Formelsammlung

Matthias Quintern

10. Januar 2025

Inhaltsverzeichnis

Ι	Mathematik	1
1	Lineare Algebra 1.1 Matrizen Basics 1.1.1 Transponierte Matrix 1.2 Determinante 1.3 math:linalg:misc 1.4 Eigenwerte	1 1 1 2 2
2	Geometrie 2.1 Trigonometrie 2.2 Verschiedene Theoreme 2.2.1 Wertetabelle	3 3 4
3	Analysis 3.1 Faltung / Konvolution 3.2 Fourieranalyse 3.2.1 Fourierreihe 3.2.2 Fouriertransformation 3.3 Verschiedenes 3.4 Logarithmus 3.5 Integralrechnung 3.5.1 Liste nützlicher Integrale	$egin{array}{c} 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \end{array}$
4	Wahrscheinlichkeitstheorie 4.1 Verteilungen 4.1.1 Gauß/Normal-Verteilung 4.1.2 Cauchy / Lorentz-Verteilung 4.1.3 Binomialverteilung 4.1.4 Poissonverteilung 4.1.5 Maxwell-Boltzmann Verteilung 4.2 Zentraler Grenzwertsatz 4.3 Fehlerfortpflanzung	7 8 9 9 10 10 10 10
Π	Mechanik	12
5	Verschiedenes	12
6	Lagrange Formalismus	12

III	I Statistische Mechanik	13
7	Entropie	13
IV	Thermodynamik	14
8	Prozesse 8.1 Irreversible Gasexpansion (Gay-Lussac-Versuch)	14 14
9	Phasenübergänge 9.0.1 Osmose 9.1 Materialeigenschaften	14 15 15
10	Hauptsätze der Thermodynamik10.1 Nullter Hauptsatz10.2 Erster Hauptsatz10.3 Zweiter Hauptsatz10.4 Dritter Hauptsatz	16 16 16 16
11	Ensembles 11.1 Potentiale	17 17
12	Ideales Gas 12.0.1 Molekülgas	17 18
13	Reales Gas 13.1 Virialentwicklung 13.2 Van der Waals Gleichung	19 19 19
14	Ideales Quantengas 14.1 Bosonen	 20 22 22 23
\mathbf{V}	Elektrodynamik	24
15	Hall-Effekt15.1 Klassischer Hall-Effekt15.2 Ganzahliger Quantenhalleffekt	24 24 24
16	Dipol-zeug	25
17	Elektrisches Feld	25
18	Magnetfeld 18.1 Magnetische Materialien	26 27
19	Elektromagnetismus 19.1 Maxwell-Gleichungen 19.2 Induktion	28 28 28

VI Quantenmechanik

20	Basics 20.1 Operatoren 20.1.1 Messung 20.1.2 Pauli-Matrizen 20.2 Wahrscheinlichkeitstheorie 20.3 Kommutator	 29 29 29 29 29 30
21	Schrödingergleichung 21.1 Zeitentwicklug 21.1.1 Schrödinger- und Heisenberg-Bild 21.1.2 Ehrenfest-Theorem 21.2 Korrespondenzprinzip	 30 31 31 31 32
22	Störungstheorie	32
23	Harmonischer Oszillator 23.1 Erzeugungs und Vernichtungsoperatoren / Leiteroperatoren	32 33 33
24	Drehmoment24.1 Aharanov-Bohm Effekt	33 34
25	Periodische Potentiale	3 4
26	Symmetrien 26.1 Zeitumkehrungssymmetrie	34 34
27	Zwei-Niveau System (TLS)	35
28	Sonstiges	35
29	Wasserstoffatom 29.1 Korrekturen 29.1.1 Darwin-Term 29.1.2 Spin-Bahn-Kopplung (LS-Kopplung) 29.1.3 Feinstruktur 29.1.4 Lamb-Shift 29.1.5 Hyperfeinstruktur 29.2 Effekte im Magnetfeld 29.3 Sonstiges	35 36 36 36 37 37 37 37
V	I Festkörperphysik	38
30 31	Kristalle 30.1 Bravais-Gitter 30.2 Reziprokes Gitter 30.3 Streuprozesse 30.4 Gitter Freies Elektronengase 31.1 2D Elektronengas 31.2 1D Eleltronengas / Quantendraht	 38 38 40 40 41 41 42 42
	31.2 1D Elektronengas / Quantendraht31.3 0D Elektronengase / Quantenpunkt	•

32	Ladungstransport	42
	32.1 Drude-Modell	42
	32.2 Sommerfeld-Modell	43
	32.3 Boltzmann-Transport	43
	32.4 misc	43
0.0	C	
33	Supraleitung	44
	22.2. Cinghung Landau Theorie (CLAC)	44
	33.3 Mikroskopischo Theorio	44
	33.4 BCS-Theorie	40
	55.4 Dep-Incole	10
34	Halbleiter	45
35	Bändermodell	45
	35.1 Hybridorbitale	45
90		40
30	Diffusion	40
37	misc	46
38	Messtechniken	47
00	38.1 ABPES	47
	38.2 Rastersondenmikroskopie (SPM)	47
39	Herstellungsmethoden	47
	39.1 Epitaxie	47
X 7 T		40
VI	11 Topologische Materialien	49
40	Berry-Phase / Geometrische Phase	49
IX	Quantencomputing	50
41	Qubits	50
19	Cates	50
44	Gates	50
43	Supraleitende qubits	50
	43.1 Bauelemente	50
	43.1.1 Josephson-Kontakt	50
	43.1.2 SQUID	50
	43.2 TODO	51
	43.3 Cooper Paar Box (QPB) Qubit	51
	43.4 Transmon Qubit	52
	43.4.1 Tunable Transmon Qubit	52
	43.5 Phase Qubit	53
	43.6 Flux Qubit	53
	43.7 Fluxonium Qubit	54
44	Zwei-Niveau System	55
	44.1 Ramsey Interferometrie	55
/# E	INOISE JING LIEKOharenz	55

X Computergestützte Physik

46	Quanten-Vielteilchenphysik46.1 Importance sampling / Stichprobenentnahme nach Wichtigkeit46.2 Matrix Produktzustände	56 56 56
47	Electronic structure theory 47.1 Tight-binding 47.2 Dichtefunktionaltheorie (DFT) 47.2.1 Hartree-Fock	56 56 56 56
48	Atomic dynamics 48.1 Kohn-Sham 48.2 Born-Oppenheimer N\u00e4herung 48.3 Molekulardynamik	57 57 57 57
49	Gradientenverfahren	57
50	Physikalische Größen50.1 SI-Basisgrößen50.2 Mechanik50.3 Thermodynamik50.4 Elektrodynamik50.5 Sonstige	57 57 58 58 58 58
51	Konstanten	58
XI 52 53	Chemie Periodensystem stuff	60 60 60
00	50011	00
XI	I Anhang	61
5 4	Liste der Elemente	61

Teil I Mathematik

1 Lineare Algebra

1.1 Matrizen Basics

Matrix-Matrix Produkt als Summe	$C_{ij} = \sum_{k} A_{ik} B_{kj} \tag{1}$
Matrix-Vektor Produkt als Summe	$\vec{c}_i = \sum_j A_{ij} \vec{b}_j \tag{2}$
Symmetrische matrix	$A^{\mathrm{T}} = A \tag{3}$
• 	$A \ n \times n$ matrix
Unitäre Matrix	$U^{\dagger}U = \mathbb{1} $ (4)

1.1.1 Transponierte Matrix

Summe	$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}} $ (5))
Produkt	$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}} $ (6))
Inverse	$(A^{-1})^{\mathrm{T}} = (A^{\mathrm{T}})^{-1} \tag{7}$)
Exponential	$\exp(A^{\mathrm{T}}) = (\exp A)^{\mathrm{T}} $ (8) $\ln(A^{\mathrm{T}}) = (\ln A)^{\mathrm{T}} $ (9))

1.2 Determinante

2x2 Matrix	$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a d - c b$	(10)
3x3 Matrix (Regel von Sarrus)	$det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a e i + b f g + c d h - g e c - h f a - i d b$	(11)
Leibniz-Formel	$\det(A) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$	(12)
Produkt	$\det(AB) = \det(A)\det(B)$	(13)

Inverse	$\det(A^{-1}) = \det(A)^{-1}$	(14)
Transponiert	$\det(A^{\mathrm{T}}) = \det(A)$	(15)

1.3 math:linalg:misc

Normal equation Solves a linear regression problem	$\underline{\theta} = (\underline{X}^{\mathrm{T}}\underline{X})^{-1}\underline{X}^{\mathrm{T}}\vec{y} $ (16) $\underline{\theta} \text{ hypothesis / weight matrix, } \underline{X} \text{ design matrix, } \vec{y} \text{ output vector}$
Inverse 2×2 Matrix	$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} $ (17)
Singulärwertzerlegung Faktorisierung einer reellen	$A = U\Lambda V \tag{18}$
oder komplexen Matrix durch Rotation \rightarrow Skalierung \rightarrow Rotation.	A: $m \times n$ matrix, $U: m \times m$ unitary matrix, $\Lambda: m \times n$ rectangular diagonal matrix with non-negative numbers on the diagonal, $V: n \times n$ unitary matrix
2D Rotationsmatrix	$R = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} $ (19)
	$R_x = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix} $ (20)
3D Rotationsmatrizen	$R_y = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} $ (21)
	$R_{z} = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} $ (22)
	$R^{\mathrm{T}} = R^{-1} \tag{23}$
Eigenschaften von	$\det R = 1 \tag{24}$
Rotationsmatrizen	$R \in \mathrm{SO}(n) \tag{25}$
	n Dimension, $\mathrm{SO}(n)$ spezielle orthognale Gruppe

1.4 Eigenwerte

Eigenwert-Gleichung

 $Av = \lambda v \tag{26}$

 λ Eigenwert, vEigenvektor

Charakteristisches Polynom		
Nullstellen sind die	$\chi_A = \det(A - \lambda \mathbb{1}) \stackrel{!}{=} 0$	(27)
Eigenwerte von A		

Kramers-Theorem

Wenn H invariant unter T ist und $|\psi\rangle$ ein Eigenzustand von H ist, dann ist $T |\psi\rangle$ auch ein Eigenzustand von H

$$THT^{\dagger} = H \wedge H |\psi\rangle = E |\psi\rangle \implies HT |\psi\rangle = ET |\psi\rangle$$
(28)

$$A = V\Lambda V^{-1} \tag{29}$$

Eigenwertzerlegung

Adiagonalisierbar, Spalten von Vs
ind die Eigenvektoren $v_i,$ Λ Diagonal
matrix mit Eigenwerten λ_i auf der Diagonalen

TODO:Jordan stuff, blockdiagonal matrices, permutations, skalar product lapacescher entwick-lungssatz maybe, cramers rule

2 Geometrie

2.1 Trigonometrie

Exponentialfunktion	$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$	(30)
Sinus	$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n+1)}}{(2n+1)!}$	(31)
Sinds	$=\frac{e^{ix}-e^{-ix}}{2i}$	(32)
Kosinus	$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n)}}{(2n)!}$	(33)
ixosinus	$=\frac{e^{ix}+e^{-ix}}{2}$	(34)
	$\sinh(x) = -i\sin ix$	(35)
Sinus hyperbolicus	$=\frac{e^x - e^{-x}}{2}$	(36)
Kaginug humanhaligug	$\cosh(x) = \cos ix$	(37)
Kosinus nyperbolicus	$=\frac{e^x+e^{-x}}{2}$	(38)

2.2 Verschiedene Theoreme

Hypothenuse im Einheitskreis	$1 = \sin^2 x + \cos^2 x$	(39)
------------------------------	---------------------------	------

Additionstheoreme	$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$ $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$ $\tan(x \pm y) = \frac{\sin(x \pm y)}{\cos(x \pm y)} = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$	(40)(41)(42)
Doppelwinkelfunktionen	$\sin 2x = 2\sin x \cos x$ $\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x$ $\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	(43) (44) (45)
Sonstige	$\cos x + b \sin x = \sqrt{1 + b^2} \cos(x - \theta)$ $\tan \theta = b$	(46)

2.2.1 Wertetabelle

Grad	0°	30°	45°	60°	90°	120°	180°	270°
Rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\sqrt{\pi}}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	$\frac{3\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	0	-1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	-1	0
$\tan(x)$	0	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	∞	$-\sqrt{3}$	0	∞

3 Analysis

3.1 Faltung / Konvolution

Die Faltung ist ${\bf kommutativ},$ assoziativ und ${\bf distributiv}$

Definition	$(f \star g)(t) = f(t) \star g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) \mathrm{d}\tau$	(47)
Notation	$f(t) * g(t - t_0) = (f * g)(t - t_0)$ $f(t - t_0) * g(t - t_0) = (f * g)(t - 2t_0)$	(48) (49)
Kommutativität	$f \ast g = g \ast f$	(50)
Assoziativität]	(f * g) * h = f * (g * h)	(51)
Distributivität	f * (g + h) = f * g + f * h	(52)

$$(f \ast g)^* = f^* \ast g^*$$

3.2 Fourieranalyse

3.2.1 Fourierreihe

Fourierreihe Komplexe Darstellung	$f(t) = \sum_{k=-\infty}^{\infty} c_k \exp\left(\frac{2\pi i k t}{T}\right)$ $f \in \mathcal{L}^2(\mathbb{R}, \mathbb{C}) \text{ T-periodic}$	(54)
Fourierkoeffizienten Komplexe Darstellung	$c_{k} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \exp\left(-\frac{2\pi i}{T}kt\right) dt \text{für } k \ge 0$ $c_{-k} = \overline{c_{k}} \text{if } f \text{ reellwertig}$	(55) (56)
Fourierreihe Sinus und Kosinus Darstellung	$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi}{T}kt\right) + b_k \sin\left(\frac{2\pi}{T}kt\right) \right)$ $f \in \mathcal{L}^2(\mathbb{R}, \mathbb{C}) \text{ T-periodic}$	(57)
Fourierkoeffizienten Sinus und Kosinus Darstellung Wenn f punktsymmetrisch:	$a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(-\frac{2\pi}{T}kt\right) dt \text{für } k \ge 0$ $b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(-\frac{2\pi}{T}kt\right) dt \text{für } k \ge 1$	(58) (59)
$a_{k>0} = 0$, wenn f achsensymmetrisch: $b_k = 0$	$a_k = c_k + c_{-k} \text{für } k \ge 0$ $b_k = i(c_k - c_{-k}) \text{für } k \ge 1$	(60) (61)

Γ

TODO:cleanup

3.2.2 Fouriertransformation

Fouriertransformierte
$$\hat{f}(k) \coloneqq \frac{1}{\sqrt{2\pi^n}} \int_{\mathbb{R}^n} e^{-ikx} f(x) dx \qquad (62)$$
$$\hat{f} \colon \mathbb{R}^n \mapsto \mathbb{C}, \ \forall f \in L^1(\mathbb{R}^n)$$

für $f \in L^1(\mathbb{R}^n)$:

- i) $f \mapsto \hat{f}$ linear in f
- ii) $g(x) = f(x h) \implies \hat{g}(k) = e^{-ikn} \hat{f}(k)$
- iii) $g(x) = e^{ih \cdot x} f(x) \implies \hat{g}(k) = \hat{f}(k-h)$
- iv) $g(\lambda) = f\left(\frac{x}{\lambda}\right) \implies \hat{g}(k)\lambda^n \hat{f}(\lambda k)$

3.3 Verschiedenes

Stirlingformel

$$\ln(N!) \approx N \ln(N) - N + \mathcal{O}(() \ln(N))$$
(63)

Fehlerfunktion	$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t$	(64)
$\operatorname{erf} : \mathbb{C} \to \mathbb{C}$ und komplementäre	$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$	(65)
Fehlerfunktion erfc	$= \frac{2}{\sqrt{\pi}} \int_{x}^{t} e^{-t^2} dt$	(66)

Dirac-Delta einer Funktion

$$\delta(f(x)) = \frac{\delta(x - x_0)}{|g'(x_0)|}$$
(67)

 $g(x_0) = 0$

3.4 Logarithmus

	$\log(xy) = \log(x) + \log(y)$	(68)
	$\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$	(69)
Logarithmus Identitäten	$\log(x^d) = d\log(x)$	(70)
	$\log\left(\sqrt[y]{x}\right) = \frac{\log(x)}{y}$	(71)
	$x^{\log(y)} = y^{\log(x)}$	(72)

Integral des natürluchen	$\int \ln(x) \mathrm{d}x = x \left(\ln(x) - 1 \right)$	(73)
Logarithmus	$\int \ln(ax+b) \mathrm{d}x = \frac{ax+b}{a} \left(\ln(ax+b) - 1\right)$	(74)

3.5 Integralrechnung

Partielle integration	$\int_a^b f'(x) \cdot g(x) \mathrm{d}x = \left[f(x) \cdot g(x)\right]_a^b - \int_a^b f(x) \cdot g'(x) \mathrm{d}x$	(75)
Integration durch Substitution	$\int_a^b f(g(x)) g'(x) \mathrm{d}x = \int_{g(a)}^{g(b)} f(z) \mathrm{d}z$	(76)
Satz von Gauss Divergenz in einem Volumen ist gleich dem Fluss durch die Oberfläche	$\iiint_{V} (\vec{\nabla} \cdot \vec{F}) \mathrm{d}V = \oiint_{A} \vec{F} \cdot \mathrm{d}\vec{A}$ $A = \partial V$	(77)
Klassischer Satz von Stokes	$\int_{A} (\vec{\nabla} \times \vec{F}) \cdot d\vec{S} = \oint_{S} \vec{F} \cdot d\vec{r}$ $S = \partial A$	(78)

3.5.1 Liste nützlicher Integrale

cal:log:integral

Arkussinus, Arkuskosinus, Arkustangens	$\int \frac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arcsin x$ $\int -\frac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arccos x$ $\int \frac{1}{x^2+1} \mathrm{d}x = \arctan x$	(79)(80)(81)
	$\int \frac{1}{\sqrt{x^2 + 1}} \mathrm{d}x = \operatorname{arsinh} x$	(82)
Arcsinh, arccosh, arctanh	$\int \frac{1}{\sqrt{x^2 - 1}} \mathrm{d}x = \operatorname{arcosh} x \text{für } (x > 1)$	(83)
	$\int \frac{1}{1-x^2} \mathrm{d}x = \operatorname{artanh} x \text{für } (x < 1)$	(84)
	$\int \frac{1}{1-x^2} \mathrm{d}x = \operatorname{arcoth} x \text{für } (x > 1)$	(85)
		(0.0)
TZ 11 1. ($x = r\sin\phi, \cos\theta$	(86)
Kugelkoordinaten	$y = r \cos \phi, \cos \theta$	(87)
	$z = r\sin\theta$	(88)
Integration in Kugelkoordinaten	$\iiint dx dy dz = \int_0^\infty \int_0^{2\pi} \int_0^\pi dr d\phi d\theta r^2 \sin \theta$	(89)
Riemannsche Zeta-Funktion	$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1 - 2^{(1-s)})\Gamma(s)} \int_0^\infty \mathrm{d}\eta \frac{\eta^{(s-1)}}{\mathrm{e}^{\eta} + 1}$	(90)

TODO: differential equation solutions

4 Wahrscheinlichkeitstheorie

Mittelwert Erwartungswert	$\langle x \rangle = \int w(x) x \mathrm{d}x$	(91)
Varianz Quadrat derStandardabweichung	$\sigma^{2} = (\Delta \hat{x})^{2} = \langle \hat{x}^{2} \rangle - \langle \hat{x} \rangle^{2} = \langle (x - \langle x \rangle)^{2} \rangle$	(92)
Kovarianz	$\operatorname{cov}(x,y) = \sigma(x,y) = \sigma_{XY} = \langle (x - \langle x \rangle) (y - \langle y \rangle) \rangle$	(93)
Standardabweichung	$\sigma = \sqrt{\sigma^2} = \sqrt{(\Delta x)^2}$	(94)
Median Teilt die untere von der oberen Hälfte	$med(x) = \begin{cases} x_{(n+1)/2} & n \text{ ungerade} \\ \frac{x_{(n/2)} + x_{((n/2)+1)}}{2} & n \text{ gerade} \end{cases}$ x Reihe mit n Elementen	(95)

Wahrscheinlichkeitsdichtefunktion Zufallsvariable hat Dichte f. Das Integral gibt Wahrscheinlichkeit an, dass Xeinen Wert $x \in [a, b]$ annimmt

Kumulative Verteilungsfunktion

Autokorrelation

Korrelation vonn f zu sich selbst zu einem früheren Zeitpunkt. C ist auch die Kovarianzfunktion

$$P([a,b]) \coloneqq \int_{a}^{b} f(x) \,\mathrm{d}x \tag{96}$$

f normalisiert $\int_{-\infty}^{\infty} f(x) \, dx = 1$

$$F(x) = \int_{-\infty}^{x} f(t) \,\mathrm{d}t \tag{97}$$

f Wahrscheinlichkeitsdichtefunktion

$$C_A(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t+\tau) f(t) \,\mathrm{d}t = \langle f(t+\tau) \cdot f(t) \rangle$$
(98)

4.1 Verteilungen

4.1.1 Gauß/Normal-Verteilung

4.1.2 Cauchy / Lorentz-Verteilung

Auch bekannt als Cauchy-Lorentz Verteilung, Lorentz Funktion, Breit-Wigner Verteilung.

4.1.3 Binomialverteilung

Geht die Zahl der Versuche gegen unendlich $(n \to \infty),$ konvergiert die Binomualverteilung gegen die Poissonverteilung

parameters	$n \in \mathbb{Z}, p \in [0,1], q = 1-p$
support	$k \in \{0, 1, \ldots, n\}$
pmf	$\binom{n}{k} p^k q^{n-k}$
mean	np
median	$\lfloor np \rfloor$ or $\lceil np \rceil$
variance	npq = np(1-p)

4.1.4 Poissonverteilung

parameters	$\lambda \in (0,\infty)$		
support	$k \in \mathbb{N}$		
pmf	$\frac{\lambda^k \mathrm{e}^{-\lambda}}{k!}$		
cdf	$e^{-\lambda} \sum_{j=0}^{\lfloor k \rfloor} \frac{\lambda^j}{j!}$		
mean	λ		
median	$\approx \left\lfloor \lambda + \frac{1}{3} - \frac{1}{50\lambda} \right\rfloor$		
variance	λ		

4.1.5 Maxwell-Boltzmann Verteilung

4.2 Zentraler Grenzwertsatz

Sei X_1, X_2, \ldots eine Reihe unabhängiger und gleichverteilter Zufallsvariablen mit $\langle X_i \rangle = \mu$ und $(\Delta X_i)^2 = \sigma^2 < \infty$. Für N gegen unendlich konvergieren die Zufallsvariablen $\sqrt{N}(\bar{X}_N - \mu)$ zu einer Normalverteilung $\mathcal{N}(0, \sigma^2)$.

Das bedeutet, dass die Schwankung mit $\frac{1}{\sqrt{N}}$ wächst und Aussagen für große N scharf werden.

4.3 Fehlerfortpflanzung

Generalisiertes
$$V_y = J(x) \cdot V_x \cdot J^{\mathrm{T}}(x)$$
(100)Fehlerfortpflanzungsgesetz V Kovarianz matrix, J math:cal:jacobi-matrix

Fortpflanzung unabhängiger fehlerbehaftete Größen Lineare Näherung	$u_y = \sqrt{\sum_i \left(\frac{\partial y}{\partial x_i} \cdot u_i\right)^2}$	(101)
Gewicht Varianz ist eine mögliche Wahl für ein Gewicht	$w_i = \frac{1}{\sigma_i^2}$ σ Varianz	(102)
Gewichteter Mittelwert	$\overline{x} = \frac{\sum_{i} (x_{i}w_{i})}{\sum_{i} w_{i}}$ $w_{i} \text{ Gewicht}$	(103)
Varianz des gewichteten Mittelwertes	$\sigma_{\overline{x}}^2 = \frac{1}{\sum_i w_i}$ $w_i \; \text{Gewicht}$	(104)

Teil II Mechanik

5 Verschiedenes

Hookesches Gesetz

$$F = D\Delta l \tag{105}$$

FKraft, DFederkonstante, Δl Federlänge

6 Lagrange Formalismus

Der Lagrange-Formalsismus ist oft der einfachste Weg die Bewegungsgleichungen zu erhalten, da das Aufstellen der Lagrange-Funktion mit geeigneten generalisierten Koordinaten oft relativ einfach Die generalisierten Koordinaten werden so gewählt, dass ist. die Zwangsbedingungen automatisch erfüllt sind. Zum Beispiel findet man für ein 2D Pendel die $\cos arphi$ generalisierte Koordinate $q = \varphi$, mit $\vec{x} =$ $\sin \varphi$ $\mathcal{L} = T - V$ (106)Lagrange-Funktion T kinetische Energie, V potentielle Energie $\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial\mathcal{L}}{\partial\dot{q_i}} - \frac{\partial\mathcal{L}}{\partial q_i} = 0$ (107)Lagrange-Gleichungen (zweiter Art) q generalisierte Koordinaten $\partial \mathcal{L}$ Kanonischer Impuls (108)*p* = $\partial \dot{q}$ Hamiltonian Den Hamiltonian bekommt $H(q,p) = p \dot{q} - \mathcal{L}(q, \dot{q}(q,p))$ man aus dem Lagrangian (109)über eine Legendre Transformation

TODO:Legendre trafo

Teil III Statistische Mechanik

Extensive Größen: Additiv für Subsysteme (Systemgrößenabhänig): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$ Intensive Größen: Unabhängig der Systemgröße, Verhältnis zweier extensiver Größen

Liouville-Gleichung	$\frac{\partial \rho}{\partial t} = -\sum_{i=1}^{N} \left(\frac{\partial \rho}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial \rho}{\partial p_i} \frac{\partial H}{\partial q_i} \right) = \{H, \rho\} $ (110)
	{} Poisson-Klammer

7 Entropie

Positiv Definit und Additiv	$S \ge 0$ $S(E_1, E_2) = S_1 + S_2$	(111) (112)
Von-Neumann	$S = -k_{\rm B} \langle \log \rho \rangle = -k_{\rm B} \operatorname{tr}(\rho \log \rho)$ $\rho \text{ Dichtematrix}$	(113)
Gibbs	$S = -k_{\rm B} \sum_n p_n \log p_n$ p_n Wahrscheinlichkeit für Mikrozustand n	(114)
Boltzmann	$S = k_{\rm B} \log \Omega$ Ω #Mikrozustände	(115)
Temperatur	$\frac{1}{T} \coloneqq \left(\frac{\partial S}{\partial E}\right)_V$	(116)
Druck	$p = T\left(\frac{\partial S}{\partial V}\right)_E$	(117)

Teil IV Thermodynamik

Thermische Wellenlänge

$$\lambda = \frac{\hbar}{\sqrt{2\pi m k_{\rm B} T}} \tag{118}$$

8 Prozesse

- isobar: konstanter Druck p = const
- isochor: konstantes Volumen V = const
- **isotherm**: konstante Temperatur T = const
- **isentrop**: konstante Entropie *S* = const
- isenthalp: konstante Entalphie H = const
- adiabatisch: kein Wärmeübertrag $\Delta Q = 0$
- quasistatsch: läuft so langsam ab, dass das System durchgehend im t.d Equilibrium bleibt
- reversibel: reversible Prozesse sind immer quasistatisch und es wird keine Entropie erzeugtDeltaS=0

8.1 Irreversible Gasexpansion (Gay-Lussac-Versuch)

TODO:Reversible TODO:Quasistatischer T-Ausgleich TODO:Joule-Thompson Prozess

9 Phasenübergänge

Ein Phasenübergang ist eine Unstetigkeit in the Freien Energie F oder in der Gibbs-Energie G oder in ihrer Ableitungen. Die Ordnung des Phasenübergangs ist die Ordnung der Ableitung, in welcher die Unstetigkeit auftritt.

Latente Wärme Für den Phasenübergang von Phase 1 nach Phase 2 benötigte Wärme

Q_{L} = $T\Delta S$	(120)

 ΔS Entropie
änderung des Phasenübergangs

Clausius-Clapeyron Gleichung	$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{Q_{\mathrm{L}}}{T\Delta V}$	(121)
Steigung der Phasengrenzlinie	ΔV Volumenänderung des Phasenübergangs	
Phasenübergang Im Koexistenzbereich	$G_1 = G_2$ und damit	(122)
	$\mu_1 = \mu_2$	(123)
Gibbsche Phasenregel	f = c - p + 2	(124)
0	c#Komponenten, f #Freiheitsgrade, p #Phasen	

9.0.1 Osmose

Osmosis ist die spontane Passage oder Diffusion Lösungsmittelmolekülen durch eine semi-permeable Membran die für das Lösungsmittel, jedoch nicht die darin gelösten Stoffe durchlässig ist. Die Richtung der Diffusion ist vom Gebiet mit hohem chemischen Potential (niedrigere Konzentration des gelösten Stoffes) in das mit niedrigem chemischem Potential (höherere Konzentration des gelösten Stoffes), sodass die Konzentration des gelösten Stoffes ausgeglichen wird.

Osmotischer Druck /	$p_{\rm osm} = k_{\rm B} T \frac{N_c}{V} \tag{6}$	
Van-t-hoffsches Gesetz	N_c #gelöster Teilchen	

9.1 Materialeigenschaften

Wärmekapazität	$c = \frac{Q}{\Delta T}$	(126)
	Q Wärme	
Isochore Wärmekapazität	$c_v = \left(\frac{\partial Q}{\partial T}\right)_V = \left(\frac{\partial U}{\partial T}\right)_V$	(127)
	${\cal U}$ innere Energie	
Isobare Wärmekapazität	$c_p = \left(\frac{\partial Q}{\partial T}\right)_P = \left(\frac{\partial H}{\partial T}\right)_P$	(128)
	HEnthalpie	
Kompressionsmodul	$K = -V \frac{\mathrm{d}p}{\mathrm{d}V}$	(129)
	pDruck, V Anfangsvolumen	
Kompressibilität	$\kappa = -\frac{1}{V}\frac{\partial V}{\partial p}$	(130)

Isotherme Kompressibilität	$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T = \frac{1}{K} \tag{1}$	31)
Adiabatische Kompressibilität	$\kappa_S = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_S \tag{1}$	32)
Thermaler Ausdehnungskoeffizient	$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p,N} \tag{1}$	33)

10 Hauptsätze der Thermodynamik

10.1 Nullter Hauptsatz

Wenn sich zwei Siesteme jeweils im thermischen Gleichgewicht mit einem dritten befinden, befinden sie sich auch untereinander im thermischen Gleichgewicht.

$$A \xrightarrow{th.GGW.} C \wedge B \xrightarrow{th.GGW.} C \Rightarrow A \xrightarrow{th.GGW.} B$$
(134)

10.2 Erster Hauptsatz

In einem abgeschlossenem System ist die Änderung der inneren Energie U gleich der gewonnenen Wärme Q minus der vom System an der Umgebung verrichteten Arbeit W.

Änderung der inneren Energie	$\Delta U = \delta Q - \delta W$	(135)
	$\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$	(136)

10.3 Zweiter Hauptsatz

Clausius: Es gibt keine Zustansänderung, deren einziges Ergebnis die Übertragung von Wärme von einem Körper niederer Temperatur auf einen Körper höherer Temperatur ist.

Kelvin: Es ist unmöglich, eine periodisch arbeitende Maschine zu konstruieren, die weiter nichts bewirkt als Hebung einer Last und Abkühlung eines Wärmereservoirs.

10.4 Dritter Hauptsatz

Es ist unmöglich, ein System bis zum absoluten Nullpunkt abzukühlen.

	$\lim_{T \to 0} s(T) = 0$		(137)
Entropiedichte	und dannt auch	$\lim_{T\to 0} c_V = 0$	(138)
	$S = \frac{S}{N}$		

11 Ensembles

	\fqname :mk	fqname:k	\fqname :gk
variables	E, V, N	T, V, N	T, V, μ
partition_sum	$\Omega = \sum_n 1$	$Z = \sum_{n} e^{-\beta E_n}$	$Z_{\rm g} = \sum_n {\rm e}^{-\beta (E_n - \mu N_n)}$
probability	$p_n = \frac{1}{\Omega}$	$p_n = \frac{\mathrm{e}^{-\beta E_n}}{Z}$	$p_n = \frac{\mathrm{e}^{-\beta(E_n - \mu N_n)}}{Z_{\mathrm{g}}}$
td_pot	$S = k_{\rm B} \ln \Omega$	$F = -k_{\rm B}T\ln Z$	$\Phi = -k_{\rm B}T\ln Z$
pressure	$p = T\left(\frac{\partial S}{\partial V}\right)_{E,N}$	$p = -\left(\frac{\partial F}{\partial V}\right)_{T,N}$	$p = -\left(\frac{\partial \Phi}{\partial V}\right)_{T,\mu} = -\frac{\Phi}{V}$
entropy	S = $k_{\rm B}$ = $\ln \Omega$	$S = -\left(\frac{\partial F}{\partial T}\right)_{V,N}$	$S = -\left(\frac{\partial \Phi}{\partial T}\right)_{V,\mu}$

Tabelle 1: caption

Ergodenhypothese

Innerhalb einer langen Zeitspanne sind alle energetisch erreichbaren Mikrozustände im Phasenraum gleich wahrscheinlich

A Messgröße

11.1 Potentiale

Innere Energie			$\mathrm{d}U($	$S, V, N) = T dS - p dV + \mu dN \qquad (140)$
Freie Energie / Helmholtz Energie			$\mathrm{d}F(T)$	$\Gamma, V, N) = -S \mathrm{d}T - p \mathrm{d}V + \mu \mathrm{d}N \tag{141}$
Enthalpie			$\mathrm{d}H($	$S, p, N) = T dS + V dp + \mu dN $ (142)
Freie Entahlpie / Gibbs-Energie			$\mathrm{d}G(T)$	$T, p, N) = -S \mathrm{d}T + V \mathrm{d}p + \mu \mathrm{d}N \tag{143}$
Großkanonisches Potential			$d\Phi(2$	$T, V, \mu) = -S \mathrm{d}T - p \mathrm{d}V - N \mathrm{d}\mu \tag{144}$
TODO:Maxwell Relationen, TD Q	TODO:Maxwell Relationen, TD Quadrat			
	-S	U	V	
Themodynamisches Quadrat	Н		F	Die Ecken gegenüber
	-p	G	Т	

des Potentials sind die Koeffizienten, das Differential eines Koeffizienten ist in der Ecke gegenüber.

 $\langle A \rangle_{\text{Zeit}} = \langle A \rangle_{\text{Ensemble}}$

(139)

12 Ideales Gas

Das ideale Gas besteht aus nicht-wechselwirkenden, ununterscheidbaren Teilchen.

$$\begin{split} \Omega(E) &= \int_{V} d^{3}q_{1} \dots \int_{V} d^{3}q_{N} \int d^{3}p_{1} \dots \int d^{3}p_{N} \frac{1}{N!h^{3N}} \Theta \begin{pmatrix} E \\ (145) \\ (145) \\ (145) \\ = \begin{pmatrix} V \\ N \end{pmatrix}^{N} \begin{pmatrix} 4\pi mE \\ 3h^{2}N \end{pmatrix}^{\frac{3N}{2}} e^{\frac{5N}{2}} & (146) \\ N \ \# \text{Teilchen}, \ h^{3N} \text{ Volumen eines Mikrozustandes, } N! \text{ Teilchen sind unuterscheidbar} \end{split}$$

12.0.1 Molekülgas

Rotation

$$E_{\rm rot} = \frac{\hbar^2}{2I} j(j+1) \tag{157}$$

TODO:Diagram für verschiedene Temperaturen, Weiler Skript p.83

13 Reales Gas

13.1 Virialentwicklung

13.2 Van der Waals Gleichung

Annahme eines Harte-Kugeln Potentials mit einer schwachen Anziehung

$$Z_N = \frac{(V - V_0)^N}{\lambda^{3N} N!} e^{\frac{\beta N^2 a}{V}}$$
(162)
a Kohäsionsdruck

Van der Waals-Gleichung

$$p = \frac{Nk_{\rm B}T}{V-b} - \frac{N^2a}{V^2}$$
(163)

b Kovolumen

TODO: sometimes N is included in a, b

14 Ideales Quantengas

Fugazität	$z = e^{\mu\beta} = e^{\frac{\mu}{k_{\rm B}T}}$	(164)
Besetzungszahl	$\sum_{r} n_{r} = N$ r Zustände	(165)
Ununterscheidbare Teilchen	$ p_1,p_2,\ldots,p_N\rangle = p_1\rangle p_2\rangle \ldots p_N\rangle$ p_i Zustand	(166)
Anwenden des Paritätsoperators gibt eine symmetrische (Bosonen) und eine antisymmetrische (Fermionen) Lösung	$\hat{P}_{12}\psi(p_i(\vec{r}_1), p_j(\vec{r}_2)) = \pm \psi(p_i(\vec{r}_1), p_j(\vec{r}_2))$ $\hat{O}_{12} \text{ Paritäts operator tauscht 1 und 2, } \pm: \frac{\text{bos}}{\text{fer}}$	(167)
Spinentartungsfaktor	$g_s = 2s + 1$ s Spin	(168)
Zustandsdichte	$g(\epsilon) = g_s \frac{V}{4\pi} \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} \sqrt{\epsilon}$ g_s Spinentartungsfaktor	(169)
Besetzungszahl pro Energie	$n(\epsilon) d\epsilon = \frac{g(\epsilon)}{e^{\beta(\epsilon-\mu)} \mp 1} d\epsilon$ Zustandsdichte, ±: bos _{fer}	(170)

14.1 Bosonen

Zustandssumme	$Z_{\rm g} = \prod_p \frac{1}{1 - e^{-\beta(\epsilon_p - \mu)}} \tag{1}$ $p \in \mathbb{N}_0$	79)
Besetzungszahl Bose-Einstein Verteilung	$\langle n_p \rangle = \frac{1}{\mathrm{e}^{\beta(\epsilon-\mu)} - 1} \tag{1}$	80)

14.2 Fermionen

Zustandssumme	$Z_{\rm g} = \prod_{p} \left(1 + e^{-\beta(\epsilon_p - \mu)} \right) \tag{1}$ $p = 0, 1$	81)
Besetzungszahl Fermi-Dirac Verteilung	$\begin{bmatrix} 1.0 \\ 0.8 \\ 0.6 \\ 0.2 \\ 0.0 \\ 0.0 \\ \varepsilon = \mu \end{bmatrix}$	
	$\langle n_p \rangle = \frac{1}{\mathrm{e}^{\beta(\epsilon-\mu)}+1} \tag{1}$	82)
Slater-Determinante	$\psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} p_1(\vec{r}_1) & p_2(\vec{r}_1) & \dots & p_N(\vec{r}_1) \\ p_1(\vec{r}_2) & p_2(\vec{r}_2) & \dots & p_N(\vec{r}_2) \\ \vdots & \vdots & \ddots & \vdots \\ p_1(\vec{r}_N) & p_2(\vec{r}_N) & \dots & p_N(\vec{r}_N) \end{vmatrix} $ (1)	83)
Fermienergie	$\epsilon_{\rm F} \coloneqq \mu(T=0) \tag{1}$	84)
Fermi Temperatur	$T_{\rm F} \coloneqq \frac{\epsilon_{\rm F}}{k_{\rm B}} \tag{1}$	85)
Fermi-Impuls Radius der <i>Fermi-Kugel</i> im Impulsraum. Zustände mit $P_{\rm F}$ sind auf der <i>Fermi-Fläche</i>	$p_{\rm F} = \hbar k_{\rm F} = (2mE_{\rm F})^{\frac{1}{2}} $ (1)	86)
Spezifische Dichte	$v = \frac{N}{V} = \frac{g}{\lambda^3} f_{3/2}(z) $ (1) f Verallgemeinerte Zeta-Funktion, g Entartungsfaktor, z figazität	87) Fu-

14.2.1 Starke Entartung

TODO:Entartung und Sommerfeld TODO:DULONG-PETIT Gesetz

Teil V Elektrodynamik

15 Hall-Effekt

Zyklotronfrequenz	$\omega_{\rm c} = \frac{eB}{m_{\rm e}}$	(192)
-------------------	---	-------

TODO:Move

15.1 Klassischer Hall-Effekt

Fließt in einem Leiter $(l \times b \times d)$ ein Strom in x Richtung, während der Leiter von einem Magnetfeld B in z-Richtung durchdrungen, wird eine Hallspannung $U_{\rm H}$ in y-Richtung induziert.

Hallspannung	$U_{\rm H} = \frac{IB}{ned}$	(193)
	n Ladungsträgerdichte	
Hall-Koeffizient Manchmal $R_{\rm H}$	$A_{\rm H} \coloneqq -\frac{E_y}{j_x B_z} \stackrel{\rm metals}{\stackrel{\perp}{=}} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}$	(194)
Spezifischer Widerstand	$\rho_{xx} = \frac{m_{\rm e}}{ne^2\tau}$	(195)
Spezinscher widerstand	$\rho_{xy} = \frac{B}{ne}$	(196)

15.2 Ganzahliger Quantenhalleffekt

Leitfähigkeitstensor	$\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix}$	(197)
Spezifischer Widerstands-tensor	$\rho = \sigma^{-1}$	(198)
Spezifischer Hallwiderstand	$\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}$	(199)
	$\nu \in \mathbb{Z}$ Füllfaktor	
Fraktionaler Quantum-Hall-Effekt	$\nu = \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{2}{3}$	(200)
	ν Bruch aus Zahlen ohne gemeinsamen Teiler	

- Integer (QHE): Füllfaktor ν ist ganzzahlig
- Fractional (FQHE): Füllfaktor ν ist ein Bruch
- Spin (QSHE): Spin Ströme anstatt Ladungsströme

• Anomalous (QAHE): Symmetriebruch durch interne Effekte anstatt druch ein externes Magnetfeld

TODO:sort

Impedanz eines Kondesnators	$Z_C = \frac{1}{i\omega C}$	(201)
Impedanz eines Induktors	$Z_L = i\omega L$	(202)

TODO: impedance addition for parallel / linear

16 Dipol-zeug

Dipolsrahlung Poynting-Vektor	$\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right) \frac{\sin^2 \theta}{r^2} \vec{r}$	(203)
Zeitlich mittlere Leistung	$P = \frac{\mu_0 \omega^4 p_0^2}{12\pi c}$	(204)

17 Elektrisches Feld

Elektrisches Feld Umgibt geladene Teilchen	Symbol: $\vec{\mathcal{E}}$ Unit: $1 \mathrm{V}\mathrm{m}^{-1} = 1 \mathrm{kgm/s^3A}$
Gaußsches Gesetz für elektrische Felder Der magnetische Fluss durch eine geschlossene Fläche ist proportional zur elektrischen Ladung	$\Phi_{\rm E} = \iint_{S} \vec{\mathcal{E}} \cdot \mathrm{d}\vec{S} = \frac{Q}{\varepsilon_0} $ (205) S geschlossene Fläche
Permitivität Dielektrische Konstante Elektrische Polarisierbarkeit eines dielektrischen Materials	Symbol: ϵ Unit: $1 \text{ A s V}^{-1} \text{ m} = 1 \text{ F m}^{-1} = 1 \text{ C V}^{-1} \text{ m} = 1 \text{ C}^2/\text{Nm}^2 = 1 \text{ A}^2 \text{s}^4/\text{kgm}^3$
Relative Permittivität / Dielectric constant	$\epsilon(\omega)_{\rm r} = \frac{\epsilon(\omega)}{\epsilon_0} $ (206) ϵ Permitivität, ϵ_0 Vakuum Permittivität
Vakuum Permittivität Elektrische Feldkonstante	Symbol: ϵ_0 Experimenteller Wert $8.8541878188(14) \cdot 10^{-1} \operatorname{AsV}^{-1} \mathrm{m}$
Elektrische Suszeptibilität Beschreibt wie stark ein dielektrisches Material polarisiert wird, wenn ein elektrisches Feld angelegt wird	Symbol: χ_e Unit: $\epsilon_r = 1 + \chi_e$ (207) ϵ_r Relative Permittivität / Dielectric constant

Dielektrische	$\vec{P} = \epsilon_0 \chi_{\rm e} \vec{\mathcal{E}} \tag{20}$)8)
Polarisationsdichte	ϵ_0 Vakuum Permittivität, $\chi_{\rm e}$ Elektrische Suszeptibilität, Elektrisches Feld	$\vec{\mathcal{E}}$

18 Magnetfeld

Magnetischer Fluss	$\Phi_{\rm B} = \iint_A \vec{B} \cdot \mathrm{d}\vec{A} \tag{209}$
	\vec{A} Fläche
	Symbol: \vec{B} Unit: $1 \text{ T} = 1 \text{ Vs/m}^2 = 1 \text{ N A}^{-1} \text{ m} = 1 \text{ kg/As}^2$
Magnetische Flussdichte Definiert über Lorentzkraft	$\vec{B} = \mu_0 (\vec{H} + \vec{M}) $ (210)
	\vec{H} Magnetische Feldstärke, \vec{M} Magnetisierung, μ_0 Magnetische Vakuumpermeabilität
	Symbol: \vec{H}
Magnetische Feldstärke	$\vec{H} \equiv \frac{1}{\mu_0}\vec{B} - \vec{M} $ (211)
Lorentzkraft	$\vec{E} = \vec{c} + \vec{c} + \vec{c} + \vec{D} $ (212)
Kraft auf geladenes Teilchen	$F = q\mathcal{L} + q\mathcal{U} \times D \tag{212}$
	Symbol: μ Unit: $1 \mathrm{Hm^{-1}} = 1 \mathrm{VsA^{-1}m}$
Magnetisch Permeabilität	$\mu = \frac{B}{H} $ (213)
	${\cal B}$ Magnetische Flussdichte, ${\cal H}$ Magnetische Feldstärke
Magnetische Vakuumpermeabilität	Symbol: μ_0 Experimenteller Wert 1.25663706127(20) H/m = N/A ²
Realtive Permeabilität	$\mu_{\rm r} = \frac{\mu}{\mu_0} \tag{214}$

Gaußsches Gesetz für Magnetismus Der magnetische Fluss durch eine geschlossene Fläche ist 0 ⇒es gibt keine magnetischen Monopole	$\Phi_{\rm B} = \iint_S \vec{B} \cdot {\rm d}\vec{S} = 0$ S geschlossene Fläche	(215)
Magnetisierung Vektorfeld, welches die Dichte von magnetischen Dipolen beschreibt.	Symbol: \vec{M} Unit: $1 \mathrm{A}\mathrm{m}^{-1}$ $\vec{M} = \frac{\mathrm{d}\vec{m}}{\mathrm{d}V} = \chi_{\mathrm{m}} \cdot \vec{H}$	(216)
Magnetisches Moment Stärke und Richtung eines magnetischen Dipols	Symbol: \vec{m} Unit: $1 \mathrm{Am}^2$	
Drehmoment	$\vec{\tau} = \vec{m} \times \vec{B}$ m Magnetisches Moment	(217)
Suszeptibilität	$\chi_{\rm m} = \frac{\partial M}{\partial B} = \mu_{\rm r} - 1$ $\mu_{\rm r}$ Realtive Permeabilität	(218)

18.1 Magnetische Materialien

Paramagnetismus Magnetisches Feld wird im Material verstärkt	$$\mu_{\rm r}>1$$\chi_{\rm m}>0$$$ $$\mu$$ Magnetisch Permeabilität, $\chi_{\rm m}$ Suszeptibilität	(219) (220)
Diamagnetismus Magnetisches Feld wird aus dem Material gedrängt	$0 < \mu_{\rm r} < 1$ $-1 < \chi_{\rm m} < 0$ μ Magnetisch Permeabilität, $\chi_{\rm m}$ Suszeptibilität	(221) (222)
Ferromagnetismus Magnetische Momente werden am äußeren Feld ausgerichtet und behalten diese ausrichtung auch wenn das Feld abgeschaltet wird (Remanenz)	$\mu_{\rm r} \gg 1$ μ Magnetisch Permeabilität, $\chi_{\rm m}$ Suszeptibilität	(223)

19 Elektromagnetismus

Lightgeschwindigkeit in the vacuum	
Vakuum Permittivität - Permeabilität Beziehung TODO:Does this have a name?	$\epsilon_0 \mu_0 = \frac{1}{c^2} $ (224) ϵ_0 Vakuum Permittivität, μ_0 Magnetische Vakuumpermeabi- lität, c Lightgeschwindigkeit
Poisson Gleichung in der Elektrostatik	$\Delta \Phi(\vec{r}) = -\frac{\rho(\vec{r})}{\epsilon} $ (225) TODO: double check Φ ρ Ladungsdichte, ϵ Permitivität, Φ Potential
Poynting-Vektor Gerichteter Energiefluss oder Leistungsfluss eines elektromgnetischen Feldes [W/m ²]	$\vec{S} = \vec{E} \times \vec{H} $ (226)
19.1 Maxwell-Gleichungen	

Vakuum Mikroskopische Formulierung	$ec{ abla}\cdotec{\mathcal{E}}=rac{ ho_{ ext{el}}}{\epsilon_0}$	(227)
	$\vec{\nabla} \cdot \vec{B} = 0$	(228)
	$\vec{\nabla} \times \vec{\mathcal{E}} = -\frac{\mathrm{d}\vec{B}}{\mathrm{d}t}$	(229)
	$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\mathrm{d}\vec{\mathcal{E}}}{\mathrm{d}t}$	(230)
	$\vec{\nabla} \cdot \vec{D} = \alpha$	(231)
Materie Makroskopische Formulierung	$\vec{\nabla} \cdot \vec{B} = 0$	(231)
	$\vec{\nabla} \times \vec{\mathcal{E}} = -\frac{\mathrm{d}\vec{B}}{\mathrm{d}t}$	(233)
	$\vec{\nabla} \times \vec{H} = \vec{j} + \frac{\mathrm{d}\vec{D}}{\mathrm{d}t}$	(234)

Г

TODO:Polarization

19.2 Induktion

Faradaysche Induktionsgesetz	$U_{\rm ind} = -\frac{\mathrm{d}}{\mathrm{d}t} \Phi_{\rm B} = -\frac{\mathrm{d}}{\mathrm{d}t} \iint_{A} \vec{B} \cdot \mathrm{d}\vec{A} $ (235)
Lenzsche Regel	Die Änderung des magnetischen Flußes durch einen Leiter induziert einen Strom der der Änderung entgegenwirkt.

Teil VI Quantenmechanik

20 Basics

20.1 Operatoren

Dirac-Notation	$ \begin{array}{c} \langle x \text{"Bra"Zeilenvektor} \\ x \rangle \text{"Ket"Spaltenvektor} \\ \hat{A} \beta \rangle = \alpha \rangle \Rightarrow \langle \alpha = \langle \beta \hat{A}^{\dagger} \end{array} $	(236) (237) (238)
Dagger	$\hat{A}^{\dagger} = (\hat{A}^{*})^{\mathrm{T}}$ $(c\hat{A})^{\dagger} = c^{*}\hat{A}^{\dagger}$ $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$	$(239) \\ (240) \\ (241) \\ (242)$
Adjungierter operator	$\left\langle \alpha \hat{A}^{\dagger} \beta \right\rangle = \left\langle \beta \hat{A} \alpha \right\rangle^{*}$	(243)
Hermitescher operator	$\hat{A} = \hat{A}^{\dagger}$	(244)

20.1.1 Messung

Eine Observable ist ein hermitscher Operator, der auf \hat{H} wirkt. Die Messung ergibt zufällig einen der Eigenwerte von \hat{O} , welche alle reell sind. Messwahrscheinlichkeit

MESS wall Schennichken		
Wahrscheinlichkeit, ψ im	$p(\lambda) = \langle \psi \hat{P}_{\lambda} \psi angle$	(245)
Zustand λ zu messen		

Zustand nach der Messung	$\left \psi\right\rangle_{\text{post}} = \frac{1}{\sqrt{p(\lambda)}} \hat{P}_{\lambda} \left \psi\right\rangle \tag{246}$	5)
--------------------------	---	----

20.1.2 Pauli-Matrizen

Pauli Matrizen	TODO : remove macro2	(247)

20.2 Wahrscheinlichkeitstheorie

Kontinuitätsgleichung	$\frac{\partial \rho(\vec{x},t)}{\partial t} + \nabla \cdot \vec{j}(\vec{x},t) = 0$	(248)
	ρ Dichte einer Erhaltungsgröße q,j Fluß von q	
Zustandswahrscheinlichkeit	TODO	(249)

Dispersion	$\Delta \hat{A} = \hat{A} - \langle \hat{A} \rangle$	(250)
Allgemeine Unschärferelation	$\sigma_A \sigma_B \ge \frac{1}{4} \left< [\hat{A}, \hat{B}] \right>^2$	(251)
0	$\sigma_A \sigma_B \ge \frac{1}{2} \langle [\hat{A}, \hat{B}] \rangle $	(252)

20.3 Kommutator

Kommutator	[A,B] = AB - BA	(253)
Antikommutator	$\{A,B\} = AB + BA$	(254)
Kommutatorrelationen	[A, BC] = [A, B]C - B[A, C]	(255)
TODO:add some more?		
Kommutator mit einer	$[f(A), B] = [A, B] \frac{\partial f}{\partial A}$	(256)
Funktion	falls $[A, [A, B]] = 0$	
Jakobi-Identität	[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0	(257)
Lemma von Hadamard	$e^{A} B e^{-A} = B + [A, B] + \frac{1}{2!} [A, [A, B]] + \frac{1}{3!} [A, [A, [A, A]] + \frac{1}{3!} [A, A]$	$,B]]] + \dots$ (258)
	$[x_i, x_j] = 0$	(259)
Kanonische Vertauschungsrelationen	$[p_i, p_j] = 0$	(260)
	$[x_i, p_j] = i\hbar\delta_{ij}$	(261)
	x, p kanonische konjugierte	

21 Schrödingergleichung

Energieoperator	$E = i\hbar \frac{\partial}{\partial t} \tag{(}$	262)
Impulsoperator	$\vec{p} = -i\hbar\vec{\nabla_x} \tag{(}$	263)
Ortsoperator	$\vec{x} = i\hbar\vec{\nabla_p} \tag{(}$	264)
Stationäre Schrödingergleichung	$\hat{H} \left \psi \right\rangle = E \left \psi \right\rangle \tag{(4)}$	265)

Schrödingergleichung	$i\hbarrac{\partial}{\partial t}\psi(x,t)$ = $(-rac{\hbar^2}{2m}ec abla^2+ec V(x))\psi(x)$	(266)
----------------------	--	-------

21.1 Zeitentwicklug

The time evolution of the Hamiltonian is given by:

Zeitentwicklungsoperator	$ \psi(t) angle$ = $\hat{U}(t,t_0) \psi(t_0) angle$	(267)
	U unitär	
Von-Neumann Gleichung Zeitentwicklung des Dichteoperators im Schödingerbild. Qm.	$\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}]$	(268)
Analogon zur Liouville-Gleichung ??		
Lindblad-Mastergleichung Verallgemeinerung der von-Neumman Gleichung für offene Quantensysteme	$\dot{\rho} = \underbrace{-\frac{i}{\hbar}[\hat{H},\rho]}_{\text{reversible}} + \underbrace{\sum_{n.m} h_{nm} \left(\hat{A}_n \rho \hat{A}_{m^{\dagger}} - \frac{1}{2} \left\{ \hat{A}_m^{\dagger} \hat{A}_n, \rho \right\} \right)}_{\text{irreversible}}$ $h \text{ positiv-semifinite Matrix, } \hat{A} \text{ beliebiger Operator}$	(269)
Hellmann-Feynman-Theorem Abletiung der Energie nach einem Parameter	$\frac{\mathrm{d}E_{\lambda}}{\mathrm{d}\lambda} = \int \mathrm{d}^{3}r\psi_{\lambda}^{*}\frac{\mathrm{d}\hat{H}_{\lambda}}{\mathrm{d}\lambda}\psi_{\lambda} = \left\langle\psi(\lambda)\left \frac{\mathrm{d}\hat{H}_{\lambda}}{\mathrm{d}\lambda}\right \psi(\lambda)\right\rangle$	(270)

TODO: unitary transformation of time dependent H

21.1.1 Schrödinger- und Heisenberg-Bild

Im Schrödinger-Bild sind die Zustände zeitabhänig, im Heisenberg-Bild sind die Observablen (Operatoren) zeitabhänig

Schrödinger Zeitentwicklug	$ \psi(t)_{\mathrm{S}} angle = \hat{U}(t,t_0) \psi(t_0) angle$	(271)
Heisenberg Zeitentwicklung	$\begin{split} \psi_{\rm H}\rangle &= \psi_{\rm S}(t_0)\rangle \\ A_{\rm H} &= U^{\dagger}(t,t_0)A_{\rm S}U(t,t_0) \\ &\frac{{\rm d}\hat{A}_{\rm H}}{{\rm d}t} = \frac{1}{i\hbar}[\hat{A}_{\rm H},\hat{H}_{\rm H}] + \left(\frac{\partial\hat{A}_{\rm S}}{\partial t}\right)_{\rm H} \\ & {\rm mit~H~und~S~dem~Heisenberg-~und~Schrödinger-Bild} \end{split}$	(272) (273) (274)

21.1.2 Ehrenfest-Theorem

Siehe auch ??

Ehrenfest-Theorem gilt für beide Bilder

$$\frac{\mathrm{d}}{\mathrm{d}t}\left\langle \hat{A}\right\rangle = \frac{1}{i\hbar}\left\langle \left[\hat{A},\hat{H}\right]\right\rangle + \left\langle \frac{\partial\hat{A}}{\partial t}\right\rangle \tag{275}$$
Ehrenfest-Theorem Beispiel	d^2 () (T())	(070)
Beispiel für x	$m\frac{dt^2}{dt^2} \langle x \rangle = - \langle \nabla V(x) \rangle = \langle F(x) \rangle$	(276)

21.2 Korrespondenzprinzip

Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenzahlen.

22 Störungstheorie

$qm:qm_pertubation:desc$		
Hamiltonian	$\hat{H} = \hat{H_0} + \lambda \hat{H_1}$	(277)
Potenzreihe	$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots$ $ \psi_n\rangle = \psi_n^{(0)}\rangle + \lambda \psi_n^{(1)}\rangle + \lambda^2 \psi_n^{(2)}\rangle + \dots$	(278) (279)
Energieverschiebung 1. Ordnung	$E_{n}^{(1)} = \left(\psi_{n}^{(0)} \left \hat{H}_{1} \right \psi_{n}^{(0)} \right)$	(280)
Zustände	$ \psi_n^{(1)}\rangle = \sum_{k \neq n} \frac{\left\langle \psi_k^{(0)} \middle \hat{H}_1 \middle \psi_n^{(0)} \right\rangle}{E_n^{(0)} - E_k^{(0)}} \psi_k^{(0)}\rangle$	(281)
Energieverschiebung 2. Ordnung	$E_n^{(2)} = \sum_{k \neq n} \frac{\left \left\langle \psi_k^{(0)} \middle \hat{H}_1 \middle \psi_n^{(0)} \right\rangle \right ^2}{E_n^{(0)} - E_k^{(0)}}$	(282)
Fermis goldene Regel Übergangsrate des initial Zustandes $ i\rangle$ unter einer Störung H^1 zum Endzustand $ f\rangle$	$\Gamma_{i \to f} = \frac{2\pi}{\hbar} \langle f H^1 i \rangle ^2 \rho(E_f)$	(283)

23 Harmonischer Oszillator

Hamiltonian	$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$	(284)
	$=\frac{1}{2}\hbar\omega+\omega a^{\dagger}a$	(285)

Energiespektrum	$E_n = \hbar\omega \left(\frac{1}{2} + n\right) \tag{286}$	

Siehe auch ??

23.1 Erzeugungs und Vernichtungsoperatoren / Leiteroperatoren

Teilchenzahloperator/Beset- zungszahloperator	$\hat{N} \coloneqq a^{\dagger}a$	(287)
	$\hat{N}\left n ight angle$ = $n\left N ight angle$	(288)
	$ n\rangle =$ Fock-Zustände, $\hat{a} =$ Vernichtungsoperator, $\hat{a}^{\dagger} =$ gungsoperator	Erzeu-
	$\left[\hat{a}, \hat{a}^{\dagger}\right] = 1$	(289)
Kommutator	$[N, \hat{a}] = -\hat{a}$	(290)
	$\left[N, \hat{a}^{\dagger}\right] = \hat{a}^{\dagger}$	(291)
	$\hat{a} n\rangle = \sqrt{n} n-1\rangle$	(292)
Anwendung auf Zustände	$\hat{a}^{\dagger} \left n \right\rangle = \sqrt{n+1} \left n+1 \right\rangle$	(293)
	$ n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n 0\rangle$	(294)
Matrix-Form	$\hat{n} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & N \end{pmatrix}$	(295)
	$\hat{a} = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \sqrt{N} \\ 0 & 0 & 0 & 0 \end{pmatrix}$	(296)
	$\hat{a}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ \sqrt{1} & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & 0 & \sqrt{N} & 0 \end{pmatrix}$	(297)

23.1.1 Harmonic Oscillator

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger})$$

$$(298)$$

$$\sqrt{\frac{1}{2m\omega}} (\hat{a} + \hat{a}^{\dagger})$$

$$\hat{p} = -i\sqrt{\frac{m\omega h}{2}}(\hat{a} - \hat{a}^{\dagger})$$
(299)

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} \qquad \qquad = \hbar\omega \left(a^{\dagger}a + \frac{1}{2}\right) \qquad (300)$$
$$a = \frac{1}{\sqrt{2}} (\tilde{X} + i\tilde{P}) \qquad \qquad (301)$$

$$a^{\dagger} = \frac{1}{\sqrt{2}} (\tilde{X} - i\tilde{P})$$

$$(302)$$

24 Drehmoment

24.1 Aharanov-Bohm Effekt

Erhaltene Phase Elektron entlang eines geschlossenes Phase erhält eine Phase die proportional zum eingeschlossenen magnetischem Fluss ist

TODO:replace with loop intergral symbol and add more info

25 Periodische Potentiale

Blochwellen Lösen stat. SG im	$\psi_k(\vec{r}) = e^{i\vec{k}\cdot\vec{r}} \cdot u_{\vec{k}}(\vec{r})$	(304)
periodischen Potential mit Periode \vec{R} : $V(\vec{r}) = V(\vec{r} + \vec{R})$	\vec{k} beliebig, u periodische Funktion	
	$u_{\bar{\iota}}(\vec{r}+\vec{R}) = u_{\bar{\iota}}(\vec{r})$	(305)
Periodizität	$\psi_{\vec{k}+\vec{G}}(\vec{r}) = \psi_{\vec{k}}(\vec{r})$	(306)
	\vec{R} Gittervektor, \vec{G} Reziproker Gittervektor	

26 Symmetrien

Die meisten Symmetrieoperatoren sind unitär ??, da die Norm eines Zustands invariant unter Raum-, Zeit- und Spin-Transformationen sein muss.

Invarianz

H is invariant unter der von \hat{U} beschriebenen Symmetrie	$\hat{U}\hat{H}\hat{U}^{\dagger}=\hat{H} \Leftrightarrow \left[\hat{U},\hat{H}\right]=0$	(307)
wenn gilt:		

26.1 Zeitumkehrungssymmetrie

Zeitumkehrungssymmetrie	$T: t \to -t \tag{6}$	308)
Antiunitär	$T^2 = -1$ (4)	309)

27 Zwei-Niveau System (TLS)

$$H = \underbrace{\hbar\omega_c \hat{a}^{\dagger} \hat{a}}_{\text{field}} + \underbrace{\hbar\omega_a \frac{\hat{\sigma}_z}{2}}_{\text{atom}} + \underbrace{\frac{\hbar\Omega}{2} \hat{E}\hat{S}}_{\text{int}}$$
(310)

James-Cummings Hamiltonian TLS interagiert mit

(311)

$$=\hbar\omega_{c}\hat{a}^{\dagger}\hat{a} + \hbar\omega_{a}\hat{\sigma}^{\dagger}\hat{\sigma} + \frac{\hbar\Omega}{2}(\hat{a}\hat{\sigma^{\dagger}} + \hat{a}^{\dagger}\hat{\sigma})$$
(312)

 $\hat{E} = E_{\rm ZPF}(\hat{a} + \hat{a}^{\dagger})$ Feldoperator mit bosonischen Leiteroperatoren, $\hat{S} = \hat{\sigma}^{\dagger} + \hat{\sigma}$ Polarisationsoperator mit Leiteroperatoren des TLS

28 Sonstiges

resonantem Lichtfeld

Rotating Wave		
Approximation /	$\Delta \omega := \omega_0 - \omega_1 \ll \omega_0 + \omega_1 \approx 2\omega_0$	(313)
Drehwellennäherung (RWS)		(0-0)
Schnell oscillierende Terme	$\omega_{\mathbb{L}}$ Frequenz des Lichtes, ω_0 Übergangsfrequenz	
werden vernachlässigt		
	· · · · · · · · · · · · · · · · · · ·	

Slater Determinante Konstruktion einer fermionischen (antisymmetrischen) Vielteilchen Wellenfunktion aus ein-Teilchen Wellenfunktionen

$$\Psi(q_1, \dots, q_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_a(q_1) & \phi_a(q_2) & \cdots & \phi_a(q_N) \\ \phi_b(q_1) & \phi_b(q_2) & \cdots & \phi_b(q_N) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_z(q_1) & \phi_z(q_2) & \cdots & \phi_z(q_N) \end{vmatrix}$$
(314)

29 Wasserstoffatom

Reduzierte Masse	$\mu = \frac{m_{\rm e} m_{\rm K}}{m_{\rm e} + m_{\rm K}} \stackrel{m_{\rm e}}{\approx} m_{\rm e}$	(315)
Coulumb potential Für ein Einelektronenatom	$V(\vec{r}) = \frac{Z e^2}{4\pi\epsilon_0 r}$ Z Ordnungszahl/Kernladungszahl	(316)
Hamiltonian	$\hat{H} = -\frac{\hbar^2}{2\mu}\vec{\nabla}_{\vec{r}}^2 - V(\vec{r})$	(317)
	$= \frac{\hat{p}_{r}^{2}}{2\mu} + \frac{\hat{L}^{2}}{2\mu r} + V(r)$	(318)
Wellenfunktion	$\psi_{nlm}(r, heta,\phi)$ = $R_{nl}(r)Y_{lm}(heta,\phi)$	(319)
	$R_{nl}(r)$ Radialanteil, Y_{lm} qm:spherical_harmonics	

Radialanteil

$$R_{nl} = -\sqrt{\frac{(n-l-1)!(2\kappa)^3}{2n[(n+l)!]^3}} (2\kappa r)^l e^{-\kappa r} L_{n+1}^{2l+1}(2\kappa r) \quad (320)$$
with

$$\kappa = \frac{\sqrt{2\mu|E|}}{\hbar} = \frac{Z}{na_B} \quad (321)$$

$$L_r^s(x) \text{ Laguerre-Polynome} \quad (322)$$
Energieeigenwerte

$$E_n = \frac{Z^2 \mu e^4}{n^2 (4\pi\epsilon_0)^2 2\hbar^2} = -E_H \frac{Z^2}{n^2} \quad (322)$$
Rydberg-Energy

$$E_H = h c R_H = \frac{\mu e^4}{(4\pi\epsilon_0)^2 2\hbar^2} \quad (323)$$

29.1 Korrekturen

29.1.1 Darwin-Term

Relativistische Korrektur: Elektronen führen eine Zitterbewegung aus und sind nicht vollständig lokalisiert.

Energieverschiebung	$\Delta E_{\rm rel} = -E_n \frac{Z^2 \alpha^2}{n} \left(\frac{3}{4n} - \frac{1}{l + \frac{1}{2}}\right)$	(324)
Feinstrukturkonstante Sommerfeldsche Feinstrukturkonstante	$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \approx \frac{1}{137}$	(325)

29.1.2 Spin-Bahn-Kopplung (LS-Kopplung)

The Wechselwirkung zwischen dem Elektronenspin und dem elektrostatischen Feld des Kerns führt zu Energieverschiebungen.

Energieverschiebung	$\Delta E_{\rm LS} = \frac{\mu_0 Z e^2}{8\pi m_{\rm e}^2 r^3} \left\langle \vec{S} \cdot \vec{L} \right\rangle \tag{3}$	26)

22	$\langle S \cdot L \rangle = \frac{1}{2} \langle [J^2 - L^2 - S^2] \rangle$	
~~~	$=\frac{\hbar^2}{2}[j(j+1) - l(l+1) - s(s+1)]$	(327)

#### 29.1.3 Feinstruktur

Die Feinstruktur vereint relativistische Korrekturen 29.1.1 und die Spin-Orbit-Kupplung 29.1.2.

Energieverschiebung	$\Delta E_{\rm FS} = \frac{Z^2 \alpha^2}{n} \Big( \frac{1}{j + \frac{1}{2}} - \frac{3}{4n} \Big) $ (328)
---------------------	----------------------------------------------------------------------------------------------------------

#### 29.1.4 Lamb-Shift

The Wechselwirkung zwischen dem Elektron und vom Kern absorbierten/emittierten virtuellen Photonen führt zu einer (sehr kleinen) Energieverschiebung.

Potentielle Energy	$\langle E_{\rm pot} \rangle = -\frac{Ze^2}{4\pi\epsilon_0} \left\langle \frac{1}{r+\delta r} \right\rangle $ (329)
	$\delta r$ Schwankung von $r$

#### 29.1.5 Hyperfeinstruktur

Wechselwirkung von Kernspin mit dem vom Elektron erzeugten Magnetfeld spaltet Energieniveaus

$\vec{F} = \vec{J} + \vec{I}$	(330)
$ ec{I}  = \sqrt{i(i+1)}h$	(331)
$I_z = m_i \hbar$	(332)
$m_i = -i, -i+1, \dots, i-1, i$	(333)
	(22.1)
F' = J + I	(334)
$ \vec{F}  = \sqrt{f(f+1)}\hbar$	(335)
$F_z = m_f h$	(336)
$f = j \pm i$	(337)
$m_f = -f, -f + 1, \dots, f - 1, f$	(338)
$q_i \mu_K B_{\rm HFS}$	(222)
$A = \frac{3N - M - J}{\sqrt{j(j+1)}}$	(339)
$B_{\rm HFS}$ Hyperfeinfeld, $\mu_{\rm K}$ Kernmagneton, $g_i$ Kern-g	-Faktor ??
$\Delta H_{\rm HFS} = \frac{A}{2} [f(f+1) - j(j+1) - i(i+1)]$	(340)
	$\vec{F} = \vec{J} + \vec{I}$ $ \vec{I}  = \sqrt{i(i+1)}h$ $I_z = m_ih$ $m_i = -i, -i+1, \dots, i-1, i$ $\vec{F} = \vec{J} + \vec{I}$ $ \vec{F}  = \sqrt{f(f+1)}h$ $F_z = m_fh$ $\vec{f} = j \pm i$ $m_f = -f, -f+1, \dots, f-1, f$ $A = \frac{g_i \mu_{\rm K} B_{\rm HFS}}{\sqrt{j(j+1)}}$ $B_{\rm HFS} \text{ Hyperfeinfeld, } \mu_{\rm K} \text{ Kernmagneton, } g_i \text{ Kern-g}$ $\Delta H_{\rm HFS} = \frac{A}{2} [f(f+1) - j(j+1) - i(i+1)]$

TODO:landé factor

#### 29.2 Effekte im Magnetfeld

TODO:all TODO:Hunds rules

#### 29.3 Sonstiges

	Ein angeregtes Elektron fällt in ein unbesetztes, niedrigeres
Auger-Meitner-Effekt	Energieniveau zurück. Durch die frei werdende Energie ver-
Auger-Effekt	lässt ein Elektron aus einer höheren Schale das Atom (Auger-
	Elektron).

# Teil VII Festkörperphysik

TODO:Bonds, hybridized orbitals

## **30** Kristalle

## 30.1 Bravais-Gitter

Cittorsystem Punkter		5 Bravai	s Gitter
Gittersystem	1 unktgruppe	primitive (p)	centered (c)
monoclinic (m)	$C_2$		
orthorhombic (o)	$D_2$	b a	
tetragonal (t)	$\mathrm{D}_4$		
hexagonal (h)	$D_6$	a 120° a	

## Tabelle 2: In 2D gibt es 5 verschiedene Bravais-Gitter

		Punktgruppe	14 Bravais Gitter			
Kristall-syste	entittersystem		primitive (P)	base_cen- tered (S)	body_cen- tered (I)	face_cen- tered (F)
triclir	iic (a)	$C_i$				
monocli	inic (m)	$C_{2h}$				
orthorho	ombic (o)	$\rm D_{2h}$				
tetrage	onal (t)	$\mathrm{D}_{4\mathrm{h}}$				
hexagonal (h	rhombohe- dral	D _{3d}	a $a$ $a$ $a$ $a$ $a$ $a$ $a$ $a$ $a$			
	hexagonal	$\mathrm{D}_{6\mathrm{h}}$	$\gamma = 120^{\circ}$			
cubi	c (c)	$O_{\rm h}$	a 39 _a a		a a a	

Tabelle 3: In 3D gibt es 14 verschiedene Bravais-Gitter

Gitterkonstante		
Parameter (Länge oder	Symbol: a	
Winkel) der die Einheitszelle	Unit:	
beschreibt		_
Gittervektor	Symbol: $\vec{R}$ Unit:	_
	$\vec{R} = n_1 \vec{a_1} + n_2 \vec{a_2} + n_3 \vec{a_3} \tag{341}$	,
	$n_i \in \mathbb{Z}$	

TODO:primitive unit cell: contains one lattice point

	(hkl)plane	(342)
	[hkl]direction	(343)
Millersche Indizes	$\{hkl\}$ millerFamily	(344)
	Miller family: planes that are equivalent due to crystal metry	sym-

#### 30.2 Reziprokes Gitter

Reziproke Gittervektoren

Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren  $\vec{k}$ , die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.

$$\vec{b_1} = \frac{2\pi}{V_c} \vec{a_2} \times \vec{a_3}$$
 (345)

$$\vec{b_2} = \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1}$$
(346)

$$\vec{b}_3 = \frac{2\pi}{V_c} \vec{a}_1 \times \vec{a}_2 \tag{347}$$

 $a_i$ Bravais-Gitter Vektoren,  $V_c$ Volumen der primitiven Gitterzelle

Pozinvoltor Cittorvoltor	Symbol: $\vec{G}$ Unit:
Reziptoker Gittervektor	$\hat{G}_{hkl} = h\vec{b_1} + k\vec{b_2} + l\vec{b_3} \tag{348}$

#### **30.3** Streuprozesse

Matthiessensche Regel	$\frac{1}{\mu} = \sum_{i=\text{Streuprozesse}} \frac{1}{\mu_i}$	(349)
Näherung, nur gültig wenn die einzelnen Streuprozesse von einander unabhängig sind	$\frac{1}{\tau} = \sum_{i=\text{Streuprozesse}} \frac{1}{\tau_i}$	(350)
	$\mu$ Elektrische Mobilität / Beweglichkeit, $\tau$ Streuzeit	

## 30.4 Gitter

Einfach kubisch (SC) Reziprok: Einfach kubisch	$\vec{a}_1 = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{a}_2 = a \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{a}_3 = a \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} $ (351) <i>a</i> Gitterkonstante
Kubisch raumzentriert (BCC) Reziprok: cm:bravais:fcc	$\vec{a}_1 = \frac{a}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \vec{a}_2 = \frac{a}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \vec{a}_3 = \frac{a}{2} \begin{pmatrix} 1\\1\\-1 \end{pmatrix} $ (352) <i>a</i> Gitterkonstante
Kubisch flächenzentriert (FCC) Reziprok: cm:bravais:bcc	$\vec{a}_1 = \frac{a}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \ \vec{a}_2 = \frac{a}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \ \vec{a}_3 = \frac{a}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix} $ (353) <i>a</i> Gitterkonstante
Diamantstruktur	cm:bravais:fcc mit Basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ und $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$
Zinkblende-Struktur	Wie cm:bravais:diamond aber mit unterschiedlichen Spezies auf den Basen
Wurtzite-Struktur hP4	Image: stal:lat:wurtzite:desc

# 31 Freies Elektronengase

Annahmen: Elektronen bewegen sich frei und unabhänig voneinander.

Driftgeschwindgkeit Geschwindigkeitskomponente durch eine externe Kraft (z.B. ein elektrisches Feld)	$\vec{v}_{\rm D} = \vec{v} - \vec{v}_{\rm th}$ $v_{\rm th}$ thermische Geschwindigkeit	(354)
Mittlere freie Weglänge	$\ell = \langle v \rangle \tau$	(355)
Elektrische Mobilität / Beweglichkeit Leichtigkeit mit der sich durch ein Elektrisches Feld beeinflusstes Teilchen im Material bewegt	$\frac{\text{Symbol: } \mu}{\text{Unit: } 1 \text{ cm}^2/\text{Vs}}$ $\mu = \frac{q\tau}{m}$ $q \text{ Ladung, } m \text{ Masse, } \tau \text{ Streuzeit}$	(356)

#### 31.1 2D Elektronengas

Niederdimensionale Elektronengase erhält man, wenn ein 3D Gas durch unendlich hohe Potentialwände auf einem schmalen Bereich mit Breite L eingeschränkt wird.

Confinement Energie Erhöht die Grundzustandsenergie	$\Delta E = \frac{\hbar^2 \pi^2}{2m_{\rm e}L^2} \tag{357}$				
Energie	$E_n = \underbrace{\frac{\hbar^2 k_{\parallel}^2}{2m_{\rm e}}}_{x-y: \text{ ebene Welle}} + \underbrace{\frac{\hbar^2 \pi^2}{2m_{\rm e}L^2}n^2}_{z}$	(358)			

### 31.2 1D Electronengas / Quantendraht

Energie	$E_n = \frac{\hbar^2 k_x^2}{2m_{\rm e}} + \frac{\hbar^2 \pi^2}{2m_{\rm e} L_z^2} n_1^2 + \frac{\hbar^2 \pi^2}{2m_{\rm e} L_y^2} n_2^2$	(359)
---------	----------------------------------------------------------------------------------------------------------------------------------------	-------

TODO:condunctance

### **31.3 0D** Elektronengase / Quantenpunkt

#### TODO:TODO

## 32 Ladungstransport

### 32.1 Drude-Modell

Ein klassisches Model zur Beschreibung der Transporteigenschaften von Elektronen in (v.a.) Metallen: Der Festkörper wird als Ionenkristall mit frei beweglichen Elektronen (Elektronengas). Die Elektronen werden durch ein Elektrisches Feld E beschleunigt und durch Stöße mit den Gitterionen gebremst. Das Modell vernachlässigt die Fermi-Dirac Verteilung der Leitungselektronen.

Bewegungsgleichung	$m_{\rm e} \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \frac{m_{\rm e}}{\tau} \vec{v}_{\rm D} = -e\vec{\mathcal{E}}$	<b>3</b> (360)
Dewegungsgielenung	$v$ Elektron engeschwindigkeit, $\vec{v}_{\rm D}$ Drif Stoßzeit	ftgeschwindigkeit, $\tau$

	Symbol: $\tau$ Unit: 1 s
Streuzeit	$\overline{\tau}$
Momentum relaxation time	the average time between scattering events weighted by the
	cess.
Stromdichte	Symbol: $\vec{j}$ Unit: 1 A/m ²
Ohmsches Gesetz	$\vec{j} = -ne\vec{v}_{\rm D} = ne\mu\vec{\mathcal{E}} \tag{361}$
	n Ladungsträgerdichte
Drude-Leitfähigkeit	$\sigma = \frac{\vec{j}}{\vec{\mathcal{E}}} = \frac{e^2 \tau n}{m_{\rm e}} = n e \mu \tag{362}$

#### 32.2 Sommerfeld-Modell

Annahme eines freien Fermionengases, welches dem Pauli-Prinzip unterliegt. Nur Elektronen in einem Energiebereich von  $k_{\rm B}T$  um die Fermi Energe  $E_{\rm F}$  nehmen an Streuprozessen teil.

Elektrische Stromdichte	$\vec{j} = -en\langle v \rangle = -en\frac{\hbar}{m_{\rm e}}\langle \vec{k} \rangle = -e\frac{1}{V}\sum_{\vec{k},\sigma}\frac{\hbar k}{m_{\rm e}} $ (36)	53)
-------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------	-----

TODO: The formula for the conductivity is the same as in the drude model?

#### 32.3 Boltzmann-Transport

 $Semiklassische Beschreibung, benutzt \ \underline{eine Wahrscheinlichkeitsverteilung (stat: todo: fermi_dirac).$ 

Boltzmann- Transportgleichung für Ladungstransport	$\frac{\partial f(\vec{r},\vec{k},t)}{\partial t} = -\vec{v}\cdot\vec{\nabla}_{\vec{r}}f - \frac{e}{\hbar}(\vec{\mathcal{E}}+\vec{v}\times\vec{B})\cdot\vec{\nabla}_{\vec{k}}f + \left(\frac{\partial f(\vec{r},\vec{k},t)}{\partial t}\right)_{\text{scatte}} $ (364)
	f ??

#### 32.4 misc

Tsu-Esaki Tunnelstrom Beschreibt den Strom  $I_{L\leftrightarrow R}$ durch eine Barriere  $I_{T} = \frac{2C}{h} \int_{U_{L}} (f(E, \mu_{L}))$ 

$I_{\rm T} = \frac{2e}{h} \int$	$\int_{U_{\rm L}}^{\infty} \left( f(E,\mu_{\rm L}) - f(E,\mu_{\rm R}) \right) T(E)  \mathrm{d}E$	(365)
---------------------------------	--------------------------------------------------------------------------------------------------	-------

 $\mu_i$ ??<br/>?:chemical_pot links/rechts,  $U_i$  Spannung links/rechts. Elektron<br/>en besetzen Bereich zwischen  $U_i$  und  $\mu_i$ 

Kontinuitätsgleichung der Ladung Elektrische Ladung kann sich nur durch die Stärke des	$\frac{\partial \rho}{\partial t} = -\nabla \vec{j}$	(366)
nur durch die Starke des Stromes ändern	$\rho$ Ladungsdichte, $j$ Stromdichte	

## 33 Supraleitung

Materialien, bei denen der elektrische Widerstand beim unterschreiten einer kritischen Temperatur  $T_{\rm c}$  auf 0 springt. Sie verhalten sich dann wie ideale Leiter und ideale Diamagnete, bis zu einem kritischen Feld  $B_{\rm c}$ .

Ideale Leiter	Im Gegensatz zu einem Supraleiter werden ideale Leiter nur dann diamagnetisch, wenn das externe magnetische Feld <b>nach</b> dem Abkühlen unter die kritische Temperatur einge- schaltet wird. (ed:fields:mag:induction:lenz)
Meißner-Ochsenfeld Effekt Idealer Diamagnetismus	Externes Magnetfeld fällt im Supraleiter exponentiell unter- halb einer kritischen Temperatur und unterhalb einer kriti- schen Feldstärke ab.

#### 33.1 London-Gleichungen

Erste London-Gleichun-

Quantitative Beschreibung des Meißner-Ochsenfeld Effekts.

$\frac{\partial \vec{j}_{\rm s}}{\partial t} = \frac{n_{\rm s} q_{\rm s}^2}{m_{\rm s}} \vec{E} - \mathcal{O}\left(\vec{j}_{\rm s}^2\right)$	(367)
$\vec{i}$ Stromdichte, $n_{\alpha}$ , $m_{\alpha}$ , $q_{\alpha}$ Dichte, Masse und Ladung	der su-

j Stromdichte, $i$	$n_{\rm s}, m_{\rm s}, q_{\rm s}$	Dichte,	Masse	und	Ladung	der	su-
praleitenden Tei	ilchen						

(369)

Zweite London-Gleichung Beschreibt den Meißner-Ochsenfeld Effekt	$\vec{\nabla} \times \vec{j_{\rm s}} = -\frac{n_{\rm s} q_{\rm s}^2}{m_{\rm s}} \vec{B} \tag{368}$
	$\vec{j}$ Stromdichte, $n_{\rm s},m_{\rm s},q_{\rm s}$ Dichte, Masse und Ladung der supraleitenden Teilchen

London Eindringtiefe	$\lambda_{\rm L} = \sqrt{\frac{m_{\rm s}}{\mu_0 n_{\rm s} q_{\rm s}^2}}$
----------------------	--------------------------------------------------------------------------

### 33.2 Ginzburg-Landau Theorie (GLAG)

Ginzburg-Landau	$\xi_{\rm GL} = \frac{\hbar}{\sqrt{2m \alpha }}$	(370)
Kohärenzlänge	$\xi_{\rm GL}(T) = \xi_{\rm GL}(0) \frac{1}{\sqrt{1 - \frac{T}{T_{\rm c}}}}$	(371)

Ginzburg-Landau Eindringtiefe  $\lambda_{\rm GL} = \sqrt{\frac{m_{\rm s}\beta}{\mu_0|\alpha|q_s^2}} \qquad (372)$  $\lambda_{\rm GL}(T) = \lambda_{\rm GL}(0) \frac{1}{\sqrt{1 - \frac{T}{T_c}}} \qquad (373)$ 

rg-Landau  $\begin{aligned} \alpha \Psi + \beta |\Psi|^2 \Psi + \frac{1}{2m} (-i\hbar \vec{\nabla} + 2e\vec{A})^2 \Psi &= 0 \quad (374) \\ \xi_{\rm GL} \text{ Ginzburg-Landau Kohärenzlänge, } \lambda_{\rm GL} \text{ Ginzburg-Landau Eindringtiefe} \end{aligned}$ 

Erste Ginzburg-Landau Gleichung Zweite Ginzburg-Landau Gleichung  $\vec{j}_{s} = \frac{ie\hbar}{m} (\Psi^* \vec{\nabla} \Psi - \Psi \vec{\nabla} \Psi^*) - \frac{4e^2}{m} |\Psi|^2 \vec{A}$  (375)

TODO:proximity effect

## 33.3 Mikroskopische Theorie

### 33.4 BCS-Theorie

## **34** Halbleiter

Intrinsisch/E	$\operatorname{xtrinsisch}$	Intri rnsisch: Pur, Elektronendichte gegeben durch thermische Anregung und $n_i^2 = n_0 p_0$ Extrinsisch: gedoped $n, p$ Ladungsträger dichte im Equilibrium		
Ladungsträge Equilibrium Gilt wenn $\frac{E_{\rm c}}{k_{\rm I}}$ $\frac{E_{\rm F}-E_{\rm v}}{k_{\rm B}T} > 3.6$	$\frac{-E_{\rm F}}{{}_{3}T} > 3.6 \text{ und}$	$n_{0} \approx N_{c}(T) \exp\left(-\frac{E_{c} - E_{F}}{k_{B}T}\right) $ $p_{0} \approx N_{v}(T) \exp\left(-\frac{E_{F} - E_{v}}{k_{B}T}\right) $ $(376)$ $(377)$		
Intrinsische Ladungsträge	erdichte	$n_{\rm i} \approx \sqrt{n_0 p_0} = \sqrt{N_{\rm c}(T) N_{\rm v}(T)} \exp\left(-\frac{E_{\rm gap}}{2k_{\rm B}T}\right) $ (378)		
Massenwirku Ladungsträge Equilibrium, Dotierung	ngsgesetz erdichten im unabhängig der	$np = n_i^2 \tag{379}$		
Diamant Si Ge GaP GaAs InSb InP CdS	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \begin{array}{c} & & \\ & & \\ ap(300  \mathrm{K})[\mathrm{eV}] \\ \hline & 5,47 & \mathrm{indirect} \\ & 1,12 & \mathrm{indirect} \\ & 0,66 & \mathrm{indirect} \\ & 2,26 & \mathrm{indirect} \\ & 1,43 & \mathrm{direct} \\ & 1,43 & \mathrm{direct} \\ & 0,18 & \mathrm{direct} \\ & 1,35 & \mathrm{direct} \\ & 2.42 & \mathrm{direct} \\ \hline \end{array}$		
Minoritäts- / Majoritätslad	ungstraäger	Majoritätsladungstraäger: höhere Teilchenzahl ( $e^{-}$ in n-Typ $h^{+}$ in p-Typ) Minoritätsladungsträger: niedrigere Teilchenzahl ( $h^{+}$ in r Typ, $e^{-}$ in p-Typ)		

## 35 Bändermodell

#### 35.1 Hybridorbitale

Hybridorbitale werden durch Linearkombinationen von anderen atomorbitalen gebildet.

${ m sp3~Orbital}$ eg ${ m CH}_4$	1s + 3p = sp3 (380)
sp2 Orbital	$1s + 2p = sp2 \qquad \qquad$
sp Orbital	$1s + 1p = sp \qquad (382)$

# 36 Diffusion

Diffusionskoeffizient	Symbol: D Unit: 1 m ² /s
Teilchenstromdichte Anzahl der Teilchen durch eine Fläche	Symbol: J Unit: 11/s ²
Einsteinrelation Klassisch	$D = \frac{\mu k_{\rm B} T}{q} $ (383) D Diffusionskoeffizient, $\mu$ Elektrische Mobilität / Beweglich- keit, T Temperatur, q Ladung
Konzentration Eine Größe pro Volumen	Symbol: $c$ Unit: $1 \text{ x/m}^3$
Erstes Ficksches Gesetz Teilchenbewegung ist proportional zum Konzentrationsgradienten	$J = -D\frac{c}{x} $ (384) J Teilchenstromdichte, D Diffusionskoeffizient, c Konzentra- tion
Zweites Ficksches Gesetz	$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} $ (385) J Teilchenstromdichte, D Diffusionskoeffizient, c Konzentra- tion

# 37 misc

Exziton	Quasiteilchen, Anregung im Festkörper als gebundenes Elektron-Loch-Paar
Austrittsarbeit eng. "Work function"; minimale Energie um ein Elektron aus dem Festkörper zu lösen	Symbol: $W$ Unit: 1 eV $-e\phi - E_{\rm F}$ (386)

## 38 Messtechniken

#### **38.1 ARPES**

what? in? how? plot

## 38.2 Rastersondenmikroskopie (SPM)

Bilder der Oberfläche einer Probe werden erstellt, indem die Probe mit einer Sonde abgetastet wird.

Name	\fqname :amf:name
Anwendung	\fqname :amf:application
how	\fqname :amf:how





Name	\fqname :stm:name
Anwendung	\fqname :stm:application
how	\fqname :stm:how



Abbildung 2: [?]

## 39 Herstellungsmethoden

			(c): neater
Name	\fqname :cvd:name		
how	fqname : cvd:how	(a): Source materials	
Anwendung	fqname : cvd: application	+ carrier gas	(b) Substrates
			(c): heater

### 39.1 Epitaxie

Eine Art des Kristallwachstums, bei der mindestens eine kristallographische Ordnung der wachsenden Schicht der des Substrates entspricht.



# Teil VIII Topologische Materialien

## 40 Berry-Phase / Geometrische Phase

Beim adiabatischem Durchlauf eines geschlossenen Weges durch den Parameterraum R(t) kann die Wellenfunktion eines Systems eine zusätzliche Phase  $\gamma$  erhalten.

Wenn  $\overline{R}(t)$  adiabatisch (langsam) variiert und das System anfangs im Eigenzustand  $|n\rangle$  ist, bleibt das System während dem Prozess in einem Eigenzustand (Adiabatisches Theorem der Quantenmechanik).

Schrödinger Gleichung	$H(\vec{R}(t)) n(\vec{R}(t))\rangle = \epsilon(\vec{R}(t)) n(\vec{R}(t))\rangle$	(387)
Wellenfunktion Nach vollem adiabtischem Umlauf in $\vec{R}$	$ \psi_n(t)\rangle = \underbrace{\mathrm{e}^{i\gamma_n(t)}}_{\text{Berry Phase Dynamische Phase}} \underbrace{\mathrm{e}^{\frac{-i}{\hbar}\int^r \epsilon_n(\vec{R}(t'))\mathrm{d}t}}_{\text{Dynamische Phase}}  n(\vec{R}(t))\rangle$	(388)
Berry connection	$A_n(\vec{R}) = i \langle \psi   \nabla_R   \psi \rangle$	(389)
Berry-Krümmung Eichinvariant	$\vec{\Omega}_n = \vec{\nabla}_R \times A_n(\vec{R})$	(390)
Berry-Phase Eichinvariant bis auf $2\pi$	$\gamma_n = \oint_C \mathrm{d}\vec{R} \cdot A_n(\vec{R}) = \int_S \mathrm{d}\vec{S} \cdot \vec{\Omega}_n(\vec{R})$	(391)

Der Berry-Fluß durch eine geschlossene 2D Fl[cher is quantisiert durch die **Chernzahl** Bei erhaltener Zeitumkehrungssymmetrie ist die Chernzahl 0.

Chernuzahl

Der Berry-Fluß durch eine geschlossene 2D Fl[cher is quantisiert durch die **Chernzahl** Bei erhaltener Zeitumkehrungssymmetrie ist die Chernzahl 0.

$$C_n = \frac{1}{2\pi} \oint d\vec{S} \cdot \vec{\Omega}_n(\vec{R})$$
(392)

 $\vec{S}$ geschlossene Fläche im  $\vec{R}\text{-}\mathrm{Raum}$ 

Hall-Leitfähigkeit eines 2D Band-Isolators

$$\vec{\sigma}_{xy} = \sum_{n} \frac{e^2}{h} \int_{\text{occupied}} \mathrm{d}^2 k \, \frac{\Omega_{xy}^n}{2\pi} = \sum_{n} C_n \frac{e^2}{h} \tag{393}$$

Beim adiabatischem Durchlauf eines geschlossenen Weges durch den Parameterraum R(t) kann die Wellenfunktion eines Systems eine zusätzliche Phase  $\gamma$  erhalten.

Wenn  $\vec{R}(t)$  adiabatisch (langsam) variiert und das System anfangs im Eigenzustand  $|n\rangle$  ist, bleibt das System während dem Prozess in einem Eigenzustand (Adiabatisches Theorem der Quantenmechanik).

# Teil IX Quantencomputing

# 41 Qubits

Bloch-Sphäre

$\left \psi\right\rangle = \alpha\left 0\right\rangle + \beta\left 1\right\rangle$	(394)
$=\cos\frac{\theta}{2}e^{i\phi_{\alpha}}\left 0\right\rangle +\sin\frac{\theta}{2}e^{i\phi_{\beta}}\left 1\right\rangle$	(395)
$= e^{i\phi_{\alpha}}\cos\frac{\theta}{2}\left 0\right\rangle + \sin\frac{\theta}{2}e^{i\phi}\left 1\right\rangle$	(396)

## 42 Gates

\fqname :gates	TODO: remove macro?	(397)
/iquame .gaves	IODO: remove macro2	(397)

## 43 Supraleitende qubits

#### 43.1 Bauelemente

#### 43.1.1 Josephson-Kontakt

Wenn zwei Supraleiter durch einen dünnen Isolator getrennt sind, können Cooper-Paare durch den Isolator tunneln. Der Josephson-Kontakt ist ein nicht-linearer Induktor.

Josephson-Hamiltonian	$\hat{H}_{\rm J} = -\frac{E_{\rm J}}{2} \sum_{n} [ n\rangle \langle n+1  +  n+1\rangle \langle n ] \qquad (398)$
1. Josephson Gleichung Dissipationsloser Suprastrom durch die Kreuzung ohne angelegte Spannung	$\hat{I}  \delta\rangle = I_{\rm C} \sin \delta  \delta\rangle $ (399) $I_{\rm C} = \frac{2e}{h} E_{\rm J} \text{ kritischer Strom, } \delta \text{ Phasendifferenz zwischen den Supraleitern}$
2. Josephson Gleichung Supraleitende Phasendifferenz is proportional zur angelegten Spannung	$\frac{\mathrm{d}\hat{\delta}}{\mathrm{d}t} = \frac{1}{i\hbar} [\hat{H}, \hat{\delta}] = -\frac{2eU}{i\hbar} [\hat{n}, \hat{\delta}] = \frac{1}{\varphi_0} U \qquad (400)$ $\varphi_0 = \frac{\hbar}{2e} \text{ reduziertes Flussquantum}$

#### 43.1.2 SQUID

### SQUID

Superconducting quantum interference device, besteht aus parralelen nd kann zur Messung extrem schwacher Magnetfelder genutzt werden



## $\hat{H} = -E_{\rm J1}\cos\hat{\phi}_1 - E_{\rm J2}\cos\hat{\phi}_2$

(401)

 $\hat{\phi}$  Phasendifferenz an einer Junction



			$E_L/(E_J$	$-E_L$ )		vity
		0	≪ 1	~ 1	>> 1	large 1 ensitiv
	≪1	cooper-pair box				s I s
$\frac{E_J}{E_C}$	~ 1	quantronium	fluxonium			C. Sellailly
	$\gg 1$	transmon			flux qubit	hoise se cu
	»» 1			phase qubit		ensite offer

## 43.3 Cooper Paar Box (QPB) Qubit

= voltage bias junction

= charge qubit?

Cooper Pair Box / Charge Qubit

- Große Anharmonizität
- Sensibel für charge noise

Hamiltonian

$$\hat{H} = 4E_C(\hat{n} - n_g)^2 - E_J \cos \hat{\phi}$$
(407)  
=  $\sum_n \left[ 4E_C(n - n_g)^2 |n\rangle \langle n| - \frac{E_J}{2} |n\rangle \langle n + 1| + |n + 1\rangle \langle n| \right]$ (408)

 $C_{\rm g}$ 

 $C_1$ 

V

#### 43.4 Transmon Qubit



# Hamiltonian $\hat{H} = 4E_C \hat{n}^2 - E_J \cos \hat{\phi}$ (409)

#### 43.4.1 Tunable Transmon Qubit

Frequency tunable transmon Durch Nutzung eines SQUID anstatt eines Josephson-Kontakts, ist die Frequenz des Qubits durch ein externes Magnetfeld einstellbar	$C_C$
Josephson Energie	$E_{\rm J,eff}(\Phi_{\rm ext}) = (E_{\rm J1} + E_{\rm J2}) \sqrt{\cos^2\left(\pi \frac{\Phi_{\rm ext}}{\Phi_0}\right) + d^2 \sin\left(\pi \frac{\Phi_{\rm ext}}{\Phi_0}\right)} $ (410) $d = (E_{\rm J1} - E_{\rm J2})/(E_{\rm J1} + E_{\rm J2}) \text{ Asymmetrie}$
Hamiltonian	$\hat{H} = 4E_C \hat{n}^2 - \frac{1}{2} E_{\text{J,eff}}(\Phi_{\text{ext}}) \sum_n [ n\rangle \langle n+1  +  n+1\rangle \langle n ]  (411)$



Abbildung 3: Transmon and so TODO

#### 43.5 Phase Qubit



This is only a test

#### 43.6 Flux Qubit

#### TODO:TODO



#### 43.7 Fluxonium Qubit



Hamiltonian  

$$\hat{H} = 4E_{\rm C}\hat{n}^2 - E_{\rm J}\cos\hat{\delta} + E_{\rm L}(\hat{\delta} - \delta_{\rm s})^2 \qquad (413)$$

$$E_{\rm C} = \frac{(2e)^2}{2C}, E_{\rm L} = \frac{\varphi_0^2}{2L}, \delta_{\rm s} = \frac{\varphi_{\rm s}}{\varphi_0}$$



Abbildung 4: img/

# 44 Zwei-Niveau System

Ressonanzfrequenz	$\omega_{21} = \frac{E_2 - E_1}{h}$	(414)
TODO:sollte das nicht 10 sein?		
	$\Omega_T ODO$	(415)
Rabi-Oszillationen	$\omega_{21}$ Resonanzfrequenz des Energieübergangs, $\Omega$ Frequenz	? Rabi-

## 44.1 Ramsey Interferometrie

 $\mathbf{q}$ 

# 45 Noise und Dekohärenz

Longitudinale Relaxationsrate

$\Gamma_{1\downarrow}:  1\rangle \to  0\rangle$	$\Gamma_1 = \frac{1}{T_1} = \Gamma_{1\uparrow} + \Gamma_{1\downarrow}$	(416)
$\Gamma_{1\uparrow} \colon  0\rangle \to  1\rangle$		

Longitudinale Relaxationsrate		
Reine Phasenverschiebung	$\Gamma_{\phi}$	(417)
Transversale Relaxationsrate	$\Gamma_2 = \frac{1}{T_2} = \frac{\Gamma_1}{2} + \Gamma_\phi$	(418)
Bloch-Redfield Dichtematrix 2-Niveau System schwach an Noise Quellen mit kurzer Korrelationszeit gekoppelt	$\rho_{\rm BR} = \begin{pmatrix} 1 + ( \alpha ^2 - 1) e^{-\Gamma_1 t} & \alpha \beta^* e^{-\Gamma_2 t} \\ \alpha^* \beta e^{-\Gamma_2 t} &  \beta ^2 e^{-\Gamma_1 t} \end{pmatrix}$	(419)

# Teil X Computergestützte Physik

## 46 Quanten-Vielteilchenphysik

## TODO:TODO

## 46.1 Importance sampling / Stichprobenentnahme nach Wichtigkeit

with

TODO:Monte Carlo

## 46.2 Matrix Produktzustände

## 47 Electronic structure theory

$\hat{H} = \hat{T}_{e} + \hat{T}_{n} + V_{e \leftrightarrow e} + V_{\eta \leftrightarrow e} + V_{\eta \leftrightarrow \eta}$	(420)
------------------------------------------------------------------------------------------------------------------------------	-------

$$\hat{T}_i = -\sum_{n=1}^{N_i} \frac{\hbar^2}{2m_i} \vec{\nabla}_n^2 \tag{421}$$

Electronic structure Hamiltonian

$$\hat{V}_{i \leftrightarrow j} = -\sum_{k,l} \frac{Z_i Z_j \,\mathrm{e}^2}{|\vec{r}_k - \vec{r}_l|} \tag{422}$$

 $\hat{T}$ kinetic energy,  $\hat{V}$  electrostatic potential, e electrons, n nucleons

Molekularfeldnäherung Ersetzt 2-Teilchen Operator	$\frac{1}{2} \sum_{i \neq j} \frac{e^2}{ \vec{r}_i - \vec{r}_j } \approx \sum_i V_{\text{eff}}(\vec{r}_i) $ (423)
durch 1-Teilchen Operator	Beispiel für Coulumb Wechselwirkung zwischen Elektronen

## 47.1 Tight-binding

## 47.2 Dichtefunktionaltheorie (DFT)

### 47.2.1 Hartree-Fock

- comp:misc:mean_field theory
- Self-interaction free: Self interaction is cancelled out by the Fock-term

$$\left(\hat{T} + \hat{V}_{\rm en} + \hat{V}_{\rm HF}^{\xi}\right)\varphi_{\xi}(x) = \epsilon_{\xi}\varphi_{\xi}(x) \tag{424}$$

Hartree-Fock Gleichung

 $\varphi_{\xi}$ ein-Teilchen Wellenfunktion des  $\xi$ -ten Orbitals,  $\hat{T}$ kinetische Energie der Elektronen,  $\hat{V}_{\rm en}$  Electron-Kern Anziehung,  $\hat{V}_{\rm HF}$  comp:dft:hf:potential

$$V_{\rm HF}^{\xi}(\vec{r}) = \sum_{\vartheta} \int dx' \frac{e^2}{|\vec{r} - \vec{r}'|} \left( \underbrace{\frac{|\varphi_{\xi}(x')|^2}{|\vec{r} - \vec{r}'|}}_{\rm Hartree-Term} - \underbrace{\frac{\varphi_{\vartheta}^*(x')\varphi_{\xi}(x')\varphi_{\vartheta}(x)}{\varphi_{\xi}(x)}}_{\rm Fock-Term} \right)$$
(425)

Hartree Fock Potential

	1. Initial guess for $\psi$
Self-consistend field cycle	2. Solve SG for each particle
	3. Make new guess for $\psi$

# 48 Atomic dynamics

#### 48.1 Kohn-Sham

TODO:TODO

## 48.2 Born-Oppenheimer Näherung

TODO:TODO, BO surface

## 48.3 Molekulardynamik

#### Statistical method

TODO:ab-initio MD, force-field MD

## 49 Gradientenverfahren

## TODO:TODO

## 50 Physikalische Größen

## 50.1 SI-Basisgrößen

Zeit	Symbol: t Unit: 1 s
Länge	Symbol: <i>l</i> Unit: 1 m
Masse	Symbol: m Unit: 1 kg
Temperatur	Symbol: T Unit: 1 K
Elektrischer Strom	Symbol: <i>I</i> Unit: 1 A
Stoffmenge	Symbol: n Unit: 1 mol
Lichtstärke	Symbol: I _V Unit: 1 cd

## 50.2 Mechanik

Kraft	Symbol: $\vec{F}$ Unit: $1 \text{ N} = 1 \text{ kgm/s}^2$
Federkonstante	Symbol: $k$ Unit: $1 \mathrm{N}\mathrm{m}^{-1} = 1 \mathrm{kg/s^2}$
Geschwindigkeit	Symbol: $\vec{v}$ Unit: $1 \mathrm{m  s^{-1}}$
Drehmoment	Symbol: $\tau$ Unit: $1 \text{ N m} = 1 \text{ kgm}^2/\text{s}^2$

## 50.3 Thermodynamik

Volumen $d$ dimensionales Volumen	Symbol: $V$ Unit: $1 \text{ m}^d$
Wärmekapazität	$\begin{array}{c} \text{Symbol: } C \\ \text{Unit: } 1  \mathrm{J}  \mathrm{K}^{-1} \end{array}$

## 50.4 Elektrodynamik

Ladung	Symbol: $q$ Unit: $1 \text{ C} = 1 \text{ A s}$
Ladungsdichte	Symbol: $\rho$ Unit: 1 C/m ³

## 50.5 Sonstige

# 51 Konstanten

	Symbol: h	
Plancksches	Definierter Wert	
Wirkumsquantum	$6.62607015 \cdot 10^{-34}\mathrm{Js}$	
	$4.135667969\ldots \cdot 10^{-15}\mathrm{eVs}$	
	Symbol: R	
Universelle Gaskonstante	Definierter Wert	
Proportionalitätskonstante	$8.31446261815324\mathrm{Jmol^{-1}K}$	
für ideale Gase	$N_{ m A} \cdot k_{ m B}$	
	$N_{\rm A}$ Avogadro-Konstante, $k_{\rm B}$ Boltzmann-Konstante	
Amora dua Kanstanta	Symbol: $N_{\rm A}$	
	Definierter Wert	
Anzani der Molekule pro mol	$6.02214076 \cdot 10^{23}  1/mol$	

Boltzmann-Konstante	Symbol: $k_{\rm B}$
Temperatur-Energie	Definierter Wert
Umrechnungsfaktor	$1.380649 \cdot 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
Faraday-Konstante Elektrische Ladungs von einem Mol einfach geladener Ionen	$\begin{array}{l} \mbox{Symbol: } F \\ \mbox{Definierter Wert} \\ & 9.64853321233100184{\rm Cmol}^{-1} \\ & N_{\rm A}e \\ N_{\rm A} \mbox{ Avogadro-Konstante}, k_{\rm B} \mbox{ Boltzmann-Konstante} \end{array}$

# Teil XI Chemie

## 52 Periodensystem



## 53 stuff

Kolvalanta Bindung	Bindungen zwischen Atomen die durch geteilte Elektronen,
Kolvalente Dindung	welche Elektronenpaare bilden, gebildet werden.

# Teil XII Anhang

# Abbildungsverzeichnis

1	[?]	47
2	[?]	47
3	Transmon and so TODO	53
4	img/	54

# Tabellenverzeichnis

1	caption	17
2	In 2D gibt es 5 verschiedene Bravais-Gitter	38
3	In 3D gibt es 14 verschiedene Bravais-Gitter	39

## 54 Liste der Elemente

Wasserstoff English: Hydrogen farbloses Gas (H2)	Symbol: H Number: 1 Kristallstruktur: hex Elektronenkonfiguration: 1s[1] magnetic_ordering: diamagnetic atomic_mass: 1.0081 set: nonmetal
Helium English: Helium farbloses Gas	Symbol: He Number: 2 Kristallstruktur: hcp Elektronenkonfiguration: 1s[1] magnetic_ordering: diamagnetic atomic_mass: 4.0026022 set: noblegas
Lithium English: Lithium silbrig weiß/grau	Symbol: Li Number: 3 Kristallstruktur: bcc Elektronenkonfiguration: He 2s[1] magnetic_ordering: paramagnetic atomic_mass: 6.946 set: alkalimetal
Beryllium English: Beryllium weiß-grau metallisch	Symbol: Be Number: 4 Kristallstruktur: hcp Elektronenkonfiguration: He 2s[2] magnetic_ordering: diamagnetic atomic_mass: 9.01218315 set: alkalineearthmetal

Bor English: Boron schwarz	Symbol: B Number: 5 Kristallstruktur: rho Elektronenkonfiguration: He 2s[2] 2p[1] magnetic_ordering: diamagnetic atomic_mass: 10.811 set: metalloid
Kohlenstoff English: Carbon schwarz (Graphit); farblos (Diamant)	Symbol: C Number: 6 Kristallstruktur: hex Elektronenkonfiguration: He 2s[2] 2p[2] magnetic_ordering: diamagnetic atomic_mass: 12.01112 set: nonmetal
Stickstoff English: Nitrogen farbloses Gas	Symbol: N Number: 7 Kristallstruktur: hex Elektronenkonfiguration: He 2s[2] 2p[3] magnetic_ordering: diamagnetic atomic_mass: 14.006714 set: nonmetal
Sauerstoff English: Oxygen farbloses Gas	Symbol: O Number: 8 Kristallstruktur: sc Elektronenkonfiguration: He 2s[2] 2p[4] magnetic_ordering: paramagnetic atomic_mass: 15.99915 set: nonmetal
Fluor English: Fluorine blasses, gelbliches Gas	Symbol: F Number: 9 refractive_index: 1.000195 Kristallstruktur: sc Elektronenkonfiguration: He 2s[2] 2p[5] magnetic_ordering: diamagnetic atomic_mass: 18.9984031636 set: halogen
Neon English: Neon farbloses Gas	Symbol: Ne Number: 10 refractive_index: 1.000067 Kristallstruktur: fcc Elektronenkonfiguration: He 2s[2] 2p[6] magnetic_ordering: diamagnetic atomic_mass: 20.17976 set: noblegas

Natrium English: Sodium silbrig weiß	Symbol: Na Number: 11 Kristallstruktur: bcc Elektronenkonfiguration: Ne 3s[1] magnetic_ordering: paramagnetic atomic_mass: 22.989769282 set: alkalimetal
Magnesium English: Magnesium silbrig weiß	Symbol: Mg Number: 12 Kristallstruktur: hcp Elektronenkonfiguration: Ne 3s[2] magnetic_ordering: paramagnetic atomic_mass: 24.30524 set: alkalineearthmetal
Aluminium English: Aluminum silbrig	Symbol: Al Number: 13 Kristallstruktur: fcc Elektronenkonfiguration: Ne 3s[2] 3p[1] magnetic_ordering: paramagnetic atomic_mass: 26.98153857 set: metal
Silicium English: Silicon dunkelgrau, bläulicher Farbton	Symbol: Si Number: 14 Kristallstruktur: dc Elektronenkonfiguration: Ne 3s[2] 3p[2] magnetic_ordering: diamagnetic atomic_mass: 28.08528 set: metalloid
Phosphor English: Phosphorus weiß-beige (W); dunkelrot (R); schwarz (S)	Symbol: P Number: 15 refractive_index: 1.001212 Kristallstruktur: orth Elektronenkonfiguration: Ne 3s[2] 3p[3] magnetic_ordering: diamagnetic atomic_mass: 30.9737619985 set: nonmetal
Schwefel English: Sulfur gelb	Symbol: S Number: 16 refractive_index: 1.001111 Kristallstruktur: orth Elektronenkonfiguration: Ne 3s[2] 3p[4] magnetic_ordering: diamagnetic atomic_mass: 32.0632 set: nonmetal

Chlor English: Chlorine gelblich-grün	Symbol: Cl Number: 17 refractive_index: 1.000773 Kristallstruktur: orth Elektronenkonfiguration: Ne 3s[2] 3p[5] magnetic_ordering: diamagnetic atomic_mass: 35.4535 set: halogen
Argon English: Argon farbloses Gas	Symbol: Ar Number: 18 refractive_index: 1.000281 Kristallstruktur: fcc Elektronenkonfiguration: Ne 3s[2] 3p[6] magnetic_ordering: diamagnetic atomic_mass: 39.9481 set: noblegas
Kalium English: Potassium silbrig weiß	Symbol: K Number: 19 Kristallstruktur: bcc Elektronenkonfiguration: Ar 4s[1] magnetic_ordering: paramagnetic atomic_mass: 39.09831 set: alkalimetal
Calcium English: Calcium silbrig weiß	Symbol: Ca Number: 20 Kristallstruktur: fcc Elektronenkonfiguration: Ar 4s[2] magnetic_ordering: diamagnetic atomic_mass: 40.0784 set: alkalineearthmetal
Scandium English: Scandium silbrig weiß	Symbol: Sc Number: 21 Kristallstruktur: hcp Elektronenkonfiguration: Ar 3d[1] 4s[2] magnetic_ordering: paramagnetic atomic_mass: 44.9559085 set: transitionmetal
Titan English: Titanium silbrig metallisch	Symbol: Ti Number: 22 Kristallstruktur: hcp Elektronenkonfiguration: Ar 3d[2] 4s[2] magnetic_ordering: paramagnetic atomic_mass: 47.8671 set: transitionmetal

Vanadium English: Vanadium stahlgrau metallisch, bläulich schimmernd	Symbol: V Number: 23 Kristallstruktur: bcc Elektronenkonfiguration: Ar 3d[3] 4s[2] magnetic_ordering: paramagnetic atomic_mass: 50.94151 set: transitionmetal
Chrom English: Chromium silbrig metallisch	Symbol: Cr Number: 24 Kristallstruktur: bcc Elektronenkonfiguration: Ar 3d[5] 4s[1] magnetic_ordering: antiferromagnetic atomic_mass: 51.99616 set: transitionmetal
Mangan English: Manganese silbrig metallisch (Stahlweiß)	Symbol: Mn Number: 25 Kristallstruktur: bcc Elektronenkonfiguration: Ar 3d[5] 4s[2] magnetic_ordering: antiferromagnetic atomic_mass: 54.9380443 set: transitionmetal
Eisen English: Iron metallisch glänzend mit einem gräulichen Farbton	Symbol: Fe Number: 26 Kristallstruktur: bcc Elektronenkonfiguration: Ar 3d[6] 4s[2] magnetic_ordering: ferromagnetic atomic_mass: 55.8452 set: transitionmetal
Cobalt English: Cobalt stahlgrauer metallisch glänzender Feststoff	Symbol: Co Number: 27 Kristallstruktur: hcp Elektronenkonfiguration: Ar 3d[7] 4s[2] magnetic_ordering: ferromagnetic atomic_mass: 58.9331944 set: transitionmetal
Nickel English: Nickel lustrous, metallic, and silver with a gold tinge	Symbol: Ni Number: 28 Kristallstruktur: fcc Elektronenkonfiguration: Ar 3d[8] 4s[2] magnetic_ordering: ferromagnetic atomic_mass: 58.69344 set: transitionmetal

Kupfer English: Copper rotbraun, metallisch	Symbol: Cu Number: 29 Kristallstruktur: fcc Elektronenkonfiguration: Ar 3d[10] 4s[1] magnetic_ordering: diamagnetic atomic_mass: 63.5463 set: transitionmetal
Zink English: Zinc bläulich blassgrau	Symbol: Zn Number: 30 refractive_index: 1.00205 Kristallstruktur: hcp Elektronenkonfiguration: Ar 3d[10] 4s[2] magnetic_ordering: diamagnetic atomic_mass: 65.382 set: transitionmetal
Gallium English: Gallium silbrig weiß	Symbol: Ga Number: 31 Kristallstruktur: orth Elektronenkonfiguration: Ar 3d[10] 4s[2] 4p[1] magnetic_ordering: diamagnetic atomic_mass: 69.7231 set: metal
Germanium English: Germanium gräulich weiß	Symbol: Ge Number: 32 Kristallstruktur: dc Elektronenkonfiguration: Ar 3d[10] 4s[2] 4p[2] magnetic_ordering: diamagnetic atomic_mass: 72.6308 set: metalloid
Arsen English: Arsenic metallisch grau, gelb oder schwarz	Symbol: As Number: 33 refractive_index: 1.001552 Kristallstruktur: rho Elektronenkonfiguration: Ar 3d[10] 4s[2] 4p[3] magnetic_ordering: diamagnetic atomic_mass: 74.9215956 set: metalloid
Selen English: Selenium grau, glänzend	Symbol: Se Number: 34 refractive_index: 1.000895 Kristallstruktur: hex Elektronenkonfiguration: Ar 3d[10] 4s[2] 4p[4] magnetic_ordering: diamagnetic atomic_mass: 78.9718 set: metalloid

Brom English: Bromine rotbraun (gasförmig); rotbraun (flüssig); metallisch glänzend (fest)	Symbol: Br Number: 35 refractive_index: 1.001132 Kristallstruktur: orth Elektronenkonfiguration: Ar 3d[10] 4s[2] 4p[5] magnetic_ordering: diamagnetic atomic_mass: 79.90479 set: halogen
Krypton English: Krypton farbloses Gas	Symbol: Kr Number: 36 refractive_index: 1.000427 Kristallstruktur: fcc Elektronenkonfiguration: Ar 3d[10] 4s[2] 4p[6] magnetic_ordering: diamagnetic atomic_mass: 83.7982 set: noblegas
Rubidium English: Rubidium silbrig weiß	Symbol: Rb Number: 37 Kristallstruktur: bcc Elektronenkonfiguration: Kr 5s[1] magnetic_ordering: paramagnetic atomic_mass: 85.46783 set: alkalimetal
Strontium English: Strontium silbrig weiß metallisch	Symbol: Sr Number: 38 Kristallstruktur: fcc Elektronenkonfiguration: Kr 5s[2] magnetic_ordering: paramagnetic atomic_mass: 87.621 set: alkalineearthmetal
Yttrium English: Yttrium silbrig weiß	Symbol: Y Number: 39 Kristallstruktur: hcp Elektronenkonfiguration: Kr 4d[1] 5s[2] magnetic_ordering: paramagnetic atomic_mass: 88.905842 set: transitionmetal
Zirconium English: Zirconium silbrig weiß	Symbol: Zr Number: 40 Kristallstruktur: hcp Elektronenkonfiguration: Kr 4d[2] 5s[2] magnetic_ordering: paramagnetic atomic_mass: 91.2242 set: transitionmetal
Niob English: Niobium grau metallisch glänzend	Symbol: Nb Number: 41 Kristallstruktur: bcc Elektronenkonfiguration: Kr 4d[4] 5s[1] magnetic_ordering: paramagnetic atomic_mass: 92.906372 set: transitionmetal
--------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Molybdän English: Molybdenum grau metallisch	Symbol: Mo Number: 42 Kristallstruktur: bcc Elektronenkonfiguration: Kr 4d[5] 5s[1] magnetic_ordering: paramagnetic atomic_mass: 95.951 set: transitionmetal
Technetium English: Technetium silbrig grau metallisch	Symbol: Tc Number: 43 Kristallstruktur: hcp Elektronenkonfiguration: Kr 4d[5] 5s[2] magnetic_ordering: paramagnetic atomic_mass: 98.9063 set: transitionmetal
Ruthenium English: Ruthenium silbrig weiß metallisch	Symbol: Ru Number: 44 Kristallstruktur: hcp Elektronenkonfiguration: Kr 4d[7] 5s[1] magnetic_ordering: paramagnetic atomic_mass: 101.072 set: transitionmetal
Rhodium English: Rhodium silbrig weiß metallisch	Symbol: Rh Number: 45 Kristallstruktur: fcc Elektronenkonfiguration: Kr 4d[8] 5s[1] magnetic_ordering: paramagnetic atomic_mass: 102.905502 set: transitionmetal
Palladium English: Palladium silbrig, weiß, metallisch	Symbol: Pd Number: 46 Kristallstruktur: fcc Elektronenkonfiguration: Kr 4d[10] magnetic_ordering: paramagnetic atomic_mass: 106.421 set: transitionmetal

Silber English: Silver weißglänzend, metallisch Cadmium English: Cadmium silbrig grau metallisch	Symbol: Ag Number: 47 Kristallstruktur: fcc Elektronenkonfiguration: Kr 4d[10] 5s[1] magnetic_ordering: diamagnetic atomic_mass: 107.86822 set: transitionmetal Symbol: Cd Number: 48 Kristallstruktur: hcp Elektronenkonfiguration: Kr 4d[10] 5s[2] magnetic_ordering: diamagnetic atomic_mass: 112.4144
	set: transitionmetal
Indium English: Indium silbrig glänzend grau	Symbol: In Number: 49 Kristallstruktur: tetr Elektronenkonfiguration: Kr 4d[10] 5s[2] 5p[1] magnetic_ordering: diamagnetic atomic_mass: 114.8181 set: metal
Zinn English: Tin silbrig glänzend (-Zinn), grau (-Zinn)	Symbol: Sn Number: 50 Kristallstruktur: tetr Elektronenkonfiguration: Kr 4d[10] 5s[2] 5p[2] magnetic_ordering: paramagnetic atomic_mass: 118.7107 set: metal
Antimon English: Antimony silbrig glänzend grau	Symbol: Sb Number: 51 Kristallstruktur: rho Elektronenkonfiguration: Kr 4d[10] 5s[2] 5p[3] magnetic_ordering: diamagnetic atomic_mass: 121.7601 set: metalloid
Tellur English: Tellurium silberweiß, metallisch glänzend	Symbol: Te Number: 52 refractive_index: 1.000991 Kristallstruktur: hex Elektronenkonfiguration: Kr 4d[10] 5s[2] 5p[4] magnetic_ordering: diamagnetic atomic_mass: 127.603 set: metalloid

Iod English: Iodine dunkel-violett (gasförmig); grauschwarz, glänzend (fest)	Symbol: I Number: 53 Kristallstruktur: orth Elektronenkonfiguration: Kr 4d[10] 5s[2] 5p[5] magnetic_ordering: diamagnetic atomic_mass: 126.904473 set: halogen
Xenon English: Xenon farbloses Gas	Symbol: Xe Number: 54 refractive_index: 1.000702 Kristallstruktur: fcc Elektronenkonfiguration: Kr 4d[10] 5s[2] 5p[6] magnetic_ordering: diamagnetic atomic_mass: 131.2936 set: noblegas
Caesium English: Caesium goldgelb glänzend	Symbol: Cs Number: 55 Kristallstruktur: bcc Elektronenkonfiguration: Xe 6s[1] magnetic_ordering: paramagnetic atomic_mass: 132.905451966 set: alkalimetal
Barium English: Barium weiß-grau metallisch	Symbol: Ba Number: 56 Kristallstruktur: bcc Elektronenkonfiguration: Xe 6s[2] magnetic_ordering: paramagnetic atomic_mass: 137.3277 set: alkalineearthmetal
Lanthan English: Lanthanum silbrig weiß	Symbol: La Number: 57 Kristallstruktur: dhcp Elektronenkonfiguration: Xe 5d[1] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 138.905477 set: lanthanoide
Cer English: Cerium silbrig weiß	Symbol: Ce Number: 58 Kristallstruktur: dhcp Elektronenkonfiguration: Xe 4f[1] 5d[1] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 140.1161 set: lanthanoide

Praseodym English: Praseodymium silbrig weiß, gelblicher Farbton	Symbol: Pr Number: 59 Kristallstruktur: dhcp Elektronenkonfiguration: Xe 4f[3] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 140.907662 set: lanthanoide
Neodym English: Neodymium silbrigweiß, gelblicher Farbton	Symbol: Nd Number: 60 Kristallstruktur: dhcp Elektronenkonfiguration: Xe 4f[4] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 144.2423 set: lanthanoide
Promethium English: Promethium metallisch	Symbol: Pm Number: 61 Kristallstruktur: dhcp Elektronenkonfiguration: Xe 4f[5] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 146.9151 set: lanthanoide
Samarium English: Samarium silbrig weiß	Symbol: Sm Number: 62 Kristallstruktur: rho Elektronenkonfiguration: Xe 4f[6] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 150.362 set: lanthanoide
Europium English: Europium silbrig weiß	Symbol: Eu Number: 63 Kristallstruktur: bcc Elektronenkonfiguration: Xe 4f[7] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 151.9641 set: lanthanoide
Gadolinium English: Gadolinium silbrig weiß	Symbol: Gd Number: 64 Kristallstruktur: hcp Elektronenkonfiguration: Xe 4f[7] 5d[1] 6s[2] magnetic_ordering: ferromagnetic atomic_mass: 157.253 set: lanthanoide

Terbium English: Terbium silbrig weiß	Symbol: Tb Number: 65 Kristallstruktur: hcp Elektronenkonfiguration: Xe 4f[9] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 158.925352 set: lanthanoide
Dysprosium English: Dysprosium silvery white	Symbol: Dy Number: 66 Kristallstruktur: hcp Elektronenkonfiguration: Xe 4f[10] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 162.5001 set: lanthanoide
Holmium English: Holmium silbrig weiß	Symbol: Ho Number: 67 Kristallstruktur: hcp Elektronenkonfiguration: Xe 4f[11] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 164.930332 set: lanthanoide
Erbium English: Erbium silbrig weiβ	Symbol: Er Number: 68 Kristallstruktur: hcp Elektronenkonfiguration: Xe 4f[12] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 167.2593 set: lanthanoide
Thulium English: Thulium silbrig grau	Symbol: Tm Number: 69 Kristallstruktur: hcp Elektronenkonfiguration: Xe 4f[13] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 168.934222 set: lanthanoide
Ytterbium English: Ytterbium silbrig weiß	Symbol: Yb Number: 70 Kristallstruktur: fcc Elektronenkonfiguration: Xe 4f[14] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 173.0451 set: lanthanoide

Lutetium English: Lutetium silbrig weiß	Symbol: Lu Number: 71 Kristallstruktur: hcp Elektronenkonfiguration: Xe 4f[14] 5d[1] 6s[2] magnetic_ordering: paramagnetic
	set: lanthanoide
<b>Hafnium</b> English: Hafnium stahlgrau	Symbol: Hf Number: 72 Kristallstruktur: hcp Elektronenkonfiguration: Xe 4f[14] 5d[2] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 178.492 set: transitionmetal
Tantal English: Tantalum grau	Symbol: Ta Number: 73 Kristallstruktur: bcc Elektronenkonfiguration: Xe 4f[14] 5d[3] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 180.947882 set: transitionmetal
Wolfram English: Tungsten gräulich weiß, glänzend	Symbol: W Number: 74 Kristallstruktur: bcc Elektronenkonfiguration: Xe 4f[14] 5d[4] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 183.841 set: transitionmetal
Rhenium English: Rhenium gräulich weiß	Symbol: Re Number: 75 Kristallstruktur: hcp Elektronenkonfiguration: Xe 4f[14] 5d[5] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 186.2071 set: transitionmetal
Osmium English: Osmium bläulich grau	Symbol: Os Number: 76 Kristallstruktur: hcp Elektronenkonfiguration: Xe 4f[14] 5d[6] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 190.233 set: transitionmetal

Iridium English: Iridium silbrig weiß	Symbol: Ir Number: 77 Kristallstruktur: fcc Elektronenkonfiguration: Xe 4f[14] 5d[7] 6s[2] magnetic_ordering: paramagnetic atomic_mass: 192.2173 set: transitionmetal
Platin English: Platinum grau-weiß	Symbol: Pt Number: 78 Kristallstruktur: fcc Elektronenkonfiguration: Xe 4f[14] 5d[9] 6s[1] magnetic_ordering: paramagnetic atomic_mass: 195.0849 set: transitionmetal
Gold English: Gold metallisch gelb	Symbol: Au Number: 79 Kristallstruktur: fcc Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[1] magnetic_ordering: diamagnetic atomic_mass: 196.9665695 set: transitionmetal
Quecksilber English: Mercury silbrig weiß	Symbol: Hg Number: 80 refractive_index: 1.000933 Kristallstruktur: rho Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] magnetic_ordering: diamagnetic atomic_mass: 200.5923 set: transitionmetal
Thallium English: Thallium silbrig weiß	Symbol: Tl Number: 81 Kristallstruktur: hcp Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] 6p[1] magnetic_ordering: diamagnetic atomic_mass: 204.38204 set: metal
Blei English: Lead bläulich weiß	Symbol: Pb Number: 82 Kristallstruktur: fcc Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] 6p[2] magnetic_ordering: diamagnetic atomic_mass: 207.21 set: metal

Bismut English: Bismuth glänzend silberweiß	Symbol: Bi Number: 83 Kristallstruktur: rho Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] 6p[3] magnetic_ordering: diamagnetic atomic_mass: 208.980401 set: metal
Polonium English: Polonium silbrig	Symbol: Po Number: 84 Kristallstruktur: sc Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] 6p[4] magnetic_ordering: nonmagnetic atomic_mass: 209.98 set: metal
Astat English: Astatine metallisch	Symbol: At Number: 85 Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] 6p[5] atomic_mass: 209.9871 set: halogen Kristallstruktur: fcc
Radon English: Radon farbloses Gas	Symbol: Rn Number: 86 Kristallstruktur: fcc Elektronenkonfiguration: Xe 4f[14] 5d[10] 6s[2] 6p[6] magnetic_ordering: nonmagnetic atomic_mass: 222 set: noblegas
Francium	Symbol: Fr Number: 87 Kristallstruktur: bcc Elektronenkonfiguration: Rn 7s[1] magnetic_ordering: paramagnetic atomic_mass: 223.0197 set: alkalimetal
Radium English: Radium silbrig-weiß-metallisch	Symbol: Ra Number: 88 Kristallstruktur: bcc Elektronenkonfiguration: Rn 7s[2] magnetic_ordering: nonmagnetic atomic_mass: 226.0254 set: alkalineearthmetal
Actinium English: Actinium silbrig	Symbol: Ac Number: 89 Elektronenkonfiguration: Rn 6d[1] 7s[2] atomic_mass: 227.0278 set: actinoide Kristallstruktur: fcc

Thorium English: Thorium silbrig weiß	Symbol: Th Number: 90 Kristallstruktur: fcc Elektronenkonfiguration: Rn 6d[2] 7s[2] magnetic_ordering: paramagnetic atomic_mass: 232.03774 set: actinoide
Protactinium English: Protactinium hell, silbrig, metallisch glänzend	Symbol: Pa Number: 91 Kristallstruktur: tetr Elektronenkonfiguration: Rn 5f[2] 6d[1] 7s[2] magnetic_ordering: paramagnetic atomic_mass: 231.035882 set: actinoide
Uran English: Uranium silberweiß	Symbol: U Number: 92 Kristallstruktur: orth Elektronenkonfiguration: Rn 5f[3] 6d[1] 7s[2] magnetic_ordering: paramagnetic atomic_mass: 238.028913 set: actinoide
Neptunium English: Neptunium silbrig	Symbol: Np Number: 93 Kristallstruktur: orth Elektronenkonfiguration: Rn 5f[4] 6d[1] 7s[2] magnetic_ordering: paramagnetic atomic_mass: 237.0482 set: actinoide
Plutonium English: Plutonium silbriges Metall	Symbol: Pu Number: 94 Kristallstruktur: mon Elektronenkonfiguration: Rn 5f[6] 7s[2] magnetic_ordering: paramagnetic atomic_mass: 244.0642 set: actinoide
Americium English: Americium silbrig-weißes Metall	Symbol: Am Number: 95 Kristallstruktur: dhcp Elektronenkonfiguration: Rn 5f[7] 7s[2] magnetic_ordering: paramagnetic atomic_mass: 243.061375 set: actinoide

Curium English: Curium silbrig-weißes Metall	Symbol: Cm Number: 96 Kristallstruktur: dhcp Elektronenkonfiguration: Rn 5f[7] 6d[1] 7s[2] magnetic_ordering: antiferromagnetic atomic_mass: 247.0703 set: actinoide
Berkelium English: Berkelium silberweiß	Symbol: Bk Number: 97 Kristallstruktur: dhcp Elektronenkonfiguration: Rn 5f[9] 7s[2] magnetic_ordering: paramagnetic atomic_mass: 247 set: actinoide
Californium English: Californium silbriges Metall	Symbol: Cf Number: 98 Elektronenkonfiguration: Rn 5f[10] 7s[2] atomic_mass: 251 set: actinoide Kristallstruktur: dhcp
Einsteinium English: Einsteinium	Symbol: Es Number: 99 Kristallstruktur: fcc Elektronenkonfiguration: Rn 5f[11] 7s[2] magnetic_ordering: paramagnetic atomic_mass: 252 set: actinoide
Fermium	Symbol: Fm Number: 100 Elektronenkonfiguration: Rn 5f[12] 7s[2] atomic_mass: 257.0951 set: actinoide Kristallstruktur: fcc
Mendelevium	Symbol: Md Number: 101 Elektronenkonfiguration: Rn 5f[13] 7s[2] atomic_mass: 258 set: actinoide Kristallstruktur: fcc
Nobelium	Symbol: No Number: 102 Elektronenkonfiguration: Rn 5f[14] 7s[2] atomic_mass: 259 set: actinoide Kristallstruktur: fcc

Lawrencium	Symbol: Lr Number: 103 Elektronenkonfiguration: Rn 5f[14] 7s[2] 7p[1] atomic_mass: 266 set: actinoide Kristallstruktur: hcp
Rutherfordium	Symbol: Rf Number: 104 Elektronenkonfiguration: Rn 5f[14] 6d[2] 7s[2] atomic_mass: 261.1087 set: transitionmetal Kristallstruktur: hcp
Dubnium	Symbol: Db Number: 105 Elektronenkonfiguration: Rn 5f[14] 6d[3] 7s[2] atomic_mass: 262.1138 set: transitionmetal Kristallstruktur: bcc
Seaborgium	Symbol: Sg Number: 106 Elektronenkonfiguration: Rn 5f[14] 6d[4] 7s[2] atomic_mass: 263.1182 set: transitionmetal Kristallstruktur: bcc
Bohrium	Symbol: Bh Number: 107 Elektronenkonfiguration: Rn 5f[14] 6d[5] 7s[2] atomic_mass: 262.1229 set: transitionmetal Kristallstruktur: hcp
Hassium	Symbol: Hs Number: 108 Elektronenkonfiguration: Rn 5f[14] 6d[6] 7s[2] atomic_mass: 265.269 set: transitionmetal Kristallstruktur: hcp
Meitnerium	Symbol: Mt Number: 109 Kristallstruktur: fcc Elektronenkonfiguration: Rn 5f[14] 6d[7] 7s[2] magnetic_ordering: paramagnetic atomic_mass: 268 set: unknown

Darmstadtium	Symbol: Ds Number: 110 Elektronenkonfiguration: Rn 5f[14] 6d[8] 7s[2] atomic_mass: 281 set: unknown Kristallstruktur: bcc
Roentgenium	Symbol: Rg Number: 111 Elektronenkonfiguration: Rn 5f[14] 6d[9] 7s[2] atomic_mass: 280 set: unknown Kristallstruktur: bcc
Copernicium	Symbol: Cn Number: 112 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] atomic_mass: 277 set: unknown Kristallstruktur: bcc
Nihonium	Symbol: Nh Number: 113 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] 7p[1] atomic_mass: 287 set: unknown Kristallstruktur: hcp
Flerovium	Symbol: Fl Number: 114 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] 7p[2] atomic_mass: 289 set: unknown Kristallstruktur: fcc
Moscovium	Symbol: Mc Number: 115 atomic_mass: 288 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] 7p[3] set: unknown
Livermorium	Symbol: Lv Number: 116 atomic_mass: 293 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] 7p[4] set: unknown
Tenness English: Tennessine	Symbol: Ts Number: 117 atomic_mass: 292 Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] 7p[5] set: unknown

	Symbol: Og
	Number: 118
Oganesson	Elektronenkonfiguration: Rn 5f[14] 6d[10] 7s[2] 7p[6]
English: Oganesson	atomic_mass: 294
	set: unknown
	Kristallstruktur: fcc