\Section[ \eng{Calculus} \ger{Analysis} ]{cal} % \begin{formula}{shark} % \desc{Shark-midnight formula}{\emoji{shark}-s}{} % \desc[german]{Shark-Mitternachtformel}{}{} % \eq{ % \temoji{seal}_{1,2} = \frac{-\temoji{shark}\pm \sqrt{\temoji{shark}^2-4\temoji{octopus}\temoji{tropical-fish}}}{2\temoji{octopus}} % } % \end{formula} \Subsection[ \eng{Fourier analysis} \ger{Fourieranalyse} ]{fourier} \Subsubsection[ \eng{Fourier series} \ger{Fourierreihe} ]{series} \begin{formula}{series} \absLabel[fourier_series] \desc{Fourier series}{Complex representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}} \desc[german]{Fourierreihe}{Komplexe Darstellung}{} \eq{f(t) = \sum_{k=-\infty}^{\infty} c_k \Exp{\frac{2\pi \I kt}{T}}} \end{formula} \Eng[real]{real} \Ger[real]{reellwertig} \begin{formula}{coefficient-complex} \desc{Fourier coefficients}{Complex representation}{} \desc[german]{Fourierkoeffizienten}{Komplexe Darstellung}{} \eq{ c_k &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Exp{-\frac{2\pi \I}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\ c_{-k} &= \overline{c_k} \quad \text{\GT{if} $f$ \GT{real}} } \end{formula} \begin{formula}{series_sincos} \desc{Fourier series}{Sine and cosine representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}} \desc[german]{Fourierreihe}{Sinus und Kosinus Darstellung}{} \eq{f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \Cos{\frac{2\pi}{T}kt} + b_k\Sin{\frac{2\pi}{T}kt}\right)} \end{formula} \begin{formula}{coefficient} \desc{Fourier coefficients}{Sine and cosine representation\\If $f$ has point symmetry: $a_{k>0}=0$, if $f$ has axial symmetry: $b_k=0$}{} \desc[german]{Fourierkoeffizienten}{Sinus und Kosinus Darstellung\\Wenn $f$ punktsymmetrisch: $a_{k>0}=0$, wenn $f$ achsensymmetrisch: $b_k=0$}{} \eq{ a_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Cos{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\ b_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Sin{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge1\\ a_k &= c_k + c_{-k} \quad\text{\GT{for}}\,k\ge0\\ b_k &= \I(c_k - c_{-k}) \quad\text{\GT{for}}\,k\ge1 } \end{formula} \TODO{cleanup} \Subsubsection[ \eng{Fourier transformation} \ger{Fouriertransformation} ]{trafo} \begin{formula}{transform} \absLabel[fourier_transform] \desc{Fourier transform}{}{$\hat{f}:\R^n \mapsto \C$, $\forall f\in L^1(\R^n)$} \desc[german]{Fouriertransformierte}{}{} \eq{\hat{f}(k) \coloneq \frac{1}{\sqrt{2\pi}^n} \int_{\R^n} \e^{-\I kx}f(x)\d x} \end{formula} \Eng[linear_in]{linear in} \Ger[linear_in]{linear in} \GT{for} $f\in L^1(\R^n)$: \begin{enumerate}[i)] \item $f \mapsto \hat{f}$ \GT{linear_in} $f$ \item $g(x) = f(x-h) \qRarrow \hat{g}(k) = \e^{-\I kn}\hat{f}(k)$ \item $g(x) = \e^{ih\cdot x}f(x) \qRarrow \hat{g}(k) = \hat{f}(k-h)$ \item $g(\lambda) = f\left(\frac{x}{\lambda}\right) \qRarrow \hat{g}(k)\lambda^n \hat{f}(\lambda k)$ \end{enumerate} \Subsubsection[ \eng{Convolution} \ger{Faltung / Konvolution} ]{conv} \begin{ttext} \eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.} \ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}} \end{ttext} \begin{formula}{def} \desc{Definition}{}{} \desc[german]{Definition}{}{} \eq{(f*g)(t) = f(t) * g(t) = \int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau} \end{formula} \begin{formula}{notation} \desc{Notation}{}{} \desc[german]{Notation}{}{} \eq{ f(t) * g(t-t_0) &= (f*g)(t-t_0) \\ f(t-t_0) * g(t-t_0) &= (f*g)(t-2t_0) } \end{formula} \begin{formula}{commutativity} \desc{Commutativity}{}{} \desc[german]{Kommutativität}{}{} \eq{f * g = g * f} \end{formula} \begin{formula}{associativity} \desc{Associativity}{}{} \desc[german]{Assoziativität]}{}{} \eq{(f*g)*h = f*(g*h)} \end{formula} \begin{formula}{distributivity} \desc{Distributivity}{}{} \desc[german]{Distributivität}{}{} \eq{f * (g + h) = f*g + f*h} \end{formula} \begin{formula}{complex_conjugate} \desc{Complex conjugate}{}{} \desc[german]{Komplexe konjugation}{}{} \eq{(f*g)^* = f^* * g^*} \end{formula} \Subsection[ \eng{Misc} \ger{Verschiedenes} ]{misc} \begin{formula}{stirling-approx} \desc{Stirling approximation}{}{} \desc[german]{Stirlingformel}{}{} \eq{\ln (N!) \approx N \ln(N) - N + \Order(\ln(N))} \end{formula} \begin{formula}{error-function} \desc{Error function}{$\erf: \C \to \C$ and complementary error function $\erfc$}{} \desc[german]{Fehlerfunktion}{$\erf: \C \to \C$ und komplementäre Fehlerfunktion $\erfc$}{} \eq{ \erf(x) &= \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \d t \\ \erfc(x) &= 1 - \erf(x)\\ &= \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \d t } \end{formula} \begin{formula}{delta_of_function} \desc{Dirac-Delta of a function}{}{$f(x_i) = 0$} \desc[german]{Dirac-Delta einer Funktion}{}{} \eq{\delta(f(x)) = \sum_i \frac{\delta(x-x_i)}{\abs{f^\prime(x_i)}}} \end{formula} \begin{formula}{geometric_series} \desc{Geometric series}{}{$\abs{q}<1$} \desc[german]{Geometrische Reihe}{}{} \eq{\sum_{k=0}^{\infty}q^k = \frac{1}{1-q}} \end{formula} \Subsection[ \eng{Logarithm} \ger{Logarithmus} ]{log} \begin{formula}{identities} \desc{Logarithm identities}{}{} \desc[german]{Logarithmus Identitäten}{Logarithmus Rechenregeln}{} \eq{ \log(xy) &= \log(x) + \log(y) \\ \log \left(\frac{x}{y}\right) &= \log(x) - \log(y) \\ \log \left(x^d\right) &= d\log(x) \\ \log \left(\sqrt[y]{x}\right) &= \frac{\log(x)}{y} \\ x^{\log(y)} &= y^{\log(x)} } \end{formula} \begin{formula}{integral} \desc{Integral of natural logarithm}{}{} \desc[german]{Integral des natürluchen Logarithmus}{}{} \eq{ \int \ln(x) \d x &= x \left(\ln(x) -1\right) \\ \int \ln(ax + b) \d x &= \frac{ax+b}{a} \left(\ln(ax + b) -1\right) } \end{formula} \Subsection[ \eng{Vector calculus} \ger{Vektor Analysis} ]{vec} \begin{formula}{laplace} \desc{Laplace operator}{}{} \desc[german]{Laplace-Operator}{}{} \eq{\laplace = \Grad^2 = \pdv[2]{}{x} + \pdv[2]{}{y} + \pdv[2]{}{z}} \end{formula} \Subsubsection[ \eng{Spherical symmetry} \ger{Kugelsymmetrie} ]{sphere} \begin{formula}{coordinates} \desc{Spherical coordinates}{}{} \desc[german]{Kugelkoordinaten}{}{} \eq{ x &= r \sin\phi,\cos\theta \\ y &= r \cos\phi,\cos\theta \\ z &= r \sin\theta } \end{formula} \begin{formula}{laplace} \desc{Laplace operator}{}{} \desc[german]{Laplace-Operator}{}{} \eq{\Grad^2 = \laplace = \frac{1}{r^2} \pdv{}{r} \left(r^2 \pdv{}{r}\right)} \end{formula} \begin{formula}{p-norm} \desc{$p$-norm}{}{} \desc[german]{$p$-Norm}{}{} \eq{\norm{\vecx}_p \equiv \left(\sum_{i=1}^{n} \abs{x_i}^p\right)^\frac{1}{p}} \end{formula} \Subsection[ \eng{Integrals} \ger{Integralrechnung} ]{integral} \begin{formula}{partial} \desc{Partial integration}{}{} \desc[german]{Partielle integration}{}{} \eq{ \int_a^b f^\prime(x)\cdot g(x) \d x= \left[f(x)\cdot g(x)\right]_a^b - \int_a^b f(x)\cdot g^\prime(x) \d x } \end{formula} \begin{formula}{substitution} \desc{Integration by substitution}{}{} \desc[german]{Integration durch Substitution}{}{} \eq{ \int_a^b f(g(x))\,g^\prime(x) \d x = \int_{g(a)}^{g(b)} f(z) \d z } \end{formula} \begin{formula}{gauss} \desc{Gauss's theorem / Divergence theorem}{Divergence in a volume equals the flux through the surface}{$A = \partial V$} \desc[german]{Satz von Gauss}{Divergenz in einem Volumen ist gleich dem Fluss durch die Oberfläche}{} \eq{ \iiint_V \Div{\vec{F}} \d V = \oiint_A \vec{F} \cdot \d\vec{A} } \end{formula} \begin{formula}{stokes} \desc{Stokes's theorem}{}{$S = \partial A$} \desc[german]{Klassischer Satz von Stokes}{}{} \eq{\int_A (\Rot{\vec{F}}) \cdot \d\vec{S} = \oint_{S} \vec{F} \cdot \d \vec{r}} \end{formula} \Subsubsection[ \eng{List of common integrals} \ger{Liste nützlicher Integrale} ]{list} % Put links to other integrals here \fRef{math:cal:log:integral} \begin{formula}{arcfunctions} \desc{Arcsine, arccosine, arctangent}{}{} \desc[german]{Arkussinus, Arkuskosinus, Arkustangens}{}{} \eq{ \int \frac{1}{\sqrt{1-x^2}} \d x = \arcsin x \\ \int -\frac{1}{\sqrt{1-x^2}} \d x = \arccos x \\ \int \frac{1}{x^2+1} \d x = \arctan x } \end{formula} \begin{formula}{archyperbolicfunctions} \desc{Arcsinh, arccosh, arctanh}{}{} % \desc[german]{Arkussinus, Arkuskosinus, Arkustangens}{}{} \eq{ \int \frac{1}{\sqrt{x^2+1}} \d x &= \arsinh x \\ \int \frac{1}{\sqrt{x^2-1}} \d x &= \arcosh x \quad\eqnote{\GT{for} $(x > 1)$}\\ \int \frac{1}{1-x^2} \d x &= \artanh x \quad\eqnote{\GT{for} $(\abs{x} < 1)$}\\ \int \frac{1}{1-x^2} \d x &= \arcoth x \quad\eqnote{\GT{for} $(\abs{x} > 1)$} } \end{formula} \begin{formula}{spheical-coordinates-int} \desc{Integration in spherical coordinates}{}{} \desc[german]{Integration in Kugelkoordinaten}{}{} \eq{\iiint\d x \d y \d z= \int_0^{\infty} \!\! \int_0^{2\pi} \!\! \int_0^\pi \d r \d\phi\d\theta \, r^2\sin\theta} \end{formula} \begin{formula}{riemann_zeta} \desc{Riemann Zeta Function}{}{} \desc[german]{Riemannsche Zeta-Funktion}{}{} \eq{\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1-2^{(1-s)})\Gamma(s)} \int_0^\infty \d\eta \frac{\eta^{(s-1)}}{\e^\eta + 1}} \end{formula} \begin{formula}{gamma_function} \desc{Gamma function}{}{} \desc[german]{Gamma-Funktion}{}{} \eq{ \Gamma(n) &= (n-1)! \\ \Gamma(z) &= \int_0^\infty t^{z-1} \e^{-t} \d t \\ \Gamma(z+1) &= z\Gamma(z) } \end{formula} \begin{formula}{upper_incomplete_gamma_function} \desc{Upper incomplete gamma function}{}{} \desc[german]{Unvollständige Gamma-Funktion der unteren Grenze}{}{} \eq{\Gamma(s,x) = \int_x-^\infty t^{s-1}\e^{-t} \d t} \end{formula} \begin{formula}{lower_incomplete_gamma_function} \desc{Lower incomplete gamma function}{}{} \desc[german]{Unvollständige Gamma-Funktion der oberen Grenze}{}{} \eq{\gamma(s,x) = \int_0^x t^{s-1}\e^{-t} \d t} \end{formula} \begin{formula}{beta_function} \desc{Beta function}{Complete beta function}{} \desc[german]{Beta-Funktion}{}{} \eq{ \txB(z_1,z_2) &= \int_0^1 t^{z_1-1} (1-t)^{z_2-1} \d t \\ \txB(z_1, z_2) &= \frac{\Gamma(z_1) \Gamma(z_2)}{\Gamma(z_1+z_2)} } \end{formula} \begin{formula}{incomplete_beta_function} \desc{Incomplete beta function}{Complete beta function}{} \desc[german]{Unvollständige Beta-Funktion}{}{} \eq{\txB(x; z_1,z_2) = \int_0^x t^{z_1-1} (1-t)^{z_2-1} \d t} \end{formula} \TODO{differential equation solutions}