\Section{thermo} \desc{Thermoelectricity}{}{} \desc[german]{Thermoelektrizität}{}{} \begin{formula}{seebeck} \desc{Seebeck coefficient}{Thermopower}{$V$ voltage, \QtyRef{temperature}} \desc[german]{Seebeck-Koeffizient}{}{} \quantity{S}{\micro\volt\per\kelvin}{s} \eq{S = -\frac{\Delta V}{\Delta T}} \end{formula} \begin{formula}{seebeck_effect} \desc{Seebeck effect}{Elecromotive force across two points of a material with a temperature difference}{\QtyRef{conductivity}, $V$ local voltage, \QtyRef{seebeck}, \QtyRef{temperature}} \desc[german]{Seebeck-Effekt}{}{} \eq{\vec{j} = \sigma(-\Grad V - S \Grad T)} \end{formula} \begin{formula}{thermal_conductivity} \desc{Thermal conductivity}{Conduction of heat, without mass transport}{\QtyRef{heat}, \QtyRef{length}, \QtyRef{area}, \QtyRef{temperature}} \desc[german]{Wärmeleitfähigkeit}{Leitung von Wärme, ohne Stofftransport}{} \quantity{\kappa,\lambda,k}{\watt\per\m\K=\kg\m\per\s^3\kelvin}{s} \eq{\kappa = \frac{\dot{Q} l}{A\,\Delta T}} \eq{\kappa_\text{tot} = \kappa_\text{lattice} + \kappa_\text{electric}} \end{formula} \begin{formula}{wiedemann-franz} \desc{Wiedemann-Franz law}{}{$\kappa$ Electric \qtyRef{thermal_conductivity}, $L$ in \si{\watt\ohm\per\kelvin} Lorentz number, \QtyRef{conductivity}} \desc[german]{Wiedemann-Franz Gesetz}{}{$\kappa$ Elektrische \qtyRef{thermal_conductivity}, $L$ in \si{\watt\ohm\per\kelvin} Lorentzzahl, \QtyRef{conductivity}} \eq{\kappa = L\sigma T} \end{formula} \begin{formula}{zt} \desc{Thermoelectric figure of merit}{Dimensionless quantity for comparing different materials}{\QtyRef{seebeck}, \QtyRef{conductivity}, $\kappa$ \qtyRef{thermal_conductivity}, \QtyRef{temperature}} \desc[german]{Thermoelektrische Gütezahl}{Dimensionsoser Wert zum Vergleichen von Materialien}{} \eq{zT = \frac{S^2\sigma}{\kappa} T} \end{formula} \Section{misc} \desc{misc}{}{} \desc[german]{misc}{}{} % TODO: hide \begin{formula}{stoichiometric_coefficient} \desc{Stoichiometric coefficient}{}{} \desc[german]{Stöchiometrischer Koeffizient}{}{} \quantity{\nu}{}{s} \end{formula} \begin{formula}{std_condition} \desc{Standard temperature and pressure}{}{} \desc[german]{Standardbedingungen}{}{} \eq{ T &= \SI{273.15}{\kelvin} = \SI{0}{\celsius} \\ p &= \SI{100000}{\pascal} = \SI{1.000}{\bar} } \end{formula} \begin{formula}{ph} \desc{pH definition}{}{$a_{\ce{H+}}$ hyrdrogen ion \qtyRef{activity}} \desc[german]{pH-Wert definition}{}{$a_{\ce{H+}}$ Wasserstoffionen-\qtyRef{activity}} \eq{\pH = -\log_{10}(a_{\ce{H+}})} \end{formula} \begin{formula}{ph_rt} \desc{pH}{At room temperature \SI{25}{\celsius}}{} \desc[german]{pH-Wert}{Bei Raumtemperatur \SI{25}{\celsius}}{} \eq{ \pH > 7 &\quad\tGT{basic} \\ \pH < 7 &\quad\tGT{acidic} \\ \pH = 7 &\quad\tGT{neutral} } \end{formula} \begin{formula}{grotthuss} \desc{Grotthuß-mechanism}{}{} \desc[german]{Grotthuß-Mechanismus}{}{} \ttxt{ \eng{The mobility of protons in aqueous solutions is much higher than that of other ions because they can "move" by breaking and reforming covalent bonds of water molecules.} \ger{The Moblilität von Protononen in wässrigen Lösungen ist wesentlich größer als die anderer Ionen, da sie sich "bewegen" können indem die Wassertsoffbrückenbindungen gelöst und neu gebildet werden.} } \end{formula} \begin{formula}{common_chemicals} \desc{Common chemicals}{}{} \desc[german]{Häufige Chemikalien}{}{} \centering \begin{tabular}{l|c} \GT{name} & \GT{formula} \\ \hline\hline \begin{ttext}[cyanide]\eng{Cyanide}\ger{Zyanid}\end{ttext} & \ce{CN} \\ \hline \begin{ttext}[ammonia]\eng{Ammonia}\ger{Ammoniak}\end{ttext} & \ce{NH3} \\ \hline \begin{ttext}[hydrogen peroxide]\eng{Hydrogen Peroxide}\ger{Wasserstoffperoxid}\end{ttext} & \ce{H2O2} \\ \hline \begin{ttext}[sulfuric acid]\eng{Sulfuric Acid}\ger{Schwefelsäure}\end{ttext} & \ce{H2SO4} \\ \hline \begin{ttext}[ethanol]\eng{Ethanol}\ger{Ethanol}\end{ttext} & \ce{C2H5OH} \\ \hline \begin{ttext}[acetic acid]\eng{Acetic Acid}\ger{Essigsäure}\end{ttext} & \ce{CH3COOH} \\ \hline \begin{ttext}[methane]\eng{Methane}\ger{Methan}\end{ttext} & \ce{CH4} \\ \hline \begin{ttext}[hydrochloric acid]\eng{Hydrochloric Acid}\ger{Salzsäure}\end{ttext} & \ce{HCl} \\ \hline \begin{ttext}[sodium hydroxide]\eng{Sodium Hydroxide}\ger{Natriumhydroxid}\end{ttext} & \ce{NaOH} \\ \hline \begin{ttext}[nitric acid]\eng{Nitric Acid}\ger{Salpetersäure}\end{ttext} & \ce{HNO3} \\ \hline \begin{ttext}[calcium carbonate]\eng{Calcium Carbonate}\ger{Calciumcarbonat}\end{ttext} & \ce{CaCO3} \\ \hline \begin{ttext}[glucose]\eng{Glucose}\ger{Glukose}\end{ttext} & \ce{C6H12O6} \\ \hline \begin{ttext}[benzene]\eng{Benzene}\ger{Benzol}\end{ttext} & \ce{C6H6} \\ \hline \begin{ttext}[acetone]\eng{Acetone}\ger{Aceton}\end{ttext} & \ce{C3H6O} \\ \hline \begin{ttext}[ethylene]\eng{Ethylene}\ger{Ethylen}\end{ttext} & \ce{C2H4} \\ \hline \begin{ttext}[potassium permanganate]\eng{Potassium Permanganate}\ger{Kaliumpermanganat}\end{ttext} & \ce{KMnO4} \\ \hline \end{tabular} \end{formula}