\Section{est} \desc{Electronic structure theory}{}{} % \desc[german]{}{}{} \begin{formula}{kinetic_energy} \desc{Kinetic energy}{of species $i$}{$i$ = nucleons/electrons, $N$ number of particles, $m$ \qtyRef{mass}} \desc[german]{Kinetische Energie}{von Spezies $i$}{$i$ = Nukleonen/Elektronen, $N$ Teilchenzahl, $m$ \qtyRef{mass}} \eq{\hat{T}_i &= -\sum_{n=1}^{N_i} \frac{\hbar^2}{2 m_i} \vec{\nabla}^2_n} \end{formula} \begin{formula}{potential_energy} \desc{Electrostatic potential}{between species $i$ and $j$}{$i,j$ = nucleons/electrons, $r$ particle position, $Z_i$ charge of species $i$, \ConstRef{charge}} \desc[german]{Elektrostatisches Potential}{zwischen Spezies $i$ und $j$}{} \eq{\hat{V}_{i \leftrightarrow j} &= -\sum_{k,l} \frac{Z_i Z_j e^2}{\abs{\vecr_k - \vecr_l}}} \end{formula} \begin{formula}{hamiltonian} \desc{Electronic structure Hamiltonian}{}{$\hat{T}$ \fRef{comp:est:kinetic_energy}, $\hat{V}$ \fRef{comp:est:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}} \eq{\hat{H} &= \hat{T}_\txe + \hat{T}_\txn + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe} + V_{\txn \leftrightarrow \txn}} \end{formula} \begin{formula}{mean_field} \desc{Mean field approximation}{Replaces 2-particle operator by 1-particle operator}{Example for Coulomb interaction between many electrons} \desc[german]{Molekularfeldnäherung}{Ersetzt 2-Teilchen Operator durch 1-Teilchen Operator}{Beispiel für Coulomb Wechselwirkung zwischen Elektronen} \eq{ \frac{1}{2}\sum_{i\neq j} \frac{e^2}{\abs{\vec{r}_i - \vec{r}_j}} \approx \sum_{i} V_\text{eff}(\vec{r}_i) } \end{formula} \Subsection{tb} \desc{Tight-binding}{}{} \desc[german]{Modell der stark gebundenen Elektronen / Tight-binding}{}{} \begin{formula}{assumptions} \desc{Assumptions}{}{} \desc[german]{Annahmen}{}{} \ttxt{ \eng{ \begin{itemize} \item Atomic wave functions are localized \Rightarrow Small overlap, interaction cutoff \end{itemize} } } \end{formula} \begin{formula}{hamiltonian} \desc{Tight-binding Hamiltonian}{in second quantized form}{$\hat{a}_i^\dagger$, $\hat{a}_i$ \GT{creation_annihilation_ops} create/destory an electron on site $i$, $\epsilon_i$ on-site energy, $t_{i,j}$ hopping amplitude, usually $\epsilon$ and $t$ are determined from experiments or other methods} \desc[german]{Tight-binding Hamiltonian}{in zweiter Quantisierung}{$\hat{a}_i^\dagger$, $\hat{a}_i$ \GT{creation_annihilation_ops} erzeugen/vernichten ein Elektron auf Platz $i$, $\epsilon_i$ on-site Energie, $t_{i,j}$ hopping Amplitude, meist werden $\epsilon$ und $t$ aus experimentellen Daten oder anderen Methoden bestimmt} \eq{\hat{H} = \sum_i \epsilon_i \hat{a}_i^\dagger \hat{a}_i - \sum_{i,j} t_{i,j} \left(\hat{a}_i^\dagger \hat{a}_j + \hat{a}_j^\dagger \hat{a}_i\right)} \end{formula} \Subsection{dft} \desc{Density functional theory (DFT)}{}{} \desc[german]{Dichtefunktionaltheorie (DFT)}{}{} \abbrLink{dft}{DFT} \Subsubsection{hf} \desc{Hartree-Fock}{}{} \desc[german]{Hartree-Fock}{}{} \begin{formula}{description} \desc{Description}{}{} \desc[german]{Beschreibung}{}{} \begin{ttext} \eng{ \begin{itemize} \item Assumes wave functions are \fRef{qm:other:slater_det} \Rightarrow Approximation \item \fRef{comp:est:mean_field} theory obeying the Pauli principle \item Self-interaction free: Self interaction is cancelled out by the Fock-term \end{itemize} } \end{ttext} \end{formula} \begin{formula}{equation} \desc{Hartree-Fock equation}{}{ $\varphi_\xi$ single particle wavefunction of $\xi$th orbital, $\hat{T}$ kinetic electron energy, $\hat{V}_{\text{en}}$ electron-nucleus attraction, $h\hat{V}_{\text{HF}}$ \fRef{comp:est:dft:hf:potential}, $x = \vecr,\sigma$ position and spin } \desc[german]{Hartree-Fock Gleichung}{}{ $\varphi_\xi$ ein-Teilchen Wellenfunktion des $\xi$-ten Orbitals, $\hat{T}$ kinetische Energie der Elektronen, $\hat{V}_{\text{en}}$ Electron-Kern Anziehung, $\hat{V}_{\text{HF}}$ \fRef{comp:est:dft:hf:potential}, $x = \vecr,\sigma$ Position and Spin } \eq{ \left(\hat{T} + \hat{V}_{\text{en}} + \hat{V}_{\text{HF}}^\xi\right)\varphi_\xi(x) = \epsilon_\xi \varphi_\xi(x) } \end{formula} \begin{formula}{potential} \desc{Hartree-Fock potential}{}{} \desc[german]{Hartree Fock Potential}{}{} \eq{ V_{\text{HF}}^\xi(\vecr) = \sum_{\vartheta} \int \d x' \frac{e^2}{\abs{\vecr - \vecr'}} \left( \underbrace{\abs{\varphi_\xi(x')}^2}_{\text{Hartree-Term}} - \underbrace{\frac{\varphi_{\vartheta}^*(x') \varphi_{\xi}(x') \varphi_{\vartheta}(x)}{\varphi_\xi(x)}}_{\text{Fock-Term}} \right) } \end{formula} \begin{formula}{scf} \desc{Self-consistent field cycle}{}{} % \desc[german]{}{}{} \ttxt{ \eng{ \begin{enumerate} \item Initial guess for $\varphi$ \item Solve SG for each particle \item Make new guess for $\varphi$ \end{enumerate} } } \end{formula} \Subsubsection{hk} \desc{Hohenberg-Kohn Theorems}{}{} \desc[german]{Hohenberg-Kohn Theoreme}{}{} \begin{formula}{hk1} \desc{Hohenberg-Kohn theorem (HK1)}{}{} \desc[german]{Hohenberg-Kohn Theorem (HK1)}{}{} \ttxt{ \eng{For any system of interacting electrons, the ground state electron density $n(\vecr)$ determines $\hat{V}_\text{ext}$ uniquely up to a trivial constant. } \ger{Die Elektronendichte des Grundzustandes $n(\vecr)$ bestimmt ein einzigartiges $\hat{V}_{\text{ext}}$ eines Systems aus interagierenden Elektronen bis auf eine Konstante.} } \end{formula} \begin{formula}{hk2} \desc{Hohenberg-Kohn theorem (HK2)}{}{} \desc[german]{Hohenberg-Kohn Theorem (HK2)}{}{} \ttxt{ \eng{Given the energy functional $E[n(\vecr)]$, the ground state density and energy can be obtained variationally. The density that minimizes the total energy is the exact ground state density. } \ger{Für ein Energiefunktional $E[n(\vecr)]$ kann die Grundzustandsdichte und Energie durch systematische Variation bestimmt werden. Die Dichte, welche die Gesamtenergie minimiert ist die exakte Grundzustandsichte. } } \end{formula} \begin{formula}{density} \desc{Ground state electron density}{}{} \desc[german]{Grundzustandselektronendichte}{}{} \eq{n(\vecr) = \Braket{\psi_0|\sum_{i=1}^N \delta(\vecr-\vecr_i)|\psi_0}} \end{formula} \Subsubsection{ks} \desc{Kohn-Sham DFT}{}{} \desc[german]{Kohn-Sham DFT}{}{} \abbrLink{ksdft}{KS-DFT} \begin{formula}{map} \desc{Kohn-Sham map}{}{} \desc[german]{Kohn-Sham Map}{}{} \ttxt{ \eng{Maps fully interacting system of electrons to a system of non-interacting electrons with the same ground state density $n^\prime(\vecr) = n(\vecr)$} } \eq{n(\vecr) = \sum_{i=1}^N \abs{\phi_i(\vecr)}^2} \end{formula} \begin{formula}{functional} \desc{Kohn-Sham functional}{}{$T_\text{KS}$ kinetic enery, $V_\text{ext}$ external potential, $E_\txH$ \fRef[Hartree term]{comp:est:dft:hf:potential}, $E_\text{XC}$ \fRef{comp:est:dft:xc:xc}} \desc[german]{Kohn-Sham Funktional}{}{} \eq{E_\text{KS}[n(\vecr)] = T_\text{KS}[n(\vecr)] + V_\text{ext}[n(\vecr)] + E_\text{H}[n(\vecr)] + E_\text{XC}[n(\vecr)] } \end{formula} \begin{formula}{equation} \desc{Kohn-Sham equation}{Exact single particle \abbrRef{schroedinger_equation} (though often exact $E_\text{XC}$ is not known)\\ Solving it uses up a large portion of supercomputer resources}{$\phi_i^\text{KS}$ KS orbitals, $\int\d^3r v_\text{ext}(\vecr)n(\vecr)=V_\text{ext}[n(\vecr)]$} \desc[german]{Kohn-Sham Gleichung}{Exakte Einteilchen-\abbrRef{schroedinger_equation} (allerdings ist das exakte $E_\text{XC}$ oft nicht bekannt)\\ Die Lösung der Gleichung macht einen großen Teil der Supercomputer Ressourcen aus}{} \begin{multline} \biggr\{ -\frac{\hbar^2\nabla^2}{2m} + v_\text{ext}(\vecr) + e^2 \int\d^3 \vecr^\prime \frac{n(\vecr^\prime)}{\abs{\vecr-\vecr^\prime}} \\ + \pdv{E_\txX[n(\vecr)]}{n(\vecr)} + \pdv{E_\txC[n(\vecr)]}{n(\vecr)} \biggr\} \phi_i^\text{KS}(\vecr) =\\ = \epsilon_i^\text{KS} \phi_i^\text{KS}(\vecr) \end{multline} \end{formula} \begin{formula}{scf} \desc{Self-consistent field cycle for Kohn-Sham}{}{} % \desc[german]{}{}{} \ttxt{ \itemsep=\parsep \eng{ \begin{enumerate} \item Initial guess for $n(\vecr)$ \item Calculate effective potential $V_\text{eff}$ \item Solve \fRef{comp:est:dft:ks:equation} \item Calculate density $n(\vecr)$ \item Repeat 2-4 until self consistent \end{enumerate} } } \end{formula} \Subsubsection{xc} \desc{Exchange-Correlation functionals}{}{} \desc[german]{Exchange-Correlation Funktionale}{}{} \begin{formula}{xc} \desc{Exchange-Correlation functional}{}{} \desc[german]{Exchange-Correlation Funktional}{}{} \eq{ E_\text{XC}[n(\vecr)] = \Braket{\hat{T}} - T_\text{KS}[n(\vecr)] + \Braket{\hat{V}_\text{int}} - E_\txH[n(\vecr)] } \ttxt{\eng{ Accounts for: \begin{itemize} \item Kinetic energy difference between interaction and non-interacting system \item Exchange energy due to Pauli principle \item Correlation energy due to many-body Coulomb interaction (not accounted for in mean field Hartree term $E_\txH$) \end{itemize} }} \end{formula} \begin{formula}{lda} \desc{Local density approximation (LDA)}{Simplest DFT functionals}{$\epsilon_\txX$ calculated exchange energy from \fRef[HEG model]{comp:qmb:models:heg}, $\epsilon_\txC$ correlation energy calculated with \fRef{comp:qmb:methods:qmonte-carlo}} \desc[german]{}{}{} \abbrLabel{LDA} \eq{E_\text{XC}^\text{LDA}[n(\vecr)] = \int \d^3r\,n(r) \Big[\epsilon_\txX[n(\vecr)] + \epsilon_\txC[n(\vecr)]\Big]} \end{formula} \begin{formula}{gga} \desc{Generalized gradient approximation (GGA)}{}{$\epsilon_\txX$ calculated exchange energy from \fRef[HEG model]{comp:qmb:models:heg}, $F_\text{XC}$ function containing exchange-correlation energy dependency on $n$ and $\Grad n$} \desc[german]{}{}{} \abbrLabel{GGA} \eq{E_\text{XC}^\text{GGA}[n(\vecr)] = \int \d^3r\,n(r) \epsilon_\txX[n(\vecr)]\,F_\text{XC}[n(\vecr), \Grad n(\vecr)]} \end{formula} \begin{formula}{hybrid} \desc{Hybrid functionals}{}{} \desc[german]{Hybride Funktionale}{}{$\alpha$ mixing paramter, $E_\txX$ exchange energy, $E_\txC$ correlation energy} \eq{\alpha E_\txX^\text{HF} + (1-\alpha) E_\txX^\text{GGA} + E_\txC^\text{GGA}} \ttxt{\eng{ Include \fRef[Fock term]{comp:est:dft:hf:potential} (exact exchange) in other functional, like \abbrRef{gga}. Computationally expensive }} \end{formula} \begin{formula}{range-separated-hybrid} \desc{Range separated hyrid functionals (RSH)}{Here HSE as example}{$\alpha$ mixing paramter, $E_\txX$ exchange energy, $E_\txC$ correlation energy} % \desc[german]{}{}{} \newFormulaEntry \begin{gather} \frac{1}{r} = \frac{\erf(\omega r)}{r} + \frac{\erfc{\omega r}}{r} \\ E_\text{XC}^\text{HSE} = \alpha E_\text{X,SR}^\text{HF}(\omega) + (1-\alpha)E_\text{X,SR}^\text{GGA}(\omega) + E_\text{X,LR}^\text{GGA}(\omega) + E_\txC^\text{GGA} \end{gather} \ttxt{\eng{ Use \abbrRef{gga} and \fRef[Fock]{comp:est:dft:hf:potential} exchange for short ranges (SR) and only \abbrRef{GGA} for long ranges (LR). \abbrRef{GGA} correlation is always used. Useful when dielectric screening reduces long range interactions, saves computational cost. }} \end{formula} \Subsubsection{basis} \desc{Basis sets}{}{} \desc[german]{Basis-Sets}{}{} \begin{formula}{plane_wave} \desc{Plane wave basis}{Plane wave ansatz in \fRef{comp:est:dft:ks:equation}\\Good for periodic structures, allows computation parallelization over a sample points in the \abbrRef{brillouin_zone}}{} \desc[german]{Ebene Wellen als Basis}{}{} \eq{\sum_{\vecG^\prime} \left[\frac{\hbar^2 \abs{\vecG+\veck}^2}{2m} \delta_{\vecG,\vecG^\prime} + V_\text{eff}(\vecG-\vecG^\prime)\right] c_{i,\veck,\vecG^\prime} = \epsilon_{i,\veck} c_{i,\veck,\vecG}} \end{formula} \begin{formula}{plane_wave_cutoff} \desc{Plane wave cutoff}{Number of plane waves included in the calculation must be finite}{} % \desc[german]{}{}{} \eq{E_\text{cutoff} = \frac{\hbar^2 \abs{\veck+\vecG}^2}{2m}} \end{formula} \Subsubsection{pseudo} \desc{Pseudo-Potential method}{}{} \desc[german]{Pseudopotentialmethode}{}{} \begin{formula}{ansatz} \desc{Ansatz}{}{} \desc[german]{Ansatz}{}{} \ttxt{\eng{ Core electrons are absorbed into the potential since they do not contribute much to interesting properties. }} \end{formula}