\Section{geo} \desc{Geometry}{}{} \desc[german]{Geometrie}{}{} \Subsection{trig} \desc{Trigonometry}{}{} \desc[german]{Trigonometrie}{}{} \begin{formula}{exponential_function} \desc{Exponential function}{}{} \desc[german]{Exponentialfunktion}{}{} \eq{\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}} \end{formula} \begin{formula}{sine} \desc{Sine}{}{} \desc[german]{Sinus}{}{} \eq{\sin(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n+1)}}{(2n+1)!} \\ &= \frac{e^{ix}-e^{-ix}}{2i}} \end{formula} \begin{formula}{cosine} \desc{Cosine}{}{} \desc[german]{Kosinus}{}{} \eq{\cos(x) &= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{(2n)}}{(2n)!} \\ &= \frac{e^{ix}+e^{-ix}}{2}} \end{formula} \begin{formula}{hyperbolic_sine} \desc{Hyperbolic sine}{}{} \desc[german]{Sinus hyperbolicus}{}{} \eq{\sinh(x) &= -i\sin{ix} \\ &= \frac{e^{x}-e^{-x}}{2}} \end{formula} \begin{formula}{hyperbolic_cosine} \desc{Hyperbolic cosine}{}{} \desc[german]{Kosinus hyperbolicus}{}{} \eq{\cosh(x) &= \cos{ix} \\ &= \frac{e^{x}+e^{-x}}{2}} \end{formula} \Subsection{theorems} \desc{Various theorems}{}{} \desc[german]{Verschiedene Theoreme}{}{} \begin{formula}{sum} \desc{Hypthenuse in the unit circle}{}{} \desc[german]{Hypothenuse im Einheitskreis}{}{} \eq{1 &= \sin^2 x + \cos^2 x} \end{formula} \begin{formula}{addition_theorems} \desc{Addition theorems}{}{} \desc[german]{Additionstheoreme}{}{} \eq{ \sin(x\pm y) &= \sin x \cos y \pm \cos x \sin y \\ \cos(x\pm y) &= \cos x \cos y \mp \sin x \sin y \\ \tan(x\pm y) &= \frac{\sin(x \pm y)}{\cos(x \pm y)} = \frac{\tan x\pm \tan y}{1\mp \tan x \tan y} } \end{formula} \begin{formula}{double_angle} \desc{Double angle}{}{} \desc[german]{Doppelwinkelfunktionen}{}{} \eq{ \sin 2x &= 2\sin x \cos x \\ \cos 2x &= \cos^2 x - \sin^2 x = 1 - 2\sin^2 x \\ \tan 2x &= \frac{2\tan x}{1 - \tan^2x} } \end{formula} \begin{formula}{other} \desc{Other}{}{$\tan\theta = b$} \desc[german]{Sonstige}{}{$\tan\theta = b$} \eq{\cos x + b\sin x = \sqrt{1 + b^2}\cos(x-\theta)} \end{formula} \Subsubsection{value_table} \desc{Table of values}{}{} \desc[german]{Wertetabelle}{}{} \begingroup \setlength{\tabcolsep}{0.9em} % horizontal \renewcommand{\arraystretch}{2} % vertical \begin{table}[h] \centering % \caption{caption} \label{tab:sin_cos_table} \begin{tabular}{c|c|c|c|c|c|c|c|c} \GT{angle_deg} & 0° & 30° & 45° & 60° & 90° & 120° & 180° & 270° \\ \hline \GT{angle_rad} & $0$ & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\sqrt{\pi}}{3}$ & $\frac{\pi}{2}$ & $\frac{2\pi}{3}$ & $\pi$ & $\frac{3\pi}{2}$ \\ \hline $\sin(x)$ & $0$ & $\frac{1}{2} $ & $\frac{\sqrt{2}}{2}$ & $\frac{\sqrt{3}}{2}$ & $1 $ & $\frac{\sqrt{3}}{2}$ & $ 0$ & $-1 $ \\ $\cos(x)$ & $1$ & $\frac{\sqrt{3}}{2}$ & $\frac{\sqrt{2}}{2}$ & $\frac{1}{2} $ & $0 $ & $\frac{-1}{2} $ & $-1$ & $ 0 $ \\ $\tan(x)$ & $0$ & $\frac{1}{\sqrt{3}}$ & $\frac{1}{\sqrt{2}}$ & $\frac{1}{2} $ & $\infty$ & $-\sqrt{3} $ & $ 0$ & $\infty$ \\ \end{tabular} \end{table} \endgroup