Formelsammlung

Matthias Quintern

7. Oktober 2024

Inhaltsverzeichnis

Ι	Lineare Algebra	1
1	Determinante	1
2	linalg:zeug	1
3	Eigenwerte	2
II	Geometrie	4
4	Trigonometrie 4.1 Verschiedene Theoreme 4.2 Wertetabelle	4 4 5
II	I Analysis 4.3 Faltung / Konvolution	6 6 6 7
5	Liste nützlicher Integrale	7
IV	Wahrscheinlichkeitstheorie	8
6	Verteilungen 6.0.1 Gauß/Normal-Verteilung 6.0.2 Cauchy / Lorentz-Verteilung 6.0.3 Binomialverteilung 6.0.4 Poissonverteilung 6.0.5 Maxwell-Boltzmann Verteilung 6.1 Zentraler Grenzwertsatz	8 9 9 10 11 11
\mathbf{V}	Mechanik	12
7	Lagrange Formalismus	12
V	I Statistische Mechanik	13

0	T3 (•
8	Entro	DDle
-		

V	II 7	Fhermodynamik	14
9	Pro 9.1	zesse Irreversible Gasexpansion (Gay-Lussac-Versuch)	14 14
10	Pha 10.1	senübergänge 10.0.1 Osmose	$14 \\ 15 \\ 15$
11	Hau 11.1 11.2 11.3 11.4	uptsätze der ThermodynamikNullter HauptsatzErster HauptsatzZweiter HauptsatzDritter Hauptsatz	16 16 16 17 17
12	Ens 12.1	embles Potentiale	17 18
13	Idea	ales Gas 13.0.1 Molekülgas	18 19
14	Rea 14.1 14.2	lles Gas Virialentwicklung	20 20 20
15	Idea 15.1 15.2	ales Quantengas Bosonen Fermionen 15.2.1 Starke Entartung	21 23 23 24
V	III	Elektrodynamik	25
16	Max	xwell-Gleichungen	25
17	Feld 17.1 17.2 17.3	ler Elektrisches Feld	25 25 25 26
18	Hal 18.1 18.2	l-Effekt Klassischer Hall-Effekt	26 26 27
19	Dip	ol-zeug	28
IX	Q	uantenmechanik	29
20	Bas 20.1 20.2	ics Operatoren Wahrscheinlichkeitstheorie 20.2.1 Pauli-Matrizen	29 29 29 30

 $\mathbf{13}$

	20.3 Kommutator	30
21	Schrödingergleichung 21.1 Zeitentwicklug 21.1.1 Schrödinger- und Heisenberg-Bild 21.1.2 Ehrenfest-Theorem 21.2 Korrespondenzprinzip	 31 31 32 32 32
22	Störungstheorie	33
23	Harmonischer Oszillator 23.1 Erzeugungs und Vernichtungsoperatoren / Leiteroperatoren	33 34 34
2 4	Drehmoment 24.1 Aharanov-Bohm Effekt	35 35
25	Symmetrien 25.1 Zeitumkehrungssymmetrie	35 35
26	Zwei-Niveau System (TLS)	36
27	Sonstiges	36
28	Wasserstoffatom 28.1 Korrekturen 28.1.1 Darwin-Term 28.1.2 Spin-Bahn-Kopplung (LS-Kopplung) 28.1.3 Feinstruktur 28.1.4 Lamb-Shift 28.1.5 Hyperfeinstruktur 28.2 Effekte im Magnetfeld	 36 37 37 38 38 38 38 39
X	Festkörperphysik	40
29	Bravais-Gitter	40
30	Reziprokes Gitter 30.1 Streuprozesse	42 42
31	Freies Elektronengase31.1 Drude-Modell31.2 Sommerfeld-Modell31.3 2D Elektronengas31.4 1D Eleltronengas / Quantendraht31.5 0D Elektronengase / Quantenpunkt	42 43 43 43 44 44
32	Messtechniken 32.1 ARPES 32.2 Rastersondenmikroskopie (SPM)	44 44 44
33	Herstellungsmethoden 33.1 Epitaxie	45 45

linalg I Lineare Algebra

1 Determinante

2x2 Matrix	$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a d - c b$	(1)
3x3 Matrix (Regel von Sarrus)	$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a e i + b f g + c d h - g e c - h f a - i d b$	(2)
Leibniz-Formel	$\det(A) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$	(3)
Produkt	$\det(AB) = \det(A)\det(B)$	(4)
Inverse	$\det(A^{-1}) = \det(A)^{-1}$	(5)
Transponiert	$\det(A^{\mathrm{T}}) = \det(A)$	(6)

Г

2 linalg:zeug

Inverse 2×2 Matrix	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} $	(7)
-----------------------------	--	-----

Unitäre Matrix	$U^{\dagger}U$ = 1	(8)

Singulärwertzerlegung Faktorisierung einer reellen oder komplexen Matrix durch Rotation →Skalierung →Rotation.	$A = U\Lambda V$ A: $m \times n$ matrix, U: $m \times m$ unitary matrix, Λ : $m \times n$ tangular diagonal matrix with non-negative numbers of diagonal, V: $n \times n$ unitary matrix	(9) rec- the
2D Rotationsmatrix	$R = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$	(10)
	$R_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$	(11)
3D Rotationsmatrizen	$R_y = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$	(12)
	$R_z = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$	(13)
	T 1	
	$R^{\perp} = R^{-1}$	(14)
Eigenschaften von	$\det R = 1$	(15)

0	
Rotati	onsmatrizen

10 - 10	
$\det R = 1$	(15)
$R \in \mathrm{SO}(n)$	(16)

n Dimension, $\mathrm{SO}(n)$ spezielle orthognale Gruppe

3 Eigenwerte

Eigenwert-Gleichung	$Av = \lambda v$ λ Eigenwert, v Eigenvektor	(17)
Charakteristisches Polynom Nullstellen sind die Eigenwerte von A	$\chi_A = \det(A - \lambda \mathbb{1}) \stackrel{!}{=} 0$	(18)
Kramers-Theorem Wenn H invariant unter T ist und $ \psi\rangle$ ein Eigenzustand von H ist, dann ist $T \psi\rangle$ auch ein Eigenzustand von H	$THT^{\dagger} = H \wedge H \psi\rangle = E \psi\rangle \implies HT \psi\rangle = ET \psi\rangle$	$\langle 19 \rangle$

Eigenwertzerlegung

$$A = V\Lambda V^{-1} \tag{20}$$

Adiagonalisierbar, Spalten von Vs
ind die Eigenvektoren $v_i,\,\Lambda$ Diagonal
matrix mit Eigenwerten λ_i auf der Diagonalen

TODO:Jordan stuff, blockdiagonal matrices, permutations, skalar product lapacescher entwicklungssatz maybe, cramers rule

_{geo II} Geometrie

4 Trigonometrie

Exponentialfunktion	$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$	(21)
Sinus	$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n+1)}}{(2n+1)!}$ $= \frac{e^{ix} - e^{-ix}}{2i}$	(22) (23)
Kosinus	$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n)}}{(2n)!}$ $= \frac{e^{ix} + e^{-ix}}{2}$	(24) (25)
Sinus hyperbolicus	$\sinh(x) = -i\sin ix$ $= \frac{e^x - e^{-x}}{2}$	(26) (27)
Kosinus hyperbolicus	$\cosh(x) = \cos ix$ $= \frac{e^x + e^{-x}}{2}$	(28) (29)

4.1 Verschiedene Theoreme

$1 = \sin^2 x + \cos^2 x$	(30)

Additions theoreme

$$\begin{aligned}
\sin(x \pm y) &= \sin x \cos y \pm \cos x \sin y & (31) \\
\cos(x \pm y) &= \cos x \cos y \mp \sin x \sin y & (32) \\
\tan(x \pm y) &= \frac{\sin(x \pm y)}{\cos(x \pm y)} &= \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} & (33)
\end{aligned}$$

Γ

$$\sin 2x = 2\sin x \cos x \tag{34}$$

$$\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x \tag{35}$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x} \tag{36}$$

$$\cos x + b \sin x = \sqrt{1 + b^2} \cos(x - \theta) \tag{37}$$

 $\tan\theta=b$

4.2 Wertetabelle

Doppel winkel funktion en

Grad	0°	30°	45°	60°	90°	120°	180°	270°
Rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\sqrt{\pi}}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	$\frac{3\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	0	-1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	-1	0
$\tan(x)$	0	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	∞	$-\sqrt{3}$	0	∞

cal III Analysis

4.3 Faltung / Konvolution

Die Faltung ist ${\bf kommutativ},$ assoziativ und distributiv

Definition	$(f * g)(t) = f(t) * g(t) = int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau$	(38)
Notation	$f(t) * g(t - t_0) = (f * g)(t - t_0)$ $f(t - t_0) * g(t - t_0) = (f * g)(t - 2t_0)$	(39) (40)
Kommutativität	$f \star g = g \star f$	(41)
Assoziativität]	(f * g) * h = f * (g * h)	(42)
Distributivität	f * (g + h) = f * g + f * h	(43)
Komplexe konjugation	$(f \star g)^{\star} = f^{\star} \star g^{\star}$	(44)

4.4 Fourieranalyse

4.4.1 Fourierreihe

Fourierreihe Komplexe Darstellung	$f(t) = \sum_{k=-\infty}^{\infty} c_k \exp\left(\frac{2\pi i k t}{T}\right) \tag{(11)}$	45)
	$f \in \mathcal{L}^2(\mathbb{R}, \mathbb{C})$ <i>T</i> -periodic	

Fourierkoeffizienten
Komplexe Darstellung
$$c_{k} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \exp\left(-\frac{2\pi i}{T} kt\right) dt \quad \text{for } k \ge 0 \quad (46)$$

$$c_{-k} = \overline{c_{k}} \quad \text{if } f \text{ reellwertig} \quad (47)$$
Fourierreihe
Sinus und Kosinus
Darstellung
$$f(t) = \frac{a_{0}}{2} + \sum_{k=1}^{\infty} \left(a_{k} \cos\left(\frac{2\pi}{T} kt\right) + b_{k} \sin\left(\frac{2\pi}{T} kt\right)\right) \quad (48)$$

$$f \in \mathcal{L}^{2}(\mathbb{R}, \mathbb{C}) \text{ T-periodic}$$
Fourierkoeffizienten
Sinus und Kosinus
Darstellung
$$a_{k} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(-\frac{2\pi}{T} kt\right) dt \quad \text{for } k \ge 0 \quad (49)$$

$$b_{k} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(-\frac{2\pi}{T} kt\right) dt \quad \text{for } k \ge 1 \quad (50)$$

$$a_{k} = c_{k} + c_{-k} \quad \text{for } k \ge 0 \quad (51)$$

$$b_{k} = i(c_{k} - c_{-k}) \quad \text{for } k \ge 1 \quad (52)$$

TODO:cleanup

4.4.2 Fouriertransformation

Fouriertransformierte

$$\hat{f}(k) \coloneqq \frac{1}{\sqrt{2\pi^n}} \int_{\mathbb{R}^n} e^{-ikx} f(x) dx$$

$$\hat{f} \colon \mathbb{R}^n \mapsto \mathbb{C}, \ \forall f \in L^1(\mathbb{R}^n)$$
(53)

for $f \in L^1(\mathbb{R}^n)$:

- i) $f \mapsto \hat{f}$ linear in f
- ii) $g(x) = f(x h) \implies \hat{g}(k) = e^{-ikn} \hat{f}(k)$
- iii) $g(x) = e^{ih \cdot x} f(x) \implies \hat{g}(k) = \hat{f}(k-h)$
- iv) $g(\lambda) = f\left(\frac{x}{\lambda}\right) \implies \hat{g}(k)\lambda^n \hat{f}(\lambda k)$

5 Liste nützlicher Integrale

Riemannsche Zeta-Funktion

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1 - 2^{(1-s)})\Gamma(s)} \int_0^\infty \mathrm{d}\eta \frac{\eta^{(s-1)}}{\mathrm{e}^\eta + 1}$$
(54)

^{pt IV} Wahrscheinlichkeitstheorie

Mittelwert	$\langle x \rangle = \int w(x) x \mathrm{d}x$	(55)
Varianz	$\sigma^{2} = (\Delta \hat{x})^{2} = \langle \hat{x}^{2} \rangle - \langle \hat{x} \rangle^{2} = \langle (x - \langle x \rangle)^{2} \rangle$	(56)
Standardabweichung	$\sigma = \sqrt{(\Delta x)^2}$	(57)
Median Teilt die untere von der oberen Hälfte	$med(x) = \begin{cases} x_{(n+1)/2} & n \text{ ungerade} \\ \frac{x_{(n/2)} + x_{((n/2)+1)}}{2} & n \text{ gerade} \end{cases}$ x Reihe mit n Elementen	(58)
Wahrscheinlichkeitsdichte- funktion Zufallsvariable hat Dichte f . Das Integral gibt Wahrscheinlichkeit an, dass X einen Wert $x \in [a, b]$ annimmt	$P([a,b]) \coloneqq \int_{a}^{b} f(x) dx$ f normalisiert $\int_{-\infty}^{\infty} f(x) dx = 1$	(59)
Kumulative Verteilungsfunktion	$F(x) = \int_{-\infty}^{x} f(t) dt$ f Wahrscheinlichkeitsdichtefunktion	(60)

6 Verteilungen

6.0.1 Gauß/Normal-Verteilung

6.0.2 Cauchy / Lorentz-Verteilung

Auch bekannt als Cauchy-Lorentz Verteilung, Lorentz Funktion, Breit-Wigner Verteilung.

6.0.3 Binomialverteilung

Geht die Zahl der Versuche gegen unendlich $(n \to \infty),$ konvergiert die Binomualverteilung gegen die Poissonverteilung

parameters	$n \in \mathbb{Z}, p \in [0,1], q = 1-p$
support	$k \in \{0, 1, \dots, n\}$
pmf	$\binom{n}{k} p^k q^{n-k}$
mean	np
median	$\lfloor np \rfloor$ or $\lceil np \rceil$
variance	npq = np(1-p)

6.0.4 Poissonverteilung

parameters	$\lambda \in (0,\infty)$
support	$k \in \mathbb{N}$
pmf	$\frac{\lambda^k \mathrm{e}^{-\lambda}}{k!}$
cdf	$e^{-\lambda} \sum_{j=0}^{\lfloor k \rfloor} \frac{\lambda^j}{j!}$
mean	λ
median	$\approx \left\lfloor \lambda + \frac{1}{3} - \frac{1}{50\lambda} \right\rfloor$
variance	λ

6.0.5 Maxwell-Boltzmann Verteilung

6.1 Zentraler Grenzwertsatz

Sei X_1, X_2, \ldots eine Reihe unabhängiger und gleichverteilter Zufallsvariablen mit $\langle X_i \rangle = \mu$ und $(\Delta X_i)^2 = \sigma^2 < \infty$. Für N gegen unendlich konvergieren die Zufallsvariablen $\sqrt{N}(\bar{X}_N - \mu)$ zu einer Normalverteilung $\mathcal{N}(0, \sigma^2)$.

Das bedeutet, dass die Schwankung mit $\frac{1}{\sqrt{N}}$ wächst und Aussagen für große N scharf werden.

mech V Mechanik

7 Lagrange Formalismus

Der Lagrange-Formalsismus ist oft der einfachste Weg die Bewegungsgleichungen zu erhalten, da das Aufstellen der Lagrange-Funktion mit geeigneten generalisierten Koordinaten oft relativ einfach ist. Die generalisierten Koordinaten werden so gewählt, dass die Zwangsbedingungen automatisch erfüllt

sind. Zum Beispiel findet man für ein 2D Pendel die generalisierte Koordinate $q = \varphi$, mit $\vec{x} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$.

Lagrange-Funktion	$\mathcal{L} = T - V$ T kinetische Energie, V potentielle Energie	(62)
Lagrange-Gleichungen (zweiter Art)	$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial\mathcal{L}}{\partial\dot{q_i}} - \frac{\partial\mathcal{L}}{\partial q_i} = 0$ q generalisierte Koordinaten	(63)
Kanonischer Impuls	$p = \frac{\partial \mathcal{L}}{\partial \dot{q}}$	(64)
Hamiltonian Den Hamiltonian bekommt man aus dem Lagrangian über eine Legendre Transformation	$H(q,p) = p \dot{q} - \mathcal{L}(q, \dot{q}(q,p))$	(65)
Transformation		

TODO:Legendre trafo

stat VI Statistische Mechanik

Intensive Größen: Additiv für Subsysteme (Systemgrößenabhänig): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$ Extensive Größen: Unabhängig der Systemgröße, Verhältnis zweier intensiver Größen

$$\frac{\partial \rho}{\partial t} = -\sum_{i=1}^{N} \left(\frac{\partial \rho}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial \rho}{\partial p_i} \frac{\partial H}{\partial q_i} \right) = \{H, \rho\}$$
(66)

{} Poisson-Klammer

8 Entropie

Liouville-Gleichung

Positiv Definit und Additiv
$$S(E_1, E_2) = S_1 + S_2$$
(67)
(68)

Γ

Von-Neumann
$$S = -k_{\rm B} \langle \log \rho \rangle = -k_{\rm B} \operatorname{tr}(\rho \log \rho)$$
(69) ρ DichtematrixGibbs $S = -k_{\rm B} \sum_{n} p_n \log p_n$ (70) p_n Wahrscheinlichkeit für Mikrozustand n

Boltzmann
$$S = k_{\rm B} \log \Omega$$
 (71)
 $\Omega \# {\rm Mikrozustände}$ (71)
Temperatur $\frac{1}{T} := \left(\frac{\partial S}{\partial E}\right)_V$ (72)
Druck $p = T\left(\frac{\partial S}{\partial V}\right)_E$ (73)

^{td VII} Thermodynamik

Thermische Wellenlänge

$$\lambda = \frac{h}{\sqrt{2\pi m k_{\rm B} T}} \tag{74}$$

9 Prozesse

- **isobar**: konstanter Druck *p* = const
- isochor: konstantes Volumen V = const
- **isotherm**: konstante Temperatur *T* = const
- **isentrop**: konstante Entropie *S* = const
- **isenthalp**: konstante Entalphie *H* = const
- adiabatisch: kein Wärmeübertrag $\Delta Q = 0$
- quasistatsch: läuft so langsam ab, dass das System durchgehend im t.d Equilibrium bleibt
- reversibel: reversible Prozesse sind immer quasistatisch und es wird keine Entropie erzeugtDeltaS=0

9.1 Irreversible Gasexpansion (Gay-Lussac-Versuch)

Ein klassisches Gas in einem System mit Volumen V_1 ist getrennt von einem zweiten System mit Volumen V_2 . Beim Gay-Lussac Versuch wird die Trennwand entfern und das Gas fließt in das Volumen V_2 .

Entropieänderung

TODO:Reversible TODO:Quasistatischer T-Ausgleich TODO:Joule-Thompson Prozess

10 Phasenübergänge

Ein Phasenübergang ist eine Unstetigkeit in the Freien Energie F oder in der Gibbs-Energie G oder in ihrer Ableitungen. Die Ordnung des Phasenübergangs ist die Ordnung der Ableitung, in welcher

die Unstetigkeit auftritt.

Latente Wärme Für den Phasenübergang von Phase 1 nach Phase 2 benötigte Wärme	$Q_{\rm L} = T \Delta S$ ΔS Entropie änderung des Phasenübergangs	(76)
Clausius-Clapeyron Gleichung Steigung der Phasengrenzlinie	$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{Q_{\mathrm{L}}}{T\Delta V}$ ΔV Volumenänderung des Phasenübergangs	(77)
Phasenübergang	$G_1 = G_2$	(78)
Im Koexistenzbereich	$\mu_1 = \mu_2$	(79)
Gibbsche Phasenregel	f = c - p + 2	(80)
	c#Komponenten, f #Freiheitsgrade, p #Phasen	

10.0.1 Osmose

Osmosis ist die spontane Passage oder Diffusion Lösungsmittelmolekülen durch eine semi-permeable Membran die für das Lösungsmittel, jedoch nicht die darin gelösten Stoffe durchlässig ist. Die Richtung der Diffusion ist vom Gebiet mit hohem chemischen Potential (niedrigere Konzentration des gelösten Stoffes) in das mit niedrigem chemischem Potential (höherere Konzentration des gelösten Stoffes), sodass die Konzentration des gelösten Stoffes ausgeglichen wird.

Osmotischer Druck /
Van-t-hoffsches Gesetz
$$p_{osm} = k_{B}T \frac{N_{c}}{V}$$
 (81)
 $N_{c} \#$ gelöster Teilchen

10.1 Materialeigenschaften

Isobare Wärmekapazität	$c_p = \left(\frac{\partial Q}{\partial T}\right)_P = \left(\frac{\partial H}{\partial T}\right)_P$ H Enthalpie	(84)
Komprozionano dul	$K = -V \frac{\mathrm{d}p}{\mathrm{d}p}$	(85)
Kompressionsmodul	p Druck, V Anfangsvolumen	(00)
Kompressibilität	$\kappa = -\frac{1}{V}\frac{\partial V}{\partial p}$	(86)
Isotherme Kompressibilität	$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T = \frac{1}{K}$	(87)
Adiabatische Kompressibilität	$\kappa_S = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_S$	(88)
Thermaler Ausdehnungskoeffizient	$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p,N}$	(89)

11 Hauptsätze der Thermodynamik

11.1 Nullter Hauptsatz

Wenn sich zwei Siesteme jeweils im thermischen Gleichgewicht mit einem dritten befinden, befinden sie sich auch untereinander im thermischen Gleichgewicht.

$$A \stackrel{th.GGW.}{\leftrightarrow} C \wedge B \stackrel{th.GGW.}{\leftrightarrow} C \Rightarrow A \stackrel{th.GGW.}{\leftrightarrow} B$$
(90)

11.2 Erster Hauptsatz

In einem abgeschlossenem System ist die Änderung der inneren Energie U gleich der gewonnenen Wärme Q minus der vom System an der Umgebung verrichteten Arbeit W.

Änderung der inneren Energie	$\Delta U = \delta Q - \delta W$ $dU = T dS - p dV$	(91) (92)

11.3 Zweiter Hauptsatz

Clausius: Es gibt keine Zustansänderung, deren einziges Ergebnis die Übertragung von Wärme von einem Körper niederer Temperatur auf einen Körper höherer Temperatur ist. **Kelvin**: Es ist unmöglich, eine periodisch arbeitende Maschine zu konstruieren, die weiter nichts bewirkt als Hebung einer Last und Abkühlung eines Wärmereservoirs.

11.4 Dritter Hauptsatz

Es ist unmöglich, ein System bis zum absoluten Nullpunkt abzukühlen.

	und damit auch	$\lim_{T \to 0} s(T) = 0$	(93)
Entropiedichte		$\lim_{T \to 0} c_V = 0$	(94) (95)
	$s = \frac{S}{N}$		

12 Ensembles

	td:ensembles:mk	td:ensembles:k	td:ensembles:gk
variables	E, V, N	T, V, N	T, V, μ
partition_sum	$\Omega = \sum_{n} 1$	$Z = \sum_{n} e^{-\beta E_n}$	$Z_{\rm g} = \sum_n {\rm e}^{-\beta (E_n - \mu N_n)}$
probability	$p_n = \frac{1}{\Omega}$	$p_n = \frac{\mathrm{e}^{-\beta E_n}}{Z}$	$p_n = \frac{\mathrm{e}^{-\beta(E_n - \mu N_n)}}{Z_{\mathrm{g}}}$
td_pot	$S = k_{\rm B} \ln \Omega$	$F = -k_{\rm B}T\ln Z$	$\Phi = -k_{\rm B}T\ln Z$
pressure	$p = T\left(\frac{\partial S}{\partial V}\right)_{E,N}$	$p = -\left(\frac{\partial F}{\partial V}\right)_{T,N}$	$p = -\left(\frac{\partial \Phi}{\partial V}\right)_{T,\mu} = -\frac{\Phi}{V}$
entropy	$S = k_{\rm B} = \ln \Omega$	$S = -\left(\frac{\partial F}{\partial T}\right)_{VN}$	$S = -\left(\frac{\partial \Phi}{\partial T}\right)_{V \mu}$

Tabelle 1: caption

Ergodenhypothese

Innerhalb einer langen Zeitspanne sind alle energetisch erreichbaren Mikrozustände im Phasenraum gleich wahrscheinlich

12.1 Potentiale

Innere Energie
$$dU(S,V,N) = T dS - p dV + \mu dN$$
(97)Enthalpie $dH(S,p,N) = T dS + V dp + \mu dN$ (98)Gibbsche Energie $dG(T,p,N) = -S dT + V dp + \mu dN$ (99)Freie Energie / Helmholtz $dF(T,V,N) = -S dT - p dV + \mu dN$ (100)Großkanonisches Potential $d\Phi(T,V,\mu) = -S dT - p dV - N d\mu$ (101)

Г

TODO:Maxwell Relationen, TD Quadrat

13 Ideales Gas

Phase space volume

3N Kugel

Das ideale Gas besteht aus nicht-wechselwirkenden, ununterscheidbaren Teilchen.

$$\Omega(E) = \int_{V} d^{3}q_{1} \dots \int_{V} d^{3}q_{N} \int d^{3}p_{1} \dots \int d^{3}p_{N} \frac{1}{N! h^{3N}} \Theta\left(E - \sum_{i} \frac{\vec{p_{i}}^{2}}{2m}\right)$$

$$= \left(\frac{V}{N}\right)^{N} \left(\frac{4\pi mE}{3h^{2}N}\right)^{\frac{3N}{2}} e^{\frac{5N}{2}}$$
(103)
$$N \ \#\text{Teilchen}, \ h^{3N} \text{ Volumen eines Mikrozustandes, } N! \text{ Teil-chen sind ununterscheidbar}$$

Entropie
$$S = \frac{5}{2}Nk_{\rm B} + Nk_{\rm B}\ln\left(\frac{V}{N}\left(\frac{2\pi mE}{3h^2N}\right)^{\frac{3}{2}}\right)$$
(104)

Ideale Gasgleichung	$pV = nRT$ $= Nk_{\rm B}T$	(105) (106)
Kalorische Zustangsgleichung	$U = \frac{3}{2}Nk_{\rm B}T$	(107)
Äquipartitionstheorem Jedem Freiheitsgrad steht die Energie $U_{\rm D}$ zur Verfügung	$U_{\rm D} = \frac{1}{2} k_{\rm B} T$	(108)
Maxwellsche Geschwindigkeitsverteilung Siehe auch 6.0.5	$w(v) dv = 4\pi \left(\frac{\beta m}{2\pi}\right)^{\frac{3}{2}} v^2 e^{-\frac{\beta m v^2}{2}} dv$	(109)

Г

Mittlere quadratosche Geschwindigkeit pro Teilchen im 3D-Gas	$\langle v^2 \rangle = \int_0^\infty \mathrm{d}v v^2 w(v) = \frac{3k_\mathrm{B}T}{m} \tag{110}$
--	--

13.0.1 Molekülgas

Molekülgas	
2 Teilchen der Masse M sind verbunden durch eine "Feder"	
mit Länge L	

$p_i = \frac{2\pi\hbar}{L}n_i$	(111)
$E_{ m kin}$ = $rac{ec{p}_r^2}{2M}$	(112)

$$n_i \in \mathbb{N}_0, \ i = x, y, z$$

Schwingungen	$E_{\rm vib} = \hbar\omega\left(n + \frac{1}{2}\right) \tag{(}$	113)
	$n \in \mathbb{N}_0$	

Rotation

Translation

$$E_{\rm rot} = \frac{\hbar^2}{2I}j(j+1) \tag{114}$$

 $j \in \mathbb{N}_0$

TODO:Diagram für verschiedene Temperaturen, Weiler Skript p.83

14 Reales Gas

14.1 Virialentwicklung

Entwicklung des
w Drucks p in eine Potenzreihe der Dicht
e $\rho.$

Virialentwicklung
Der zweite und dritte
$$p = k_{\rm B} T \rho [1 + B(T)\rho + C(T)\rho^2 + ...]$$
(115)Virialkoeffizient ist für viele
Substanzen tabelliertB und C 2. und 3. Virialkoeffizient, $\rho = \frac{N}{V}$

Mayer-Funktion $f(\vec{r}) = e^{-\beta V(i,j)} - 1$ (116)V(i,j) PaarpotentialZweiter Virialkoeffizient
Hängt vom Paarpotential
zweier Moleküle ab $B = -\frac{1}{2} \int_{V} d^{3}\vec{r} f(\vec{r})$ (117)

Lennard-Jones-Potential

Potential zwischen zwei Molekülen. Attraktiv für $r > \sigma,$ repulsiv für $r < \sigma$

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$
(118)

14.2 Van der Waals Gleichung

Annahme eines Harte-Kugeln Potentials mit einer schwachen Anziehung

$$Z_N = \frac{(V - V_0)^N}{\lambda^{3N} N!} e^{\frac{\beta N^2 a}{V}}$$
(119)

Zustandssumme

Van der Waals-Gleichung	$p = \frac{Nk_{\rm B}T}{V-b} - \frac{N^2a}{V^2}$	(120)
	b Kovolumen	

TODO: sometimes N is included in a, b

15 Ideales Quantengas

Fugazität	$z = e^{\mu\beta} = e^{\frac{\mu}{k_{\rm B}T}}$	(121)
Besetzungszahl	$\sum_r n_r = N$ r Zustände	(122)
Ununterscheidbare Teilchen	$ p_1,p_2,\ldots,p_N\rangle = p_1\rangle p_2\rangle \ldots p_N\rangle$ p_i Zustand	(123)
Anwenden des Paritätsoperators gibt eine <i>symmetrische</i> (Bosonen) und eine <i>antisymmetrische</i> (Fermionen) Lösung	$\hat{P}_{12}\psi(p_i(\vec{r}_1), p_j(\vec{r}_2)) = \pm \psi(p_i(\vec{r}_1), p_j(\vec{r}_2))$ $\hat{O}_{12} \text{ Paritäts operator tauscht 1 und 2, \pm: } \underset{\text{fer}}{\overset{\text{bos}}{}}$	(124)
Spinentartungsfaktor	$g_s = 2s + 1$ s Spin	(125)
Zustandsdichte	$g(\epsilon) = g_s \frac{V}{4\pi} \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} \sqrt{\epsilon}$ g_s td:id_qgas:spin_degeneracy_factor	(126)
Besetzungszahl pro Energie	$n(\epsilon) d\epsilon = \frac{g(\epsilon)}{e^{\beta(\epsilon-\mu)} \mp 1} d\epsilon$ td:id_qgas:dos , ±: bos fer	(127)

Besetzungszahl

$$\begin{bmatrix}
 (n(\epsilon)) = \frac{1}{e^{\beta(\epsilon-\mu)} \mp 1} & (128) \\
 for \ \epsilon - \mu \gg k_{\rm B}T \\
 = \frac{1}{e^{\beta(\epsilon-\mu)}} & (129) \\
 \pm \frac{1}{\log^2} & \frac{1}{16\pi} & \frac$$

15.1 Bosonen

Zustandssumme	$p \in \mathbb{N}_0$	$Z_{\rm g} = \prod_p \frac{1}{1 - {\rm e}^{-\beta(\epsilon_p - \mu)}}$	(136)
Besetzungszahl Bose-Einstein Verteilung		$\langle n_p \rangle = \frac{1}{\mathrm{e}^{\beta(\epsilon-\mu)} - 1}$	(137)

15.2 Fermionen

Zustandssumme	$Z_{\rm g} = \prod_{p} \left(1 + e^{-\beta(\epsilon_p - \mu)} \right) \tag{138}$)
	p = 0, 1	

Г

Fermienergie	$\epsilon_{ m F}\coloneqq \mu(T$ = 0)	(141)
--------------	---------------------------------------	-------

Fermi Temperatur $T_{\rm F} \coloneqq \frac{\epsilon_{\rm F}}{k_{\rm B}}$ (142)

Fermi-Impuls Radius der <i>Fermi-Kugel</i> im Impulsraum. Zustände mit P _F sind auf der <i>Fermi-Fläche</i>	$p_{\rm F} = \hbar k_{\rm F} = (2mE_{\rm F})^{\frac{1}{2}} $ (14)	3)
Spezifische Dichte	$v = \frac{N}{V} = \frac{g}{\lambda^3} f_{3/2}(z) \tag{14}$.4)
	f td:id_qgas:generalized_zeta , g Entartungsfaktor,	z

td:id_qgas:fugacity

Г

15.2.1 Starke Entartung

Sommerfeld-Entwicklung
für geringe Temperaturen

$$T \ll T_{\rm F}$$

$$f_{\nu}(z) = \frac{(\ln z)^{\nu}}{\Gamma(\nu+1)} \left(1 + \frac{\pi^6}{6} \frac{\nu(\nu-1)}{(\ln z)^2} + \dots\right)$$
(145)

$$\frac{E}{V} = \frac{3}{2} \frac{g}{\lambda^3} k_{\rm B} T f_{5/2}(z) \tag{146}$$

Energiedichte

 $td: id_qgas: fer: degenerate: sommerfeld$

$$\approx \frac{3}{5} \frac{N}{V} E_{\rm F} \left(1 + \frac{5\pi^2}{12} \left(\frac{k_{\rm B}T}{E_{\rm F}} \right)^2 \right) \tag{147}$$

TODO:Entartung und Sommerfeld TODO:DULONG-PETIT Gesetz

ed VIII Elektrodynamik

Maxwell-Gleichungen 16

Vakuum Mikroskopische Formulierung	$\vec{\nabla} \cdot \vec{E} = \frac{\rho_{\rm el}}{\epsilon_0}$	(149)
	$\vec{\nabla} \cdot \vec{B} = 0$	(150)
	$\vec{\nabla} \times \vec{E} = -\frac{\mathrm{d}\vec{B}}{\mathrm{d}t}$	(151)
	$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\mathrm{d}\vec{E}}{\mathrm{d}t}$	(152)

Materie Makroskopische Formulierung	$\vec{\nabla} \cdot \vec{D} = \rho_{el}$ $\vec{\nabla} \cdot \vec{B} = 0$ $\vec{\nabla} \times \vec{E} = -\frac{d\vec{B}}{dt}$ $\vec{\nabla} \times \vec{H} = \vec{j} + \frac{d\vec{D}}{dt}$	(153) (154) (155) (156)

17 Felder

17.1**Elektrisches Feld**

Gaußsches Gesetz für elektrische Felder Der magnetische Fluss durch eine geschlossene Fläche ist proportional zur elektrischen Ladung

$$\Phi_{\rm E} = \iint_{S} \vec{E} \cdot \mathrm{d}\vec{S} = \frac{Q}{\varepsilon_0} \tag{157}$$

S geschlossene Fläche

17.2 Elektrisches Feld

Magnetischer Fluss

Gaußsches Gesetz für Magnetismus Der magnetische Fluss durch eine geschlossene Fläche ist $\mathbf{0}$ \Rightarrow es gibt keine magnetischen Monopole

$$\Phi_{\rm B} = \iint_A \vec{B} \cdot \mathrm{d}\vec{A} \tag{158}$$

$$\Phi_{\rm B} = \iint_S \vec{B} \cdot \mathrm{d}\vec{S} = 0 \tag{159}$$

 ${\cal S}$ geschlossene Fläche

(160)

Magnetisierung	$\vec{M} = \frac{\mathrm{d}\vec{m}}{\mathrm{d}V} = \chi_{\mathrm{m}}\cdot\vec{H}$ m mag. Moment, V Volumen	(161)
Drehmoment	$\vec{\tau} = \vec{m} \times \vec{B}$	(162)
	m mag. Moment	
Suszeptibilität	$\chi_{\rm m} = \frac{\partial M}{\partial B} = \frac{\mu}{\mu_0} - 1$	(163)
Poynting-Vektor Gerichteter Energiefluss oder Leistungsfluss eines elektromgnetischen Feldes [W/m ²]	$\vec{S} = \vec{E} \times \vec{H}$	(164)

17.3 Unduktion

Faradaysche Induktionsgesetz	$U_{\rm ind} = -\frac{\rm d}{{\rm d}t} \Phi_{\rm B} = -\frac{\rm d}{{\rm d}t} \iint_A \vec{B} \cdot {\rm d}\vec{A} \qquad ($	165)

18 Hall-Effekt

Zyklotronfrequenz $\omega_{\rm c} = \frac{eB}{m_{\rm e}}$	(166)
---	-------

TODO:Move

18.1 Klassischer Hall-Effekt

Fließt in einem Leiter $(l \times b \times d)$ ein Strom in x Richtung, während der Leiter von einem Magnetfeld B in z-Richtung durchdrungen, wird eine Hallspannung $U_{\rm H}$ in y-Richtung induziert.

Hallspannung	$U_{\rm H} = \frac{IB}{ned}$ n Ladungsträgerdichte	(167)
Hall-Koeffizient	$R_{\rm H} = -\frac{Eg}{j_x Bg} = \frac{1}{ne} = \frac{\rho_{xy}}{B_z}$	(168)
Spezifischer Widerstand	$\rho_{xx} = \frac{m_{\rm e}}{ne^2\tau}$ $\rho_{xy} = \frac{B}{ne}$	(169) (170)

18.2 Ganzahliger Quantenhalleffekt

Leitfähigkeitstensor	$\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix}$	(171)
Spezifischer Widerstands-tensor	$\rho = \sigma^{-1}$	(172)

Spezifischer Hallwiderstand		$\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}$	(173)
	$\nu \in \mathbb{Z}$		

Г

TODO:sort

Impedanz eines Kondesnators	$Z_C = \frac{1}{i\omega C}$	(174)
Impedanz eines Induktors	$Z_L = i\omega L$	(175)

TODO: impedance addition for parallel / linear

19 Dipol-zeug

^{qm IX} Quantenmechanik

20 Basics

20.1 Operatoren

Dirac-Notation	$\langle x $ "Bra"Zeilenvektor $ x \rangle$ "Ket"Spaltenvektor $\hat{A} \beta \rangle = \alpha \rangle \Rightarrow \langle \alpha = \langle \beta \hat{A}^{\dagger}$	(178) (179) (180)

	L) 2) 3) 4)
--	----------------------

Adjungierter operator	$\langle \alpha \hat{A}^{\dagger} \beta \rangle = \langle \beta \hat{A} \alpha \rangle^{*}$	(185)
Hermitescher operator	$\hat{A} = \hat{A}^{\dagger}$	(186)

20.2 Wahrscheinlichkeitstheorie

Kontinuitätsgleichung	$\frac{\partial \rho(\vec{x},t)}{\partial t} + \nabla \cdot \vec{j}(\vec{x},t) = 0$ ρ Dichte einer Erhaltungsgröße q,j Fluß von q	
Zustandswahrscheinlichkeit	TODO	(188)
Dispersion	$\Delta \hat{A} = \hat{A} - \langle \hat{A} \rangle$	(189)

Allgemeine Unschärferelation	$\sigma_A \sigma_B \ge \frac{1}{4} \left\langle [\hat{A}, \hat{B}] \right\rangle^2$ $\sigma_A \sigma_B \ge \frac{1}{2} \langle [\hat{A}, \hat{B}] \rangle $	(190) (191)

20.2.1 Pauli-Matrizen

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = |0\rangle \langle 1| + |1\rangle \langle 0|$$
(192)

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = -i |0\rangle \langle 1| + i |1\rangle \langle 0| \tag{193}$$

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = |0\rangle \langle 0| - |1\rangle \langle 1|$$
(194)

20.3 Kommutator

Kommutator	[A,B] = AB - BA	
Antikommutator	$\{A,B\} = AB + BA$	(196)
Kommutatorrelationen	[A, BC] = [A, B]C - B[A, C]	(197)
TODO:add some more?		
Kommutator mit einer Funktion	$[f(A), B] = [A, B] \frac{\partial f}{\partial A}$	(198)
	falls $[A, [A, B]] = 0$	
Jakobi-Identität	[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0	(199)

Lemma von Hadamard

$$e^{A} B e^{-A} = B + [A, B] + \frac{1}{2!} [A, [A, B]] + \frac{1}{3!} [A, [A, [A, B]]] + \dots$$
(200)
(200)
(200)
[$x_i, x_j] = 0$ (201)
[$p_i, p_j] = 0$ (202)
[$x_i, p_j] = i\hbar \delta_{ij}$ (203)
 x, p kanonische konjugierte

$\mathbf{21}$ Schrödingergleichung

Energieoperator	$E = i\hbar \frac{\partial}{\partial t}$	(204)
Impulsoperator	$\vec{p} = -i\hbar \vec{ abla_x}$	(205)
Ortsoperator	$\vec{x} = i\hbar \vec{ abla_p}$	(206)
Stationäre Schrödingergleichung	$\hat{H} \psi\rangle = E \psi\rangle$	(207)
	2 ±2	
Schrödingergleichung	$i\hbar\frac{\partial}{\partial t}\psi(x,t) = \left(-\frac{\hbar^2}{2m}\vec{\nabla}^2 + \vec{V}(x)\right)\psi(x)$	(208)

21.1 Zeitentwicklug

The time evolution of the Hamiltonian is given by:

Von-Neumann Gleichung Zeitentwicklung des Dichteoperators im Schödingerbild. Qm. Analogon zur Liouville-Gleichung ??

$$\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}]$$
(210)

Lindblad-Mastergleichung Verallgemeinerung der von-Neumman Gleichung für offene Quantensysteme

$$\dot{\rho} = \underbrace{-\frac{i}{\hbar}[\hat{H},\rho]}_{\text{reversible}} + \underbrace{\sum_{n.m} h_{nm} \left(\hat{A}_n \rho \hat{A}_{m^{\dagger}} - \frac{1}{2} \left\{ \hat{A}_m^{\dagger} \hat{A}_n, \rho \right\} \right)}_{\text{irreversible}}$$
(211)
$$h \text{ positiv-semifinite Matrix, } \hat{A} \text{ beliebiger Operator}$$

TODO:unitary transformation of time dependent H

21.1.1 Schrödinger- und Heisenberg-Bild

Im Schrödinger-Bild sind die Zustände zeitabhänig, im Heisenberg-Bild sind die Observablen (Operatoren) zeitabhänig

Schrödinger Zeitentwicklug

Heisenberg Zeitentwicklung

$$|\psi(t)_{\rm S}\rangle = \hat{U}(t, t_0) |\psi(t_0)\rangle \tag{212}$$

 $|\psi_{\rm H}\rangle = |\psi_{\rm S}(t_0)\rangle \tag{213}$

 $A_{\rm H} = U^{\dagger}(t, t_0) A_{\rm S} U(t, t_0)$ (214)

$$\frac{\mathrm{d}\hat{A}_{\mathrm{H}}}{\mathrm{d}t} = \frac{1}{i\hbar} [\hat{A}_{\mathrm{H}}, \hat{H}_{\mathrm{H}}] + \left(\frac{\partial\hat{A}_{\mathrm{S}}}{\partial t}\right)_{\mathrm{H}}$$
(215)

mit H und S dem Heisenberg- und Schrödinger-Bild

21.1.2 Ehrenfest-Theorem

Siehe auch $\ref{eq:stable}$

Ehrenfest-Theorem
gilt für beide Bilder
$$\frac{\mathrm{d}}{\mathrm{d}t}\left\langle \hat{A}\right\rangle = \frac{1}{i\hbar}\left\langle \left[\hat{A},\hat{H}\right]\right\rangle + \left\langle \frac{\partial\hat{A}}{\partial t}\right\rangle$$
(216)

Beispiel für
$$x$$

$$m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\langle x\rangle = -\langle \nabla V(x)\rangle = \langle F(x)\rangle \qquad (217)$$

21.2 Korrespondenzprinzip

Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenzahlen.

22 Störungstheorie

$qm:qm_pertubation:desc$

Hamiltonian
$$\hat{H} = \hat{H}_0 + \lambda \hat{H}_1$$
(218)Potenzreihe $E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots$ (219) $|\psi_n\rangle = |\psi_n^{(0)}\rangle + \lambda |\psi_n^{(1)}\rangle + \lambda^2 |\psi_n^{(2)}\rangle + \dots$ (220)Energieverschiebung 1.
Ordnung $E_n^{(1)} = \left(\psi_n^{(0)} \mid \hat{H}_1 \mid \psi_n^{(0)}\right)$ (221)Zustände $|\psi_n^{(1)}\rangle = \sum_{k\neq n} \frac{\left(\psi_k^{(0)} \mid \hat{H}_1 \mid \psi_n^{(0)}\right)}{E_n^{(0)} - E_k^{(0)}} |\psi_k^{(0)}\rangle$ (222)Energieverschiebung 2.
Ordnung $E_n^{(2)} = \sum_{k\neq n} \frac{\left|\left(\psi_k^{(0)} \mid \hat{H}_1 \mid \psi_n^{(0)}\right)\right|^2}{E_n^{(0)} - E_k^{(0)}}$ (223)Fermis goldene Regel
Ubergangsrate des initial
Zustandes $|i\rangle$ unter einer
Störung H^1 zum Endzustand
 $|f\rangle$ $\Gamma_{i\rightarrow f} = \frac{2\pi}{h} |\langle f|H^1|i\rangle|^2 \rho(E_f)$ (224)

23 Harmonischer Oszillator

Hamiltonian

 $H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 \qquad (225)$ $= \frac{1}{2}h\omega + \omega a^{\dagger}a \qquad (226)$

Energiespektrum

$$E_n = \hbar\omega \left(\frac{1}{2} + n\right) \tag{227}$$

Siehe auch $\ref{eq:stable}$

23.1 Erzeugungs und Vernichtungsoperatoren / Leiteroperatoren

Teilchenzahloperator/Beset- zungszahloperator	$\hat{N} \coloneqq a^{\dagger}a \qquad (22)$ $\hat{N} \mid n \rangle = n \mid N \rangle \qquad (22)$ $\mid n \rangle = \text{Fock-Zustände, } \hat{a} = \text{Vernichtungsoperator, } \hat{a}^{\dagger} = \text{H}$ zeugungsoperator		
Kommutator	$\begin{bmatrix} \hat{a}, \hat{a}^{\dagger} \end{bmatrix} = 1$ $[N, \hat{a}] = -\hat{a}$ $[N, \hat{a}^{\dagger}] = \hat{a}^{\dagger}$	(230) (231) (232)	
Anwendung auf Zustände	$\hat{a} n\rangle = \sqrt{n} n-1\rangle$ $\hat{a}^{\dagger} n\rangle = \sqrt{n+1} n+1\rangle$ $ n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^{n} 0\rangle$	(233) (234) (235)	

23.1.1 Harmonic Oscillator

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger})$$

$$\hat{x} = -i\pi \sqrt{\frac{m\omega\hbar}{m\omega\hbar}} (\hat{a} - \hat{a}^{\dagger})$$
(236)
(237)

$$\hat{p} = -i\sqrt{\frac{m\omega n}{2}}(\hat{a} - \hat{a}^{\dagger})$$

$$\hat{H} = \frac{\hat{p}^2}{2} + \frac{m\omega^2 \hat{x}^2}{2} \qquad = \hbar\omega \left(a^{\dagger}a + \frac{1}{2}\right)$$
(237)
$$(238)$$

Harmonischer Oszillator

$$\hat{H} = \frac{p}{2m} + \frac{m\omega x}{2} \qquad = \hbar\omega \left(a^{\dagger}a + \frac{1}{2}\right) \qquad (238)$$
$$a = \frac{1}{\sqrt{2}} (\tilde{X} + i\tilde{P}) \qquad (239)$$

$$a^{\dagger} = \frac{1}{\sqrt{2}} (\tilde{X} - i\tilde{P}) \tag{240}$$

24 Drehmoment

Blochwellen Lösen stat. SG im periodischen Potential mit Periode \vec{R} : $V(\vec{r}) = V(\vec{r} + \vec{R})$ \vec{k} beliebig, u periodische Funktion (241)

24.1 Aharanov-Bohm Effekt

Erhaltene Phase

Elektron entlang eines geschlossenes Phase erhält eine Phase die proportional zum eingeschlossenen magnetischem Fluss ist

$$\delta = \frac{2e}{\hbar} \oint \vec{A} \cdot d\vec{s} = \frac{2e}{\hbar} \Phi \tag{242}$$

TODO:replace with loop intergral symbol and add more info

Г

25 Symmetrien

Die meisten Symmetrieoperatoren sind unitär ??, da die Norm eines Zustands invariant unter Raum-, Zeit- und Spin-Transformationen sein muss.

Invarianz \hat{H} is invariant unter der von \hat{U} beschriebenen Symmetrie wenn gilt: $\hat{U}\hat{H}\hat{U}^{\dagger} = \hat{H} \Leftrightarrow [\hat{U}, \hat{H}] = 0$ (243)

25.1 Zeitumkehrungssymmetrie

Zeitumkehrungssymmetrie	$T:t \to -t$	(244)
Antiunitär	$T^2 = -1$	(245)

26 Zwei-Niveau System (TLS)

 $H = \underbrace{\hbar\omega_c \hat{a}^{\dagger} \hat{a}}_{\text{field}} + \underbrace{\hbar\omega_a \frac{\hat{\sigma}_z}{2}}_{\text{atom}} + \underbrace{\frac{\hbar\Omega}{2} \hat{E} \hat{S}}_{\text{int}}$ (246)

after $\ensuremath{\operatorname{RWA}}$:

$$=\hbar\omega_c \hat{a}^{\dagger}\hat{a} + \hbar\omega_a \hat{\sigma}^{\dagger}\hat{\sigma} + \frac{\hbar\Omega}{2}(\hat{a}\hat{\sigma^{\dagger}} + \hat{a}^{\dagger}\hat{\sigma}) \qquad (248)$$

 $\hat{E} = E_{\text{ZPF}}(\hat{a} + \hat{a}^{\dagger})$ Feldoperator mit bosonischen Leiteroperatoren, $\hat{S} = \hat{\sigma}^{\dagger} + \hat{\sigma}$ Polarisationsoperator mit Leiteroperatoren des TLS

27 Sonstiges

Rotating Wave		
Approximation /		(- (-)
Drehwellennäherung (RWS)	$\Delta \omega \coloneqq \omega_0 - \omega_{\rm L} \ll \omega_0 + \omega_{\rm L} \approx 2\omega_0$	(249)
Schnell oscillierende Terme	. Engenera des Lichtes Übermangefreenens	
werden vernachlässigt	$\omega_{\rm L}$ Frequenz des Licites, ω_0 Obergangsfrequenz	

28 Wasserstoffatom

Reduzierte Masse
$$\mu = \frac{m_{\rm e} m_{\rm K}}{m_{\rm e} + m_{\rm K}} \stackrel{m_{\rm e} \ll m_{\rm K}}{\stackrel{\downarrow}{\approx}} m_{\rm e}$$
(250)

Coulumb potential Für ein Einelektronenatom	$V(\vec{r}) = \frac{Z e^2}{4\pi\epsilon_0 r}$	(251)
	Z Ordnungszahl/Kernladungszahl	

Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2\mu} \vec{\nabla}_{\vec{r}}^2 - V(\vec{r}) \qquad (252)$$

$$= \frac{\hat{p}_r^2}{2\mu} + \frac{\hat{L}^2}{2\mu r} + V(r) \qquad (253)$$

Wellenfunktion
$$\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$$
 (254)

Γ

James-Cummings Hamiltonian TLS interagiert mit resonantem Lichtfeld

Radialanteil

$$R_{nl} = -\sqrt{\frac{(n-l-1)!(2\kappa)^3}{2n[(n+l)!]^3}} (2\kappa r)^l e^{-\kappa r} L_{n+1}^{2l+1}(2\kappa r) \quad (255)$$
with

$$\kappa = \frac{\sqrt{2\mu|E|}}{\hbar} = \frac{Z}{na_{\rm B}} \qquad (256)$$

$$L_r^s(x) \text{ Laguerre-Polynome}$$
Energieeigenwerte

$$E_n = \frac{Z^2 \mu e^4}{n^2 (4\pi\epsilon_0)^2 2\hbar^2} = -E_{\rm H} \frac{Z^2}{n^2} \qquad (257)$$
Rydberg-Energy

$$E_{\rm H} = h c R_{\rm H} = \frac{\mu e^4}{(4\pi\epsilon_0)^2 2\hbar^2} \qquad (258)$$

28.1 Korrekturen

28.1.1 Darwin-Term

Relativistische Korrektur: Elektronen führen eine Zitterbewegung aus und sind nicht vollständig lokalisiert.

Energieverschiebung
$$\Delta E_{\rm rel} = -E_n \frac{Z^2 \alpha^2}{n} \left(\frac{3}{4n} - \frac{1}{l + \frac{1}{2}}\right)$$
(259)

Feinstrukturkonstante Sommerfeldsche Feinstrukturkonstante	$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \approx \frac{1}{137} \tag{26}$	60)
--	---	-----

28.1.2 Spin-Bahn-Kopplung (LS-Kopplung)

The Wechselwirkung zwischen dem Elektronenspin und dem elektrostatischen Feld des Kerns führt zu Energieverschiebungen.

Г

Energieverschiebung
$$\Delta E_{\rm LS} = \frac{\mu_0 Z e^2}{8\pi m_{\rm e}^2 r^3} \left\langle \vec{S} \cdot \vec{L} \right\rangle \tag{261}$$

$$\langle \vec{S} \cdot \vec{L} \rangle = \frac{1}{2} \langle [J^2 - L^2 - S^2] \rangle$$

= $\frac{\hbar^2}{2} [j(j+1) - l(l+1) - s(s+1)]$ (262)

28.1.3 Feinstruktur

??

Die Feinstruktur vereint relativistische Korrekturen 28.1.1 und die Spin-Orbit-Kupplung 28.1.2.

Energieverschiebung
$$\Delta E_{\rm FS} = \frac{Z^2 \alpha^2}{n} \left(\frac{1}{j + \frac{1}{2}} - \frac{3}{4n} \right)$$
(263)

٦

28.1.4 Lamb-Shift

The Wechselwirkung zwischen dem Elektron und vom Kern absorbierten/emittierten virtuellen Photonen führt zu einer (sehr kleinen) Energieverschiebung.

Potentielle Energy
$$\langle E_{\rm pot} \rangle = -\frac{Ze^2}{4\pi\epsilon_0} \left\langle \frac{1}{r+\delta r} \right\rangle$$
(264)
 δr Schwankung von r

28.1.5 Hyperfeinstruktur

Wechselwirkung von Kernspin mit dem vom Elektron erzeugten Magnetfeld spaltet Energieniveaus

Kernspin	$\vec{F} = \vec{J} + \vec{I}$ $ \vec{I} = \sqrt{i(i+1)}\hbar$ $I_z = m_i\hbar$ $m_i = -i, -i+1, \dots, i-1, i$	(265) (266) (267) (268)
Gesamtdrehimpuls	$\vec{F} = \vec{J} + \vec{I}$ $ \vec{F} = \sqrt{f(f+1)}h$ $F_z = m_f h$	(269) (270) (271)

Auswahlregel
$$f = j \pm i$$
(272) $m_f = -f, -f + 1, \dots, f - 1, f$ (273)

 $A = \frac{g_i \mu_{\rm K} B_{\rm HFS}}{\sqrt{j(j+1)}}$

Hyperfeinstrukturkonstante

 $B_{\rm HFS}$ Hyperfeinfeld, $\mu_{\rm K}$ Kernmagneton, g_i Kern-g-Faktor $\ref{eq:hermitical}$

$$\Delta H_{\rm HFS} = \frac{A}{2} [f(f+1) - j(j+1) - i(i+1)]$$
(275)

(274)

TODO:landé factor

28.2 Effekte im Magnetfeld

TODO:all

TODO:Hunds rules

^{cm X} Festkörperphysik

29 Bravais-Gitter

Cittemanatem	Duralitamurana	5 Bravais Gitter	
Gittersystem	Punktgruppe	primitive (p)	centered (c)
monoclinic (m)	C_2		
orthorhombic (o)	D_2	b a	
tetragonal (t)	D_4		
hexagonal (h)	D_6	a 120° a	

Tabelle 2: In 2D gibt es 5 verschiedene Bravais-Gitter

Kristall-systenGitter		Punktgruppe	14 Bravais Gitter			
	entittersystem		primitive (P)	base_cen- tered (S)	body_cen- tered (I)	face_cen- tered (F)
triclinic (a)		$\mathrm{C_{i}}$				
monoclinic (m)		C_{2h}				
orthorhombic (o)		D_{2h}				
tetragonal (t)		$\mathrm{D}_{4\mathrm{h}}$				
hexagonal (h	rhombohe- dral	D _{3d}	a a a a a a a a a a			
	hexagonal	$\mathrm{D}_{6\mathrm{h}}$	$\gamma = 120^{\circ}$			
cubic (c)		$O_{\rm h}$	a 41 _a		a a a	

Tabelle 3: In 3D gibt es 14 verschiedene Bravais-Gitter

30 Reziprokes Gitter

Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren \vec{k} , die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.

 $\vec{b_1} = \frac{2\pi}{V_1} \vec{a_2} \times \vec{a_3} \tag{276}$

$$\vec{b_2} = \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1}$$
(277)

$$=\frac{2\pi}{V_c}\vec{a_1}\times\vec{a_2} \tag{278}$$

 a_i Bravais-Gitter Vektoren, V_c Volumen der primitiven Gitterzelle

 $\vec{b_3}$

30.1 Streuprozesse

Reziproke Gittervektoren

Matthiessensche Regel Näherung, nur gültig wenn die einzelnen Streuprozesse von einander unabhängig sind	$\frac{1}{\mu} = \sum_{i=\text{Streuprozesse}} \frac{1}{\mu_i}$ $\frac{1}{\tau} = \sum_{i=\text{Streuprozesse}} \frac{1}{\tau_i}$	(279) (280)
	μ Moblitiät, τ Streuzeit	

31 Freies Elektronengase

Annahmen: Elektronen bewegen sich frei und unabhänig voneinander.

Γ

Driftgeschwindgkeit Geschwindigkeitskomponente durch eine externe Kraft (z.B. ein elektrisches Feld)	$\vec{v}_{\rm D}=\vec{v}-\vec{v}_{\rm th}$ $v_{\rm th}$ thermische Geschwindigkeit	(281)
Streuzeit	τ	(282)
Mittlere freie Weglänge	$\ell = \langle v \rangle \tau$	(283)
Beweglichkeit	$\mu = \frac{q\tau}{m}$ q Ladung, m Masse	(284)

31.1 Drude-Modell

Ein klassisches Model zur Beschreibung der Transporteigenschaften von Elektronen in (v.a.) Metallen: Der Festkörper wird als Ionenkristall mit frei beweglichen Elektronen (Elektronengas). Die Elektronen werden durch ein Elektrisches Feld E beschleunigt und durch Stöße mit den Gitterionen gebremst. Das Modell vernachlässigt die Fermi-Dirac Verteilung der Leitungselektronen.

Bewegungsgleichung
$$m_{\rm e} \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \frac{m_{\rm e}}{\tau} \vec{v}_{\rm D} = -e\vec{E}$$
 (285)
 v Elektronengeschwindigkeit, $\vec{v}_{\rm D}$ Driftgeschwindigkeit, τ
StoßzeitStromdichte
Ohmsches Gesetz $\vec{j} = -ne\vec{v}_{\rm D} = ne\mu\vec{E}$ (286)
 n LadungsträgerdichteDrude-Leitfähigkeit $\sigma = \frac{\vec{j}}{\vec{E}} = \frac{e^2\tau n}{m_{\rm e}} = ne\mu$ (287)

31.2 Sommerfeld-Modell

Annahme eines freien Fermionengases, welches dem Pauli-Prinzip unterliegt. Nur Elektronen in einem Energiebereich von $k_{\rm B}T$ um die Fermi Energe $E_{\rm F}$ nehmen an Streuprozessen teil.

Stromdichte

$$\vec{j} = -en\langle v \rangle = -en\frac{\hbar}{m_{\rm e}}\langle \vec{k} \rangle = -e\frac{1}{V}\sum_{\vec{k},\sigma}\frac{\hbar\vec{k}}{m_{\rm e}}$$
(288)

TODO: The formula for the conductivity is the same as in the drude model?

31.3 2D Elektronengas

Niederdimensionale Elektronengase erhält man, wenn ein 3D Gas durch unendlich hohe Potentialwände auf einem schmalen Bereich mit Breite L eingeschränkt wird.

Confinement Energie Erhöht die Grundzustandsenergie	$\Delta E = \frac{\hbar^2 \pi^2}{2m_{\rm e}L^2} \tag{289}$
---	--

Energie
$$E_n = \underbrace{\frac{\hbar^2 k_{\parallel}^2}{2m_{\rm e}}}_{x-y: \text{ ebene Welle}} + \underbrace{\frac{\hbar^2 \pi^2}{2m_{\rm e}L^2} n^2}_{z}$$
(290)

31.4 1D Electronengas / Quantendraht

Γ

31.5 0D Elektronengase / Quantenpunkt

TODO:TODO

32 Messtechniken

32.1 ARPES

what? in? how? plot

32.2 Rastersondenmikroskopie (SPM)

Bilder der Oberfläche einer Probe werden erstellt, indem die Probe mit einer Sonde abgetastet wird.

Name	Atomare Rasterkraftmikrosko- pie (AMF)
Anwendung	Oberflächenzeug
how	Mit Nadel

Abbildung 1: [?]

Name	Rastertunnelmikroskop (STM)
Anwendung	Oberflächenzeug
how	Mit TUnnel

Abbildung 2: [?]

33 Herstellungsmethoden

Name	Chemische Gasphasenabschei- dung (CVD)		
how	An der erhitzten Oberfläche ei- nes Substrates wird aufgrund einer chemischen Reaktion mit einem Gas eine Feststoffkom- ponente abgeschieden. Neben- produkte werden durch den Gasfluss durch die Kammer entfernt.		
Anwendung	 Poly-silicon Si Siliziumdioxid SiO₂ Graphen Diamant 		

33.1 Epitaxie

Eine Art des Kristallwachstums, bei der mindestens eine kristallographische Ordnung der wachsenden Schicht der des Substrates entspricht.

