Formelsammlung

Matthias Quintern

January 10, 2025

Contents

Ι	Mathematics	1
1	Linear algebra 1.1 Matrix basics	1 1 1 2 2
2	Geometry 2.1 Trigonometry 2.2 Various theorems 2.2.1 Table of values	3 3 3 4
3	Calculus3.1Convolution3.2Fourier analysis3.2.1Fourier series3.2.2Fourier transformation3.3Misc3.4Logarithm3.5Integrals3.5.1List of common integrals	$ \begin{array}{c} 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \end{array} $
4	Probability theory 4.1 Distributions 4.1.1 Gauß/Normal distribution 4.1.2 Cauchys / Lorentz distribution 4.1.3 Binomial distribution 4.1.4 Poisson distribution 4.1.5 Maxwell-Boltzmann distribution 4.2 Central limit theorem 4.3 Propagation of uncertainty / error	7 8 9 9 10 10 10 10
II	Mechanics	12
5	Misc	12
6	Lagrange formalism	12

III	I Statistichal Mechanics	13
7	Entropy	13
IV	7 Thermodynamics	14
8	Processes 8.1 Irreversible gas expansion (Gay-Lussac experiment)	14 14
9	Phase transitions 9.0.1 Osmosis 9.1 Material properties	14 15 15
10	Laws of thermodynamics10.1 Zeroeth law10.2 First law10.3 Second law10.4 Third law	16 16 16 16 16
11	Ensembles 11.1 Potentials	17 17
12	Ideal gas 12.0.1 Molecule gas	17 18
13	Real gas13.1 Virial expansion13.2 Van der Waals equation	19 19 19
14	Ideal quantum gas 14.1 Bosons	 20 21 22 22
\mathbf{V}	Electrodynamics	24
15	Hall-Effect15.1 Classical Hall-Effect15.2 Integer quantum hall effect	24 24 24
16	Dipole-stuff	25
17	Electric field	25
18	Magnetic field 18.1 Magnetic materials	26 27
19	Electromagnetism 19.1 Maxwell-Equations 19.2 Induction	27 28 28

VI Qualituin Mechanics	\mathbf{VI}	Quantum	Mechanics
-------------------------------	---------------	---------	-----------

20 H	Basics 2 20.1 Operators 2	29 29
2	20.1.1 Measurement 20.1.2 Pauli matrices 20.1.2 Pauli matrices 20.1.2 Pauli matrices 20.2 Probability theory 20.1.1 Pauli matrices 20.1.1 Pauli matrices	29 29 29
2	20.3 Commutator	30
21 S 2 2	Schrödinger equation 3 21.1 Time evolution 3 21.1.1 Schrödinger- and Heisenberg-pictures 3 21.1.2 Ehrenfest theorem 3 21.2 Correspondence principle 3	30 31 31 31 32
22 I	Pertubation theory 3	82
23 H 2	Harmonic oscillator 3 23.1 Creation and Annihilation operators / Ladder operators	32 33 33
24 <i>A</i> 2	Angular momentum 3 24.1 Aharanov-Bohm effect 5	33 34
25 I	Periodic potentials	84
26 S	Symmetries 26.1 Time-reversal symmetry	84 34
27]	Two-level systems (TLS)	84
28 (Other	35
29 H 2 2 2	Hydrogen Atom 3 29.1 Corrections 29.1.1 Darwin term 29.1.2 Spin-orbit coupling (LS-coupling) 3 29.1.3 Fine-structure 3 29.1.4 Lamb-shift 3 29.1.5 Hyperfine structure 3 29.2 Effects in magnetic field 3	35 36 36 36 36 36 36 37 37
		,
VII	Condensed matter physics 3	88
30 (3 3 3 3 3	Crystals 3 30.1 Bravais lattice 3 30.2 Reciprocal lattice 4 30.3 Scattering processes 4 30.4 Lattices 4	38 40 40 41
01 T		11

32	Charge transport 32.1 Drude model 32.2 Sommerfeld model 32.3 Boltzmann-transport 32.4 misc	42 43 43 43
33	Superconductivity33.1 London equations33.2 Ginzburg-Landau Theory (GLAG)33.3 Microscopic theory33.4 BCS-Theory	44 44 45 45
3 4	Semiconductors	45
35	Band theory 35.1 Hybrid orbitals	45 46
36	Diffusion	46
37	misc	46
38	Measurement techniques38.1 ARPES38.2 Scanning probe microscopy SPM	47 47 47
39	Fabrication techniques39.1 Epitaxy	47 47
VI	II Topological Materials	<u>4</u> 9
• •		10
40	Berry phase / Geometric phase	49
40 IX	Berry phase / Geometric phase	49 50
40 IX 41	Berry phase / Geometric phase Quantum Computing Qubits	49 50 50
40 IX 41 42	Berry phase / Geometric phase Quantum Computing Qubits Gates	49 50 50 50
40 IX 41 42 43	Berry phase / Geometric phase Quantum Computing Qubits Gates Superconducting qubits 43.1 Building blocks 43.1.1 Josephson Junction 43.1.2 SQUID 43.2 Josephson Qubit?? 43.3 Cooper Pair Box (CPB) qubit 43.4 Transmon qubit 43.5 Phase qubit 43.6 Flux qubit 43.7 Fluxonium qubit	49 50 50 50 50 50 50 50 50
40 IX 41 42 43	Berry phase / Geometric phase Quantum Computing Qubits Gates Superconducting qubits 43.1 Building blocks 43.1.1 Josephson Junction 43.1.2 SQUID 43.2 Josephson Qubit?? 43.3 Cooper Pair Box (CPB) qubit 43.4 Transmon qubit 43.4 Transmon qubit 43.5 Phase qubit 43.5 Phase qubit 43.7 Fluxonium qubit 44.1 Bornear interferementer	49 50 50 50 50 50 50 50 50

X Computational Physics

46 Quantum many-body physics 46.1 Importance sampling46.2 Matrix product states		56 56 56
47 Electronic structure theory 47.1 Tight-binding 47.2 Density functional theory (DFT) 47.2.1 Hartree-Fock	· · · · · · · ·	56 56 56 56
48 Atomic dynamics 48.1 Kohn-Sham48.2 Born-Oppenheimer Approximation48.3 Molecular Dynamics	 	57 57 57 57
49 Gradient descent		57
50 Physical quantities 50.1 SI quantities 50.2 Mechanics 50.3 Thermodynamics 50.4 Electrodynamics 50.5 Others	 	57 58 58 58 58 58
51 Constants		58
XI Chemie 52 Periodic table 53 stuff		60 60
JJ Stull		00
XII Appendix		61
54 List of elements		61

Part I Mathematics

1 Linear algebra

1.1 Matrix basics

Matrix-matrix product as sum	$C_{ij} = \sum_{k} A_{ik} B_{kj} \tag{1}$
Matrix-vector product as sum	$\vec{c}_i = \sum_j A_{ij} \vec{b}_j \tag{2}$
Symmetric matrix	$A^{\mathrm{T}} = A \tag{3}$
	$A \ n \times n$ matrix
Unitary matrix	$U^{\dagger}U = 1 \tag{4}$

1.1.1 Transposed matrix

Sum	$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}} $ (5)
Product	$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}} $ (6)
Inverse	$(A^{-1})^{\mathrm{T}} = (A^{\mathrm{T}})^{-1} $ (7)
Exponential	$exp(A^{\mathrm{T}}) = (exp A)^{\mathrm{T}} $ (8) $ln(A^{\mathrm{T}}) = (ln A)^{\mathrm{T}} $ (9)

1.2 Determinant

2x2 matrix	$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a d - c b$	(10)
3x3 matrix (Rule of Sarrus)	$det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a e i + b f g + c d h - g e c - h f a - i d b$	(11)
Leibniz formla	$\det(A) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$	(12)
Product	$\det(AB) = \det(A)\det(B)$	(13)

Inverse	$\det(A^{-1}) = \det(A)^{-1}$	(14)
Transposed	$\det(A^{\mathrm{T}}) = \det(A)$	(15)

1.3 math:linalg:misc

Normal equation Solves a linear regression problem	$\underline{\theta} = (\underline{X}^{\mathrm{T}}\underline{X})^{-1}\underline{X}^{\mathrm{T}}\vec{y} $ (16) $\underline{\theta} \text{ hypothesis / weight matrix, } \underline{X} \text{ design matrix, } \vec{y} \text{ output vector}$
Inverse 2×2 matrix	$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} $ (17)
Singular value decomposition Factorization of complex matrices through rotating \rightarrow rescaling \rightarrow rotation.	$A = U\Lambda V $ (18) <i>A</i> : <i>m</i> × <i>n</i> matrix, <i>U</i> : <i>m</i> × <i>m</i> unitary matrix, <i>A</i> : <i>m</i> × <i>n</i> rect- angular diagonal matrix with non-negative numbers on the diagonal, <i>V</i> : <i>n</i> × <i>n</i> unitary matrix
2D rotation matrix	$R = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} $ (19)
	$R_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} $ (20)
3D rotation matrices	$R_y = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} $ (21)
	$R_{z} = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} $ (22)
	$R^{\mathrm{T}} = R^{-1} \tag{23}$
Properites of rotation	$\det R = 1 \tag{24}$ $R \in SO(n) \tag{25}$
1114111005	n dimension, SO(n) special othogonal group (25)

1.4 Eigenvalues

Eigenvalue equation

 $Av = \lambda v \tag{26}$

 λ eigenvalue, v eigenvector

Characteristic polynomial Zeros are the eigenvalues of A	$\chi_A = \det(A - \lambda \mathbb{1}) \stackrel{!}{=} 0$	(27)
Kramer's theorem If H is invariant under T and $ \psi\rangle$ is an eigenstate of H , then $T \psi\rangle$ is also am eigenstate of H	$THT^{\dagger} = H \wedge H \psi\rangle = E \psi\rangle \implies H$	$HT \psi\rangle = ET \psi\rangle $ (28)
Eigendecomposition	$A = V\Lambda V^{-1}$	(29)

A diagonalizable, columns of V are eigenvectors v_i , Λ diagonal matrix with eigenvalues λ_i on the diagonal

TODO:Jordan stuff, blockdiagonal matrices, permutations, skalar product lapacescher entwicklungssatz maybe, cramers rule

2 Geometry

2.1 Trigonometry

Exponential function	$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$	(30)
Sine	$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n+1)}}{(2n+1)!}$	(31)
	$=\frac{e^{ix}-e^{-ix}}{2i}$	(32)

Cosine	$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n)}}{(2n)!}$	(33)
	$=\frac{e^{ix}+e^{-ix}}{2}$	(34)

TT 1 1	$\sinh(x) = -i\sin ix$	(35)
Hyperbolic sine	$=\frac{e^x-e^{-x}}{2}$	(36)

	$\cosh(x) = \cos ix$	(37)
Hyperbolic cosine	$=\frac{e^x+e^{-x}}{2}$	(38)

2.2 Various theorems

Hypthenuse in the unit circle
$$1 = \sin^2 x + \cos^2 x$$
 (39)

Addition theorems	$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$ $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$ $\tan(x \pm y) = \frac{\sin(x \pm y)}{\cos(x \pm y)} = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$	(40)(41)(42)
Double angle	$\sin 2x = 2\sin x \cos x$ $\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x$ $\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	(43)(44)(45)
Other	$\cos x + b \sin x = \sqrt{1 + b^2} \cos(x - \theta)$ $\tan \theta = b$	(46)

2.2.1 Table of values

Degree	0°	30°	45°	60°	90°	120°	180°	270°
Radian	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\sqrt{\pi}}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	$\frac{3\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	0	-1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	-1	0
$\tan(x)$	0	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	∞	$-\sqrt{3}$	0	∞

3 Calculus

3.1 Convolution

Convolution is **commutative**, **associative** and **distributive**.

Definition	$(f \star g)(t) = f(t) \star g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) \mathrm{d}\tau$	(47)
Notation	$f(t) * g(t - t_0) = (f * g)(t - t_0)$ $f(t - t_0) * g(t - t_0) = (f * g)(t - 2t_0)$	(48) (49)
Commutativity	$f \ast g = g \ast f$	(50)
Associativity	$(f \star g) \star h = f \star (g \star h)$	(51)
Distributivity	f * (g + h) = f * g + f * h	(52)

$$(f \ast g)^* = f^* \ast g^*$$

(53)

3.2 Fourier analysis

3.2.1 Fourier series

Fourier series Complex representation	$f(t) = \sum_{k=-\infty}^{\infty} c_k \exp\left(\frac{2\pi i k t}{T}\right)$ $f \in \mathcal{L}^2(\mathbb{R}, \mathbb{C}) \text{ T-periodic}$	(54)
Fourier coefficients Complex representation	$c_{k} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \exp\left(-\frac{2\pi i}{T}kt\right) dt \text{for } k \ge 0$ $c_{-k} = \overline{c_{k}} \text{if } f \text{ real}$	(55) (56)
Fourier series Sine and cosine representation	$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi}{T}kt\right) + b_k \sin\left(\frac{2\pi}{T}kt\right) \right)$ $f \in \mathcal{L}^2(\mathbb{R}, \mathbb{C}) \text{ T-periodic}$	(57)
Fourier coefficients Sine and cosine representation If f has point symmetry: $a_{k>0} = 0$, if f has axial symmetry: $b_k = 0$	$a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(-\frac{2\pi}{T}kt\right) dt \text{for } k \ge 0$ $b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(-\frac{2\pi}{T}kt\right) dt \text{for } k \ge 1$ $a_k = c_k + c_{-k} \text{for } k \ge 0$ $b_k = i(c_k - c_{-k}) \text{for } k \ge 1$	(58) (59) (60) (61)

TODO:cleanup

3.2.2 Fourier transformation

Fourier transform $\hat{f}(k) \coloneqq \frac{1}{\sqrt{2\pi^n}} \int_{\mathbb{R}^n} e^{-ikx} f(x) \, \mathrm{d}x \qquad (62)$ $\hat{f} \colon \mathbb{R}^n \mapsto \mathbb{C}, \, \forall f \in L^1(\mathbb{R}^n)$

for $f \in L^1(\mathbb{R}^n)$:

- i) $f \mapsto \hat{f}$ linear in f
- ii) $g(x) = f(x h) \implies \hat{g}(k) = e^{-ikn} \hat{f}(k)$
- iii) $g(x) = e^{ih \cdot x} f(x) \implies \hat{g}(k) = \hat{f}(k-h)$

iv)
$$g(\lambda) = f\left(\frac{x}{\lambda}\right) \implies \hat{g}(k)\lambda^n \hat{f}(\lambda k)$$

3.3 Misc

Stirling approximation

 $\ln(N!) \approx N \ln(N) - N + \mathcal{O}(() \ln(N)) \tag{63}$

Error function $\operatorname{erf} : \mathbb{C} \to \mathbb{C}$ and complementary error function erfc	$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ $\operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$ $= \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt$	(64)(65)(66)
	$\delta(x - x_2)$	

Dirac-Delta of a function

$$\delta(f(x)) = \frac{\delta(x - x_0)}{|g'(x_0)|}$$
(67)
$$g(x_0) = 0$$

3.4 Logarithm

	$\log(xy) = \log(x) + \log(y)$	(68)
	$\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$	(69)
Logarithm identities	$\log\left(x^d\right) = d\log(x)$	(70)
	$\log\left(\sqrt[y]{x}\right) = \frac{\log(x)}{u}$	(71)
	$x^{\log(y)} = y^{\log(x)}$	(72)

Integral of natural logarithm
$$\int \ln(x) \, dx = x \left(\ln(x) - 1\right)$$

$$\int \ln(ax + b) \, dx = \frac{ax + b}{a} \left(\ln(ax + b) - 1\right)$$
(73)
(74)

3.5 Integrals

Partial integration	$\int_a^b f'(x) \cdot g(x) \mathrm{d}x = \left[f(x) \cdot g(x)\right]_a^b - \int_a^b f(x) \cdot g'(x) \mathrm{d}x$	(75)
Integration by substitution	$\int_a^b f(g(x)) g'(x) \mathrm{d}x = \int_{g(a)}^{g(b)} f(z) \mathrm{d}z$	(76)
Gauss's theorem / Divergence theorem Divergence in a volume equals the flux through the surface	$\iiint_{V} (\vec{\nabla} \cdot \vec{F}) \mathrm{d}V = \oiint_{A} \vec{F} \cdot \mathrm{d}\vec{A}$ $A = \partial V$	(77)
Stokes's theorem	$\int_{A} (\vec{\nabla} \times \vec{F}) \cdot d\vec{S} = \oint_{S} \vec{F} \cdot d\vec{r}$ $S = \partial A$	(78)

3.5.1 List of common integrals

cal:log:integral

TODO: differential equation solutions

4 Probability theory

Mean Expectation value	$\langle x \rangle = \int w(x) x \mathrm{d}x$	(91)
Variance Square of the Standard deviation	$\sigma^{2} = (\Delta \hat{x})^{2} = \langle \hat{x}^{2} \rangle - \langle \hat{x} \rangle^{2} = \langle (x - \langle x \rangle)^{2} \rangle$	(92)
Covariance	$\operatorname{cov}(x,y) = \sigma(x,y) = \sigma_{XY} = \langle (x - \langle x \rangle) (y - \langle y \rangle) \rangle$	(93)
Standard deviation	$\sigma = \sqrt{\sigma^2} = \sqrt{(\Delta x)^2}$	(94)
Median Value separating lower half from top half	$med(x) = \begin{cases} \frac{x_{(n+1)/2}}{\frac{x_{(n/2)} + x_{((n/2)+1)}}{2}} & n \text{ odd} \\ \frac{x_{(n/2)} + x_{((n/2)+1)}}{2} & n \text{ even} \end{cases}$ <i>x</i> dataset with <i>n</i> elements	(95)

Probability density function Random variable has density f. The integral gives the probability of X taking a value $x \in [a, b]$.

Cumulative distribution

Correlation of f to itself at an earlier point in time, C is a

function

$$P([a,b]) \coloneqq \int_{a}^{b} f(x) \,\mathrm{d}x \tag{96}$$

f normalized: $\int_{-\infty}^{\infty} f(x) dx = 1$

$$F(x) = \int_{-\infty}^{x} f(t) \,\mathrm{d}t \tag{97}$$

f probability density function

$$C_A(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t+\tau) f(t) \,\mathrm{d}t = \langle f(t+\tau) \cdot f(t) \rangle$$
(98)

4.1 Distributions

covariance function

Autocorrelation

4.1.1 Gauß/Normal distribution

4.1.2 Cauchys / Lorentz distribution

Also known as Cauchy-Lorentz distribution, Lorentz(ian) function, Breit-Wigner distribution.

4.1.3 Binomial distribution

For the number of trials going to infinity $(n \to \infty)$, the binomial distribution converges to the poisson distribution

parameters	$n \in \mathbb{Z}, p \in [0,1], q = 1-p$	
support	$k \in \{0, 1, \ldots, n\}$	
pmf	$\binom{n}{k}p^kq^{n-k}$	
mean	np	
median	$\lfloor np \rfloor$ or $\lceil np \rceil$	
variance	npq = np(1-p)	

4.1.4 Poisson distribution

parameters	$\lambda \in (0,\infty)$	
support	$k \in \mathbb{N}$	
pmf	$\frac{\lambda^k e^{-\lambda}}{k!}$	
cdf	$e^{-\lambda} \sum_{j=0}^{[k]} \frac{\lambda^j}{j!}$	
mean	λ	
median	$\approx \left\lfloor \lambda + \frac{1}{3} - \frac{1}{50\lambda} \right\rfloor$	
variance	λ	

4.1.5 Maxwell-Boltzmann distribution

4.2 Central limit theorem

Suppose X_1, X_2, \ldots is a sequence of independent and identically distributed random variables with $\langle X_i \rangle = \mu$ and $(\Delta X_i)^2 = \sigma^2 < \infty$. As N approaches infinity, the random variables $\sqrt{N}(\bar{X}_N - \mu)$ converge to a normal distribution $\mathcal{N}(0, \sigma^2)$.

That means that the variance scales with $\frac{1}{\sqrt{N}}$ and statements become accurate for large N.

4.3 Propagation of uncertainty / error

Generalized error propagation

$$V_y = J(x) \cdot V_x \cdot J^{\mathrm{T}}(x)$$
(100)
V Covariance matrix, J math:cal:jacobi-matrix

Propagation of uncorrelated errors Linear approximation	$u_y = \sqrt{\sum_i \left(\frac{\partial y}{\partial x_i} \cdot u_i\right)^2} \tag{10}$)1)
Weight Variance is a possible choice for a weight	$w_i = \frac{1}{\sigma_i^2} \tag{10}$ σ Variance)2)
Weighted mean	$\overline{x} = \frac{\sum_{i} (x_i w_i)}{\sum_{i} w_i} $ (10) w _i Weight)3)
Variance of weighted mean	$\sigma_{\overline{x}}^2 = \frac{1}{\sum_i w_i} $ (10) w _i Weight)4)

Part II Mechanics

5 Misc

Hooke's law

Lagrange function

$F = D\Delta l$

(105)

F Force, D Spring constant, Δl spring length

6 Lagrange formalism

The Lagrange formalism is often the most simple approach the get the equations of motion, because with suitable generalied coordinates obtaining the Lagrange function is often relatively easy. The generalized coordinates are choosen so that the cronstraints are automatically fullfilled. For

example, the generalized coordinate for a 2D pendelum is $q = \varphi$, with $\vec{x} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$

 $\mathcal{L} = T - V \tag{106}$

T kinetic energy, V potential energy

TODO:Legendre trafo

Part III Statistichal Mechanics

Extensive quantities: Additive for subsystems (system size dependent): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$ **Intensive quantities:** Independent of system size, ratio of two extensive quantities

Liouville equation	$\frac{\partial \rho}{\partial t} = -\sum_{i=1}^{N} \left(\frac{\partial \rho}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial \rho}{\partial p_i} \frac{\partial H}{\partial q_i} \right) = \{H, \rho\}$	(110)
	{} poisson bracket	

7 Entropy

Positive-definite and additive	$S \ge 0 \tag{111}$ $S(E_1, E_2) = S_1 + S_2 \tag{112}$	
Von-Neumann	$S = -k_{\rm B} \langle \log \rho \rangle = -k_{\rm B} \operatorname{tr}(\rho \log \rho) $ (113) $\rho \text{ density matrix}$	
Gibbs	$S = -k_{\rm B} \sum_{n} p_n \log p_n \tag{114}$ p_n probability for micro state n	
Boltzmann	$S = k_{\rm B} \log \Omega$ Ω #micro states	(115)
Temperature	$\frac{1}{T} \coloneqq \left(\frac{\partial S}{\partial E}\right)_V$	(116)
Pressure	$p = T\left(\frac{\partial S}{\partial V}\right)_E$	(117)

Part IV Thermodynamics

Thermal wavelength	$\lambda = \frac{\hbar}{\sqrt{2\pi m k_{\rm B} T}} \tag{11}$	8)
--------------------	--	----

8 Processes

- **isobaric**: constant pressure p = const
- **isochoric**: constant volume V = const
- isothermal: constant temperature T = const
- **isentropic**: constant entropy *S* = const
- **isenthalpic**: constant entalphy *H* = const
- adiabatic: no heat transfer $\Delta Q = 0$
- quasistatic: happens so slow, the system always stays in td. equilibrium
- reversivle: reversible processes are always quasistatic and no entropie is created $\Delta S = 0$

8.1 Irreversible gas expansion (Gay-Lussac experiment)

TODO:Reversible TODO:Quasistatischer T-Ausgleich TODO:Joule-Thompson Prozess

9 Phase transitions

A phase transition is a discontinuity in the free energy F or Gibbs energy G or in one of their derivatives. The degree of the phase transition is the degree of the derivative which exhibits the discontinuity.

Latent heat Heat required to bring substance from phase 1 to phase 2

$$Q_{\rm L} = T\Delta S \tag{120}$$

 ΔS entropy change of the phase transition

Clausius-Clapyeron equation Slope of the coexistence curve	$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{Q_{\rm L}}{T\Delta V}$	(121)
	ΔV volume change of the phase transition	
Phase transition	$G_1 = G_2$ and therefore	(122)
At the coexistence curve	$\mu_1 = \mu_2$	(123)
Gibbs rule / Phase rule	f = c - p + 2	(124)
,	c #components, f #degrees of freedom, p #phases	

9.0.1 Osmosis

Osmosis is the spontaneous net movement or diffusion of solvent molecules through a selectivelypermeable membrane, which allows through the solvent molecules, but not the solute molecules. The direction of the diffusion is from a region of high water potential (region of lower solute concentration) to a region of low water potential (region of higher solute concentration), in the direction that tends to equalize the solute concentrations on the two sides.

Osmotic pressure	$p_{\rm osm} = k_{\rm B} T \frac{N_c}{V} \tag{(}$	125)
	N_c #dissolved particles	

9.1 Material properties

Heat capacity	$c = \frac{Q}{\Delta T}$	(126)	
	Q heat		
Isochoric heat capacity	$c_v = \left(\frac{\partial Q}{\partial T}\right)_V = \left(\frac{\partial U}{\partial T}\right)_V$	(127)	
	U internal energy		
Isobaric heat capacity	$c_p = \left(\frac{\partial Q}{\partial T}\right)_P = \left(\frac{\partial H}{\partial T}\right)_P$	(128)	
	H enthalpy		
Bulk modules	$K = -V \frac{\mathrm{d}p}{\mathrm{d}V}$	(129)	
	p pressure, V initial volume		
Compressibility	$\kappa = -\frac{1}{V} \frac{\partial V}{\partial p}$	(130)	

Isothermal compressibility	$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T = \frac{1}{K} \tag{131}$
Adiabatic compressibility	$\kappa_S = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_S \tag{132}$
Thermal expansion coefficient	$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{p,N} \tag{133}$

10 Laws of thermodynamics

10.1 Zeroeth law

If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.

$$A \stackrel{th.eq.}{\leftrightarrow} C \wedge B \stackrel{th.eq.}{\leftrightarrow} C \Rightarrow A \stackrel{th.eq.}{\leftrightarrow} B$$
(134)

10.2 First law

In a process without transfer of matter, the change in internal energy, ΔU , of a thermodynamic system is equal to the energy gained as heat, Q, less the thermodynamic work, W, done by the system on its surroundings.

Internal energy change	$\Delta U = \delta Q - \delta W$	(135)
internar energy enange	$\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$	(136)

10.3 Second law

Clausius: Heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at the same time.

Kelvin: It is impossible for a self-acting machine, unaided by any external agency, to convey heat from one body to another at a higher temperature.

10.4 Third law

It is impussible to cool a system to absolute zero.

	and therefore also $\lim_{T \to 0} s(t)$	(T) = 0 (137)
Entropy density	$\lim_{T \to 0}$	$c_V = 0 \tag{138}$
	$s = \frac{S}{N}$	

11 Ensembles

	fqname :mk	fqname :k	\fqname :gk
variables	E, V, N	T, V, N	T, V, μ
partition_sum	$\Omega = \sum_n 1$	$Z = \sum_{n} e^{-\beta E_n}$	$Z_{\rm g} = \sum_n {\rm e}^{-\beta (E_n - \mu N_n)}$
probability	$p_n = \frac{1}{\Omega}$	$p_n = \frac{\mathrm{e}^{-\beta E_n}}{Z}$	$p_n = \frac{\mathrm{e}^{-\beta(E_n - \mu N_n)}}{Z_{\mathrm{g}}}$
td_pot	$S = k_{\rm B} \ln \Omega$	$F = -k_{\rm B}T\ln Z$	$\Phi = -k_{\rm B}T\ln Z$
pressure	$p = T\left(\frac{\partial S}{\partial V}\right)_{E,N}$	$p = -\left(\frac{\partial F}{\partial V}\right)_{T,N}$	$p = -\left(\frac{\partial \Phi}{\partial V}\right)_{T,\mu} = -\frac{\Phi}{V}$
entropy	$S = k_{\rm B} = \ln \Omega$	$S = -\left(\frac{\partial F}{\partial T}\right)_{V,N}$	$S = -\left(\frac{\partial \Phi}{\partial T}\right)_{V,\mu}$

 $\langle A \rangle_{\text{Time}} = \langle A \rangle_{\text{Ensemble}}$

Table 1: caption

Ergodic hypothesis

Over a long periode of time, all accessible microstates in the phase space are equiprobable

A Observable

(139)

11.1 Potentials

Internal energy	$\mathrm{d}U(S,V,N) = T\mathrm{d}S - p\mathrm{d}V + \mu\mathrm{d}N$	(140)
Free energy / Helmholtz energy	$\mathrm{d}F(T,V,N) = -S\mathrm{d}T - p\mathrm{d}V + \mu\mathrm{d}N$	(141)
Enthalpy	$dH(S, p, N) = T dS + V dp + \mu dN$	(142)
Free enthalpy / Gibbs energy	$\mathrm{d}G(T,p,N) = -S\mathrm{d}T + V\mathrm{d}p + \mu\mathrm{d}N$	(143)
Grand canonical potential	$\mathrm{d}\Phi(T,V,\mu) = -S\mathrm{d}T - p\mathrm{d}V - N\mathrm{d}\mu$	(144)

TODO:Maxwell Relationen, TD Quadrat

Thermodynamic squre	-S	U	V	
	H		F	The corners opposite
	- <i>p</i>	G	Т	
		the po ential i	s oppo	are the coefficients and each coefficients posite to it.

12 Ideal gas

The ideal gas consists of non-interacting, undifferentiable particles.

12.0.1 Molecule gas

Rotation

$$E_{\rm rot} = \frac{\hbar^2}{2I} j(j+1) \tag{157}$$

TODO:Diagram für verschiedene Temperaturen, Weiler Skript p.83

13 Real gas

13.1 Virial expansion

Expansion of the pressure p in a power series of the density ρ .

Virial expansion The 2 nd and 3 ^d virial coefficient are tabelated for many substances	$p = k_{\rm B}T\rho [1 + B(T)\rho + C(T)\rho^2 +]$ B and C 2 nd and 3 ^d virial coefficient, $\rho = \frac{N}{V}$		
Mayer function	$f(\vec{r}) = e^{-\beta V(i,j)} - 1$ V(i,j) pair potential	(159)	
Second virial coefficient Depends on pair potential between two molecules	$B = -\frac{1}{2} \int_V \mathrm{d}^3 \vec{r} f(\vec{r})$	(160)	
Lennard-Jones potential Potential between two molecules. Attractive for $r > \sigma$, repulsive for $r < \sigma$. In condensed matter: Attraction due to Landau Dispersion TODO:verify and repulsion due to Pauli exclusion principle.	$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$	(161)	

13.2 Van der Waals equation

Assumes a hard-core potential with a weak attraction.

Partition sum

$$Z_N = \frac{(V - V_0)^N}{\lambda^{3N} N!} e^{\frac{\beta N^2 a}{V}}$$
(162)

$$a$$
 internal pressure

Van der Waals equation

$$p = \frac{Nk_{\rm B}T}{V-b} - \frac{N^2a}{V^2}$$
(163)

b co-volume?

TODO: sometimes N is included in a, b

14 Ideal quantum gas

Fugacity	$z = e^{\mu\beta} = e^{\frac{\mu}{k_{\rm B}T}}$	(164)
Occupation number	$\sum_{r} n_{r} = N$ r states	(165)
Undifferentiable particles	$ p_1,p_2,\ldots,p_N\rangle = p_1\rangle p_2\rangle \ldots p_N\rangle$ p_i state	(166)
Applying the parity operator yields a <i>symmetric</i> (Bosons) and a <i>antisymmetic</i> (Fermions) solution	$\hat{P}_{12}\psi(p_i(\vec{r}_1), p_j(\vec{r}_2)) = \pm \psi(p_i(\vec{r}_1), p_j(\vec{r}_2))$ $\hat{P}_{12} \text{ parity operator swaps 1 and 2, } \pm: \frac{\text{bos}}{\text{fer}}$	(167)
Spin degeneracy factor	$g_s = 2s + 1$ $s~{\rm spin}$	(168)
Density of states	$g(\epsilon) = g_s \frac{V}{4\pi} \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} \sqrt{\epsilon}$ g_s Spin degeneracy factor	(169)
Occupation number per energy	$n(\epsilon) d\epsilon = \frac{g(\epsilon)}{e^{\beta(\epsilon-\mu)} \mp 1} d\epsilon$ Density of states, ±: bos fer	(170)

14.1 Bosons

Partition sum

$$Z_{\rm g} = \prod_p \frac{1}{1 - e^{-\beta(\epsilon_p - \mu)}} \tag{179}$$

p

Occupation number Bose-Einstein distribution	$\langle n_p \rangle = \frac{1}{\mathrm{e}^{\beta(\epsilon-\mu)} - 1} \tag{180}$	
	° 1	1

14.2 Fermions

Partition sum	$Z_{\rm g} = \prod_{p} \left(1 + e^{-\beta(\epsilon_p - \mu)} \right)$ p = 0, 1	(181)
Occupation number Fermi-Dirac distribution. At $T = 0$ Fermi edge at $\epsilon = \mu$	$ \begin{array}{c} 1.0\\ 0.8\\ \overbrace{\underbrace{w}}{\underbrace{0.6}\\ \underbrace{0.2}\\ 0.0\\ 0.0\\ \end{array} $	
	$\langle n_p \rangle = \frac{1}{\mathrm{e}^{\beta(\epsilon-\mu)}+1}$	(182)
Slater determinant	$\psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} p_1(\vec{r}_1) & p_2(\vec{r}_1) & \dots \\ p_1(\vec{r}_2) & p_2(\vec{r}_2) & \dots \\ \vdots & \vdots & \ddots \\ p_1(\vec{r}_N) & p_2(\vec{r}_N) & \dots \end{vmatrix}$	$\begin{array}{c c} p_N(\vec{r}_1) \\ p_N(\vec{r}_2) \\ \vdots \\ p_N(\vec{r}_N) \\ \end{array} $ (183)
Fermi energy	$\epsilon_{\rm F} \coloneqq \mu(T=0)$	(184)
Fermi temperature	$T_{\rm F} \coloneqq \frac{\epsilon_{\rm F}}{k_{\rm B}}$	(185)
Fermi impulse Radius of the <i>Fermi sphere</i> in impulse space. States with $p_{\rm F}$ are in the <i>Fermi surface</i>	$p_{\rm F} = \hbar k_{\rm F} = (2mE_{\rm F})^{\frac{1}{2}}$	(186)
Specific density	$v = \frac{N}{V} = \frac{g}{\lambda^3} f_{3/2}(z)$ f Generalized zeta function, g degeneracy factor, z	(187) z Fugacity

14.2.1 Strong degeneracy

Sommerfeld expansion
for low temperatures
$$T \ll T_{\rm F}$$

$$f_{\nu}(z) = \frac{(\ln z)^{\nu}}{\Gamma(\nu+1)} \left(1 + \frac{\pi^6}{6} \frac{\nu(\nu-1)}{(\ln z)^2} + \dots\right)$$
(188)

TODO:Entartung und Sommerfeld TODO:DULONG-PETIT Gesetz

Part V Electrodynamics

15 Hall-Effect

Cyclontron frequency $\omega_{\rm c} = \frac{eB}{m_{\rm e}}$ (1)
--

TODO:Move

15.1 Classical Hall-Effect

Current flowing in x direction in a conductor $(l \times b \times d)$ with a magnetic field B in z direction leads to a hall voltage $U_{\rm H}$ in y direction.

Hall voltage	$U_{\rm H} = \frac{IB}{ned}$	(193)
	n charge carrier density	
Hall coefficient Sometimes $R_{\rm H}$	$A_{\rm H} \coloneqq -\frac{E_y}{j_x B_z} \stackrel{\rm metals}{\doteq} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}$	(194)
Resistivity	$\rho_{xx} = \frac{m_{\rm e}}{ne^2\tau}$	(195)
Resistivity	$\rho_{xy} = \frac{B}{ne}$	(196)

15.2 Integer quantum hall effect

Conductivity tensor	$\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix}$	(197)
Resistivity tensor	$\rho = \sigma^{-1}$	(198)
Resistivity	$\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}$	(199)
	$\nu \in \mathbb{Z}$ filing factor	
Fractional quantum hall effect	$\nu = \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{2}{3}$	(200)
	ν fraction of two numbers without shared divisors	

- Integer (QHE): filling factor ν is an integer
- **Fractional** (FQHE): filling factor ν is a fraction
- Spin (QSHE): spin currents instead of charge currents
- Anomalous (QAHE): symmetry breaking by internal effects instead of external magnetic fields

TODO:sort

Impedance of a capacitor	$Z_C = \frac{1}{i\omega C}$	(201)
Impedance of an inductor	$Z_L = i\omega L$	(202)

TODO: impedance addition for parallel / linear

16 Dipole-stuff

Dipole radiation Poynting vector	$\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right) \frac{\sin^2 \theta}{r^2} \vec{r}$	(203)
Time-average power	$P = \frac{\mu_0 \omega^4 p_0^2}{12\pi c}$	(204)

17 Electric field

Electric field Surrounds charged particles	Symbol: $\vec{\mathcal{E}}$ Unit: $1 \mathrm{V} \mathrm{m}^{-1} = 1 \mathrm{kgm/s^3} \mathrm{A}$
Gauss's law for electric fields Electric flux through a closed surface is proportional to the electric charge	$\Phi_{\rm E} = \iint_{S} \vec{\mathcal{E}} \cdot \mathrm{d}\vec{S} = \frac{Q}{\varepsilon_0} $ (205) S closed surface
Permittivity Electric polarizability of a dielectric material	Symbol: ϵ Unit: $1 \text{ A s V}^{-1} \text{ m} = 1 \text{ F m}^{-1} = 1 \text{ C V}^{-1} \text{ m} = 1 \text{ C}^2/\text{Nm}^2 = 1 \text{ A}^2 \text{s}^4/\text{kgm}^3$
Relative permittivity / Dielectric constant	$\epsilon(\omega)_{\rm r} = \frac{\epsilon(\omega)}{\epsilon_0} $ (206) ϵ Permittivity, ϵ_0 Vacuum permittivity
Vacuum permittivity Electric constant	Symbol: ϵ_0 Experimental value $8.8541878188(14) \cdot 10^{-1} \mathrm{AsV^{-1}m}$
Electric susceptibility Describes how polarized a dielectric material becomes when an electric field is applied	Symbol: χ_{e} Unit: $\epsilon_{r} = 1 + \chi_{e}$ (207)
abbuog	$\epsilon_{ m r}$ Kelative permittivity / Dielectric constant

$$\vec{P} = \epsilon_0 \chi_{\rm e} \vec{\mathcal{E}} \tag{208}$$

 ϵ_0 Vacuum permittivity, $\chi_{\rm e}$ Electric susceptibility, $\vec{\mathcal{E}}$ Electric field

18 Magnetic field

	Symbol: Φ_B Unit: 1 Wb = 1 V s ⁻¹ = 1 kgm ² /s ² A	
Magnetic flux	$\Phi_{\rm B} = \iint_A \vec{B} \cdot \mathrm{d}\vec{A}$	(209)
	\vec{A} area	
	Symbol: \vec{B} Unit: $1 \text{ T} = 1 \text{ Vs/m}^2 = 1 \text{ N A}^{-1} \text{ m} = 1 \text{ kg/As}^2$	
Magnetic flux density Defined by Lorentz force law	$ec{B}=\mu_0(ec{H}+ec{M})$	(210)
	\vec{H} Magnetic field intensity, \vec{M} Magnetization, μ_0 Magnetizat	gnetic
	Symbol: \vec{H} Unit: $1 \mathrm{A}\mathrm{m}^{-1}$	
Magnetic neid intensity	$\vec{H} \equiv \frac{1}{\mu_0}\vec{B} - \vec{M}$	(211)
Lorentz force law Force on charged particle	$\vec{F} = q\vec{\mathcal{E}} + q\vec{v} \times \vec{B}$	(212)
	Symbol: μ Unit: $1 \mathrm{H}\mathrm{m}^{-1} = 1 \mathrm{V}\mathrm{s}\mathrm{A}^{-1}\mathrm{m}$	
Magnetic permeability	$\mu = \frac{B}{H}$	(213)
	${\cal B}$ Magnetic flux density, ${\cal H}$ Magnetic field intensity	
Magnetic vauum permeability	Symbol: μ_0 Experimental value 1.25663706127(20) H/m = N/A ²	
Relative permeability	$\mu_{\rm r} = \frac{\mu}{\mu_0}$	(214)
Gauss's law for magnetism Magnetic flux through a closed surface is $0 \Rightarrow$ there are no magnetic monopoles	$\Phi_{\rm B} = \iint_S \vec{B} \cdot {\rm d}\vec{S} = 0$ S closed surface	(215)

Magnetization Vector field describing the density of magnetic dipoles	Symbol: \vec{M} Unit: $1 \mathrm{A}\mathrm{m}^{-1}$ $\vec{M} = \frac{\mathrm{d}\vec{m}}{\mathrm{d}V} = \chi_{\mathrm{m}} \cdot \vec{H}$	(216)
Magnetic moment Strength and direction of a magnetic dipole	Symbol: \vec{m} Unit: $1 \mathrm{Am}^2$	
Torque	$\vec{\tau} = \vec{m} \times \vec{B}$ m Magnetic moment	(217)
Susceptibility	$\chi_{\rm m} = \frac{\partial M}{\partial B} = \mu_{\rm r} - 1$ $\mu_{\rm r}$ Relative permeability	(218)

18.1 Magnetic materials

Paramagnetism Magnetic field strengthend in the material	$$\mu_{\rm r}>1$$\chi_{\rm m}>0$$$ $$\mu$ Magnetic permeability, \chi_{\rm m} Susceptibility$	(219) (220)
Diamagnetism Magnetic field expelled from material	$0 < \mu_{\rm r} < 1$ $-1 < \chi_{\rm m} < 0$ μ Magnetic permeability, $\chi_{\rm m}$ Susceptibility	(221) (222)
Ferromagnetism Magnetic moments align to external magnetic field and stay aligned when the field is turned off (Remanescence)	$\label{eq:magnetic} \mu_{\rm r} \gg 1$ μ Magnetic permeability, $\chi_{\rm m}$ Susceptibility	(223)

19 Electromagnetism

Speed of light in the vacuum	Symbol: c Experimental value $299792458 \mathrm{ms^{-1}}$
Vacuum permittivity - permeability relation TODO:Does this have a name?	$\epsilon_0 \mu_0 = \frac{1}{c^2} $ (224) ϵ_0 Vacuum permittivity, μ_0 Magnetic vauum permeability, c Speed of light

Poisson equation for electrostatics	$\Delta \Phi(\vec{r}) = -\frac{\rho(\vec{r})}{\epsilon}$ TODO: double check Φ ρ Charge density, ϵ Permittivity, Φ Potential	(225)
Poynting vector Directional energy flux or power flow of an electromagnetic field [W/m ²]	$\vec{S} = \vec{E} \times \vec{H}$	(226)

19.1 Maxwell-Equations

	$ec{ abla} \cdot ec{\mathcal{E}} = rac{ ho_{ ext{el}}}{\epsilon_0}$	(227)
Vacuum	$\vec{\nabla} \cdot \vec{B} = 0$	(228)
microscopic formulation	$\vec{\nabla} \times \vec{\mathcal{E}} = -\frac{\mathrm{d}\vec{B}}{\mathrm{d}t}$	(229)
	$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\mathrm{d}\vec{\mathcal{E}}}{\mathrm{d}t}$	(230)
	$\vec{\nabla} \cdot \vec{D} = \rho_{\rm el}$	(231)
Matter Macroscopic formulation	$\vec{\nabla} \cdot \vec{B} = 0$	(232)
	$\vec{\nabla} \times \vec{\mathcal{E}} = -\frac{\mathrm{d}\vec{B}}{\mathrm{d}t}$	(233)
	$\vec{\nabla} \times \vec{H} = \vec{j} + \frac{\mathrm{d}\vec{D}}{\mathrm{d}t}$	(234)

TODO:Polarization

19.2 Induction

Faraday's law of induction	$U_{\rm ind} = -\frac{\rm d}{{\rm d}t} \Phi_{\rm B} = -\frac{\rm d}{{\rm d}t} \iint_A \vec{B} \cdot {\rm d}\vec{A} $ (235)
Lenz's law	Change of magnetic flux through a conductor induces a current that counters that change of magnetic flux.

Part VI Quantum Mechanics

20 Basics

20.1 Operators

Dirac notation	$ \begin{array}{c} \langle x \text{"Bra" Row vector} \\ x \rangle \text{"Ket" Column vector} \\ \hat{A} \beta \rangle = \alpha \rangle \Rightarrow \langle \alpha = \langle \beta \hat{A}^{\dagger} \end{array} $	(236) (237) (238)
Dagger	$\hat{A}^{\dagger} = (\hat{A}^{*})^{\mathrm{T}}$ $(c\hat{A})^{\dagger} = c^{*}\hat{A}^{\dagger}$ $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$	$(239) \\ (240) \\ (241) \\ (242)$
Adjoint operator	$\left[\langle \alpha \hat{A}^{\dagger} \beta \rangle = \langle \beta \hat{A} \alpha \rangle^{*} \right]$	(243)
Hermitian operator	$\hat{A} = \hat{A}^{\dagger}$	(244)

20.1.1 Measurement

An observable is a hermition operator acting on \hat{H} . The measurement randomly yields one of the eigenvalues of \hat{O} (all real). Measurement probability

Probability to measure ψ in	$p(\lambda) = \langle \psi \hat{P}_{\lambda} \psi angle$	(245)
state λ		

State after measurement	$\left \psi\right\rangle_{\text{post}} = \frac{1}{\sqrt{p(\lambda)}} \hat{P}_{\lambda} \left \psi\right\rangle \tag{246}$;)
-------------------------	---	----

20.1.2 Pauli matrices

matrices $TODO: remove macro2$ (247)
matrices TODO: remove macro2 (2

20.2 Probability theory

Continuity equation	$\frac{\partial \rho(\vec{x},t)}{\partial t} + \nabla \cdot \vec{j}(\vec{x},t) = 0$	(248)
	ρ density of a conserved quantity q,j flux density of q	
State probability	ТОДО	(249)

٦

Dispersion	$\Delta \hat{A} = \hat{A} - \langle \hat{A} \rangle$	(250)
Generalized uncertainty principle	$\sigma_A \sigma_B \ge \frac{1}{4} \left< [\hat{A}, \hat{B}] \right>^2$	(251)
	$\sigma_A \sigma_B \geq \frac{1}{2} \langle [\hat{A}, \hat{B}] \rangle $	(252)

20.3 Commutator

Commutator	[A,B] = AB - BA	(253)
Anticommutator	$\{A,B\} = AB + BA$	(254)
Commutation relations	[A, BC] = [A, B]C - B[A, C]	(255)
TODO:add some more?		
Commutator involving a	$[f(A), B] = [A, B] \frac{\partial f}{\partial A}$	(256)
runction	given $[A, [A, B]] = 0$	
Jacobi identity	[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0	(257)
Hadamard's Lemma	$e^{A} B e^{-A} = B + [A, B] + \frac{1}{2!} [A, [A, B]] + \frac{1}{3!} [A, [A, [A, A]]] + \frac{1}{3!} [A, [A, A]] + \frac{1}{3!} [A, A] + \frac{1}{3!} [$	$,B]]] + \dots$ (258)
Canonical commutation relation	$[x_i, x_j] = 0$	(259)
	$[p_i, p_j] = 0$	(260)
	$[x_i, p_j] = i\hbar\delta_{ij}$	(261)
	x, p canonical conjugates	

21 Schrödinger equation

Energy operator	$E = i\hbar \frac{\partial}{\partial t}$	(262)
Momentum operator	$\vec{p} = -i\hbar \vec{ abla_x}$	(263)
Space operator	$\vec{x} = i\hbar \vec{ abla_p}$	(264)
Stationary Schrödingerequation	$\hat{H} \psi\rangle = E \psi\rangle$	(265)

Schrödinger equation	$i\hbar \frac{\partial}{\partial t}\psi(x,t) = (-\frac{\hbar^2}{2m}\vec{ abla}^2 + \vec{V}(x))\psi(x)$	(266)
----------------------	--	-------

21.1 Time evolution

The time evolution of the Hamiltonian is given by:

Γ

Time evolution operator	$ \psi(t)\rangle = \hat{U}(t,t_0) \psi(t_0)\rangle$ U unitary	(267)
Von-Neumann Equation Time evolution of the density operator in the Schrödinger picture. Qm analog to the Liouville equation ??	$\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}]$	(268)
Lindblad master equation Generalization of von-Neummann equation for open quantum systems	$\dot{\rho} = \underbrace{-\frac{i}{\hbar}[\hat{H},\rho]}_{\text{reversible}} + \underbrace{\sum_{n.m} h_{nm} \left(\hat{A}_n \rho \hat{A}_{m^{\dagger}} - \frac{1}{2} \left\{ \hat{A}_m^{\dagger} \hat{A}_n, \rho \right\} \right)}_{\text{irreversible}}$ $h \text{ positive semidifnite matrix, } \hat{A} \text{ arbitrary operator}$	(269)

Hellmann-Feynman-Theorem Derivative of the energy to a parameter

$$\frac{\mathrm{d}E_{\lambda}}{\mathrm{d}\lambda} = \int \mathrm{d}^{3}r\psi_{\lambda}^{*}\frac{\mathrm{d}\hat{H}_{\lambda}}{\mathrm{d}\lambda}\psi_{\lambda} = \left(\psi(\lambda)\left|\frac{\mathrm{d}\hat{H}_{\lambda}}{\mathrm{d}\lambda}\right|\psi(\lambda)\right) \qquad (270)$$

TODO: unitary transformation of time dependent H

21.1.1 Schrödinger- and Heisenberg-pictures

In the **Schrödinger picture**, the time dependecy is in the states while in the **Heisenberg picture** the observables (operators) are time dependent.

Schrödinger time evolution	$ \psi(t)_{ m S} angle$ = $\hat{U}(t,t_0) \psi(t_0) angle$	(271)
Heisenberg time evolution	$ert \psi_{ m H} angle = ert \psi_{ m S}(t_0) angle$ $A_{ m H} = U^{\dagger}(t,t_0) A_{ m S} U(t,t_0)$	(272) (273)
	$\frac{\mathrm{d}\hat{A}_{\mathrm{H}}}{\mathrm{d}t} = \frac{1}{i\hbar} [\hat{A}_{\mathrm{H}}, \hat{H}_{\mathrm{H}}] + \left(\frac{\partial \hat{A}_{\mathrm{S}}}{\partial t}\right)_{\mathrm{H}}$	(274)
	H and S being the Heisenberg and Schrödinger picture, respectively	

21.1.2 Ehrenfest theorem

See also ??

Ehrenfest theorem
applies to both pictures
$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{A} \rangle = \frac{1}{i\hbar} \langle [\hat{A}, \hat{H}] \rangle + \left\langle \frac{\partial \hat{A}}{\partial t} \right\rangle$$
(275)
Ehrenfest theorem example	d^2 () (-V()) (T())	$(0\mathbf{\pi}\mathbf{a})$
Example for x	$m\frac{\mathrm{d}t^2}{\mathrm{d}t^2} \langle x \rangle = -\langle \nabla V(x) \rangle = \langle F(x) \rangle$	(276)

21.2 Correspondence principle

The classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.

22 Pertubation theory

qm:qm_pertubation:desc

Hamiltonian	$\hat{H} = \hat{H_0} + \lambda \hat{H_1}$	(277)
Power series	$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots$ $ \psi_n\rangle = \psi_n^{(0)}\rangle + \lambda \psi_n^{(1)}\rangle + \lambda^2 \psi_n^{(2)}\rangle + \dots$	(278) (279)
1. order energy shift	$E_n^{(1)} = \left(\psi_n^{(0)} \middle \hat{H}_1 \middle \psi_n^{(0)} \right)$	(280)
1. order states	$ \psi_n^{(1)}\rangle = \sum_{k \neq n} \frac{\left\langle \psi_k^{(0)} \middle \hat{H}_1 \middle \psi_n^{(0)} \right\rangle}{E_n^{(0)} - E_k^{(0)}} \psi_k^{(0)}\rangle$	(281)
2. order energy shift	$E_n^{(2)} = \sum_{k \neq n} \frac{\left \left\langle \psi_k^{(0)} \middle \hat{H}_1 \middle \psi_n^{(0)} \right\rangle \right ^2}{E_n^{(0)} - E_k^{(0)}}$	(282)
Fermiś golden rule Transition rate from initial state $ i\rangle$ under a pertubation H^1 to final state $ f\rangle$	$\Gamma_{i \to f} = \frac{2\pi}{\hbar} \left \langle f H^1 i \rangle \right ^2 \rho(E_f)$	(283)

23 Harmonic oscillator

Hamiltonian	$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$	(284)
	$=\frac{1}{2}\hbar\omega+\omega a^{\dagger}a$	(285)

Energy spectrum	$E_n = \hbar\omega \left(\frac{1}{2} + n\right) \tag{286}$)
-----------------	--	---

See also ??

23.1 Creation and Annihilation operators / Ladder operators

Particle number operator/occupation number operator	$\hat{N} \coloneqq a^{\dagger}a$	(287)
	$\hat{N}\left n ight angle$ = $n\left N ight angle$	(288)
	$ n\rangle =$ Fock states, $\hat{a} =$ Annihilation operator, $\hat{a}^{\dagger} = 0$ operator	Creation
	$\left[\hat{a}, \hat{a}^{\dagger}\right] = 1$	(289)
Commutator	$[N, \hat{a}] = -\hat{a}$	(290)
	$\left[N, \hat{a}^{\dagger}\right] = \hat{a}^{\dagger}$	(291)
	$\hat{a} n\rangle = \sqrt{n} n-1\rangle$	(292)
Application on states	$\hat{a}^{\dagger} \left n \right\rangle = \sqrt{n+1} \left n+1 \right\rangle$	(293)
	$ n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n 0\rangle$	(294)
Matrix forms	$\hat{n} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & N \end{pmatrix}$	(295)
	$\hat{a} = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \sqrt{N} \\ 0 & 0 & 0 & 0 \end{pmatrix}$	(296)
	$\hat{a}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ \sqrt{1} & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & 0 & \sqrt{N} & 0 \end{pmatrix}$	(297)

23.1.1 Harmonischer Oszillator

Harmonic oscillator

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger}) \tag{298}$$

$$\hat{p} = -i\sqrt{\frac{m\omega n}{2}}(\hat{a} - \hat{a}^{\dagger})$$
(299)

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} \qquad \qquad = \hbar\omega \left(a^{\dagger}a + \frac{1}{2}\right) \qquad (300)$$

$$a = \frac{1}{\sqrt{2}}(X + iP) \tag{301}$$

$$a^{\dagger} = \frac{1}{\sqrt{2}} (\tilde{X} - i\tilde{P}) \tag{302}$$

24 Angular momentum

24.1 Aharanov-Bohm effect

Acquired phase

Electron along a closed loop aquires a phase proportional to the enclosed magnetic flux

$$\delta = \frac{2e}{\hbar} \oint \vec{A} \cdot d\vec{s} = \frac{2e}{\hbar} \Phi \tag{303}$$

TODO:replace with loop intergral symbol and add more info

25 Periodic potentials

Bloch waves Solve the stat. SG in periodic	$\psi_k(ec{r})$ = $e^{iec{k}\cdotec{r}}\cdot u_{ec{k}}(ec{r})$	(304)
potential with period \vec{R} : $V(\vec{r}) = V(\vec{r} + \vec{R})$	\vec{k} arbitrary, u periodic function	
	$u_{\vec{r}}(\vec{r}+\vec{R}) = u_{\vec{r}}(\vec{r})$	(305)

Periodicity

$u_{ec k}(ec r+R)$ = $u_{ec k}(ec r)$	(305)
$\psi_{ec{k}+ec{G}}(ec{r})$ = $\psi_{ec{k}}(ec{r})$	(306)

 \vec{R} Lattice vector, \vec{G} Reciprokal attice vector

26 Symmetries

Most symmetry operators are unitary ?? because the norm of a state must be invariant under transformations of space, time and spin.

Invariance		
\hat{H} is invariant under a	$\hat{U}\hat{U}\hat{U}^{\dagger}$ \hat{U} $(\hat{U}$ \hat{U}^{\dagger} 0	(207)
symmetrie described by \hat{U} if	$U\Pi U^{\dagger} = \Pi \Leftrightarrow [U,\Pi] = 0$	(307)
this holds		

26.1 Time-reversal symmetry

Time-reversal symmetry	$T: t \to -t$	(308)
Anti-unitary	$T^2 = -1$	(309)

27 Two-level systems (TLS)

$$H = \underbrace{\hbar\omega_c \hat{a}^{\dagger} \hat{a}}_{\text{field}} + \underbrace{\hbar\omega_a \frac{\hat{\sigma}_z}{2}}_{\text{atom}} + \underbrace{\frac{\hbar\Omega}{2} \hat{E}\hat{S}}_{\text{int}}$$
(310)

James-Cummings Hamiltonian TLS interacting with optical cavity after RWA:

$$=\hbar\omega_{c}\hat{a}^{\dagger}\hat{a} + \hbar\omega_{a}\hat{\sigma}^{\dagger}\hat{\sigma} + \frac{\hbar\Omega}{2}(\hat{a}\hat{\sigma^{\dagger}} + \hat{a}^{\dagger}\hat{\sigma}) \qquad (312)$$

 $\hat{E} = E_{\text{ZPF}}(\hat{a} + \hat{a}^{\dagger})$ field operator with bosonic ladder operators, $\hat{S} = \hat{\sigma}^{\dagger} + \hat{\sigma}$ polarization operator with ladder operators of the TLS

28 Other

Rotating Wave Approximation (RWS) Rapidly oscilating terms are	$\Delta \omega \coloneqq \omega_0 - \omega_{\rm L} \ll \omega_0 + \omega_{\rm L} \approx 2\omega_0$	(313)
neglected	$\omega_{\rm L}$ light frequency, ω_0 transition frequency	
Slater determinant		
Construction of a fermionic	$\left[\phi_{a}(q_{1}) \phi_{a}(q_{2}) \cdots \phi_{a}(q_{N})\right]$	
(antisymmetric)	$1 \qquad \begin{pmatrix} \mu a (11) & \mu a (12) \\ \phi_b(q_1) & \phi_b(q_2) & \cdots & \phi_b(q_N) \end{pmatrix}$	

(antisymmetric) many-particle wave function from single-particle wave functions

t frequency,
$$\omega_0$$
 transition frequency

$$\Psi(q_1, \dots, q_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_a(q_1) & \phi_a(q_2) & \cdots & \phi_a(q_N) \\ \phi_b(q_1) & \phi_b(q_2) & \cdots & \phi_b(q_N) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_z(q_1) & \phi_z(q_2) & \cdots & \phi_z(q_N) \end{vmatrix}$$
(314)

Hydrogen Atom **29**

Reduced mass	$\mu = \frac{m_{\rm e}m_{\rm K}}{m_{\rm e} + m_{\rm K}} \stackrel{m_{\rm e} \ll m_{\rm K}}{\stackrel{\downarrow}{\approx}} m_{\rm e}$	(315)
Coulumb potential For a single electron atom	$V(\vec{r}) = \frac{Z e^2}{4\pi\epsilon_0 r}$	(316)
	Z atomic number	
Hamiltonian	$\hat{H} = -\frac{\hbar^2}{2\mu}\vec{\nabla}_{\vec{r}}^2 - V(\vec{r})$	(317)
	$=\frac{\hat{p}_{r}^{2}}{2\mu}+\frac{\hat{L}^{2}}{2\mu r}+V(r)$	(318)
	$\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$	(319)
wave function	$R_{nl}(r)$ Radial part, Y_{lm} qm:spherical_harmonics	
Radial part	$R_{nl} = -\sqrt{\frac{(n-l-1)!(2\kappa)^3}{2n[(n+l)!]^3}} (2\kappa r)^l e^{-\kappa r} L_{n+1}^{2l+1}(2\kappa r)$	(320)
	with $\kappa = \frac{\sqrt{2\mu E }}{\hbar} = \frac{Z}{na_{\rm B}}$	(321)
	$L_r^s(x)$ Laguerre-polynomials	
]
Energy eigenvalues	$E_n = \frac{Z^2 \mu e^4}{n^2 (4\pi\epsilon_0)^2 2\hbar^2} = -E_{\rm H} \frac{Z^2}{n^2}$	(322)
Rydberg energy	$E_{\rm H} = h c R_{\rm H} = \frac{\mu e^4}{(4\pi\epsilon_0)^2 2\hbar^2}$	(323)

29.1 Corrections

29.1.1 Darwin term

Relativisitc correction: Because of the electrons zitterbewegung, it is not entirely localised. TODO:fact check

Energy shift	$\Delta E_{\rm rel} = -E_n \frac{Z^2 \alpha^2}{n} \left(\frac{3}{4n} - \frac{1}{l + \frac{1}{2}}\right)$	(324)
Fine-structure constant Sommerfeld constant	$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \approx \frac{1}{137}$	(325)

29.1.2 Spin-orbit coupling (LS-coupling)

The interaction of the electron spin with the electrostatic field of the nuclei lead to energy shifts.

Energy shift	$\Delta E_{\rm LS} = \frac{\mu_0 Z e^2}{8\pi m_{\rm e}^2 r^3} \left\langle \vec{S} \cdot \vec{L} \right\rangle$	(326)
TODO:name	$\langle \vec{S} \cdot \vec{L} \rangle = \frac{1}{2} \langle [J^2 - L^2 - S^2] \rangle$ $= \frac{\hbar^2}{2} [j(j+1) - l(l+1) - s(s+1)]$	(327)

29.1.3 Fine-structure

The fine-structure combines relativistic corrections 29.1.1 and the spin-orbit coupling 29.1.2.

Energy shift	$\Delta E_{\rm FS} = \frac{Z^2 \alpha^2}{n} \left(\frac{1}{j + \frac{1}{2}} - \frac{3}{4n} \right) $ (328)
--------------	---

29.1.4 Lamb-shift

The interaction of the electron with virtual photons emitted/absorbed by the nucleus leads to a (very small) shift in the energy level.

Potential energy

$$\langle E_{\rm pot} \rangle = -\frac{Ze^2}{4\pi\epsilon_0} \left\langle \frac{1}{r+\delta r} \right\rangle$$
 (329)

$$\delta r$$
 pertubation of r

29.1.5 Hyperfine structure

Interaction of the nucleus spin with the magnetic field created by the electron leads to energy shifts. (Lifts degeneracy)

Nuclear spin

$ec{F} = ec{J} + ec{I}$	(330)
$ ec{I} = \sqrt{i(i+1)}\hbar$	(331)
$I_z = m_i h$	(332)

Combined angular momentum	$\vec{F} = \vec{J} + \vec{I}$	(334)
Combined angular momentum	$ \vec{F} = \sqrt{f(f+1)}h$	(335)
	$F_z = m_f \hbar$	(336)

Selection rule $f = j \pm i$ (337) $m_f = -f, -f + 1, \dots, f - 1, f$ (338)

 $A = \frac{g_i \mu_{\rm K} B_{\rm HFS}}{\sqrt{j(j+1)}} \tag{339}$

Hyperfine structure constant

 $B_{\rm HFS}$ hyperfine field, $\mu_{\rm K}$ nuclear magneton, g_i nuclear g-factor $\ref{eq:magnetic-structure}$

Energy shift	$\Delta H_{\rm HFS} = \frac{A}{2} [f(f+1) - j(j+1) - i(i+1)]$	(340)
Energy shift	$\Delta H_{\rm HFS} = \frac{1}{2} [f(f+1) - j(j+1) - i(i+1)]$	(34)

TODO:landé factor

29.2 Effects in magnetic field

TODO:all TODO:Hunds rules

29.3 misc

Aumon Moitnon Effolt	An excited electron relaxes into a lower, unoccupied energy
Auger-Mether-Ellekt	level. The released energy causes the emission of another
Auger-Effect	electron in a higher energy level (Auger-Electron)

Part VII Condensed matter physics

TODO:Bonds, hybridized orbitals

- 30 Crystals
- 30.1 Bravais lattice

Lattice system	Doint group	5 Bravais lattices			
	1 ont group	primitive (p)	centered (c)		
monoclinic (m)	C_2	b e a			
orthorhombic (o)	D_2	b a			
tetragonal (t)	D_4				
hexagonal (h)	D ₆	a 120°			

T 11 0		. 1	-	1.00	ъ .	1
Table 2:	In $2D$,	there	are 5	different	Bravais	lattices

	T	Point group		14 Brava	is lattices	
Crystal syste	mLattice syste	m	primitive (P)	base_cen- tered (S)	body_cen- tered (I)	face_cen- tered (F)
triclir	iic (a)	$\mathrm{C_{i}}$				
monocli	inic (m)	C_{2h}				
orthorho	ombic (o)	D_{2h}				
tetrage	onal (t)	$\mathrm{D}_{4\mathrm{h}}$				
hexagonal (h	rhombohe- dral	D_{3d}	a a a a a			
	hexagonal	$\mathrm{D}_{6\mathrm{h}}$	$\gamma = 120^{\circ}$			
cubi	c (c)	O _h	a 39		a a a	

Table 3: In 3D, there are 14 different Bravais lattices

Lattice constant	
Parameter (length or angle)	Symbol: a
describing the smallest unit	Unit:
cell	
	Symbol: \vec{R} Unit:
Lattice vector	$\vec{R} = n_1 \vec{a_1} + n_2 \vec{a_2} + n_3 \vec{a_3} \tag{341}$
	$n_i \in \mathbb{Z}$

TODO:primitive unit cell: contains one lattice point

	(hkl)plane	(342)
	[hkl]direction	(343)
Miller index	$\{hkl\}$ millerFamily	(344)
	Miller family: planes that are equivalent due to crystal metry	l sym-

30.2 Reciprocal lattice

Reciprocal lattice vectors

The reciprokal lattice is made up of all the wave vectors \vec{k} that ressemble standing waves with the periodicity of the Bravais lattice.

$$\vec{b_1} = \frac{2\pi}{V_c} \vec{a_2} \times \vec{a_3}$$
(345)

$$\vec{b_2} = \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1}$$
(346)

$$\vec{b}_3 = \frac{2\pi}{V_c} \vec{a}_1 \times \vec{a}_2 \tag{347}$$

 a_i real-space lattice vectors, V_c volume of the primitive lattice cell

	Symbol: \vec{G} Unit:
Reciprokal attice vector	$\vec{G}_{hkl} = h\vec{b_1} + k\vec{b_2} + l\vec{b_3} $ (348)
	$n_i \in \mathbb{Z}$

30.3 Scattering processes

Matthiessen's rule	$\frac{1}{\mu} = \sum_{i=\text{Scattering processes}} \frac{1}{\mu_i} \tag{349}$
Approximation, only holds if the processes are independent of each other	$\frac{1}{\tau} = \sum_{i=\text{Scattering processes}} \frac{1}{\tau_i} $ (350)
	μ Electrical mobility, τ Scattering time

30.4 Lattices

Simple cubic (SC)	$\vec{a}_1 = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{a}_2 = a \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{a}_3 = a \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} $ (351)
Reciprocal: Simple cubic	<i>a</i> Lattice constant
Body centered cubic (BCC)	$\vec{a}_1 = \frac{a}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \vec{a}_2 = \frac{a}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \vec{a}_3 = \frac{a}{2} \begin{pmatrix} 1\\1\\-1 \end{pmatrix} $ (352)
Reciprocal: cm:bravais:fcc	<i>a</i> Lattice constant
Face centered cubic (FCC)	$\vec{a}_1 = \frac{a}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \vec{a}_2 = \frac{a}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \vec{a}_3 = \frac{a}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix} $ (353)
Reciprocal: cm:bravais:bcc	<i>a</i> Lattice constant
Diamond lattice	cm:bravais:fcc with basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$
Zincblende lattice	Like cm:bravais:diamond but with different species on each basis
Wurtzite structure hP4	Image: cm:crystal:lat:wurtzite:desc

31 Free electron gas

Assumptions: electrons can move freely and independent of each other.

Drift velocity			
Velocity component induced		$\vec{v}_{\mathrm{D}} = \vec{v} - \vec{v}_{\mathrm{th}}$	(354)
by an external force (eg.			
electric field)	$v_{\rm th}$ thermal velocity		

Mean free path	$\ell = \langle v \rangle \tau$	(355)
Electrical mobility How quickly a particle moves through a material when moved by an electric field	Symbol: μ Unit: $1 \text{ cm}^2/\text{Vs}$ $\mu = \frac{q\tau}{m}$ q Charge, m Mass, τ Scattering time	(356)

31.1 2D electron gas

Lower dimension gases can be obtained by restricting a 3D gas with infinetly high potential walls on a narrow area with the width L.

Confinement energy Raises ground state energy	$\Delta E = \frac{\hbar^2 \pi^2}{2m_{\rm e}L^2} \tag{357}$
Energy	$E_n = \underbrace{\frac{\hbar^2 k_{\parallel}^2}{2m_{\rm e}}}_{x-y: \text{ plain wave}} + \underbrace{\frac{\hbar^2 \pi^2}{2m_{\rm e}L^2} n^2}_{z} $ (358)

31.2 1D electron gas / quantum wire

Energy $E_n = \frac{\hbar^2 k_x^2}{2m_e} + \frac{\hbar^2 \pi^2}{2m_e L_z^2} n_1^2 + \frac{\hbar^2 \pi^2}{2m_e L_y^2} n_2^2$ (359)

TODO:condunctance

31.3 0D electron gas / quantum dot

TODO:TODO

32 Charge transport

32.1 Drude model

Classical model describing the transport properties of electrons in materials (metals): The material is assumed to be an ion lattice and with freely moving electrons (electron gas). The electrons are accelerated by an electric field and decelerated through collisions with the lattice ions. The model disregards the Fermi-Dirac partition of the conducting electrons.

Equation of motion	$m_{\rm e}\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{m_{\rm e}}{\tau}\vec{v}_{\rm D} = -e\vec{\mathcal{E}} \tag{360}$
	v electron speed, $\vec{v}_{\rm D}$ drift velocity, τ mean free time between collisions

Scattering time Momentum relaxation time	$ \begin{array}{ c c c c c } & \text{Symbol: } \tau & \\ & \text{Unit: 1s} & \\ \hline \tau & \\ & \text{the average time between scattering events weighted by the} \end{array} $
	characteristic momentum change cause by the scattering process.
Current density Ohm's law	$\frac{\text{Symbol: }\vec{j}}{\text{Unit: }1\text{ A/m}^2}$ $\vec{j} = -ne\vec{v}_{\text{D}} = ne\mu\vec{\mathcal{E}} $ (361)
	n charge particle density
Drude-conductivity	$\sigma = \frac{\vec{j}}{\vec{\mathcal{E}}} = \frac{e^2 \tau n}{m_{\rm e}} = n e \mu \tag{362}$

32.2 Sommerfeld model

Assumes a gas of free fermions underlying the pauli-exclusion principle. Only electrons in an energy range of $k_{\rm B}T$ around the Fermi energy $E_{\rm F}$ participate in scattering processes.

Electrical current density	$\vec{j} = -en\langle v \rangle = -en\frac{\hbar}{m_{\rm e}}\langle \vec{k} \rangle = -e\frac{1}{V}\sum_{\vec{k},\sigma}\frac{\hbar k}{m_{\rm e}} $ (363)	3)
----------------------------	---	----

TODO: The formula for the conductivity is the same as in the drude model?

32.3 Boltzmann-transport

Semiclassical description using a probability distribution (stat:todo:fermi_dirac) to describe the particles.

Boltzmann Transport equation for charge transport	$\frac{\partial f(\vec{r}, \vec{k}, t)}{\partial t} = -\vec{v} \cdot \vec{\nabla}_{\vec{r}} f - \frac{e}{\hbar} (\vec{\mathcal{E}} + \vec{v} \times \vec{B}) \cdot \vec{\nabla}_{\vec{k}} f + \left(\frac{\partial f(\vec{r}, \vec{k}, t)}{\partial t}\right)_{\text{scatter}} $ (364)	r
	f ??	

32.4 misc

Tsu-Esaki tunneling current Describes the current $I_{L\leftrightarrow R}$ through a barrier	$I_{\rm T} = \frac{2e}{h} \int_{U_{\rm L}}^{\infty} (f(E,\mu_{\rm L}) - f(E,\mu_{\rm R})) T(E) dE \qquad (365)$ $\mu_i ???: \text{chemical_pot at left/right side, } U_i \text{ voltage on left/right side. Electrons occupy region between } U_i \text{ and } \mu_i$
Charge continuity equation Electric charge can only change by the amount of electric current	$\frac{\partial \rho}{\partial t} = -\nabla \vec{j} $ (366) ρ Charge density, \vec{j} Current density

33 Superconductivity

Materials for which the electric resistance jumps to 0 under a critical temperature T_c . Below T_c they have perfect conductivity and perfect diamagnetism, up until a critical magnetic field B_c . **Type I**: Has a single critical magnetic field at which the superconuctor becomes a normal conductor. **Type II**: Has two critical

Perfect conductor	In contrast to a superconductor, perfect conductors become diamagnetic only when the external magnetic field is turned on after the material was cooled below the critical tempera- ture. (ed:fields:mag:induction:lenz)
Meißner-Ochsenfeld effect Perfect diamagnetism	External magnetic field decays exponetially inside the super- conductor below a critical temperature and a critical mag- netic field.

33.1 London equations

Quantitative description of the Meißner-Ochsenfeld effect.

First London Equation	$\frac{\partial \vec{j}_{\rm s}}{\partial t} = \frac{n_{\rm s} q_{\rm s}^2}{m_{\rm s}} \vec{E} - \mathcal{O}\left(\vec{j}_{\rm s}^2\right) \tag{367}$	
	\vec{j} current density, $n_{\rm s},m_{\rm s},q_{\rm s}$ density, mass and charge of supercondutiong particles	

Second London Equation Describes the Meißner-Ochsenfeld effect	$\vec{\nabla} \times \vec{j_s} = -\frac{n_s q_s^2}{m_s} \vec{B} $ (368) \vec{j} current density, n_s , m_s , q_s density, mass and charge of supercondution particles
London penetration depth	$\lambda_{\rm L} = \sqrt{\frac{m_{\rm s}}{\mu_0 n_{\rm s} q_{\rm s}^2}} \tag{369}$

33.2 Ginzburg-Landau Theory (GLAG)

Ginzburg-Landau Coherence	$\xi_{\rm GL} = \frac{h}{\sqrt{2m \alpha }}$	(370)
Length	$\xi_{\rm GL}(T) = \xi_{\rm GL}(0) \frac{1}{\sqrt{1 - \frac{T}{T_{\rm c}}}}$	(371)

Ginzburg-Landau Penetration Depth / Field screening length $\lambda_{\rm GL} = \sqrt{\frac{m_{\rm s}\beta}{\mu_0|\alpha|q_s^2}} \qquad (372)$ $\lambda_{\rm GL}(T) = \lambda_{\rm GL}(0) \frac{1}{\sqrt{1 - \frac{T}{T_c}}} \qquad (373)$ First Ginzburg-Landau Equation

$$\alpha\Psi + \beta|\Psi|^2\Psi + \frac{1}{2m}(-i\hbar\vec{\nabla} + 2e\vec{A})^2\Psi = 0$$
(374)

 $\xi_{\rm GL}$ Ginzburg-Landau Coherence Length, $\lambda_{\rm GL}$ Ginzburg-Landau Penetration Depth / Field screening length

Second Ginzburg-Landau Equation

$$\vec{j}_{\rm s} = \frac{ie\hbar}{m} (\Psi^* \vec{\nabla} \Psi - \Psi \vec{\nabla} \Psi^*) - \frac{4e^2}{m} |\Psi|^2 \vec{A}$$
(375)

TODO:proximity effect

33.3 Microscopic theory

33.4 BCS-Theory

34 Semiconductors

Intrinsic/extrinsic

Intrinsic: pure, electron density determiend only by thermal excitation and $n_i^2 = n_0 p_0$ Extrinsic: doped n, p Equilibrium charge densitites

Equilibrium charge densitites Holds when $\frac{E_{\rm c}-E_{\rm F}}{L} > 3.6$ and	$n_0 \approx N_{\rm c}(T) \exp\left(-\frac{E_{\rm c} - E_{\rm F}}{k_{\rm B}T}\right)$	(376)
$\frac{E_{\rm F} - E_{\rm v}}{k_{\rm B}T} > 3.6$	$p_0 \approx N_{\rm v}(T) \exp\left(-\frac{E_{\rm F} - E_{\rm v}}{k_{\rm B}T}\right)$	(377)

Intrinsic charge density

$$n_{\rm i} \approx \sqrt{n_0 p_0} = \sqrt{N_{\rm c}(T) N_{\rm v}(T)} \exp\left(-\frac{E_{\rm gap}}{2k_{\rm B}T}\right) \tag{378}$$

(379)

 $np = n_i^2$

Mass action law

Charge densities at thermal equilibrium, independent of doping

 $E_{\rm gap}(0\,{\rm K})[{\rm eV}]$ $E_{\rm gap}(300\,{\rm K})[{\rm eV}]$ Diamond 5,485,47indirect Si 1, 12indirect 1, 17Ge 0,750,66indirect GaP 2,322,26indirect GaAs 1,521, 43direct InSb 0, 240, 18direct InP 1,351, 42direct CdS2.582.42direct Majority carriers: higher number of particles (e^{-} in n-type, h^+ in p-type) Minority / Majority charge Minority carriers: lower number of particles (h^+ in n-type, $e^$ carriers in p-type)

35 Band theory

35.1 Hybrid orbitals

Hybrid orbitals are linear combinations of other atomic orbitals.

36 Diffusion

Diffusion coefficient	Symbol: D Unit: $1 \text{ m}^2/\text{s}$
Particle current density Number of particles through an area	Symbol: J Unit: 11/s ²
Einstein relation Classical	$D = \frac{\mu k_{\rm B} T}{q} $ (383) D Diffusion coefficient, μ Electrical mobility, T Temperature, q Charge
Concentration A quantity per volume	Symbol: c Unit: 1 x/m^3
Fick's first law Particle movement is proportional to concentration gradient	$J = -D\frac{c}{x} $ (384) J Particle current density, D Diffusion coefficient, c Concen- tration
Fick's second law	$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} $ (385) <i>J</i> Particle current density, <i>D</i> Diffusion coefficient, <i>c</i> Concentration

37 misc

Exciton electron-hole pair.	Exciton	Quasi particle, excitation in condensed matter as bound electron-hole pair.
-----------------------------	---------	---

Work function	Symbol: W	
Lowest energy required to	Unit: 1 eV	
remove an electron into the		(200)
vacuum	$-e\phi - L_{\rm F}$	(386)

38 Measurement techniques

38.1 ARPES

what? in? how? plot

38.2 Scanning probe microscopy SPM

Images of surfaces are taken by scanning the specimen with a physical probe.

		Cantilever
Name	\fqname :amf:name	
Application	\fqname :amf:application	
how	\fqname :amf:how	

Figure 1: [?]

Sharp metal tip

Sample

39 Fabrication techniques

		_	(c): heater	
Name	fqname : cvd:name			
how	fqname : cvd:how	(a): Source materials		
Application	fqname :cvd:application	+ carrier gas	(b) Substrates	/
			(c): heater	

39.1 Epitaxy

A type of crystal groth in which new layers are formed with well-defined orientations with respect to the crystalline seed layer.

Part VIII **Topological Materials**

Berry phase / Geometric phase **40**

While adiabatically traversing a closed through the parameter space R(t), the wave function of a systems may pick up an additional phase γ .

If $\hat{R}(t)$ varies adiabatically (slowly) and the system is initially in eigenstate $|n\rangle$, it will stay in an Eigenstate throughout the process (quantum adiabtic theorem).

Schrödinger equation	$H(\vec{R}(t)) n(\vec{R}(t))\rangle = \epsilon(\vec{R}(t)) n(\vec{R}(t))\rangle$	(387)
Wave function After full adiabtic loop in \vec{R}	$ \psi_n(t)\rangle = \underbrace{\mathrm{e}^{i\gamma_n(t)}}_{\text{Berry Phase}} \underbrace{\mathrm{e}^{\frac{-i}{\hbar}\int^r \epsilon_n(\vec{R}(t'))\mathrm{d}t}}_{\text{Dynamical Phase}} n(\vec{R}(t))\rangle$	(388)
Berry connection	$A_n(\vec{R}) = i \langle \psi \nabla_R \psi \rangle$	(389)
Berry curvature Gauge invariant	$\vec{\Omega}_n = \vec{\nabla}_R \times A_n(\vec{R})$	(390)
Berry phase Gauge invariant up to 2π	$\gamma_n = \oint_C \mathrm{d}\vec{R} \cdot A_n(\vec{R}) = \int_S \mathrm{d}\vec{S} \cdot \vec{\Omega}_n(\vec{R})$	(391)

The Berry flux through any 2D closed surface is quantized by the **Chern number**. If there is time-reversal symmetry, the Chern-number is 0.

Chern number

The Berry flux through any 2D closed surface is quantized by the **Chern number**. If there is time-reversal symmetry, the Chern-number is 0.

Hall conductance of a 2D band insulator

$$C_n = \frac{1}{2\pi} \oint \mathrm{d}\vec{S} \cdot \vec{\Omega}_n(\vec{R}) \tag{392}$$

(393)

 \vec{S} closed surface in \vec{R} -space. A *Chern insulator* is a 2D insulator with $C_n \neq 0$

 $\vec{\sigma}_{xy} = \sum_{n} \frac{e^2}{h} \int_{\text{occupied}} d^2k \, \frac{\Omega_{xy}^n}{2\pi} = \sum_{n} C_n \frac{e^2}{h}$ While adiabatically traversing a closed through the parameter space R(t), the wave function of a

systems may pick up an additional phase γ . If $\vec{R}(t)$ varies adiabatically (slowly) and the system is initially in eigenstate $|n\rangle$, it will stay in an

Eigenstate throughout the process (quantum adiabtic theorem).

Part IX Quantum Computing

41 Qubits

$ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$	(394)
$=\cos\frac{\theta}{2}e^{i\phi_{\alpha}}\left 0\right\rangle +\sin\frac{\theta}{2}e^{i\phi_{\beta}}\left 1\right\rangle$	(395)
$= e^{i\phi_{\alpha}}\cos\frac{\theta}{2}\left 0\right\rangle + \sin\frac{\theta}{2}e^{i\phi}\left 1\right\rangle$	(396)

Bloch sphere

42 Gates

\fqname :gates	TODO:remove macro2	(397)

43 Superconducting qubits

43.1 Building blocks

43.1.1 Josephson Junction

When two superconductors are separated by a thin isolator, Cooper pairs can tunnel through the insulator. The Josephson junction is a non-linear inductor.

Josephson-Hamiltonian	$\hat{H}_{\rm J} = -\frac{E_{\rm J}}{2} \sum_{n} [n\rangle \langle n+1 + n+1\rangle \langle n] \qquad (398)$
1. Josephson relation Dissipationless supercurrent accros junction at zero applied voltage	$\hat{I} \delta\rangle = I_{\rm C} \sin \delta \delta\rangle \qquad (399)$ $I_{\rm C} = \frac{2e}{\hbar} E_{\rm J} \text{ critical current, } \delta \text{ phase difference accross junction}$
2. Josephson relation superconducting phase change is proportional to applied voltage	$\frac{\mathrm{d}\hat{\delta}}{\mathrm{d}t} = \frac{1}{i\hbar} [\hat{H}, \hat{\delta}] = -\frac{2eU}{i\hbar} [\hat{n}, \hat{\delta}] = \frac{1}{\varphi_0} U \qquad (400)$ $\varphi_0 = \frac{\hbar}{2e} \text{ reduced flux quantum}$

43.1.2 SQUID

(401)

 $\hat{\phi}$ phase difference across the junction

43.2 Josephson Qubit??

			$E_L/(E_J$	$-E_L$)		vity
		0	≪ 1	~ 1	≫1	ensiti
$\frac{E_J}{E_C}$	≪1	cooper-pair box				S IS
	~ 1	quantronium	fluxonium			C. Sensity
	$\gg 1$	transmon			flux qubit	HOISE SC CU
	»» 1			phase qubit		ensite of the state

43.3 Cooper Pair Box (CPB) qubit

= voltage bias junction

= charge qubit?

Cooper Pair Box / Charge qubit

- large anharmonicity
- sensitive to charge noise

Hamiltonian

 $C_{\rm g}$

 $C_{\rm J}$

 $V_{\rm g}$

43.4 Transmon qubit

43.4.1 Tunable Transmon qubit

Figure 3: Transmon and so TODO

43.5 Phase qubit

This is only a test

43.6 Flux qubit TODO:TODO

43.7 Fluxonium qubit

Figure 4: img/

44 Two-level system

Resonance frequency
$$\omega_{21} = \frac{E_2 - E_1}{\hbar}$$
(414)

TODO:sollte das nicht 10 sein?

 ω_{21} resonance frequency of the energy transition, Ω Rabi frequency

44.1 Ramsey interferometry

 $|0\rangle \xrightarrow{\frac{\pi}{2} \text{ pulse}} \text{ precession in } xy \text{ plane for time } \tau \xrightarrow{\frac{\pi}{2} \text{ pulse}} \text{ measurement}$

45 Noise and decoherence

Longitudinal relaxation rate $\Gamma_{1\downarrow}: 1\rangle \rightarrow 0\rangle$ $\Gamma_{1\uparrow}: 0\rangle \rightarrow 1\rangle$	$\Gamma_1 = \frac{1}{T_1} = \Gamma_{1\uparrow} + \Gamma_{1\downarrow}$	(416)
Longitudinal relaxation rate		
Pure dephasing rate	Γ_{ϕ}	(417)
Transversal relaxation rate	$\Gamma_2 = \frac{1}{T_2} = \frac{\Gamma_1}{2} + \Gamma_\phi$	(418)
Bloch-Redfield density matrix		
2-level System weakly coupled to noise sources with short correlation time	$\rho_{\rm BR} = \begin{pmatrix} 1 + (\alpha ^2 - 1) e^{-\Gamma_1 t} & \alpha \beta^* e^{-\Gamma_2 t} \\ \alpha^* \beta e^{-\Gamma_2 t} & \beta ^2 e^{-\Gamma_1 t} \end{pmatrix}$	(419)

Part X Computational Physics

46 Quantum many-body physics

TODO:TODO

46.1 Importance sampling

TODO:Monte Carlo

Electronic structure

Hamiltonian

46.2 Matrix product states

47 Electronic structure theory

$\hat{H} = \hat{T}_{\rm e} + \hat{T}_{\rm n} + V_{\rm e \leftrightarrow e} + V_{\eta \leftrightarrow \rm e} + V_{\eta \leftrightarrow \eta}$	(420)
--	-------

$$\hat{T}_{i} = -\sum_{n=1}^{N_{i}} \frac{\hbar^{2}}{2m_{i}} \vec{\nabla}_{n}^{2}$$
(421)

$$\hat{V}_{i \leftrightarrow j} = -\sum_{k,l} \frac{Z_i Z_j e^2}{|\vec{r}_k - \vec{r}_l|}$$

$$\tag{422}$$

 \hat{T} kinetic energy, \hat{V} electrostatic potential, e electrons, n nucleons

Mean field approximation Replaces 2-particle operator	$\frac{1}{2} \sum_{i \neq j} \frac{e^2}{ \vec{r}_i - \vec{r}_j } \approx \sum_i V_{\text{eff}}(\vec{r}_i) $ (423)
by 1-particle operator	Example for Coulumb interaction between many electrons

47.1 Tight-binding

47.2 Density functional theory (DFT)

47.2.1 Hartree-Fock

- comp:misc:mean_field theory
- Self-interaction free: Self interaction is cancelled out by the Fock-term

with

$$\left(\hat{T} + \hat{V}_{\rm en} + \hat{V}_{\rm HF}^{\xi}\right)\varphi_{\xi}(x) = \epsilon_{\xi}\varphi_{\xi}(x) \tag{424}$$

Hartree-Fock equation

Hartree-Fock potential

 φ_{ξ} single particle wavefunction of $\xi {\rm th}$ orbital, \hat{T} kinetic electron energy, $\hat{V}_{\rm en}$ electron-nucleus attraction, $\hat{V}_{\rm HF}$ comp:dft:hf:potential,

$$V_{\rm HF}^{\xi}(\vec{r}) = \sum_{\vartheta} \int dx' \frac{e^2}{|\vec{r} - \vec{r}'|} \left(\underbrace{\frac{|\varphi_{\xi}(x')|^2}{|\vec{r} - \vec{r}'|}}_{\rm Hartree-Term} - \underbrace{\frac{\varphi_{\vartheta}^*(x')\varphi_{\xi}(x')\varphi_{\vartheta}(x)}{\varphi_{\xi}(x)}}_{\rm Fock-Term} \right)$$
(425)

	1. Initial guess for ψ
Self-consistend field cycle	2. Solve SG for each particle
	3. Make new guess for ψ

48 Atomic dynamics

48.1 Kohn-Sham

TODO:TODO

48.2 Born-Oppenheimer Approximation

TODO:TODO, BO surface

48.3 Molecular Dynamics

Statistical method

TODO:ab-initio MD, force-field MD

49 Gradient descent

TODO:TODO

50 Physical quantities

50.1 SI quantities

Time	Symbol: t Unit: 1s
Length	Symbol: <i>l</i> Unit: 1 m
Mass	Symbol: m Unit: 1 kg
Temperature	Symbol: T Unit: 1 K
Electric current	Symbol: I Unit: 1 A
Amount of substance	Symbol: n Unit: 1 mol
Luminous intensity	Symbol: I _V Unit: 1 cd

50.2 Mechanics

Force	Symbol: \vec{F} Unit: $1 \text{ N} = 1 \text{ kgm/s}^2$
Spring constant	Symbol: k Unit: $1 \text{ N m}^{-1} = 1 \text{ kg/s}^2$
Velocity	Symbol: \vec{v} Unit: $1 \mathrm{m s^{-1}}$
Torque	Symbol: τ Unit: $1 \mathrm{Nm} = 1 \mathrm{kgm}^2/\mathrm{s}^2$

50.3 Thermodynamics

Volume d dimensional Volume	Symbol: V Unit: 1 m^d
Heat capacity	Symbol: C Unit: $1 \mathrm{J}\mathrm{K}^{-1}$

50.4 Electrodynamics

Charge	Symbol: q Unit: $1 C = 1 A s$
Charge density	Symbol: ρ Unit: 1 C/m^3

50.5 Others

51 Constants

Planck Constant	Symbol: h Defined value $6.62607015 \cdot 10^{-34} \text{ Js}$ $4.135667969 \dots \cdot 10^{-15} \text{ eV s}$
Universal gas constant Proportionality factor for ideal gases	$ \begin{array}{ c c c c } & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & $
Avogadro constant Number of molecules per mole	

Symbol: k _B
Defined value
$1.380649 \cdot 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
Symbol: F
Defined value
$9.64853321233100184\mathrm{Cmol^{-1}}$
$N_{\rm A} e$
$N_{\rm A}$ Avogadro constant, $k_{\rm B}$ Boltzmann constant

Part XI Chemie

52 Periodic table

53 stuff

Complet hand	Bonds that involve sharing of electrons to form electron pairs
Covalent bolid	between atoms.

Part XII Appendix

List of Figures

1	[?]	47
2	[?]	47
3	Transmon and so TODO	53
4	img/	54

List of Tables

1	caption	17
2	In 2D, there are 5 different Bravais lattices	38
3	In 3D, there are 14 different Bravais lattices	39

54 List of elements

Hydrogen colorless gas (H2)	Symbol: H Number: 1 atomic_mass: 1.0081 Crystal structure: hex set: nonmetal magnetic_ordering: diamagnetic Electronic configuration: 1s[1]
Helium colorless gas, exhibiting a gray, cloudy glow	Symbol: He Number: 2 atomic_mass: 4.0026022 Crystal structure: hcp set: noblegas magnetic_ordering: diamagnetic Electronic configuration: 1s[1]
Lithium silvery-white	Symbol: Li Number: 3 atomic_mass: 6.946 Crystal structure: bcc set: alkalimetal magnetic_ordering: paramagnetic Electronic configuration: He 2s[1]
Beryllium white-gray metallic	Symbol: Be Number: 4 atomic_mass: 9.01218315 Crystal structure: hcp set: alkalineearthmetal magnetic_ordering: diamagnetic Electronic configuration: He 2s[2]

Boron black-brown	Symbol: B Number: 5 atomic_mass: 10.811 Crystal structure: rho set: metalloid magnetic_ordering: diamagnetic Electronic configuration: He 2s[2] 2p[1]
Carbon black, metallic-looking (graphite); clear (diamond)	Symbol: C Number: 6 atomic_mass: 12.01112 Crystal structure: hex set: nonmetal magnetic_ordering: diamagnetic Electronic configuration: He 2s[2] 2p[2]
Nitrogen colorless gas, liquid or solid	Symbol: N Number: 7 atomic_mass: 14.006714 Crystal structure: hex set: nonmetal magnetic_ordering: diamagnetic Electronic configuration: He 2s[2] 2p[3]
Oxygen colorless (gas); pale blue (liquid and solid)	Symbol: O Number: 8 atomic_mass: 15.99915 Crystal structure: sc set: nonmetal magnetic_ordering: paramagnetic Electronic configuration: He 2s[2] 2p[4]
Fluorine very pale yellow (gas); bright yellow (liquid); alpha is opaque, beta is transparent (solid)	Symbol: F Number: 9 atomic_mass: 18.9984031636 Crystal structure: sc set: halogen magnetic_ordering: diamagnetic Electronic configuration: He 2s[2] 2p[5] refractive_index: 1.000195
Neon colorless gas exhibiting an orange-red glow when placed in an electric field	Symbol: Ne Number: 10 atomic_mass: 20.17976 Crystal structure: fcc set: noblegas magnetic_ordering: diamagnetic Electronic configuration: He 2s[2] 2p[6] refractive_index: 1.000067

Sodium silvery white metallic	Symbol: Na Number: 11 atomic_mass: 22.989769282 Crystal structure: bcc set: alkalimetal magnetic_ordering: paramagnetic Electronic configuration: Ne 3s[1]
Magnesium shiny grey solid	Symbol: Mg Number: 12 atomic_mass: 24.30524 Crystal structure: hcp set: alkalineearthmetal magnetic_ordering: paramagnetic Electronic configuration: Ne 3s[2]
Aluminum silvery gray metallic	Symbol: Al Number: 13 atomic_mass: 26.98153857 Crystal structure: fcc set: metal magnetic_ordering: paramagnetic Electronic configuration: Ne 3s[2] 3p[1]
Silicon crystalline, reflective with bluish-tinged faces	Symbol: Si Number: 14 atomic_mass: 28.08528 Crystal structure: dc set: metalloid magnetic_ordering: diamagnetic Electronic configuration: Ne 3s[2] 3p[2]
Phosphorus white, red and violet are waxy, black is metallic-looking	Symbol: P Number: 15 atomic_mass: 30.9737619985 Crystal structure: orth set: nonmetal magnetic_ordering: diamagnetic Electronic configuration: Ne 3s[2] 3p[3] refractive_index: 1.001212
Sulfur yellow sintered microcrystals	Symbol: S Number: 16 atomic_mass: 32.0632 Crystal structure: orth set: nonmetal magnetic_ordering: diamagnetic Electronic configuration: Ne 3s[2] 3p[4] refractive_index: 1.001111

Chlorine pale yellow-green gas	Symbol: Cl Number: 17 atomic_mass: 35.4535 Crystal structure: orth set: halogen magnetic_ordering: diamagnetic Electronic configuration: Ne 3s[2] 3p[5] refractive_index: 1.000773
Argon colorless gas exhibiting a lilac/violet glow when placed in an electric field	Symbol: Ar Number: 18 atomic_mass: 39.9481 Crystal structure: fcc set: noblegas magnetic_ordering: diamagnetic Electronic configuration: Ne 3s[2] 3p[6] refractive_index: 1.000281
Potassium silvery white, faint bluish-purple hue when exposed to air	Symbol: K Number: 19 atomic_mass: 39.09831 Crystal structure: bcc set: alkalimetal magnetic_ordering: paramagnetic Electronic configuration: Ar 4s[1]
Calcium dull gray, silver; with a pale yellow tint	Symbol: Ca Number: 20 atomic_mass: 40.0784 Crystal structure: fcc set: alkalineearthmetal magnetic_ordering: diamagnetic Electronic configuration: Ar 4s[2]
Scandium silvery white	Symbol: Sc Number: 21 atomic_mass: 44.9559085 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Ar 3d[1] 4s[2]
Titanium silvery grey-white metallic	Symbol: Ti Number: 22 atomic_mass: 47.8671 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Ar 3d[2] 4s[2]

Vanadium blue-silver-grey metal	Symbol: V Number: 23 atomic_mass: 50.94151 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Ar 3d[3] 4s[2]
Chromium silvery metallic	Symbol: Cr Number: 24 atomic_mass: 51.99616 Crystal structure: bcc set: transitionmetal magnetic_ordering: antiferromagnetic Electronic configuration: Ar 3d[5] 4s[1]
Manganese silvery metallic	Symbol: Mn Number: 25 atomic_mass: 54.9380443 Crystal structure: bcc set: transitionmetal magnetic_ordering: antiferromagnetic Electronic configuration: Ar 3d[5] 4s[2]
Iron lustrous metallic with a grayish tinge	Symbol: Fe Number: 26 atomic_mass: 55.8452 Crystal structure: bcc set: transitionmetal magnetic_ordering: ferromagnetic Electronic configuration: Ar 3d[6] 4s[2]
Cobalt hard lustrous bluish gray metal	Symbol: Co Number: 27 atomic_mass: 58.9331944 Crystal structure: hcp set: transitionmetal magnetic_ordering: ferromagnetic Electronic configuration: Ar 3d[7] 4s[2]
Nickel glänzend, metallisch, silbrig	Symbol: Ni Number: 28 atomic_mass: 58.69344 Crystal structure: fcc set: transitionmetal magnetic_ordering: ferromagnetic Electronic configuration: Ar 3d[8] 4s[2]

Copper red-orange metallic luster	Symbol: Cu Number: 29 atomic_mass: 63.5463 Crystal structure: fcc set: transitionmetal magnetic_ordering: diamagnetic Electronic configuration: Ar 3d[10] 4s[1]
Zinc silver-gray	Symbol: Zn Number: 30 atomic_mass: 65.382 Crystal structure: hcp set: transitionmetal magnetic_ordering: diamagnetic Electronic configuration: Ar 3d[10] 4s[2] refractive_index: 1.00205
Gallium silvery blue	Symbol: Ga Number: 31 atomic_mass: 69.7231 Crystal structure: orth set: metal magnetic_ordering: diamagnetic Electronic configuration: Ar 3d[10] 4s[2] 4p[1]
Germanium grayish-white	Symbol: Ge Number: 32 atomic_mass: 72.6308 Crystal structure: dc set: metalloid magnetic_ordering: diamagnetic Electronic configuration: Ar 3d[10] 4s[2] 4p[2]
Arsenic metallic grey	Symbol: As Number: 33 atomic_mass: 74.9215956 Crystal structure: rho set: metalloid magnetic_ordering: diamagnetic Electronic configuration: Ar 3d[10] 4s[2] 4p[3] refractive_index: 1.001552
Selenium grey metallic-looking, red, and vitreous black allotropes	Symbol: Se Number: 34 atomic_mass: 78.9718 Crystal structure: hex set: metalloid magnetic_ordering: diamagnetic Electronic configuration: Ar 3d[10] 4s[2] 4p[4] refractive_index: 1.000895

Bromine reddish-brown	Symbol: Br Number: 35 atomic_mass: 79.90479 Crystal structure: orth set: halogen magnetic_ordering: diamagnetic Electronic configuration: Ar 3d[10] 4s[2] 4p[5] refractive_index: 1.001132		
Krypton colorless gas, exhibiting a whitish glow in an electric field	Symbol: Kr Number: 36 atomic_mass: 83.7982 Crystal structure: fcc set: noblegas magnetic_ordering: diamagnetic Electronic configuration: Ar 3d[10] 4s[2] 4p[6] refractive_index: 1.000427		
Rubidium grey white	Symbol: Rb Number: 37 atomic_mass: 85.46783 Crystal structure: bcc set: alkalimetal magnetic_ordering: paramagnetic Electronic configuration: Kr 5s[1]		
Strontium silvery white metallic; with a pale yellow tint	Symbol: Sr Number: 38 atomic_mass: 87.621 Crystal structure: fcc set: alkalineearthmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 5s[2]		
Yttrium silvery white	Symbol: Y Number: 39 atomic_mass: 88.905842 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[1] 5s[2]		
Zirconium silvery white	Symbol: Zr Number: 40 atomic_mass: 91.2242 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[2] 5s[2]		
Niobium gray metallic, bluish whenNumber: 41 atomic_mass: 92.906372 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[4] 5s[1]Molybdenum gray metallicSymbol: Mo Number: 42 atomic_mass: 95.951 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Ru Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery white metallicSymbol: Pd Number: 46 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]		Symbol: ND	
---	--	--	--
Niobium gray metallic, bluish when oxidizedatomic_mass: 92.906372 Crystal structure: bec set: transitionmetal magnetic ordering: paramagnetic Electronic configuration: Kr 4d[4] 5s[1]Molybdenum gray metallicSymbol: Mo Number: 42 atomic_mass: 95.951 Crystal structure: bec set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metallicSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hep set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Rn Number: 44 atomic_mass: 101.072 Crystal structure: hep set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Ruthenium silvery white metallicSymbol: Rn Number: 44 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]		Number: 41	
gray metallic, bluish when oxidizedCrystal structure: bcc set: transitionmetal magnetic_ordering; paramagnetic Electronic configuration: Kr 4d[4] 5s[1]Molybdenum gray metallicSymbol: Mo Number: 42 atomic_mass: 95.951 Crystal structure: bcc set: transitionmetal magnetic_ordering; paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering; paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering; paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcp set: transitionmetal magnetic ordering; paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic ordering; paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic ordering; paramagnetic Electronic configuration: Kr 4d[10]	Niobium	atomic_mass: 92.906372	
oxidizedset: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[4] 5s[1]Molybdenum gray metallicSymbol: Mo Number: 42 atonic_mass: 95.951 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atonic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atonic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atonic_mass: 102.905502 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Palladium silvery white metallicSymbol: Rh Number: 45 atonic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery white metallicSymbol: Pd Number: 46 atonic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	grav metallic, bluish when	Crystal structure: bcc	
magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[4] 5s[1]Molybdenum gray metallicSymbol: Mo Number: 42 atomic_mass: 95.951 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 45 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Palladium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	oxidized	set: transitionmetal	
Electronic configuration: Kr 4d[4] 5s[1]Molybdenum gray metallicSymbol: Mo Number: 42 atomic_mass: 95.951 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Te Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic ordering: paramagnetic Electronic configuration: Kr 4d[10]	onidized	magnetic ordering: paramagnetic	
Molybdenum gray metallicSymbol: Mo Number: 42 atomic_mass: 95.951 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Rudolum silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Palladium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_odering: paramagnetic Electronic configuration: Kr 4d[10]		Electronic configuration: Kr 4d[4] 5s[1]	
Molybdenum gray metallicSymbol: Mo Number: 42 atomic_mass: 95.951 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Rudium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]			
Symbol: 12Molybdenum gray metallicNumber: 42 atomic_mass: 95.951 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]		Symbol: Mo	
Molybdenum gray metallicIntimizer nass: 95.951 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic-ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic-ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic-ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]		Number 42	
Molybdenum gray metallicatomic_mass. 59.501 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Rhodium silvery white metallicSymbol: Rh Number: 44 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]		Number. 42	
gray metallicCrystal structure: Dec set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]	Molybdenum	Crystal structure: hee	
Set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Rhodium silvery white metallicSymbol: Rh Number: 44 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	gray metallic	Crystal structure: Dcc	
Independence Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 44 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]			
Electronic configuration: Kr 4d[5] 5s[1]Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]		magnetic_ordering: paramagnetic	
Technetium shiny gray metalSymbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]		Electronic configuration: Kr 4d[5] 5s[1]	
Symbol: Tc Number: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]			
Technetium shiny gray metalNumber: 43 atomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	Technetium	Symbol: Tc	
Technetium shiny gray metalatomic_mass: 98.9063 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]		Number: 43	
InternationCrystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]		atomic_mass: 98.9063	
sinity gray metalset: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	shiny gray motal	Crystal structure: hcp	
magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]	Simily gray metal	set: transitionmetal	
Electronic configuration: Kr 4d[5] 5s[2]Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]		magnetic_ordering: paramagnetic	
Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]		Electronic configuration: Kr $4d[5]$ $5s[2]$	
Ruthenium silvery white metallicSymbol: Ru Number: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]			
Ruthenium silvery white metallicNumber: 44 atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]		Symbol: Ru	
Ruthenium silvery white metallicatomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]		Number: 44	
Ruthenium silvery white metallicCrystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]			
silvery white metallicset: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]		atomic mass: 101.072	
magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]	Ruthenium	atomic_mass: 101.072 Crystal structure: hcp	
Belectronic configuration: Kr 4d[7] 5s[1] Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1] Symbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]	Ruthenium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal	
Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal 	Ruthenium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic	
Rhodium silvery white metallicSymbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 	Ruthenium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]	
Rhodium Number: 45 silvery white metallic atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1] Palladium Symbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]	
Rhodium atomic_mass: 102.905502 silvery white metallic Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1] Symbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]	
Rhodium silvery white metallicatomic_mass. 102.905002 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]Palladium silvery whiteSymbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1]	
silvery white metallic Crystal structure. Icc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1] Symbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502	
Palladium Symbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic Rhodium	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc	
Palladium Symbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic Rhodium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc act: transitionmetal	
Palladium Symbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic Rhodium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetia_ordering: paramagnetia	
Symbol: PdPalladiumsilvery whiteSymbol: PdSymbol: 46atomic_mass: 106.421Crystal structure: fccset: transitionmetalmagnetic_ordering: paramagneticElectronic configuration: Kr 4d[10]	Ruthenium silvery white metallic Rhodium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic application: Kr 4d[2] 5s[1]	
Palladium silvery white Symbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic Rhodium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]	
Palladium silvery white Palladium Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic Rhodium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]	
Palladiumatomic_mass: 106.421silvery whiteCrystal structure: fccset: transitionmetalmagnetic_ordering: paramagneticElectronic configuration: Kr 4d[10]	Ruthenium silvery white metallic Rhodium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]	
silvery white silvery white Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic Rhodium silvery white metallic	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1] Symbol: Pd Number: 46 total	
set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic Rhodium silvery white metallic Palladium	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1] Symbol: Pd Number: 46 atomic_mass: 106.421 Cnet letter transition	
magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic Rhodium silvery white metallic Palladium silvery white	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1] Symbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc structure: configuration: Kr 4d[8] 5s[1]	
Electronic configuration: Kr 4d[10]	Ruthenium silvery white metallic Rhodium silvery white metallic Palladium silvery white	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1] Symbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]	
	Ruthenium silvery white metallic Rhodium silvery white metallic Palladium silvery white	atomic_mass: 101.072 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[7] 5s[1] Symbol: Rh Number: 45 atomic_mass: 102.905502 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1] Symbol: Pd Number: 46 atomic_mass: 106.421 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[8] 5s[1]	

Silver lustrous white metal	Symbol: Ag Number: 47 atomic_mass: 107.86822 Crystal structure: fcc set: transitionmetal magnetic_ordering: diamagnetic Electronic configuration: Kr 4d[10] 5s[1]
Cadmium silvery bluish-gray metallic	Symbol: Cd Number: 48 atomic_mass: 112.4144 Crystal structure: hcp set: transitionmetal magnetic_ordering: diamagnetic Electronic configuration: Kr 4d[10] 5s[2]
Indium silvery lustrous gray	Symbol: In Number: 49 atomic_mass: 114.8181 Crystal structure: tetr set: metal magnetic_ordering: diamagnetic Electronic configuration: Kr 4d[10] 5s[2] 5p[1]
Tin silvery-white (beta); gray (alpha)	Symbol: Sn Number: 50 atomic_mass: 118.7107 Crystal structure: tetr set: metal magnetic_ordering: paramagnetic Electronic configuration: Kr 4d[10] 5s[2] 5p[2]
Antimony silvery lustrous gray	Symbol: Sb Number: 51 atomic_mass: 121.7601 Crystal structure: rho set: metalloid magnetic_ordering: diamagnetic Electronic configuration: Kr 4d[10] 5s[2] 5p[3]
Tellurium silvery lustrous gray (crystalline); brown-black powder (amorphous)	Symbol: Te Number: 52 atomic_mass: 127.603 Crystal structure: hex set: metalloid magnetic_ordering: diamagnetic Electronic configuration: Kr 4d[10] 5s[2] 5p[4] refractive_index: 1.000991

Iodine lustrous metallic gray (solid); black/violet (liquid); violet (gas)	Symbol: I Number: 53 atomic_mass: 126.904473 Crystal structure: orth set: halogen magnetic_ordering: diamagnetic Electronic configuration: Kr 4d[10] 5s[2] 5p[5]
Xenon colorless gas, exhibiting a blue glow when placed in an electric field	Symbol: Xe Number: 54 atomic_mass: 131.2936 Crystal structure: fcc set: noblegas magnetic_ordering: diamagnetic Electronic configuration: Kr 4d[10] 5s[2] 5p[6] refractive_index: 1.000702
Caesium pale gold	Symbol: Cs Number: 55 atomic_mass: 132.905451966 Crystal structure: bcc set: alkalimetal magnetic_ordering: paramagnetic Electronic configuration: Xe 6s[1]
Barium silvery gray; with a pale yellow tint	Symbol: Ba Number: 56 atomic_mass: 137.3277 Crystal structure: bcc set: alkalineearthmetal magnetic_ordering: paramagnetic Electronic configuration: Xe 6s[2]
Lanthanum silvery white	Symbol: La Number: 57 atomic_mass: 138.905477 Crystal structure: dhcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 5d[1] 6s[2]
Cerium silvery white	Symbol: Ce Number: 58 atomic_mass: 140.1161 Crystal structure: dhcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[1] 5d[1] 6s[2]

Praseodymium grayish white	Symbol: Pr Number: 59 atomic_mass: 140.907662 Crystal structure: dhcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[3] 6s[2]
Neodymium silvery white	Symbol: Nd Number: 60 atomic_mass: 144.2423 Crystal structure: dhcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[4] 6s[2]
Promethium metallic	Symbol: Pm Number: 61 atomic_mass: 146.9151 Crystal structure: dhcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[5] 6s[2]
Samarium silvery white	Symbol: Sm Number: 62 atomic_mass: 150.362 Crystal structure: rho set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[6] 6s[2]
Europium silvery white, with a pale yellow tint; but rarely seen without oxide discoloration	Symbol: Eu Number: 63 atomic_mass: 151.9641 Crystal structure: bcc set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[7] 6s[2]
Gadolinium silvery white	Symbol: Gd Number: 64 atomic_mass: 157.253 Crystal structure: hcp set: lanthanoide magnetic_ordering: ferromagnetic Electronic configuration: Xe 4f[7] 5d[1] 6s[2]

Terbium silvery whiteatomic_mass: 158.925352 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[9] 6s[2]Dysprosium silbrig weißSymbol: Dy Number: 66 atomic_mass: 162.5001 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2]Holmium silvery whiteSymbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]		
Terbium Grystal structure: hcp silvery white Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[9] 6s[2] Dysprosium Symbol: Dy Number: 66 atomic_mass: 162.5001 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2] Holmium Symbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2] Frbium Symbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2] Erbium Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
silvery whiteset: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[9] 6s[2]Dysprosium silbrig weißSymbol: Dy Number: 66 atomic_mass: 162.5001 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2]Holmium silvery whiteSymbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Symbol: Er Number: 69Symbol: Tm Number: 69		
magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[9] 6s[2]Dysprosium silbrig weißSymbol: Dy Number: 66 atomic_mass: 162.5001 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2]Holmium silvery whiteSymbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Symbol: Tm Number: 69		
Electronic configuration: Xe 4f[9] 6s[2] Dysprosium Silbrig weiß Symbol: Dy Number: 66 atomic_mass: 162.5001 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2] Holmium silvery white Symbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2] Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2] Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
Dysprosium Symbol: Dy Number: 66 atomic_mass: 162.5001 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2] Holmium Symbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2] Frium Symbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2] Erbium Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
Dysprosium silbrig weiβSymbol: Dy Number: 66 atomic_mass: 162.5001 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2]Holmium silvery whiteSymbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Symbol: Tm Number: 69Symbol: Tm Number: 69		
Dysprosium silbrig weißNumber: 66 atomic_mass: 162.5001 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2]Holmium silvery whiteSymbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Symbol: Tm Number: 69Symbol: Tm Number: 69		
Dysprosium silbrig weißatomic_mass: 162.5001 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2]Holmium silvery whiteSymbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Symbol: Tm Number: 69Symbol: Tm Number: 69		
Silbrig weißCrystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2]Holmium silvery whiteSymbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Erbium silvery whiteSymbol: Tm Number: 69		
set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2] Holmium silvery white Symbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2] Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Erbium silvery white Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[10] 6s[2] Symbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2] Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Erbium silvery white Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
Electronic configuration: Xe 4f[10] 6s[2] Holmium silvery white Symbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2] Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Erbium silvery white Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
Holmium silvery whiteSymbol: Ho Number: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Symbol: Tm Number: 69		
Holmium silvery whiteNumber: 67 atomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Symbol: Tm Number: 69		
Holmium silvery whiteatomic_mass: 164.930332 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2]Erbium silvery whiteSymbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]Symbol: Tm Number: 69		
Homnum Crystal structure: hcp silvery white Set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2] Erbium Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69 Symbol: Tm		
silvery white set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2] Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp silvery white set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[11] 6s[2] Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
Erbium silvery white Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
Erbium silvery white Symbol: Er Number: 68 atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
Erbium silvery white Erbium Silvery white Erbium Silvery white Erbium Symbol: Tm Number: 68 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2]		
Erbium silvery white atomic_mass: 167.2593 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
Erbium silvery white Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
silvery white set: lanthanoide magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
Symbol: Tm Number: 69		
Electronic configuration: Xe 4f[12] 6s[2] Symbol: Tm Number: 69		
Symbol: Tm Number: 69		
Symbol: Tm Number: 69		
Number: 69		
100.004000		
Thulium atomic_mass: 168.934222		
silvery gray		
set: lanthanoide		
magnetic_ordering: paramagnetic		
Electronic configuration: Xe 4f[13] 6s[2]		
Symbol: Yh		
Symbol: YD		
Number: 70		
Ytterbium Symbol: YD Number: 70 atomic_mass: 173.0451		
Symbol: Y bNumber: 70Ytterbiumsilvery white; with a paleCrystal structure: fcc		
Symbol: Y bNumber: 70Ytterbiumsilvery white; with a paleyellow tintSymbol: Y bSymbol: Y bSymbol: Y bNumber: 70atomic_mass: 173.0451Crystal structure: fccset: lanthanoide		
Symbol: Y bNumber: 70Ytterbiumsilvery white; with a paleyellow tintCrystal structure: fccset: lanthanoidemagnetic_ordering: paramagnetic		

Lutetium silvery white	Symbol: Lu Number: 71 atomic_mass: 174.96681 Crystal structure: hcp set: lanthanoide magnetic_ordering: paramagnetic
Hafnium steel gray	Symbol: Hf Number: 72 atomic_mass: 178.492 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[14] 5d[2] 6s[2]
Tantalum gray blue	Symbol: Ta Number: 73 atomic_mass: 180.947882 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[14] 5d[3] 6s[2]
Tungsten grayish white, lustrous	Symbol: W Number: 74 atomic_mass: 183.841 Crystal structure: bcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[14] 5d[4] 6s[2]
Rhenium silvery-grayish	Symbol: Re Number: 75 atomic_mass: 186.2071 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[14] 5d[5] 6s[2]
Osmium silvery, blue cast	Symbol: Os Number: 76 atomic_mass: 190.233 Crystal structure: hcp set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[14] 5d[6] 6s[2]

Iridium silvery white	Symbol: Ir Number: 77 atomic_mass: 192.2173 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[14] 5d[7] 6s[2]
Platinum silvery white	Symbol: Pt Number: 78 atomic_mass: 195.0849 Crystal structure: fcc set: transitionmetal magnetic_ordering: paramagnetic Electronic configuration: Xe 4f[14] 5d[9] 6s[1]
Gold metallic yellow	Symbol: Au Number: 79 atomic_mass: 196.9665695 Crystal structure: fcc set: transitionmetal magnetic_ordering: diamagnetic Electronic configuration: Xe 4f[14] 5d[10] 6s[1]
Mercury shiny, silvery liquid	Symbol: Hg Number: 80 atomic_mass: 200.5923 Crystal structure: rho set: transitionmetal magnetic_ordering: diamagnetic Electronic configuration: Xe 4f[14] 5d[10] 6s[2] refractive_index: 1.000933
Thallium silvery white	Symbol: Tl Number: 81 atomic_mass: 204.38204 Crystal structure: hcp set: metal magnetic_ordering: diamagnetic Electronic configuration: Xe 4f[14] 5d[10] 6s[2] 6p[1]
Lead metallic gray	Symbol: Pb Number: 82 atomic_mass: 207.21 Crystal structure: fcc set: metal magnetic_ordering: diamagnetic Electronic configuration: Xe 4f[14] 5d[10] 6s[2] 6p[2]

Bismuth lustrous brownish silver	Symbol: Bi Number: 83 atomic_mass: 208.980401 Crystal structure: rho set: metal magnetic_ordering: diamagnetic Electronic configuration: Xe 4f[14] 5d[10] 6s[2] 6p[3]
Polonium silvery	Symbol: Po Number: 84 atomic_mass: 209.98 Crystal structure: sc set: metal magnetic_ordering: nonmagnetic Electronic configuration: Xe 4f[14] 5d[10] 6s[2] 6p[4]
Astatine unknown, probably metallic	Symbol: At Number: 85 atomic_mass: 209.9871 Crystal structure: fcc Electronic configuration: Xe 4f[14] 5d[10] 6s[2] 6p[5] set: halogen
Radon colorless gas	Symbol: Rn Number: 86 atomic_mass: 222 Crystal structure: fcc set: noblegas magnetic_ordering: nonmagnetic Electronic configuration: Xe 4f[14] 5d[10] 6s[2] 6p[6]
Francium	Symbol: Fr Number: 87 atomic_mass: 223.0197 Crystal structure: bcc set: alkalimetal magnetic_ordering: paramagnetic Electronic configuration: Rn 7s[1]
Radium silvery white metallic	Symbol: Ra Number: 88 atomic_mass: 226.0254 Crystal structure: bcc set: alkalineearthmetal magnetic_ordering: nonmagnetic Electronic configuration: Rn 7s[2]

Actinium silvery-white, glowing with an eerie blue light; sometimes with a golden cast	Symbol: Ac Number: 89 atomic_mass: 227.0278 Crystal structure: fcc Electronic configuration: Rn 6d[1] 7s[2] set: actinoide
Thorium silvery	Symbol: Th Number: 90 atomic_mass: 232.03774 Crystal structure: fcc set: actinoide magnetic_ordering: paramagnetic Electronic configuration: Rn 6d[2] 7s[2]
Protactinium bright, silvery metallic luster	Symbol: Pa Number: 91 atomic_mass: 231.035882 Crystal structure: tetr set: actinoide magnetic_ordering: paramagnetic Electronic configuration: Rn 5f[2] 6d[1] 7s[2]
Uranium silvery gray metallic; corrodes to a spalling black oxide coat in air	Symbol: U Number: 92 atomic_mass: 238.028913 Crystal structure: orth set: actinoide magnetic_ordering: paramagnetic Electronic configuration: Rn 5f[3] 6d[1] 7s[2]
Neptunium silvery metallic	Symbol: Np Number: 93 atomic_mass: 237.0482 Crystal structure: orth set: actinoide magnetic_ordering: paramagnetic Electronic configuration: Rn 5f[4] 6d[1] 7s[2]
Plutonium silvery white, tarnishing to dark gray in air	Symbol: Pu Number: 94 atomic_mass: 244.0642 Crystal structure: mon set: actinoide magnetic_ordering: paramagnetic Electronic configuration: Rn 5f[6] 7s[2]

Americium silvery white	Symbol: Am Number: 95 atomic_mass: 243.061375 Crystal structure: dhcp set: actinoide magnetic_ordering: paramagnetic Electronic configuration: Rn 5f[7] 7s[2]
Curium silvery metallic, glows purple in the dark	Symbol: Cm Number: 96 atomic_mass: 247.0703 Crystal structure: dhcp set: actinoide magnetic_ordering: antiferromagnetic Electronic configuration: Rn 5f[7] 6d[1] 7s[2]
Berkelium silvery	Symbol: Bk Number: 97 atomic_mass: 247 Crystal structure: dhcp set: actinoide magnetic_ordering: paramagnetic Electronic configuration: Rn 5f[9] 7s[2]
Californium silvery	Symbol: Cf Number: 98 atomic_mass: 251 Crystal structure: dhcp Electronic configuration: Rn 5f[10] 7s[2] set: actinoide
Einsteinium silvery; glows blue in the dark	Symbol: Es Number: 99 atomic_mass: 252 Crystal structure: fcc set: actinoide magnetic_ordering: paramagnetic Electronic configuration: Rn 5f[11] 7s[2]
Fermium	Symbol: Fm Number: 100 atomic_mass: 257.0951 Crystal structure: fcc Electronic configuration: Rn 5f[12] 7s[2] set: actinoide
Mendelevium	Symbol: Md Number: 101 atomic_mass: 258 Crystal structure: fcc Electronic configuration: Rn 5f[13] 7s[2] set: actinoide

Nobelium	Symbol: No Number: 102 atomic_mass: 259 Crystal structure: fcc Electronic configuration: Rn 5f[14] 7s[2] set: actinoide
Lawrencium	Symbol: Lr Number: 103 atomic_mass: 266 Crystal structure: hcp Electronic configuration: Rn 5f[14] 7s[2] 7p[1] set: actinoide
Rutherfordium	Symbol: Rf Number: 104 atomic_mass: 261.1087 Crystal structure: hcp Electronic configuration: Rn 5f[14] 6d[2] 7s[2] set: transitionmetal
Dubnium	Symbol: Db Number: 105 atomic_mass: 262.1138 Crystal structure: bcc Electronic configuration: Rn 5f[14] 6d[3] 7s[2] set: transitionmetal
Seaborgium	Symbol: Sg Number: 106 atomic_mass: 263.1182 Crystal structure: bcc Electronic configuration: Rn 5f[14] 6d[4] 7s[2] set: transitionmetal
Bohrium	Symbol: Bh Number: 107 atomic_mass: 262.1229 Crystal structure: hcp Electronic configuration: Rn 5f[14] 6d[5] 7s[2] set: transitionmetal
Hassium	Symbol: Hs Number: 108 atomic_mass: 265.269 Crystal structure: hcp Electronic configuration: Rn 5f[14] 6d[6] 7s[2] set: transitionmetal

Meitnerium	Symbol: Mt Number: 109 atomic_mass: 268 Crystal structure: fcc set: unknown magnetic_ordering: paramagnetic Electronic configuration: Rn 5f[14] 6d[7] 7s[2]
Darmstadtium	Symbol: Ds Number: 110 atomic_mass: 281 Crystal structure: bcc Electronic configuration: Rn 5f[14] 6d[8] 7s[2] set: unknown
Roentgenium	Symbol: Rg Number: 111 atomic_mass: 280 Crystal structure: bcc Electronic configuration: Rn 5f[14] 6d[9] 7s[2] set: unknown
Copernicium	Symbol: Cn Number: 112 atomic_mass: 277 Crystal structure: bcc Electronic configuration: Rn 5f[14] 6d[10] 7s[2] set: unknown
Nihonium	Symbol: Nh Number: 113 atomic_mass: 287 Crystal structure: hcp Electronic configuration: Rn 5f[14] 6d[10] 7s[2] 7p[1] set: unknown
Flerovium	Symbol: Fl Number: 114 atomic_mass: 289 Crystal structure: fcc Electronic configuration: Rn 5f[14] 6d[10] 7s[2] 7p[2] set: unknown
Moscovium	Symbol: Mc Number: 115 atomic_mass: 288 Electronic configuration: Rn 5f[14] 6d[10] 7s[2] 7p[3] set: unknown

Livermorium	Symbol: Lv
	Number: 116
	atomic_mass: 293
	Electronic configuration: Rn $5f[14] 6d[10] 7s[2] 7p[4]$
	set: unknown
Tennessine semimetallic (predicted)	Symbol: Ts
	Number: 117
	atomic_mass: 292
	Electronic configuration: Rn $5f[14] 6d[10] 7s[2] 7p[5]$
	set: unknown
Oganesson metallic (predicted)	Symbol: Og
	Number: 118
	atomic_mass: 294
	Crystal structure: fcc
	Electronic configuration: Rn $5f[14] 6d[10] 7s[2] 7p[6]$
	set: unknown