\Section{pt} \desc{Probability theory}{}{} \desc[german]{Wahrscheinlichkeitstheorie}{}{} \begin{formula}{mean} \absLabel \desc{Mean}{Expectation value}{} \desc[german]{Mittelwert}{Erwartungswert}{} \eq{\braket{x} = \int w(x)\, x\, \d x} \end{formula} \begin{formula}{variance} \absLabel \desc{Variance}{Square of the \fRef{math:pt:std-deviation}}{} \desc[german]{Varianz}{Quadrat der\fRef{math:pt:std-deviation}}{} \eq{\sigma^2 = (\Delta \hat{x})^2 = \Braket{\hat{x}^2} - \braket{\hat{x}}^2 = \braket{(x - \braket{x})^2}} \end{formula} \begin{formula}{covariance} \absLabel \desc{Covariance}{}{} \desc[german]{Kovarianz}{}{} \eq{\cov(x,y) = \sigma(x,y) = \sigma_{XY} = \Braket{(x-\braket{x})\,(y-\braket{y})}} \end{formula} \begin{formula}{std-deviation} \absLabel \desc{Standard deviation}{}{} \desc[german]{Standardabweichung}{}{} \eq{\sigma = \sqrt{\sigma^2} = \sqrt{(\Delta x)^2}} \end{formula} \begin{formula}{median} \desc{Median}{Value separating lower half from top half}{$x$ dataset with $n$ elements} \desc[german]{Median}{Teilt die untere von der oberen Hälfte}{$x$ Reihe mit $n$ Elementen} \eq{ \textrm{med}(x) = \left\{ \begin{array}{ll} x_{(n+1)/2} & \text{$n$ \GT{odd}} \\ \frac{x_{(n/2)}+x_{((n/2)+1)}}{2} & \text{$n$ \GT{even}} \end{array} \right. } \end{formula} \begin{formula}{pdf} \abbrLabel{PDF} \desc{Probability density function}{Random variable has density $f$. The integral gives the probability of $X$ taking a value $x\in[a,b]$.}{$f$ normalized: $\int_{-\infty}^\infty f(x) \d x= 1$} \desc[german]{Wahrscheinlichkeitsdichtefunktion}{Zufallsvariable hat Dichte $f$. Das Integral gibt Wahrscheinlichkeit an, dass $X$ einen Wert $x\in[a,b]$ annimmt}{$f$ normalisiert $\int_{-\infty}^\infty f(x) \d x= 1$} \eq{P([a,b]) := \int_a^b f(x) \d x} \end{formula} \begin{formula}{cdf} \abbrLabel{CDF} \desc{Cumulative distribution function}{}{$f$ probability density function} \desc[german]{Kumulative Verteilungsfunktion}{}{$f$ Wahrscheinlichkeitsdichtefunktion} \eq{F(x) = \int_{-\infty}^x f(t) \d t} \end{formula} \begin{formula}{pmf} \abbrLabel{PMF} \desc{Probability mass function}{Probability $p$ that \textbf{discrete} random variable $X$ has exact value $x$}{$P$ probability measure} \desc[german]{Wahrscheinlichkeitsfunktion / Zählfunktion}{Wahrscheinlichkeit $p$ dass eine \textbf{diskrete} Zufallsvariable $X$ einen exakten Wert $x$ annimmt}{} \eq{p_X(x) = P(X = x)} \end{formula} \begin{formula}{autocorrelation} \absLabel \desc{Autocorrelation}{Correlation of $f$ to itself at an earlier point in time, $C$ is a covariance function}{$\tau$ lag-time} \desc[german]{Autokorrelation}{Korrelation vonn $f$ zu sich selbst zu einem früheren Zeitpunkt. $C$ ist auch die Kovarianzfunktion}{$\tau$ Zeitverschiebung} \eq{C_A(\tau) &= \lim_{T \to \infty} \frac{1}{2T}\int_{-T}^{T} f(t+\tau) f(t) \d t) \\ &= \braket{f(t+\tau)\cdot f(t)}} \end{formula} \begin{formula}{binomial_coefficient} \desc{Binomial coefficient}{Number of possibilitites of choosing $k$ objects out of $n$ objects\\}{} \desc[german]{Binomialkoeffizient}{Anzahl der Möglichkeiten, $k$ aus $n$ zu wählen\\ "$n$ über $k$"}{} \eq{\binom{n}{k} = \frac{n!}{k!(n-k)!}} \end{formula} \Subsection{distributions} \desc{Distributions}{}{} \desc[german]{Verteilungen}{}{} \Subsubsection{cont} \desc{Continuous probability distributions}{}{} \desc[german]{Kontinuierliche Wahrscheinlichkeitsverteilungen}{}{} \begin{bigformula}{normal} \absLabel[normal_distribution] \desc{Gauß/Normal distribution}{}{} \desc[german]{Gauß/Normal-Verteilung}{}{} \fsplit[\distleftwidth]{ \centering \includegraphics{img/distribution_gauss.pdf} }{ \begin{distribution} \disteq{parameters}{\mu \in \R,\quad \sigma^2 \in \R} \disteq{support}{x \in \R} \disteq{pdf}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right)} \disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]} \disteq{mean}{\mu} \disteq{median}{\mu} \disteq{variance}{\sigma^2} \end{distribution} } \end{bigformula} \begin{formula}{standard_normal} \absLabel[standard_normal_distribution] \desc{Density function of the standard normal distribution}{$\mu = 0$, $\sigma = 1$}{} \desc[german]{Dichtefunktion der Standard-Normalverteilung}{$\mu = 0$, $\sigma = 1$}{} \eq{\varphi(x) = \frac{1}{\sqrt{2\pi}} \e^{-\frac{1}{2}x^2}} \end{formula} \begin{bigformula}{multivariate_normal} \absLabel[multivariate_normal_distribution] \desc{Multivariate normal distribution}{Multivariate Gaussian distribution}{$\vec{\mu}$ \absRef{mean}, $\mat{\Sigma}$ \absRef{covariance}} \desc[german]{Mehrdimensionale Normalverteilung}{Multivariate Normalverteilung}{} \fsplit[0.3]{ \TODO{k-variate normal plot} }{ \begin{distribution} \disteq{parameters}{\vec{\mu} \in \R^k,+\quad \mat{\Sigma} \in \R^{k\times k}} \disteq{support}{\vec{x} \in \vec{\mu} + \text{span}(\mat{\Sigma})} \disteq{pdf}{\mathcal{N}(\vec{\mu}, \mat{\Sigma}) = \frac{1}{(2\pi)^{k/2}} \frac{1}{\sqrt{\det{\Sigma}}} \Exp{-\frac{1}{2} \left(\vecx-\vec{\mu}\right)^\T \mat{\Sigma}^{-1} \left(\vecx-\vec{\mu}\right)}} \disteq{mean}{\vec{\mu}} \disteq{variance}{\mat{\Sigma}} \end{distribution} } \end{bigformula} \begin{bigformula}{laplace} \absLabel[laplace_distribution] \desc{Laplace-distribution}{Double exponential distribution}{} \desc[german]{Laplace-Verteilung}{Doppelexponentialverteilung}{} \fsplit[\distleftwidth]{ \centering \includegraphics{img/distribution_laplace.pdf} }{ \begin{distribution} \disteq{parameters}{\mu \in \R,\quad b > 0 \in \R} \disteq{support}{x \in \R} \disteq{pdf}{\frac{1}{\sqrt{2b}}\Exp{-\frac{\abs{x-\mu}}{b}}} % \disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]} \disteq{mean}{\mu} \disteq{median}{\mu} \disteq{variance}{2b^2} \end{distribution} } \end{bigformula} \begin{bigformula}{cauchy} \absLabel[lorentz_distribution] \desc{Cauchys / Lorentz distribution}{Also known as Cauchy-Lorentz distribution, Lorentz(ian) function, Breit-Wigner distribution.}{} \desc[german]{Cauchy / Lorentz-Verteilung}{Auch bekannt als Cauchy-Lorentz Verteilung, Lorentz Funktion, Breit-Wigner Verteilung.}{} \fsplit[\distleftwidth]{ \centering \includegraphics{img/distribution_cauchy.pdf} }{ \begin{distribution} \disteq{parameters}{x_0 \in \R,\quad \gamma \in \R} \disteq{support}{x \in \R} \disteq{pdf}{\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}} \disteq{cdf}{\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}} \disteq{mean}{\text{\GT{undefined}}} \disteq{median}{x_0} \disteq{variance}{\text{\GT{undefined}}} \end{distribution} } \end{bigformula} \begin{bigformula}{maxwell-boltzmann} \absLabel[maxwell-boltzmann_distribution] \desc{Maxwell-Boltzmann distribution}{}{} \desc[german]{Maxwell-Boltzmann Verteilung}{}{} \fsplit[\distleftwidth]{ \centering \includegraphics{img/distribution_maxwell-boltzmann.pdf} }{ \begin{distribution} \disteq{parameters}{a > 0} \disteq{support}{x \in (0, \infty)} \disteq{pdf}{\sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp\left(-\frac{x^2}{2a^2}\right)} \disteq{cdf}{\erf \left(\frac{x}{\sqrt{2} a}\right) - \sqrt{\frac{2}{\pi}} \frac{x}{a} \exp\left({\frac{-x^2}{2a^2}}\right)} \disteq{mean}{2a \frac{2}{\pi}} % \disteq{median}{} \disteq{variance}{\frac{a^2(3\pi-8)}{\pi}} \end{distribution} } \end{bigformula} \begin{bigformula}{gamma} \absLabel[gamma_distribution] \desc{Gamma Distribution}{with $\lambda$ parameter}{$\Gamma$ \fRef{math:cal:integral:list:gamma_function}, $\gamma$ \fRef{math:cal:integral:list:lower_incomplete_gamma_function}} \desc[german]{Gamma Verteilung}{mit $\lambda$ Parameter}{} \fsplit[\distleftwidth]{ \centering \includegraphics{img/distribution_gamma.pdf} }{ \begin{distribution} \disteq{parameters}{\alpha > 0, \lambda > 0} \disteq{support}{x\in(0,1)} \disteq{pdf}{\frac{\lambda^\alpha}{\Gamma(\alpha) x^{\alpha-1} \e^{-\lambda x}}} \disteq{cdf}{\frac{1}{\Gamma(\alpha) \gamma(\alpha, \lambda x)}} \disteq{mean}{\frac{\alpha}{\lambda}} \disteq{variance}{\frac{\alpha}{\lambda^2}} \end{distribution} } \end{bigformula} \begin{bigformula}{beta} \absLabel[beta_distribution] \desc{Beta Distribution}{}{$\txB$ \fRef{math:cal:integral:list:beta_function} / \fRef{math:cal:integral:list:incomplete_beta_function}} \desc[german]{Beta Verteilung}{}{} \fsplit[\distleftwidth]{ \centering \includegraphics{img/distribution_beta.pdf} }{ \begin{distribution} \disteq{parameters}{\alpha \in \R, \beta \in \R} \disteq{support}{x\in[0,1]} \disteq{pdf}{\frac{x^{\alpha-1} (1-x)^{\beta-1}}{\txB(\alpha,\beta)}} \disteq{cdf}{\frac{\txB(x;\alpha,\beta)}{\txB(\alpha,\beta)}} \disteq{mean}{\frac{\alpha}{\alpha+\beta}} % \disteq{median}{\frac{}{}} % pretty complicated, probably not needed \disteq{variance}{\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}} \end{distribution} } \end{bigformula} \Subsubsection{discrete} \desc{Discrete probability distributions}{}{} \desc[german]{Diskrete Wahrscheinlichkeitsverteilungen}{}{} \begin{bigformula}{binomial} \absLabel[binomial_distribution] \desc{Binomial distribution}{}{} \desc[german]{Binomialverteilung}{}{} \begin{ttext} \eng{For the number of trials going to infinity ($n\to\infty$), the binomial distribution converges to the \absRef[poisson distribution]{poisson_distribution}} \ger{Geht die Zahl der Versuche gegen unendlich ($n\to\infty$), konvergiert die Binomualverteilung gegen die \absRef[Poissonverteilung]{poisson_distribution}} \end{ttext}\\ \fsplit[\distleftwidth]{ \centering \includegraphics{img/distribution_binomial.pdf} }{ \begin{distribution} \disteq{parameters}{n \in \Z, \quad p \in [0,1],\quad q = 1 - p} \disteq{support}{k \in \{0,\,1,\,\dots,\,n\}} \disteq{pmf}{\binom{n}{k} p^k q^{n-k}} % \disteq{cdf}{\text{regularized incomplete beta function}} \disteq{mean}{np} \disteq{median}{\floor{np} \text{ or } \ceil{np}} \disteq{variance}{npq = np(1-p)} \end{distribution} } \end{bigformula} \begin{bigformula}{poisson} \absLabel[poisson_distribution] \desc{Poisson distribution}{}{} \desc[german]{Poissonverteilung}{}{} \fsplit[\distleftwidth]{ \centering \includegraphics{img/distribution_poisson.pdf} }{ \begin{distribution} \disteq{parameters}{\lambda \in (0,\infty)} \disteq{support}{k \in \N} \disteq{pmf}{\frac{\lambda^k \e^{-\lambda}}{k!}} \disteq{cdf}{\e^{-\lambda} \sum_{j=0}^{\floor{k}} \frac{\lambda^j}{j!}} \disteq{mean}{\lambda} \disteq{median}{\approx\floor*{\lambda + \frac{1}{3} - \frac{1}{50\lambda}}} \disteq{variance}{\lambda} \end{distribution} } \end{bigformula} % TEMPLATE % \begin{distribution}{maxwell-boltzmann} % \distdesc{Maxwell-Boltzmann distribution}{} % \distdesc[german]{Maxwell-Boltzmann Verteilung}{} % \disteq{parameters}{} % \disteq{pdf}{} % \disteq{cdf}{} % \disteq{mean}{} % \disteq{median}{} % \disteq{variance}{} % \end{distribution} \Subsection{cls} \desc{Central limit theorem}{}{} \desc[german]{Zentraler Grenzwertsatz}{}{} \begin{ttext} \eng{ Suppose $X_1, X_2, \dots$ is a sequence of independent and identically distributed random variables with $\braket{X_i} = \mu$ and $(\Delta X_i)^2 = \sigma^2 < \infty$. As $N$ approaches infinity, the random variables $\sqrt{N}(\bar{X}_N - \mu)$ converge to a normal distribution $\mathcal{N}(0, \sigma^2)$. \\ That means that the variance scales with $\frac{1}{\sqrt{N}}$ and statements become accurate for large $N$. } \ger{ Sei $X_1, X_2, \dots$ eine Reihe unabhängiger und gleichverteilter Zufallsvariablen mit $\braket{X_i} = \mu$ und $(\Delta X_i)^2 = \sigma^2 < \infty$. Für $N$ gegen unendlich konvergieren die Zufallsvariablen $\sqrt{N}(\bar{X}_N - \mu)$ zu einer Normalverteilung $\mathcal{N}(0, \sigma^2)$. \\ Das bedeutet, dass die Schwankung mit $\frac{1}{\sqrt{N}}$ wächst und Aussagen für große $N$ scharf werden. } \end{ttext} \Subsection{error} \desc{Propagation of uncertainty / error}{}{} \desc[german]{Fehlerfortpflanzung}{}{} \begin{formula}{generalised} \desc{Generalized error propagation}{}{$V$ \fRef{math:pt:covariance} matrix, $J$ \fRef{math:cal:jacobi-matrix}} \desc[german]{Generalisiertes Fehlerfortpflanzungsgesetz}{$V$ \fRef{math:pt:covariance} Matrix, $J$ \fRef{cal:jacobi-matrix}}{} \eq{V_y = J(x) \cdot V_x \cdot J^{\T} (x)} \end{formula} \begin{formula}{uncorrelated} \desc{Propagation of uncorrelated errors}{Linear approximation}{} \desc[german]{Fortpflanzung unabhängiger fehlerbehaftete Größen}{Lineare Näherung}{} \eq{u_y = \sqrt{ \sum_{i} \left(\pdv{y}{x_i}\cdot u_i\right)^2}} \end{formula} \begin{formula}{weight} \desc{Weight}{Variance is a possible choice for a weight}{$\sigma$ \fRef{math:pt:variance}} \desc[german]{Gewicht}{Varianz ist eine mögliche Wahl für ein Gewicht}{} \eq{w_i = \frac{1}{\sigma_i^2}} \end{formula} \begin{formula}{weighted-mean} \desc{Weighted mean}{}{$w_i$ \fRef{math:pt:error:weight}} \desc[german]{Gewichteter Mittelwert}{}{} \eq{\overline{x} = \frac{\sum_{i} (x_i w_i)}{\sum_i w_i}} \end{formula} \begin{formula}{weighted-mean-error} \desc{Variance of weighted mean}{}{$w_i$ \fRef{math:pt:error:weight}} \desc[german]{Varianz des gewichteten Mittelwertes}{}{} \eq{\sigma^2_{\overline{x}} = \frac{1}{\sum_i w_i}} \end{formula} \Subsection{mle} \desc{Maximum likelihood estimation}{}{} \desc[german]{Maximum likelihood Methode}{}{} \begin{formula}{likelihood} \desc{Likelihood function}{Likelihood of observing $x$ when parameter is $\theta$\\in general not normalized!}{$\rho$ \fRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ depending on parameter $\theta$, $\Theta$ parameter space} \desc[german]{Likelihood Funktion}{"Plausibilität" $x$ zu messen, wenn der Parameter $\theta$ ist\\nicht normalisiert!}{$\rho$ \fRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ hängt ab von Parameter $\theta$, $\Theta$ Parameterraum} \eq{L:\Theta \rightarrow [0,1], \quad \theta \mapsto \rho(x|\theta)} \end{formula} \begin{formula}{likelihood_independant} \desc{Likelihood function}{for independent and identically distributed random variables}{$x_i$ $n$ random variables, $\rho$ \fRef{math:pt:pdf} $x\mapsto f(x|\theta)$ depending on parameter $\theta$} \desc[german]{Likelihood function}{für unabhängig und identisch verteilte Zufallsvariablen}{$x_i$ $n$ Zufallsvariablen$\rho$ \fRef{math:pt:pdf} $x\mapsto f(x|\theta)$ hängt ab von Parameter $\theta$} \eq{L(\theta) = \prod_{i=1}^n f(x_i;\theta)} \end{formula} \begin{formula}{maximum_likelihood_estimate} \desc{Maximum likelihood estimate (MLE)}{Paramater for which outcome is most likely}{$L$ \fRef{math:pt:mle:likelihood}, $\theta$ parameter of a \fRef{math:pt:pdf}} \desc[german]{Maximum likelihood-Schätzung (MLE)}{Paramater, für den das Ergebnis am Wahrscheinlichsten ist}{$L$ \fRef{math:pt:mle:likelihood}, $\theta$ Parameter einer \fRef{math:pt:pdf}} \eq{\theta_\text{ML} &= \argmax_\theta L(\theta)\\ &= \argmax_\theta \log \big(L(\theta)\big)} \end{formula} \Subsection{bayesian} \desc{Bayesian probability theory}{}{} \desc[german]{Bayessche Wahrscheinlichkeitstheorie}{}{} \begin{formula}{prior} \desc{Prior distribution}{Expected distribution before conducting the experiment}{$\theta$ parameter} \desc[german]{Prior Verteilung}{}{} \eq{p(\theta)} \end{formula} \begin{formula}{evidence} \desc{Evidence}{}{$p(\mathcal{D}|\theta)$ \fRef{math:pt:mle:likelihood}, $p(\theta)$ \fRef{math:pt:bayesian:prior}, $\mathcal{D}$ data set} % \desc[german]{}{}{} \eq{p(\mathcal{D}) = \int\d\theta \,p(\mathcal{D}|\theta)\,p(\theta)} \end{formula} \begin{formula}{theorem} \desc{Bayes' theorem}{}{$p(\theta|\mathcal{D})$ posterior distribution, $p(\mathcal{D}|\theta)$ \fRef{math:pt:mle:likelihood}, $p(\theta)$ \fRef{math:pt:bayesian:prior}, $p(\mathcal{D})$ \fRef{math:pt:bayesian:evidence}, $\mathcal{D}$ data set} \desc[german]{Satz von Bayes}{}{} \eq{p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)\,p(\theta)}{p(\mathcal{D})}} \end{formula} \begin{formula}{map} \desc{Maximum a posterior estimation (MAP)}{}{} % \desc[german]{}{}{} \eq{\theta_\text{MAP} = \argmax_\theta p(\theta|\mathcal{D}) = \argmax_\theta p(\mathcal{D}|\theta)\,p(\theta)} \end{formula}