\def\sigmaxmatrix{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}} \def\sigmaymatrix{\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}} \def\sigmazmatrix{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}} \def\sigmaxbraket{\ket{0}\bra{1} + \ket{1}\bra{0}} \def\sigmaybraket{-i \ket{0}\bra{1} + i \ket{1}\bra{0}} \def\sigmazbraket{\ket{0}\bra{0} - \ket{1}\bra{1}} \Part[ \eng{Quantum Mechanics} \ger{Quantenmechanik} ]{qm} \Section[ \eng{Basics} \ger{Basics} ]{basics} \Subsection[ \eng{Operators} \ger{Operatoren} ]{op} \Ger[row_vector]{Zeilenvektor} \Ger[column_vector]{Spaltenvektor} \Eng[column_vector]{Column vector} \Eng[row_vector]{Row vector} \begin{formula}{dirac_notation} \desc{Dirac notation}{}{} \desc[german]{Dirac-Notation}{}{} \eq{ \bra{x} \vspace*{1cm} \text{"Bra" \GT{row_vector}} \\ \ket{x} \vspace*{1cm} \text{"Ket" \GT{column_vector}} \\ \hat{A}\ket{\beta} = \ket{\alpha} \Rightarrow \bra{\alpha} = \bra{\beta} \hat{A}^\dagger } \end{formula} \begin{formula}{dagger} \desc{Dagger}{}{} \desc[german]{Dagger}{}{} \eq{ \hat{A}^\dagger &= (\hat{A}^*)^\mathrm{T} \\ (c \hat{A})^\dagger &= c^* \hat{A}^\dagger \\ (\hat{A}\hat{B})^\dagger &= \hat{B}^\dagger \hat{A}^\dagger \\ } \end{formula} \begin{formula}{adjoint_op} \desc{Adjoint operator}{}{} \desc[german]{Adjungierter operator}{}{} \eq{\braket{\alpha|\hat{A}^\dagger|\beta} = \braket{\beta|\hat{A}|\alpha}^*} \end{formula} \begin{formula}{hermitian_op} \desc{Hermitian operator}{}{} \desc[german]{Hermitescher operator}{}{} \eq{\hat{A} = \hat{A}^\dagger} \end{formula} \Subsubsection[ \eng{Measurement} \ger{Messung} ]{measurement} \begin{ttext} \eng{An observable is a hermition operator acting on $\hat{H}$. The measurement randomly yields one of the eigenvalues of $\hat{O}$ (all real).} \ger{Eine Observable ist ein hermitscher Operator, der auf $\hat{H}$ wirkt. Die Messung ergibt zufällig einen der Eigenwerte von $\hat{O}$, welche alle reell sind.} \end{ttext} \begin{formula}{name} \desc{Measurement probability}{Probability to measure $\psi$ in state $\lambda$}{} \desc[german]{Messwahrscheinlichkeit}{Wahrscheinlichkeit, $\psi$ im Zustand $\lambda$ zu messen}{} \eq{p(\lambda) = \braket{\psi|\hat{P}_\lambda|\psi}} \end{formula} \begin{formula}{state_after} \desc{State after measurement}{}{} \desc[german]{Zustand nach der Messung}{}{} \eq{\ket{\psi}_\text{post} = \frac{1}{\sqrt{p(\lambda)}}\hat{P}_\lambda \ket{\psi}} \end{formula} \Subsubsection[ \eng{Pauli matrices} \ger{Pauli-Matrizen} ]{pauli_matrices} \begin{formula}{pauli_matrices} \desc{Pauli matrices}{}{} \desc[german]{Pauli Matrizen}{}{} \newFormulaEntry \begin{alignat}{2} \sigma_x &= \sigmaxmatrix &&= \sigmaxbraket \label{eq:pauli_x} \\ \sigma_y &= \sigmaymatrix &&= \sigmaybraket \label{eq:pauli_y} \\ \sigma_z &= \sigmazmatrix &&= \sigmazbraket \label{eq:pauli_z} \end{alignat} \end{formula} % $\sigma_x$ NOT % $\sigma_y$ PHASE % $\sigma_z$ Sign \Subsection[ \ger{Wahrscheinlichkeitstheorie} \eng{Probability theory} ]{probability} \begin{formula}{conservation_of_probability} \desc{Continuity equation}{}{$\rho$ density of a conserved quantity $q$, $j$ flux density of $q$} \desc[german]{Kontinuitätsgleichung}{}{$\rho$ Dichte einer Erhaltungsgröße $q$, $j$ Fluß von $q$} \eq{\frac{\partial\rho(\vec{x}, t)}{\partial t} + \nabla \cdot \vec{j}(\vec{x},t) = 0} \end{formula} \begin{formula}{state_probability} \desc{State probability}{}{} \desc[german]{Zustandswahrscheinlichkeit}{}{} \eq{TODO} \end{formula} \begin{formula}{dispersion} \desc{Dispersion}{}{} \desc[german]{Dispersion}{}{} \eq{\Delta \hat{A} = \hat{A} - \braket{\hat{A}}} \end{formula} \begin{formula}{generalized_uncertainty} \desc{Generalized uncertainty principle}{}{} \desc[german]{Allgemeine Unschärferelation}{}{} % \eq{\braket{(\Delta \hat{A})^2} \braket{(\Delta \hat{B})^2} \ge \frac{1}{4} \braket{[\hat{A},\hat{B}]}^2} \eq{ \sigma_A \sigma_B &\ge \frac{1}{4} \braket{[\hat{A},\hat{B}]}^2 \\ \sigma_A \sigma_B &\ge \frac{1}{2} \abs{\braket{[\hat{A},\hat{B}]}} } \end{formula} \Subsection[ \eng{Commutator} \ger{Kommutator} ]{commutator} \begin{formula}{commutator} \desc{Commutator}{}{} \desc[german]{Kommutator}{}{} \eq{[A,B] = AB - BA} \end{formula} \begin{formula}{anticommutator} \desc{Anticommutator}{}{} \desc[german]{Antikommmutator}{}{} \eq{\{A,B\} = AB + BA} \end{formula} \begin{formula}{commutation_relations}\ \desc{Commutation relations}{}{} \desc[german]{Kommutatorrelationen}{}{} \eq{[A, BC] = [A, B]C - B[A,C]} \end{formula} \TODO{add some more?} \begin{formula}{function} \desc{Commutator involving a function}{}{given $[A,[A,B]] = 0$} \desc[german]{Kommutator mit einer Funktion}{}{falls $[A,[A,B]] = 0$} \eq{[f(A) , B] = [A,B]\,\pdv{f}{A}} \end{formula} \begin{formula}{jacobi_identity} \desc{Jacobi identity}{}{} \desc[german]{Jakobi-Identität}{}{} \eq{[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0} \end{formula} \begin{formula}{hadamard_lemma} \desc{Hadamard's Lemma}{}{} \desc[german]{Lemma von Hadamard}{}{} \eq{\e^A B \e^{-A} = B + [A,B] + \frac{1}{2!} [A, [A,B]] + \frac{1}{3!} [A, [A, [A, B]]] + \dots} \end{formula} \begin{formula}{canon_comm_relation} \desc{Canonical commutation relation}{}{$x$, $p$ canonical conjugates} \desc[german]{Kanonische Vertauschungsrelationen}{}{$x$, $p$ kanonische konjugierte} \eq{ [x_i, x_j] &= 0 \\ [p_i, p_j] &= 0 \\ [x_i, p_j] &= i \hbar \delta_{ij} } \end{formula} \Section[ \eng{Schrödinger equation} \ger{Schrödingergleichung} ]{se} \begin{formula}{energy_operator} \desc{Energy operator}{}{} \desc[german]{Energieoperator}{}{} \eq{E = i\hbar \frac{\partial}{\partial t}} \end{formula} \begin{formula}{momentum_operator} \desc{Momentum operator}{}{} \desc[german]{Impulsoperator}{}{} \eq{\vec{p} = -i\hbar \vec{\nabla_x}} \end{formula} \begin{formula}{space_operator} \desc{Space operator}{}{} \desc[german]{Ortsoperator}{}{} \eq{\vec{x} = i\hbar \vec{\nabla_p}} \end{formula} \begin{formula}{stationary_schroedinger_equation} \desc{Stationary Schrödingerequation}{}{} \desc[german]{Stationäre Schrödingergleichung}{}{} \eq{\hat{H}\ket{\psi} = E\ket{\psi}} \end{formula} \begin{formula}{schroedinger_equation} \desc{Schrödinger equation}{}{} \desc[german]{Schrödingergleichung}{}{} \abbrLabel{SE} \eq{i\hbar\frac{\partial}{\partial t}\psi(x, t) = (- \frac{\hbar^2}{2m} \vec{\nabla}^2 + \vec{V}(x)) \psi(x)} \end{formula} \begin{formula}{hellmann_feynmann} \absLabel \desc{Hellmann-Feynman-Theorem}{Derivative of the energy to a parameter}{} \desc[german]{Hellmann-Feynman-Theorem}{Abletiung der Energie nach einem Parameter}{} \eq{ \odv{E_\lambda}{\lambda} = \int \d^3r \psi^*_\lambda \odv{\hat{H}_\lambda}{\lambda} \psi_\lambda = \Braket{\psi(\lambda)|\odv{\hat{H}_{\lambda}}{\lambda}|\psi(\lambda)} } \end{formula} \begin{formula}{variational_principle} \desc{Variational principle}{}{} \desc[german]{Variationsprinzip}{}{} \ttxt{\eng{ If $\hat{H}\psi = E\psi$, then $E_0 \le E = \Braket{\psi|\hat{H}|\psi}$. The ground state can thus be found by varying $\psi$ until $E$ is minimized. }\ger{ Wenn $\hat{H}\psi = E\psi$, dann ist $E_0 \le E = \Braket{\psi|\hat{H}|\psi}$. Der Grundzustand kann daher gefunden werden, indem $\psi$ variiert wird bis die Energie minimiert ist. }} \end{formula} \Subsection[ \eng{Time evolution} \ger{Zeitentwicklug} ]{time} The time evolution of the Hamiltonian is given by: \begin{formula}{time_evolution_op} \desc{Time evolution operator}{}{$U$ unitary} \desc[german]{Zeitentwicklungsoperator}{}{$U$ unitär} \eq{\ket{\psi(t)} = \hat{U}(t, t_0) \ket{\psi(t_0)}} \end{formula} \begin{formula}{von_neumann} \desc{Von-Neumann Equation}{Time evolution of the density operator in the Schrödinger picture. Qm analog to the Liouville equation \ref{eq:mech:liouville:todo}}{} \desc[german]{Von-Neumann Gleichung}{Zeitentwicklung des Dichteoperators im Schödingerbild. Qm. Analogon zur Liouville-Gleichung \ref{eq:mech:liouville:todo}}{} \eq{\pdv{\hat{\rho}}{t} = - \frac{i}{\hbar}[\hat{H}, \hat{\rho}]} \end{formula} \begin{formula}{lindblad} \desc{Lindblad master equation}{Generalization of von-Neummann equation for open quantum systems}{$h$ positive semidifnite matrix, $\hat{A}$ arbitrary operator} \desc[german]{Lindblad-Mastergleichung}{Verallgemeinerung der von-Neumman Gleichung für offene Quantensysteme}{$h$ positiv-semifinite Matrix, $\hat{A}$ beliebiger Operator} \eq{\dot{\rho} = \underbrace{-\frac{i}{\hbar} [\hat{H}, \rho]}_\text{reversible} + \underbrace{\sum_{n.m} h_{nm} \left(\hat{A}_n\rho \hat{A}_{m^\dagger} - \frac{1}{2}\left\{\hat{A}_m^\dagger \hat{A}_n,\rho \right\}\right)}_\text{irreversible}} \end{formula} \TODO{unitary transformation of time dependent H} \Subsubsection[ \eng{Schrödinger- and Heisenberg-pictures} \ger{Schrödinger- und Heisenberg-Bild} ]{s_h_pictures} \eng[s_h_pictures_desc]{ In the \textbf{Schrödinger picture}, the time dependecy is in the states while in the \textbf{Heisenberg picture} the observables (operators) are time dependent. } \ger[s_h_pictures_desc]{Im Schrödinger-Bild sind die Zustände zeitabhänig, im Heisenberg-Bild sind die Observablen (Operatoren) zeitabhänig } \gt{s_h_pictures_desc}\\ \begin{formula}{schroediner_time_evolution} \desc{Schrödinger time evolution}{}{} \desc[german]{Schrödinger Zeitentwicklug}{}{} \eq{ \ket{\psi(t)_\textrm{S}} = \hat{U}(t,t_0)\ket{\psi(t_0)} } \end{formula} \begin{formula}{heisenberg_time_evolution} \desc{Heisenberg time evolution}{}{\textrm{H} and \textrm{S} being the Heisenberg and Schrödinger picture, respectively} \desc[german]{Heisenberg Zeitentwicklung}{}{mit \textrm{H} und \textrm{S} dem Heisenberg- und Schrödinger-Bild} \eq{ \ket{\psi_\mathrm{H}} = \ket{\psi_\mathrm{S}(t_0)} \\ A_\textrm{H} = U^\dagger(t,t_0)A_\textrm{S}U(t,t_0) \\ \odv{\hat{A}_\textrm{H}}{t} = \frac{1}{i\hbar}[\hat{A}_\textrm{H}, \hat{H}_\textrm{H}] + \Big(\pdv{\hat{A}_\textrm{S}}{t}\Big)_\textrm{H} } \end{formula} \Subsubsection[ \eng{Ehrenfest theorem} \ger{Ehrenfest-Theorem} ]{ehrenfest_theorem} \GT{see_also} \ref{sec:qm:basics:schroedinger_equation:correspondence_principle} \begin{formula}{ehrenfest_theorem} \desc{Ehrenfest theorem}{applies to both pictures}{} \desc[german]{Ehrenfest-Theorem}{gilt für beide Bilder}{} \eq{ \odv{}{t} \braket{\hat{A}} = \frac{1}{i\hbar}\braket{[\hat{A},\hat{H}]} + \Braket{\pdv{\hat{A}}{t}} } \end{formula} \begin{formula}{ehrenfest_theorem_x} \desc{Ehrenfest theorem example}{Example for $x$}{} \desc[german]{Ehrenfest-Theorem Beispiel}{Beispiel für $x$}{} \eq{m\odv[2]{}{t}\braket{x} = -\braket{\nabla V(x)} = \braket{F(x)}} \end{formula} % \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time} % TODO: wo gehört das hin? \begin{formula}{correspondence_principle} \desc{Correspondence principle}{}{} \desc[german]{Korrespondenzprinzip}{}{} \ttxt{ \ger{Die klassischen Bewegungsgleichungen lassen sich als Grenzfall (große Quantenzahlen) aus der Quantenmechanik ableiten.} \eng{The classical mechanics can be derived from quantum mechanics in the limit of large quantum numbers.} } \end{formula} \Section[ \eng{Pertubation theory} \ger{Störungstheorie} ]{qm_pertubation} \begin{ttext} \eng{The following holds true if the pertubation $\hat{H_1}$ is sufficently small and the $E^{(0)}_n$ levels are not degenerate.} \ger{Die folgenden Gleichungen gelten wenn $\hat{H_1}$ ausreichend klein ist und die $E_n^{(0)}$ Niveaus nicht entartet sind.} \end{ttext} \begin{formula}{pertubation_hamiltonian} \desc{Hamiltonian}{}{} \desc[german]{Hamiltonian}{}{} \eq{\hat{H} = \hat{H_0} + \lambda \hat{H_1}} \end{formula} \begin{formula}{pertubation_series} \desc{Power series}{}{} \desc[german]{Potenzreihe}{}{} \eq{ E_n &= E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + ... \\ \ket{\psi_n} &= \ket{\psi_n^{(0)}} + \lambda \ket{\psi_n^{(1)}} + \lambda^2 \ket{\psi_n^{(2)}} + ... } \end{formula} \begin{formula}{1o_energy} \desc{1. order energy shift}{}{} \desc[german]{Energieverschiebung 1. Ordnung}{}{} \eq{E_n^{(1)} = \Braket{\psi_n^{(0)}|\hat{H_1}|\psi_n^{(0)}}} \end{formula} \begin{formula}{1o_state} \desc{1. order states}{}{} \desc[german]{Zustände}{}{} \eq{\ket{\psi_n^{(1)}} = \sum_{k\neq n}\frac{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}{E_n^{(0)} - E_k^{(0)}}\ket{\psi_k^{(0)}}} \end{formula} \begin{formula}{2o_energy} \desc{2. order energy shift}{}{} \desc[german]{Energieverschiebung 2. Ordnung}{}{} % \eq{E_n^{(1)} = \Braket{\psi_n^{(0)}|\hat{H_1}|\psi_n^{(0)}}} \eq{E_n^{(2)} = \sum_{k\neq n}\frac{\abs{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}^2}{E_n^{(0)} - E_k^{(0)}}} \end{formula} % \begin{formula}{qm:pertubation:} % \desc{1. order states}{}{} % \desc[german]{Zustände}{}{} % \eq{\ket{\psi_n^{(1)}} = \sum_{k\neq n}\frac{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}{E_n^{(0)} - E_k^{(0)}}\ket{\psi_k^{(0)}}} % \end{formula} \begin{formula}{golden_rule} \desc{Fermi's golden rule}{Transition rate from initial state $\ket{i}$ under a pertubation $H^1$ to final state $\ket{f}$}{} \desc[german]{Fermis goldene Regel}{Übergangsrate des initial Zustandes $\ket{i}$ unter einer Störung $H^1$ zum Endzustand $\ket{f}$}{} \eq{\Gamma_{i\to f} = \frac{2\pi}{\hbar} \abs{\braket{f | H^1 | i}}^2\,\rho(E_f)} \end{formula} \Section[ \eng{Harmonic oscillator} \ger{Harmonischer Oszillator} ]{hosc} \begin{formula}{hamiltonian} \desc{Hamiltonian}{}{} \desc[german]{Hamiltonian}{}{} \eq{ H&=\frac{p^2}{2m}+\frac{1}{2} m\omega^2 x^2\\ &=\frac{1}{2} \hbar\omega+\omega a^\dagger a } \end{formula} \begin{formula}{hosc_spectrum} \desc{Energy spectrum}{}{} \desc[german]{Energiespektrum}{}{} \eq{E_n = \hbar\omega \Big(\frac{1}{2} + n\Big)} \end{formula} \GT{see_also} \ref{sec:qm:hosc:c_a_ops} \Subsection[ \ger{Erzeugungs und Vernichtungsoperatoren / Leiteroperatoren} \eng{Creation and Annihilation operators / Ladder operators} ]{c_a_ops} \begin{formula}{c_a_ops_def} \desc{Particle number operator/occupation number operator}{}{$\ket{n}$ = Fock states, $\hat{a}$ = Annihilation operator, $\hat{a}^\dagger$ = Creation operator} \desc[german]{Teilchenzahloperator/Besetzungszahloperator}{}{$\ket{n}$ = Fock-Zustände, $\hat{a}$ = Vernichtungsoperator, $\hat{a}^\dagger$ = Erzeugungsoperator} \eq{ \hat{N} &:= a^\dagger a \\ \hat{N}\ket{n} &= n \ket{N} } \end{formula} \begin{formula}{c_a_commutator} \desc{Commutator}{}{} \desc[german]{Kommutator}{}{} \eq{ [\hat{a},\hat{a}^\dagger] &= 1 \\ [N, \hat{a}] &= -\hat{a} \\ [N, \hat{a}^\dagger] &= \hat{a}^\dagger } \end{formula} \begin{formula}{c_a_on_state} \desc{Application on states}{}{} \desc[german]{Anwendung auf Zustände}{}{} \eq{ \hat{a} \ket{n} &= \sqrt{n}\ket{n-1} \\ \hat{a}^\dagger \ket{n} &= \sqrt{n+1}\ket{n+1} \\ \ket{n} &= \frac{1}{\sqrt{n!}} (\hat{a}^\dagger)^n \ket{0} } \end{formula} \begin{formula}{c_a_matrices} \desc{Matrix forms}{}{} \desc[german]{Matrix-Form}{}{} \eq{ \hat{n} &= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & N \end{pmatrix} \\ \hat{a} &= \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \sqrt{N} \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \hat{a}^\dagger &= \begin{pmatrix} 0 & 0 & 0 & 0 \\ \sqrt{1} & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & 0 & \sqrt{N} & 0 \end{pmatrix} } \end{formula} \Subsubsection[ \eng{Harmonischer Oszillator} \ger{Harmonic Oscillator} ]{hosc} \begin{formula}{c_a_ops} \desc{Harmonic oscillator}{}{} \desc[german]{Harmonischer Oszillator}{}{} \eq{ % \tilde{X} &= \sqrt{\frac{m\omega}{\hbar}} \hat{x} &= \frac{1}{\sqrt{2}} (\hat{a} + \hat{a}^\dagger) \\ % \tilde{P} &= \frac{1}{\sqrt{m\omega\hbar}} \hat{p} &= \frac{-i}{\sqrt{2}} (\hat{a} - \hat{a}^\dagger) \\ \hat{x} &= \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^\dagger) \\ \hat{p} &= -i\sqrt{\frac{m\omega\hbar}{2}} (\hat{a} - \hat{a}^\dagger) \\ \hat{H} &= \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} &= \hbar\omega\Big(a^\dagger a + \frac{1}{2}\Big) \\ a &= \frac{1}{\sqrt{2}} (\tilde{X} + i\tilde{P}) \\ a^\dagger &= \frac{1}{\sqrt{2}} (\tilde{X} - i\tilde{P}) % \hat{a}^\dagger ? \sqrt{\frac{}{}} } \end{formula} % \eq{Heisenberg}{\frac{dA}{dt}=\frac{\partial A}{\partial t}+\frac{[A,H]}{i\hbar}}{heisenberg} % \begin{align} % \label{eq:k} % A=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x+\frac{ip}{\sqrt{2m\omega}} \\ % A^\dagger=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x-\frac{ip}{\sqrt{2m\omega}} \\ % HAu_E=(E-\hbar\omega)Au_E \\ % u_n=\frac{1}{\sqrt{n!}}\left(\frac{A^\dagger}{\sqrt{\hbar}}\right)^nu_0 \\ % u_0=\sqrt[4]{\frac{m\omega}{\pi\hbar}}\exp\left(-\frac{m\omega x^2}{2\hbar}\right) \\ % E_n=( \frac{1}{2} +n)\hbar\omega % \end{equation} \Section[ \eng{Angular momentum} \ger{Drehmoment} ]{angular_momentum} \Subsection[ \eng{Aharanov-Bohm effect} \ger{Aharanov-Bohm Effekt} ]{aharanov_bohm} \begin{formula}{phase} \desc{Acquired phase}{Electron along a closed loop aquires a phase proportional to the enclosed magnetic flux}{} \desc[german]{Erhaltene Phase}{Elektron entlang eines geschlossenes Phase erhält eine Phase die proportional zum eingeschlossenen magnetischem Fluss ist}{} \eq{\delta = \frac{2 e}{\hbar} \oint \vec{A}\cdot \d\vec{s} = \frac{2 e}{\hbar} \Phi} \end{formula} \TODO{replace with loop intergral symbol and add more info} \Section[ \eng{Periodic potentials} \ger{Periodische Potentiale} ]{periodic} \begin{formula}{bloch_waves} \desc{Bloch waves}{ Solve the stat. SG in periodic potential with period $\vec{R}$: $V(\vec{r}) = V(\vec{r} + \vec{R})$\\ }{ $\vec{k}$ arbitrary, $u$ periodic function } \desc[german]{Blochwellen}{ Lösen stat. SG im periodischen Potential mit Periode $\vec{R}$: $V(\vec{r}) = V(\vec{r} + \vec{R})$\\ }{ $\vec{k}$ beliebig, $u$ periodische Funktion } \eq{\psi_k(\vec{r}) = e^{i \vec{k}\cdot \vec{r}} \cdot u_{\vec{k}}(\vec{r})} \end{formula} \begin{formula}{periodicity} \desc{Periodicity}{}{\QtyRef{lattice_vector}, \QtyRef{reciprocal_lattice_vector}} \desc[german]{Periodizität}{}{} \eq{ u_\vec{k}(\vec{r} + \vec{R}) = u_\vec{k}(\vec{r}) \\ \psi_{\vec{k}+\vec{G}}(\vec{r}) = \psi_\vec{k}(\vec{r}) } \end{formula} \Section[ \eng{Symmetries} \ger{Symmetrien} ]{symmetry} \begin{ttext}[desc] \eng{Most symmetry operators are unitary \ref{sec:linalg:unitary} because the norm of a state must be invariant under transformations of space, time and spin.} \ger{Die meisten Symmetrieoperatoren sind unitär \ref{sec:linalg:unitary}, da die Norm eines Zustands invariant unter Raum-, Zeit- und Spin-Transformationen sein muss.} \end{ttext} \begin{formula}{invariance} \desc{Invariance}{$\hat{H}$ is invariant under a symmetrie described by $\hat{U}$ if this holds}{} \desc[german]{Invarianz}{$\hat{H}$ is invariant unter der von $\hat{U}$ beschriebenen Symmetrie wenn gilt:}{} \eq{\hat{U}\hat{H}\hat{U}^\dagger = \hat{H} \Leftrightarrow [\hat{U}, \hat{H}] = 0} \end{formula} \Subsection[ \eng{Time-reversal symmetry} \ger{Zeitumkehrungssymmetrie} ]{time_reversal} \begin{formula}{time} \desc{Time-reversal symmetry}{}{} \desc[german]{Zeitumkehrungssymmetrie}{}{} \eq{T: t \to -t} \end{formula} \begin{formula}{antiunitary} \desc{Anti-unitary}{}{} \desc[german]{Antiunitär}{}{} \eq{T^2 = -1} \end{formula} \Section[ \eng{Two-level systems (TLS)} \ger{Zwei-Niveau System (TLS)} ]{tls} \begin{formula}{james_cummings} \desc{James-Cummings Hamiltonian}{TLS interacting with optical cavity}{$\hat{E} = E_\text{ZPF}(\hat{a} + \hat{a}^\dagger)$ field operator with bosonic ladder operators, $\hat{S} = \hat{\sigma}^\dagger + \hat{\sigma}$ polarization operator with ladder operators of the TLS} \desc[german]{James-Cummings Hamiltonian}{TLS interagiert mit resonantem Lichtfeld}{$\hat{E} = E_\text{ZPF}(\hat{a} + \hat{a}^\dagger)$ Feldoperator mit bosonischen Leiteroperatoren, $\hat{S} = \hat{\sigma}^\dagger + \hat{\sigma}$ Polarisationsoperator mit Leiteroperatoren des TLS} \eq{H &= \underbrace{\hbar\omega_c \hat{a}^\dagger \hat{a}}_\text{\GT{field}} + \underbrace{\hbar\omega_\text{a} \frac{\hat{\sigma}_z}{2}}_\text{\GT{atom}} + \underbrace{\frac{\hbar\Omega}{2} \hat{E} \hat{S}}_\text{int} \\ \shortintertext{\GT{after} \fRef[RWA]{qm:other:RWA}:} \\ &= \hbar\omega_c \hat{a}^\dagger \hat{a} + \hbar\omega_\text{a} \hat{\sigma}^\dagger \hat{\sigma} + \frac{\hbar\Omega}{2} (\hat{a}\hat{\sigma^\dagger} + \hat{a}^\dagger \hat{\sigma}) } \end{formula} \Section[ \eng{Other} \ger{Sonstiges} ]{other} \begin{formula}{RWA} \desc{Rotating Wave Approximation (RWS)}{Rapidly oscilating terms are neglected}{$\omega_\text{L}$ light frequency, $\omega_0$ transition frequency} \desc[german]{Rotating Wave Approximation / Drehwellennäherung (RWS)}{Schnell oscillierende Terme werden vernachlässigt}{$\omega_\text{L}$ Frequenz des Lichtes, $\omega_0$ Übergangsfrequenz} \eq{\Delta\omega \coloneq \abs{\omega_0 - \omega_\text{L}} \ll \abs{\omega_0 + \omega_\text{L}} \approx 2\omega_0} \end{formula} \begin{formula}{adiabatic_theorem} \absLabel \desc{Adiabatic theorem}{}{} \desc[german]{Adiabatentheorem}{}{} \ttxt{ \eng{A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.} \ger{Ein quantenmechanisches System bleibt in im derzeitigen Eigenzustand falls eine Störung langsam genug wirkt und der Eigenwert durch eine Lücke vom Rest des Spektrums getrennt ist.} } \end{formula} \begin{formula}{slater_det} \desc{Slater determinant}{Construction of a fermionic (antisymmetric) many-particle wave function from single-particle wave functions}{} \desc[german]{Slater Determinante}{Konstruktion einer fermionischen (antisymmetrischen) Vielteilchen Wellenfunktion aus ein-Teilchen Wellenfunktionen}{} \eq{ \Psi(q_1, \dots, q_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_a(q_1) & \phi_a(q_2) & \cdots & \phi_a(q_N) \\ \phi_b(q_1) & \phi_b(q_2) & \cdots & \phi_b(q_N) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_z(q_1) & \phi_z(q_2) & \cdots & \phi_z(q_N) \end{vmatrix} } \end{formula}