatorrelationen	$[A, BC] = [A, B]C - B[A, C] \tag{(4)}$	301)
TODO:add some more?		
Kommutator mit einer	$[f(A), B] = [A, B] \frac{\partial f}{\partial A} \tag{(4)}$	302)
Funktion	falls $[A, [A, B]] = 0$	
Jakobi-Identität	[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 (303)
Lemma von Hadamard	$e^{A} B e^{-A} = B + [A, B] + \frac{1}{2!} [A, [A, B]] + \frac{1}{3!} [A, [A, [A, B]]]$	+ (304)
	$[x_i, x_j] = 0 \tag{(}$	305)
Kanonische Vertauschungsrelationen	$[p_i, p_j] = 0 \tag{(}$	306)
	$[x_i, p_j] = i\hbar\delta_{ij} \tag{(}$	307)
	x, p kanonische konjugierte	

24 Schrödingergleichung

Energieoperator

$$E = i\hbar \frac{\partial}{\partial t} \tag{308}$$

Impulsoperator	$\vec{p} = -i\hbar \vec{ abla_x}$	(309)
Ortsoperator	$\vec{x} = i\hbar \vec{ abla_p}$	(310)
Stationäre Schrödingergleichung	$\hat{H} \left \psi \right\rangle = E \left \psi \right\rangle$	(311)
Schrödingergleichung	$i\hbar \frac{\partial}{\partial t}\psi(x,t) = (-\frac{\hbar^2}{2m}\vec{\nabla}^2 + \vec{V}(x))\psi(x)$	(312)
Hellmann-Feynman-Theorem		
Abletiung der Energie nach einem Parameter	$\frac{\mathrm{d}E_{\lambda}}{\mathrm{d}\lambda} = \int \mathrm{d}^{3}r\psi_{\lambda}^{*}\frac{\mathrm{d}H_{\lambda}}{\mathrm{d}\lambda}\psi_{\lambda} = \left(\psi(\lambda)\left \frac{\mathrm{d}H_{\lambda}}{\mathrm{d}\lambda}\right \psi(\lambda)\right)$	(313)
Variationsprinzip	Wenn $\hat{H}\psi = E\psi$, dann ist $E_0 \leq E = \langle \psi \hat{H} \psi \rangle$. Der Gr stand kann daher gefunden werden, indem ψ variiert w die Energie minimiert ist.	undzu- vird bis

24.1 Zeitentwicklug

The time evolution of the Hamiltonian is given by:

Zeitentwicklungsoperator	$ \psi(t) angle = \hat{U}(t,t_0) \psi(t_0) angle$	(314)	
	U unitär		
Von-Neumann Gleichung Zeitentwicklung des Dichteoperators im Schödingerbild. Qm. Analogon zur Liouville-Gleichung ??	$\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}]$	(315)	
Lindblad-Mastergleichung Verallgemeinerung der von-Neumman Gleichung für offene Quantensysteme	$\dot{\rho} = \underbrace{-\frac{i}{\hbar}[\hat{H},\rho]}_{\text{reversible}} + \underbrace{\sum_{n.m} h_{nm} \left(\hat{A}_n \rho \hat{A}_{m^{\dagger}} - \frac{1}{2} \left\{ \hat{A}_m^{\dagger} \hat{A}_n, \rho \right\} \right)}_{\text{irreversible}}$	(316)	

TODO: unitary transformation of time dependent H

24.1.1 Schrödinger- und Heisenberg-Bild

Im Schrödinger-Bild sind die Zustände zeitabhänig, im Heisenberg-Bild sind die Observablen (Operatoren) zeitabhänig

h positiv-semifinite Matrix, \hat{A} beliebiger Operator

Schrödinger Zeitentwicklug	$ \psi(t)_{\mathrm{S}} angle$ = $\hat{U}(t,t_0) \psi(t_0) angle$	(317)
Schrödinger Zeitentwicklug	$ \psi(t)_{ m S} angle$ = $\hat{U}(t,t_0) \psi(t_0) angle$	(317)

 $|\psi_{\rm H}\rangle = |\psi_{\rm S}(t_0)\rangle \tag{318}$

$$A_{\rm H} = U^{\dagger}(t, t_0) A_{\rm S} U(t, t_0)$$
 (319)

Heisenberg Zeitentwicklung

$$\frac{\mathrm{d}\hat{A}_{\mathrm{H}}}{\mathrm{d}t} = \frac{1}{i\hbar} [\hat{A}_{\mathrm{H}}, \hat{H}_{\mathrm{H}}] + \left(\frac{\partial \hat{A}_{\mathrm{S}}}{\partial t}\right)_{\mathrm{H}}$$
(320)

mit H und S dem Heisenberg- und Schrödinger-Bild

24.1.2 Ehrenfest-Theorem

Siehe auch ??	
Ehrenfest-Theorem gilt für beide Bilder	$\frac{\mathrm{d}}{\mathrm{d}t}\left\langle \hat{A}\right\rangle = \frac{1}{i\hbar}\left\langle \left[\hat{A},\hat{H}\right]\right\rangle + \left\langle \frac{\partial\hat{A}}{\partial t}\right\rangle \tag{321}$
Ehrenfest-Theorem Beispiel Beispiel für x	$m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\langle x\rangle = -\langle \nabla V(x)\rangle = \langle F(x)\rangle \qquad (322)$
Korrespondenzprinzip	Die klassischen Bewegungsgleichungen lassen sich als Grenz- fall (große Quantenzahlen) aus der Quantenmechanik ablei- ten.

25 Störungstheorie

Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.

Hamiltonian	$\hat{H} = \hat{H_0} + \lambda \hat{H_1}$	(323)
Potenzreihe	$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots$ $ \psi_n\rangle = \psi_n^{(0)}\rangle + \lambda \psi_n^{(1)}\rangle + \lambda^2 \psi_n^{(2)}\rangle + \dots$	(324) (325)
Energieverschiebung 1. Ordnung	$E_n^{(1)} = \left\{ \psi_n^{(0)} \middle \hat{H}_1 \middle \psi_n^{(0)} \right\}$	(326)
Zustände	$ \psi_n^{(1)}\rangle = \sum_{k \neq n} \frac{\left(\psi_k^{(0)} \middle \hat{H}_1 \middle \psi_n^{(0)} \right)}{E_n^{(0)} - E_k^{(0)}} \psi_k^{(0)}\rangle$	(327)
Energieverschiebung 2. Ordnung	$E_n^{(2)} = \sum_{k \neq n} \frac{\left \left\langle \psi_k^{(0)} \middle \hat{H}_1 \middle \psi_n^{(0)} \right\rangle \right ^2}{E_n^{(0)} - E_k^{(0)}}$	(328)
Fermis goldene Regel Übergangsrate des initial Zustandes $ i\rangle$ unter einer Störung H^1 zum Endzustand $ f\rangle$	$\Gamma_{i \to f} = \frac{2\pi}{\hbar} \left \langle f H^1 i \rangle \right ^2 \rho(E_f)$	(329)

26 Harmonischer Oszillator

Hamiltonian	$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$ $= \frac{1}{2}\hbar\omega + \omega a^{\dagger}a$	(330) (331)
Energiespektrum	$E_n = \hbar\omega \left(\frac{1}{2} + n\right)$	(332)

Siehe auch 26.1

26.1 Erzeugungs und Vernichtungsoperatoren / Leiteroperatoren

Teilchenzahloperator/Beset- zungszahloperator	$\hat{N} \coloneqq a^{\dagger}a$	(333)
	$\hat{N}\left n ight angle$ = $n\left N ight angle$	(334)
	$ n\rangle =$ Fock-Zustände, $\hat{a} =$ Vernichtungsoperator, $\hat{a}^{\dagger} =$ gungsoperator	Erzeu-
77	$\begin{bmatrix} \hat{a}, \hat{a}^{\dagger} \end{bmatrix} = 1$	(335)
Kommutator	$\begin{bmatrix} N, \hat{a} \end{bmatrix} = -\hat{a}$ $\begin{bmatrix} N, \hat{a}^{\dagger} \end{bmatrix} = \hat{a}^{\dagger}$	(336) (337)
	$\hat{a} n\rangle = \sqrt{n n-1\rangle}$	(338)
Anwendung auf Zustände	$\ddot{a}' n\rangle = \sqrt{n+1} n+1\rangle$	(339)
	$ n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n 0\rangle$	(340)
Matrix-Form	$\hat{n} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & N \end{pmatrix}$	(341)
	$\hat{a} = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \sqrt{N} \\ 0 & 0 & 0 & 0 \end{pmatrix}$	(342)
	$\hat{a}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ \sqrt{1} & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & 0 & \sqrt{N} & 0 \end{pmatrix}$	(343)

26.1.1 Harmonic Oscillator

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger}) \tag{344}$$

$$\hat{p} = -i\sqrt{\frac{m\omega\hbar}{2}}(\hat{a} - \hat{a}^{\dagger}) \tag{345}$$

Harmonischer Oszillator

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} = \hbar\omega \left(a^{\dagger} a + \frac{1}{2} \right)$$
(346)
$$a = \frac{1}{\sqrt{2}} (\tilde{X} + i\tilde{P})$$
(347)

$$a^{\dagger} = \frac{1}{\sqrt{2}} (\tilde{X} - i\tilde{P}) \tag{348}$$

27 Drehmoment

27.1 Aharanov-Bohm Effekt

Erhaltene Phase

Elektron entlang eines geschlossenes Phase erhält eine Phase die proportional zum eingeschlossenen magnetischem Fluss ist

$$\delta = \frac{2e}{\hbar} \oint \vec{A} \cdot d\vec{s} = \frac{2e}{\hbar} \Phi \tag{349}$$

TODO:replace with loop intergral symbol and add more info

Periodische Potentiale 28

Blochwellen Lösen stat. SG im	$\psi_k(ec{r})$ = $e^{iec{k}\cdotec{r}}\cdot u_{ec{k}}(ec{r})$	(350)
periodischen Potential mit Periode \vec{R} : $V(\vec{r}) = V(\vec{r} + \vec{R})$	\vec{k} beliebig, u periodische Funktion	
	$u_{\vec{k}}(\vec{r} + \vec{R}) = u_{\vec{k}}(\vec{r})$	(351)
Periodizität	$\psi_{\vec{k}+\vec{C}}(r) = \psi_{\vec{k}}(r)$	(352)

Periodizität

 $\psi_{\vec{k}+\vec{G}}(\vec{r})=\psi_{\vec{k}}(\vec{r})$ \vec{R} Gittervektor, \vec{G} Reziproker Gittervektor

Symmetrien 29

Die meisten Symmetrieoperatoren sind unitär ??, da die Norm eines Zustands invariant unter Raum-, Zeit- und Spin-Transformationen sein muss.

Invarianz

\hat{H} is invariant unter der von \hat{U} beschriebenen Symmetrie	$\hat{U}\hat{H}\hat{U}^{\dagger}=\hat{H} \Leftrightarrow [\hat{U},\hat{H}]=0$	(353)
wenn gilt:		

29.1 Zeitumkehrungssymmetrie

Zeitumkehrungssymmetrie	$T:t \to -t$	(354)
Antiunitär	$T^2 = -1$	(355)

30 Zwei-Niveau System (TLS)

$H = \underbrace{\hbar\omega_c \hat{a}^{\dagger} \hat{a}}_{}$	$+\hbar\omega_{a}\frac{\hat{\sigma}_{z}}{2}+$	$\frac{\hbar\Omega}{2}\hat{E}\hat{S}$	(356)
field	atom	int	

after RWA:

(357)

$$=\hbar\omega_c \hat{a}^{\dagger}\hat{a} + \hbar\omega_a\hat{\sigma}^{\dagger}\hat{\sigma} + \frac{\hbar\Omega}{2}(\hat{a}\hat{\sigma^{\dagger}} + \hat{a}^{\dagger}\hat{\sigma}) \qquad (358)$$

 $\hat{E} = E_{\text{ZPF}}(\hat{a} + \hat{a}^{\dagger})$ Feldoperator mit bosonischen Leiteroperatoren, $\hat{S} = \hat{\sigma}^{\dagger} + \hat{\sigma}$ Polarisationsoperator mit Leiteroperatoren des TLS

31 Sonstiges

James-Cummings

TLS interagiert mit resonantem Lichtfeld

Hamiltonian

Rotating Wave Approximation / Drehwellennäherung (RWS) Schnell oscillierende Terme werden vernachlässigt	$\Delta \omega \coloneqq \omega_0 - \omega_L \ll \omega_0 + \omega_L \approx 2\omega_0 $ (359) $\omega_L \text{ Frequenz des Lichtes, } \omega_0 \text{ Übergangsfrequenz}$
Adiabatentheorem	Ein quantenmechanisches System bleibt in im derzeitigen Ei- genzustand falls eine Störung langsam genug wirkt und der Eigenwert durch eine Lücke vom Rest des Spektrums getrennt ist.
Slater Determinante Konstruktion einer fermionischen (antisymmetrischen) Vielteilchen Wellenfunktion aus ein-Teilchen Wellenfunktionen	$\Psi(q_1, \dots, q_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_a(q_1) & \phi_a(q_2) & \cdots & \phi_a(q_N) \\ \phi_b(q_1) & \phi_b(q_2) & \cdots & \phi_b(q_N) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_z(q_1) & \phi_z(q_2) & \cdots & \phi_z(q_N) \end{vmatrix} $ (360)

32 Wasserstoffatom

Reduzierte Masse $\mu = \frac{m_{\rm e} m_{\rm K}}{m_{\rm e} + m_{\rm K}} \stackrel{m_{\rm e} \ll m_{\rm K}}{\approx} m_{\rm e}$ (361)

Coulumb potential Für ein Einelektronenatom	$V(\vec{r}) = \frac{Z e^2}{4\pi\epsilon_0 r}$	(362)
	Z Ordnungszahl/Kernladungszahl	
Hamiltonian	$\hat{H} = -\frac{\hbar^2}{2\mu} \vec{\nabla}_{\vec{r}}^2 - V(\vec{r})$	(363)
namitoinan	$= \frac{\hat{p}_{r}^{2}}{2\mu} + \frac{\hat{L}^{2}}{2\mu r} + V(r)$	(364)
Wellenfunktion	$\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$	(365)
	$R_{nl}(r)$ Radialanteil, Y_{lm} qm:spherical harmonics	
	$R_{nl} = -\sqrt{\frac{(n-l-1)!(2\kappa)^3}{2n[(n+l)!]^3}} (2\kappa r)^l e^{-\kappa r} L_{n+1}^{2l+1}(2\kappa r)$	(366)
Radialanteil	with $\kappa = \frac{\sqrt{2\mu E }}{\hbar} = \frac{Z}{\pi a_{\rm P}}$	(367)
	$L_r^s(x)$ Laguerre-Polynome	
Energieeigenwerte	$E_n = \frac{Z^2 \mu e^4}{n^2 (4\pi\epsilon_0)^2 2\hbar^2} = -E_{\rm H} \frac{Z^2}{n^2}$	(368)
	Symbol: R_{∞}	
	Experimenteller Wert $10973731.568157(12) \text{ m}^{-1}$	
Rydberg-Konstante für schwere Atome	$R_{\infty} = \frac{m_e e^4}{8\epsilon_0^2 h^3 c}$	(369)
	$m_{\rm e}$ Elektronenmasse, ??? ???:elementary charge, ??? ? cuum permittivity, h Plancksches Wirkumsquantum ???:vacuum speed of light	???:va- 1, ???
	· · · · · · · · · · · · · · · · · · ·	
Rydberg Konstante	$R_{\rm M} = \frac{\mu}{m_{\rm e}} R_{\infty}$	(370)
korrigiert für Kernmasse M	??? ???:rydberg constant heavy, $\mu = \left(\frac{1}{m_{\rm e}} + \frac{1}{M}\right)^{-1}$ remass, $m_{\rm e}$ Elektronenmasse	educed
	$1 \operatorname{Ry} = hc R_{\infty}$	(371)
Rydberg-Energy Energie Einheit	R_{∞} Rydberg-Konstante, h Plancksches Wirkumsqua ??? ???:vacuum speed of light	ntum,

Bohrscher Radius	Symbol: a_0 Experimenteller Wert $5.29177210544(82) \cdot 10^{-11} \text{ m}$	
	$a_0 = \frac{4\pi\epsilon_0 \hbar^2}{e^2 m_{\rm e}}$	(372)
	ϵ_0 Vakuum Permittivität, $m_{\rm e}$ Elektronenmasse	

32.1 Korrekturen

32.1.1 Darwin-Term

Relativistische Korrektur: Elektronen führen eine Zitterbewegung aus und sind nicht vollständig lokalisiert.

Energieverschiebung	$\Delta E_{\rm rel} = -E_n \frac{Z^2 \alpha^2}{n} \left(\frac{3}{4n} - \frac{1}{l + \frac{1}{2}} \right)$	(373)
Feinstrukturkonstante Sommerfeldsche Feinstrukturkonstante	$\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c} \approx \frac{1}{137}$	(374)

32.1.2 Spin-Bahn-Kopplung (LS-Kopplung)

The Wechselwirkung zwischen dem Elektronenspin und dem elektrostatischen Feld des Kerns führt zu Energieverschiebungen.

Energieverschiebung	$\Delta E_{\rm LS} = \frac{\mu_0 Z e^2}{8\pi m_{\rm e}^2 r^3} \left< \vec{S} \cdot \vec{L} \right>$	(375)
??	$ \langle \vec{S} \cdot \vec{L} \rangle = \frac{1}{2} \langle [J^2 - L^2 - S^2] \rangle $ = $\frac{\hbar^2}{2} [j(j+1) - l(l+1) - s(s+1)] $	(376)

32.1.3 Feinstruktur

Die Feinstruktur vereint relativistische Korrekturen 32.1.1 und die Spin-Orbit-Kupplung 32.1.2.

Energieverschiebung	$\Delta E_{\rm FS} = \frac{Z^2 \alpha^2}{n} \left(\frac{1}{j + \frac{1}{2}} - \frac{3}{4n} \right) $ (377)	
---------------------	---	--

32.1.4 Lamb-Shift

The Wechselwirkung zwischen dem Elektron und vom Kern absorbierten/emittierten virtuellen Photonen führt zu einer (sehr kleinen) Energieverschiebung.

Potentielle Energy

$$\langle E_{\rm pot} \rangle = -\frac{Ze^2}{4\pi\epsilon_0} \left\langle \frac{1}{r+\delta r} \right\rangle$$
 (378)

 δr Schwankung von r

32.1.5 Hyperfeinstruktur

Wechselwirkung von Kernspin mit dem vom Elektron erzeugten Magnetfeld spaltet Energieniveaus

Kernspin	$\vec{F} = \vec{J} + \vec{I}$	(379)
	$\left ec{I} ight =\sqrt{i(i+1)}\hbar$	(380)
F	$I_z = m_i \hbar$	(381)
	$m_i = -i, -i + 1, \dots, i - 1, i$	(382)
	$\vec{F} = \vec{J} + \vec{I}$	(383)
Gesamtdrehimpuls	$\left \vec{F} \right = \sqrt{f(f+1)}h$	(384)
	$F_z = m_f h$	(385)
Auswahlregel	$f = j \pm i$	(386)
nuo wann ogor	$m_f = -f, -f + 1, \dots, f - 1, f$	(387)
	$g_i \mu_{\rm K} B_{\rm HFS}$	(200)
Hyperfeinstrukturkonstante	$A = \frac{1}{\sqrt{j(j+1)}}$	(388)
Hyperienisti ukturkonstante	$B_{\rm HFS}$ Hyperfeinfeld, $\mu_{\rm K}$ Kernmagneton, g_i Kern-g	-Faktor ??
Energieverschiebung	$\Delta H_{\rm HFS} = \frac{A}{2} [f(f+1) - j(j+1) - i(i+1)]$	(389)

TODO:landé factor

32.2 Effekte im Magnetfeld

TODO:all TODO:Hunds rules

32.3 Sonstiges

	Ein angeregtes Elektron fällt in ein unbesetztes, niedrigeres
Auger-Meitner-Effekt	Energieniveau zurück. Durch die frei werdende Energie ver-
Auger-Effekt	lässt ein Elektron aus einer höheren Schale das Atom (Auger-
	Elektron).

Teil VII Festkörperphysik

TODO:Bonds, hybridized orbitals TODO:Lattice vibrations, van hove singularities, debye frequency

Zustandsdichte (DOS)	$D(E) = \frac{1}{V} \sum_{i=1}^{N} \delta(E - E(\vec{k_i}))$ V Volumen, N Anzahl der Energieniveaus)) 5, ??? ???:ei	(390) nergy
Zustandsdichte für parabolische Dispersion Bei Freies Elektronengase	$D_1(E) = \frac{1}{2\sqrt{c_k(E - E_0)}}$	(1D)	(391)
	$D_2(E) = \frac{\pi}{2c_k}$	(2D)	(392)
	$D_3(E) = \pi \sqrt{\frac{E - E_0}{c_k^3}}$	(3D)	(393)

33 Gitterschwingungen

TODO:Plots

33.1 Debye-Modell

Atome verhalten sich wie gekoppelte quantenmechanische harmonische Oszillatoren. Die endliche Ausdehnung des Körpers führt zu periodischen Randbedingungen.

34 Kristalle

34.1 Bravais-Gitter

Cittorayatom Dupletar		5 Bravai	is Gitter
Gittersystem	1 unktgruppe	primitive (p)	centered (c)
monoclinic (m)	C_2	b e a	
orthorhombic (o)	D_2	b a	b a
tetragonal (t)	D_4		
hexagonal (h)	D ₆		

		Punktgruppe		14 Brava	is Gitter	
Kristall-syste	enGittersystem	······································	primitive (P)	base centered (S)	body centered (I)	face centered (F)
triclin	ic (a)	$\mathrm{C_{i}}$				
monocli	nic (m)	C_{2h}				
orthorho	mbic (o)	D_{2h}				
tetrago	onal (t)	D_{4h}				
hexagonal (h	rhombohe- dral)	D_{3d}	a a a a a a a a a a			
	hexagonal	$\mathrm{D}_{6\mathrm{h}}$	$\gamma = 120^{\circ}$			
cubi	c (c)	$O_{\rm h}$				

Gitterkonstante Parameter (Länge oder	Course a la co	
Winkel) der die Einheitszelle	Symbol: a	Unit:
beschreibt		
	Symbol: \vec{R}	Unit:
Gittervektor	$\vec{R} = n_1 \vec{a_1} + n_2 \vec{a_2} + n_3 \vec{a_3}$	(398)
	$n_i \in \mathbb{Z}$	
TODO:primitive unit cell: con	ntains one lattice point	
	(<i>hkl</i>)plane	(399)
		(400)

	(<i>initi</i>)pratie	(000)
	[hkl]direction	(400)
Millersche Indizes	$\{hkl\}$ millerFamily	(401)
	Miller family: planes that are equivalent due to crysta metry	al sym-

34.2 Reziprokes Gitter

Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren \vec{k} , die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.

$$\vec{b_1} = \frac{2\pi}{V_c} \vec{a_2} \times \vec{a_3}$$
(402)
$$\vec{b_2} = \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1}$$
(403)

Reziproke Gittervektoren

$$\vec{b_3} = \frac{2\pi}{V_c} \vec{a_1} \times \vec{a_2}$$
(404)

 a_i Bravais-Gitter Vektoren, V_c Volumen der primitiven Gitterzelle

	Symbol: \vec{G}	Unit:
Reziproker Gittervektor	$\vec{G}_{hkl} = h\vec{b_1} + k\vec{b_2} + l\vec{b_3}$	(405)
	$n_i \in \mathbb{Z}$	

34.3 Streuprozesse

Matthiessensche Regel	$\frac{1}{\mu} = \sum_{i=\text{Streuprozesse}} \frac{1}{\mu_i}$	(406)
Näherung, nur gültig wenn die einzelnen Streuprozesse von einander unabhängig sind	$\frac{1}{\tau} = \sum_{i=\text{Streuprozesse}} \frac{1}{\tau_i}$	(407)
	μ Elektrische Mobilität / Beweglichkeit, τ Streuzeit	

34.4 Gitter

Einfach kubisch (SC) Reziprok: Einfach kubisch	$\vec{a}_1 = a \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \ \vec{a}_2 = a \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \ \vec{a}_3 = a \begin{pmatrix} 0\\0\\1 \end{pmatrix} $ (408) <i>a</i> Gitterkonstante
Kubisch raumzentriert (BCC) Reziprok: cm:bravais:fcc	$\vec{a}_1 = \frac{a}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \vec{a}_2 = \frac{a}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \vec{a}_3 = \frac{a}{2} \begin{pmatrix} 1\\1\\-1 \end{pmatrix} $ (409) <i>a</i> Gitterkonstante
Kubisch flächenzentriert (FCC) Reziprok: cm:bravais:bcc	$\vec{a}_1 = \frac{a}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \vec{a}_2 = \frac{a}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \vec{a}_3 = \frac{a}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix} $ (410) <i>a</i> Gitterkonstante
Diamantstruktur	cm:bravais:fcc mit Basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ und $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$
Zinkblende-Struktur	Wie cm:bravais:diamond aber mit unterschiedlichen Spezies auf den Basen
Wurtzite-Struktur hP4	Image: stal:lat:wurtzite:desc

35 Freies Elektronengase

Annahmen: Elektronen bewegen sich frei und unabhänig voneinander.

Driftgeschwindgkeit		
Geschwindigkeitskomponente	$ec{v}_{ m D} = ec{v} - ec{v}_{ m th}$	(411)
durch eine externe Kraft (z.B.		
ein elektrisches Feld)	$v_{\rm th}$ thermische Geschwindigkeit	

Mittlere freie Weglänge	$\ell = \langle v \rangle \tau$	(412)
Elektrische Mobilität / Beweglichkeit	Symbol: μ	Unit: $1 \mathrm{cm}^2/\mathrm{Vs}$
Leichtigkeit mit der sich durch ein Elektrisches Feld	$\mu = \frac{q\tau}{m}$	(413)
beeinflusstes Teilchen im Material bewegt	q Ladung, m Masse, τ Streuzeit	

35.1 2D Elektronengas

Niederdimensionale Elektronengase erhält man, wenn ein 3D Gas durch unendlich hohe Potentialwände auf einem schmalen Bereich mit Breite L eingeschränkt wird.

Confinement Energie Erhöht die Grundzustandsenergie	$\Delta E = \frac{\hbar^2 \pi^2}{2m_{\rm e}L^2}$	(414)
Energie	$E_n = -\frac{\hbar^2 k_{\parallel}^2}{2m_{\rm e}} + \frac{\hbar^2 \pi^2}{2m_{\rm e}L^2} n^2$	(415)

x-y: ebene Welle

z

(416)

35.2 1D Electronengas / Quantendraht

Energie $E_n = \frac{\hbar^2 k_x^2}{2m_e} + \frac{\hbar^2 \pi^2}{2m_e L_z^2} n_1^2 + \frac{\hbar^2 \pi^2}{2m_e L_y^2} n_2^2$

TODO:condunctance

35.3 0D Elektronengase / Quantenpunkt

TODO:TODO

36 Ladungstransport

36.1 Drude-Modell

Ein klassisches Model zur Beschreibung der Transporteigenschaften von Elektronen in (v.a.) Metallen: Der Festkörper wird als Ionenkristall mit frei beweglichen Elektronen (Elektronengas). Die Elektronen werden durch ein Elektrisches Feld E beschleunigt und durch Stöße mit den Gitterionen gebremst. Das Modell vernachlässigt die Fermi-Dirac Verteilung der Leitungselektronen.

Bewegungsgleichung	$m_{\rm e} \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \frac{m_{\rm e}}{\tau} \vec{v}_{\rm D} = -e\vec{\mathcal{E}} \tag{4}$	417)
	v Elektron engeschwindigkeit, $\vec{v}_{\rm D}$ Driftgeschwindigkeit Stoßzeit	, τ

Streuzeit Momentum relaxation time	Symbol: τ	Unit: 1 s
	τ the average time between scattering even characteristic momentum change cause by cess.	nts weighted by the y the scattering pro-
Stromdichte Ohmsches Gesetz	Symbol: \vec{j}	Unit: $1 \mathrm{A/m^2}$
	\vec{j} = $-ne\vec{v}_{\mathrm{D}}$ = $ne\mu\vec{\mathcal{E}}$	(418)
	n Ladungsträgerdichte	
Drude-Leitfähigkeit	$\sigma = \frac{\vec{j}}{\vec{\mathcal{E}}} = \frac{e^2 \tau n}{m_{\rm e}} = n e \mu$	(419)

36.2 Sommerfeld-Modell

Annahme eines freien Fermionengases, welches dem Pauli-Prinzip unterliegt. Nur Elektronen in einem Energiebereich von $k_{\rm B}T$ um die Fermi Energe $E_{\rm F}$ nehmen an Streuprozessen teil.

Elektrische Stromdichte	$\vec{j} = -en \langle v \rangle = -en \frac{\hbar}{m_{\rm e}} \langle \vec{k} \rangle = -e \frac{1}{V} \sum_{\vec{k},\sigma} \frac{\hbar \vec{k}}{m_{\rm e}} $ (420))
-------------------------	---	---

TODO: The formula for the conductivity is the same as in the drude model?

36.3 Boltzmann-Transport

 ${\it Semiklassische Beschreibung, benutzt eine Wahrscheinlichkeitsverteilung (stat: todo: fermi dirac).}$

Boltzmann- Transportgleichung für Ladungstransport	$\frac{\partial f(\vec{r},\vec{k},t)}{\partial t} = -\vec{v} \cdot \vec{\nabla}_{\vec{r}} f - \frac{e}{\hbar} (\vec{\mathcal{E}} + \vec{v} \times \vec{B}) \cdot \vec{\nabla}_{\vec{k}} f + \left(\frac{\partial f(\vec{r},\vec{k},t)}{\partial t}\right)_{\text{scatte}} $ (421)	r
	f ??	1

36.4 misc

Tsu-Esaki Tunnelstrom	$I_{\rm T} = \frac{2e}{h} \int_{U_{\rm L}}^{\infty} (f(E,\mu_{\rm L}) - f(E,\mu_{\rm R})) T(E) dE \qquad (422)$
Beschreibt den Strom $I_{L\leftrightarrow R}$	$\mu_i ???: \text{chemical pot links/rechts}, U_i \text{ Spannung links/rechts}.$
durch eine Barriere	Elektronen besetzen Bereich zwischen U_i und μ_i
Kontinuitätsgleichung der Ladung Elektrische Ladung kann sich nur durch die Stärke des Stromes ändern	$\frac{\partial \rho}{\partial t} = -\nabla \vec{j} $ (423) ρ Ladungsdichte, \vec{j} Stromdichte

Supraleitung 37

Materialien, bei denen der elektrische Widerstand beim unterschreiten einer kritischen Temperatur $T_{\rm c}$ auf 0 springt. Sie verhalten sich dann wie ideale Leiter und ideale Diamagnete, bis zu einem kritischen Feld $B_{\rm c}$.

Ideale Leiter	Im Gegensatz zu einem Supraleiter werden ideale Leiter nur dann diamagnetisch, wenn das externe magnetische Feld nach dem Abkühlen unter die kritische Temperatur einge- schaltet wird. (ed:fields:mag:induction:lenz)
Meißner-Ochsenfeld Effekt Idealer Diamagnetismus	Externes Magnetfeld fällt im Supraleiter exponentiell unter- halb einer kritischen Temperatur und unterhalb einer kriti- schen Feldstärke ab.

37.1 London-Gleichungen

Quantitative Beschreibung des Meißner-Ochsenfeld Effekts.

Erste London-Gleichun-	$\frac{\partial \vec{j}_{\rm s}}{\partial t} = \frac{n_{\rm s} q_{\rm s}^2}{m_{\rm s}} \vec{E} - \mathcal{O}\left(\vec{j}_{\rm s}^2\right) \tag{424}$
	\vec{j} Stromdichte, $n_{\rm s},m_{\rm s},q_{\rm s}$ Dichte, Masse und Ladung der supraleitenden Teilchen

Zweite London-Gleichung Beschreibt den Meißner-Ochsenfeld Effekt	$\vec{\nabla} \times \vec{j_{\rm s}} = -\frac{n_{\rm s} q_{\rm s}^2}{m_{\rm s}} \vec{B} \tag{425}$	
	\vec{j} Stromdichte, $n_{\rm s},m_{\rm s},q_{\rm s}$ Dichte, Masse und Ladung der supraleitenden Teilchen	
		_

$$\lambda_{\rm L} = \sqrt{\frac{m_{\rm s}}{\mu_0 n_{\rm s} q_{\rm s}^2}} \tag{426}$$

٦

37.2Ginzburg-Landau Theorie (GLAG)

TODO:TODO

Ginzburg-Landau	$\xi_{\rm GL} = \frac{\hbar}{\sqrt{2m \alpha }}$	(427)
Kohärenzlänge	$\xi_{\rm GL}(T) = \xi_{\rm GL}(0) \frac{1}{\sqrt{1 - \frac{T}{T_c}}}$	(428)

$V^{1} - \overline{T_{c}}$

$$\alpha \Psi + \beta \left|\Psi\right|^2 \Psi + \frac{1}{2m} (-i\hbar \vec{\nabla} + 2e\vec{A})^2 \Psi = 0 \qquad (431)$$

 $\xi_{\rm GL}$ Ginzburg-Landau Kohärenzlänge, $\lambda_{\rm GL}$ Ginzburg-Landau Eindringtiefe

Zweite Ginzburg-Landau Gleichung

$$\vec{j}_{\rm s} = \frac{ie\hbar}{m} (\Psi^* \vec{\nabla} \Psi - \Psi \vec{\nabla} \Psi^*) - \frac{4e^2}{m} |\Psi|^2 \vec{A}$$
(432)

TODO:proximity effect

37.3 Mikroskopische Theorie

Isotopeneffekt Supraleitung hängt von der Atommasse und daher von	$T_{\rm c} \propto \frac{1}{\sqrt{M}}$ ((433)
den Gittereigenschaften ab	$\omega_{\rm ph} \propto \frac{1}{\sqrt{M}} \Rightarrow T_{\rm c} \propto \omega_{\rm ph} \tag{6}$	434)
\Rightarrow Mikroskopischer Ursprung	$T_{\rm c}$ kritische Temperatur, M Isotopen-Masse, $\omega_{\rm ph}$	
Cooper-Paars	Conduction electrons reduce their energy through an attrac- tive interaction: One electron passing by atoms attracts the these, which creats a positive charge region behind the elec- tron, which in turn attracts another electron.	

37.3.1 BCS-Theorie

Elektronenpaar bilden bosonische Quasipartikel (Cooper Paare) welche in den Grundzustand kondensieren können. Die Wellenfunktion übersoannt den gesamten Festkörper, was einen widerstandslosen Ladungstransport garantiert. Die Austauschbosononen zwischen den Elektronen sind Bosonen.

BCS Hamiltonian for N interacting electrons	$\hat{H}_{BCS} = \sum_{\sigma} \sum_{\vec{k}} \epsilon_{\vec{k}} \hat{c}^{\dagger}_{\vec{k}\sigma} \hat{c}_{\vec{k}\sigma} + \sum_{\vec{k},\vec{k}'} V_{\vec{k},\vec{k}'} \hat{c}^{\dagger}_{\vec{k}\uparrow} \hat{c}_{-\vec{k}\downarrow} \hat{c}_{-\vec{k}'\downarrow} \hat{c}_{\vec{k}',\uparrow} (435)$ $c_{\vec{k}\sigma} \text{ creation/annihilation operators create/destroy at } \vec{k} \text{ with spin } \sigma$ First term: non-interacting free electron gas Second term: interaction energy
Bogoliubov-Valatin transformation Diagonalization of the BCS Hamiltonian to derive excitation energies	$\hat{H}_{BCS} - N\mu = \sum_{\vec{k}} \left[\xi_{\vec{k}} - E_{\vec{k}} + \Delta_{\vec{k}} g_{\vec{k}}^* \right] + \sum_{\vec{k}} \left[E_{\vec{k}} a_{\vec{k}}^{\dagger} a_{\vec{k}} + E_{\vec{k}} \beta_{-\vec{k}}^{\dagger} \beta_{-\vec{k}} \right] $ (436)
BCS-gap equation	$\Delta_{\vec{k}}^{*} = -\sum_{\vec{k}}^{+} \prime V_{\vec{k},\vec{k}'} \frac{\Delta_{\vec{k}'}}{2E_{\vec{k}}} \tanh\left(\frac{E_{\vec{k}'}}{2k_{\rm B}T}\right) $ (437)

38 Halbleiter

Intrinsisch/Extrinsisch	Intrinsisch Anregung u Extrinsisch n, p Ladung	: Pur, Elektronen ind $n_i^2 = n_0 p_0$: gedoped gsträgerdichte im	dichte gegeben dur Equilibrium	ch thermische
Ladungsträgerdichte im Equilibrium Gilt wenn $\frac{E_{\rm c}-E_{\rm F}}{k_{\rm B}T} > 3.6$ und $\frac{E_{\rm F}-E_{\rm v}}{k_{\rm B}T} > 3.6$		$n_0 pprox N_{ m c}(T)$ $p_0 pprox N_{ m v}(T)$	$\exp\left(-\frac{E_{\rm c} - E_{\rm F}}{k_{\rm B}T}\right)$ $\exp\left(-\frac{E_{\rm F} - E_{\rm v}}{k_{\rm B}T}\right)$	(438) (439)
Intrinsische Ladungsträgerdichte	$n_{\rm i} \approx \sqrt{n_0 p_0} = \sqrt{N_{\rm c}(T) N_{\rm v}(T)} \exp\left(-\frac{E_{\rm gap}}{2k_{\rm B}T}\right) $ (440)			
Massenwirkungsgesetz Ladungsträgerdichten im Equilibrium, unabhängig der Dotierung		n_j	$p = n_i^2$	(441)
Bandlücken wichtiger Halbleiter	Diamant Si Ge GaP GaAs InSb InP CdS	$\begin{array}{c} E_{\rm gap}(0{\rm K})[{\rm eV}]\\ 5,48\\ 1,17\\ 0,75\\ 2,32\\ 1,52\\ 0,24\\ 1,42\\ 2.58\end{array}$	$\frac{E_{\rm gap}(300{\rm K})[{\rm eV}]}{5,47}$ 1,12 0,66 2,26 1,43 0,18 1,35 2.42	indirect indirect indirect direct direct direct direct direct
Minoritäts- / Majoritätsladungstraäger	Majoritätsladungstraäger: höhere Teilchenzahl (e^- in n-Typ, h^+ in p-Typ) Minoritätsladungsträger: niedrigere Teilchenzahl (h^+ in n-Typ, e^- in p-Typ)			

TODO:effective mass approx

38.1 Bauelemente und Kontakte

Metall-Halbleiter Kontakt

TODO: Work function electron affinity sind doch Energien und keine Potentiale, warum wird also immer q davor geschrieben?

TODO:work function verhältnisse, wann ist es ohmisch wann depleted? Ohmscher Kontakt

38.2 Exzitons

Exziton	Quasiteilchen, Anregung im Festkörper als gebundenes Elektron-Loch-Paar Freie (Wannier) Exzitons: delokalisiert, über mehrere Ein- heitszellen Gebundene (Frenkel) Exzitons: lokalisiert in einer Einheits- zelle
Exciton Rydberg energy	$E(n) = -\left(\frac{\mu}{m_0\epsilon_r^2}\right)R_{\rm H}\frac{1}{n^2} $ (443)
für freie Exzitons	R _H Rydberg-Energy
Exziton-Bohr Radius	$r_{n} = \left(\frac{m_{e}\epsilon_{r}a_{B}}{mu}\right)n^{2} $ (444)
für freie Exzitons	??? ???:relative permittivity, a_{0} Bohrscher Radius, m_{e} Elektronenmasse, mu reduced mass

39 Bändermodell

39.1 Hybridorbitale

 $Hybridorbitale\ werden\ durch\ Linearkombinationen\ von\ anderen\ atomorbitalen\ gebildet.$

40 Diffusion

Diffusionskoeffizient	Symbol: D	Unit: $1 \text{ m}^2/\text{s}$
Teilchenstromdichte Anzahl der Teilchen durch eine Fläche	Symbol: J	Unit: 11/s ²
Einsteinrelation Klassisch	D Diffusionskoeffizient, μ keit, T Temperatur, q La	$D = \frac{\mu k_{\rm B} T}{q} $ (448) <i>i</i> Elektrische Mobilität / Beweglich- dung
Konzentration Eine Größe pro Volumen	Symbol: c	Unit: 1 x/m^3

Erstes Ficksches Gesetz Teilchenbewegung ist proportional zum Konzentrationsgradienten	$J = -D\frac{c}{x} $ (449) J Teilchenstromdichte, D Diffusionskoeffizient, c Konzentra- tion
Zweites Ficksches Gesetz	$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} $ (450) J Teilchenstromdichte, D Diffusionskoeffizient, c Konzentra- tion

41 misc

Austrittsarbeit eng. "Work function"; minimale Energie um ein Elektron aus dem Festkörper zu lösen	Symbol: W $W = E_{\rm vac} - E_{\rm F}$	Unit: 1 eV (451)
Elektronenaffinität Energie, die benötigt wird um ein Elektron aus einem einfach-negativ geladenen Anion zu entfernen. Entspricht der Energiedifferenz zwischen Vakuum-Niveau und dem Leitungsband	$\boxed{\frac{\text{Symbol: } \chi}{\chi = (E_{\text{vac}} - E_{\text{c}})}}$	Unit: 1 eV (452)
Laser Light amplification by stimulated emission of radiation	Gain medium is energized pumping energy or light), light of certain wavelength is an medium	qy (electric current aplified in the gain

42 Messtechniken

42.1 Raman Spektroskopie

Raman-Spektroskopie

Anwendung	Vibrationsmoden, Kri- stallstruktur, Dotierung, Bandlücke, Schichtdicke im cm:misc:vdw material
how	Monochromatisches Licht (Laser) bestrahlt Probe, inelastische Streuung durch Rotations-, Schwingungs-, Phonon und Spin-Flip- Prozesse, plotte Spektrum als Verschiebung gegen das Laser Licht (in cm^{-1})

Photolumeszenz-Spektroskopie

Anwendung	Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im cm:misc:vdw material
how	Monochromatisches Licht (La- ser) bestrahlt Probe, Elektro- nen werden angeregt und re- laxieren in das Leitungsband- Minimum und schließlich über die Bandlücke unter Photone- mission

42.2 **ARPES**

what? in? how? plot

42.3 Rastersondenmikroskopie (SPM)

Bilder der Oberfläche einer Probe werden erstellt, indem die Probe mit einer Sonde abgetastet wird. Atomare Rasterkraftmikroskopie (AMF)

Rastertunnelmikroskop (STM)

Anwendung	Oberflächenzeug
how	Mit TUnnel

Herstellungsmethoden **43**

Chemische Gasphasenabscheidung (CVD)

43.1 Epitaxie

Eine Art des Kristallwachstums, bei der mindestens eine kristallographische Ordnung der wachsenden Schicht der des Substrates entspricht.

Molekularstrahlepitaxie (MBE)

44 Topologische Materialien

 $\vec{R} = \vec{k}$). Ein Chern-Isolator ist ein 2D Isolator mit $C_n \neq 0$

44.1 Berry-Phase / Geometrische Phase

Beim adiabatischem Durchlauf eines geschlossenen Weges durch den Parameterraum R(t) kann die Wellenfunktion eines Systems eine zusätzliche Phase γ erhalten.

Wenn $\vec{R}(t)$ adiabatisch (langsam) variiert und das System anfangs im Eigenzustand $|n\rangle$ ist, bleibt das System während dem Prozess in einem Eigenzustand (Adiabatisches Theorem der Quantenmechanik).

Schrödinger Gleichung	$H(\vec{R}(t)) n(\vec{R}(t))\rangle = \epsilon(\vec{R}(t)) n(\vec{R}(t))\rangle$	(453)
Wellenfunktion Nach vollem adiabtischem Umlauf in \vec{R}	$ \psi_n(t)\rangle = \underbrace{\mathrm{e}^{i\gamma_n(t)}}_{\text{Berry Phase Dynamische Phase}} \underbrace{\mathrm{e}^{\frac{-i}{\hbar}\int^r \epsilon_n(\vec{R}(t'))\mathrm{d}t}}_{p(\vec{R}(t))\rangle$	(454)
Berry connection	$A_n(\vec{R}) = i \langle \psi \nabla_R \psi \rangle$	(455)
Berry-Krümmung Eichinvariant	$\vec{\Omega}_n = \vec{\nabla}_R \times A_n(\vec{R})$	(456)
Berry-Phase Eichinvariant bis auf 2π	$\gamma_n = \oint_C \mathrm{d}\vec{R} \cdot A_n(\vec{R}) = \int_S \mathrm{d}\vec{S} \cdot \vec{\Omega}_n(\vec{R})$	(457)
Chernuzahl Z.B. Anzahl der Berry-Krümmungs-Monopole in der Brilouinzone (dann ist	Der Berry-Fluß durch eine geschlossene 2D Fl[cher tisiert durch die Chernzahl Bei erhaltener Zeitumke symmetrie ist die Chernzahl 0. $C_n = \frac{1}{2} \oint d\vec{S} \cdot \vec{\Omega}_n(\vec{R})$	is quan- ehrungs- (458)

 $C_n = \frac{1}{2\pi} \oint \mathrm{d}S \cdot \Omega_n(R)$

 \vec{S} geschlossene Fläche im $\vec{R}\text{-}\mathrm{Raum}$

Hall-Leitfähigkeit eines 2D Band-Isolators $\vec{\sigma}_{xy} = \sum_{n} \frac{e^2}{h} \int_{\text{occupied}} d^2k \frac{\Omega_{xy}^n}{2\pi} = \sum_{n} C_n \frac{e^2}{h} \qquad (459)$	Hall-Leitfähigkeit eines 2D Band-Isolators	$\vec{\sigma}_{xy} = \sum_{n} \frac{e^2}{h} \int_{\text{occupied}} d^2k \frac{\Omega_{xy}^n}{2\pi} = \sum_{n} C_n \frac{e^2}{h} \tag{45}$
--	---	--

Topologischer Isolator

Ein 2D Isolator mit einer Chernzahl ungleich 0 wird **topologischer Isolator** genannt.

45 Materialphysik

Toruosität Grad der Gewundenheit eines Transportweges in einem porösen Material. Mehrere Definitionen existieren	Symbol: $ au$	Unit:
	$\tau = \left(\frac{l}{L}\right)^2$	(460)
	$\tau = \frac{1}{L}$ <i>l</i> Weglänge, <i>L</i> Distanz der Endpunkte	(401)
Spannung (Engl. ßtress") Kraft pro Fläche	Symbol: σ U	nit: $1 \mathrm{N/m^2}$
	$[\sigma]_{ij} = \frac{F_i}{A_j}$	(462)
	\vec{F} Kraft, A Fläche	
	Symbol: ϵ	Unit:
Dehnung (Engl. ßtrain")	$\epsilon = \frac{\Delta x}{x_0}$	(463)
	Δx Auslenkung aus der Referenzposition x_0	

Teil VIII Teilchenphysik

	Symbol: $m_{\rm e}$
Elektronenmasse	Experimenteller Wert
	$9.1093837139(28) \cdot 10^{-31} \mathrm{kg}$

 Spin

Symbol: σ

Unit:

Standartmodell

	I standard matte	generation II er unstable	III	force o	arriers
Masse – Spin – Ladung – colors –	$\stackrel{\rightarrow}{} 2.3 \text{ MeV} \\\stackrel{\rightarrow}{} 1/2 \\\stackrel{\rightarrow}{} 2/3 \qquad u \\\stackrel{\rightarrow}{} up$	${1.275 { m GeV} \ 1/2 \ 2/3} C$ charm	$173.2 \text{ GeV} \\ 1/2 \\ 2/3 \\ top \\ t$	${egin{array}{ccc} 0 & & & \ 1 & & & \ 0 & & & g \ gluon & & & \end{array}$	${}^{125.1 \text{ GeV}}_{0}_{0}_{H}$ Higgs
Quarks	$egin{array}{c} 4.8 & \mathrm{MeV} \ 1/2 \ -1/3 \ down \end{array}$	$\begin{array}{ccc} 95 & \mathrm{MeV} \\ 1/2 \\ -1/3 & S \\ \mathrm{strange} \end{array}$	$\begin{array}{ccc} {}^{4.18 {\rm GeV}}_{1/2} & & \\ {}^{-1/3} & b & \\ {\rm bottom} & & \end{array}$	$egin{array}{ccc} 0 & & & \ 1 & & \ 0 & & \gamma & \ m photon & & \end{array}$	
Leptoner	$ \begin{array}{c} 511 \text{ keV} \\ 1/2 \\ -1 \\ e \\ electron \end{array} $	$ \overset{105.7 \text{ MeV}}{\overset{1/2}{^{-1}}} \mu $ muon	$ \begin{array}{c} 1.777 \ {\rm GeV} \\ 1/2 \\ -1 \\ tau \end{array} $	${}^{91.2 \text{ GeV}}_{1}_{0} Z$	
$\begin{array}{c} \begin{array}{c} < 2.2 \text{ eV} \\ 1/2 \\ 0 \\ e \text{ neutrino} \end{array} \end{array} $	$ \begin{array}{c} <170 \text{ keV} \\ 1/2 \\ 0 \\ \end{array} \\ \mu \text{ neutrino} \end{array} $	$^{<15.5~{\rm MeV}}_{1/2}$ 0 $$\mathcal{V}_{\tau}$$ τ neutrino	$\mathbb{C}^{80.4 \text{ GeV}}_{1 \pm 1} W_{\pm}$		
		Fermionen		Bose	, onen

$\begin{array}{l} {\rm Teil \ IX} \\ {\rm Quantencomputing} \end{array}$

46 Qubits

	$ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$	(464)
Bloch-Sphäre	$= \cos\frac{\theta}{2} e^{i\phi_{\alpha}} \left 0\right\rangle + \sin\frac{\theta}{2} e^{i\phi_{\beta}} \left 1\right\rangle$	(465)
	$= e^{i\phi_{\alpha}}\cos\frac{\theta}{2}\left 0\right\rangle + \sin\frac{\theta}{2}e^{i\phi}\left 1\right\rangle$	(466)

47 Gates

Gates	Bitflip: $\hat{X} = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	(467)
	Bit-Phase flip: $\hat{Y} = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	(468)
	Phaseflip: $\hat{Z} = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	(469)
	Hadamard: $\hat{H} = \frac{1}{\sqrt{2}}(\hat{X} - \hat{Z}) = \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$	(470)

48 Supraleitende qubits

48.1 Bauelemente

48.1.1 Josephson-Kontakt

Wenn zwei Supraleiter durch einen dünnen Isolator getrennt sind, können Cooper-Paare durch den Isolator tunneln. Der Josephson-Kontakt ist ein nicht-linearer Induktor.

Josephson-Hamiltonian	$\hat{H}_{\mathrm{J}} = -\frac{E_{\mathrm{J}}}{2} \sum_{n} [n\rangle \langle n+1 + n+1\rangle \langle n] \qquad (471)$
1. Josephson Gleichung Dissipationsloser Suprastrom	$\hat{I} \left \delta \right\rangle = I_{\rm C} \sin \delta \left \delta \right\rangle \tag{472}$
durch die Kreuzung ohne angelegte Spannung	$I_{\rm C}=\frac{2e}{\hbar}E_{\rm J}$ kritischer Strom, δ Phasendifferenz zwischen den Supraleitern
2. Josephson Gleichung Supraleitende Phasendifferenz is proportional zur angelegten Spannung	$\frac{\mathrm{d}\hat{\delta}}{\mathrm{d}t} = \frac{1}{i\hbar} [\hat{H}, \hat{\delta}] = -\frac{2eU}{i\hbar} [\hat{n}, \hat{\delta}] = \frac{1}{\varphi_0} U \qquad (473)$ $\varphi_0 = \frac{\hbar}{2e} \text{ reduziertes Flussquantum}$
48.1.2 SQUID

SQUID

Superconducting quantum interference device, besteht aus parralelen nd kann zur Messung extrem schwacher Magnetfelder genutzt werden

$\hat{H} = -E_{\rm J1}\cos\hat{\phi}_1 - E_{\rm J2}\cos\hat{\phi}_2$	(474)
$\hat{\phi}$ Phasendifferenz an einer Junction	

48.2 TODO

Hamiltonian

$ \begin{array}{c c} & & \\ \hline \\ \hline$	TODO:Include schaltplan	
$V_{\rm g}$		
Ladeenergie?	$E_{\rm C} = \frac{(2e)^2}{C}$	(475)
Josephson-Energie?	$E_{\rm J} = \frac{I_0 \phi_0}{2\pi}$	(476)
TODO:Was ist I0		
Induktive Energie	$E_{\rm L} = \frac{\varphi_0^2}{L}$	(477)
Gate Ladung auch Offset charge	$n_{\rm g} = \frac{C_g V_{\rm g}}{2e}$	(478)
Anharmonizität	$\alpha \coloneqq \omega_{1 \leftrightarrow 2} - \omega_{0 \leftrightarrow 1}$	(479)

			$E_L/(E_J$	$-E_L$)		vity
		0	≪ 1	~ 1	≫1	large 1 ensiti
	≪1	cooper-pair box				S S
$\frac{E_J}{E_C}$	~ 1	quantronium	fluxonium			Cr. Selleill
	$\gg 1$	transmon			flux qubit	HOISE SCILL
	»» 1			phase qubit		ensite training

Cooper Paar Box (QPB) Qubit 48.3

- = voltage bias junction = charge qubit?

Cooper Pair Box / Charge Qubit

- Große Anharmonizität
- Sensibel für charge noise

Hamiltonian	

$$\hat{H} = 4E_C(\hat{n} - n_g)^2 - E_J \cos\hat{\phi}$$
(480)
= $\sum_n \left[4E_C(n - n_g)^2 |n\rangle \langle n| - \frac{E_J}{2} |n\rangle \langle n + 1| + |n + 1\rangle \langle n| \right]$ (481)

Transmon Qubit 48.4

Transmon Qubit Josephson-Kontakt mit einem ${\rm parallelen} \ \mathbf{kapzitiven}$ Element.

- Charge noise resilient
- Geringe Anharmonizität α

Hamiltonian $\hat{H} = 4E_C \hat{n}^2 - E_J \cos \hat{\phi}$	(482)
--	-------

48.4.1 Tunable Transmon Qubit

2

48.5 Phase Qubit

0

This is only a test

48.6 Flux Qubit

TODO:TODO

48.7 Fluxonium Qubit

Hamiltonian

$$\hat{H} = 4E_{\rm C}\hat{n}^2 - E_{\rm J}\cos\hat{\delta} + E_{\rm L}(\hat{\delta} - \delta_{\rm s})^2 \qquad (486)$$

$$E_{\rm C} = \frac{(2e)^2}{2C}, E_{\rm L} = \frac{\varphi_0^2}{2L}, \delta_{\rm s} = \frac{\varphi_{\rm s}}{\varphi_0}$$

Abbildung 4: img/

49 Zwei-Niveau System

TODO:sollte das nicht 10 sein?

	$\Omega_{ ext{TODO:TODO}}$	(488)
Rabi-Oszillationen	ω_{21} Resonanzfrequenz des Energieübergangs, S Frequenz	2 Rabi-

49.1 Ramsey Interferometrie

q

50 Noise und Dekohärenz

Longitudinale Relaxationsrate		
$ \begin{split} \Gamma_{1\downarrow} &: 1\rangle \to 0\rangle \\ \Gamma_{1\uparrow} &: 0\rangle \to 1\rangle \end{split} $	$\Gamma_1 = \frac{1}{T_1} = \Gamma_{1\uparrow} + \Gamma_{1\downarrow}$	(489)
$\Gamma_{1\uparrow}$ ist bei niedrigen Temperature	en unterdrückt wegen detailed balance	
Reine Phasenverschiebung	Γ_{ϕ}	(490)
Transversale Relaxationsrate	$\Gamma_2 = \frac{1}{T_2} = \frac{\Gamma_1}{2} + \Gamma_\phi$	(491)
Bloch-Redfield Dichtematrix 2-Niveau System schwach an Noise Quellen mit kurzer Korrelationszeit gekoppelt	$\rho_{\rm BR} = \begin{pmatrix} 1 + (\alpha ^2 - 1) e^{-\Gamma_1 t} & \alpha \beta^* e^{-\Gamma_2 t} \\ \alpha^* \beta e^{-\Gamma_2 t} & \beta ^2 e^{-\Gamma_1 t} \end{pmatrix}$	(492)

Teil X Computergestützte Physik

51 Quanten-Vielteilchenphysik

51.1 Quanten-Vielteilchenmodelle

Homogeneous electron gas	Deth meriting (merland) and meriting (electron) alternation
(HEG) Also "Jellium	distributed uniformly.

51.2 Methoden

51.2.1 Quantum Monte-Carlo

TODO:TODO

51.3 Importance sampling / Stichprobenentnahme nach Wichtigkeit

TODO:Monte Carlo

51.4 Matrix Produktzustände

52 Electronic structure theory

Kinetische Energie von Spezies i	$\hat{T}_{i} = -\sum_{n=1}^{N_{i}} \frac{\hbar^{2}}{2m_{i}} \vec{\nabla}_{n}^{2} $ (493) i = Nukleonen/Elektronen, N Teilchenzahl, m Masse
Elektrostatisches Potential zwischen Spezies i und j	$\hat{V}_{i \leftrightarrow j} = -\sum_{k,l} \frac{Z_i Z_j e^2}{ \vec{r}_k - \vec{r}_l } $ (494) $i, j = \text{nucleons/electrons}, r \text{ particle position}, Z_i \text{ charge of species } i, e \text{ Elementarladung}$
Electronic structure Hamiltonian	$\hat{H} = \hat{T}_{e} + \hat{T}_{n} + V_{e\leftrightarrow e} + V_{n\leftrightarrow e} + V_{n\leftrightarrow n} $ (495) $\hat{T} \text{ Kinetische Energie, } \hat{V} \text{ Elektrostatisches Potential, e electrons, n nucleons}$
Molekularfeldnäherung Ersetzt 2-Teilchen Operator durch 1-Teilchen Operator	$\frac{1}{2} \sum_{i \neq j} \frac{e^2}{ \vec{r}_i - \vec{r}_j } \approx \sum_i V_{\text{eff}}(\vec{r}_i) $ (496) Beispiel für Coulomb Wechselwirkung zwischen Elektronen

52.1 Modell der stark gebundenen Elektronen / Tight-binding

Annahman	• Atomic wave functions are localized \Rightarrow Small overlap, i	in-
Amamnen	teraction cutoff	

$$\hat{H} = \sum_{i} \epsilon_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i} - \sum_{i,j} t_{i,j} \left(\hat{a}_{i}^{\dagger} \hat{a}_{j} + \hat{a}_{j}^{\dagger} \hat{a}_{i} \right)$$
(497)

Tight-binding Hamiltonian in zweiter Quantisierung

 \hat{a}_i^{\dagger} , \hat{a}_i Erzeugungs / Vernichtungs-Operatoren erzeugen/vernichten ein Elektron auf Platz *i*, ϵ_i on-site Energie, $t_{i,j}$ hopping Amplitude, meist werden ϵ und *t* aus experimentellen Daten oder anderen Methoden bestimmt

52.2 Dichtefunktionaltheorie (DFT)

52.2.1 Hartree-Fock

Beschreibung	 Assumes wave functions are Slater Determinante ⇒Approximation Molekularfeldnäherung theory obeying the Pauli principle Self-interaction free: Self interaction is cancelled out by the Fock-term
Hartree-Fock Gleichung	$ \begin{pmatrix} \hat{T} + \hat{V}_{en} + \hat{V}_{HF}^{\xi} \end{pmatrix} \varphi_{\xi}(x) = \epsilon_{\xi} \varphi_{\xi}(x) $ (498) φ_{ξ} ein-Teilchen Wellenfunktion des ξ -ten Orbitals, \hat{T} kineti- sche Energie der Elektronen, \hat{V}_{en} Electron-Kern Anziehung, \hat{V}_{HF} comp:dft:hf:potential, $x = \vec{r}, \sigma$ Position and Spin
Hartree Fock Potential	$V_{\rm HF}^{\xi}(\vec{r}) = \sum_{\vartheta} \int dx' \frac{e^2}{ \vec{r} - \vec{r}' } \left(\underbrace{ \varphi_{\xi}(x') ^2}_{\rm Hartree-Term} - \underbrace{\frac{\varphi_{\vartheta}^*(x')\varphi_{\xi}(x')\varphi_{\vartheta}(x)}{\varphi_{\xi}(x)}}_{\rm Fock-Term} \right) $ (499)
Self-consistent field cycle	1. Initial guess for φ 2. Solve SG for each particle3. Make new guess for φ

52.2.2 Hohenberg-Kohn Theoreme

Hohenberg-Kohn Theorem (HK1)	Die Elektronendichte des Grundzustandes $n(\vec{r})$ bestimmt ein einzigartiges \hat{V}_{ext} eines Systems aus interagierenden Elektro- nen bis auf eine Konstante.
Hohenberg-Kohn Theorem (HK2)	Für ein Energiefunktional $E[n(\vec{r})]$ kann die Grundzustands- dichte und Energie durch systematische Variation bestimmt werden. Die Dichte, welche die Gesamtenergie minimiert ist die exakte Grundzustandsichte.
Grundzustandselektronen- dichte	$n(\vec{r}) = \left(\psi_0 \left \sum_{i=1}^N \delta(\vec{r} - \vec{r}_i) \right \psi_0 \right) $ (500)

52.2.3 Kohn-Sham DFT

Kohn-Sham Map	Maps fully interacting system of electrons to a system of non-interacting electrons with the same ground state density $\frac{n'(\vec{r}) = n(\vec{r})}{n(\vec{r}) = n(\vec{r})} = \frac{n(\vec{r}) + n(\vec{r})}{n(\vec{r}) + n(\vec{r})}$ (501)
	$n(r) = \sum_{i=1}^{r} \varphi_i(r) \tag{301}$
Kohn-Sham Funktional	$E_{\rm KS}[n(\vec{r})] = T_{\rm KS}[n(\vec{r})] + V_{\rm ext}[n(\vec{r})] + E_{\rm H}[n(\vec{r})] + E_{\rm XC}[n(\vec{r})] $ (502) $T_{\rm KG} \text{ kinetic energy } V \rightarrow \text{external potential} E_{\rm K} \text{ Hartree term}$
	$E_{\rm XC}$ Exchange-Correlation Funktional
Kohn-Sham Gleichung Exakte Einteilchen-SE (allerdings ist das exakte $E_{\rm XC}$ oft nicht bekannt) Die Lösung der Gleichung macht einen großen Teil der Supercomputer Ressourcen aus	$\begin{cases} -\frac{\hbar^2 \nabla^2}{2m} + v_{\text{ext}}(\vec{r}) + e^2 \int d^3 \vec{r}' \frac{n(\vec{r}')}{ \vec{r} - \vec{r}' } \\ + \frac{\partial E_{\text{X}}[n(\vec{r})]}{\partial n(\vec{r})} + \frac{\partial E_{\text{C}}[n(\vec{r})]}{\partial n(\vec{r})} \end{cases} \phi_i^{\text{KS}}(\vec{r}) = \\ = \epsilon_i^{\text{KS}} \phi_i^{\text{KS}}(\vec{r}) (503) \end{cases}$ $\phi_i^{\text{KS}} \text{ KS orbitals, } \int d^3 r v_{\text{ext}}(\vec{r}) n(\vec{r}) = V_{\text{ext}}[n(\vec{r})]$
Self-consistent field cycle for Kohn-Sham	 Initial guess for n(r) Calculate effective potential V_{eff} Solve Kohn-Sham Gleichung Calculate density n(r) Repeat 2-4 until self consistent

52.2.4 Exchange-Correlation Funktionale

Exchange-Correlation Funktional	$E_{\rm XC}[n(\vec{r})] = \langle \hat{T} \rangle - T_{\rm KS}[n(\vec{r})] + \langle \hat{V}_{\rm int} \rangle - E_{\rm H}[n(\vec{r})] \qquad (504)$
	Accounts for: • Kinetic energy difference between interaction and non-
	 Interacting system Exchange energy due to Pauli principle Correlation energy due to many-body Coulomb interaction (not accounted for in mean field Hartree term E_H)
Local density approximation (LDA) Simplest DFT functionals	$E_{\rm XC}^{\rm LDA}[n(\vec{r})] = \int d^3r n(r) \Big[\epsilon_{\rm X}[n(\vec{r})] + \epsilon_{\rm C}[n(\vec{r})] \Big] $ (505) $\epsilon_{\rm X} \text{ calculated exchange energy from HEG model, } \epsilon_{\rm C} \text{ correlation energy calculated with Quantum Monte-Carlo}$

$\vec{F}_{\rm XC}[n(\vec{r}), \vec{\nabla}n(\vec{r})]$ (506) HEG model, $F_{\rm XC}$ func- energy dependency on n
$+ E_{\rm C}^{\rm GGA} \tag{507}$
in other functional, like ergy, $E_{\rm C}$ correlation en-
$\frac{2 \omega r}{r} \qquad (508)$ $\omega + E_{\rm X,LR}^{\rm GGA}(\omega) + E_{\rm C}^{\rm GGA} \qquad (509)$ rt ranges (SR) and only ?? correlation is always g reduces long range in-

Vergleich von DFT Funktionalen

TODO: HFtotal energy: upper boundary for GS density \boldsymbol{n}

52.2.5 Basis-Sets

Ebene Wellen als Basis Plane wave ansatz in Kohn-Sham Gleichung Good for periodic structures, allows computation parallelization over a sample points in the brillouin zone???

toff Pla

Nu inc mu

$$\sum_{\vec{G}'} \left[\frac{\hbar^2 \left| \vec{G} + \vec{k} \right|^2}{2m} \delta_{\vec{G}, \vec{G}'} + V_{\text{eff}} (\vec{G} - \vec{G}') \right] c_{i, \vec{k}, \vec{G}'} = \epsilon_{i, \vec{k}} c_{i, \vec{k}, \vec{G}} \quad (510)$$

mber of plane waves
luded in the calculation
$$E_{\rm cutoff} = \frac{\hbar^2 \left| \vec{k} + \vec{G} \right|^2}{2m} \tag{511}$$

52.2.6 Pseudopotentialmethode

Core electrons are absorbed into the potential since they do Ansatz not contribute much to interesting properties.

53 Atomic dynamics

Hamiltonian der Elektronen	$\hat{H}_{\rm e} = \hat{T}_{\rm e} + V_{\rm e\leftrightarrow e} + V_{\rm n\leftrightarrow e} $ (512) $\hat{T} \text{ Kinetische Energie, } \hat{V} \text{ Elektrostatisches Potential, e electrons, n nucleons}$
Wellenfunktion Ansatz	$\psi_{\rm en}^{n}(\{\vec{r},\sigma\},\{\vec{R}\}) = \sum_{i} c^{ni}(\{\vec{R}\}) \psi_{\rm e}^{i}(\{\vec{r},\sigma\},\{\vec{R}\}) $ (513) $\psi_{\rm en}^{n} \text{ eigenstate } n \text{ of Electronic structure Hamiltonian, } \psi_{\rm e}^{i} \text{ eigenstate } i \text{ of comp:ad:bo:hamiltonian, } \vec{r}, \vec{R} \text{ electron/nucleus positions, } \sigma \text{ electron spin, } c^{ni} \text{ coefficients}$
Equation	$\left[E_{\mathrm{e}}^{j}\left(\{\vec{R}\}\right) + \hat{T}_{\mathrm{n}} + V_{\mathrm{n}\leftrightarrow\mathrm{n}} - E^{n}\right]c^{nj} = -\sum_{i}\Lambda_{ij}c^{ni}\left(\{\vec{R}\}\right) (514)$
Exact nonadiabtic coupling operator Electron-phonon couplings / electron-vibrational couplings	$ \Lambda_{ij} = \int d^3 r (\psi_e^j)^* \left(-\sum_I \frac{\hbar^2 \nabla_{\vec{R}_I}^2}{2M_I} \right) \psi_e^i \\ + \sum_I \frac{1}{M_I} \int d^3 r \left[(\psi_e^j)^* (-i\hbar \nabla_{\vec{R}_I}) \psi_e^i \right] (-i\hbar \nabla_{\vec{R}_I}) (515) \\ \psi_e^i \text{ electronic states, } \vec{R} \text{ nucleus position, } M \text{ nucleus Masse} $

53.1 Born-Oppenheimer Näherung

Adiabatische Näherung		
Elektronenkonfiguration	$\Lambda_{ii} = 0$ für $i \neq i$	(516)
bleibt gleich bei Bewegung		(0-0)
der Atome gleichl	Λ_{ii} Exact nonadiabtic coupling operator	
(Adiabatentheorem)	<i>ej</i> 1 0 1	

_

Born-Oppenheimer Näherung	$\Lambda_{ij} = 0$	(517)
Elektronen werden nicht durch die Bewegung der Atome beeinflusst	comp:ad:bo:equation \Rightarrow $\left[E_e^i(\{\vec{R}\}) + \hat{T}_n - E^n\right]c^{ni}(\{\vec{R}\}) = 0$ see Equation, $V_{n \leftrightarrow n} = \text{const}$ absorbed into E_e^j	(518)
Born-Oppenheimer		
Potentialhyperfläche	$V_{\rm BO}(\{\vec{R}\}) = E_{\rm e}^0(\{\vec{R}\})$	(519)
klassichen	$M_{I}\ddot{\vec{R}}_{I}(t) = -\vec{\nabla}_{\vec{R}_{I}}V_{\rm BO}(\{\vec{R}(t)\})$	(520)
Bewegungsgleichungen auf der BO Hyperfläche wenn das System im elektronischen	$E_{\rm e}^0, \psi_{\rm e}^0$ niedrigster Eigenwert/Eigenzustand comp:ad:bo:hamiltonian	vom
Grundzustand ist		

Ansatz für Born-Oppenheimer

Näherung

Limitationen

Produkt aus einem einzelnen elektronischen Zustand und einem Nukleus-Zustand

$$\psi_{\rm BO} = c^{n0} \left(\{\vec{R}\}\right) \psi_{\rm e}^0 \left(\{\vec{r},\sigma\},\{\vec{R}\}\right) \tag{521}$$

- Nuclei velocities must be small and electron energy state differences large
- Nuclei need spin for effects like spin-orbit coupling
- Nonadiabitc effects in photochemistry, proteins

ξ

Valid when Massey parameter $\xi \gg 1$

$$=\frac{\tau_{\rm n}}{\tau_{\rm e}} = \frac{L\Delta E}{\hbar \left| \dot{\vec{R}} \right|} \tag{522}$$

 τ passage of time for electrons/nuclei, L characteristic length scale of atomic dynamics, $\dot{\vec{R}}$ nuclear velocity, ΔE difference between two electronic states

53.2 Strukturoptimierung

Kräfte	$ \frac{\text{Hellmann-Feynman-Theorem}}{\vec{F}_{I} = -\vec{\nabla}_{\vec{R}_{I}}E \stackrel{\downarrow}{=} -\left\langle\psi(\vec{R}_{I})\left \left(\vec{\nabla}_{\vec{R}_{I}}\hat{H}(\vec{R}_{I})\right)\right \psi(\vec{R})\right\rangle (523) $
Ionic cycle Self-consistent field cycle for Kohn-Sham for geometry optimization	 Initial guess for n(r) (a) Calculate effective potential V_{eff} (b) Solve Kohn-Sham Gleichung (c) Calculate density n(r)
Transformation der Atompositionen unter Spannung	$R_{\alpha}([\epsilon]_{\alpha\beta}) = \sum_{\beta} (\delta_{\alpha\beta} + [\epsilon]_{\alpha\beta}) R_{\beta}(0) $ (524) $\alpha, \beta = 1, 2, 3$ Positionskomponenten, <i>R</i> Position, <i>R</i> (0) Positi- on ohne Dehnung, $[\epsilon]$ Dehnung Tensor
Spannungstensor	$[\sigma]_{\alpha,\beta} = \frac{1}{\Omega} \left(\frac{\partial E_{\text{total}}}{\partial [\epsilon]_{\alpha\beta}} \right)_{[\epsilon]=0} $ (525) Ω unit cell volume, $[\epsilon]$ Dehnung tensor
Pulay-Spannung	$N_{\rm PW} \propto E_{\rm cut}^{\frac{3}{2}} \propto \left \vec{G}_{\rm max}\right ^3 $ (526) Number of plane waves $N_{\rm PW}$ depends on $E_{\rm cut}$. If <i>G</i> changes during optimization, $N_{\rm PW}$ may change, thus the basis set can change. This typically leads to too small volumes.

53.3 Gitterschwingungen

Force constant matrix $\Phi_{IJ}^{\mu\nu} = \left(\frac{\partial^2 V(\{\vec{R}\})}{\partial R_I^{\mu} \partial R_J^{\nu}}\right)_{\{\vec{R}_I\} = \{\vec{R}_I^0\}}$ (527)

Harmonische Näherung Hesse matrix, Taylor Entwicklung der Born-Oppenheimer Potentialhyperfläche in zweiter Oddnung um Atomposition \vec{R}_{I}^{0}

$$V^{\rm BO}(\{\vec{R}_I\}) \approx V^{\rm BO}(\{\vec{R}_I^0\}) + \frac{1}{2} \sum_{I,J}^N \sum_{\mu,\nu}^3 s_I^\mu s_J^\nu \Phi_{IJ}^{\mu\nu}$$
(528)

 $\Phi^{\mu\nu}_{IJ}$ Force constant matrix, s displacement

53.3.1 Finite difference method

Approximation Assume forces in equilibrium structure vanish	$\Phi_{IJ}^{\mu\nu} \approx \frac{\vec{F}_{I}^{\mu}(\vec{R}_{1}^{0}, \dots, \vec{R}_{J}^{0} + \Delta s_{J}^{\nu}, \dots, \vec{R}_{N}^{0})}{\Delta s_{J}^{\nu}} $ (529) $\Delta s \text{ displacement of atom } J$
Dynamical matrix Mass reduced fourier transform of the Force constant matrix	$D^{\mu\nu}_{\alpha\beta} = \frac{1}{\sqrt{M_{\alpha}M_{\beta}}} \sum_{n'} \Phi^{\mu\nu}_{\alpha\beta}(n-n') e^{i\vec{q}(\vec{L}_n-\vec{L}_{n'})} $ (530) $\vec{L} \text{ vector from origin to unit cell } n, \alpha/\beta \text{ atom index in th unit cell, } \vec{q} ???: \text{wave vector, } \Phi \text{ Force constant matrix, } M \text{ Masse}$
Eigenwertgleichung	
For a periodic crystal, reduces number of equations from	$\omega^2 \vec{c}(\vec{q}) = \underline{D}(\vec{q})\vec{c}(\vec{q}) \tag{531}$
$3N_p \times N$ to $3N_p$. Eigenvalues represent phonon band	N_p number of atoms per unit cell, \vec{c} displacement amplitudes, \vec{q} ???:wave vector, \underline{D} Dynamical matrix
structure.	

53.3.2 Anharmonische Ansätze

Quasi-harmonic	Include thermal expansion by assuming Born-Oppenheimer
approximation	Potentialhyperfläche is volume dependant.
Pertubative approaches	Expand Force constant matrix to third order.

53.4 Molekulardynamik

Beschreibung	 Exact (within previous approximations) approach to treat anharmonic effects in materials. Computes time-dependant observables. Assumes fully classical nuclei. Macroscropical observables from statistical ensembles System evolves in time (ehrenfest). Number of points to consider does NOT scale with system size. Exact because time dependance is studied explicitly, not via harmonic approx.
Ablauf von MD Simulationen	 Initialize with optimized geometry, interaction potenti- al, ensemble, integration scheme, temperature/pressure control Equilibrate to desired temperature/pressure (eg with statistical starting velocities) Production run, run MD long enough to calculate desi- red observables

53.4.1 Ab-initio molecular dynamics

Born-Oppenheimer MD (BOMD)	 Calculate electronic ground state of current nucleui configuration { \$\vec{R}(t)\$ } with KS-DFT Calculate forces from the Born-Oppenheimer Potentialhyperfläche Update positions and velocities
	 äb-inito no empirical information required Many expensive DFT calculations
Car-Parrinello MD (CPMD)	Evolve electronic wave function φ (adiabatically) along with the nuclei \Rightarrow only one full KS-DFT $M_I \frac{\mathrm{d}^2 \vec{R}_I}{\mathrm{d}t^2} = -\vec{\nabla}_{\vec{R}_I} E[\{\varphi_i\}, \{\vec{R}_I\}]$ (532) $\mu \frac{\mathrm{d}^2 \varphi_i(\vec{r}, t)}{\mathrm{d}t^2} = -\frac{\partial}{\partial \varphi_i^*(\vec{r}, t)} E[\{\varphi_i\}, \{\vec{R}_I\}] + \sum_j \lambda_{ij} \varphi_j(\vec{r}, t)$ (533) μ electron orbital mass, φ_i KS-DFT eigenststate, λ_{ij} Lagrange multiplier

53.4.2 Force-field MD

Force field MD (FFMD)	• Use empirical interaction potential instead of electronic
	structure
	• Force fields need to be fitted for specific material \Rightarrow not
	transferable
	• Faster than BOMD
	• Example: Lennard-Jones

53.4.3 Integration schemes

Procedures for updating positions and velocities to obey the equations of motion.

Euler-Verfahren		
Prozedur um gewöhnliche	$\vec{R}(t + \Delta t) = \vec{R}(t) + \vec{v}(t)\Delta t + \mathcal{O}\left(\Delta t^2\right)$	(534)
DGLs mit	$\vec{v}(t + \Delta t) = \vec{v}(t) + \vec{a}(t)\Delta t + \mathcal{O}(\Delta t^2)$	(535)
Anfangsbedingungen in erster		(000)
Ordnung zu lösen.	\square	<u> </u>
Taylor Entwicklung von	Cumulative error scales linearly $\mathcal{O}(\Delta t)$. Not time	reversi-
$\vec{R}/\vec{v}(t+\Delta t)$	ble.	

Verlet-Algorithmus Zeitumkehr-symmetrisch. Interation in zweiter Ordnung

$\vec{R}(t + \Delta t) = 2\vec{R}(t) - \vec{R}(t - \Delta t) + \vec{a}(t)\Delta t^{2} + \mathcal{O}\left(A^{2}\right)$	Δt^4) (536)
--	--------------	---------

Velocity-Verlet integration	$\vec{R}(t + \Delta t) = \vec{R}(t) + \vec{v}(t)\Delta t + \frac{1}{2}\vec{a}(t)\Delta t^{2} + \mathcal{O}\left(\Delta t^{4}\right)$ $\vec{v}(t + \Delta t) = \vec{v}(t) + \frac{\vec{a}(t) + \vec{a}(t + \Delta t)}{2}\Delta t + \mathcal{O}\left(\Delta t^{4}\right)$	(537) (538)
Leapfrog Integration in zweiter Ordnung	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(539) (540)

53.4.4 Thermostate und Barostate

Velocity rescaling Thermostat, keep temperature at T_0 by

allow temperature

Ensemble

obey the Kanonisches

rescaling velocities. Does not

fluctuations and thus does not

$\Delta T(t) = T_0 - T$	C(t) (1)	541)
		. /

$$=\sum_{I}^{N} \frac{M_{I} (\lambda \vec{v}_{I}(t))^{2}}{fk_{\rm B}} - \sum_{I}^{N} \frac{M_{I} \vec{v}_{I}(t)^{2}}{fk_{\rm B}}$$
(542)
= $(\lambda^{2} - 1)T(t)$ (543)

$$1)T(t)$$
 (543)

$$\lambda = \sqrt{\frac{T_0}{T(t)}} \tag{544}$$

T target Temperatur, M Masse of nucleon $I,\,\vec{v}$ Geschwindigkeit, f number of degrees of freedom, λ velocity scaling parameter, $k_{\rm B}$ Boltzmann-Konstante

Berendsen thermostat		
Does not obey Kanonisches]
Ensemble but efficiently	$\frac{\mathrm{d}T}{\mathrm{d}T} = \frac{T_0 - T}{\mathrm{d}T}$	(545)
brings system to target	dt au	
temperature		

Nosé-Hoover Thermostat	$\mathrm{d}\tilde{t} = \tilde{s}\mathrm{d}t\tag{546}$	5)
Control the temperature with by time stretching with an	$\mathcal{L} = \sum_{i=1}^{N} \frac{1}{2} M_{I} \tilde{s}^{2} v_{i}^{2} - V(\tilde{\vec{R}}_{1}, \dots, \tilde{\vec{R}}_{I}, \dots, \tilde{\vec{R}}_{N}) + \frac{1}{2} Q \dot{\tilde{s}}^{2} - g k_{\mathrm{B}} T_{0} \ln t$	\tilde{s}
associated mass.	I=1 2 (547	7)
Ensemble	s scaling factor, Q associated mass", $\mathcal L$ Lagrange-Funktion g degrees of freedom	,

53.4.5 Berechnung von Observablen

Spektraldichte

Autokorrelation

$$S(\omega) = \int_{-\infty}^{\infty} \mathrm{d}\tau C(\tau) \,\mathrm{e}^{-i\omega t} \tag{548}$$

 ${\cal C}$ Autokorrelation

 ${\it Vibrations zustands dicht}$ (VDOS)

Wiener-Khinchin Theorem Fouriertransformierte of

$$g(\omega) \sim \sum_{I=1}^{N} M_I S_{v_I}(\omega) \tag{549}$$

 S_{v_i} velocity Spektraldichte of particle I

Maschinelles Lernen 54

54.1 Metriken zur Leistungsmessung

Genauigkeit	$a = \frac{\text{richtige Vorhersagen}}{\text{falsche Vorhersagen} + \text{richtige Vorhersagen}}$	(550)
Number of data points Anzahl d	er Datenpunkte	
Mittlerer absoluter Fehler (MAE)	$MAE = \frac{1}{n} \sum_{i=1}^{n} y_i - \hat{y}_i $	(551)

y Wahrheit, \hat{y} Vorhersage, n comp:ml:performance:n desc

Methode der kleinsten	$1 \sum_{n=1}^{n} $
Quadrate (MSE)	$MSE = -\sum_{n} \sum (y_i - \hat{y}_i)^2 \tag{552}$
Quadratwurzel des mittleren	$n_{i=1}$
quadratischen Fehlers (SME)	y Wahrheit, \hat{y} Vorhersage, n comp:ml:performance:n desc

Standardfehler der Regression

Quadratwurzel des mittleren quadratischen Fehlers (RSME)

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
 (553)

yWahrheit, \hat{y} Vorhersage,
 n comp:ml:performance:n desc

54.2 Regression

54.2.1 Lineare Regression

Lineare Regression Fitted Daten unter der Annahme normalverteilter Fehler	$\underline{y} = \underline{\epsilon} + \underline{x} \cdot \vec{\beta} $ (554) $\underline{x} \in \mathbb{R}^{N \times M} \text{ input data, } \underline{y} \in \mathbb{R}^{N \times L} \text{ output data, } \underline{b} \text{ bias, } \vec{\beta} \text{ weights,} $ N samples, M features, L output variables	
Designmatrix Ansatz Stack column of ones to the feature vector Useful when ϵ is scalar	$\underline{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1M} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{N1} & \dots & x_{NM} \end{pmatrix} $ (555) $x_{ij} \text{ feature } j \text{ of sample } i$	
Lineare Regression mit skalarem Bias Durch die Designmatrix wird der Bias in den Gewichtsvektor absorbiert	$\underline{y} = \underline{X} \cdot \vec{\beta} $ (556) \underline{y} output data, \underline{X} comp:ml:reg:design matrix, $\vec{\beta}$ weights	
Normalengleichung Löst Lineare Regression mit skalarem Bias mit comp:ml:performance:mse	$\vec{\beta} = \left(\underline{X}^{\mathrm{T}}\underline{X}\right)^{-1}\underline{X}^{T}\underline{y} $ (557) \underline{y} output data, \underline{X} Designmatrix Ansatz, $\vec{\beta}$ weights	

54.2.2 Kernelmethode

Kernel trick	Useful when transforming the input data x into a much higher dimensional space $(M_2 \gg M_1) \Phi : \mathbb{R}^{M_1} \mapsto \mathbb{R}^{M_2}, \vec{x} \to \Phi(\vec{x})$ and only the dot product of this transformed data $\Phi(x)^T \Phi(x)$ is required. Then the dot product can be replaced by a sui- table kernel function κ .
	$k(\vec{x}_i, \vec{x}_j) \equiv \Phi(\vec{x}_i)^{\mathrm{T}} \Phi(\vec{x}_j) $ (558)
	$\vec{x}_i \in \mathbb{R}^{M_1}$ input vectors, M_1 dimension of data vector space, M_2 dimension of feature space
Common kernels	Linear, Polynomial, Sigmoid, Laplacian, radial basis funciton (RBF)
Radiale Basisfunktion-Kernel	
(RBF) RBF = Reelle Funktion, deren Wert nur vom Abstand	$k(\vec{x}_{i}, \vec{x}_{j}) = \exp\left(-\frac{\ \vec{x}_{i} - \vec{x}_{j}\ _{2}^{2}}{\sigma}\right) $ (559)
zum Orsprung abangt	

54.2.3 Bayes'sche Regression

Bayes'sche lineare Regression	Assume a Prior Verteilung distribution over the weights. Of-
	fers uncertainties in addition to the predictions.

Ridge Regression Regularization method	Reduziert Gewichte mit der L2-Norm. Dadurch werden un- wichtige Features nicht berücksichtigt (kleines Gewicht) und enkodieren nicht Noise. Entspricht der Annahme einer Normalverteilung mit $\vec{\mu} = 0$ und unanhängingen Komponenten (<u>Sigma</u> diagonaol) der die Gewichte als Prior Verteilung.
Optimale Gewichte für Ridge Regression	$\vec{\beta} = \left(\underline{X}^{\mathrm{T}}\underline{X} + \lambda\right)^{-1}\underline{X}^{\mathrm{T}}\vec{y} $ (560) TODO: Does this only work for gaussian data? $\lambda = \frac{\sigma^{2}}{\xi^{2}} \text{ shrinkage parameter, } \xi \text{ Varianz of the gaussian Prior}$ Verteilung, σ Varianz of the gaussian likelihood of the data
Lasso Regression Least absolute shrinkage and selection operator Regularization method	Reduziert Gewichte mit der L1-Norm. Unwichtige Features werden reduziert und können auch ganz vernachlässigt wer- den und enkodieren nicht Noise. Entspricht der Annahme einer Laplace-Verteilung der die Gewichte als Prior Verteilung.
Gaussian process regression (GPR)	Gaussian process: A distribution over functions that produce jointly gaussian distribution. Multivariate normal distributi- on like comp:ml:reg:bayes:bayesian, except that $\bar{\mu}$ and $\underline{\Sigma}$ are functions. GPR: non-parametric Bayesion regressor, does not assume fixed functional form for the underlying data, instead, the data determines the functional shape, with predictions governed by the covariance structure defined by the kernel (often RBF). Offers uncertainties in addition to the predictions. TODO:cle- anup

TODO:soap

54.3 Gradientenverfahren

TODO:in lecture 30 CMP

Teil XI Chemie

55 Periodensystem

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	\Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.116	140.908	144.242	146.915	150.362	151.964	157.253	158.925	162.500	164.930	167.259	168.934	173.045	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.038	231.036	238.029	237.048	244.064	243.061	247.070	247.000	251.000	252.000	257.095	258.000	259.000	266.000

56 Elektrochemie

Chemisches Potential	Symbol: μ	Unit: 1 J/mol; J
der Spezies <i>i</i> Involvierte Energie, wenn sich die Teilchenzahl ändert	$\mu_i \equiv \left(\frac{\partial G}{\partial n_i}\right)_{n_j \neq n_i, p, T}$	(561)
	((((((((((((((((((((((((((((((((((((
Standard chemisches	$\mu_i = \mu_i^{\theta} + RT \ln\left(a_i\right)$	(562)
In equilibrium	μ Chemisches Potential, R Universelle G peratur, a Aktivität	askonstante, T Tem-
Chemisches Gleichgewicht	$\sum_{\text{products}} \nu_i \mu_i = \sum_{\text{educts}} \nu_i \mu$	u_i (563)
	μ Chemisches Potential, ν Stöchiometris	scher Koeffizient
	Symbol: a	Unit:
Aktivität Relative Aktivität	$a_i = \exp\left(\frac{\mu_i - \mu_i^\theta}{RT}\right)$	(564)
	μ Chemisches Potential, ??? ???:standar R Universelle Gaskonstante, T Tempera	d chemical potential, tur

	Symbol: $\overline{\mu}$	Unit: 1 J/mol; J
Elektrochemisches Potential Chemisches Potential mit	$\overline{\mu_i} \equiv \mu_i +$	$z_i F \phi$ (565)
elektrostatischen Enegiebeiträgen	μ Chemisches Potential, z Konstante, ϕ Elektrisches Poter	Ladungszahl, F Faraday- ntial (Galvanisches Potential)

56.1 Elektrochemische Zelle

		Potentiostat
Aufbau	R W C	GegenelektrodeWorking electrodeReferenzelektrode
Arten der Elektrochemische Zelle	 Elektrolytische Zelle: Nutzt elekt Reaktion zu erzwingen Galvanische Zelle: Produziert elek ne chemische Reaktion 	trische Energie um eine trische Energie durch ei-
Faradäischer Prozess	Ladung wird zwischen Elektrode und dem Elektrolyten trans- feriert.	
Nicht-Faradäischer (kapazitiver) Prozess	Ladung lagert sich am Elektrode-Ele	ktrolyt Interface an.
Elektrodenpotential	Symbol: E	Unit: 1 V
Standard Zellpotential	$E_{\rm rev}^{\theta} = \frac{-\Delta_{\rm R}G}{nF}$ $\Delta_{\rm R}G^{\theta}$ Standard ???:gibbs free energy der Elektronen, <i>F</i> Faraday-Konstant	θ (566) - (566) v der Reaktion, <i>n</i> Anzahl se
Nernst-Gleichung Elektrodenpotential für eine Halbzellenreaktion	$E = E^{\theta} + \frac{RT}{zF} \ln \left(\frac{\left(\prod_{i} (a_{i}) \right)}{\left(\prod_{i} (a_{i}) \right)} \right)$ <i>E</i> Elektrodenpotential, <i>E</i> ^{\theta} Standard selle Gaskonstante, <i>??? ???</i> :tempera Faraday-Konstante, <i>a</i> Aktivität, <i>\nu</i> S zient	$ ^{ \nu_i })_{\text{oxidized}}$ (567) $ ^{ \nu_i })_{\text{reduced}}$ (zellpotential, R Univer- ture, z Ladungszahl, F töchiometrischer Koeffi-

	$\eta_{\text{cell}} = \frac{P_{\text{obtained}}}{P_{\text{maximum}}} = \frac{E_{\text{cell}}}{E_{\text{cell,rev}}}$	galvanisch	(568)
Thermodynamische Zelleffizienz	$\eta_{\text{cell}} = \frac{P_{\text{minimum}}}{P_{\text{applied}}} = \frac{E_{\text{cell,rev}}}{E_{\text{cell}}}$	electrolytisch	(569)
	P Elektrische Leistung		

56.2 Ionische Leitung in Elektrolyten

Diffusion durch Konzentrationsgradienten	$i_{\text{diff}} = \sum_{i} -z_i F D_i \left(\frac{\mathrm{d}c_i}{\mathrm{d}x}\right) $ (570) $z_i \text{ Ladungszahl des Ions } i, F \text{ Faraday-Konstante, ??? ???:dif-fusion constant des Ions } i, c \text{ Konzentration des Ions } i$
Migration durch Potentialgradienten	$i_{\text{mig}} = \sum_{i} -z_{i}^{2} F^{2} c_{i} \mu_{i} \nabla \Phi_{s} $ (571) $z_{i} \text{ Ladungszahl des Ions } i, F \text{ Faraday-Konstante, } c \text{ Konzentration des Ions } i, \mu \text{ Elektrische Mobilität } / \text{ Beweglichkeit des Ions } i, \nabla \phi_{s} \text{ Potentialgradient in der Lösung}$
Convection durch Druckgradienten	$i_{\text{conv}} = \sum_{i} -z_{i} F c_{i} v_{i}^{\text{flow}} $ (572) $z_{i} \text{ Ladungszahl des Ions } i, F \text{ Faraday-Konstante, } c \text{ Konzentration des Ions } i, v_{i}^{\text{flow}} \text{ Geschwindigkeit des Ions } i \text{ im fliessenden Elektrolyt}$
Ionische Moblilität	$ \begin{array}{ c c c c } \hline \text{Symbol: } u_{\pm} & \text{Unit: } 1\text{cm}^2\text{mol/Js} \\ \hline & u_{\pm} = -\frac{v_{\pm}}{\nabla\phiz_{\pm}F} = \frac{e}{6\pi F\eta_{\text{dyn}}r_{\pm}} \end{array} (573) \\ \hline & v_{\pm} \text{ steady state drift Geschwindigkeit, } \phi \text{ Elektrisches Potential, } z \text{ Ladungszahl, } F \text{ Faraday-Konstante, } e \text{ Elementarladung, } \\ & \eta, \mu \text{ Dynamisch Viskosität, } r_{\pm} \text{ ion radius} \end{array} $
Gesetz von Stokes Reibungskraft auf ein sphärisches Objekt in einer Flüssigkeit bei niedriger Reynolds-Zahl	$F_{\rm R} = 6\pi r \eta v \tag{574}$ r Teilchenradius, η, μ Dynamisch Viskosität, v Teilchengeschwindigkeit
Ionische Leitfähigkeit	

Ohmscher Widerstand für Ionen-Strom	$R_{\Omega} = \frac{L}{A \kappa}$ L Länge, A Fläche, κ Ionische Leit	(576) fähigkeit
Überführungszahl Anteil der positiv / negativ geladenen Ionen am Gesamtstrom	$t_{+/-} = \frac{i_{+/-}}{i_{+} + i_{+}}$ $i_{+/-}$ Strom durch positive / negative	re Ladungn (577)
	Symbol: Asc. Unit: 1 Sem	2 /mol – 1 Acm ² /Vmol
Molare Leitfähigkeit	$\Delta_{\rm M} = \frac{\kappa}{c_{\rm salt}}$	(578)
	κ Ionische Leitfähigkeit, $c_{\rm salt}$ ch: el:	on cond:salt
	$\Lambda_{\rm M} = \Lambda_{\rm M}^0 - K_{\rm N}$	$\overline{c_{\text{salt}}}$ (579)
Kohlrausch's law For strong electrolytes		K = 1 $K = 2$ 10
	$c_{ m salt}$ $\Lambda_{ m M}^0$ Molare Leitfähigkeit bei unen Konzentration des Elektro	dlicher Verdünnung, salt lyts, K constant
	Symbol: b	Unit: $1 \mathrm{mol}\mathrm{kg}^{-1}$
Molalität	$b = \frac{n}{m}$	(580)
Stoffmenge pro Masse	n Stoffmenge des gelösten Stoffs, m	Masse des Lösungsmittels
	Symbol: c	Unit: $1 \mod L^{-1}$
Molarität Stoffmenge pro Volumen	$c = \frac{n}{V}$	(581)
Konzentration	nStoffmenge des gelösten Stoffs, V tels	Volumen des Lösungsmit-
	Symbol: I	Unit: 1 mol/kg; mol/L
Ionenstärke Maß einer Lösung für die	$I_b = \frac{1}{2} \sum_{i} b_i x_i$	z_i^2 (582)
elektrische Feldstärke durch gelöste Ionen	$I_c = \frac{1}{2} \sum_{i}^{i} c_i $	z_i^2 (583)
	bMolalität, c Molarität, z Ladungs	zahl

Debye-Länge / Abschirmlänge

Für eine unendlich verdünnte

$$\lambda_{\rm D} = \sqrt{\frac{\epsilon k_{\rm B} T}{2N_{\rm A} e^2 I_C}} \tag{584}$$

 $N_{\rm A}$ Avogadro-Konstante, e Elementarladung, I Ionenstärke, ϵ Permitivität, $k_{\rm B}$ Boltzmann-Konstante, T Temperatur

	Symbol: γ	Unit:
Mittlerer ionischer		
Aktivitätskoeffizient	$\gamma_{+} = (\gamma_{+}^{\nu_{+}} \gamma_{-}^{\nu_{-}})^{\frac{1}{\nu_{+}+\nu_{-}}}$	(585)
Berücksichtigt dass Ionen sich		
erst von ihrer Ionenwolke		
lösen müssen, bevor sie	$a_i \equiv \gamma_i \frac{m_i}{m_0}$	(586)
reagieren können	<i>a</i> Aktivität, m_i Molalität, $m_0 = 1 \text{ mol kg}^{-1}$	

Debye-Hückel Gesetz

$$\ln(\gamma_{\pm}) = -A |z_{+} z_{-}| \sqrt{I_{b}}$$
 (587)

 γ Mittlerer ionischer Aktivitätskoeffizient, Asolvent dependant constant, z Ladungszahl, IIonenstärke in $[{\rm mol\,kg^{-1}}]$

56.3 Kinetik

Lösung

Durchtrittsfaktor Transferkoeffizient

Anteil des Potentials der sich auf die freie	$\alpha_{\rm A}$ = α	(588)
Reaktionsenthalpie des	$\alpha_{\rm C}$ = 1 – α	(589)
anodischen Prozesses		

auswirkt

Überspannung	Abweichung der Spannung von der Zellspannung im Gleich- gewicht
	$\eta_{\rm act} = E_{\rm electrode} - E_{\rm ref} $ (590)
Aktivierungsüberspannung	$E_{\rm electrode}$ Potential bei der die Reaktion beginnt, $E_{\rm ref}$ thermodynamisches Potential der Reaktion

56.3.1 Massentransport

Konzentrationsüberspannung

Durch einen Konzentrationsgradienten an der Elektrode müssen Ionen erst zur Elektrode diffundieren, bevor sie reagieren können

$$\eta_{\rm conc,anodic} = -\frac{RT}{\alpha \, zF} \ln\left(\frac{c_{\rm red}^0}{c_{\rm red}^{\rm S}}\right) \tag{591}$$

$$\eta_{\rm conc, cathodic} = -\frac{RT}{(1-\alpha)zF} \ln\left(\frac{c_{\rm ox}^0}{c_{\rm ox}^{\rm S}}\right)$$
(592)

R Universelle Gaskonstante, T Temperatur, $0/{\rm S}$ ion concentration in the electrolyte / at the double layer, z Ladungszahl, F Faraday-Konstante

 $\eta_{\rm diff} = \frac{RT}{nF} \ln\left(\frac{j_{\infty}}{j_{\infty} - j_{\rm meas}}\right)$ (593)Diffusionsüberspannung Durch Limit des j_{∞} (Limiting) current density, j_{meas} measured Stromdichte, Massentransports R Universelle Gaskonstante, T Temperatur, n Ladungszahl, F Faraday-Konstante C_{\uparrow} c^0 c^{S} Zellschichten \dot{x} Nernst Schicht Elektroly Elextrode c^0 Helmholtzschicht, $\delta_{\rm N} = \frac{c^0 - c^{\rm S}}{\frac{\mathrm{d}c}{\mathrm{d}r}}$ (594)Dicke der Nernstschen Diffusionsschicht c^0 Bulk-Konzentration, $c^{\rm S}$ Oberflächen-Konzentration $|j| = nFD \frac{c^0 - c^S}{\delta_{\text{diff}}}$ (595)für $c^{\mathrm{S}} \rightarrow 0$ $|j_{\infty}| = nFD \frac{c^0}{\delta_{\text{diff}}}$ (Limiting) current density (596) c^0 F Faraday-Konstante, ZLadungszahl, nBulk-Konzentration, D Diffusionskoeffizient, δ_{diff} Dicke der Nernstschen Diffusionsschicht $\frac{j}{i_{co}} = 1 - \frac{c^{\mathrm{S}}}{c^{\mathrm{O}}}$ (597)Strom -Konzentrationsbeziehung c^0 Bulk-Konzentration, $c^{\rm S}$ Oberflächen-Konzentration, j (Limiting) current density $j_{\rm kin} = \frac{j_{\rm meas} j_{\infty}}{j_{\infty} - j_{\rm meas}}$ (598)Kinetische Stromdichte j_{meas} gemessene Stromdichte, j_{∞} (Limiting) current density Roughness factor Surface area related to (599)rf electrode geometry

56.4 Techniken

56.4.1 Referenzelektroden

Definiert als Referenz für Messungen von Potentialen von Halbzellen

${\it Standard wassers to ff elektrode}$	Potential der Reaktion: $2 H^+ + 2 e^- \Longrightarrow H_2$
(SHE)	$p = 10^5 \mathrm{Pa}, a_{\mathrm{H}^+} = 1 \mathrm{mol} \mathrm{L}^{-1} (\Rightarrow \mathrm{pH} = 0)$

Reversible Wasserstoffelektrode (RHE) Potential ändert sich nicht mit dem pH-Wert

$$E_{\rm RHE} = E^0 + \frac{RT}{F} \ln\left(\frac{a_{\rm H^+}}{p_{\rm H_2}}\right)$$
(604)
$$E^0 \equiv 0 \,\rm V, \ a \ Aktivität, \ p \ Druck, \ see \ Nernst-Gleichung$$

56.4.2 Zyklische Voltammetrie

Cyclic voltammogram	
P_{H} 2 P_{H} 2	 A-D: Diffusion layer growth →decreased current after peak D: Switching potential B,E: Equal concentrations of reactants C,F: Formal potential of redox pair: E ≈ E_C-E_F/2 C,F: Peak separation for reversible processes: ΔE_{rev} = E_C - E_F = n 59 mV Information about surface chemistry Double-layer capacity (horizontal lines): I = Cv
Ladung Fläche unter der Kurve	$q = \frac{1}{v} \int_{E_1}^{E_2} j \mathrm{d}E \tag{605}$ $v \; \mathrm{Scanrate}$
Randles-Sevcik Gleichung Für eine reversible, faradäische Reaktion Spitzenstrom hängt von der Wurzel der Scanrate ab	$i_{\text{peak}} = 0.446 nFAc^0 \sqrt{\frac{nFvD_{\text{ox}}}{RT}}$ (606) n Ladungszahl, F Faraday-Konstante, A electrode surface area, c^0 bulk Konzentration, v Scanrate, D_{ox} Diffusionsko- effizient of oxidized analyte, R Universelle Gaskonstante, T Temperatur
Underpotential deposition (UPD)	Reversible deposition of metal onto a foreign metal electrode at potentials positive of the Nernst potential TODO:clarify ch:el:tech:cv:upd:desc

56.4.3 Rotating disk electrodes

Dynamisch Viskosität	Symbol: η, μ	Unit: $1 \text{ Pas} = 1 \text{ Ns/m}^2$	$= 1 \mathrm{kg}\mathrm{m}^{-1}\mathrm{s}$
Kinematische Viskosität	Symbol: ν	J	Jnit: $1 \mathrm{cm}^2/\mathrm{s}$
Dynamisch Viskosität im Verhältnis zur Dichte der		$ u = \frac{\eta}{ ho} $	(607)
Flüssigkeit	η,μ Dynamisch V	iskosität, ??? ???:density	

Diffusionsschichtdicke TODO:Where does 1.61 come from	$\delta_{\text{diff}} = 1.61 D^{\frac{1}{3}} \nu^{\frac{1}{6}} \omega^{-\frac{1}{2}} $ (608) D Diffusionskoeffizient, ν Kinematische Viskosität, ω Kreis-
Limiting current density	frequenz $j_{\infty} = nFD \frac{c^{0}}{\delta_{\text{diff}}} = \frac{1}{1.61} nFD^{\frac{2}{3}} v^{\frac{-1}{6}} c^{0} \sqrt{\omega} (609)$ $n Z \text{Ladungszahl}, F \text{Faraday-Konstante}, c^{0}$
	Bulk-Konzentration, D Diffusionskoeffizient, δ_{diff} Diffusionsschichtdicke, ν Kinematische Viskosität, ω Kreisfrequenz

56.4.4 AC-Impedanz

57 Thermoelektrizität

	Symbol: S	Unit: $1 \mu V K^{-1}$
Seebeck-Koeffizient Thermopower	$S = -\frac{\Delta V}{\Delta T}$	(610)
	V voltage, T Temperatur	
Seebeck-Effekt Elecromotive force across two	$\vec{j} = \sigma(-\vec{\nabla}V - S\vec{\nabla})$	$\vec{\nabla}T$) (611)
points of a material with a temperature difference	σ Leitfähigkeit, V local voltage, S Temperatur	S Seebeck-Koeffizient, T
	Symbol: κ, λ, k Unit: 1 V	$W \mathrm{m^{-1}K} = 1 \mathrm{kgm/s^3K}$
Wärmeleitfähigkeit Leitung von Wärme, ohne	$\kappa = \frac{\dot{Q}l}{A\Delta T}$	(612)
Stofftransport	$\kappa_{\rm tot} = \kappa_{\rm lattice} + \kappa_{\rm e}$	electric (613)
	??? ???:heat, l Länge, A Fläche, T	lemperatur
	$\kappa = L\sigma T$	(614)
Wiedemann-Franz Gesetz	κ Elektrische Wärmeleitfähigkeit, L σ Leitfähigkeit	in $\mathrm{W}\Omega\mathrm{K}^{-1}$ Lorentzzahl,
Thermoelektrische Gütezahl Dimensionsoser Wert zum	$zT = \frac{S^2\sigma}{\kappa}T$	(615)
Vergleichen von Materialien	S Seebeck-Koeffizient, σ Leitfähigke T Temperatur	it, κ Wärmeleitfähigkeit,

58 misc

Stöchiometrischer Koeffizient	Symbol: ν	Unit:
Standardbedingungen	$T = 273,15 \text{ K} = 0 ^{\circ}\text{C}$ p = 100000 Pa = 1,000 bar	(616) (617)
pH-Wert definition	pH = $-\log_{10}(a_{\rm H^+})$ $a_{\rm H^+}$ Wasserstoffionen-Aktivität	(618)
pH-Wert Bei Raumtemperatur 25 °C	pH > 7 basic $pH < 7 acidic$ $pH = 7 neutral$	$(619) \\ (620) \\ (621)$

Kolvalente Bindung	Bindungen zwischen Atomen die d welche Elektronenpaare bilden, geb	lurch geteilte I bildet werden.	Elektronen,
Grotthuß-Mechanismus	The Moblilität von Protononen in wässrigen Lösungen ist wesentlich größer als die anderer Ionen, da sie sich "bewe- gen"können indem die Wassertsoffbrückenbindungen gelöst und neu gebildet werden.		
	Name	formula	
	Zyanid	CN	
	Ammoniak	NH ₃	
	Wasserstoffperoxid	H_2O_2	
	Schwefelsäure	H_2SO_4	
	Ethanol	C_2H_5OH	
	Essigsäure	CH ₃ COOH	
	Methan	CH_4	
Häufige Chemikalien	Salzsäure	HCl	
	Natriumhydroxid	NaOH	
	Salpetersäure	HNO ₃	
	Calciumcarbonat	CaCO ₃	
	Glukose	$C_6H_{12}O_6$	
	Benzol	C_6H_6	
	Aceton	C_3H_6O	
	Ethylen	C_2H_4	
	Kaliumpermanganat	KMnO ₄	

Teil XII Anhang

$E = mc^2 + AI$	(622)
	$E = mc^2 + AI$

59 Physikalische Größen

59.1 SI-Basisgrößen

Zeit	Symbol: t	Unit: 1s
Länge	Symbol: <i>l</i>	Unit: 1 m
Masse	Symbol: m	Unit: 1 kg
Temperatur	Symbol: T	Unit: 1 K
Elektrischer Strom	Symbol: I	Unit: 1 A
Stoffmenge	Symbol: n	Unit: 1 mol
Lichtstärke	Symbol: $I_{\rm V}$	Unit: 1 cd

59.2 Mechanik

Kraft	Symbol: \vec{F}	Unit: $1 \text{ N} = 1 \text{ kgm/s}^2$
Federkonstante	Symbol: k	Unit: $1 \mathrm{N}\mathrm{m}^{-1} = 1 \mathrm{kg/s^2}$
Geschwindigkeit	Symbol: \vec{v}	Unit: $1 \mathrm{m s^{-1}}$
Drehmoment	Symbol: τ	Unit: $1 \text{ Nm} = 1 \text{ kgm}^2/\text{s}^2$
Druck	Symbol: p	Unit: 1 N/m^2

59.3 Thermodynamik

Volumen d dimensionales Volumen	Symbol: V	Unit: $1 \mathrm{m}^d$
Wärmekapazität	Symbol: C	Unit: $1 \mathrm{J}\mathrm{K}^{-1}$

59.4 Elektrodynamik

Ladung	Symbol: q	Unit: 1 C = 1 A s
Ladungszahl Anzahl der Elementarladungen	Symbol: Z	Unit:
Ladungsdichte	Symbol: ρ	Unit: $1 \mathrm{C/m^3}$
Frequenz	Symbol: f	Unit: $1 \text{Hz} = 1 \text{s}^{-1}$
Kreisfrequenz	Symbol: ω $\omega = \frac{2\pi/T}{2\pi f}$ <i>T</i> Periodendauer, <i>f</i> Frequenz	Unit: $1 \operatorname{rad} \operatorname{s}^{-1}$ (623)
Periodendauer	Symbol: T $T = \frac{1}{f}$ f Frequenz	Unit: 1 s (624)
Leitfähigkeit	Symbol: σ	Unit: $1 \Omega^{-1} m$

59.5 Sonstige

Fläche Symbol: A Unit: 1 m ²

60 Konstanten

Plancksches Wirkumsquantum	Symbol: h Definierter Wert $6.62607015 \cdot 10^{-34} \text{ Js}$ $4.135667969 \dots \cdot 10^{-15} \text{ eV s}$
Universelle Gaskonstante Proportionalitätskonstante für ideale Gase	Symbol: R Definierter Wert 8.31446261815324 J mol ⁻¹ K $N_{\rm A} \cdot k_{\rm B}$ $N_{\rm A}$ Avogadro-Konstante, $k_{\rm B}$ Boltzmann-Konstante
Avogadro-Konstante Anzahl der Moleküle pro mol	

Boltzmann-Konstante Temperatur-Energie Umrechnungsfaktor	
Faraday-Konstante Elektrische Ladungs von einem Mol einfach geladener Ionen	Symbol: F Definierter Wert 9.64853321233100184 \cdot 10 ⁴ C mol ⁻¹ $N_{\rm A} e$ $N_{\rm A}$ Avogadro-Konstante, $k_{\rm B}$ Boltzmann-Konstante
Elementarladung	Symbol: e Definierter Wert $1.602176634 \cdot 10^{-19} \mathrm{C}$
Atomare Massneinheit	Symbol: u Experimenteller Wert $1.66053906892(52) \cdot 10^{-27} \text{ kg}$

Abbildungsverzeichnis

1	[?]	61
2	[?]	62
3	Transmon and so TODO	69
4	img/	70

Tabellenverzeichnis

61 Liste der Elemente

	Symbol: H
	Number: 1
Wasserstoff	Elektronenkonfiguration: 1s[1]
English: Hydrogen	set: nonmetal
farbloses Gas (H2)	magnetic ordering: diamagnetic
	Kristallstruktur: hex
	atomic mass: 1.0081
	Symbol: He
	Number: 2
Helium	Elektronenkonfiguration: 1s[1]
English: Helium	set: noblegas
farbloses Gas	magnetic ordering: diamagnetic
	Kristallstruktur: hcp
	atomic mass: 4.0026022

Lithium English: Lithium silbrig weiß/grau Beryllium English: Beryllium	Symbol: Li Number: 3 Elektronenkonfiguration: He 2s[1] set: alkalimetal magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 6.946 Symbol: Be Number: 4 Elektronenkonfiguration: He 2s[2] set: alkalineearthmetal
weib-grau metallisch	Kristallstruktur: hcp atomic mass: 9.01218315
Bor English: Boron schwarz	Symbol: B Number: 5 Elektronenkonfiguration: He 2s[2] 2p[1] set: metalloid magnetic ordering: diamagnetic Kristallstruktur: rho atomic mass: 10.811
Kohlenstoff English: Carbon schwarz (Graphit); farblos (Diamant)	Symbol: C Number: 6 Elektronenkonfiguration: He 2s[2] 2p[2] set: nonmetal magnetic ordering: diamagnetic Kristallstruktur: hex atomic mass: 12.01112
Stickstoff English: Nitrogen farbloses Gas	Symbol: N Number: 7 Elektronenkonfiguration: He 2s[2] 2p[3] set: nonmetal magnetic ordering: diamagnetic Kristallstruktur: hex atomic mass: 14.006714
Sauerstoff English: Oxygen farbloses Gas	Symbol: O Number: 8 Elektronenkonfiguration: He 2s[2] 2p[4] set: nonmetal magnetic ordering: paramagnetic Kristallstruktur: sc atomic mass: 15.99915

Fluor English: Fluorine blasses, gelbliches Gas	Symbol: F Number: 9 Elektronenkonfiguration: He 2s[2] 2p[5] set: halogen magnetic ordering: diamagnetic Kristallstruktur: sc refractive index: 1.000195 atomic mass: 18.9984031636
Neon English: Neon farbloses Gas	Symbol: Ne Number: 10 Elektronenkonfiguration: He 2s[2] 2p[6] set: noblegas magnetic ordering: diamagnetic Kristallstruktur: fcc refractive index: 1.000067 atomic mass: 20.17976
Natrium English: Sodium silbrig weiß	Symbol: Na Number: 11 Elektronenkonfiguration: Ne 3s[1] set: alkalimetal magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 22.989769282
Magnesium English: Magnesium silbrig weiß	Symbol: Mg Number: 12 Elektronenkonfiguration: Ne 3s[2] set: alkalineearthmetal magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 24.30524
Aluminium English: Aluminum silbrig	Symbol: Al Number: 13 Elektronenkonfiguration: Ne 3s[2] 3p[1] set: metal magnetic ordering: paramagnetic Kristallstruktur: fcc atomic mass: 26.98153857
Silicium English: Silicon dunkelgrau, bläulicher Farbton	Symbol: Si Number: 14 Elektronenkonfiguration: Ne 3s[2] 3p[2] set: metalloid magnetic ordering: diamagnetic Kristallstruktur: dc atomic mass: 28.08528

Phosphor English: Phosphorus weiß-beige (W); dunkelrot (R); schwarz (S)	Symbol: P Number: 15 Elektronenkonfiguration: Ne 3s[2] 3p[3] set: nonmetal magnetic ordering: diamagnetic Kristallstruktur: orth refractive index: 1.001212 atomic mass: 30.9737619985
Schwefel English: Sulfur gelb	Symbol: S Number: 16 Elektronenkonfiguration: Ne 3s[2] 3p[4] set: nonmetal magnetic ordering: diamagnetic Kristallstruktur: orth refractive index: 1.001111 atomic mass: 32.0632
Chlor English: Chlorine gelblich-grün	Symbol: Cl Number: 17 Elektronenkonfiguration: Ne 3s[2] 3p[5] set: halogen magnetic ordering: diamagnetic Kristallstruktur: orth refractive index: 1.000773 atomic mass: 35.4535
Argon English: Argon farbloses Gas	Symbol: Ar Number: 18 Elektronenkonfiguration: Ne 3s[2] 3p[6] set: noblegas magnetic ordering: diamagnetic Kristallstruktur: fcc refractive index: 1.000281 atomic mass: 39.9481
Kalium English: Potassium silbrig weiß	Symbol: K Number: 19 Elektronenkonfiguration: Ar 4s[1] set: alkalimetal magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 39.09831
Calcium English: Calcium silbrig weiß	Symbol: Ca Number: 20 Elektronenkonfiguration: Ar 4s[2] set: alkalineearthmetal magnetic ordering: diamagnetic Kristallstruktur: fcc atomic mass: 40.0784

Scandium English: Scandium silbrig weiß	Symbol: Sc Number: 21 Elektronenkonfiguration: Ar 3d[1] 4s[2] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 44.9559085
Titan English: Titanium silbrig metallisch	Symbol: Ti Number: 22 Elektronenkonfiguration: Ar 3d[2] 4s[2] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 47.8671
Vanadium English: Vanadium stahlgrau metallisch, bläulich schimmernd	Symbol: V Number: 23 Elektronenkonfiguration: Ar 3d[3] 4s[2] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 50.94151
Chrom English: Chromium silbrig metallisch	Symbol: Cr Number: 24 Elektronenkonfiguration: Ar 3d[5] 4s[1] set: transitionmetal magnetic ordering: antiferromagnetic Kristallstruktur: bcc atomic mass: 51.99616
Mangan English: Manganese silbrig metallisch (Stahlweiß)	Symbol: Mn Number: 25 Elektronenkonfiguration: Ar 3d[5] 4s[2] set: transitionmetal magnetic ordering: antiferromagnetic Kristallstruktur: bcc atomic mass: 54.9380443
Eisen English: Iron metallisch glänzend mit einem gräulichen Farbton	Symbol: Fe Number: 26 Elektronenkonfiguration: Ar 3d[6] 4s[2] set: transitionmetal magnetic ordering: ferromagnetic Kristallstruktur: bcc atomic mass: 55.8452

Cobalt English: Cobalt stahlgrauer metallisch glänzender Feststoff Nickel English: Nickel lustrous, metallic, and silver	Symbol: Co Number: 27 Elektronenkonfiguration: Ar 3d[7] 4s[2] set: transitionmetal magnetic ordering: ferromagnetic Kristallstruktur: hcp atomic mass: 58.9331944 Symbol: Ni Number: 28 Elektronenkonfiguration: Ar 3d[8] 4s[2] set: transitionmetal
with a gold tinge	Kristallstruktur: fcc atomic mass: 58.69344
Kupfer English: Copper rotbraun, metallisch	Symbol: Cu Number: 29 Elektronenkonfiguration: Ar 3d[10] 4s[1] set: transitionmetal magnetic ordering: diamagnetic Kristallstruktur: fcc atomic mass: 63.5463
Zink English: Zinc bläulich blassgrau	Symbol: Zn Number: 30 Elektronenkonfiguration: Ar 3d[10] 4s[2] set: transitionmetal magnetic ordering: diamagnetic Kristallstruktur: hcp refractive index: 1.00205 atomic mass: 65.382
Gallium English: Gallium silbrig weiß	Symbol: Ga Number: 31 Elektronenkonfiguration: Ar 3d[10] 4s[2] 4p[1] set: metal magnetic ordering: diamagnetic Kristallstruktur: orth atomic mass: 69.7231
Germanium English: Germanium gräulich weiß	Symbol: Ge Number: 32 Elektronenkonfiguration: Ar 3d[10] 4s[2] 4p[2] set: metalloid magnetic ordering: diamagnetic Kristallstruktur: dc atomic mass: 72.6308
Arsen English: Arsenic metallisch grau, gelb oder schwarz	Symbol: As Number: 33 Elektronenkonfiguration: Ar 3d[10] 4s[2] 4p[3] set: metalloid magnetic ordering: diamagnetic Kristallstruktur: rho refractive index: 1.001552 atomic mass: 74.9215956
--	--
Selen English: Selenium grau, glänzend	Symbol: Se Number: 34 Elektronenkonfiguration: Ar 3d[10] 4s[2] 4p[4] set: metalloid magnetic ordering: diamagnetic Kristallstruktur: hex refractive index: 1.000895 atomic mass: 78.9718
Brom English: Bromine rotbraun (gasförmig); rotbraun (flüssig); metallisch glänzend (fest)	Symbol: Br Number: 35 Elektronenkonfiguration: Ar 3d[10] 4s[2] 4p[5] set: halogen magnetic ordering: diamagnetic Kristallstruktur: orth refractive index: 1.001132 atomic mass: 79.90479
Krypton English: Krypton farbloses Gas	Symbol: Kr Number: 36 Elektronenkonfiguration: Ar 3d[10] 4s[2] 4p[6] set: noblegas magnetic ordering: diamagnetic Kristallstruktur: fcc refractive index: 1.000427 atomic mass: 83.7982
Rubidium English: Rubidium silbrig weiß	Symbol: Rb Number: 37 Elektronenkonfiguration: Kr 5s[1] set: alkalimetal magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 85.46783
Strontium English: Strontium silbrig weiß metallisch	Symbol: Sr Number: 38 Elektronenkonfiguration: Kr 5s[2] set: alkalineearthmetal magnetic ordering: paramagnetic Kristallstruktur: fcc atomic mass: 87.621

Yttrium English: Yttrium silbrig weiß Zirconium	Symbol: Y Number: 39 Elektronenkonfiguration: Kr 4d[1] 5s[2] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 88.905842 Symbol: Zr Number: 40 Elektronenkonfiguration: Kr 4d[2] 5s[2]
English: Zirconium silbrig weiß	set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 91.2242
Niob English: Niobium grau metallisch glänzend	Symbol: Nb Number: 41 Elektronenkonfiguration: Kr 4d[4] 5s[1] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 92.906372
Molybdän English: Molybdenum grau metallisch	Symbol: Mo Number: 42 Elektronenkonfiguration: Kr 4d[5] 5s[1] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 95.951
Technetium English: Technetium silbrig grau metallisch	Symbol: Tc Number: 43 Elektronenkonfiguration: Kr 4d[5] 5s[2] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 98.9063
Ruthenium English: Ruthenium silbrig weiß metallisch	Symbol: Ru Number: 44 Elektronenkonfiguration: Kr 4d[7] 5s[1] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 101.072

Rhodium English: Rhodium silbrig weiß metallisch	Symbol: Rh Number: 45 Elektronenkonfiguration: Kr 4d[8] 5s[1] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: fcc atomic mass: 102.905502
Palladium English: Palladium silbrig, weiß, metallisch	Symbol: Pd Number: 46 Elektronenkonfiguration: Kr 4d[10] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: fcc atomic mass: 106.421
Silber English: Silver weißglänzend, metallisch	Symbol: Ag Number: 47 Elektronenkonfiguration: Kr 4d[10] 5s[1] set: transitionmetal magnetic ordering: diamagnetic Kristallstruktur: fcc atomic mass: 107.86822
Cadmium English: Cadmium silbrig grau metallisch	Symbol: Cd Number: 48 Elektronenkonfiguration: Kr 4d[10] 5s[2] set: transitionmetal magnetic ordering: diamagnetic Kristallstruktur: hcp atomic mass: 112.4144
Indium English: Indium silbrig glänzend grau	Symbol: In Number: 49 Elektronenkonfiguration: Kr 4d[10] 5s[2] 5p[1] set: metal magnetic ordering: diamagnetic Kristallstruktur: tetr atomic mass: 114.8181
Zinn English: Tin silbrig glänzend (-Zinn), grau (-Zinn)	Symbol: Sn Number: 50 Elektronenkonfiguration: Kr 4d[10] 5s[2] 5p[2] set: metal magnetic ordering: paramagnetic Kristallstruktur: tetr atomic mass: 118.7107

Antimon English: Antimony silbrig glänzend grau	Symbol: Sb Number: 51 Elektronenkonfiguration: Kr 4d[10] 5s[2] 5p[3] set: metalloid magnetic ordering: diamagnetic Kristallstruktur: rho atomic mass: 121.7601
Tellur English: Tellurium silberweiß, metallisch glänzend	Symbol: Te Number: 52 Elektronenkonfiguration: Kr 4d[10] 5s[2] 5p[4] set: metalloid magnetic ordering: diamagnetic Kristallstruktur: hex refractive index: 1.000991 atomic mass: 127.603
Iod English: Iodine dunkel-violett (gasförmig); grauschwarz, glänzend (fest)	Symbol: I Number: 53 Elektronenkonfiguration: Kr 4d[10] 5s[2] 5p[5] set: halogen magnetic ordering: diamagnetic Kristallstruktur: orth atomic mass: 126.904473
Xenon English: Xenon farbloses Gas	Symbol: Xe Number: 54 Elektronenkonfiguration: Kr 4d[10] 5s[2] 5p[6] set: noblegas magnetic ordering: diamagnetic Kristallstruktur: fcc refractive index: 1.000702 atomic mass: 131.2936
Caesium English: Caesium goldgelb glänzend	Symbol: Cs Number: 55 Elektronenkonfiguration: Xe 6s[1] set: alkalimetal magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 132.905451966
Barium English: Barium weiß-grau metallisch	Symbol: Ba Number: 56 Elektronenkonfiguration: Xe 6s[2] set: alkalineearthmetal magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 137.3277

Lanthan English: Lanthanum silbrig weiß	Symbol: La Number: 57 Elektronenkonfiguration: Xe 5d[1] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: dhcp atomic mass: 138.905477
Cer English: Cerium silbrig weiß	Number: 58 Elektronenkonfiguration: Xe 4f[1] 5d[1] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: dhcp atomic mass: 140.1161
Praseodym English: Praseodymium silbrig weiß, gelblicher Farbton	Symbol: Pr Number: 59 Elektronenkonfiguration: Xe 4f[3] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: dhcp atomic mass: 140.907662
Neodym English: Neodymium silbrigweiß, gelblicher Farbton	Symbol: Nd Number: 60 Elektronenkonfiguration: Xe 4f[4] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: dhcp atomic mass: 144.2423
Promethium English: Promethium metallisch	Symbol: Pm Number: 61 Elektronenkonfiguration: Xe 4f[5] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: dhcp atomic mass: 146.9151
Samarium English: Samarium silbrig weiß	Symbol: Sm Number: 62 Elektronenkonfiguration: Xe 4f[6] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: rho atomic mass: 150.362

Europium English: Europium silbrig weiß Gadolinium English: Gadolinium	Symbol: Eu Number: 63 Elektronenkonfiguration: Xe 4f[7] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 151.9641 Symbol: Gd Number: 64 Elektronenkonfiguration: Xe 4f[7] 5d[1] 6s[2] set: lanthanoide
SHULLE WELD	Kristallstruktur: hcp atomic mass: 157.253
Terbium English: Terbium silbrig weiβ	Symbol: Tb Number: 65 Elektronenkonfiguration: Xe 4f[9] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 158.925352
Dysprosium English: Dysprosium silvery white	Symbol: Dy Number: 66 Elektronenkonfiguration: Xe 4f[10] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 162.5001
Holmium English: Holmium silbrig weiß	Symbol: Ho Number: 67 Elektronenkonfiguration: Xe 4f[11] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 164.930332
Erbium English: Erbium silbrig weiß	Symbol: Er Number: 68 Elektronenkonfiguration: Xe 4f[12] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 167.2593

Thulium English: Thulium silbrig grau Ytterbium English: Ytterbium silbrig weiß	Symbol: Tm Number: 69 Elektronenkonfiguration: Xe 4f[13] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 168.934222 Symbol: Yb Number: 70 Elektronenkonfiguration: Xe 4f[14] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: fcc
	atomic mass: 173.0451
Lutetium English: Lutetium silbrig weiß	Symbol: Lu Number: 71 Elektronenkonfiguration: Xe 4f[14] 5d[1] 6s[2] set: lanthanoide magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 174.96681
Hafnium English: Hafnium stahlgrau	Symbol: Hf Number: 72 Elektronenkonfiguration: Xe 4f[14] 5d[2] 6s[2] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 178.492
Tantal English: Tantalum grau	Symbol: Ta Number: 73 Elektronenkonfiguration: Xe 4f[14] 5d[3] 6s[2] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 180.947882
Wolfram English: Tungsten gräulich weiß, glänzend	Symbol: W Number: 74 Elektronenkonfiguration: Xe 4f[14] 5d[4] 6s[2] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 183.841

Rhenium English: Rhenium gräulich weiß Osmium English: Osmium bläulich grau	Symbol: Re Number: 75 Elektronenkonfiguration: Xe 4f[14] 5d[5] 6s[2] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 186.2071 Symbol: Os Number: 76 Elektronenkonfiguration: Xe 4f[14] 5d[6] 6s[2] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: hcp atomic mass: 190.233
	avonno mass. 190.200
Iridium English: Iridium silbrig weiß	Symbol: Ir Number: 77 Elektronenkonfiguration: Xe 4f[14] 5d[7] 6s[2] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: fcc atomic mass: 192.2173
Platin English: Platinum grau-weiß	Symbol: Pt Number: 78 Elektronenkonfiguration: Xe 4f[14] 5d[9] 6s[1] set: transitionmetal magnetic ordering: paramagnetic Kristallstruktur: fcc atomic mass: 195.0849
Gold English: Gold metallisch gelb	Symbol: Au Number: 79 Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[1] set: transitionmetal magnetic ordering: diamagnetic Kristallstruktur: fcc atomic mass: 196.9665695
Quecksilber English: Mercury silbrig weiß	Symbol: Hg Number: 80 Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] set: transitionmetal magnetic ordering: diamagnetic Kristallstruktur: rho refractive index: 1.000933 atomic mass: 200.5923

Thallium English: Thallium silbrig weiß	Symbol: Tl Number: 81 Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] 6p[1] set: metal magnetic ordering: diamagnetic Kristallstruktur: hcp atomic mass: 204.38204
Blei English: Lead bläulich weiß	Symbol: Pb Number: 82 Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] 6p[2] set: metal magnetic ordering: diamagnetic Kristallstruktur: fcc atomic mass: 207.21
Bismut English: Bismuth glänzend silberweiß	Symbol: Bi Number: 83 Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] 6p[3] set: metal magnetic ordering: diamagnetic Kristallstruktur: rho atomic mass: 208.980401
Polonium English: Polonium silbrig	Symbol: Po Number: 84 Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] 6p[4] set: metal magnetic ordering: nonmagnetic Kristallstruktur: sc atomic mass: 209.98
Astat English: Astatine metallisch	Symbol: At Number: 85 Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] 6p[5] Kristallstruktur: fcc atomic mass: 209.9871 set: halogen
Radon English: Radon farbloses Gas	Symbol: Rn Number: 86 Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] 6p[6] set: noblegas magnetic ordering: nonmagnetic Kristallstruktur: fcc atomic mass: 222

Francium English: Francium	Symbol: Fr Number: 87 Elektronenkonfiguration: Rn 7s[1] set: alkalimetal magnetic ordering: paramagnetic Kristallstruktur: bcc atomic mass: 223.0197
Radium English: Radium silbrig-weiß-metallisch	Symbol: Ra Number: 88 Elektronenkonfiguration: Rn 7s[2] set: alkalineearthmetal magnetic ordering: nonmagnetic Kristallstruktur: bcc atomic mass: 226.0254
Actinium English: Actinium silbrig	Symbol: Ac Number: 89 Elektronenkonfiguration: Rn 6d[1] 7s[2] Kristallstruktur: fcc atomic mass: 227.0278 set: actinoide
Thorium English: Thorium silbrig weiß	Symbol: Th Number: 90 Elektronenkonfiguration: Rn 6d[2] 7s[2] set: actinoide magnetic ordering: paramagnetic Kristallstruktur: fcc atomic mass: 232.03774
Protactinium English: Protactinium hell, silbrig, metallisch glänzend	Symbol: Pa Number: 91 Elektronenkonfiguration: Rn 5f[2] 6d[1] 7s[2] set: actinoide magnetic ordering: paramagnetic Kristallstruktur: tetr atomic mass: 231.035882
Uran English: Uranium silberweiß	Symbol: U Number: 92 Elektronenkonfiguration: Rn 5f[3] 6d[1] 7s[2] set: actinoide magnetic ordering: paramagnetic Kristallstruktur: orth atomic mass: 238.028913

Neptunium English: Neptunium silbrig	Symbol: Np Number: 93 Elektronenkonfiguration: Rn 5f[4] 6d[1] 7s[2] set: actinoide magnetic ordering: paramagnetic Kristallstruktur: orth atomic mass: 237.0482
Plutonium English: Plutonium silbriges Metall	Symbol: Pu Number: 94 Elektronenkonfiguration: Rn 5f[6] 7s[2] set: actinoide magnetic ordering: paramagnetic Kristallstruktur: mon atomic mass: 244.0642
Americium English: Americium silbrig-weißes Metall	Symbol: Am Number: 95 Elektronenkonfiguration: Rn 5f[7] 7s[2] set: actinoide magnetic ordering: paramagnetic Kristallstruktur: dhcp atomic mass: 243.061375
Curium English: Curium silbrig-weißes Metall	Symbol: Cm Number: 96 Elektronenkonfiguration: Rn 5f[7] 6d[1] 7s[2] set: actinoide magnetic ordering: antiferromagnetic Kristallstruktur: dhcp atomic mass: 247.0703
Berkelium English: Berkelium silberweiß	Symbol: Bk Number: 97 Elektronenkonfiguration: Rn 5f[9] 7s[2] set: actinoide magnetic ordering: paramagnetic Kristallstruktur: dhcp atomic mass: 247
Californium English: Californium silbriges Metall	Symbol: Cf Number: 98 Elektronenkonfiguration: Rn 5f[10] 7s[2] Kristallstruktur: dhcp atomic mass: 251 set: actinoide

Einsteinium English: Einsteinium	Symbol: Es Number: 99 Elektronenkonfiguration: Rn 5f[11] 7s[2] set: actinoide magnetic ordering: paramagnetic Kristallstruktur: fcc atomic mass: 252
Fermium English: Fermium	Number: 100 Elektronenkonfiguration: Rn 5f[12] 7s[2] Kristallstruktur: fcc atomic mass: 257.0951 set: actinoide
Mendelevium English: Mendelevium	Symbol: Md Number: 101 Elektronenkonfiguration: Rn 5f[13] 7s[2] Kristallstruktur: fcc atomic mass: 258 set: actinoide
Nobelium English: Nobelium	Symbol: No Number: 102 Elektronenkonfiguration: Rn 5f[14] 7s[2] Kristallstruktur: fcc atomic mass: 259 set: actinoide
Lawrencium English: Lawrencium	Symbol: Lr Number: 103 Elektronenkonfiguration: Rn 5f[14] 7s[2] 7p[1] Kristallstruktur: hcp atomic mass: 266 set: actinoide
Rutherfordium English: Rutherfordium unbekannt, vermutlich silber-weiß oder grau metallisch	Symbol: Rf Number: 104 Elektronenkonfiguration: Rn 5f[14] 6d[2] 7s[2] Kristallstruktur: hcp atomic mass: 261.1087 set: transitionmetal
Dubnium English: Dubnium	Symbol: Db Number: 105 Elektronenkonfiguration: Rn 5f[14] 6d[3] 7s[2] Kristallstruktur: bcc atomic mass: 262.1138 set: transitionmetal

Seaborgium English: Seaborgium	Symbol: Sg Number: 106 Elektronenkonfiguration: Rn 5f[14] 6d[4] 7s[2] Kristallstruktur: bcc atomic mass: 263.1182 set: transitionmetal Symbol: Bh
Bohrium English: Bohrium	Number: 107 Elektronenkonfiguration: Rn 5f[14] 6d[5] 7s[2] Kristallstruktur: hcp atomic mass: 262.1229 set: transitionmetal
Hassium English: Hassium	Symbol: Hs Number: 108 Elektronenkonfiguration: Rn 5f[14] 6d[6] 7s[2] Kristallstruktur: hcp atomic mass: 265.269 set: transitionmetal
Meitnerium English: Meitnerium	Symbol: Mt Number: 109 Elektronenkonfiguration: Rn 5f[14] 6d[7] 7s[2] set: unknown magnetic ordering: paramagnetic Kristallstruktur: fcc atomic mass: 268
Darmstadtium English: Darmstadtium	Symbol: Ds Number: 110 Elektronenkonfiguration: Rn 5f[14] 6d[8] 7s[2] Kristallstruktur: bcc atomic mass: 281 set: unknown
Roentgenium English: Roentgenium	Symbol: Rg Number: 111 Elektronenkonfiguration: Rn 5f[14] 6d[9] 7s[2] Kristallstruktur: bcc atomic mass: 280 set: unknown
Copernicium English: Copernicium	Symbol: Cn Number: 112 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] Kristallstruktur: bcc atomic mass: 277 set: unknown

Nihonium English: Nihonium	Symbol: Nh Number: 113 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] 7p[1] Kristallstruktur: hcp atomic mass: 287 set: unknown
Flerovium English: Flerovium	Symbol: Fl Number: 114 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] 7p[2] Kristallstruktur: fcc atomic mass: 289 set: unknown
Moscovium English: Moscovium	Symbol: Mc Number: 115 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] 7p[3] set: unknown atomic mass: 288
Livermorium English: Livermorium	Symbol: Lv Number: 116 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] 7p[4] set: unknown atomic mass: 293
Tenness English: Tennessine	Symbol: Ts Number: 117 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] 7p[5] set: unknown atomic mass: 292
Oganesson English: Oganesson	Symbol: Og Number: 118 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] 7p[6] Kristallstruktur: fcc atomic mass: 294 set: unknown