Formelsammlung

Matthias Quintern

February 17, 2025

Contents

Ι	Mathematics	1
1	Linear algebra 1.1 Matrix basics 1.1.1 Transposed matrix 1.2 Determinant 1.3 Misc 1.4 Eigenvalues	1 1 1 2 2
2	Geometry 2.1 Trigonometry	3 3 3 4
3	Calculus 3.1 Fourier analysis	$\begin{array}{c} 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 7 \\ 7 \end{array}$
4	 Probability theory 4.1 Distributions	8 9 12 12 12 13 13
II	Mechanics	15
5	Newton	15
6	Misc	15

7	Lagrange formalism	15
III	Statistichal Mechanics	16
8	Entropy	16
IV	Thermodynamics	17
9	Processes 9.1 Irreversible gas expansion (Gay-Lussac experiment)	17 17
10	Phase transitions 10.0.1 Osmosis 10.1 Material properties	17 18 18
11	Laws of thermodynamics 11.1 Zeroeth law	19 19 19 19 19
12	Ensembles 12.1 Potentials	20 21
13	Ideal gas 13.0.1 Molecule gas	22 22
14	Real gas 14.1 Virial expansion 14.2 Van der Waals equation	23 23 24
15	Ideal quantum gas 15.1 Bosons	24 26 26 27
\mathbf{V}	Electrodynamics	28
16	Electric field	28
17	Magnetic field 17.1 Magnetic materials	29 30
18	Electromagnetism 18.1 Maxwell-Equations 18.1.1 Gauges 18.2 Induction	31 31 32 32
19	Optics	32
20	Hall-Effect 20.1 Classical Hall-Effect 20.2 Integer quantum hall effect	33 34 34

21 Dipole-stuff	34
22 misc	35
VI Quantum Mechanics	36
23 Basics 23.1 Operators 23.1.1 Measurement 23.1.2 Pauli matrices 23.2 Probability theory 23.3 Commutator	36 36 36 36 37 37
24 Schrödinger equation 24.1 Time evolution 24.1.1 Schrödinger- and Heisenberg-pictures 24.1.2 Ehrenfest theorem	37 38 38 39
25 Pertubation theory	39
26 Harmonic oscillator 26.1 Creation and Annihilation operators / Ladder operators 26.1.1 Harmonischer Oszillator	40 40 41
27 Angular momentum 27.1 Aharanov-Bohm effect	41 41
28 Periodic potentials	41
29 Symmetries 29.1 Time-reversal symmetry	41 41
30 Two-level systems (TLS)	42
31 Other	42
32 Hydrogen Atom 32.1 Corrections 32.1.1 Darwin term 32.1.2 Spin-orbit coupling (LS-coupling) 32.1.3 Fine-structure 32.1.4 Lamb-shift 32.1.5 Hyperfine structure 32.2 Effects in magnetic field 32.3 misc	42 44 44 44 44 44 45 45
VII Condensed matter physics	46
33 Lattice vibrations 33.1 Debye model	46 47

34 Crystals	47
34.1 Bravais lattice	48
34.2 Reciprocal lattice	50
34.3 Scattering processes	50
34.4 Lattices	51
	F 1
25.1. 2D electron gas	51
25.2 1D electron gas / quantum mine	02 50
25.2 D electron gas / quantum wife	52 59
55.5 OD election gas / quantum dot	
36 Charge transport	52
36.1 Drude model	52
36.2 Sommerfeld model	53
36.3 Boltzmann-transport	53
36.4 misc	53
37 Superconductivity	54
37.1 London equations	54
37.2 Ginzburg-Landau Theory (GLAG)	54
37.3 Microscopic theory	55
37.3.1 BCS-Theory	55
38 Semiconductors	56
38.1 Devices and junctions	56
38.2 Excitons	
50.2 Extitutions	01
39 Band theory	58
39.1 Hybrid orbitals	58
40 Diffusion	58
41 mice	50
41 misc	59
42 Measurement techniques	59
42.1 Raman spectroscopy	59
42.2 ARPES	60
42.3 Scanning probe microscopy SPM	60
43 Fabrication techniques	61
43.1 Epitaxy	61
	01
44 Topological Materials	61
44.1 Berry phase / Geometric phase	01
45 Material physics	62
	•=
VIII Particle physics	64
IV Orestern Commenting	05
IA Quantum Computing	65
46 Qubits	65
	00
47 Gates	65

48	Superconducting qubits	65
	48.1 Building blocks	65
	48.1.1 Josephson Junction	65
	48.1.2 SQUID	66
	48.2 Josephson Qubit??	66
	48.3 Cooper Pair Box (CPB) qubit	67
	48.4 Transmon qubit	67
	48.4.1 Tunable Transmon qubit	68
	48.5 Phase qubit	68
	48.6 Flux qubit	68
	48.7 Fluxonium qubit	69
49	Two-level system	69
1 0	49.1 Bamsey interferometry	70
		••
50	Noise and decoherence	70
X	Computational Physics	71
51	Quantum many-body physics	71
	51.1 Quantum many-body models	71
	51.2 Methods	71
	51.2.1 Quantum Monte-Carlo	(1 71
	51.5 Importance sampling	(1 71
	51.4 Matrix product states	11
52	Electronic structure theory	71
	52.1 Tight-binding	71
	52.2 Density functional theory (DFT)	72
	52.2.1 Hartree-Fock	72
	52.2.2 Hohenberg-Kohn Theorems	72
	52.2.3 Kohn-Sham DFT	73
	52.2.4 Exchange-Correlation functionals	73
	52.2.5 Basis sets	74
	52.2.6 Pseudo-Potential method	74
53	Atomic dynamics	75
00	53.1 Born-Oppenheimer Approximation	75
	53.2 Structure optimization	76
	53.3 Lattice vibrations	76
	53.3.1 Finite difference method	77
	53.3.2 Anharmonic approaches	77
	53.4 Molecular Dynamics	77
	53.4.1 Ab-initio molecular dynamics	78
	53.4.2 Force-field MD	78
	53.4.3 Integration schemes	78
	53.4.4 Thermostats and barostats	79
	53.4.5 Calculating observables	79
54	Machine-Learning	80
	54.1 Performance metrics	80
	54.2 Regression	80
	54.2.1 Linear Regression	80
	04.2.2 Kldge regression	-80

54.3 Gradient descent	80
XI Chemistry	81
55 Periodic table	81
 56 Electrochemistry 56.1 Electrochemical cell 56.2 Ionic conduction in electrolytes 56.3 Kinetics 56.3.1 Mass transport 56.4 Techniques 56.4.1 Reference electrodes 56.4.2 Cyclic voltammetry 56.4.3 Rotating disk electrodes 	 81 82 83 85 85 87 87 88 88
57 Thermoelectricity	89
58 misc	90
XII Appendix	91
 59 Physical quantities 59.1 SI quantities 59.2 Mechanics 59.3 Thermodynamics 59.4 Electrodynamics 59.5 Others 	 91 91 91 92 92 92
60 Constants	92
61 List of elements	93

Part I Mathematics

1 Linear algebra

1.1 Matrix basics

Matrix-matrix product as sum	$C_{ij} = \sum_{k} A_{ik} B_{kj} \tag{1}$	
Matrix-vector product as sum	$\vec{c}_i = \sum_j A_{ij} \vec{b}_j \tag{2}$	
Symmetric matrix	$A^{\mathrm{T}} = A \tag{3}$	
Unitary matrix	$U^{\dagger}U = 1 \tag{4}$	

1.1.1 Transposed matrix

Sum	$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}} $ (5)	
Product	$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}} $ (6)	
Inverse	$(A^{-1})^{\mathrm{T}} = (A^{\mathrm{T}})^{-1} $ (7)]
Exponential	$exp(A^{\mathrm{T}}) = (exp A)^{\mathrm{T}} $ (8) $ln(A^{\mathrm{T}}) = (ln A)^{\mathrm{T}} $ (9)	

1.2 Determinant

2x2 matrix	$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a d - c b$	(10)
3x3 matrix (Rule of Sarrus)	$det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a e i + b f g + c d h - g e c - h f a - i d b$	(11)
Leibniz formla	$\det(A) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$	(12)
Product	$\det(AB) = \det(A)\det(B)$	(13)

Inverse	$\det(A^{-1}) = \det(A)^{-1}$	(14)
Transposed	$\det(A^{\mathrm{T}}) = \det(A)$	(15)

1.3 Misc

Normal equation Solves a linear regression problem	$\underline{\theta} = (\underline{X}^{\mathrm{T}}\underline{X})^{-1}\underline{X}^{\mathrm{T}}\vec{y} $ (16) $\underline{\theta} \text{ hypothesis / weight matrix, } \underline{X} \text{ design matrix, } \vec{y} \text{ output vector}$	
Inverse 2×2 matrix	$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} $ (17)	
Singular value decomposition	$A = U\Lambda V \tag{18}$	
Factorization of complex matrices through rotating \rightarrow rescaling \rightarrow rotation.	A: $m \times n$ matrix, U: $m \times m$ unitary matrix, Λ : $m \times n$ rectangular diagonal matrix with non-negative numbers on the diagonal, V: $n \times n$ unitary matrix	
2D rotation matrix	$R = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} $ (19)	
	$R_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} $ (20)	
3D rotation matrices	$R_y = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} $ (21)	
	$R_{z} = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} $ (22)	
	$R^{\mathrm{T}} = R^{-1} \tag{23}$	
Properites of rotation matrices	$det R = 1 (24)$ $R \in SO(n) (25)$	
	n dimension, SO(n) special othogonal group	

1.4 Eigenvalues

Eigenvalue equation

 $Av = \lambda v \tag{26}$

 λ eigenvalue, v eigenvector

Characteristic polynomial Zeros are the eigenvalues of A	$\chi_A = \det(A - \lambda \mathbb{1}) \stackrel{!}{=} 0 \tag{2}$	27)
Kramer's theorem If H is invariant under T and $ \psi\rangle$ is an eigenstate of H , then $T \psi\rangle$ is also am eigenstate of H	$THT^{\dagger} = H \wedge H \psi\rangle = E \psi\rangle \implies HT \psi\rangle = ET \psi\rangle $ (2)	28)

$$= V\Lambda V^{-1} \tag{29}$$

Eigendecomposition

A diagonalizable, columns of V are eigenvectors v_i , Λ diagonal matrix with eigenvalues λ_i on the diagonal

A

 $\operatorname{TODO:Jordan}$ stuff, block diagonal matrices, permutations, skalar product lapace scher entwicklungssatz maybe, cramers rule

2 Geometry

2.1 Trigonometry

Exponential function	$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$	(30)
Sine	$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n+1)}}{(2n+1)!}$	(31)
	$=\frac{e^{ix}-e^{-ix}}{2i}$	(32)
Cosine	$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n)}}{(2n)!}$	(33)
	$=\frac{e^{ix}+e^{-ix}}{2}$	(34)
Hyperbolic sine	$\sinh(x) = -i\sin ix$	(35)
	$=\frac{e^x-e^{-x}}{2}$	(36)
Hyperbolic cosine	$\cosh(x) = \cos ix$	(37)
	$=\frac{e^x+e^{-x}}{2}$	(38)

2.2 Various theorems

Hypthenuse in the unit circle
$$1 = \sin^2 x + \cos^2 x \tag{39}$$

Addition theorems	$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$ $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$ $\tan(x \pm y) = \frac{\sin(x \pm y)}{\cos(x \pm y)} = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$	 (40) (41) (42)
Double angle	$\sin 2x = 2\sin x \cos x$ $\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x$ $\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	(43)(44)(45)
Other	$\cos x + b \sin x = \sqrt{1 + b^2} \cos(x - \theta)$ $\tan \theta = b$	(46)

2.2.1 Table of values

Degree	0°	30°	45°	60°	90°	120°	180°	270°
Radian	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\sqrt{\pi}}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	$\frac{3\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	0	-1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	-1	0
$\tan(x)$	0	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	∞	$-\sqrt{3}$	0	∞

3 Calculus

3.1 Fourier analysis

3.1.1 Fourier series

Fourier series Complex representation	$f(t) = \sum_{k=-\infty}^{\infty} c_k \exp\left(\frac{2\pi i k t}{T}\right)$ $f \in \mathcal{L}^2(\mathbb{R}, \mathbb{C}) \text{ T-periodic}$	(47)
Fourier coefficients Complex representation	$c_{k} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \exp\left(-\frac{2\pi i}{T}kt\right) dt \text{for } k \ge 0$ $c_{-k} = \overline{c_{k}} \text{if } f \text{ real}$	(48) (49)
Fourier series Sine and cosine representation	$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi}{T}kt\right) + b_k \sin\left(\frac{2\pi}{T}kt\right) \right)$ $f \in \mathcal{L}^2(\mathbb{R}, \mathbb{C}) \ T\text{-periodic}$	(50)

Fourier coefficients
Sine and cosine representation
If f has point symmetry:

$$a_{k>0} = 0$$
, if f has axial
symmetry: $b_k = 0$

$$a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(-\frac{2\pi}{T}kt\right) dt \quad \text{for } k \ge 0 \quad (51)$$

$$b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(-\frac{2\pi}{T}kt\right) dt \quad \text{for } k \ge 1 \quad (52)$$

$$a_k = c_k + c_{-k} \quad \text{for } k \ge 0 \quad (53)$$

$$b_k = i(c_k - c_{-k}) \quad \text{for } k \ge 1 \quad (54)$$

TODO:cleanup

3.1.2 Fourier transformation

Fourier transform

$$\hat{f}(k) \coloneqq \frac{1}{\sqrt{2\pi^n}} \int_{\mathbb{R}^n} e^{-ikx} f(x) dx$$

$$\hat{f} \colon \mathbb{R}^n \mapsto \mathbb{C}, \ \forall f \in L^1(\mathbb{R}^n)$$
(55)

for $f \in L^1(\mathbb{R}^n)$:

i)
$$f \mapsto \hat{f}$$
 linear in f
ii) $g(x) = f(x-h) \Rightarrow \hat{g}(k) = e^{-ikn} \hat{f}(k)$
iii) $g(x) = e^{ih \cdot x} f(x) \Rightarrow \hat{g}(k) = \hat{f}(k-h)$
iv) $g(\lambda) = f\left(\frac{x}{\lambda}\right) \Rightarrow \hat{g}(k)\lambda^n \hat{f}(\lambda k)$

3.1.3 Convolution

 $\label{eq:convolution} {\rm Convolution} \ {\rm is} \ {\rm commutative}, \ {\rm associative} \ {\rm and} \ {\rm distributive}.$

Definition	$(f * g)(t) = f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) \mathrm{d}\tau$	(56)
Notation	$f(t) * g(t - t_0) = (f * g)(t - t_0)$ $f(t - t_0) * g(t - t_0) = (f * g)(t - 2t_0)$	(57) (58)
Commutativity	$f \ast g = g \ast f$	(59)
Associativity	$(f \star g) \star h = f \star (g \star h)$	(60)
Distributivity	f * (g + h) = f * g + f * h	(61)
Complex conjugate	$(f \star g)^* = f^* \star g^*$	(62)

3.2 Misc

Stirling approximation
$$\ln(N!) \approx N \ln(N) - N + \mathcal{O}(() \ln(N))$$
 (63)

Error function $\operatorname{erf} : \mathbb{C} \to \mathbb{C}$ and $\operatorname{complementary error function}$ erfc	$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ $\operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$ $= \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt$	(64)(65)(66)
Dirac-Delta of a function	$\delta(f(x)) = \frac{\delta(x - x_0)}{ g'(x_0) }$ $g(x_0) = 0$	(67)
Geometric series	$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$ $ q < 1$	(68)

3.3 Logarithm

	$\log(xy) = \log(x) + \log(y)$ $\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$	(69) (70)
Logarithm identities	$\log\left(x^d\right) = d\log(x)$	(71)
	$\log\left(\sqrt[y]{x}\right) = \frac{\log(x)}{y}$	(72)
	$x^{\log(y)} = y^{\log(x)}$	(73)
		(= 4)

Integral of natural logarithm

$$\int \ln(x) \, dx = x \left(\ln(x) - 1\right) \tag{74}$$

$$\int \ln(ax+b) \, dx = \frac{ax+b}{a} \left(\ln(ax+b) - 1\right) \tag{75}$$

3.4 Vector calculus

Laplace operator $\Delta = \vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$	(76)
--	------

3.4.1 Spherical symmetry

Spherical coordinates	$x = r \sin \phi, \cos \theta$ $y = r \cos \phi, \cos \theta$ $x = r \sin \theta$	(77) (78) (70)
	$2 - 7 \sin \theta$	(19)

3.5 Integrals

Partial integration
$$\int_{a}^{b} f'(x) \cdot g(x) dx = [f(x) \cdot g(x)]_{a}^{b} - \int_{a}^{b} f(x) \cdot g'(x) dx \quad (81)$$
Integration by substitution
$$\int_{a}^{b} f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(z) dz \quad (82)$$
Gauss's theorem / Divergence
theorem
Divergence in a volume equals
the flux through the surface
$$\iint_{V} \vec{\nabla} \cdot \vec{F} dV = \iint_{A} \vec{F} \cdot d\vec{A} \quad (83)$$

$$A = \partial V$$
Stokes's theorem
$$\int_{A} (\vec{\nabla} \times \vec{F}) \cdot d\vec{S} = \oint_{S} \vec{F} \cdot d\vec{r} \quad (84)$$

$$S = \partial A$$

3.5.1 List of common integrals

cal:log:integral

A	$\int \frac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arcsin x$	(85)
Arcsine, arccosine, arctangent	$\int -\frac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arccos x$	(86)
	$\int \frac{1}{x^2 + 1} \mathrm{d}x = \arctan x$	(87)
	$\int \frac{1}{\sqrt{x^2 + 1}} \mathrm{d}x = \operatorname{arsinh} x$	(88)
Arcsinh arccosh arctanh	$\int \frac{1}{\sqrt{x^2 - 1}} \mathrm{d}x = \operatorname{arcosh} x \text{for } (x > 1)$	(89)
Artshin, arccosh, arctain	$\int \frac{1}{1-x^2} \mathrm{d}x = \operatorname{artanh} x \text{for } (x < 1)$	(90)
	$\int \frac{1}{1-x^2} \mathrm{d}x = \operatorname{arcoth} x \text{for } (x > 1)$	(91)
	_	
Integration in spherical coordinates	$\iiint \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_0^\infty \int_0^{2\pi} \int_0^\pi \mathrm{d}r \mathrm{d}\phi \mathrm{d}\theta r^2 \sin\theta$	(92)
Riemann Zeta Function	$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1-2^{(1-s)})\Gamma(s)} \int_0^\infty \mathrm{d}\eta \frac{\eta^{(s-1)}}{e^{\eta}+1}$	(93)
		(0, 1)
	1(n) = (n-1)!	(94)
Gamma function	$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$	(95)
	$\Gamma(z+1) = z\Gamma(z)$	(96)
Upper incomplete gamma	$\int \infty i s^{-1} -t t$	(07)
function	$\Gamma(s,x) = \int_x -\delta t^{s-1} e^{-s} dt$	(97)

Lower incomplete gamma function	$\gamma(s,x) = \int_0^x t^{s-1} e^{-t} dt$	(98)
Beta function Complete beta function	$B(z_1, z_2) = \int_0^1 t^{z_1 - 1} (1 - t)^{z_2 - 1} dt$ $B(z_1, z_2) = \frac{\Gamma(z_1)\Gamma(z_2)}{\Gamma(z_1 + z_2)}$	(99) (100)
Incomplete beta function Complete beta function	$B(x; z_1, z_2) = \int_0^x t^{z_1 - 1} (1 - t)^{z_2 - 1} dt$	(101)

TODO: differential equation solutions

4 Probability theory

Mean Expectation value	$\langle x \rangle = \int w(x) x \mathrm{d}x$	(102)
Variance Square of the Standard deviation	$\sigma^{2} = (\Delta \hat{x})^{2} = \langle \hat{x}^{2} \rangle - \langle \hat{x} \rangle^{2} = \langle (x - \langle x \rangle)^{2} \rangle$	(103)
Covariance	$cov(x,y) = \sigma(x,y) = \sigma_{XY} = \langle (x - \langle x \rangle) (y - \langle y \rangle) \rangle$	(104)
Standard deviation	$\sigma = \sqrt{\sigma^2} = \sqrt{(\Delta x)^2}$	(105)
Median Value separating lower half from top half	$med(x) = \begin{cases} \frac{x_{(n+1)/2}}{\frac{x_{(n/2)} + x_{((n/2)+1)}}{2}} & n \text{ even} \\ x \text{ dataset with } n \text{ elements} \end{cases}$	(106)
Probability density function Random variable has density f. The integral gives the probability of X taking a value $x \in [a, b]$.	$P([a,b]) \coloneqq \int_{a}^{b} f(x) dx$ f normalized: $\int_{-\infty}^{\infty} f(x) dx = 1$	(107)
Cumulative distribution function	$F(x) = \int_{-\infty}^{x} f(t) dt$ f probability density function	(108)
Probability mass function Probability p that discrete random variable X has exact value x	$p_X(x) = P(X = x)$ P probability measure	(109)

Autocorrelation Correlation of f to itself at an earlier point in time, C is a covariance function	$C_A(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t+\tau) f(t) dt)$ $= \langle f(t+\tau) \cdot f(t) \rangle$ $\tau \text{ lag-time}$	(110) (111)
Binomial coefficient		

Dinomai coemcient		-
Number of possibilitites of	$\binom{n}{2}$ $n!$ (112)	
choosing k objects out of n	$\binom{k}{k} = \frac{k!(n-k)!}{k!(n-k)!} \tag{112}$	
objects		1

4.1 Distributions

4.1.1 Continuous probability distributions

$\mu=0,\,\sigma^2=1$ $\mu \in \mathbb{R}, \quad \sigma^2 \in \mathbb{R}$ parameters $\mu = 0, \, \sigma^2 = 0.2$ 0.8 $\mu = 0, \, \sigma^2 = 5$ $x \in \mathbb{R}$ $\operatorname{support}$ $\mu = -2, \, \sigma^2 = 2$ 0.6 1 $(x-\mu)$ $\sqrt{2\pi\sigma^2} \exp$ pdf $2\sigma^2$ Юд 0.4 $\frac{1}{2}$ x - μ 1 + erf cdf $\overline{2\sigma}$ mean μ 0.2median μ 0.0 σ^2 variance 2 -4-24 0 x

Gauß/Normal distribution

Density function of the	1 1 2	
standard normal distribution	$\varphi(x) = \frac{1}{\sqrt{2}} e^{-\frac{1}{2}x^2}$ (113)	5)
$\mu = 0, \ \sigma = 1$	$\sqrt{2\pi}$	

Cauchys / Lorentz distribution : Also known as Cauchy-Lorentz distribution, Lorentz(ian) function, Breit-Wigner distribution.

parameters	$x_0 \in \mathbb{R}, \gamma \in \mathbb{R}$	
support	$x \in \mathbb{R}$	
pdf	$\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}$	
cdf	$\frac{1}{\pi} \arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}$	
mean	undefined	
median	x_0	
variance	undefined	

Maxwell-Boltzmann distribution

Gamma Distribution : with λ parameter

 Γ math:cal:integral:list:gamma, γ Lower incomplete gamma function

parameters	$\alpha \in \mathbb{R}, \beta \in \mathbb{R}$
support	$x \in [0,1]$
pdf	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha,\beta)}$
cdf	$\frac{\mathrm{B}(x;\alpha,\beta)}{\mathrm{B}(\alpha,\beta)}$
mean	$\frac{\alpha}{\alpha + \beta}$
variance	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

 $\alpha>0,\lambda>0$

 $x \in (0, 1)$

 λ^{lpha}

 $\frac{\overline{\Gamma(\alpha)x^{\alpha-1}\,\mathrm{e}^{-\lambda x}}}{1}$

 $\frac{\overline{\Gamma(\alpha)\gamma(\alpha,\lambda x)}}{\alpha}$

 $\overline{\lambda}$

 α

 $\overline{\lambda^2}$

4.1.2 Discrete probability distributions

Binomial distribution

For the number of trials going to infinity $(n \to \infty)$, the binomial distribution converges to the poisson distribution

parameters	$n \in \mathbb{Z}, p \in [0,1], q = 1 - p$
support	$k \in \{0, 1, \dots, n\}$
pmf	$\binom{n}{k}p^kq^{n-k}$
mean	np
median	$\lfloor np \rfloor$ or $\lceil np \rceil$
variance	npq = np(1-p)

Poisson distribution

4.2 Central limit theorem

Suppose X_1, X_2, \ldots is a sequence of independent and identically distributed random variables with $\langle X_i \rangle = \mu$ and $(\Delta X_i)^2 = \sigma^2 < \infty$. As N approaches infinity, the random variables $\sqrt{N}(\bar{X}_N - \mu)$ converge to a normal distribution $\mathcal{N}(0, \sigma^2)$.

That means that the variance scales with $\frac{1}{\sqrt{N}}$ and statements become accurate for large N.

4.3 Propagation of uncertainty / error

Generalized error propagation

$$V_y = J(x) \cdot V_x \cdot J^{\mathrm{T}}(x) \tag{114}$$

V Covariance matrix, J math:cal:jacobi-matrix

Propagation of uncorrelated errors Linear approximation	$u_y = \sqrt{\sum_i \left(\frac{\partial y}{\partial x_i} \cdot u_i\right)^2}$	(115)
Weight Variance is a possible choice for a weight	$w_i = \frac{1}{\sigma_i^2}$ σ Variance	(116)
Weighted mean	$\overline{x} = \frac{\sum_{i} (x_{i}w_{i})}{\sum_{i} w_{i}}$ w_{i} Weight	(117)
Variance of weighted mean	$\sigma_{\overline{x}}^2 = \frac{1}{\sum_i w_i}$ w_i Weight	(118)

4.4 Maximum likelihood estimation

Likelihood function Likelihood of observing x when parameter is θ in general not normalized!	$L: \Theta \to [0, 1], \theta \mapsto \rho(x \theta)$ (119)	
	ρ Probability density function $x \mapsto \rho(x \theta)$ depending on parameter θ , Θ parameter space	
Likelihood function for independent and identically distributed	$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) $ (120) $x_i \ n \text{ random variables, } \rho \text{ Probability density function } x \mapsto$	
random variables	$\rho(x \theta)$ depending on parameter θ	1
Maximum likelihood estimate	$\theta_{\rm ML} = \underset{\theta}{\arg\max} L(\theta) \tag{121}$	
(MLE) Paramater for which outcome is most likely	$= \underset{\theta}{\arg\max\log\left(L(\theta)\right)} $ (122)	
	L pt:mle:likelihood, θ parameter of a Probability density function	

4.5 Bayesian probability theory

Prior distribution Expected distribution before conducting the experiment	p(heta) heta parameter	(123)
Evidence	$p(\mathcal{D}) = \int \mathrm{d}\theta p(\mathcal{D} \theta) p(\theta)$	(124)
	$p(\mathcal{D} \theta)$ Likelihood function, $p(\theta)$ Prior distribution, \mathcal{D} set	9 data

Bayes' theorem	$p(\theta \mathcal{D}) = \frac{p(\mathcal{D} \theta) p(\theta)}{p(\mathcal{D})}$ $p(\theta \mathcal{D}) \text{ posterior distribution, } p(\mathcal{D} \theta) \text{ Likelihood f}$ $p(\theta) \text{ Prior distribution, } p(\mathcal{D}) \text{ Evidence, } \mathcal{D} \text{ data set}$	(125) function,
Maximum a posterior estimation (MAP)	$\theta_{\text{MAP}} = rg\max_{\theta} p(\theta \mathcal{D}) = rg\max_{\theta} p(\mathcal{D} \theta) p(\theta)$	(126)

Part II Mechanics

5 Newton

Newton's laws	 A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force <i>F</i> = m · <i>ā</i> If two bodies exert forces on each other, these force have the same magnitude but opposite directions <i>F</i>_{A→B} = -<i>F</i>_{B→A}
---------------	---

6 Misc

Hooke's law

$F = D\Delta l$	(127)
F Force, D Spring constant, Δl spring length	

 $\mathcal{L} =$

7 Lagrange formalism

The Lagrange formalism is often the most simple approach the get the equations of motion, because with suitable generalied coordinates obtaining the Lagrange function is often relatively easy. The generalized coordinates are choosen so that the cronstraints are automatically fullfilled. For

example, the generalized coordinate for a 2D pendelum is $q = \varphi$, with $\vec{x} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$.

$$T - V \tag{128}$$

Lagrange function

 ${\cal T}$ kinetic energy, V potential energy

Lagrange equations (2nd type)	$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial\mathcal{L}}{\partial\dot{q_i}} - \frac{\partial\mathcal{L}}{\partial q_i} = 0$ q generalized coordinates	(129)

Canocial Momentum	$p = \frac{\partial \mathcal{L}}{\partial \dot{q}} \tag{130}$	
-------------------	---	--

Hamiltonian Hamiltonian can be derived from the Lagrangian using a Legendre transformation $H(q,p) = p \dot{q} - \mathcal{L}(q, \dot{q}(q,p))$ (131)

TODO:Legendre trafo

Part III Statistichal Mechanics

Extensive quantities: Additive for subsystems (system size dependent): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$ **Intensive quantities:** Independent of system size, ratio of two extensive quantities

Liouville equation	$\frac{\partial \rho}{\partial t} = -\sum_{i=1}^{N} \left(\frac{\partial \rho}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial \rho}{\partial p_i} \frac{\partial H}{\partial q_i} \right) = \{H, \rho\}$	(132)
	{} poisson bracket	

8 Entropy

Positive-definite and additive	$S \ge 0$ $S(E_1, E_2) = S_1 + S_2$	(133) (134)
Von-Neumann	$S = -k_{\rm B} \left< \log \rho \right> = -k_{\rm B} \operatorname{tr}(\rho \log \rho)$ ρ density matrix	(135)
Gibbs	$S = -k_{\rm B} \sum_n p_n \log p_n$ p_n probability for micro state n	(136)
Boltzmann	$S = k_{\rm B} \log \Omega$ Ω #micro states	(137)
Temperature	$\frac{1}{T} \coloneqq \left(\frac{\partial S}{\partial E}\right)_V$	(138)
Pressure	$p = T\left(\frac{\partial S}{\partial V}\right)_E$	(139)

Part IV Thermodynamics

Thermal wavelength	$\lambda = \frac{\hbar}{\sqrt{2\pi m k_{\rm B} T}} \tag{140}$,
--------------------	---	---

9 Processes

- **isobaric**: constant pressure p = const
- isochoric: constant volume V = const
- isothermal: constant temperature T = const
- **isentropic**: constant entropy S = const
- **isenthalpic**: constant entalphy *H* = const
- adiabatic: no heat transfer $\Delta Q = 0$
- quasistatic: happens so slow, the system always stays in td. equilibrium
- reversivle: reversible processes are always quasistatic and no entropie is created $\Delta S = 0$

9.1 Irreversible gas expansion (Gay-Lussac experiment)

Gay-Lussac experiment

A classical gas in a system with volume V_1 is separated from another system with volume V_2 . In the Gay-Lussac experiment, the separation is removed and the gas flows into V_2 .

Entropy change

TODO:Reversible TODO:Quasistatischer T-Ausgleich TODO:Joule-Thompson Prozess

10 Phase transitions

A phase transition is a discontinuity in the free energy F or Gibbs energy G or in one of their derivatives. The degree of the phase transition is the degree of the derivative which exhibits the discontinuity.

Latent heat Heat required to bring substance from phase 1 to phase 2 $Q_{\rm L} = T\Delta S \qquad (142)$ $\Delta S \text{ entropy change of the phase transition}$

Clausius-Clapyeron equation Slope of the coexistence curve	$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{Q_{\mathrm{L}}}{T\Delta V}$	(143)
	ΔV Volume change of the phase transition	
Phase transition At the coexistence curve	$G_1 = G_2$	(144)
	and therefore	(, , , , ,)
	$\mu_1 = \mu_2$	(145)
Gibbs rule / Phase rule	f = c - p + 2	(146)
	c #components, f #degrees of freedom, p #phases	

10.0.1 Osmosis

Osmosis is the spontaneous net movement or diffusion of solvent molecules through a selectivelypermeable membrane, which allows through the solvent molecules, but not the solute molecules. The direction of the diffusion is from a region of high water potential (region of lower solute concentration) to a region of low water potential (region of higher solute concentration), in the direction that tends to equalize the solute concentrations on the two sides.

Osmotic pressure	$p_{\rm osm} = k_{\rm B} T \frac{N_c}{V} \tag{(}$	147)
	N_c #dissolved particles	

10.1 Material properties

Heat capacity	$c = \frac{Q}{\Delta T}$	(148)
	Q heat	
Isochoric heat capacity	$c_v = \left(\frac{\partial Q}{\partial T}\right)_V = \left(\frac{\partial U}{\partial T}\right)_V$	(149)
	U internal energy	
Isobaric heat capacity	$c_p = \left(\frac{\partial Q}{\partial T}\right)_P = \left(\frac{\partial H}{\partial T}\right)_P$	(150)
	H enthalpy	
Bulk modules	$K = -V \frac{\mathrm{d}p}{\mathrm{d}V}$	(151)
	p pressure, V initial volume	
Compressibility	$\kappa = -\frac{1}{V}\frac{\partial V}{\partial p}$	(152)

Isothermal compressibility	$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T = \frac{1}{K} \tag{153}$	
Adiabatic compressibility	$\kappa_S = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_S \tag{154}$	
Thermal expansion coefficient	$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p,N} \tag{155}$	

11 Laws of thermodynamics

11.1 Zeroeth law

If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.

$$A \stackrel{th.eq.}{\leftrightarrow} C \wedge B \stackrel{th.eq.}{\leftrightarrow} C \Rightarrow A \stackrel{th.eq.}{\leftrightarrow} B$$
(156)

11.2 First law

In a process without transfer of matter, the change in internal energy, ΔU , of a thermodynamic system is equal to the energy gained as heat, Q, less the thermodynamic work, W, done by the system on its surroundings.

Internal energy change	$\Delta U = \delta Q - \delta W$	(157)
internal energy change	$\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$	(158)

11.3 Second law

Clausius: Heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at the same time.

Kelvin: It is impossible for a self-acting machine, unaided by any external agency, to convey heat from one body to another at a higher temperature.

11.4 Third law

It is impussible to cool a system to absolute zero.

		$\lim_{T \to 0} s(T) = 0$	(159)
Entropy density	and therefore also	$\lim_{n \to \infty} a_{n} = 0$	(160)
	C	$\lim_{T \to 0} c_V = 0$	(100)
	$s = \frac{S}{N}$		

12 Ensembles

Microcanonical ensemble

Constant variables	E, V, N
partitionsum	$\Omega = \sum_n 1$
probability	$p_n = \frac{1}{\Omega}$
tdpot	$S = k_{\rm B} \ln \Omega$
pressure	$p = T\left(\frac{\partial S}{\partial V}\right)_{E,N}$
entropy	$S = k_{\rm B} = \ln \Omega$

Canonical ensemble

Constant variables	T, V, N
partitionsum	$Z = \sum_{n} e^{-\beta E_n}$
probability	$p_n = \frac{\mathrm{e}^{-\beta E_n}}{Z}$
tdpot	$F = -k_{\rm B}T\ln Z$
pressure	$p = -\left(\frac{\partial F}{\partial V}\right)_{T,N}$
entropy	$S = -\left(\frac{\partial F}{\partial T}\right)_{V,N}$

Grand canonical ensemble

Constant variables	T,V,μ	
partitionsum	$Z_{\rm g} = \sum_n {\rm e}^{-\beta (E_n - \mu N_n)}$	
probability	$p_n = \frac{\mathrm{e}^{-\beta(E_n - \mu N_n)}}{Z_{\mathrm{g}}}$	
tdpot	$\Phi = -k_{\rm B}T\ln Z$	
pressure	$p = -\left(\frac{\partial \Phi}{\partial V}\right)_{T,\mu} = -\frac{\Phi}{V}$	
entropy	$S = -\left(\frac{\partial \Phi}{\partial T}\right)_{V,\mu}$	

Isobaric-isothermal	: Gibbs ensemble
Constant variables	N, p, T
partitionsum	
probability	$p_n ? rac{\mathrm{e}^{-eta(E_n+pV_n)}}{Z}$
tdpot	
pressure	
entropy	

Isonthalpic-isobaric ensemble : Enthalpy ensemble

Constant variables		
partitionsum		
probability		
tdpot		
pressure		
entropy		

TODO:complete, link potentials Ergodic hypothesis			
Over a long periode of time, all accessible microstates in		$\langle A \rangle_{\text{Time}} = \langle A \rangle_{\text{Ensemble}}$	(161)
the phase space are equiprobable	A Observable		

12.1 Potentials

Internal energy	$\mathrm{d}U(S,V,N) = T\mathrm{d}S - p\mathrm{d}V + \mu\mathrm{d}N$	(162)
Free energy / Helmholtz energy	$dF(T, V, N) = -S dT - p dV + \mu dN$	(163)
Enthalpy	$dH(S, p, N) = T dS + V dp + \mu dN$	(164)
Free enthalpy / Gibbs energy	$\mathrm{d}G(T,p,N) = -S\mathrm{d}T + V\mathrm{d}p + \mu\mathrm{d}N$	(165)
Grand canonical potential	$d\Phi(T,V,\mu) = -S dT - p dV - N d\mu$	(166)

TODO:Maxwell Relationen, TD Quadrat

Thermodynamic squre	-S	U	V	
	Η		F	The corners opposite from the potential
	-p	G	Т	
	are the to it.	e coeff	icients	and each coefficients differential is opposite

13 Ideal gas

The ideal gas consists of non-interacting, undifferentiable particles.

13.0.1 Molecule gas

Translation	$p_i = \frac{2\pi\hbar}{L} n_i \qquad ($ $E_{\rm kin} = \frac{\vec{p}_r^2}{2M} \qquad ($	176) 177)
	$n_i \in \mathbb{N}_0, \ i = x, \ y, \ z$	
Vibration	$E_{\rm vib} = \hbar\omega\left(n + \frac{1}{2}\right) \tag{(4)}$	178)
	$n \in \mathbb{N}_0$	
Rotation	$E_{\rm rot} = \frac{\hbar^2}{2I}j(j+1) \tag{(4)}$	179)
	$j \in \mathbb{N}_0$	

TODO:Diagram für verschiedene Temperaturen, Weiler Skript p.83

14 Real gas

14.1 Virial expansion

Expansion of the pressure p in a power series of the density $\rho.$

Virial expansion The 2^{nd} and 3^{d} virial	$p = k_{\rm B} T \rho [1 + B(T) \rho + C(T) \rho^2 + \dots]$	(180)
coefficient are tabelated for many substances	B and C $2^{\rm nd}$ and $3^{\rm d}$ virial coefficient, $\rho = \frac{N}{V}$	
Mayer function	$f(\vec{r}) = e^{-\beta V(i,j)} - 1$	(181)
	V(i,j) pair potential	
Second virial coefficient Depends on pair potential	$B = -\frac{1}{2} \int d^3 \vec{r} f(\vec{r})$	(182)
between two molecules	$D = -\frac{1}{2} \int_V dr f(r)$	(102)

14.2 Van der Waals equation

Assumes a hard-core potential with a weak attraction.

Partition sum	$Z_N = \frac{(V - V_0)^N}{\lambda^{3N} N!} e^{\frac{\beta N^2 a}{V}}$ a internal pressure	(184)
Van der Waals equation	$p = \frac{Nk_{\rm B}T}{V-b} - \frac{N^2a}{V^2}$	(185)
	b co-volume?	

TODO: sometimes N is included in a, b

15 Ideal quantum gas

Fugacity	$z = e^{\mu\beta} = e^{\frac{\mu}{k_{\rm B}T}}$	(186)
Occupation number	$\sum_{r} n_{r} = N$	(187)
	r states	
Undifferentiable particles	$ p_1, p_2, \dots, p_N\rangle = p_1\rangle p_2\rangle \dots p_N\rangle$	(188)
	p_i state	
Applying the parity operator yields a <i>symmetric</i> (Bosons)	$\hat{P}_{12}\psi(p_i(\vec{r}_1), p_j(\vec{r}_2)) = \pm \psi(p_i(\vec{r}_1), p_j(\vec{r}_2))$	(189)
and a <i>antisymmetic</i> (Fermions) solution	\hat{P}_{12} parity operator swaps 1 and 2, ±: $\frac{bos}{fer}$	

Spin degeneracy factor	$g_s = 2s + 1$	(190)
	s spin	
Density of states	$g(\epsilon) = g_s \frac{V}{4\pi} \left(\frac{2m}{h^2}\right)^{\frac{3}{2}} \sqrt{\epsilon}$ g_s Spin degeneracy factor	(191)
Occupation number per energy	$n(\epsilon) d\epsilon = \frac{g(\epsilon)}{e^{\beta(\epsilon-\mu)} \mp 1} d\epsilon$ Density of states, ±: bos fer	(192)
Occupation number	$\begin{array}{c} \begin{array}{c} 4.0 \\ 3.5 \\ 3.0 \\ 2.5 \\ 0.0 \\ -4 \end{array} \begin{array}{c} 2.0 \\ 0.5 \\ 0.0 \\ -4 \end{array} \begin{array}{c} -2 \\ \beta(\epsilon - \mu) \end{array} \begin{array}{c} \text{Bose-Einstein} \\ \text{Boltzmann} \\ \text{Fermi-Dirac} \end{array}$	(193) (194)
Number of particles	$\langle N \rangle = \int_0^\infty n(\epsilon) \mathrm{d}\epsilon$	(195)
Energy Equal to the classical ideal gas	$\langle E \rangle = \int_0^\infty \epsilon n(\epsilon) \mathrm{d}\epsilon = \frac{3}{2} p V$	(196)
Equation of state Bosons: decreased pressure, they like to cluster	$pV = k_{\rm B}T \ln Z_g$ after Virial expansion	(197)
Fermions: increased pressure because of the Pauli principle	$= Nk_{\rm B}T \left[1 \mp \frac{\lambda^3}{2^{5/2}gv} + \mathcal{O}\left(\left(\frac{\lambda^3}{v}\right)^2 \right) \right]$ ±: $\frac{\text{bos}}{\text{fer}}, v = \frac{V}{N}$ specific volume	(198)

Relevance of qm. corrections	
Corrections become relevant	$(V)^{\frac{1}{2}}$
when the particle distance is	$\left(\frac{V}{N}\right)^3 \sim \frac{\lambda}{1}$ (199)
in the order of the thermal	$\langle N \rangle = g_s^{\overline{3}}$
wavelength	

15.1 Bosons

Partition sum	$Z_{\rm g} = \prod_{p} \frac{1}{1 - e^{-\beta(\epsilon_p - \mu)}} $ (201)	
	$p \in \mathbb{N}_0$	
Occupation number Bose-Einstein distribution	$\langle n_p \rangle = \frac{1}{\mathrm{e}^{\beta(\epsilon-\mu)} - 1} \tag{202}$	

15.2 Fermions

Partition sum	$Z_{g} = \prod_{p} \left(1 + e^{-\beta(\epsilon_{p} - \mu)} \right)$	(203)
	p = 0, 1	
Occupation number Fermi-Dirac distribution. At $T = 0$ Fermi edge at $\epsilon = \mu$	$\begin{array}{ c c c }\hline & 1.0 \\ 0.8 \\ \hline & 0.6 \\ \hline & \hline & 0.4 \\ 0.2 \\ 0.0 \\ \hline & & \\ \hline \\ \hline$	(204)
Slater determinant	$\psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} p_1(\vec{r}_1) & p_2(\vec{r}_1) & \dots & p \\ p_1(\vec{r}_2) & p_2(\vec{r}_2) & \dots & p \\ \vdots & \vdots & \ddots \\ p_1(\vec{r}_N) & p_2(\vec{r}_N) & \dots & p \end{vmatrix}$	$\begin{array}{c c} p_N(\vec{r}_1) \\ p_N(\vec{r}_2) \\ \vdots \\ N(\vec{r}_N) \\ \end{array} $ (205)
Fermi energy	$\epsilon_{ m F} \coloneqq \mu(T=0)$	(206)
Fermi temperature	$T_{ m F}\coloneqq rac{\epsilon_{ m F}}{k_{ m B}}$	(207)

Fermi impulse		
Radius of the <i>Fermi sphere</i> in	$m = \hbar h = (2mF)^{\frac{1}{2}}$	(20.8)
impulse space. States with $p_{\rm F}$	$p_{\rm F} = n\kappa_{\rm F} = (2mE_{\rm F})^2$	(208)
are in the <i>Fermi surface</i>		
Specific density	$v = \frac{N}{V} = \frac{g}{\lambda^3} f_{3/2}(z)$	(209)
Specific density	f Generalized zeta function, g degeneracy factor, z Fugacity	

15.2.1 Strong degeneracy

TODO:Entartung und Sommerfeld TODO:DULONG-PETIT Gesetz

Part V Electrodynamics

16 Electric field

Electric field Surrounds charged particles	Symbol: $\vec{\mathcal{E}}$ Unit: $1 \mathrm{V}\mathrm{m}^{-1} = 1 \mathrm{kgm/s^3A}$
Electric potential Work required to move a unit of charge between two points	$\frac{\begin{array}{c} \text{Symbol: } \phi \\ \text{Unit: } 1 \text{V} = 1 \text{kgm}^2/\text{s}^3 \text{A} \\ \hline \phi = -\int \vec{\mathcal{E}} \cdot \text{d}\vec{r} \end{array} $ (214)
Gauss's law for electric fields Electric flux through a closed surface is proportional to the electric charge	$\Phi_{\rm E} = \iint_{S} \vec{\mathcal{E}} \cdot \mathrm{d}\vec{S} = \frac{Q}{\varepsilon_0} $ (215) S closed surface
Permittivity Dieletric function Electric polarizability of a dielectric material	Symbol: ϵ Unit: $1 \text{ A s V}^{-1} \text{ m} = 1 \text{ F m}^{-1} = 1 \text{ C V}^{-1} \text{ m} = 1 \text{ C}^2/\text{Nm}^2 = 1 \text{ A}^2 \text{s}^4/\text{kgm}^3$
Relative permittivity / Dielectric constant	$\epsilon(\omega)_{\rm r} = \frac{\epsilon(\omega)}{\epsilon_0} $ (216) ϵ Permittivity, ϵ_0 Vacuum permittivity
Vacuum permittivity Electric constant	Symbol: ϵ_0 Experimental value $8.8541878188(14) \cdot 10^{-1} \mathrm{AsV^{-1}m}$
Electric susceptibility Describes how polarized a dielectric material becomes when an electric field is applied	Symbol: χ_e χ_e $\chi_r = 1 + \chi_e$ (217) ϵ_r Relative permittivity / Dielectric constant ϵ_r ϵ_r
Dielectric polarization density	$\label{eq:symbol:} \begin{array}{c} \begin{array}{c} \mbox{Symbol:} \vec{P} \\ \mbox{Unit: } 1 \mbox{C/m}^2 \end{array} \\ \hline \\$

	Symbol: \vec{D} Unit: $1 \text{ C/m}^2 = 1 \text{ As/m}^2$
Electric displacement field	$\vec{D} = \epsilon_0 \vec{\mathcal{E}} + \vec{P} \tag{219}$
	ϵ_0 Vacuum permittivity, $\vec{\mathcal{E}}$ Electric field, \vec{P} Dielectric polarization density
Electric flux through area \vec{A}	$\Phi_{\rm E} = \int_{A} \vec{D} \cdot d\vec{A} $ (220) \vec{D} Electric displacement field
Electric power	$P_{\rm el} = U I \tag{221}$
	U Electric potential, I Electric current

17 Magnetic field

Magnetic flux	Symbol: Φ_B Unit: 1 Wb = 1 V s ⁻¹ = 1 kgm ² /s ² A
	$\Phi_{\rm B} = \iint_A \vec{B} \cdot \mathrm{d}\vec{A} \tag{222}$
	\vec{A} area
Magnetic flux density Defined by Lorentz force law	Symbol: \vec{B} Unit: $1 \text{ T} = 1 \text{ Vs/m}^2 = 1 \text{ N A}^{-1} \text{ m} = 1 \text{ kg/As}^2$
	$\vec{B} = \mu_0 (\vec{H} + \vec{M})$ (223)
	\vec{H} Magnetic field intensity, \vec{M} Magnetization, μ_0 Magnetic vauum permeability
Magnetic vector potential	Symbol: \vec{A} Unit: $1 \text{ Tm} = 1 \text{ Vsm}^{-1} = 1 \text{ kgm/s}^2 \text{A}$
	$\vec{\nabla} \times \vec{A}(\vec{r}) = \vec{B}(\vec{r}) \tag{224}$
Magnetic field intensity	Symbol: \vec{H} Unit: $1 \mathrm{A} \mathrm{m}^{-1}$
	$\vec{H} \equiv \frac{1}{\mu_0}\vec{B} - \vec{M} $ (225)
Lorentz force law Force on charged particle	$\vec{F} = q\vec{\mathcal{E}} + q\vec{v} \times \vec{B} $ (226)

	Symbol: μ Unit: $1 \mathrm{H}\mathrm{m}^{-1} = 1 \mathrm{V}\mathrm{s}\mathrm{A}^{-1}\mathrm{m}$	
Magnetic permeability	$\mu = \frac{B}{H}$	(227)
	${\cal B}$ Magnetic flux density, ${\cal H}$ Magnetic field intensity	
Magnetic vauum permeability	Symbol: μ_0 Experimental value $1.25663706127(20) \text{ H/m} = \text{N/A}^2$	
Relative permeability	$\mu_{\rm r} = \frac{\mu}{\mu_0}$	(228)
Gauss's law for magnetism Magnetic flux through a closed surface is $0 \Rightarrow$ there are no magnetic monopoles	$\Phi_{\rm B} = \iint_S \vec{B} \cdot {\rm d}\vec{S} = 0$ S closed surface	(229)
Magnetization Vector field describing the	Symbol: \vec{M} Unit: $1 \mathrm{A}\mathrm{m}^{-1}$	
density of magnetic dipoles	$\vec{M} = \frac{\mathrm{d}m}{\mathrm{d}V} = \chi_{\mathrm{m}} \cdot \vec{H}$	(230)
Magnetic moment Strength and direction of a magnetic dipole	Symbol: \vec{m} Unit: $1 \mathrm{Am}^2$	
Torque	$\vec{\tau} = \vec{m} \times \vec{B}$	(231)
	m Magnetic moment	
Susceptibility	$\chi_{\rm m} = \frac{\partial M}{\partial B} = \mu_{\rm r} - 1$	(232)
	$\mu_{\rm r}$ Relative permeability	

17.1 Magnetic materials

Paramagnetism Magnetic field strengthend in the material	$\mu_{\rm r} > 1$ $\chi_{\rm m} > 0$ μ Magnetic permeability, $\chi_{\rm m}$ Susceptibility	(233) (234)
Diamagnetism Magnetic field expelled from material	$0 < \mu_{\rm r} < 1$ -1 < $\chi_{\rm m} < 0$ μ Magnetic permeability, $\chi_{\rm m}$ Susceptibility	(235) (236)
Ferromagnetism		
--------------------------------	--	-------
Magnetic moments align to	$\mu_r \gg 1$	(237)
external magnetic field and		()
stay aligned when the field is	μ Magnetic permeability, $\chi_{\rm m}$ Susceptibility	
turned off (Remanescence)		

18 Electromagnetism

Speed of light in the vacuum	Symbol: c Experimental value $299792458 \mathrm{ms^{-1}}$
Vacuum permittivity - permeability relation TODO:Does this have a name?	$\epsilon_0 \mu_0 = \frac{1}{c^2} $ (238) ϵ_0 Vacuum permittivity, μ_0 Magnetic vauum permeability, c Speed of light
Poisson equation for electrostatics	$\Delta \Phi(\vec{r}) = -\frac{\rho(\vec{r})}{\epsilon} $ (239) TODO: double check Φ ρ Charge density, ϵ Permittivity, Φ Potential
Poynting vector Directional energy flux or power flow of an electromagnetic field [W/m ²]	$\vec{S} = \vec{E} \times \vec{H} $ (240)
Electric field	$\vec{\mathcal{E}} = -\vec{\nabla}\phi - \frac{\partial\vec{A}}{\partial t} $ (241) $\vec{\mathcal{E}}$ Electric field, ϕ Electric potential, \vec{A} Magnetic vector potential
Hamiltonian of a particle in an electromagnetic field In the ed:em:gauge:coulomb	$\hat{H} = \frac{1}{2m} \left[\hat{p} \; \frac{e\vec{A}}{c} \right]^2 $ (242) m Mass, \hat{p} Momentum operator, q Charge, \vec{A} Magnetic vector potential, c Speed of light

18.1 Maxwell-Equations

Vacuum microscopic formulation	$\vec{\nabla} \cdot \vec{\mathcal{E}} = \frac{\rho_{\rm el}}{\epsilon_0}$	(243)
	$\vec{\nabla} \cdot \vec{B} = 0$	(244)
	$\vec{\nabla} \times \vec{\mathcal{E}} = -\frac{\mathrm{d}\vec{B}}{\mathrm{d}t}$	(245)
	$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\mathrm{d}\vec{\mathcal{E}}}{\mathrm{d}t}$	(246)

Matter Macroscopic formulation	$ec{ abla} \cdot ec{D} = ho_{ ext{el}}$	(247)
	$\vec{\nabla} \cdot \vec{B} = 0$	(248)
	$\vec{\nabla} \times \vec{\mathcal{E}} = -\frac{\mathrm{d}\vec{B}}{\mathrm{d}t}$	(249)
	$\vec{\nabla} \times \vec{H} = \vec{j} + \frac{\mathrm{d}\vec{D}}{\mathrm{d}t}$	(250)

18.1.1 Gauges

Coulomb gauge	$\vec{\nabla} \cdot \vec{A} = 0$	(251)
	\vec{A} Magnetic vector potential	

TODO:Polarization

18.2 Induction

Faraday's law of induction	$U_{\rm ind} = -\frac{\mathrm{d}}{\mathrm{d}t} \Phi_{\rm B} = -\frac{\mathrm{d}}{\mathrm{d}t} \iint_{A} \vec{B} \cdot \mathrm{d}\vec{A} $ (252)
Lenz's law	Change of magnetic flux through a conductor induces a current that counters that change of magnetic flux.

Optics $\mathbf{19}$

Properties of light and its interactions with matter

	Symbol: \tilde{n} Unit:	
	$\tilde{n} = n' + in'' \tag{253}$	
Refraction index	$n = \sqrt{\epsilon_{\rm r} \mu_{\rm r}} $ (254)	
	$\boxed{n = \frac{c_0}{c_{\rm M}}} \tag{255}$	
	??? ???:relative permittivity, ??? ???:relative permeability, c Speed of light, $c_{\rm M}$ speed of light in the medium	
TODO:what does the complex part of the dielectric function represent?		
Real part of the refraction	Symbol: n'	
index	Unit:	

Extinction coefficient	Symbol: n''
Complex part of the	Unit:
refraction index	sometimes κ
Complex part of the refraction index	Unit: sometimes κ

Reflectio	$R = \left \frac{\tilde{n} - 1}{\tilde{n} + 1} \right $ (256) \tilde{n} Refraction index	
Snell's law	$n'_{1}\sin\theta_{1} = n'_{2}\sin\theta_{2} $ (257) $n'_{i} \text{ Real part of the refraction index, } \theta_{i} \text{ incidence angle (normal to the surface)}$	
Group velocity Velocity with which the envelope of a wave propagates through space	$v_{\rm g} \equiv \frac{\partial \omega}{\partial k} $ (258) ω Angular frequency, ??? ???:angularwavenumber	
Phase velocity Velocity with which a wave propagates through a medium	$v_{\rm p} = \frac{\omega}{k} = \frac{\lambda}{T} $ (259) ω Angular frequency, ??? ???:angularwavenumber, ??? ???:wavelength, T Time period	
Absorption coefficient Intensity reduction while traversing a medium, not necessarily by energy transfer to the medium	$\begin{array}{l} \label{eq:symbol: α} \\ \mbox{Unit: $1{\rm cm}^{-1}$} \\ \mbox{$\alpha = 2n''\frac{\omega}{c}$} \\ \mbox{$\alpha = \frac{\omega}{nc}\epsilon'$TODO:For direct band gaps; from adv. sc: sheet 10 } \\ \mbox{$\alpha = \frac{\omega}{nc}\epsilon'$TODO:For direct band gaps; from adv. sc: sheet 10 } \\ \mbox{(261)} \\ \mbox{n'' Extinction coefficient, c Speed of light, ω Angular frequency } \end{array}$	2b). Check wl
Electromagnetic radiation intensity Surface power density	Symbol: I Unit: $1 \text{ W/m}^2 = 1/\text{s}^3$ $I = \langle S \rangle_t $ (262) S ed:poynting	
Beer-Lambert law Intensity in an absorbing medium	$I(z) = I_0 e^{-\kappa z} $ (263) I Electromagnetic radiation intensity, α Absorption coefficient, z penetration depth	

20 Hall-Effect

Cyclontron frequency	$\omega_{\rm c} = \frac{eB}{m_{\rm e}} \tag{264}$	1)
----------------------	---	----

TODO:Move

20.1 Classical Hall-Effect

Current flowing in x direction in a conductor $(l \times b \times d)$ with a magnetic field B in z direction leads to a hall voltage $U_{\rm H}$ in y direction.

Hall voltage	$U_{\rm H} = \frac{IB}{ned}$	(265)
Hall coefficient Sometimes $R_{\rm H}$	$A_{\rm H} \coloneqq -\frac{E_y}{j_x B_z} \stackrel{\rm metals}{\doteq} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}$	(266)
Resistivity	$\rho_{xx} = \frac{m_{\rm e}}{ne^2\tau}$ $\rho_{xy} = \frac{B}{m_e}$	(267) (268)
	ne ne	. ,

20.2 Integer quantum hall effect

Conductivity tensor	$\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix}$	(269)
Resistivity tensor	$\rho = \sigma^{-1}$	(270)
Resistivity	$\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}$	(271)
	$\nu \in \mathbb{Z}$ filing factor	
Fractional quantum hall effect	$\nu = \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{2}{3}$	(272)
	ν fraction of two numbers without shared divisors	

- Integer (QHE): filling factor ν is an integer
- **Fractional** (FQHE): filling factor ν is a fraction
- Spin (QSHE): spin currents instead of charge currents
- Anomalous (QAHE): symmetry breaking by internal effects instead of external magnetic fields

TODO:sort

21 Dipole-stuff

Dipole radiation Poynting vector	$\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right) \frac{\sin^2 \theta}{r^2} \vec{r}$	(273)
Time-average power	$P = \frac{\mu_0 \omega^4 p_0^2}{12\pi c}$	(274)

22 misc

Impedance of an ohmic resistor	$Z_R = R$	(275)
	??? ???:resistance	
Impedance of a capacitor	$Z_C = \frac{1}{i\omega C}$	(276)
	???? ???:capacity, ??? ???:angularvelocity	
Impedance of an inductor	$Z_L = i\omega L$	(277)
	??? ???:inductance, ??? ???:angularvelocity	

TODO: impedance addition for parallel / linear

Part VI Quantum Mechanics

23 Basics

23.1 Operators

Dirac notation	$ \begin{array}{c} \langle x \text{"Bra" Row vector} \\ x \rangle \text{"Ket" Column vector} \\ \hat{A} \beta \rangle = \alpha \rangle \Rightarrow \langle \alpha = \langle \beta \hat{A}^{\dagger} \end{array} $	(278) (279) (280)
Dagger	$\hat{A}^{\dagger} = (\hat{A}^{*})^{\mathrm{T}}$ $(c\hat{A})^{\dagger} = c^{*}\hat{A}^{\dagger}$ $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$	(281) (282) (283) (284)
Adjoint operator	$\langle \alpha \hat{A}^{\dagger} \beta \rangle = \langle \beta \hat{A} \alpha \rangle^{*}$	(285)
Hermitian operator	$\hat{A} = \hat{A}^{\dagger}$	(286)

23.1.1 Measurement

An observable is a hermition operator acting on \hat{H} . The measurement randomly yields one of the eigenvalues of \hat{O} (all real). Measurement probability

measurement probability		
Probability to measure ψ in	$p(\lambda) = \langle \psi \hat{P}_{\lambda} \psi \rangle$	(287)
state λ]

State after measurement	$\left \psi\right\rangle_{\text{post}} = \frac{1}{\sqrt{p(\lambda)}}\hat{P}_{\lambda}\left \psi\right\rangle \tag{288}$	
-------------------------	---	--

23.1.2 Pauli matrices

	$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 0\rangle \langle 1 + 1\rangle \langle 0 $	(289)
Pauli matrices	$\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = -i 0\rangle \langle 1 + i 1\rangle \langle 0 $	(290)
	$\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = 0\rangle \langle 0 - 1\rangle \langle 1 $	(291)

23.2 Probability theory

Continuity equation	$\frac{\partial \rho(\vec{x},t)}{\partial t} + \nabla \cdot \vec{j}(\vec{x},t) = 0$	(292)
	ρ density of a conserved quantity q,j flux density	ty of q
State probability	ТОДО	(293)
Dispersion	$\Delta \hat{A} = \hat{A} - \langle \hat{A} \rangle$	(294)
Generalized uncertainty	$\sigma_A \sigma_B \ge \frac{1}{4} \left< [\hat{A}, \hat{B}] \right>^2$	(295)
principle	$\sigma_A \sigma_B \ge \frac{1}{2} \left \langle [\hat{A}, \hat{B}] \rangle \right $	(296)
23.3 Commutator		
Commutator	[A,B] = AB - BA	(297)
Anticommutator	$\{A,B\} = AB + BA$	(298)

Commutation relations	[A, BC] = [A, B]C - B[A, C]	(299)
		. ,

TODO:add some more?

Commutator involving a	$[f(A), B] = [A, B] \frac{\partial f}{\partial A}$	(300)
function	given $[A, [A, B]] = 0$	

Jacobi identity	[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 (301)	
Hadamard's Lemma	$e^{A} B e^{-A} = B + [A, B] + \frac{1}{2!} [A, [A, B]] + \frac{1}{3!} [A, [A, [A, B]]] + \dots$ (302)	•
Canonical commutation relation	$\begin{bmatrix} x_i, x_j \end{bmatrix} = 0 $ (303) $\begin{bmatrix} p_i, p_j \end{bmatrix} = 0 $ (304) $\begin{bmatrix} x_i, p_j \end{bmatrix} = i\hbar \delta_{ij} $ (305)	

x, p canonical conjugates

24 Schrödinger equation

Energy operator

$$E = i\hbar \frac{\partial}{\partial t} \tag{306}$$

Momentum operator	$\vec{p} = -i\hbar \vec{\nabla_x}$	(307)
Space operator	$\vec{x} = i\hbar \vec{ abla_p}$	(308)
Stationary Schrödingerequation	$\hat{H} \left \psi \right\rangle = E \left \psi \right\rangle$	(309)
Schrödinger equation	$i\hbar \frac{\partial}{\partial t}\psi(x,t) = (-\frac{\hbar^2}{2m}\vec{\nabla}^2 + \vec{V}(x))\psi(x)$	(310)
Hellmann-Feynman-Theorem	[]
Derivative of the energy to a parameter	$\frac{\mathrm{d}E_{\lambda}}{\mathrm{d}\lambda} = \int \mathrm{d}^{3}r\psi_{\lambda}^{*}\frac{\mathrm{d}\hat{H}_{\lambda}}{\mathrm{d}\lambda}\psi_{\lambda} = \left(\psi(\lambda)\left \frac{\mathrm{d}\hat{H}_{\lambda}}{\mathrm{d}\lambda}\right \psi(\lambda)\right)$	(311)

24.1 Time evolution

The time evolution of the Hamiltonian is given by:

Time evolution operator	$ \psi(t)\rangle = \hat{U}(t,t_0) \psi(t_0)\rangle $ (312)		
	U unitary		
Von-Neumann Equation			

Time evolution of the density operator in the Schrödinger picture. Qm analog to the Liouville equation ??

$$\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}]$$
(313)

Lindblad master equation Generalization of von-Neummann equation for open quantum systems $\dot{\rho} = -\frac{i}{\hbar}[\hat{H},\rho] + \sum_{n.m} h_{nm} \left(\hat{A}_n \rho \hat{A}_{m^{\dagger}} - \frac{1}{2} \left\{ \hat{A}_m^{\dagger} \hat{A}_n, \rho \right\} \right)$ irreversible <i>irreversible</i> <i>h</i> positive semidifinite matrix, \hat{A} arbitrary operato) (314)
--	---------

TODO:unitary transformation of time dependent H

24.1.1 Schrödinger- and Heisenberg-pictures

In the **Schrödinger picture**, the time dependecy is in the states while in the **Heisenberg picture** the observables (operators) are time dependent.

$ \psi(t)_{\mathrm{S}}\rangle = \hat{U}(t,t_0) \psi(t_0)\rangle$	(315)
	$ \psi(t)_{\mathrm{S}}\rangle$ = $\hat{U}(t,t_0) \psi(t_0)\rangle$

 $|\psi_{\rm H}\rangle = |\psi_{\rm S}(t_0)\rangle \tag{316}$

$$A_{\rm H} = U^{\dagger}(t, t_0) A_{\rm S} U(t, t_0)$$
 (317)

Heisenberg time evolution

$$\frac{\mathrm{d}\hat{A}_{\mathrm{H}}}{\mathrm{d}t} = \frac{1}{i\hbar} [\hat{A}_{\mathrm{H}}, \hat{H}_{\mathrm{H}}] + \left(\frac{\partial\hat{A}_{\mathrm{S}}}{\partial t}\right)_{\mathrm{H}}$$
(318)

H and S being the Heisenberg and Schrödinger picture, respectively

24.1.2 Ehrenfest theorem

See also ??		_
Ehrenfest theorem applies to both pictures	$\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{A}\rangle = \frac{1}{i\hbar}\langle[\hat{A},\hat{H}]\rangle + \left\langle\frac{\partial\hat{A}}{\partial t}\right\rangle \tag{319}$	
Ehrenfest theorem example Example for x	$m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\langle x\rangle = -\langle \nabla V(x)\rangle = \langle F(x)\rangle \qquad (320)$	
Correspondence principle	The classical mechanics can be derived from quantum me- chanics in the limit of large quantum numbers.]

25 Pertubation theory

The following holds true if the pertubation \hat{H}_1 is sufficiently small and the $E_n^{(0)}$ levels are not degenerate.

Hamiltonian	$\hat{H} = \hat{H_0} + \lambda \hat{H_1}$	(321)
Power series	$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots$ $ \psi_n\rangle = \psi_n^{(0)}\rangle + \lambda \psi_n^{(1)}\rangle + \lambda^2 \psi_n^{(2)}\rangle + \dots$	(322) (323)
1. order energy shift	$E_{n}^{(1)} = \left\langle \psi_{n}^{(0)} \left \hat{H}_{1} \right \psi_{n}^{(0)} \right\rangle$	(324)
1. order states	$ \psi_n^{(1)}\rangle = \sum_{k \neq n} \frac{\left(\psi_k^{(0)} \middle \hat{H}_1 \middle \psi_n^{(0)} \right)}{E_n^{(0)} - E_k^{(0)}} \psi_k^{(0)}\rangle$	(325)
2. order energy shift	$E_n^{(2)} = \sum_{k \neq n} \frac{\left \left\langle \psi_k^{(0)} \middle \hat{H}_1 \middle \psi_n^{(0)} \right\rangle \right ^2}{E_n^{(0)} - E_k^{(0)}}$	(326)
Fermi's golden rule Transition rate from initial state $ i\rangle$ under a pertubation H^1 to final state $ f\rangle$	$\Gamma_{i \to f} = \frac{2\pi}{\hbar} \left \langle f H^1 i \rangle \right ^2 \rho(E_f)$	(327)

26 Harmonic oscillator

Hamiltonian	$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$ $= \frac{1}{2}\hbar\omega + \omega a^{\dagger}a$	(328) (329)
Energy spectrum	$E_n = \hbar \omega \left(\frac{1}{2} + n\right)$	(330)

See also 26.1

26.1 Creation and Annihilation operators / Ladder operators

_

Particle number operator/occupation number operator	$\hat{N} \coloneqq a^{\dagger}a$	(331)
	$\hat{N}\left n ight angle$ = $n\left N ight angle$	(332)
	$ n\rangle =$ Fock states, $\hat{a} =$ Annihilation operator, $\hat{a}^{\dagger} = 0$ operator	Creation
	$[\hat{a}, \hat{a}^{\dagger}] = 1$	(333)
Commutator	$[N, \hat{a}] = -\hat{a}$	(334)
	$\left[N, \hat{a}^{\dagger}\right] = \hat{a}^{\dagger}$	(335)
		(22.6)
	$\hat{a} n\rangle = \sqrt{n n-1\rangle}$	(336)
Application on states	$\ddot{a} \mid n\rangle = \sqrt{n+1} \mid n+1\rangle$	(337)
	$ n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n 0\rangle$	(338)
	$\hat{n} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cdot & 0 \end{pmatrix}$	(339)
	$\begin{pmatrix} 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & N \end{pmatrix}$	
Matrix forms	$\hat{a} = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \sqrt{N} \\ 0 & 0 & 0 & 0 \end{pmatrix}$	(340)
	$\hat{a}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ \sqrt{1} & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & 0 & \sqrt{N} & 0 \end{pmatrix}$	(341)

26.1.1 Harmonischer Oszillator

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger}) \tag{342}$$

$$\hat{p} = -i\sqrt{\frac{m\omega\hbar}{2}}(\hat{a} - \hat{a}^{\dagger})$$
(343)

Harmonic oscillator

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} = \hbar\omega \left(a^{\dagger} a + \frac{1}{2} \right)$$
(344)
$$a = \frac{1}{\sqrt{2}} (\tilde{X} + i\tilde{P})$$
(345)

$$a^{\dagger} = \frac{1}{\sqrt{2}} (\tilde{X} - i\tilde{P}) \tag{346}$$

27 Angular momentum

27.1 Aharanov-Bohm effect

Acquired phase		
Electron along a closed loop	$\int \frac{2e}{\sqrt{1+e^2}} \int \frac{1}{\sqrt{1+e^2}} \frac{2e}{\sqrt{1+e^2}}$	(247)
aquires a phase proportional	$o = \frac{1}{h} \mathcal{G} A \cdot ds = \frac{1}{h} \Phi$	(347)
to the enclosed magnetic flux		

TODO:replace with loop intergral symbol and add more info

28 Periodic potentials

Bloch waves	4 N 4 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	
Solve the stat. SG in periodic	$\psi_k(\vec{r}) = e^{i\kappa \cdot r} \cdot u_{\vec{k}}(\vec{r})$	(348)
potential with period \vec{R} :	$\vec{\mathbf{x}}$, \mathbf{x} , $\vec{\mathbf{x}}$, $\vec{\mathbf{x}}$, $\vec{\mathbf{x}}$	
$V(\vec{r}) = V(\vec{r} + \vec{R})$	k arbitrary, u periodic function	

Periodicity

 $u_{\vec{k}}(\vec{r} + \vec{R}) = u_{\vec{k}}(\vec{r})$ (349) $\psi_{\vec{k} + \vec{G}}(\vec{r}) = \psi_{\vec{k}}(\vec{r})$ (350)

(351)

 \vec{R} Lattice vector, \vec{G} Reciprokal attice vector

29 Symmetries

Most symmetry operators are unitary **??** because the norm of a state must be invariant under transformations of space, time and spin.

Invariance

 \hat{H} is invariant under a symmetrie described by \hat{U} if this holds $\hat{U}\hat{H}\hat{U}^{\dagger} = \hat{H} \Leftrightarrow [\hat{U}, \hat{H}] = 0$

29.1 Time-reversal symmetry

$1 \cdot t \rightarrow -t $ (352)

30 Two-level systems (TLS)

 $H = \underbrace{\hbar\omega_c \hat{a}^{\dagger} \hat{a}}_{\text{field}} + \underbrace{\hbar\omega_a \frac{\hat{\sigma}_z}{2}}_{\text{atom}} + \underbrace{\frac{\hbar\Omega}{2} \hat{E}\hat{S}}_{\text{int}}$ (354)

James-Cummings Hamiltonian TLS interacting with optical cavity

(355)

$$=\hbar\omega_{c}\hat{a}^{\dagger}\hat{a}+\hbar\omega_{a}\hat{\sigma}^{\dagger}\hat{\sigma}+\frac{\hbar\Omega}{2}(\hat{a}\hat{\sigma^{\dagger}}+\hat{a}^{\dagger}\hat{\sigma}) \qquad (356)$$

 $\hat{E} = E_{\text{ZPF}}(\hat{a} + \hat{a}^{\dagger})$ field operator with bosonic ladder operators, $\hat{S} = \hat{\sigma}^{\dagger} + \hat{\sigma}$ polarization operator with ladder operators of the TLS

31 Other

Rotating Wave Approximation (RWS)	$\Delta \omega \coloneqq \omega_0 - \omega_{\rm L} \ll \omega_0 + \omega_{\rm L} \approx 2\omega_0 \tag{357}$
Rapidly oscilating terms are neglected	$\omega_{\rm L}$ light frequency, ω_0 transition frequency
Adiabatic theorem	A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.
Slater determinant Construction of a fermionic (antisymmetric) many-particle wave function from single-particle wave functions	$\Psi(q_1, \dots, q_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_a(q_1) & \phi_a(q_2) & \cdots & \phi_a(q_N) \\ \phi_b(q_1) & \phi_b(q_2) & \cdots & \phi_b(q_N) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_z(q_1) & \phi_z(q_2) & \cdots & \phi_z(q_N) \end{vmatrix} $ (358)

32 Hydrogen Atom

Reduced mass	$\mu = \frac{m_{\rm e}m_{\rm K}}{m_{\rm e} + m_{\rm K}} \stackrel{\stackrel{m_{\rm e}}{\Rightarrow}}{\approx} m_{\rm e} $ (359)	
Coulumb potential For a single electron atom	$V(\vec{r}) = \frac{Z e^2}{4\pi\epsilon_0 r} $ (360) Z atomic number	

Hamiltonian	$\hat{H} = -\frac{\hbar^2}{2\mu} \vec{\nabla}_{\vec{r}}^2 - V(\vec{r}) $ (361) $= \frac{\hat{p}_r^2}{2\mu} + \frac{\hat{L}^2}{2\mu r} + V(r) $ (362)
Wave function	$\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi) \tag{363}$
	$R_{nl}(r)$ Radial part, Y_{lm} qm:sphericalharmonics
	$R_{nl} = -\sqrt{\frac{(n-l-1)!(2\kappa)^3}{2n[(n+l)!]^3}} (2\kappa r)^l e^{-\kappa r} L_{n+1}^{2l+1}(2\kappa r) (364)$ with
Radial part	$\kappa = \frac{\sqrt{2\mu E }}{\hbar} = \frac{Z}{\pi \tau} $ (365)
	$n n a_{\rm B}$ $L_r^s(x)$ Laguerre-polynomials
Energy eigenvalues	$E_n = \frac{Z^2 \mu e^4}{n^2 (4\pi\epsilon_0)^2 2\hbar^2} = -E_{\rm H} \frac{Z^2}{n^2} $ (366)
	Symbol: R_{∞} Experimental value 10973731.568157(12) m ⁻¹
Rydberg constant for heavy atoms	$R_{\infty} = \frac{m_e e^4}{8\epsilon_e^2 h^3 c} \tag{367}$
	$m_{\rm e}$ Electron mass, ??? ???:elementarycharge, ??? ???:vacu- umpermittivity, h Planck Constant, ??? ???:vacuumspeed- oflight
	$B_{\rm M} = \frac{\mu}{R} B \tag{368}$
Rydberg constant corrected for nucleus mass M	$m_{\rm e}$ (500)
	$m_{\rm e}$ Electron mass
	$1 \operatorname{Ry} = hc R_{\infty} \tag{369}$
Rydberg energy Energy unit	R_{∞} Rydberg constant, h Planck Constant, ??? ???:vacuum-speedoflight
	Symbol: a_0 Experimental value $5.29177210544(82) \cdot 10^{-11} \text{ m}$
Bohr radius	$a_0 = \frac{4\pi\epsilon_0\hbar^2}{c^{2m}} \tag{370}$
	ϵ_0 Vacuum permittivity, $m_{ m e}$ Electron mass

32.1 Corrections

32.1.1 Darwin term

Relativisitc correction: Because of the electrons zitterbewegung, it is not entirely localised. TODO:fact check

Energy shift	$\Delta E_{\rm rel} = -E_n \frac{Z^2 \alpha^2}{n} \Big(\frac{3}{4n} - \frac{1}{l + \frac{1}{2}} \Big)$	(371)
Fine-structure constant Sommerfeld constant	$\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c} \approx \frac{1}{137}$	(372)

32.1.2 Spin-orbit coupling (LS-coupling)

The interaction of the electron spin with the electrostatic field of the nuclei lead to energy shifts.

Energy shift	$\Delta E_{\rm LS} = \frac{\mu_0 Z e^2}{8\pi m_{\rm e}^2 r^3} \left\langle \vec{S} \cdot \vec{L} \right\rangle$	(373)
TODO:name	$\langle \vec{S} \cdot \vec{L} \rangle = \frac{1}{2} \langle [J^2 - L^2 - S^2] \rangle$ $= \frac{\hbar^2}{2} [j(j+1) - l(l+1) - s(s+1)]$	(374)

32.1.3 Fine-structure

The fine-structure combines relativistic corrections 32.1.1 and the spin-orbit coupling 32.1.2.

Energy shift	$\Delta E_{\rm FS} = \frac{Z^2 \alpha^2}{n} \Big(\frac{1}{j + \frac{1}{2}} - \frac{3}{4n} \Big) $ (375)
--------------	--

32.1.4 Lamb-shift

The interaction of the electron with virtual photons emitted/absorbed by the nucleus leads to a (very small) shift in the energy level.

Potential energy

$$\langle E_{\rm pot} \rangle = -\frac{Ze^2}{4\pi\epsilon_0} \left\langle \frac{1}{r+\delta r} \right\rangle$$
 (376)

32.1.5 Hyperfine structure

Interaction of the nucleus spin with the magnetic field created by the electron leads to energy shifts. (Lifts degeneracy)

	$ec{F} = ec{J} + ec{I}$	(377)
Nuclear spin	$\left ec{I} ight =\sqrt{i(i+1)}\hbar$	(378)
	$I_z = m_i \hbar$	(379)
	m_i = $-i, -i+1, \ldots, i-1, i$	(380)

	$ec{F} = ec{J} + ec{I}$	(381)
Combined angular momentum	$\left \vec{F} \right = \sqrt{f(f+1)}\hbar$	(382)
	$F_z = m_f \hbar$	(383)

Selection rule	$f = j \pm i$	(384)
Selection Tule	$m_f = -f, -f+1, \dots, f-1, f$	(385)

Hyperfine structure constant

$$A = \frac{g_i \mu_{\rm K} B_{\rm HFS}}{\sqrt{j(j+1)}} \tag{386}$$

 $B_{\rm HFS}$ hyperfine field, $\mu_{\rm K}$ nuclear magneton, g_i nuclear gfactor ??

Energy shift	$\Delta H_{\rm HFS} = \frac{A}{2} [f(f+1) - j(j+1) - i(i+1)]$	(387)
--------------	---	-------

TODO:landé factor

32.2 Effects in magnetic field

TODO:all TODO:Hunds rules

32.3 misc

Part VII Condensed matter physics

TODO:Bonds, hybridized orbitals TODO:Lattice vibrations, van hove singularities, debye frequency

Density of states (DOS)	$D(E) = \frac{1}{V} \sum_{i=1}^{N} \delta(E - E(\vec{k_i}))$ V Volume, N number of energy levels, ??? ???:energy	(388)
Density of states for parabolic dispersion Applies to Free electron gas	$D_1(E) = \frac{1}{2\sqrt{c_k(E - E_0)}} $ (1D)	(389)
	$D_2(E) = \frac{\pi}{2c_k} \tag{2D}$	(390)
	$D_3(E) = \pi \sqrt{\frac{E - E_0}{c_k^3}} \tag{3D}$	(391)

33 Lattice vibrations

33.1 Debye model

Atoms behave like coupled quantum harmonic oscillators. The finite sample size leads to periodic boundary conditio. The finite sample size leads to periodic boundary conditions for the vibrations.

34 Crystals

34.1 Bravais lattice

2D : In 2D, there are 5 different Bravais lattices

Lattice system	Doint moun	5 Bravais lattices			
Lattice system	1 ont group	primitive (p)	centered (c)		
monoclinic (m)	C_2	b e a			
orthorhombic (o)	D ₂	b a			
tetragonal (t)	D_4				
hexagonal (h)	D ₆				

	3D	: In 3D,	there are	$14~{\rm different}$	Bravais	lattices
--	----	----------	-----------	----------------------	---------	----------

		Point group	14 Bravais lattices			
Crystal systemLattice system		m	primitive (P)	basecen- tered (S)	bodycen- tered (I)	facecen- tered (F)
triclin	uic (a)	C_i				
monocli	inic (m)	C_{2h}				
orthorho	mbic (o)	D_{2h}				
tetrago	onal (t)	D_{4h}				
hexagonal (h	rhombohe- dral	D_{3d}	a a a a a a			
	hexagonal	$\mathrm{D}_{6\mathrm{h}}$	$\gamma = 120^{\circ}$			
cubi	c (c)	O _h	a a a 49			

Lattice constant Parameter (length or angle) describing the smallest unit cell	Symbol: a Unit:		
Lattice vector	Symbol: \vec{R} Unit:	$\vec{R} = n_1 \vec{a_1} + n_2 \vec{a_2} + n_3 \vec{a_3}$	(396)
	$n_i \in \mathbb{Z}$		

TODO:primitive unit cell: contains one lattice point

	(hkl)plane	(397)
	[hkl]direction	(398)
Miller index	$\{hkl\}$ millerFamily	(399)
	Miller family: planes that are equivalent due to crystal metry	sym-

34.2 Reciprocal lattice

The reciprokal lattice is made up of all the wave vectors \vec{k} that ressemble standing waves with the periodicity of the Bravais lattice.

$$\vec{b_1} = \frac{2\pi}{V_c} \vec{a_2} \times \vec{a_3}$$
(400)
$$\vec{b_2} = \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1}$$
(401)

Reciprocal lattice vectors

$$\vec{b_3} = \frac{2\pi}{V_c} \vec{a_1} \times \vec{a_2}$$
(402)

 a_i real-space lattice vectors, V_c volume of the primitive lattice cell

	Symbol: \vec{G} Unit:
Reciprokal attice vector	$\vec{G}_{hkl} = h\vec{b_1} + k\vec{b_2} + l\vec{b_3} $ (403)
	$n_i \in \mathbb{Z}$

34.3 Scattering processes

Matthiessen's rule Approximation, only holds if the processes are independent of each other

$\frac{1}{\mu} = \sum_{i=\text{Scattering processes}} \frac{1}{\mu_i}$	(404)
$\frac{1}{\tau} = \sum_{i=\text{Scattering processes}} \frac{1}{\tau_i}$	(405)
μ Electrical mobility, τ Scattering time	

34.4 Lattices

Simple cubic (SC)	$\vec{a}_1 = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{a}_2 = a \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{a}_3 = a \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} $ (406)
Reciprocal: Simple cubic	<i>a</i> Lattice constant
Body centered cubic (BCC)	$\vec{a}_1 = \frac{a}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \vec{a}_2 = \frac{a}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \vec{a}_3 = \frac{a}{2} \begin{pmatrix} 1\\1\\-1 \end{pmatrix} $ (407)
Reciprocal: cm:bravais:fcc	<i>a</i> Lattice constant
Face centered cubic (FCC)	$\vec{a}_1 = \frac{a}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \vec{a}_2 = \frac{a}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \vec{a}_3 = \frac{a}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix} $ (408)
Reciprocal: cm:bravais:bcc	<i>a</i> Lattice constant
Diamond lattice	cm:bravais:fcc with basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$
Zincblende lattice	Like cm:bravais:diamond but with different species on each basis
Wurtzite structure hP4	Image: constraint of the second se

35 Free electron gas

Assumptions: electrons can move freely and independent of each other.

Drift velocity Velocity component induced by an external force (eg. electric field)	$\vec{v}_{\rm D} = \vec{v} - \vec{v}_{\rm th} \tag{40}$ $v_{\rm th}$ thermal velocity	9)
Mean free path	$\ell = \langle v \rangle \tau \tag{41}$	0)
Electrical mobility How quickly a particle moves through a material when moved by an electric field	$\frac{\text{Symbol: } \mu}{\text{Unit: } 1 \text{ cm}^2/\text{Vs}}$ $\mu = \frac{q\tau}{m} \qquad (41)$ <i>q</i> Charge, <i>m</i> Mass, <i>\tau</i> Scattering time	1)

35.1 2D electron gas

Lower dimension gases can be obtained by restricting a 3D gas with infinetly high potential walls on a narrow area with the width L.

Confinement energy Raises ground state energy	$\Delta E = \frac{\hbar^2 \pi^2}{2m_{\rm e}L^2} \tag{(}$	412)
Energy	$E_n = \underbrace{\frac{\hbar^2 k_{\parallel}^2}{2m_{\rm e}}}_{x-y: \text{ plain wave}} + \underbrace{\frac{\hbar^2 \pi^2}{2m_{\rm e}L^2}n^2}_{z} \tag{(12)}$	413)

35.2 1D electron gas / quantum wire

Energy $E_n = \frac{\hbar^2 k_x^2}{2m_e} + \frac{\hbar^2 \pi^2}{2m_e L_z^2} n_1^2 + \frac{\hbar^2 \pi^2}{2m_e L_y^2} n_2^2$ (414)

TODO:condunctance

35.3 0D electron gas / quantum dot

TODO:TODO

36 Charge transport

36.1 Drude model

Classical model describing the transport properties of electrons in materials (metals): The material is assumed to be an ion lattice and with freely moving electrons (electron gas). The electrons are accelerated by an electric field and decelerated through collisions with the lattice ions. The model disregards the Fermi-Dirac partition of the conducting electrons.

Equation of motion	$m_{\rm e} \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \frac{m_{\rm e}}{\tau} \vec{v}_{\rm D} = -e\vec{\mathcal{E}} $ (415)
Equation of motion	v electron speed, $\vec{v}_{\rm D}$ drift velocity, τ mean free time between
	collisions

	Symbol: τ Unit: 1 s
Scattering time	$\overline{ au}$
Momentum relaxation time	the average time between scattering events weighted by the
	characteristic momentum change cause by the scattering pro-
	cess.
	· · · · →
	Symbol: j
Current density	Unit: 1 A/m ²
Ohm's law	$\vec{j} = -ne\vec{v}_{\rm D} = ne\mu\vec{\mathcal{E}} \tag{416}$
	n charge particle density
Drude-conductivity	$\sigma = \frac{\vec{j}}{\vec{\mathcal{E}}} = \frac{e^2 \tau n}{m_{\rm e}} = n e \mu \tag{417}$

36.2 Sommerfeld model

Assumes a gas of free fermions underlying the pauli-exclusion principle. Only electrons in an energy range of $k_{\rm B}T$ around the Fermi energy $E_{\rm F}$ participate in scattering processes.

Electrical current density	$\vec{j} = -en \langle v \rangle = -en \frac{h}{m_{\rm e}} \langle \vec{k} \rangle = -e \frac{1}{V} \sum_{\vec{k},\sigma} \frac{h\kappa}{m_{\rm e}} \tag{4}$	18)
----------------------------	--	-----

TODO: The formula for the conductivity is the same as in the drude model?

36.3 Boltzmann-transport

Tsu-Esaki tunneling current Describes the current $I_{L\leftrightarrow R}$

Semiclassical description using a probability distribution (stat:todo:fermidirac) to describe the particles.

Boltzmann Transport equation for charge transport $\frac{\partial f(\vec{r},\vec{k},t)}{\partial t} = -\vec{v} \cdot \vec{\nabla}_{\vec{r}} f - \frac{e}{\hbar} (\vec{\mathcal{E}} + \vec{v} \times \vec{B}) \cdot \vec{\nabla}_{\vec{k}} f + \left(\frac{\partial f(\vec{r},\vec{k},t)}{\partial t}\right)_{\text{scatter}} (419)$

36.4 misc

through a barrier

$I_{\rm T} = \frac{2e}{h} \int_{U_{\rm L}}^{\infty} \left(f(E, \mu_{\rm L}) - f(E, \mu_{\rm R}) \right) T(E) \mathrm{d}E \tag{42}$	0)
4. 222. chemical not at left /right side. IL waltage on left /right	ht

 μ_i ???:chemicalpot at left/right side, U_i voltage on left/right side. Electrons occupy region between U_i and μ_i

Charge continuity equation Electric charge can only	$\frac{\partial \rho}{\partial t} = -\nabla \vec{j}$	(421)
change by the amount of electric current	$ ho$ Charge density, \vec{j} Current density	

37 Superconductivity

Materials for which the electric resistance jumps to 0 under a critical temperature T_c . Below T_c they have perfect conductivity and perfect diamagnetism, up until a critical magnetic field B_c . **Type I**: Has a single critical magnetic field at which the superconuctor becomes a normal conductor. **Type II**: Has two critical

Perfect conductor	In contrast to a superconductor, perfect conductors become diamagnetic only when the external magnetic field is turned on after the material was cooled below the critical tempera- ture. (ed:fields:mag:induction:lenz)
Meißner-Ochsenfeld effect Perfect diamagnetism	External magnetic field decays exponetially inside the super- conductor below a critical temperature and a critical mag- netic field.

37.1 London equations

Quantitative description of the Meißner-Ochsenfeld effect.

First London Equation	$\frac{\partial \vec{j}_{\rm s}}{\partial t} = \frac{n_{\rm s} q_{\rm s}^2}{m_{\rm s}} \vec{E} - \mathcal{O}\left(\vec{j}_{\rm s}^2\right) \tag{422}$
This London Equation	\vec{j} current density, $n_{\rm s}$, $m_{\rm s}$, $q_{\rm s}$ density, mass and charge of su-
	percondutiong particles

Second London Equation Describes the Meißner-Ochsenfeld effect	$\vec{\nabla} \times \vec{j}_{s} = -\frac{n_{s}q_{s}^{2}}{m_{s}}\vec{B}$ (423) \vec{j} current density, n_{s} , m_{s} , q_{s} density, mass and charge of supercondutiong particles	
London penetration depth	$\lambda_{\rm L} = \sqrt{\frac{m_{\rm s}}{\mu_0 n_{\rm s} q_{\rm s}^2}} \tag{424}$	

37.2 Ginzburg-Landau Theory (GLAG)

TODO:TODO

Ginzburg-Landau Coherence	$\xi_{ m GL} = rac{\hbar}{\sqrt{2m\left lpha ight }}$	(425)
Length	$\xi_{\rm GL}(T) = \xi_{\rm GL}(0) \frac{1}{\sqrt{1 - \frac{T}{T_{\rm c}}}}$	(426)

Ginzburg-Landau Penetration Depth / Field screening length	$\lambda_{\rm GL} = \sqrt{\frac{m_{\rm s}\beta}{\mu_0 \alpha q_s^2}} $ $\lambda_{\rm GL}(T) = \lambda_{\rm GL}(0) \frac{1}{\sqrt{1 - \frac{T}{T_c}}} $ (427) (428)	27) 28)
--	--	------------

First Ginzburg-Landau
Equation
$$\begin{aligned} \alpha \Psi + \beta |\Psi|^2 \Psi + \frac{1}{2m} (-i\hbar \vec{\nabla} + 2e\vec{A})^2 \Psi &= 0 \quad (429) \\ \xi_{GL} \quad \text{Ginzburg-Landau Coherence Length, } \lambda_{GL} \quad \text{Ginzburg-Landau Penetration Depth / Field screening length} \end{aligned}$$

Second Ginzburg-Landau Equation

$$\vec{j}_{\rm s} = \frac{ie\hbar}{m} (\Psi^* \vec{\nabla} \Psi - \Psi \vec{\nabla} \Psi^*) - \frac{4e^2}{m} |\Psi|^2 \vec{A}$$
(430)

TODO:proximity effect

37.3 Microscopic theory

Isotope effect Superconducting behaviour depends on atomic mass and thereby of the lattice	$T_{\rm c} \propto \frac{1}{\sqrt{M}} $ (431) $\omega_{\rm ph} \propto \frac{1}{\sqrt{M}} \Rightarrow T_{\rm c} \propto \omega_{\rm ph} $ (432)
⇒Microscopic origin	$T_{\rm c}$ critial temperature, M isotope mass, $\omega_{\rm ph}$
Cooper pairs	Conduction electrons reduce their energy through an attrac- tive interaction: One electron passing by atoms attracts the these, which creats a positive charge region behind the elec- tron, which in turn attracts another electron.

37.3.1 BCS-Theory

Electron pairs form bosonic quasi-particles called Cooper pairs which can condensate into the ground state. The wave function spans the whole material, which makes it conduct without resistance. The exchange bosons between the electrons are phonons.

BCS Hamiltonian for N interacting electrons	$\hat{H}_{\text{BCS}} = \sum_{\sigma} \sum_{\vec{k}} \epsilon_{\vec{k}} \hat{c}^{\dagger}_{\vec{k}\sigma} \hat{c}_{\vec{k}\sigma} + \sum_{\vec{k},\vec{k}'} V_{\vec{k},\vec{k}'} \hat{c}^{\dagger}_{\vec{k}\uparrow} \hat{c}_{-\vec{k}\downarrow}^{\dagger} \hat{c}_{-\vec{k}'\downarrow} \hat{c}_{\vec{k}',\uparrow} (433)$ $c_{\vec{k}\sigma} \text{ creation/annihilation operators create/destroy at } \vec{k} \text{ with spin } \sigma$ First term: non-interacting free electron gas Second term: interaction energy
Bogoliubov-Valatin transformation Diagonalization of the BCS Hamiltonian to derive excitation energies	$\hat{H}_{BCS} - N\mu = \sum_{\vec{k}} \left[\xi_{\vec{k}} - E_{\vec{k}} + \Delta_{\vec{k}} g_{\vec{k}}^* \right] + \sum_{\vec{k}} \left[E_{\vec{k}} a_{\vec{k}}^{\dagger} a_{\vec{k}} + E_{\vec{k}} \beta_{-\vec{k}}^{\dagger} \beta_{-\vec{k}} \right] $ (434)
BCS-gap equation	$\Delta_{\vec{k}}^{*} = -\sum_{\vec{k}}^{+} \prime V_{\vec{k},\vec{k}'} \frac{\Delta_{\vec{k}'}}{2E_{\vec{k}}} \tanh\left(\frac{E_{\vec{k}'}}{2k_{\rm B}T}\right) $ (435)

38 Semiconductors

Intrinsic/extrinsic	Intrinsic: prevention a Extrinsic: d n, p Equilibrium	ure, electron dens nd $n_i^2 = n_0 p_0$ loped rium charge dens	sity determiend onl	y by thermal
Equilibrium charge densitites Holds when $\frac{E_c - E_F}{T} > 3.6$ and		$n_0 \approx N_{\rm c}(T)$ e	$\exp\left(-\frac{E_{\rm c}-E_{\rm F}}{k_{\rm B}T}\right)$	(436)
$\frac{E_{\rm F} - E_{\rm v}}{k_{\rm B}T} > 3.6$		$p_0 \approx N_{\rm v}(T)$ e	$\exp\left(-\frac{E_{\rm F}-E_{\rm v}}{k_{\rm B}T}\right)$	(437)
Intrinsic charge density	$n_i \approx \sqrt{n_i}$	$\sqrt{n_0p_0} = \sqrt{N_{\rm c}(T)}$	$\overline{N_{\rm v}(T)} \exp\left(-\frac{E_{\rm gap}}{2k_{\rm B}T}\right)$) (438)
Mass action law Charge densities at thermal equilibrium, independent of doping		nţ	$p = n_i^2$	(439)
Bandgaps of common semiconductors	Diamond Si Ge GaP GaAs InSb InP CdS	$\begin{array}{c} E_{\rm gap}(0{\rm K})[{\rm eV}]\\ 5,48\\ 1,17\\ 0,75\\ 2,32\\ 1,52\\ 0,24\\ 1,42\\ 2.58\end{array}$	$\begin{array}{c} E_{\rm gap}(300{\rm K})[{\rm eV}]\\ 5,47\\ 1,12\\ 0,66\\ 2,26\\ 1,43\\ 0,18\\ 1,35\\ 2.42 \end{array}$	indirect indirect indirect direct direct direct direct direct
Minority / Majority charge carriers	Majority ca h^+ in p-type Minority ca in p-type)	rriers: higher nu e) rriers: lower num	mber of particles (ber of particles $(h^+$	e^- in n-type, in n-type, e^-

TODO:effective mass approx

38.1 Devices and junctions

Metal-semiconductor junction

TODO:work function verhältnisse, wann ist es ohmisch wann depleted? **Ohmic contact**

Excitons 38.2

Quasi particle, excitation in condensed matter as bound electron-hole pair. Free (Wannier) excitons: delocalised over many lattice sites Bound (Frenkel) excitonsi: localised in single unit cell

Exciton

Exciton Rydberg energy for free Excitons	$E(n) = -\left(\frac{\mu}{m_0\epsilon_r^2}\right)R_{\rm H}\frac{1}{n^2} $ (441) R _H Rydberg energy	
Exciton Bohr radius for free Excitons	$r_{n} = \left(\frac{m_{e}\epsilon_{r}a_{B}}{mu}\right)n^{2} $ (442) ??? ???:relative permittivity, a_{0} Bohr radius, m_{e} Electron mass, mu reduced mass	

39 Band theory

39.1 Hybrid orbitals

Hybrid orbitals are linear combinations of other atomic orbitals.

sp3 Orbital eg CH_4	1s + 3p = sp3	(443)
sp2 Orbital	1s + 2p = sp2	(444)
sp Orbital	1s + 1p = sp	(445)

40 Diffusion

Diffusion coefficient	Symbol: D Unit: $1 \text{ m}^2/\text{s}$
Particle current density Number of particles through an area	Symbol: J Unit: 11/s ²
Einstein relation Classical	$D = \frac{\mu k_{\rm B} T}{q} $ (446) D Diffusion coefficient, μ Electrical mobility, T Temperature, q Charge
Concentration A quantity per volume	Symbol: c Unit: 1 x/m ³
Fick's first law Particle movement is proportional to concentration gradient	$J = -D\frac{c}{x} $ (447) J Particle current density, D Diffusion coefficient, c Concen- tration

J Particle current density, D Diffusion coefficient, c Conce tration	Fick's second law	$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} $ (448)
		JParticle current density, D Diffusion coefficient, c Concentration

41 misc

Work function Lowest energy required to remove an electron into the vacuum	$ Symbol: W Unit: 1 eV W = E_{\text{vac}} - E_{\text{F}} (449)$
Electron affinity Energy required to remove one electron from an anion with one negative charge. Energy difference between vacuum level and conduction band	$\boxed{\frac{\text{Symbol: } \chi}{\text{Unit: 1 eV}}} \chi = (E_{\text{vac}} - E_{\text{c}}) $ (450)
Laser Light amplification by stimulated emission of radiation	Gain medium is energized pumping energy (electric current or light), light of certain wavelength is amplified in the gain medium

42 Measurement techniques

42.1 Raman spectroscopy

Raman spectroscopy

Application	Vibrational modes, Crystal structure, Doping, Band Gaps, Layer thickness in cm:misc:vd- wmaterial
how	Monochromatic light (Laser) shines on sample, inelastic scattering because of rotation-, vibration-, phonon and spinflip-processes, plot spectrum as shift of the laser light (in cm^{-1})

Photoluminescence spectroscopy

Application	Crystal structure, Doping, Band Gaps, Layer thickness in cm:misc:vdwmaterial
how	Monochromatic light (Laser) shines on sample, electrons are excited, relax to the conduc- tion band minimum and finally accross the band gap under photon emission

42.2 **ARPES**

what? in? how? plot

42.3 Scanning probe microscopy SPM

Images of surfaces are taken by scanning the specimen with a physical probe. Atomic force microscopy (AMF)

Figure 1: [?]

Scanning tunneling microscopy (STM)

Application	Surface stuff
how	With TUnnel

43 Fabrication techniques

Chemical vapor deposition (CVD)

how	A substrate is exposed to volatile precursors, which re- act and/or decompose on the heated substrate surface to produce the desired deposit. By-products are removed by gas flow through the chamber.	(c): heater
Application	 Polysilicon Si Silicon dioxide SiO₂ Graphene Diamond 	(c): heater

43.1 Epitaxy

A type of crystal groth in which new layers are formed with well-defined orientations with respect to the crystalline seed layer.

Molecular Beam Epitaxy (MBE)

		(To buffer chamber)
	1	Mechanical feedthrough for CAR assembly
how	In a ultra-high vacuum, the el- ements are heated until they slowly sublime. The gases then condensate on the substrate surface	Cryo panels
Application	• Gallium arsenide GaAs	RHEED screen
	TODO:Link to GaAs	Heating roits
		Effusion cells

44 Topological Materials

44.1 Berry phase / Geometric phase

While adiabatically traversing a closed through the parameter space R(t), the wave function of a systems may pick up an additional phase γ .

If $\vec{R}(t)$ varies adiabatically (slowly) and the system is initially in eigenstate $|n\rangle$, it will stay in an Eigenstate throughout the process (quantum adiabtic theorem).

Schrödinger equation	$H(\vec{R}(t)) n(\vec{R}(t))\rangle = \epsilon(\vec{R}(t)) n(\vec{R}(t))\rangle $ (451)			
Wave function After full adiabtic loop in \vec{R}	$ \psi_n(t)\rangle = \underbrace{e^{i\gamma_n(t)}}_{\text{Berry Phase Dynamical Phase}} \underbrace{e^{\frac{-i}{\hbar}\int^r \epsilon_n(\vec{R}(t^{\circ}))\mathrm{d}t}_{\text{Dynamical Phase}} n(\vec{R}(t))\rangle \qquad (452)$			
Berry connection	$A_n(\vec{R}) = i \langle \psi \nabla_R \psi \rangle $ (453)			
Berry curvature Gauge invariant	$\vec{\Omega}_n = \vec{\nabla}_R \times A_n(\vec{R}) \tag{454}$			
Berry phase Gauge invariant up to 2π	$\gamma_n = \oint_C \mathrm{d}\vec{R} \cdot A_n(\vec{R}) = \int_S \mathrm{d}\vec{S} \cdot \vec{\Omega}_n(\vec{R}) $ (455)			
Chern number	The Berry flux through any 2D closed surface is quantized by the Chern number . If there is time-reversal symmetry, the Chern-number is 0.			
Eg. number of Berry curvature monopoles in the Brillouin zone (then $\vec{R} = \vec{k}$)	$C_n = \frac{1}{2\pi} \oint d\vec{S} \cdot \vec{\Omega}_n(\vec{R}) $ (456)			
	\vec{S} closed surface in $\vec{R}\text{-space.}$ A $Chern\ insulator$ is a 2D insulator with $C_n \neq 0$			
Hall conductance of a 2D band insulator	$\vec{\sigma}_{xy} = \sum_{n} \frac{e^2}{h} \int_{\text{occupied}} d^2k \frac{\Omega_{xy}^n}{2\pi} = \sum_{n} C_n \frac{e^2}{h} \qquad (457)$			
Topological insulator	A 2D insulator with a non-zero Chern number is called a topological insulator .			

45 Material physics

Tortuccity	Symbol: τ Unit:			
Degree of the winding of a transport path through a	$\tau = \left(\frac{l}{L}\right)^2$	(458)		
porous material. Multiple definitions exist	$ au = rac{l}{L}$	(459)		
	l path length, L distance of the end points			
Strong	Symbol: σ Unit: 1 N/m^2			
Force per area	$[\sigma]_{ij} = \frac{F_i}{A_j}$	(460)		
	\vec{F} Force, A Area			

	Symbol: ϵ
	Unit:
Strain	$\epsilon = \frac{\Delta x}{x_0} \tag{461}$
	Δx distance from reference position x_0

Part VIII Particle physics

Electron mass	Symbol: $m_{\rm e}$ Experimental value $9.1093837139(28) \cdot 10^{-31} \rm kg$

 Spin

Symbol: σ Unit:

Standard model

		generation			
	I standard matte	II unstable	III matter	force	arriors
1			<u> </u>	~	~
Mass — Spin — Charge — colors —	$\stackrel{\rightarrow}{} 2.3 \text{ MeV}$ $\stackrel{\rightarrow}{} 1/2$ $\stackrel{\rightarrow}{} 2/3 \qquad u$	$ \begin{array}{c} 1.275 {\rm GeV} \\ 1/2 \\ 2/3 \\ \end{array} \\ C \end{array} $	${{173.2 { m GeV}} \atop {{1/2} \over {2/3}}} t$	$egin{array}{ccc} 0 & & & & \ 1 & & & & \ 0 & & & & g \end{array}$	${}^{125.1~{ m GeV}}_{0}_{0}H$
0 1	up	charm	top	gluon	Higgs
Quarks {	${4.8 m MeV} \ {1/2} \ {-1/3} \ d$		${4.18 { m GeV} \atop 1/2 \ -1/3 \ b}$	$egin{array}{ccc} 0 & & & \ 1 & & & \ 0 & & & \gamma \end{array}$	
	down	strange	bottom	photon	
	511 keV 1/2 -1 e	${fac{105.7\ MeV}{1/2}}_{-1}{\ \mu}$	$ \begin{array}{c} 1.777 {\rm GeV} \\ 1/2 \\ -1 & \mathcal{T} \end{array} $	$\stackrel{91.2 \text{ GeV}}{\stackrel{1}{_0}} Z$	
T .	electron	muon	tau		
Leptons {	$\begin{smallmatrix} < 2.2 \text{ eV} \\ 1/2 \\ 0 & \nu_e \end{smallmatrix}$	$\stackrel{<170~{\rm keV}}{\stackrel{1/2}{_{0}}} \nu_{\mu}$	$^{<15.5~{\rm MeV}}_{1/2}_{0}_{\nu_{\tau}}$	$ \begin{smallmatrix} 80.4 & \text{GeV} \\ 1 \\ \pm 1 & W_{\pm} \end{smallmatrix} $	
	e neutrino	μ neutrino	τ neutrino		

Fermions

Bosons

Part IX Quantum Computing

46 Qubits

	$\left \psi\right\rangle = \alpha \left 0\right\rangle + \beta \left 1\right\rangle$	(462)
Bloch sphere	$=\cos\frac{\theta}{2}e^{i\phi_{\alpha}}\left 0\right\rangle +\sin\frac{\theta}{2}e^{i\phi_{\beta}}\left 1\right\rangle$	(463)
	$= e^{i\phi_{\alpha}} \cos\frac{\theta}{2} \left 0\right\rangle + \sin\frac{\theta}{2} e^{i\phi} \left 1\right\rangle$	(464)

47 Gates

Gates	Bitflip: $\hat{X} = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	(465)
	Bit-Phase flip: $\hat{Y} = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	(466)
	Phaseflip: $\hat{Z} = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	(467)
	Hadamard: $\hat{H} = \frac{1}{\sqrt{2}}(\hat{X} - \hat{Z}) = \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$	(468)

48 Superconducting qubits

48.1 Building blocks

48.1.1 Josephson Junction

When two superconductors are separated by a thin isolator, Cooper pairs can tunnel through the insulator. The Josephson junction is a non-linear inductor.

Josephson-Hamiltonian	$\hat{H}_{\rm J} = -\frac{E_{\rm J}}{2} \sum_{n} [n\rangle \langle n+1 + n+1\rangle \langle n] $ (469)
1. Josephson relation Dissipationless supercurrent accros junction at zero applied voltage	$\hat{I} \delta\rangle = I_{\rm C} \sin \delta \delta\rangle \qquad (470)$ $I_{\rm C} = \frac{2e}{\hbar} E_{\rm J} \text{ critical current, } \delta \text{ phase difference accross junction}$
2. Josephson relation superconducting phase change is proportional to applied voltage	$\frac{\mathrm{d}\hat{\delta}}{\mathrm{d}t} = \frac{1}{i\hbar} [\hat{H}, \hat{\delta}] = -\frac{2eU}{i\hbar} [\hat{n}, \hat{\delta}] = \frac{1}{\varphi_0} U \qquad (471)$ $\varphi_0 = \frac{\hbar}{2e} \text{ reduced flux quantum}$

48.1.2 SQUID

Hamiltonian

SQUID Superconducting quantum interference device, consists of parallel can be used to measure extremely weak magnetic fields

 $\hat{H} = -E_{\rm J1}\cos\hat{\phi}_1 - E_{\rm J2}\cos\hat{\phi}_2 \qquad (472)$ $\hat{\phi} \text{ phase difference across the junction}$

48.2 Josephson Qubit??

	$E_L/(E_J - E_L)$			vity		
		0	≪ 1	~ 1	≫1	ensiti
	≪1	cooper-pair box				-5 °
$\frac{E_J}{E_C}$	~ 1	quantronium	fluxonium			C. Selipiti
	$\gg 1$	transmon			flux qubit	hoise se cu.
	»» 1			phase qubit		ensitivity

48.3 Cooper Pair Box (CPB) qubit

- = voltage bias junction
- = charge qubit?

Cooper Pair Box / Charge qubit

- large anharmonicity
- sensitive to charge noise

Uamil	tonion
Hamil	tonian

$\hat{H} = 4E_C(\hat{n} - n_g)^2 - E_J \cos{\hat{\phi}}$ (478)	
$=\sum_{n}\left[4E_{C}(n-n_{g})^{2}\left n\right\rangle\left\langle n\right -\frac{E_{J}}{2}\left n\right\rangle\left\langle n+1\right +\left n+1\right\rangle\left\langle n\right \right]$	
(479)	

48.4 Transmon qubit

48.4.1 Tunable Transmon qubit

0

2

48.5 Phase qubit

This is only a test

Flux qubit **48.6**

TODO:TODO

48.7 Fluxonium qubit

49 Two-level system

Resonance frequency	$\omega_{21} = \frac{E_2 - E_1}{\hbar} \tag{485}$,)

TODO:sollte das nicht 10 sein?

Rabi oscillations

49.1 Ramsey interferometry

 $|0\rangle \xrightarrow{\frac{\pi}{2} \text{ pulse}} \text{ precession in } xy \text{ plane for time } \tau \xrightarrow{\frac{\pi}{2} \text{ pulse}} \text{ measurement}$

50 Noise and decoherence

Longitudinal relaxation rate	1	
$\Gamma_{1\downarrow}: 1\rangle \to 0\rangle$	$\Gamma_1 = \frac{1}{T} = \Gamma_{1\uparrow} + \Gamma_{1\downarrow}$	(487)
$\Gamma_{1\uparrow}: 0\rangle \rightarrow 1\rangle$	I_1	

 $\Gamma_{1\uparrow}$ is supressed at low temperatures because of detailed balance

Pure dephasing rate	Γ_{ϕ}	(488)
Transversal relaxation rate	$\Gamma_2 = \frac{1}{T_2} = \frac{\Gamma_1}{2} + \Gamma_\phi$	(489)
Bloch-Redfield density matrix		
2-level System weakly coupled to noise sources with short	$\rho_{\rm BR} = \begin{pmatrix} 1 + (\alpha ^2 - 1) e^{-\Gamma_1 t} & \alpha \beta^* e^{-\Gamma_2 t} \\ \alpha^* \beta e^{-\Gamma_2 t} & \beta ^2 e^{-\Gamma_1 t} \end{pmatrix}$	(490)
correlation time		

Part X Computational Physics

51 Quantum many-body physics

51.1 Quantum many-body models

Homogeneous electron gas (HEG)	Both positive (nucleus) and negative (electron) charges are distributed uniformly.
Also "Jellium"	

51.2 Methods

51.2.1 Quantum Monte-Carlo

TODO:TODO

51.3 Importance sampling

TODO:Monte Carlo

51.4 Matrix product states

52 Electronic structure theory

Kinetic energy of species i	$\hat{T}_i = -\sum_{n=1}^{N_i} \frac{\hbar^2}{2m_i} \vec{\nabla}_n^2 $ (491) i = nucleons/electrons, N number of particles, m Mass
Electrostatic potential	$\hat{V}_{i \leftrightarrow j} = -\sum_{k,l} \frac{Z_i Z_j e^2}{ \vec{r}_k - \vec{r}_l } $ $\tag{492}$
between species i and j	i, j = nucleons/electrons, r particle position, Z_i charge of species i, e Unit charge
Electronic structure	$\hat{H} = \hat{T}_{e} + \hat{T}_{n} + V_{e\leftrightarrow e} + V_{n\leftrightarrow e} + V_{n\leftrightarrow n} $ (493)
Hamiltonian	\hat{T} Kinetic energy, \hat{V} Electrostatic potential, e electrons, n nucleons
Mean field approximation Replaces 2-particle operator	$\frac{1}{2} \sum_{i \neq j} \frac{e^2}{ \vec{r}_i - \vec{r}_j } \approx \sum_i V_{\text{eff}}(\vec{r}_i) $ (494)
by 1-particle operator	Example for Coulomb interaction between many electrons

52.1 Tight-binding

	Assumptions	• Atomic wave functions are localized \Rightarrow Small overlap, interaction cutoff
--	-------------	---

$$\hat{H} = \sum_{i} \epsilon_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i} - \sum_{i,j} t_{i,j} \left(\hat{a}_{i}^{\dagger} \hat{a}_{j} + \hat{a}_{j}^{\dagger} \hat{a}_{i} \right)$$
(495)

Tight-binding Hamiltonian in second quantized form

 \hat{a}_i^{\dagger} , \hat{a}_i Creation / Annihilation operators create/destory an electron on site *i*, ϵ_i on-site energy, $t_{i,j}$ hopping amplitude, usually ϵ and *t* are determined from experiments or other methods

52.2 Density functional theory (DFT)

52.2.1 Hartree-Fock

Description	 Assumes wave functions are Slater determinant ⇒Approximation Mean field approximation theory obeying the Pauli principle Self-interaction free: Self interaction is cancelled out by the Fock-term
Hartree-Fock equation	$ \begin{pmatrix} \hat{T} + \hat{V}_{en} + \hat{V}_{HF}^{\xi} \end{pmatrix} \varphi_{\xi}(x) = \epsilon_{\xi} \varphi_{\xi}(x) $ (496) φ_{ξ} single particle wavefunction of ξ th orbital, \hat{T} kinetic electron energy, \hat{V}_{en} electron-nucleus attraction, \hat{V}_{HF} comp:dft:hf:potential,
Hartree-Fock potential	$V_{\rm HF}^{\xi}(\vec{r}) = \sum_{\vartheta} \int dx' \frac{e^2}{ \vec{r} - \vec{r}' } \left(\underbrace{ \varphi_{\xi}(x') ^2}_{\rm Hartree-Term} - \underbrace{\frac{\varphi_{\vartheta}^*(x')\varphi_{\xi}(x')\varphi_{\vartheta}(x)}{\varphi_{\xi}(x)}}_{\rm Fock-Term} \right) $ (497)
Self-consistent field cycle	1. Initial guess for ψ 2. Solve SG for each particle3. Make new guess for ψ

52.2.2 Hohenberg-Kohn Theorems

Hohenberg-Kohn theorem (HK1)	For any system of interacting electrons, the ground state electron density $n(\vec{r})$ determines \hat{V}_{ext} uniquely up to a trivial constant.
Hohenberg-Kohn theorem (HK2)	Given the energy functional $E[n(\vec{r})]$, the ground state density and energy can be obtained variationally. The density that minimizes the total energy is the ecxact ground state density.
Ground state electron density	$n(\vec{r}) = \left(\psi_0 \left \sum_{i=1}^N \delta(\vec{r} - \vec{r}_i) \right \psi_0 \right) $ (498)

52.2.3 Kohn-Sham DFT

Kohn-Sham map	Maps fully interacting system of electrons to a system of non-interacting electrons with the same ground state density $n'(\vec{r}) = n(\vec{r})$
	$n(\vec{r}) = \sum_{i=1}^{N} \phi_i(\vec{r}) ^2 $ (499)
Kohn-Sham functional	$E_{\rm KS}[n(\vec{r})] = T_{\rm KS}[n(\vec{r})] + V_{\rm ext}[n(\vec{r})] + E_{\rm H}[n(\vec{r})] + E_{\rm XC}[n(\vec{r})] $ (500)
	$T_{\rm KS}$ kinetic enery, $V_{\rm ext}$ external potential, $E_{\rm H}$ Hartree term, $E_{\rm XC}$ Exchange-Correlation functional
Kohn-Sham equation Exact single particle SE (though often exact $E_{\rm XC}$ is not known) Solving it uses up a large portion of supercomputer resources	$\begin{cases} -\frac{\hbar^2 \nabla^2}{2m} + v_{\text{ext}}(\vec{r}) + e^2 \int d^3 \vec{r}' \frac{n(\vec{r}')}{ \vec{r} - \vec{r}' } \\ + \frac{\partial E_{\text{X}}[n(\vec{r})]}{\partial n(\vec{r})} + \frac{\partial E_{\text{C}}[n(\vec{r})]}{\partial n(\vec{r})} \end{cases} \phi_i^{\text{KS}}(\vec{r}) = \\ = \epsilon_i^{\text{KS}} \phi_i^{\text{KS}}(\vec{r}) (501) \end{cases}$ $\phi_i^{\text{KS}} \text{ KS orbitals, } \int d^3 r v_{\text{ext}}(\vec{r}) n(\vec{r}) = V_{\text{ext}}[n(\vec{r})]$
Self-consistent field cycle for Kohn-Sham	 Initial guess for n(r) Calculate effective potential V_{eff} Solve Kohn-Sham equation Calculate density n(r) Repeat 2-4 until self consistent

52.2.4 Exchange-Correlation functionals

Exchange-Correlation functional	$E_{\rm XC}[n(\vec{r})] = \langle \hat{T} \rangle - T_{\rm KS}[n(\vec{r})] + \langle \hat{V}_{\rm int} \rangle - E_{\rm H}[n(\vec{r})] \qquad (502)$
	 Accounts for: Kinetic energy difference between interaction and non-interacting system
	 Exchange energy due to Pauli principle Correlation energy due to many-body Coulomb interaction (not accounted for in mean field Hartree term E_H)
Local density approximation	$E_{\rm XC}^{\rm LDA}[n(\vec{r})] = \int d^3r n(r) \Big[\epsilon_{\rm X}[n(\vec{r})] + \epsilon_{\rm C}[n(\vec{r})] \Big] $ (503)
Simplest DFT functionals	$\epsilon_{\rm X}$ calculated exchange energy from HEG model, $\epsilon_{\rm C}$ correlation energy calculated with Quantum Monte-Carlo

Generalized gradient approximation (GGA)	$E_{\rm XC}^{\rm GGA}[n(\vec{r})] =$ $\epsilon_{\rm X}$ calculated ex- tion containing and $\vec{\nabla}n$	$\int d^3r n(r) \epsilon_{\rm X}[n(\vec{r})] F_{\rm XC}[n(\vec{r}), \vec{\nabla} n(\vec{r})] (504)$ xchange energy from HEG model, $F_{\rm XC}$ func- exchange-correlation energy dependency on n	
TODO:PBE			
TT 1 · 1 C /· 1		$\alpha E_{\rm X}^{\rm HF} + (1 - \alpha) E_{\rm X}^{\rm GGA} + E_{\rm C}^{\rm GGA} \tag{505}$	
Hybrid functionals	Include Fock te GGA . Comput	rm (exact exchange) in other functional, like ationally expensive	
Range separated hyrid functionals (RSH) Here HSE as example	$E_{\rm XC}^{\rm HSE} = \alpha E_{\rm X,ST}^{\rm HF}$ Use GGA and 1 GGA??? for always used. U range interactio α mixing parametry	$\frac{1}{r} = \frac{\operatorname{erf}(\omega r)}{r} + \frac{\operatorname{erfc}\omega r}{r} $ (506) $_{\mathrm{R}}(\omega) + (1-\alpha)E_{\mathrm{X,SR}}^{\mathrm{GGA}}(\omega) + E_{\mathrm{X,LR}}^{\mathrm{GGA}}(\omega) + E_{\mathrm{C}}^{\mathrm{GGA}} $ (507) Fock exchange for short ranges (SR) and only long ranges (LR). GGA??? correlation is Useful when dielectric screening reduces long ons, saves computational cost. anter, E_{X} exchange energy, E_{C} correlation en-	
Comparison of DFT functionals	Hartree-Fock LDA GGA hybrid	only exchange, no correlation \Rightarrow upper bound of understimates e repulsion \Rightarrow Overbindi underestimate band gap underestimate band gap	f GS energ ing

52.2.5 Basis sets

Plane wave basis Plane wave ansatz in Kohn-Sham equation Good for periodic structures, allows computation parallelization over a sample points in the brillouin_zone???

Pl N in m

$$\sum_{\vec{G}'} \left[\frac{\hbar^2 \left| \vec{G} + \vec{k} \right|^2}{2m} \delta_{\vec{G}, \vec{G}'} + V_{\text{eff}} (\vec{G} - \vec{G}') \right] c_{i, \vec{k}, \vec{G}'} = \epsilon_{i, \vec{k}} c_{i, \vec{k}, \vec{G}} \quad (508)$$

lane wave cutoff
umber of plane waves
cluded in the calculation
ust be finite
$$E_{\rm cutoff} = \frac{\hbar^2 \left| \vec{k} + \vec{G} \right|^2}{2m} \tag{509}$$

52.2.6 Pseudo-Potential method

Ansatz

Core electrons are absorbed into the potential since they do not contribute much to interesting properties.

53 Atomic dynamics

	$H_{\rm e} = T_{\rm e} + V_{\rm e\leftrightarrow e} + V_{\rm n\leftrightarrow e} \tag{510}$
Electron Hamiltonian	\hat{T} Kinetic energy, \hat{V} Electrostatic potential, e electrons, n nucleons
Wave function ansatz	$\psi_{\rm en}^{n}(\{\vec{r},\sigma\},\{\vec{R}\}) = \sum_{i} c^{ni}(\{\vec{R}\})\psi_{\rm e}^{i}(\{\vec{r},\sigma\},\{\vec{R}\}) $ (511) $\psi_{\rm en}^{n} \text{ eigenstate } n \text{ of Electronic structure Hamiltonian, } \psi_{\rm e}^{i}$ eigenstate i of comp:ad:bo:hamiltonian, \vec{r}, \vec{R} electron/nucleus positions, σ electron spin, c^{ni} coefficients
Equation	$\left[E_{\mathrm{e}}^{j}\left\{\{\vec{R}\}\right\} + \hat{T}_{\mathrm{n}} + V_{\mathrm{n}\leftrightarrow\mathrm{n}} - E^{n}\right]c^{nj} = -\sum_{i}\Lambda_{ij}c^{ni}\left\{\{\vec{R}\}\right\} (512)$
Exact nonadiabtic coupling operator Electron-phonon couplings / electron-vibrational couplings	$ \Lambda_{ij} = \int d^3 r (\psi_e^j)^* \left(-\sum_I \frac{\hbar^2 \nabla_{\vec{R}_I}^2}{2M_I} \right) \psi_e^i \\ + \sum_I \frac{1}{M_I} \int d^3 r \left[(\psi_e^j)^* (-i\hbar \nabla_{\vec{R}_I}) \psi_e^i \right] (-i\hbar \nabla_{\vec{R}_I}) (513) \\ \psi_e^i \text{ electronic states, } \vec{R} \text{ nucleus position, } M \text{ nucleus Mass} $

<u>^</u>

~

53.1 Born-Oppenheimer Approximation

Adiabatic approximation		(= , ,)
Electronic configuration	$\Lambda_{ij} = 0 \text{for } i \neq j$	(514)
remains the same when atoms		
move ()	Λ_{ij} Exact nonadiabtic coupling operator	

comp:ad:bo:equation \Rightarrow

Born-Oppenheimer approximation Electrons are not influenced by the movement of the atoms

Born-Oppenheimer surface Potential energy surface (PES) The nuclei follow Newtons equations of motion on the BO surface if the system is in the electronic ground state

Ansatz for Born-Oppenheimer approximation Product of single electronic and single nuclear state

$$\Lambda_{ij} = 0 \tag{515}$$

$$\left[E_{e}^{i}(\{\vec{R}\}) + \hat{T}_{n} - E^{n}\right]c^{ni}(\{\vec{R}\}) = 0$$
(516)

see Equation, $V_{n \leftrightarrow n}$ = const absorbed into E_e^j

$$V_{\rm BO}(\{\vec{R}\}) = E_{\rm e}^0(\{\vec{R}\})$$
 (517)

$$M_{I}\vec{R}_{I}(t) = -\vec{\nabla}_{\vec{R}_{I}}V_{\rm BO}(\{\vec{R}(t)\})$$
(518)

 $E_{\rm e}^0, \psi_{\rm e}^0$ lowest eigenvalue/eigenstate of comp:
ad:bo:hamiltonian

 $\psi_{\rm BO} = c^{n0} (\{\vec{R}\}) \psi_{\rm e}^0 (\{\vec{r},\sigma\},\{\vec{R}\})$ (519)

•	Nucle	ei vel	ocitie	es mu	st be	small	and	electron	energy	state
	differ	ences	s larg	e						
	NT 1		1 .	c	œ	1.1		1 • /	1.	

- Nuclei need spin for effects like spin-orbit coupling
- Nonadiabitc effects in photochemistry, proteins

ξ

Limitations

Valid when Massey parameter $\xi \gg 1$

$$=\frac{\tau_{\rm n}}{\tau_{\rm e}} = \frac{L\Delta E}{\hbar \left| \dot{\vec{R}} \right|} \tag{520}$$

 τ passage of time for electrons/nuclei, L characteristic length scale of atomic dynamics, $\dot{\vec{R}}$ nuclear velocity, ΔE difference between two electronic states

53.2 Structure optimization

Forces	$\vec{F}_{I} = -\vec{\nabla}_{\vec{R}_{I}} E \stackrel{\downarrow}{=} -\left(\psi(\vec{R}_{I}) \left \left(\vec{\nabla}_{\vec{R}_{I}} \hat{H}(\vec{R}_{I})\right) \right \psi(\vec{R}) \right) $ (521)
Ionic cycle Self-consistent field cycle for Kohn-Sham for geometry optimization	 Initial guess for n(r) (a) Calculate effective potential V_{eff} (b) Solve Kohn-Sham equation (c) Calculate density n(r)
Transformation of atomic positions under stress	$R_{\alpha}([\epsilon]_{\alpha\beta}) = \sum_{\beta} (\delta_{\alpha\beta} + [\epsilon]_{\alpha\beta}) R_{\beta}(0) $ (522) $\alpha, \beta = 1, 2, 3$ position components, R position, $R(0)$ zero- strain position, $[\epsilon]$ Strain tensor
Stress tensor	$[\sigma]_{\alpha,\beta} = \frac{1}{\Omega} \left(\frac{\partial E_{\text{total}}}{\partial [\epsilon]_{\alpha\beta}} \right)_{[\epsilon]=0} $ (523) Ω unit cell volume, $[\epsilon]$ Strain tensor
Pulay stress	$\frac{N_{\rm PW} \propto E_{\rm cut}^{\frac{3}{2}} \propto \left \vec{G}_{\rm max}\right ^3}{\text{Number of plane waves } N_{\rm PW} \text{ depends on } E_{\rm cut}. \text{ If } G \text{ changes during optimization, } N_{\rm PW} \text{ may change, thus the basis set can change. This typically leads to too small volumes.}}$

53.3 Lattice vibrations

Force constant matrix

 $\Phi_{IJ}^{\mu\nu} = \left(\frac{\partial^2 V(\{\vec{R}\})}{\partial R_I^{\mu} \partial R_J^{\nu}}\right)_{\{\vec{R}_I\} = \{\vec{R}_I^0\}}$ (525)

Harmonic approximation Hessian matrix, 2nd order Taylor expansion of the Born-Oppenheimer surface around every nucleus position \vec{R}_{I}^{0} $V^{BO}(\{\vec{R}_{I}\}) \approx V^{BO}(\{\vec{R}_{I}^{0}\}) + \frac{1}{2} \sum_{I,J}^{N} \sum_{\mu,\nu}^{3} s_{I}^{\mu} s_{J}^{\nu} \Phi_{IJ}^{\mu\nu}$ (526) $\Phi_{IJ}^{\mu\nu}$ Force constant matrix, *s* displacement

53.3.1 Finite difference method

Approximation Assume forces in equilibrium	$\Phi_{IJ}^{\mu\nu} \approx \frac{\vec{F}_{I}^{\mu}(\vec{R}_{1}^{0}, \dots, \vec{R}_{J}^{0} + \Delta s_{J}^{\nu}, \dots, \vec{R}_{N}^{0})}{\Delta s_{J}^{\nu}} $ (527)	
structure vanish	Δs displacement of atom J	

Dynamical matrix Mass reduced fourier transform of the Force constant matrix

Eigenvalue equation For a periodic crystal, reduces number of equations from $3N_p \times N$ to $3N_p$. Eigenvalues represent phonon band structure.

$$D^{\mu\nu}_{\alpha\beta} = \frac{1}{\sqrt{M_{\alpha}M_{\beta}}} \sum_{n'} \Phi^{\mu\nu}_{\alpha\beta}(n-n') e^{i\vec{q}(\vec{L}_n-\vec{L}_{n'})}$$
(528)

 \vec{L} vector from origin to unit cell $n, \alpha/\beta$ atom index in th unit cell, \vec{q} ???:wavevector, Φ Force constant matrix, M Mass

$$\omega^2 \vec{c}(\vec{q}) = \underline{D}(\vec{q})\vec{c}(\vec{q}) \tag{529}$$

 N_p number of atoms per unit cell, \vec{c} displacement amplitudes, \vec{q} ???:wavevector, \underline{D} Dynamical matrix

53.3.2 Anharmonic approaches

Quasi-harmonic approximation	Include thermal expansion by assuming Born-Oppenheimer surface is volume dependant.
Pertubative approaches	Expand Force constant matrix to third order.

53.4 Molecular Dynamics

Description	 Exact (within previous approximations) approach to treat anharmonic effects in materials. Computes time-dependant observables. Assumes fully classical nuclei. Macroscropical observables from statistical ensembles System evolves in time (ehrenfest). Number of points to consider does NOT scale with system size. Exact because time dependance is studied explicitly, not via harmonic approx.
-------------	---

	1. Initialize with optimized geometry, interaction poten-
	tial, ensemble, integration scheme, temperature/pres-
	sure control
MD simulation procedure	2. Equilibrate to desired temperature/pressure (eg with
	statistical starting velocities)
	3. Production run, run MD long enough to calculate de-
	sired observables

53.4.1 Ab-initio molecular dynamics

Born-Oppenheimer MD (BOMD)	 Calculate electronic ground state of current nucleui configuration { R(t) } with KS-DFT Calculate forces from the Born-Oppenheimer surface Update positions and velocities "ab-inito" - no empirical information required Many expensive DFT calculations
Car-Parrinello MD (CPMD)	Evolve electronic wave function φ (adiabatically) along with the nuclei \Rightarrow only one full KS-DFT $M_{I} \frac{d^{2} \vec{R}_{I}}{dt^{2}} = -\vec{\nabla}_{\vec{R}_{I}} E[\{\varphi_{i}\}, \{\vec{R}_{I}\}] $ (530) $\mu \frac{d^{2} \varphi_{i}(\vec{r}, t)}{dt^{2}} = -\frac{\partial}{\partial \varphi_{i}^{*}(\vec{r}, t)} E[\{\varphi_{i}\}, \{\vec{R}_{I}\}] + \sum_{j} \lambda_{ij} \varphi_{j}(\vec{r}, t) $ (531) μ electron orbital mass, φ_{i} KS-DFT eigenststate, λ_{ij} Lagrange multiplier

53.4.2 Force-field MD

Force field MD (FFMD)	• Use empirical interaction potential instead of electronic
	structure
	• Force fields need to be fitted for specific material \Rightarrow not
	transferable
	• Faster than BOMD
	• Example:

53.4.3 Integration schemes

Procedures for updating positions and velocities to obey the equations of motion.

Euler method First-order procedure for solving ode??? s with a given	$\vec{R}(t + \Delta t) = \vec{R}(t) + \vec{v}(t)\Delta t + \mathcal{O}\left(\Delta t^{2}\right)$ $\vec{v}(t + \Delta t) = \vec{v}(t) + \vec{a}(t)\Delta t + \mathcal{O}\left(\Delta t^{2}\right)$	(532) (533)
initial value.		
Taylor expansion of $\vec{R}/\vec{v}(t+\Delta t)$	Cumulative error scales linearly $\mathcal{O}(\Delta t)$. Not the versible.	me re-

Verlet integration Preverses time reversibility, does not require velocity updates

$$\vec{R}(t+\Delta t) = 2\vec{R}(t) - \vec{R}(t-\Delta t) + \vec{a}(t)\Delta t^2 + \mathcal{O}\left(\Delta t^4\right) \quad (534)$$

Velocity-Verlet integration

$$\vec{R}(t + \Delta t) = \vec{R}(t) + \vec{v}(t)\Delta t + \frac{1}{2}\vec{a}(t)\Delta t^{2} + \mathcal{O}\left(\Delta t^{4}\right)$$
(535)
$$\vec{v}(t + \Delta t) = \vec{v}(t) + \frac{\vec{a}(t) + \vec{a}(t + \Delta t)}{2}\Delta t + \mathcal{O}\left(\Delta t^{4}\right)$$
(536)

TODO:leapfrog

Velocity rescaling Thermostat, keep temperature at T_0 by

allow temperature

obey the

rescaling velocities. Does not

fluctuations and thus does not

53.4.4 Thermostats and barostats

$\Delta T(t) = T_0 - T(t)$		(537)
$\sum_{i=1}^{N} M_{I} \left(\lambda \vec{v}_{I}(t)\right)^{2}$	$\sum_{I}^{N} M_{I} \vec{v}_{I}(t)^{2}$	(520)

$$= \sum_{I} \frac{1}{fk_{\rm B}} - \sum_{I} \frac{1}{fk_{\rm B}}$$
(538)
= $(\lambda^2 - 1)T(t)$ (539)

$$(\lambda - 1)I(t) \tag{539}$$

$$\lambda = \sqrt{\frac{T_0}{T(t)}} \tag{540}$$

T target Temperature, M Mass of nucleon $I,\,\vec{v}$ Velocity, fnumber of degrees of freedom, λ velocity scaling parameter, $k_{\rm B}$ Boltzmann constant

Berendsen thermostat		
Does not obey but efficiently	$dT = T_0 - T$	(5.41)
brings system to target	$\frac{1}{\mathrm{d}t} = \frac{1}{\tau}$	(341)
temperature		

	$\mathrm{d}\tilde{t} = \tilde{s}\mathrm{d}t$	(542)
Nose-Hoover thermostat	N 1	
Control the temperature with	$\mathcal{L} = \sum_{i=1}^{N} \frac{1}{2} M_{I} \tilde{s}^{2} v_{i}^{2} - V(\vec{R}_{1}, \dots, \vec{R}_{I}, \dots, \vec{R}_{N}) + \frac{1}{2} Q \dot{\tilde{s}}^{2} - g \dot{k}$	$k_{\rm B}T_0\ln\tilde{s}$
by time stretching with an	I=1 2 2	
associated mass.		(543)
Compliant with	s scaling factor, Q associated "mass", $\mathcal L$, g degrees of	freedom

53.4.5 Calculating observables

Spectral density Wiener-Khinchin theorem of	$S(\omega) = \int_{-\infty}^{\infty} \mathrm{d}\tau C(\tau) \mathrm{e}^{-i\omega t} \tag{544}$)
Vibrational density of states	$g(\omega) \sim \sum_{I=1}^{N} M_I S_{v_I}(\omega) \tag{545}$)

Vibrational density of states (VDOS)

$$S_{v_i}$$
 velocity Spectral density of particle I

Machine-Learning $\mathbf{54}$

54.1 Performance metrics

Mean absolute error (MAE)

Accuracy	a = correct predictions				
recuracy	a^{-} false predictions + correct predictions	(040)			

TODO: is n the nuber of predictions or the number of output features?

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
 (547)

y ground truth, \hat{y} prediction, n ?

Root mean squared error (RMSE)	RMSE = $\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$ (54)	:8)
	y ground truth, \hat{y} prediction, n ?	

54.2 Regression

54.2.1 Linear Regression

Linear regression Fits the data under the	$\underline{y} = \underline{b} + \underline{x} \cdot \vec{W} \tag{549}$
assumption of normally distributed errors	$\underline{x} \in \mathbb{R}^{N \times M}$ input data, $\underline{y} \in \mathbb{R}^{N \times L}$ output data, \underline{b} bias, \vec{W} weights, N samples, M features, L output variables
Design matrix Stack column of ones to the feature vector Useful when b is scalar	$\underline{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1M} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{N1} & \dots & x_{NM} \end{pmatrix} $ (550) $x_{ij} \text{ feature } j \text{ of sample } i$
Linear regression with scalar bias Using the design matrix, the	$\underline{y} = \underline{X} \cdot \vec{W} \tag{551}$
scalar is absorbed into the	u output data, X comp:ml:reg:designmatrix, \vec{W} weights

y output data, \underline{X} comp:ml:reg:designmatrix, \vec{W} weights

Normal equation Solves Linear regression with	$\vec{W} = \left(\underline{X}^{\mathrm{T}}\underline{X}\right)^{-1}\underline{X}^{T}\underline{y}$	(552)
scalar bias	\underline{y} output data, \underline{X} Design matrix, \vec{W} weights	

54.2.2 Ridge regression

weight vector

TODO:ridge reg, Kernel ridge reg, gaussian process reg

54.3 Gradient descent

TODO:in lecture 30 CMP

Part XI Chemistry

55 Periodic table

1	$\overset{1}{\operatorname*{H}}_{1.008}$			∎ tra ■ no ■ all	ansitio blega kaline	onme s earth	tal metal	∎ nc ■ all ■ laı	onmet kalime nthan	al etal oide								$\mathop{\mathrm{He}}\limits_{4.003}^{2}$
2	3 Li	$\operatorname{Be}_{9.012}^{4}$		∎ ha ∎ M	logen etal			∎ m	etallo	id			$^{5}_{10,811}$	$^{6}_{12,011}$	7 N	8 0	9 F	¹⁰ Ne
3	¹¹ Na 22.990	¹² Mg 24.305			100			10.0	107		100		$\overset{13}{\text{Al}}_{\overset{26.982}{\text{al}}}$	14 Si 28.085	15 P 30.974	16 S 32.063	17 Cl 35.453	${\rm Ar}_{39.948}$
4	19 K 39.098	${\rm Ca}_{\rm 40.078}$	$\operatorname{Sc}_{44.956}$	22 Ti 47.867	$V_{50.942}$	$\operatorname{Cr}_{51.996}$	²⁵ Mn ^{54.938}	Fe 55.845	Co 58.933	28 Ni 58.693	$\overset{29}{\operatorname{Cu}}_{63.546}$	30 Zn 65.382	$Ga_{69.723}$	³² Ge ^{72.631}	$As_{74.922}$	$\overset{34}{\operatorname{Se}}_{_{78.972}}$	${\mathop{\rm Br}\limits_{_{79.905}}}$	36 Kr 83.798
5	37 Rb 85 468	Sr 87.621	³⁹ Y 88 906	${\rm Zr}_{_{91,224}}$	41 Nb	42 Mo 95 951	${}^{43}_{98,906}$	${\mathop{\rm Ru}\limits_{101.072}}$	$^{45}_{102,906}$	$^{46}_{106\ 421}$	47 Ag	$^{48}_{112\ 414}$	49 In	${\stackrel{50}{{ m Sn}}}_{118,711}$	$^{51}_{121,760}$	$Te_{127,603}$	53 I 126 904	${\overset{54}{\mathrm{Xe}}}_{131,294}$
6	Cs	56 Ba	57 La	$Hf_{178,402}$	73 Ta	74 W	$\operatorname{Re}_{186,207}$	Os	77 Ir	$\frac{100.421}{78}$	79 Au	Hg	81 Tl	Pb	83 Bi	⁸⁴ Po	$\operatorname{At}_{200.987}$	$\operatorname{Rn}_{222,000}$
7	87 Fr 223.020	Ra 226.025	Ac 227.028	$Rf_{261.109}$	$^{100.948}_{105}$ Db $_{262.114}$	$\frac{183.841}{106}$ Sg 263.118	$^{100.207}_{107}$ Bh $^{262.123}$	Hs 265.269	$Mt_{268.000}$	$\frac{133.083}{110}$ Ds 281.000	$^{111}_{280.000}$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	$^{113}_{287.000}$	¹¹⁴ Fl 289.000	$Mc_{288.000}$	¹¹⁶ Lv 293.000	¹¹⁷ Ts ^{292.000}	$Og_{294.000}$
	L																	
				$\overset{58}{\mathrm{Ce}}_{_{140.116}}$	$\Pr_{140.908}^{59}$	$\overset{60}{\mathrm{Nd}}_{_{144.242}}$	$\Pr^{61}_{146.915}$	${\mathop{\rm Sm}\limits_{_{150.362}}}$	${\mathop{\rm Eu}\limits_{_{151.964}}}$	${}^{64}_{157.253}$	$^{65}_{158.925}$	$\overset{66}{ ext{Dy}}_{ ext{162.500}}$	${}^{67}_{164.930}$	${\mathop{\rm Er}\limits_{_{167.259}}}$	${\mathop{\rm Tm}\limits_{_{168.934}}}$	${\overset{70}{\mathrm{Yb}}}_{_{173.045}}$	$\overset{71}{\mathrm{Lu}}_{_{174.967}}$	
				90 Th 232.038	${\mathop{\rm Pa}\limits_{_{231.036}}}$	92 U 238.029	$^{93}_{237.048}$	${\mathop{\rm Pu}\limits_{_{244.064}}}$	${\mathop{\rm Am}\limits_{_{243.061}}}$	${\mathop{\rm Cm}\limits_{_{247.070}}}$	97 Bk 247.000	$^{98}_{251.000}$	${\mathop{\rm Es}\limits_{_{252.000}}}$	${ m Fm}_{257.095}$	¹⁰¹ Md 258.000	102 No 259.000	${\overset{103}{ m Lr}}_{266.000}$	

56 Electrochemistry

Chemical potential of species i Energy involved when the particle number changes	$ \frac{\begin{array}{c} \text{Symbol: } \mu \\ \text{Unit: } 1 \text{J/mol; J} \\ \mu_i \equiv \left(\frac{\partial G}{\partial n_i}\right)_{n_j \neq n_i, p, T} \\ \text{(553)} \\ \text{??? ???:gibbsfreeenergy, } n \text{ Amount of substance} \end{array} $
Standard chemical potential In equilibrium	$\mu_{i} = \mu_{i}^{\theta} + RT \ln (a_{i}) $ (554) $\mu \text{ Chemical potential, } R \text{ Universal gas constant, } T \text{ Tempera- ture, } a \text{ Activity}$
Chemical equilibrium	$\sum_{\text{products}} \nu_i \mu_i = \sum_{\text{educts}} \nu_i \mu_i \qquad (555)$ $\mu \text{ Chemical potential, } \nu \text{ Stoichiometric coefficient}$

	Symbol: a Unit:
Activity relative activity	$a_i = \exp\left(\frac{\mu_i - \mu_i^{\theta}}{RT}\right) \tag{556}$
	μ Chemical potential, ??? ???:standard chemical potential, R Universal gas constant, T Temperature
	Symbol: $\overline{\mu}$ Unit: 1 J/mol; J
Electrochemical potential Chemical potential with electrostatic contributions	$\overline{\overline{\mu}_i \equiv \mu_i + z_i F \phi} \tag{557}$
	μ Chemical potential, z valency (charge), F Faraday constant, ϕ Electric potential (Galvani Potential)

56.1 Electrochemical cell

		Potentiostat
Schematic	C W R	Reference electrodeWorking electrodeCounter electrode
Electrochemical cell types	 Electrolytic cell: Uses electrical en reaction Galvanic cell: Produces electrical ical reaction 	nergy to force a chemical energy through a chem-
Faradaic process	Charge transfers between the elect trolyte.	rode bulk and the elec-
Non-Faradaic (capacitive) process	Charge is stored at the electrode-ele	ctrolyte interface.
Electrode potential	Symbol: E Unit: 1 V	
Standard cell potential	$E_{\rm rev}^{\theta} = \frac{-\Delta_{\rm R}G}{nF}$ $\Delta_{\rm R}G^{\theta} \text{ standard } ???: gibbsfreeenergy electrons, F Faraday constant}$	$\frac{\theta}{-}$ (558) of reaction, <i>n</i> number of

 $E = E^{\theta} + \frac{RT}{zF} \ln \left(\frac{\left(\prod_{i} (a_i)^{|\nu_i|} \right)_{\text{oxidized}}}{\left(\prod_{i} (a_i)^{|\nu_i|} \right)_{\text{reduced}}} \right)$ (559)Nernst equation Electrode potential for a E Electrode potential, E^{θ} Standard cell potential, R Univerhalf-cell reaction sal gas constant, ??? ???:temperature, z Charge number, FFaraday constant, a Activity, ν Stoichiometric coefficient $\frac{P_{\rm obtained}}{P_{\rm maximum}} = \frac{E_{\rm cell}}{E_{\rm cell,rev}}$ galvanic (560) $\eta_{\mathrm{cell}} =$ Thermodynamic cell efficiency $\frac{P_{\rm minimum}}{P_{\rm applied}} = \frac{E_{\rm cell,rev}}{E_{\rm cell}}$ electrolytic (561) $\eta_{\text{cell}} =$ P Electric power

56.2 Ionic conduction in electrolytes

Diffusion caused by concentration gradients	$i_{\text{diff}} = \sum_{i} -z_{i} F D_{i} \left(\frac{\mathrm{d}c_{i}}{\mathrm{d}x}\right) $ (562) $z_{i} \text{ Charge number of ion } i, F \text{ Faraday constant, ??? ???:dif-fusion constant of ion } i, c \text{ Concentration of ion } i$
Migration caused by potential gradients	$i_{\text{mig}} = \sum_{i} -z_{i}^{2} F^{2} c_{i} \mu_{i} \nabla \Phi_{\text{s}} $ (563) $z_{i} \text{ Charge number of ion } i, F \text{ Faraday constant, } c \text{ Concentration of ion } i, \mu \text{ Electrical mobility of ion } i, \nabla \phi_{\text{s}} \text{ potential gradient in the solution}$
Convection caused by pressure gradients	$i_{\text{conv}} = \sum_{i} -z_{i} F c_{i} v_{i}^{\text{flow}} $ (564) $z_{i} \text{ Charge number of ion } i, F \text{ Faraday constant, } c \text{ Concentration of ion } i, v_{i}^{\text{flow}} \text{ Velocity of ion } i \text{ in flowing electrolyte}$
Ionic conductivity	Symbol: κ Unit: $1 \Omega^{-1} \text{ cm} = 1 \text{ S cm}^{-1}$ $\kappa = F^2 \left(z_+^2 c_+ \mu_+ + z^2 c \mu \right)$ (565) <i>F</i> Faraday constant, z_i , c_i , μ_i charge number, Concentration and Electrical mobility of the positive (+) and negative (-) ions
Ohmic resistance of ionic current flow	$R_{\Omega} = \frac{L}{A \kappa} $ (566) L Length, A Area, κ Ionic conductivity

	Symbol: u_{\pm} Unit: $1 \mathrm{cm}^2 \mathrm{mol/Js}$
Ionic mobility	$u_{\pm} = -\frac{v_{\pm}}{\nabla \phi z_{\pm} F} = \frac{e}{6\pi F \eta_{\rm dyn} r_{\pm}} \tag{567}$
	v_{\pm} steady state drift Velocity, ϕ Electric potential, z Charge number, F Faraday constant, e Unit charge, η, μ Dynamic viscosity, r_{\pm} ion radius
Stokes's law Frictional force exerted on spherical objects moving in a	$F_{\rm R} = 6\pi r\eta v \tag{568}$
viscous fluid at low Reynolds numbers	r particle radius, η,μ Dynamic viscosity, v particle Velocity
Transference number Ion transport number Fraction of the current carried	$t_{+/-} = \frac{i_{+/-}}{i_{+} + i_{-}} \tag{569}$
by positive / negative ions	$i_{+/-}$ current through positive/negative charges
	$\begin{tabular}{ c c c c } \hline Symbol: \ \Lambda_M \\ Unit: \ 1 Scm^2/mol = 1 Acm^2/Vmol \end{tabular}$
Molar conductivity	$\Lambda_{\rm M} = \frac{\kappa}{c_{\rm salt}} \tag{570}$
	κ Ionic conductivity, $c_{\rm salt}$ Concentration des Elektrolyts
Kohlmusch's low	$\Lambda_{\rm M} = \Lambda_{\rm M}^0 - K \sqrt{c_{\rm salt}} $ (571)
Komrausen s law	$\Lambda^0_{\rm M}$ Molar conductivity at infinite dilution, $c_{\rm salt}$ Concentration des Elektrolyts, K constant
	Symbol: b Unit: $1 \mod kg^{-1}$
Molality	$b = \frac{n}{m} \tag{572}$
	n Amount of substance of the solute, m Mass of the solvent
	Symbol: c Unit: $1 \mod L^{-1}$
Molarity see Concentration	$c = \frac{n}{V} \tag{573}$
	n Amount of substance of the solute, V Volume of the solvent

Ionic strength Measure of the electric field in a solution through solved ions	$\label{eq:symbol: I} \hline \\ \begin{tabular}{ c c c c } \hline Symbol: I \\ Unit: 1 \mbox{ mol/kg; mol/L} \\ \hline \\ I_b = \frac{1}{2} \sum_i b_i z_i^2 \mbox{ (574)} \\ I_c = \frac{1}{2} \sum_i c_i z_i^2 \mbox{ (575)} \\ \hline \\ b \mbox{ Molality, c Molarity, z Charge number} \\ \hline \end{tabular}$
Debye screening length	$\lambda_{\rm D} = \sqrt{\frac{\epsilon k_{\rm B}T}{2N_{\rm A}e^2 I_C}} $ (576) N _A Avogadro constant, <i>e</i> Unit charge, <i>I</i> Ionic strength, ϵ Permittivity, <i>k</i> _B Boltzmann constant, <i>T</i> Temperature
Mean ionic activity coefficient	
Accounts for decreased reactivity because ions must divest themselves of their ion cloud before reacting	Symbol: γ Unit: $\gamma_{\pm} = (\gamma_{\pm}^{\nu_{\pm}} \gamma_{-}^{\nu_{-}})^{\frac{1}{\nu_{\pm}+\nu_{-}}}$ (577)
Debye-Hückel limiting law For an infinitely dilute solution	$\ln(\gamma_{\pm}) = -A z_{+} z_{-} \sqrt{I_{b}} $ (578) γ Mean ionic activity coefficient, A solvent dependant con- stant, z Charge number, I Ionic strength in [mol kg ⁻¹]

56.3 Kinetics

Transfer coefficient	$\alpha_{\rm A} = \alpha \tag{579}$ $\alpha_{\rm C} = 1 - \alpha \tag{580}$
Overpotential	Potential deviation from the equilibrium cell potential
Activation verpotential	$\eta_{\rm act} = E_{\rm electrode} - E_{\rm ref} $ (581) $E_{\rm electrode} \text{ potential at which the reaction starts } E_{\rm ref} \text{ thermo-dynamic potential of the reaction}$

56.3.1 Mass transport

Concentration overpotential Due to concentration gradient near the electrode, the ions need to diffuse to the electrode before reacting

$$\eta_{\text{conc,anodic}} = -\frac{RT}{\alpha \, zF} \ln\left(\frac{c_{\text{red}}^0}{c_{\text{red}}^S}\right) \tag{582}$$
$$RT = \int \left(c_{\text{ov}}^0\right)$$

$$\eta_{\rm conc, cathodic} = -\frac{RT}{(1-\alpha)zF} \ln\left(\frac{c_{\rm ox}^{\rm ox}}{c_{\rm ox}^{\rm S}}\right)$$
(583)

R Universal gas constant, T Temperature, 0/S ion concentration in the electrolyte / at the double layer, z Charge number, F Faraday constant

Diffusion overpotential
Due to mass transport
limitations
$$\eta_{diff} = \frac{RT}{nF} \ln\left(\frac{j.s.}{j.s.-j.mass}\right)$$
 (584)
 $j.s.$ (Limiting) current density, j_{mass} measured Current density, R Universal gas constant, T Temperature, n Charge
number, F Faraday constantCell layers e^{0}
 e^{0}

56.4 Techniques

56.4.1 Reference electrodes

Defined as reference for measuring half-cell potententials

Standard hydrogen elektrode (SHE)	Potential of the reaction: $2 \text{ H}^+ + 2 \text{ e}^- \longrightarrow \text{H}_2$ $p = 10^5 \text{ Pa}, a_{\text{H}^+} = 1 \text{ mol } \text{L}^{-1} (\Rightarrow \text{pH} = 0)$	
Reversible hydrogen electrode (RHE)	$E_{\rm RHE} = E^0 + \frac{RT}{F} \ln\left(\frac{a_{\rm H^+}}{p_{\rm H_2}}\right)$ $= 0.V - 0.059 \rm V$	(595) (596)
change with the pH value	$E^0 \equiv 0$ V, <i>a</i> Activity, <i>p</i> Pressure, see Nernst equation	(000)

56.4.2 Cyclic voltammetry

Randles-Sevcik equation For reversible reaction. Peak current depends on square root of the scan rate

$$i_{\text{peak}} = 0.446 \, nFAc^0 \sqrt{\frac{nFvD_{\text{ox}}}{RT}}$$
 (597)

n Charge number, F Faraday constant, A electrode surface area, c^0 bulk Concentration, v Scan rate, $D_{\rm ox}$ Diffusion coefficient of oxidized analyte, R Universal gas constant, T Temperature

Underpotential deposition (UPD)	Reversible deposition of metal onto a foreign metal electrode at potentials positive of the Nernst potential TODO:clarify ch:el:tech:cv:upd:desc
------------------------------------	--

56.4.3 Rotating disk electrodes

Dynamic viscosity	Symbol: η, μ Unit: 1 Pas = 1 Ns/m ² = 1 kg m ⁻¹ s	
Kinematic viscosity Dynamic viscosity related to density of a fluid	Symbol: ν Unit: $1 \text{ cm}^2/\text{s}$ $\nu = \frac{\eta}{\rho}$	(598)
	η, μ Dynamic viscosity, ??? ???:density	

$$\delta_{\text{diff}} = 1.61 D^{\frac{1}{3}} \nu^{\frac{1}{6}} \omega^{-\frac{1}{2}} \tag{599}$$

Diffusion layer thickness TODO:Where does 1.61 come from

Limiting current density

for a RDE

D Diffusion coefficient, ν Kinematic viscosity, ω Angular frequency

$$j_{\infty} = nFD \frac{c^0}{\delta_{\text{diff}}} = \frac{1}{1.61} nFD^{\frac{2}{3}} v^{\frac{-1}{6}} c^0 \sqrt{\omega}$$
(600)

n~Z Charge number, F Faraday constant, c^0 bulk Concentration, D Diffusion coefficient, $\delta_{\rm diff}$ Diffusion layer thickness, ν Kinematic viscosity, ω Angular frequency

57 Thermoelectricity

Seebeck coefficient	Symbol: S Unit: $1 \mu V K^{-1}$ $S = -\frac{\Delta V}{\Delta T}$ (601)
	V voltage, T Temperature
Seebeck effect Elecromotive force across two	$\vec{j} = \sigma(-\vec{\nabla}V - S\vec{\nabla}T) \tag{602}$
points of a material with a temperature difference	σ Conductivity, V local voltage, S Seebeck coefficient, T Temperature
	Symbol: $\kappa \lambda k$
	Unit: $1 \text{ W m}^{-1} \text{ K} = 1 \text{ kgm/s}^3 \text{ K}$
Thermal conductivity Conduction of heat, without	$\kappa = \frac{\dot{Q}l}{A\Delta T} \tag{603}$
mass transport	$\kappa_{\rm tot} = \kappa_{\rm lattice} + \kappa_{\rm electric} \tag{604}$
	??? ???:heat, l Length, A Area, T Temperature
	$\kappa = L\sigma T \tag{605}$
Wiedemann-Franz law	Electric κ, λ, k Thermal conductivity, L in W Ω K ⁻¹ Lorentz number, σ Conductivity
Thermoelectric figure of merit	
	$zT = \frac{S^2 \sigma}{\lambda} T \tag{606}$
comparing different materials	S Seebeck coefficient, σ Conductivity,

58 misc

Stoichiometric coefficient	Symbol: ν Unit:		
Standard temperature and	$T = 273,15 \mathrm{K}$	= 0 °C	(607)
pressure	<i>p</i> = 100 000 F	Pa = 1,000 bar	(608)
pH definition	pH = – lo $a_{\rm H^+}$ hyrdrogen ion Activity	$g_{10}(a_{ m H^+})$	(609)
ъН	pH > 7	basic	(610)
At room temperature 25 °C	pH < 7	acidic	(611)
ne room temperature 25°C	pH = 7	neutral	(612)
Covalent bond	Bonds that involve sharing of e	electrons to form	m electron pairs
	between atoms.		
Grotthuß-mechanism	The mobility of protons in aquitable than that of other ions because and reforming covalent bonds	ueous solutions e they can "mo of water molec	s is much higher we" by breaking rules.
Grotthuß-mechanism	between atoms. The mobility of protons in aquitant that of other ions because and reforming covalent bonds Name	ueous solutions e they can "mo of water molec formula	s is much higher we" by breaking rules.
Grotthuß-mechanism	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cvanide	ueous solutions e they can "mo of water molec formula	s is much higher ove" by breaking rules.
Grotthuß-mechanism	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cyanide Ammonia	ueous solutions e they can "mo of water molec formula CN NH2	s is much higher we" by breaking ules.
Grotthuß-mechanism	between atoms. The mobility of protons in aquitant that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide	e they can "mo of water molec formula CN NH ₃ H ₂ O ₂	s is much higher we" by breaking rules.
Grotthuß-mechanism	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide Sulfuric Acid	e they can "mo of water molec formula CN NH ₃ H ₂ O ₂ H ₂ SO ₄	s is much higher ove" by breaking rules.
Grotthuß-mechanism	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide Sulfuric Acid Ethanol	e they can "mo of water molec formula CN NH ₃ H ₂ O ₂ H ₂ SO ₄ C ₂ H ₅ OH	s is much higher we" by breaking rules.
Grotthuß-mechanism	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide Sulfuric Acid Ethanol Acetic Acid	e they can "mo of water molec formula CN NH ₃ H ₂ O ₂ H ₂ SO ₄ C ₂ H ₅ OH CH ₃ COOH	s is much higher we" by breaking rules.
Grotthuß-mechanism	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide Sulfuric Acid Ethanol Acetic Acid Methane	e they can "mo of water molec formula CN NH ₃ H ₂ O ₂ H ₂ SO ₄ C ₂ H ₅ OH CH ₃ COOH CH ₄	s is much higher we" by breaking ules.
Grotthuß-mechanism	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide Sulfuric Acid Ethanol Acetic Acid Methane Hydrochloric Acid	e they can "mo of water molec formula CN H ₂ O ₂ H ₂ SO ₄ C ₂ H ₅ OH CH ₃ COOH CH ₄ HCl	s is much higher we" by breaking ules.
Grotthuß-mechanism	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide Sulfuric Acid Ethanol Acetic Acid Methane Hydrochloric Acid Sodium Hydroxide	$\begin{array}{c} \text{ueous solutions} \\ \text{e they can "mo} \\ \text{of water molec} \\ \hline \\ \hline \\ \text{formula} \\ \hline \\ \hline \\ \text{CN} \\ \hline \\ \\ \text{NH}_3 \\ \text{H}_2\text{O}_2 \\ \hline \\ \\ \text{H}_2\text{SO}_4 \\ \hline \\ \\ \text{C}_2\text{H}_5\text{OH} \\ \hline \\ \\ \text{CH}_3\text{COOH} \\ \hline \\ \hline \\ \\ \hline \\ \text{CH}_4 \\ \hline \\ \\ \text{HCl} \\ \hline \\ \\ \text{NaOH} \end{array}$	s is much higher ave" by breaking rules.
Grotthuß-mechanism	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide Sulfuric Acid Ethanol Acetic Acid Methane Hydrochloric Acid Sodium Hydroxide Nitric Acid	e they can "mo of water molec formula CN NH ₃ H ₂ O ₂ H ₂ SO ₄ C ₂ H ₅ OH CH ₃ COOH CH ₄ HCl NaOH HNO ₃	s is much higher we" by breaking ules.
Grotthuß-mechanism Common chemicals	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide Sulfuric Acid Ethanol Acetic Acid Methane Hydrochloric Acid Sodium Hydroxide Nitric Acid Calcium Carbonate	e they can "mo of water molec formula CN H ₂ O ₂ H ₂ SO ₄ C ₂ H ₅ OH CH ₃ COOH CH ₄ HCl NaOH HNO ₃ CaCO ₃	s is much higher we" by breaking ules.
Grotthuß-mechanism Common chemicals	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide Sulfuric Acid Ethanol Acetic Acid Methane Hydrochloric Acid Sodium Hydroxide Nitric Acid Calcium Carbonate Glucose	neous solutionse they can "moof water molecformula CN NH_3 H_2O_2 H_2SO_4 C_2H_5OH CH_4 CH_4 HCl $NaOH$ HNO_3 $CaCO_3$ $C_6H_{12}O_6$	s is much higher ave" by breaking rules.
Grotthuß-mechanism Common chemicals	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide Sulfuric Acid Ethanol Acetic Acid Methane Hydrochloric Acid Sodium Hydroxide Nitric Acid Calcium Carbonate Glucose Benzene	$\begin{array}{c} \text{neous solutions}\\ \text{e they can "mo}\\ \text{of water molec}\\ \hline\\ \hline\\ \text{formula}\\ \hline\\ \hline\\ \text{CN}\\ \hline\\ \text{NH}_3\\ \hline\\ \text{H}_2\text{O}_2\\ \hline\\ \text{H}_2\text{SO}_4\\ \hline\\ \text{C}_2\text{H}_5\text{OH}\\ \hline\\ \text{C}_2\text{H}_5\text{OH}\\ \hline\\ \text{C}_2\text{H}_5\text{OH}\\ \hline\\ \text{C}_2\text{H}_5\text{OH}\\ \hline\\ \text{C}_2\text{H}_5\text{OH}\\ \hline\\ \text{C}_2\text{H}_5\text{OH}\\ \hline\\ \text{C}_1\\ \hline\\ \text{CH}_4\\ \hline\\ \text{HCl}\\ \hline\\ \text{NaOH}\\ \hline\\ \hline\\ \text{HNO}_3\\ \hline\\ \text{CaCO}_3\\ \hline\\ \text{C}_6\text{H}_{12}\text{O}_6\\ \hline\\ \text{C}_6\text{H}_6\\ \hline\end{array}$	s is much higher we" by breaking ules.
Grotthuß-mechanism Common chemicals	between atoms. The mobility of protons in aquation that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide Sulfuric Acid Ethanol Acetic Acid Methane Hydrochloric Acid Sodium Hydroxide Nitric Acid Clacium Carbonate Glucose Benzene Acetone	$\begin{array}{c} \text{neous solutions} \\ \text{e they can "mo} \\ \text{of water molec} \\ \hline \\ \hline \\ \text{formula} \\ \hline \\ \hline \\ \text{CN} \\ \hline \\ \text{NH}_3 \\ \text{H}_2\text{O}_2 \\ \hline \\ \text{H}_2\text{SO}_4 \\ \hline \\ \text{C}_2\text{H}_5\text{OH} \\ \hline \\ \text{C}_1 \\ \hline \\ \text{C}_1 \\ \hline \\ \text{CH}_4 \\ \hline \\ \text{HCl} \\ \hline \\ \text{NaOH} \\ \hline \\ \hline \\ \text{HNO}_3 \\ \hline \\ \hline \\ \text{CaCO}_3 \\ \hline \\ \hline \\ \text{C}_6\text{H}_12\text{O}_6 \\ \hline \\ \hline \\ \text{C}_6\text{H}_6 \\ \hline \\ \text{C}_3\text{H}_6\text{O} \\ \hline \end{array}$	s is much higher we" by breaking rules.
Grotthuß-mechanism Common chemicals	between atoms. The mobility of protons in aquitan that of other ions because and reforming covalent bonds Name Cyanide Ammonia Hydrogen Peroxide Sulfuric Acid Ethanol Acetic Acid Methane Hydrochloric Acid Sodium Hydroxide Nitric Acid Calcium Carbonate Glucose Benzene Acetone Ethylene	neous solutionse they can "moof water molecformula CN NH_3 H_2O_2 H_2SO_4 C_2H_5OH CH_4 CH_4 HCl NaOH HNO_3 $CaCO_3$ $C_6H_{12}O_6$ C_6H_6 C_3H_6O C_2H_4	s is much higher ave" by breaking ules.

Part XII Appendix

World formula	$E = mc^2 + \text{AI} \tag{61}$.3)
World formula	$E = mc^2 + \text{AI} \tag{61}$	

59 Physical quantities

59.1 SI quantities

Time	Symbol: t Unit: 1 s
Length	Symbol: <i>l</i> Unit: 1 m
Mass	Symbol: m Unit: 1 kg
Temperature	Symbol: T Unit: 1 K
Electric current	Symbol: I Unit: 1 A
Amount of substance	Symbol: n Unit: 1 mol
Luminous intensity	Symbol: I _V Unit: 1 cd

59.2 Mechanics

Force	Symbol: \vec{F} Unit: $1 \text{ N} = 1 \text{ kgm/s}^2$
Spring constant	Symbol: k Unit: $1 \text{ N m}^{-1} = 1 \text{ kg/s}^2$
Velocity	Symbol: \vec{v} Unit: $1 \mathrm{m s^{-1}}$
Torque	Symbol: τ Unit: $1 \text{ N m} = 1 \text{ kgm}^2/\text{s}^2$
Pressure	Symbol: p Unit: 1 m ²

59.3 Thermodynamics

Volume d dimensional Volume	Symbol: V Unit: $1 \mathrm{m}^d$	
Heat capacity	Symbol: C Unit: $1 \mathrm{J}\mathrm{K}^{-1}$	

59.4 Electrodynamics

Charge number Symbol: Z Unit: Charge density Symbol: ρ Unit: 1 C/m^3 Frequency Symbol: f Unit: $1 \text{ Hz} = 1 \text{ s}^{-1}$ Symbol: ω Unit: 1 rad s^{-1} Angular frequency $2\pi/T$	Charge	Symbol: q Unit: $1 C = 1 A s$
Charge density Symbol: ρ Unit: 1 C/m^3 Frequency Symbol: f Unit: $1 \text{ Hz} = 1 \text{ s}^{-1}$ Angular frequency Symbol: ω Unit: 1 rad s^{-1}	Charge number	Symbol: Z Unit:
Frequency Symbol: f Unit: $1 \text{ Hz} = 1 \text{ s}^{-1}$ Symbol: ω Unit: 1 rad s^{-1} $2\pi/T$	Charge density	Symbol: ρ Unit: $1 \mathrm{C/m^3}$
Angular frequency $2\pi/T$	Frequency	Symbol: f Unit: $1 \text{ Hz} = 1 \text{ s}^{-1}$
$\omega = \frac{2\pi f^2}{2\pi f} $ (614) <i>T</i> Time period, <i>f</i> Frequency	Angular frequency	Symbol: ω Unit: $1 \operatorname{rad s}^{-1}$ $\omega = \frac{2\pi/T}{2\pi f}$ (614) <i>T</i> Time period, <i>f</i> Frequency
Time period $\begin{array}{ c c c }\hline \text{Symbol: } T & & \\ \hline \text{Unit: 1 s} & & \\ \hline & & \\ & & \\ f \text{ Frequency} \end{array} \tag{615}$	Time period	Symbol: T Unit: 1 s(615) $T = \frac{1}{f}$ $T = \frac{1}{f}$ f Frequency $T = \frac{1}{f}$
Conductivity Symbol: σ Unit: $1 \Omega^{-1}$ m	Conductivity	Symbol: σ Unit: $1 \Omega^{-1}$ m

59.5 Others

Area Symbol: A Unit: $1 m^2$	Area	Symbol: A Unit: 1 m^2
-----------------------------------	------	--------------------------------------

60 Constants

Planck Constant	Symbol: h
	Defined value
	$6.62607015\cdot 10^{-34}\mathrm{Js}$
	$4.135667969 \dots \cdot 10^{-15} \mathrm{eVs}$

Universal gas constant Proportionality factor for ideal gases	Symbol: R Defined value $8.31446261815324 \mathrm{Jmol^{-1}K}$ $N_{\mathrm{A}} \cdot k_{\mathrm{B}}$ N_{A} Avogadro constant, k_{B} Boltzmann constant
Avogadro constant Number of molecules per mole	$ Symbol: N_A \\ Defined value \\ $
Boltzmann constant Temperature-Energy conversion factor	Symbol: $k_{\rm B}$ Defined value $1.380649 \cdot 10^{-23} \mathrm{J K^{-1}}$
Faraday constant Electric charge of one mol of single-charged ions	Symbol: F Defined value 9.64853321233100184 \cdot 10 ⁴ C mol ⁻¹ $N_{\rm A} e$ $N_{\rm A}$ Avogadro constant, $k_{\rm B}$ Boltzmann constant
Unit charge	Symbol: e Defined value $1.602176634 \cdot 10^{-19} \mathrm{C}$

List of Figures

1	[?]	60
2	[?]	60
3	Transmon and so TODO	68
4	img/	69

List of Tables

61 List of elements

	Symbol: H
	Number: 1
Hudrogen	set: nonmetal
colorless gas (H2)	atomicmass: 1.0081
	Crystal structure: hex
	Electronic configuration: 1s[1]
	magneticordering: diamagnetic

Helium colorless gas, exhibiting a gray, cloudy glow	Symbol: He Number: 2 set: noblegas atomicmass: 4.0026022 Crystal structure: hcp Electronic configuration: 1s[1] magneticordering: diamagnetic
Lithium silvery-white	Symbol: Li Number: 3 set: alkalimetal atomicmass: 6.946 Crystal structure: bcc Electronic configuration: He 2s[1] magneticordering: paramagnetic
Beryllium white-gray metallic	Symbol: Be Number: 4 set: alkalineearthmetal atomicmass: 9.01218315 Crystal structure: hcp Electronic configuration: He 2s[2] magneticordering: diamagnetic
Boron black-brown	Symbol: B Number: 5 set: metalloid atomicmass: 10.811 Crystal structure: rho Electronic configuration: He 2s[2] 2p[1] magneticordering: diamagnetic
Carbon black, metallic-looking (graphite); clear (diamond)	Symbol: C Number: 6 set: nonmetal atomicmass: 12.01112 Crystal structure: hex Electronic configuration: He 2s[2] 2p[2] magneticordering: diamagnetic
Nitrogen colorless gas, liquid or solid	Symbol: N Number: 7 set: nonmetal atomicmass: 14.006714 Crystal structure: hex Electronic configuration: He 2s[2] 2p[3] magneticordering: diamagnetic

Oxygen colorless (gas); pale blue (liquid and solid)	Symbol: O Number: 8 set: nonmetal atomicmass: 15.99915 Crystal structure: sc Electronic configuration: He 2s[2] 2p[4] magneticordering: paramagnetic
Fluorine very pale yellow (gas); bright yellow (liquid); alpha is opaque, beta is transparent (solid)	Symbol: F Number: 9 set: halogen atomicmass: 18.9984031636 Crystal structure: sc Electronic configuration: He 2s[2] 2p[5] refractiveindex: 1.000195 magneticordering: diamagnetic
Neon colorless gas exhibiting an orange-red glow when placed in an electric field	Symbol: Ne Number: 10 set: noblegas atomicmass: 20.17976 Crystal structure: fcc Electronic configuration: He 2s[2] 2p[6] refractiveindex: 1.000067 magneticordering: diamagnetic
Sodium silvery white metallic	Symbol: Na Number: 11 set: alkalimetal atomicmass: 22.989769282 Crystal structure: bcc Electronic configuration: Ne 3s[1] magneticordering: paramagnetic
Magnesium shiny grey solid	Symbol: Mg Number: 12 set: alkalineearthmetal atomicmass: 24.30524 Crystal structure: hcp Electronic configuration: Ne 3s[2] magneticordering: paramagnetic
Aluminum silvery gray metallic	Symbol: Al Number: 13 set: metal atomicmass: 26.98153857 Crystal structure: fcc Electronic configuration: Ne 3s[2] 3p[1] magneticordering: paramagnetic

Silicon crystalline, reflective with bluish-tinged faces	Symbol: Si Number: 14 set: metalloid atomicmass: 28.08528 Crystal structure: dc Electronic configuration: Ne 3s[2] 3p[2] magneticordering: diamagnetic
Phosphorus white, red and violet are waxy, black is metallic-looking	Symbol: P Number: 15 set: nonmetal atomicmass: 30.9737619985 Crystal structure: orth Electronic configuration: Ne 3s[2] 3p[3] refractiveindex: 1.001212 magneticordering: diamagnetic
Sulfur yellow sintered microcrystals	Symbol: S Number: 16 set: nonmetal atomicmass: 32.0632 Crystal structure: orth Electronic configuration: Ne 3s[2] 3p[4] refractiveindex: 1.001111 magneticordering: diamagnetic
Chlorine pale yellow-green gas	Symbol: Cl Number: 17 set: halogen atomicmass: 35.4535 Crystal structure: orth Electronic configuration: Ne 3s[2] 3p[5] refractiveindex: 1.000773 magneticordering: diamagnetic
Argon colorless gas exhibiting a lilac/violet glow when placed in an electric field	Symbol: Ar Number: 18 set: noblegas atomicmass: 39.9481 Crystal structure: fcc Electronic configuration: Ne 3s[2] 3p[6] refractiveindex: 1.000281 magneticordering: diamagnetic
Potassium silvery white, faint bluish-purple hue when exposed to air	Symbol: K Number: 19 set: alkalimetal atomicmass: 39.09831 Crystal structure: bcc Electronic configuration: Ar 4s[1] magneticordering: paramagnetic

Calcium dull gray, silver; with a pale yellow tint	Symbol: Ca Number: 20 set: alkalineearthmetal atomicmass: 40.0784 Crystal structure: fcc Electronic configuration: Ar 4s[2] magneticordering: diamagnetic
Scandium silvery white	Symbol: Sc Number: 21 set: transitionmetal atomicmass: 44.9559085 Crystal structure: hcp Electronic configuration: Ar 3d[1] 4s[2] magneticordering: paramagnetic
Titanium silvery grey-white metallic	Symbol: Ti Number: 22 set: transitionmetal atomicmass: 47.8671 Crystal structure: hcp Electronic configuration: Ar 3d[2] 4s[2] magneticordering: paramagnetic
Vanadium blue-silver-grey metal	Symbol: V Number: 23 set: transitionmetal atomicmass: 50.94151 Crystal structure: bcc Electronic configuration: Ar 3d[3] 4s[2] magneticordering: paramagnetic
Chromium silvery metallic	Symbol: Cr Number: 24 set: transitionmetal atomicmass: 51.99616 Crystal structure: bcc Electronic configuration: Ar 3d[5] 4s[1] magneticordering: antiferromagnetic
Manganese silvery metallic	Symbol: Mn Number: 25 set: transitionmetal atomicmass: 54.9380443 Crystal structure: bcc Electronic configuration: Ar 3d[5] 4s[2] magneticordering: antiferromagnetic

Iron lustrous metallic with a grayish tinge	Symbol: Fe Number: 26 set: transitionmetal atomicmass: 55.8452 Crystal structure: bcc Electronic configuration: Ar 3d[6] 4s[2] magneticordering: ferromagnetic
Cobalt hard lustrous bluish gray metal	Number: 27 set: transitionmetal atomicmass: 58.9331944 Crystal structure: hcp Electronic configuration: Ar 3d[7] 4s[2] magneticordering: ferromagnetic
Nickel glänzend, metallisch, silbrig	Symbol: Ni Number: 28 set: transitionmetal atomicmass: 58.69344 Crystal structure: fcc Electronic configuration: Ar 3d[8] 4s[2] magneticordering: ferromagnetic
Copper red-orange metallic luster	Symbol: Cu Number: 29 set: transitionmetal atomicmass: 63.5463 Crystal structure: fcc Electronic configuration: Ar 3d[10] 4s[1] magneticordering: diamagnetic
Zinc silver-gray	Symbol: Zn Number: 30 set: transitionmetal atomicmass: 65.382 Crystal structure: hcp Electronic configuration: Ar 3d[10] 4s[2] refractiveindex: 1.00205 magneticordering: diamagnetic
Gallium silvery blue	Symbol: Ga Number: 31 set: metal atomicmass: 69.7231 Crystal structure: orth Electronic configuration: Ar 3d[10] 4s[2] 4p[1] magneticordering: diamagnetic

Germanium grayish-white	Symbol: Ge Number: 32 set: metalloid atomicmass: 72.6308 Crystal structure: dc Electronic configuration: Ar 3d[10] 4s[2] 4p[2] magneticordering: diamagnetic
Arsenic metallic grey	Symbol: As Number: 33 set: metalloid atomicmass: 74.9215956 Crystal structure: rho Electronic configuration: Ar 3d[10] 4s[2] 4p[3] refractiveindex: 1.001552 magneticordering: diamagnetic
Selenium grey metallic-looking, red, and vitreous black allotropes	Symbol: Se Number: 34 set: metalloid atomicmass: 78.9718 Crystal structure: hex Electronic configuration: Ar 3d[10] 4s[2] 4p[4] refractiveindex: 1.000895 magneticordering: diamagnetic
Bromine reddish-brown	Symbol: Br Number: 35 set: halogen atomicmass: 79.90479 Crystal structure: orth Electronic configuration: Ar 3d[10] 4s[2] 4p[5] refractiveindex: 1.001132 magneticordering: diamagnetic
Krypton colorless gas, exhibiting a whitish glow in an electric field	Symbol: Kr Number: 36 set: noblegas atomicmass: 83.7982 Crystal structure: fcc Electronic configuration: Ar 3d[10] 4s[2] 4p[6] refractiveindex: 1.000427 magneticordering: diamagnetic
Rubidium grey white	Symbol: Rb Number: 37 set: alkalimetal atomicmass: 85.46783 Crystal structure: bcc Electronic configuration: Kr 5s[1] magneticordering: paramagnetic

Strontium silvery white metallic; with a pale yellow tint	Symbol: Sr Number: 38 set: alkalineearthmetal atomicmass: 87.621 Crystal structure: fcc Electronic configuration: Kr 5s[2] magneticordering: paramagnetic
Yttrium silvery white	Symbol: Y Number: 39 set: transitionmetal atomicmass: 88.905842 Crystal structure: hcp Electronic configuration: Kr 4d[1] 5s[2] magneticordering: paramagnetic
Zirconium silvery white	Symbol: Zr Number: 40 set: transitionmetal atomicmass: 91.2242 Crystal structure: hcp Electronic configuration: Kr 4d[2] 5s[2] magneticordering: paramagnetic
Niobium gray metallic, bluish when oxidized	Symbol: Nb Number: 41 set: transitionmetal atomicmass: 92.906372 Crystal structure: bcc Electronic configuration: Kr 4d[4] 5s[1] magneticordering: paramagnetic
Molybdenum gray metallic	Symbol: Mo Number: 42 set: transitionmetal atomicmass: 95.951 Crystal structure: bcc Electronic configuration: Kr 4d[5] 5s[1] magneticordering: paramagnetic
Technetium shiny gray metal	Symbol: Tc Number: 43 set: transitionmetal atomicmass: 98.9063 Crystal structure: hcp Electronic configuration: Kr 4d[5] 5s[2] magneticordering: paramagnetic

Ruthenium silvery white metallic	Symbol: Ru Number: 44 set: transitionmetal atomicmass: 101.072 Crystal structure: hcp Electronic configuration: Kr 4d[7] 5s[1] magneticordering: paramagnetic
Rhodium silvery white metallic	Symbol: Rh Number: 45 set: transitionmetal atomicmass: 102.905502 Crystal structure: fcc Electronic configuration: Kr 4d[8] 5s[1] magneticordering: paramagnetic
Palladium silvery white	Symbol: Pd Number: 46 set: transitionmetal atomicmass: 106.421 Crystal structure: fcc Electronic configuration: Kr 4d[10] magneticordering: paramagnetic
Silver lustrous white metal	Symbol: Ag Number: 47 set: transitionmetal atomicmass: 107.86822 Crystal structure: fcc Electronic configuration: Kr 4d[10] 5s[1] magneticordering: diamagnetic
Cadmium silvery bluish-gray metallic	Symbol: Cd Number: 48 set: transitionmetal atomicmass: 112.4144 Crystal structure: hcp Electronic configuration: Kr 4d[10] 5s[2] magneticordering: diamagnetic
Indium silvery lustrous gray	Symbol: In Number: 49 set: metal atomicmass: 114.8181 Crystal structure: tetr Electronic configuration: Kr 4d[10] 5s[2] 5p[1] magneticordering: diamagnetic

Tin silvery-white (beta); gray (alpha) Antimony silvery lustrous gray	Symbol: Sn Number: 50 set: metal atomicmass: 118.7107 Crystal structure: tetr Electronic configuration: Kr 4d[10] 5s[2] 5p[2] magneticordering: paramagnetic Symbol: Sb Number: 51 set: metalloid atomicmass: 121.7601 Crystal structure: rho Electronic configuration: Kr 4d[10] 5s[2] 5p[3] magneticordering: diamagnetic
Tellurium silvery lustrous gray (crystalline); brown-black powder (amorphous)	Symbol: Te Number: 52 set: metalloid atomicmass: 127.603 Crystal structure: hex Electronic configuration: Kr 4d[10] 5s[2] 5p[4] refractiveindex: 1.000991 magneticordering: diamagnetic
Iodine lustrous metallic gray (solid); black/violet (liquid); violet (gas)	Symbol: I Number: 53 set: halogen atomicmass: 126.904473 Crystal structure: orth Electronic configuration: Kr 4d[10] 5s[2] 5p[5] magneticordering: diamagnetic
Xenon colorless gas, exhibiting a blue glow when placed in an electric field	Symbol: Xe Number: 54 set: noblegas atomicmass: 131.2936 Crystal structure: fcc Electronic configuration: Kr 4d[10] 5s[2] 5p[6] refractiveindex: 1.000702 magneticordering: diamagnetic
Caesium pale gold	Symbol: Cs Number: 55 set: alkalimetal atomicmass: 132.905451966 Crystal structure: bcc Electronic configuration: Xe 6s[1] magneticordering: paramagnetic
Barium silvery gray; with a pale yellow tint	Symbol: Ba Number: 56 set: alkalineearthmetal atomicmass: 137.3277 Crystal structure: bcc Electronic configuration: Xe 6s[2] magneticordering: paramagnetic
--	---
Lanthanum silvery white	Symbol: La Number: 57 set: lanthanoide atomicmass: 138.905477 Crystal structure: dhcp Electronic configuration: Xe 5d[1] 6s[2] magneticordering: paramagnetic
Cerium silvery white	Symbol: Ce Number: 58 set: lanthanoide atomicmass: 140.1161 Crystal structure: dhcp Electronic configuration: Xe 4f[1] 5d[1] 6s[2] magneticordering: paramagnetic
Praseodymium grayish white	Symbol: Pr Number: 59 set: lanthanoide atomicmass: 140.907662 Crystal structure: dhcp Electronic configuration: Xe 4f[3] 6s[2] magneticordering: paramagnetic
Neodymium silvery white	Symbol: Nd Number: 60 set: lanthanoide atomicmass: 144.2423 Crystal structure: dhcp Electronic configuration: Xe 4f[4] 6s[2] magneticordering: paramagnetic
Promethium metallic	Symbol: Pm Number: 61 set: lanthanoide atomicmass: 146.9151 Crystal structure: dhcp Electronic configuration: Xe 4f[5] 6s[2] magneticordering: paramagnetic

Samarium silvery white	Symbol: Sm Number: 62 set: lanthanoide atomicmass: 150.362 Crystal structure: rho Electronic configuration: Xe 4f[6] 6s[2] magneticordering: paramagnetic
Europium silvery white, with a pale yellow tint; but rarely seen without oxide discoloration	Number: 63 set: lanthanoide atomicmass: 151.9641 Crystal structure: bcc Electronic configuration: Xe 4f[7] 6s[2] magneticordering: paramagnetic
Gadolinium silvery white	Symbol: Gd Number: 64 set: lanthanoide atomicmass: 157.253 Crystal structure: hcp Electronic configuration: Xe 4f[7] 5d[1] 6s[2] magneticordering: ferromagnetic
Terbium silvery white	Symbol: Tb Number: 65 set: lanthanoide atomicmass: 158.925352 Crystal structure: hcp Electronic configuration: Xe 4f[9] 6s[2] magneticordering: paramagnetic
Dysprosium silbrig weiß	Symbol: Dy Number: 66 set: lanthanoide atomicmass: 162.5001 Crystal structure: hcp Electronic configuration: Xe 4f[10] 6s[2] magneticordering: paramagnetic
Holmium silvery white	Symbol: Ho Number: 67 set: lanthanoide atomicmass: 164.930332 Crystal structure: hcp Electronic configuration: Xe 4f[11] 6s[2] magneticordering: paramagnetic

Erbium silvery white	Symbol: Er Number: 68 set: lanthanoide atomicmass: 167.2593 Crystal structure: hcp Electronic configuration: Xe 4f[12] 6s[2] magneticordering: paramagnetic
Thulium silvery gray	Symbol: Tm Number: 69 set: lanthanoide atomicmass: 168.934222 Crystal structure: hcp Electronic configuration: Xe 4f[13] 6s[2] magneticordering: paramagnetic
Ytterbium silvery white; with a pale yellow tint	Symbol: Yb Number: 70 set: lanthanoide atomicmass: 173.0451 Crystal structure: fcc Electronic configuration: Xe 4f[14] 6s[2] magneticordering: paramagnetic
Lutetium silvery white	Symbol: Lu Number: 71 set: lanthanoide atomicmass: 174.96681 Crystal structure: hcp Electronic configuration: Xe 4f[14] 5d[1] 6s[2] magneticordering: paramagnetic
Hafnium steel gray	Symbol: Hf Number: 72 set: transitionmetal atomicmass: 178.492 Crystal structure: hcp Electronic configuration: Xe 4f[14] 5d[2] 6s[2] magneticordering: paramagnetic
Tantalum gray blue	Symbol: Ta Number: 73 set: transitionmetal atomicmass: 180.947882 Crystal structure: bcc Electronic configuration: Xe 4f[14] 5d[3] 6s[2] magneticordering: paramagnetic

Tungsten grayish white, lustrous	Symbol: W Number: 74 set: transitionmetal atomicmass: 183.841 Crystal structure: bcc Electronic configuration: Xe 4f[14] 5d[4] 6s[2] magneticordering: paramagnetic
Rhenium silvery-grayish	Symbol: Re Number: 75 set: transitionmetal atomicmass: 186.2071 Crystal structure: hcp Electronic configuration: Xe 4f[14] 5d[5] 6s[2] magneticordering: paramagnetic
Osmium silvery, blue cast	Symbol: Os Number: 76 set: transitionmetal atomicmass: 190.233 Crystal structure: hcp Electronic configuration: Xe 4f[14] 5d[6] 6s[2] magneticordering: paramagnetic
Iridium silvery white	Symbol: Ir Number: 77 set: transitionmetal atomicmass: 192.2173 Crystal structure: fcc Electronic configuration: Xe 4f[14] 5d[7] 6s[2] magneticordering: paramagnetic
Platinum silvery white	Symbol: Pt Number: 78 set: transitionmetal atomicmass: 195.0849 Crystal structure: fcc Electronic configuration: Xe 4f[14] 5d[9] 6s[1] magneticordering: paramagnetic
Gold metallic yellow	Symbol: Au Number: 79 set: transitionmetal atomicmass: 196.9665695 Crystal structure: fcc Electronic configuration: Xe 4f[14] 5d[10] 6s[1] magneticordering: diamagnetic

Mercury shiny, silvery liquid	Symbol: Hg Number: 80 set: transitionmetal atomicmass: 200.5923 Crystal structure: rho Electronic configuration: Xe 4f[14] 5d[10] 6s[2] refractiveindex: 1.000933 magneticordering: diamagnetic
Thallium silvery white	Symbol: Tl Number: 81 set: metal atomicmass: 204.38204 Crystal structure: hcp Electronic configuration: Xe 4f[14] 5d[10] 6s[2] 6p[1] magneticordering: diamagnetic
Lead metallic gray	Symbol: Pb Number: 82 set: metal atomicmass: 207.21 Crystal structure: fcc Electronic configuration: Xe 4f[14] 5d[10] 6s[2] 6p[2] magneticordering: diamagnetic
Bismuth lustrous brownish silver	Symbol: Bi Number: 83 set: metal atomicmass: 208.980401 Crystal structure: rho Electronic configuration: Xe 4f[14] 5d[10] 6s[2] 6p[3] magneticordering: diamagnetic
Polonium silvery	Symbol: Po Number: 84 set: metal atomicmass: 209.98 Crystal structure: sc Electronic configuration: Xe 4f[14] 5d[10] 6s[2] 6p[4] magneticordering: nonmagnetic
Astatine unknown, probably metallic	Symbol: At Number: 85 set: halogen Electronic configuration: Xe 4f[14] 5d[10] 6s[2] 6p[5] atomicmass: 209.9871 Crystal structure: fcc

Radon colorless gas	Symbol: Rn Number: 86 set: noblegas atomicmass: 222 Crystal structure: fcc Electronic configuration: Xe 4f[14] 5d[10] 6s[2] 6p[6] magneticordering: nonmagnetic
Francium	Symbol: Fr Number: 87 set: alkalimetal atomicmass: 223.0197 Crystal structure: bcc Electronic configuration: Rn 7s[1] magneticordering: paramagnetic
Radium silvery white metallic	Symbol: Ra Number: 88 set: alkalineearthmetal atomicmass: 226.0254 Crystal structure: bcc Electronic configuration: Rn 7s[2] magneticordering: nonmagnetic
Actinium silvery-white, glowing with an eerie blue light; sometimes with a golden cast	Symbol: Ac Number: 89 set: actinoide Electronic configuration: Rn 6d[1] 7s[2] atomicmass: 227.0278 Crystal structure: fcc
Thorium silvery	Symbol: Th Number: 90 set: actinoide atomicmass: 232.03774 Crystal structure: fcc Electronic configuration: Rn 6d[2] 7s[2] magneticordering: paramagnetic
Protactinium bright, silvery metallic luster	Symbol: Pa Number: 91 set: actinoide atomicmass: 231.035882 Crystal structure: tetr Electronic configuration: Rn 5f[2] 6d[1] 7s[2] magneticordering: paramagnetic

Uranium silvery gray metallic; corrodes to a spalling black oxide coat in air	Symbol: U Number: 92 set: actinoide atomicmass: 238.028913 Crystal structure: orth Electronic configuration: Rn 5f[3] 6d[1] 7s[2] magneticordering: paramagnetic
Neptunium silvery metallic	Symbol: Np Number: 93 set: actinoide atomicmass: 237.0482 Crystal structure: orth Electronic configuration: Rn 5f[4] 6d[1] 7s[2] magneticordering: paramagnetic
Plutonium silvery white, tarnishing to dark gray in air	Symbol: Pu Number: 94 set: actinoide atomicmass: 244.0642 Crystal structure: mon Electronic configuration: Rn 5f[6] 7s[2] magneticordering: paramagnetic
Americium silvery white	Symbol: Am Number: 95 set: actinoide atomicmass: 243.061375 Crystal structure: dhcp Electronic configuration: Rn 5f[7] 7s[2] magneticordering: paramagnetic
Curium silvery metallic, glows purple in the dark	Symbol: Cm Number: 96 set: actinoide atomicmass: 247.0703 Crystal structure: dhcp Electronic configuration: Rn 5f[7] 6d[1] 7s[2] magneticordering: antiferromagnetic
Berkelium silvery	Symbol: Bk Number: 97 set: actinoide atomicmass: 247 Crystal structure: dhcp Electronic configuration: Rn 5f[9] 7s[2] magneticordering: paramagnetic

Californium silvery	Symbol: Cf Number: 98 set: actinoide Electronic configuration: Rn 5f[10] 7s[2] atomicmass: 251 Crystal structure: dhcp
Einsteinium silvery; glows blue in the dark	Symbol: Es Number: 99 set: actinoide atomicmass: 252 Crystal structure: fcc Electronic configuration: Rn 5f[11] 7s[2] magneticordering: paramagnetic
Fermium	Symbol: Fm Number: 100 set: actinoide Electronic configuration: Rn 5f[12] 7s[2] atomicmass: 257.0951 Crystal structure: fcc
Mendelevium	Symbol: Md Number: 101 set: actinoide Electronic configuration: Rn 5f[13] 7s[2] atomicmass: 258 Crystal structure: fcc
Nobelium	Symbol: No Number: 102 set: actinoide Electronic configuration: Rn 5f[14] 7s[2] atomicmass: 259 Crystal structure: fcc
Lawrencium	Symbol: Lr Number: 103 set: actinoide Electronic configuration: Rn 5f[14] 7s[2] 7p[1] atomicmass: 266 Crystal structure: hcp
Rutherfordium	Symbol: Rf Number: 104 set: transitionmetal Electronic configuration: Rn 5f[14] 6d[2] 7s[2] atomicmass: 261.1087 Crystal structure: hcp

Dubnium	Symbol: Db Number: 105 set: transitionmetal Electronic configuration: Rn 5f[14] 6d[3] 7s[2] atomicmass: 262.1138 Crystal structure: bcc
Seaborgium	Symbol: Sg Number: 106 set: transitionmetal Electronic configuration: Rn 5f[14] 6d[4] 7s[2] atomicmass: 263.1182 Crystal structure: bcc
Bohrium	Symbol: Bh Number: 107 set: transitionmetal Electronic configuration: Rn 5f[14] 6d[5] 7s[2] atomicmass: 262.1229 Crystal structure: hcp
Hassium	Symbol: Hs Number: 108 set: transitionmetal Electronic configuration: Rn 5f[14] 6d[6] 7s[2] atomicmass: 265.269 Crystal structure: hcp
Meitnerium	Symbol: Mt Number: 109 set: unknown atomicmass: 268 Crystal structure: fcc Electronic configuration: Rn 5f[14] 6d[7] 7s[2] magneticordering: paramagnetic
Darmstadtium	Symbol: Ds Number: 110 set: unknown Electronic configuration: Rn 5f[14] 6d[8] 7s[2] atomicmass: 281 Crystal structure: bcc
Roentgenium	Symbol: Rg Number: 111 set: unknown Electronic configuration: Rn 5f[14] 6d[9] 7s[2] atomicmass: 280 Crystal structure: bcc

Copernicium	Symbol: Cn Number: 112 set: unknown Electronic configuration: Rn 5f[14] 6d[10] 7s[2] atomicmass: 277 Crystal structure: bcc
Nihonium	Symbol: Nh Number: 113 set: unknown Electronic configuration: Rn 5f[14] 6d[10] 7s[2] 7p[1] atomicmass: 287 Crystal structure: hcp
Flerovium	Symbol: Fl Number: 114 set: unknown Electronic configuration: Rn 5f[14] 6d[10] 7s[2] 7p[2] atomicmass: 289 Crystal structure: fcc
Moscovium	Symbol: Mc Number: 115 set: unknown atomicmass: 288 Electronic configuration: Rn 5f[14] 6d[10] 7s[2] 7p[3]
Livermorium	Symbol: Lv Number: 116 set: unknown atomicmass: 293 Electronic configuration: Rn 5f[14] 6d[10] 7s[2] 7p[4]
Tennessine semimetallic (predicted)	Symbol: Ts Number: 117 set: unknown atomicmass: 292 Electronic configuration: Rn 5f[14] 6d[10] 7s[2] 7p[5]
Oganesson metallic (predicted)	Symbol: Og Number: 118 set: unknown Electronic configuration: Rn 5f[14] 6d[10] 7s[2] 7p[6] atomicmass: 294 Crystal structure: fcc