\Section{el} \desc{Electrochemistry}{}{} \desc[german]{Elektrochemie}{}{} \begin{formula}{chemical_potential} \desc{Chemical potential}{of species $i$\\Energy involved when the particle number changes}{\QtyRef{free_enthalpy}, \QtyRef{amount}} \desc[german]{Chemisches Potential}{der Spezies $i$\\Involvierte Energie, wenn sich die Teilchenzahl ändert}{} \quantity{\mu}{\joule\per\mol;\joule}{is} \eq{ \mu_i \equiv \pdv{G}{n_i}_{n_j\neq n_i,p,T} } \end{formula} \begin{formula}{standard_chemical_potential} \desc{Standard chemical potential}{In equilibrium}{\QtyRef{chemical_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}, \QtyRef{activity}} \desc[german]{Standard chemisches Potential}{}{} \eq{\mu_i = \mu_i^\theta + RT \Ln{a_i}} \end{formula} \begin{formula}{chemical_equilibrium} \desc{Chemical equilibrium}{}{\QtyRef{chemical_potential}, \QtyRef{stoichiometric_coefficient}} \desc[german]{Chemisches Gleichgewicht}{}{} \eq{\sum_\text{\GT{products}} \nu_i \mu_i = \sum_\text{\GT{educts}} \nu_i \mu_i} \end{formula} \begin{formula}{activity} \desc{Activity}{relative activity}{\QtyRef{chemical_potential}, \fRef{::standard_chemical_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}} \desc[german]{Aktivität}{Relative Aktivität}{} \quantity{a}{}{s} \eq{a_i = \Exp{\frac{\mu_i-\mu_i^\theta}{RT}}} \end{formula} \begin{formula}{electrochemical_potential} \desc{Electrochemical potential}{Chemical potential with electrostatic contributions}{\QtyRef{chemical_potential}, $z$ valency (charge), \ConstRef{faraday}, \QtyRef{electric_scalar_potential} (Galvani Potential)} \desc[german]{Elektrochemisches Potential}{Chemisches Potential mit elektrostatischen Enegiebeiträgen}{\QtyRef{chemical_potential}, $z$ Ladungszahl, \ConstRef{faraday}, \QtyRef{electric_scalar_potential} (Galvanisches Potential)} \quantity{\muecp}{\joule\per\mol;\joule}{is} \eq{\muecp_i \equiv \mu_i + z_i F \phi} \end{formula} \Subsection{cell} \desc{Electrochemical cell}{}{} \desc[german]{Elektrochemische Zelle}{}{} \eng[galvanic]{galvanic} \ger[galvanic]{galvanisch} \eng[electrolytic]{electrolytic} \ger[electrolytic]{electrolytisch} \Eng[working_electrode]{Working electrode} \Eng[counter_electrode]{Counter electrode} \Eng[reference_electrode]{Reference electrode} \Ger[working_electrode]{Working electrode} \Ger[counter_electrode]{Gegenelektrode} \Ger[reference_electrode]{Referenzelektrode} \Eng[potentiostat]{Potentiostat} \Ger[potentiostat]{Potentiostat} \begin{formula}{schematic} \desc{Schematic}{}{} \desc[german]{Aufbau}{}{} \begin{tikzpicture}[scale=1.0,transform shape] \pgfmathsetmacro{\W}{6} \pgfmathsetmacro{\H}{3} \pgfmathsetmacro{\elW}{\W/20} \pgfmathsetmacro{\REx}{1/6*\W} \pgfmathsetmacro{\WEx}{3/6*\W} \pgfmathsetmacro{\CEx}{5/6*\W} \fill[bg-blue] (0,0) rectangle (\W, \H/2); \draw[ultra thick] (0,0) rectangle (\W,\H); % Electrodes \draw[thick, fill=bg-gray] (\REx-\elW,\H/5) rectangle (\REx+\elW,\H); \draw[thick, fill=bg-purple] (\WEx-\elW,\H/5) rectangle (\WEx+\elW,\H); \draw[thick, fill=bg-yellow] (\CEx-\elW,\H/5) rectangle (\CEx+\elW,\H); \node at (\REx,3*\H/5) {R}; \node at (\WEx,3*\H/5) {W}; \node at (\CEx,3*\H/5) {C}; % potentiostat \pgfmathsetmacro{\potH}{\H+0.5+2} \pgfmathsetmacro{\potM}{\H+0.5+1} \draw[thick] (0,\H+0.5) rectangle (\W,\potH); % Wires \draw (\REx,\H) -- (\REx,\potM) to[voltmeter,-o] (\WEx,\potM) to[european voltage source] (\WEx+1/6*\W,\potM) to[ammeter] (\CEx,\potM); \draw (\WEx,\H) -- (\WEx,\H+1.5); \draw (\CEx,\H) -- (\CEx,\H+1.5); % labels \node[anchor=west, align=left] at (\W+0.2, 1*\H/4) {{\color{bg-gray} \blacksquare} \GT{reference_electrode}}; \node[anchor=west, align=left] at (\W+0.2, 2*\H/4) {{\color{bg-purple}\blacksquare} \GT{working_electrode}}; \node[anchor=west, align=left] at (\W+0.2, 3*\H/4) {{\color{bg-yellow}\blacksquare} \GT{counter_electrode}}; \node[anchor=west, align=left] at (\W+0.2, \potM) {\GT{potentiostat}}; \end{tikzpicture} \end{formula} \begin{formula}{cell} \desc{Electrochemical cell types}{}{} \desc[german]{Arten der Elektrochemische Zelle}{}{} \ttxt{ \eng{ \begin{itemize} \item Electrolytic cell: Uses electrical energy to force a chemical reaction \item Galvanic cell: Produces electrical energy through a chemical reaction \end{itemize} } \ger{ \begin{itemize} \item Elektrolytische Zelle: Nutzt elektrische Energie um eine Reaktion zu erzwingen \item Galvanische Zelle: Produziert elektrische Energie durch eine chemische Reaktion \end{itemize} } } \end{formula} % todo group together \begin{formula}{faradaic} \desc{Faradaic process}{}{} \desc[german]{Faradäischer Prozess}{}{} \ttxt{ \eng{Charge transfers between the electrode bulk and the electrolyte.} \ger{Ladung wird zwischen Elektrode und dem Elektrolyten transferiert.} } \end{formula} \begin{formula}{non-faradaic} \desc{Non-Faradaic (capacitive) process}{}{} \desc[german]{Nicht-Faradäischer (kapazitiver) Prozess}{}{} \ttxt{ \eng{Charge is stored at the electrode-electrolyte interface.} \ger{Ladung lagert sich am Elektrode-Elektrolyt Interface an.} } \end{formula} \begin{formula}{electrode_potential} \desc{Electrode potential}{}{} \desc[german]{Elektrodenpotential}{}{} \quantity{E}{\volt}{s} \end{formula} \begin{formula}{standard_cell_potential} \desc{Standard cell potential}{}{$\Delta_\txR G^\theta$ standard \qtyRef{free_enthalpy} of reaction, $n$ number of electrons, \ConstRef{faraday}} \desc[german]{Standard Zellpotential}{}{$\Delta_\txR G^\theta$ Standard \qtyRef{free_enthalpy} der Reaktion, $n$ Anzahl der Elektronen, \ConstRef{faraday}} \eq{E^\theta_\text{rev} = \frac{-\Delta_\txR G^\theta}{nF}} \end{formula} \begin{formula}{nernst_equation} \desc{Nernst equation}{Electrode potential for a half-cell reaction}{\QtyRef{electrode_potential}, $E^\theta$ \fRef{::standard_cell_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \QtyRef{activity}, \QtyRef{stoichiometric_coefficient}} \desc[german]{Nernst-Gleichung}{Elektrodenpotential für eine Halbzellenreaktion}{} \eq{E = E^\theta + \frac{RT}{zF} \Ln{\frac{ \left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{oxidized}}{\left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{reduced}}}} \end{formula} \begin{formula}{cell_efficiency} \desc{Thermodynamic cell efficiency}{}{$P$ \fRef{ed:el:power}} \desc[german]{Thermodynamische Zelleffizienz}{}{} \eq{ \eta_\text{cell} &= \frac{P_\text{obtained}}{P_\text{maximum}} = \frac{E_\text{cell}}{E_\text{cell,rev}} & & \text{\gt{galvanic}} \\ \eta_\text{cell} &= \frac{P_\text{minimum}}{P_\text{applied}} = \frac{E_\text{cell,rev}}{E_\text{cell}} & & \text{\gt{electrolytic}} } \end{formula} \Subsection{ion_cond} \desc{Ionic conduction in electrolytes}{}{} \desc[german]{Ionische Leitung in Elektrolyten}{}{} \eng[z]{charge number} \ger[z]{Ladungszahl} \eng[of_i]{of ion $i$} \ger[of_i]{des Ions $i$} \begin{formula}{diffusion} \desc{Diffusion}{caused by concentration gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{diffusion_coefficient} \gt{of_i}, \QtyRef{concentration} \gt{of_i}} \desc[german]{Diffusion}{durch Konzentrationsgradienten}{} \eq{ i_\text{diff} = \sum_i -z_i F D_i \left(\odv{c_i}{x}\right) } \end{formula} \begin{formula}{migration} \desc{Migration}{caused by potential gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, \QtyRef{mobility} \gt{of_i}, $\nabla\phi_\txs$ potential gradient in the solution} \desc[german]{Migration}{durch Potentialgradienten}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, \QtyRef{mobility} \gt{of_i}, $\nabla\phi_\txs$ Potentialgradient in der Lösung} \eq{ i_\text{mig} = \sum_i -z_i^2 F^2 \, c_i \, \mu_i \, \nabla\Phi_\txs } \end{formula} \begin{formula}{convection} \desc{Convection}{caused by pressure gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, $v_i^\text{flow}$ \qtyRef{velocity} \gt{of_i} in flowing electrolyte} \desc[german]{Convection}{durch Druckgradienten}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, $v_i^\text{flow}$ \qtyRef{velocity} \gt{of_i} im fliessenden Elektrolyt} \eq{ i_\text{conv} = \sum_i -z_i F \, c_i \, v_i^\text{flow} } \end{formula} \begin{formula}{ionic_mobility} \desc{Ionic mobility}{}{$v_\pm$ steady state drift \qtyRef{velocity}, $\phi$ \qtyRef{electric_scalar_potential}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{charge}, \QtyRef{viscosity}, $r_\pm$ ion radius} \desc[german]{Ionische Moblilität}{}{} \quantity{u_\pm}{\cm^2\mol\per\joule\s}{} \eq{u_\pm = - \frac{v_\pm}{\nabla \phi \,z_\pm F} = \frac{e}{6\pi F \eta_\text{dyn} r_\pm}} \end{formula} \begin{formula}{stokes_friction} \desc{Stokes's law}{Frictional force exerted on spherical objects moving in a viscous fluid at low Reynolds numbers}{$r$ particle radius, \QtyRef{viscosity}, $v$ particle \qtyRef{velocity}} \desc[german]{Gesetz von Stokes}{Reibungskraft auf ein sphärisches Objekt in einer Flüssigkeit bei niedriger Reynolds-Zahl}{$r$ Teilchenradius, \QtyRef{viscosity}, $v$ Teilchengeschwindigkeit} \eq{F_\txR = 6\pi\,r \eta v} \end{formula} \begin{formula}{ionic_conductivity} \desc{Ionic conductivity}{}{\ConstRef{faraday}, $z_i$, $c_i$, $u_i$ charge number, \qtyRef{concentration} and \qtyRef{ionic_mobility} of the positive (+) and negative (-) ions} \desc[german]{Ionische Leitfähigkeit}{}{\ConstRef{faraday}, $z_i$, $c_i$, $u_i$ Ladungszahl, \qtyRef{concentration} und \qtyRef{ionic_mobility} der positiv (+) und negativ geladenen Ionen} \quantity{\kappa}{\per\ohm\cm=\siemens\per\cm}{} \eq{\kappa = F^2 \left(z_+^2 \, c_+ \, u_+ + z_-^2 \, c_- \, u_-\right)} \end{formula} \begin{formula}{ionic_resistance} \desc{Ohmic resistance of ionic current flow}{}{$L$ \qtyRef{length}, $A$ \qtyRef{area}, \QtyRef{ionic_conductivity}} \desc[german]{Ohmscher Widerstand für Ionen-Strom}{}{} \eq{R_\Omega = \frac{L}{A\,\kappa}} \end{formula} \begin{formula}{transference} \desc{Transference number}{Ion transport number \\Fraction of the current carried by positive / negative ions}{$i_{+/-}$ current through positive/negative charges} \desc[german]{Überführungszahl}{Anteil der positiv / negativ geladenen Ionen am Gesamtstrom}{$i_{+/-}$ Strom durch positive / negative Ladungn} \eq{t_{+/-} = \frac{i_{+/-}}{i_+ + i_-}} \end{formula} \eng[csalt]{electrolyte \qtyRef{concentration}} \eng[csalt]{\qtyRef{concentration} des Elektrolyts} \begin{formula}{molar_conductivity} \desc{Molar conductivity}{}{\QtyRef{ionic_conductivity}, $c_\text{salt}$ \gt{csalt}} \desc[german]{Molare Leitfähigkeit}{}{\QtyRef{ionic_conductivity}, $c_\text{salt}$ \gt{salt}} \quantity{\Lambda_\txM}{\siemens\cm^2\per\mol=\ampere\cm^2\per\volt\mol}{ievs} \eq{\Lambda_\txM = \frac{\kappa}{c_\text{salt}}} \end{formula} \begin{formula}{kohlrausch_law} \desc{Kohlrausch's law}{For strong electrolytes}{$\Lambda_\txM^0$ \qtyRef{molar_conductivity} at infinite dilution, $c_\text{salt}$ \gt{csalt}, $K$ \GT{constant}} \desc[german]{}{}{$\Lambda_\txM^0$ \qtyRef{molar_conductivity} bei unendlicher Verdünnung, $\text{salt}$ \gt{csalt},$K$ \GT{constant}} \eq{\Lambda_\txM = \Lambda_\txM^0 - K \sqrt{c_\text{salt}}} \fig{img/ch_kohlrausch.pdf} \end{formula} % Electrolyte conductivity \begin{formula}{molality} \desc{Molality}{Amount per mass}{\QtyRef{amount} of the solute, \QtyRef{mass} of the solvent} \desc[german]{Molalität}{Stoffmenge pro Masse}{\QtyRef{amount} des gelösten Stoffs, \QtyRef{mass} des Lösungsmittels} \quantity{b}{\mol\per\kg}{} \eq{b = \frac{n}{m}} \end{formula} \begin{formula}{molarity} \desc{Molarity}{Amount per volume\\\qtyRef{concentration}}{\QtyRef{amount} of the solute, \QtyRef{volume} of the solvent} \desc[german]{Molarität}{Stoffmenge pro Volumen\\\qtyRef{concentration}}{\QtyRef{amount} des gelösten Stoffs, \QtyRef{volume} des Lösungsmittels} \quantity{c}{\mol\per\litre}{} \eq{c = \frac{n}{V}} \end{formula} \begin{formula}{ionic_strength} \desc{Ionic strength}{Measure of the electric field in a solution through solved ions}{\QtyRef{molality}, \QtyRef{molarity}, $z$ \qtyRef{charge_number}} \desc[german]{Ionenstärke}{Maß einer Lösung für die elektrische Feldstärke durch gelöste Ionen}{} \quantity{I}{\mol\per\kg;\mol\per\litre}{} \eq{I_b &= \frac{1}{2} \sum_i b_i z_i^2 \\ I_c &= \frac{1}{2} \sum_i c_i z_i^2} \end{formula} \begin{formula}{debye_screening_length} \desc{Debye screening length}{}{\ConstRef{avogadro}, \ConstRef{charge}, \QtyRef{ionic_strength}, \QtyRef{permittivity}, \ConstRef{boltzmann}, \QtyRef{temperature}} \desc[german]{Debye-Länge / Abschirmlänge}{}{} \eq{\lambda_\txD = \sqrt{\frac{\epsilon \kB T}{2\NA e^2 I_C}}} \end{formula} \begin{formula}{mean_ionic_activity} \desc{Mean ionic activity coefficient}{Accounts for decreased reactivity because ions must divest themselves of their ion cloud before reacting}{\QtyRef{activity}, $m_i$ \qtyRef{molality}, $m_0 = \SI{1}{\mol\per\kg}$} \desc[german]{Mittlerer ionischer Aktivitätskoeffizient}{Berücksichtigt dass Ionen sich erst von ihrer Ionenwolke lösen müssen, bevor sie reagieren können}{} \quantity{\gamma}{}{s} \eq{\gamma_\pm = \left(\gamma_+^{\nu_+} \, \gamma_-^{\nu_-}\right)^{\frac{1}{\nu_+ + \nu_-}}} \eq{a_i \equiv \gamma_i \frac{m_i}{m^0}} \end{formula} \begin{formula}{debye_hueckel_law} \desc{Debye-Hückel limiting law}{For an infinitely dilute solution}{\QtyRef{mean_ionic_activity}, $A$ solvent dependant constant, $z$ \qtyRef{charge_number}, \QtyRef{ionic_strength} in [\si{\mol\per\kg}]} \desc[german]{Debye-Hückel Gesetz}{Für eine unendlich verdünnte Lösung}{} \eq{\Ln{\gamma_{\pm}} = -A \abs{z_+ \, z_-} \sqrt{I_b}} \end{formula} \Subsection{kin} \desc{Kinetics}{}{} \desc[german]{Kinetik}{}{} \begin{formula}{transfer_coefficient} \desc{Transfer coefficient}{}{} \desc[german]{Durchtrittsfaktor}{Transferkoeffizient\\Anteil des Potentials der sich auf die freie Reaktionsenthalpie des anodischen Prozesses auswirkt}{} \eq{ \alpha_\txA &= \alpha \\ \alpha_\txC &= 1-\alpha } \end{formula} \begin{formula}{overpotential} \desc{Overpotential}{}{} \desc[german]{Überspannung}{}{} \ttxt{ \eng{Potential deviation from the equilibrium cell potential} \ger{Abweichung der Spannung von der Zellspannung im Gleichgewicht} } \end{formula} \begin{formula}{activation_overpotential} \desc{Activation verpotential}{}{$E_\text{electrode}$ potential at which the reaction starts $E_\text{ref}$ thermodynamic potential of the reaction} \desc[german]{Aktivierungsüberspannung}{}{$E_\text{electrode}$ Potential bei der die Reaktion beginnt, $E_\text{ref}$ thermodynamisches Potential der Reaktion} \eq{\eta_\text{act} = E_\text{electrode} - E_\text{ref}} \end{formula} \Subsubsection{mass} \desc{Mass transport}{}{} \desc[german]{Massentransport}{}{} \begin{formula}{concentration_overpotential} \desc{Concentration overpotential}{Due to concentration gradient near the electrode, the ions need to \fRef[diffuse]{ch:el:ion_cond:diffusion} to the electrode before reacting}{\ConstRef{universal_gas}, \QtyRef{temperature}, $\c_{0/\txS}$ ion concentration in the electrolyte / at the double layer, $z$ \qtyRef{charge_number}, \ConstRef{faraday}} \desc[german]{Konzentrationsüberspannung}{Durch einen Konzentrationsgradienten an der Elektrode müssen Ionen erst zur Elektrode \fRef[diffundieren]{ch:el:ion_cond:diffusion}, bevor sie reagieren können}{} \eq{ \eta_\text{conc,anodic} &= -\frac{RT}{\alpha \,zF} \ln \left(\frac{c_\text{red}^0}{c_\text{red}^\txS}\right) \\ \eta_\text{conc,cathodic} &= -\frac{RT}{(1-\alpha) zF} \ln \left(\frac{c_\text{ox}^0}{c_\text{ox}^\txS}\right) } \end{formula} \begin{formula}{diffusion_overpotential} \desc{Diffusion overpotential}{Due to mass transport limitations}{$j_\infty$ \fRef{::limiting_current}, $j_\text{meas}$ measured \qtyRef{current_density}, \ConstRef{universal_gas}, \QtyRef{temperature}, $n$ \qtyRef{charge_number}, \ConstRef{faraday}} \desc[german]{Diffusionsüberspannung}{Durch Limit des Massentransports}{} % \eq{\eta_\text{diff} = \frac{RT}{nF} \ln \left( \frac{\cfrac{c^\txs_\text{ox}}{c^0_\text{ox}}}{\cfrac{c^\txs_\text{red}}{c^0_\text{red}}} \right)} \eq{\eta_\text{diff} = \frac{RT}{nF} \Ln{\frac{j_\infty}{j_\infty - j_\text{meas}}}} \end{formula} % 1: ion radius % 2: ion color % 3: ion label % 4: N solvents, leave empty for none % 5: solvent radius 6: solvent color % 7:position \newcommand{\drawIon}[7]{% \fill[#2] (#7) circle[radius=#1] node[fg0] {#3}; \ifstrempty{#4}{}{ \foreach \j in {1,...,#4} { \pgfmathsetmacro{\angle}{\j * 360/#4} \fill[#6] (#7) ++(\angle:#1 + #5) circle[radius=#5]; } } } \newcommand{\drawAnion}[1]{\drawIon{\Ranion}{bg-blue}{-}{}{}{}{#1}} \newcommand{\drawCation}[1]{\drawIon{\Rcation}{bg-red}{+}{}{}{}{#1}} \newcommand{\drawAnionSolved}[1]{\drawIon{\Ranion}{bg-blue}{-}{6}{\Rsolvent}{fg-blue!50!bg2}{#1}} \Eng[electrode]{Electrode} \Ger[electrode]{Elektrode} \Eng[nernst_layer]{Nernst layer} \Ger[nernst_layer]{Nernst-Schicht} \Eng[electrolyte]{Electrolyte} \Ger[electrolyte]{Elektrolyt} \Eng[c_surface]{surface \qtyRef{concentration}} \Eng[c_bulk]{bulk \qtyRef{concentration}} \Ger[c_surface]{Oberflächen-\qtyRef{concentration}} \Ger[c_bulk]{Bulk-\qtyRef{concentration}} \begin{formula}{diffusion_layer} \desc{Cell layers}{}{IHP/OHP inner/outer Helmholtz-plane, $c^0$ \GT{c_bulk}, $c^\txS$ \GT{c_surface}} \desc[german]{Zellschichten}{}{IHP/OHP innere/äußere Helmholtzschicht, $c^0$ \GT{c_bulk}, $c^\txS$ \GT{c_surface}} \begin{tikzpicture} \tikzset{ label/.style={color=fg1,anchor=center,rotate=90}, } \pgfmathsetmacro{\Ranion}{0.15} \pgfmathsetmacro{\Rcation}{0.2} \pgfmathsetmacro{\Rsolvent}{0.06} \pgfmathsetmacro{\tkW}{8} % Total width \pgfmathsetmacro{\tkH}{4} % Total height \pgfmathsetmacro{\edW}{1} % electrode width \pgfmathsetmacro{\hhW}{4*\Rsolvent+2*\Ranion} % helmholtz width \pgfmathsetmacro{\ndW}{3} % nernst diffusion with \pgfmathsetmacro{\eyW}{\tkW-\edW-\hhW-\ndW} % electrolyte width \pgfmathsetmacro{\edX}{0} % electrode width \pgfmathsetmacro{\hhX}{\edW} % helmholtz width \pgfmathsetmacro{\ndX}{\edW+\hhW} % nernst diffusion with \pgfmathsetmacro{\eyX}{\tkW-\eyW} % electrolyte width \path[fill=bg-orange] (\edX,0) rectangle (\edX+\edW,\tkH); \path[fill=bg-green!90!bg0] (\hhX,0) rectangle (\hhX+\hhW,\tkH); \path[fill=bg-green!60!bg0] (\ndX,0) rectangle (\ndX+\ndW,\tkH); \path[fill=bg-green!20!bg0] (\eyX,0) rectangle (\eyX+\eyW,\tkH); \draw (\ndX,2) -- (\eyX,3) -- (\tkW,3); % axes \draw[->] (0,0) -- (\tkW+0.2,0) node[anchor=north] {$x$}; \draw[->] (0,0) -- (0,\tkH+0.2) node[anchor=east] {$c$}; \tkYTick{2}{$c^\txS$}; \tkYTick{3}{$c^0$}; \foreach \i in {1,...,5} { \drawCation{\edW-\Ranion, \tkH * \i /6} \drawAnionSolved{\edW+\Rcation+2*\Rsolvent, \tkH * \i /6} } \drawCation{\ndX+\ndW * 0.1, \tkH * 2/10} \drawCation{\ndX+\ndW * 0.15, \tkH * 4/10} \drawCation{\ndX+\ndW * 0.1, \tkH * 6/10} \drawCation{\ndX+\ndW * 0.1, \tkH * 9/10} \drawAnion{ \ndX+\ndW * 0.2, \tkH * 7/10} \drawAnion{ \ndX+\ndW * 0.4, \tkH * 4/10} \drawAnion{ \ndX+\ndW * 0.3, \tkH * 3/10} \drawAnion{ \ndX+\ndW * 0.5, \tkH * 6/10} \drawAnion{ \ndX+\ndW * 0.8, \tkH * 3/10} \drawAnion{ \ndX+\ndW * 0.3, \tkH * 1/10} \drawAnion{ \ndX+\ndW * 0.4, \tkH * 9/10} \drawAnion{ \ndX+\ndW * 0.6, \tkH * 7/10} \drawCation{\ndX+\ndW * 0.3, \tkH * 3/10} \drawCation{\ndX+\ndW * 0.6, \tkH * 8/10} \draw (\edX+\Rcation, 0) -- ++(0, -0.5) node[anchor=west,rotate=-45] {\GT{electrode}}; \draw (\edX+\edW-\Rcation, 0) -- ++(0, -0.5) node[anchor=west,rotate=-45] {{IHP}}; \draw (\hhX+\hhW/2, 0) -- ++(0, -0.5) node[anchor=west,rotate=-45] {{OHP}}; \draw (\ndX+\ndW/2, 0) -- ++(0, -0.5) node[anchor=west,rotate=-45] {\GT{nernst_layer}}; \draw (\eyX+\eyW/2, 0) -- ++(0, -0.5) node[anchor=west,rotate=-45] {\GT{electrolyte}}; % TODO \end{tikzpicture} \end{formula} \begin{formula}{diffusion_layer_thickness} \desc{Nerst Diffusion layer thickness}{}{$c^0$ \GT{c_bulk}, $c^\txS$ \GT{c_surface}} \desc[german]{Dicke der Nernstschen Diffusionsschicht}{}{} \eq{\delta_\txN = \frac{c^0 - c^\txS}{\odv{c}{x}_{x=0}}} \end{formula} \begin{formula}{limiting_current} \desc{(Limiting) current density}{}{$n$ \QtyRef{charge_number}, \ConstRef{faraday}, $c^0$ \GT{c_bulk}, $D$ \qtyRef{diffusion_coefficient}, $\delta_\text{diff}$ \fRef{::diffusion_layer_thickness}} % \desc[german]{Limitierender Strom}{}{} \eq{ \abs{j} &= nFD \frac{c^0-c^\txS}{\delta_\text{diff}} \shortintertext{\GT{for} $c^\txS \to 0$} \abs{j_\infty} &= nFD \frac{c^0}{\delta_\text{diff}} } \end{formula} \begin{formula}{relation?} \desc{Current - concentration relation}{}{$c^0$ \GT{c_bulk}, $c^\txS$ \GT{c_surface}, $j$ \fRef{::limiting_current}} \desc[german]{Strom - Konzentrationsbeziehung}{}{} \eq{\frac{j}{j_\infty} = 1 - \frac{c^\txS}{c^0}} \end{formula} \begin{formula}{kinetic_current} \desc{Kinetic current density}{}{$j_\text{meas}$ measured \qtyRef{current_density}, $j_\infty$ \fRef{::limiting_current}} \desc[german]{Kinetische Stromdichte}{}{$j_\text{meas}$ gemessene \qtyRef{current_density}, $j_\infty$ \fRef{::limiting_current}} \eq{j_\text{kin} = \frac{j_\text{meas} j_\infty}{j_\infty - j_\text{meas}}} \end{formula} \begin{formula}{roughness_factor} \desc{Roughness factor}{Surface area related to electrode geometry}{} \eq{\rfactor} \end{formula} \begin{formula}{butler_volmer} \desc{Butler-Volmer equation}{Reaction kinetics near the equilibrium potentential} {$j$ \qtyRef{current_density}, $j_0$ exchange current density, $\eta$ \fRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txC/\txA}$ cathodic/anodic charge transfer coefficient, $\text{rf}$ \fRef{::roughness_factor}} %Current through an electrode iof a unimolecular redox reaction with both anodic and cathodic reaction occuring on the same electrode \desc[german]{Butler-Volmer-Gleichung}{Reaktionskinetik in der Nähe des Gleichgewichtspotentials} {$j$ \qtyRef{current_density}, $j_0$ Austauschstromdichte, $\eta$ \fRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txC/\txA}$ Ladungstransferkoeffizient an der Kathode/Anode, $\text{rf}$ \fRef{::roughness_factor}} \newFormulaEntry \begin{gather} j = j_0 \,\rfactor\, \left[ \Exp{\frac{(1-a_\txC) z F \eta}{RT}} - \Exp{-\frac{\alpha_\txC z F \eta}{RT}}\right] \intertext{\GT{with}} \alpha_\txA = 1 - \alpha_\txC \end{gather} \fig{img/ch_butler_volmer.pdf} \end{formula} % \Subsubsection[ % \eng{Tafel approximation} % \ger{Tafel Näherung} % ]{tafel} % \begin{formula}{slope} % \desc{Tafel slope}{}{} % \desc[german]{Tafel Steigung}{}{} % \eq{} % \end{formula} \begin{formula}{equation} \desc{Tafel approximation}{For slow kinetics: $\abs{\eta} > \SI{0.1}{\volt}$}{} \desc[german]{Tafel Näherung}{Für langsame Kinetik: $\abs{\eta} > \SI{0.1}{\volt}$}{} \eq{ \Log{j} &\approx \Log{j_0} + \frac{\alpha_\txC zF \eta}{RT\ln(10)} && \eta \gg \SI{0.1}{\volt}\\ \Log{\abs{j}} &\approx \Log{j_0} - \frac{(1-\alpha_\txC) zF \eta}{RT\ln(10)} && \eta \ll -\SI{0.1}{\volt} } \fig{img/ch_tafel.pdf} \end{formula} \Subsection{tech} \desc{Techniques}{}{} \desc[german]{Techniken}{}{} \Subsubsection{ref} \desc{Reference electrodes}{}{} \desc[german]{Referenzelektroden}{}{} \begin{ttext} \eng{Defined as reference for measuring half-cell potententials} \ger{Definiert als Referenz für Messungen von Potentialen von Halbzellen} \end{ttext} \begin{formula}{she} \desc{Standard hydrogen elektrode (SHE)}{}{$p=\SI{e5}{\pascal}$, $a_{\ce{H+}}=\SI{1}{\mol\per\litre}$ (\Rightarrow $\pH=0$)} \desc[german]{Standardwasserstoffelektrode (SHE)}{}{} \ttxt{ \eng{Potential of the reaction: \ce{2H^+ +2e^- <--> H2}} \ger{Potential der Reaktion: \ce{2H^+ +2e^- <--> H2}} } \end{formula} \begin{formula}{rhe} \desc{Reversible hydrogen electrode (RHE)}{RHE Potential does not change with the pH value}{$E^0\equiv \SI{0}{\volt}$, \QtyRef{activity}, \QtyRef{pressure}, \GT{see} \fRef{ch:el:cell:nernst_equation}} \desc[german]{Reversible Wasserstoffelektrode (RHE)}{Potential ändert sich nicht mit dem pH-Wert}{} \eq{ E_\text{RHE} &= E^0 + \frac{RT}{F} \Ln{\frac{a_{\ce{H^+}}}{p_{\ce{H2}}}} % \\ &= \SI{0}{\volt} - \SI{0.059}{\volt} } \end{formula} \Subsubsection{cv} \desc{Cyclic voltammetry}{}{} \desc[german]{Zyklische Voltammetrie}{}{} \begin{bigformula}{duck} \desc{Cyclic voltammogram}{}{} % \desc[german]{}{}{} \begin{minipage}{0.44\textwidth} \begin{tikzpicture} \pgfmathsetmacro{\Ax}{-2.3} \pgfmathsetmacro{\Ay}{ 0.0} \pgfmathsetmacro{\Bx}{ 0.0} \pgfmathsetmacro{\By}{ 1.0} \pgfmathsetmacro{\Cx}{ 0.4} \pgfmathsetmacro{\Cy}{ 1.5} \pgfmathsetmacro{\Dx}{ 2.0} \pgfmathsetmacro{\Dy}{ 0.5} \pgfmathsetmacro{\Ex}{ 0.0} \pgfmathsetmacro{\Ey}{-1.5} \pgfmathsetmacro{\Fx}{-0.4} \pgfmathsetmacro{\Fy}{-2.0} \pgfmathsetmacro{\Gx}{-2.3} \pgfmathsetmacro{\Gy}{-0.3} \pgfmathsetmacro{\x}{3} \pgfmathsetmacro{\y}{3} \begin{axis}[ymin=-\y,ymax=\y,xmax=\x,xmin=-\x, % equal axis, minor tick num=1, xlabel={$E$}, xlabel style={at={(axis description cs:0.5,-0.06)}}, ylabel={$j$}, ylabel style={at={(axis description cs:-0.06,0.5)}}, anchor=center, at={(0,0)}, axis equal image,clip=false, ] % CV with beziers \draw[thick, fg-blue] (axis cs:\Ax,\Ay) coordinate (A) node[left] {A} ..controls (axis cs:\Ax+1.8, \Ay+0.0) and (axis cs:\Bx-0.2, \By-0.4) .. (axis cs:\Bx,\By) coordinate (B) node[left] {B} ..controls (axis cs:\Bx+0.1, \By+0.2) and (axis cs:\Cx-0.3, \Cy+0.0) .. (axis cs:\Cx,\Cy) coordinate (C) node[above] {C} ..controls (axis cs:\Cx+0.5, \Cy+0.0) and (axis cs:\Dx-1.3, \Dy+0.1) .. (axis cs:\Dx,\Dy) coordinate (D) node[right] {D} ..controls (axis cs:\Dx-2.0, \Dy-0.1) and (axis cs:\Ex+0.3, \Ey+0.8) .. (axis cs:\Ex,\Ey) coordinate (E) node[right] {E} ..controls (axis cs:\Ex-0.1, \Ey-0.2) and (axis cs:\Fx+0.2, \Fy+0.0) .. (axis cs:\Fx,\Fy) coordinate (F) node[below] {F} ..controls (axis cs:\Fx-0.2, \Fy+0.0) and (axis cs:\Gx+1.5, \Gy-0.2) .. (axis cs:\Gx,\Gy) coordinate (G) node[left] {G}; \node[above] at (A) {\rightarrow}; \draw[dashed, fg2] (axis cs: \Bx,\By) -- (axis cs: \Ex, \Ey); \draw[->] (axis cs:-\x-0.6, 0.4) -- (axis cs:-\x-0.6, \y) node[left=0.3cm, anchor=east, rotate=90] {Cath / Red}; \draw[->] (axis cs:-\x-0.6,-0.4) -- (axis cs:-\x-0.6,-\y) node[left=0.3cm, anchor=west, rotate=90] {An / Ox}; \end{axis} \end{tikzpicture} \end{minipage} \begin{minipage}{0.55\textwidth} \begin{ttext} \eng{\begin{itemize} \item {\color{fg-blue}A-D}: Diffusion layer growth \rightarrow decreased current after peak \item {\color{fg-blue}D}: Switching potential \item {\color{fg-blue}B,E}: Equal concentrations of reactants \item {\color{fg-blue}C,F}: Formal potential of redox pair: $E \approx \frac{E_\txC - E_\txF}{2}$ \item {\color{fg-blue}C,F}: Peak separation for reverisble processes: $\Delta E_\text{rev} = E_\txC - E_\txF = n\,\SI{59}{\milli\volt}$ \item Information about surface chemistry \item Double-layer capacity (horizontal lines): $I = C v$ \end{itemize}} \end{ttext} \end{minipage} \end{bigformula} \begin{formula}{charge} \desc{Charge}{Area under the curve}{$v$ \qtyRef{scan_rate}} \desc[german]{Ladung}{Fläche unter der Kurve}{} \eq{q = \frac{1}{v} \int_{E_1}^{E_2}j\,\d E} \end{formula} \begin{formula}{peak_current} \desc{Randles-Sevcik equation}{For reversible faradaic reaction.\\Peak current depends on square root of the scan rate}{$n$ \qtyRef{charge_number}, \ConstRef{faraday}, $A$ electrode surface area, $c^0$ bulk \qtyRef{concentration}, $v$ \qtyRef{scan_rate}, $D_\text{ox}$ \qtyRef{diffusion_coefficient} of oxidized analyte, \ConstRef{universal_gas}, \QtyRef{temperature}} \desc[german]{Randles-Sevcik Gleichung}{Für eine reversible, faradäische Reaktion\\Spitzenstrom hängt von der Wurzel der Scanrate ab}{} \eq{i_\text{peak} = 0.446\,nFAc^0 \sqrt{\frac{nFvD_\text{ox}}{RT}}} \end{formula} \begin{hiddenformula}{scan_rate} \desc{Scan rate}{}{} \desc[german]{Scanrate}{}{} \hiddenQuantity{v}{\volt\per\s}{s} \end{hiddenformula} \begin{formula}{upd} \desc{Underpotential deposition (UPD)}{}{} % \desc[german]{}{}{} \ttxt{\eng{ Reversible deposition of metal onto a foreign metal electrode at potentials positive of the Nernst potential. }\ger{ Reversible Ablagerung von Metall auf eine Elektrode aus einem anderen Metall bei positiveren Potentialen als das Nernst-Potential. }} \end{formula} \Subsubsection[ \eng{Rotating disk electrodes} % \ger{} ]{rde} \abbrLink{rde}{RDE} \begin{formula}{viscosity} \desc{Dynamic viscosity}{}{} \desc[german]{Dynamisch Viskosität}{}{} \quantity{\eta,\mu}{\pascal\s=\newton\s\per\m^2=\kg\per\m\s}{} \end{formula} \begin{formula}{kinematic_viscosity} \desc{Kinematic viscosity}{\qtyRef{viscosity} related to density of a fluid}{\QtyRef{viscosity}, \QtyRef{density}} \desc[german]{Kinematische Viskosität}{\qtyRef{viscosity} im Verhältnis zur Dichte der Flüssigkeit}{} \quantity{\nu}{\cm^2\per\s}{} \eq{\nu = \frac{\eta}{\rho}} \end{formula} \begin{formula}{diffusion_layer_thickness} \desc{Diffusion layer thickness}{}{$D$ \qtyRef{diffusion_coefficient}, $\nu$ \qtyRef{kinematic_viscosity}, \QtyRef{angular_frequency}} \desc[german]{Diffusionsschichtdicke}{}{} \eq{\delta_\text{diff}= 1.61 D{^\frac{1}{3}} \nu^{\frac{1}{6}} \omega^{-\frac{1}{2}}} \end{formula} \begin{formula}{limiting_current} \desc{Limiting current density}{for a \abbrRef{rde}}{$n$ \QtyRef{charge_number}, \ConstRef{faraday}, $c^0$ \GT{c_bulk}, $D$ \qtyRef{diffusion_coefficient}, $\delta_\text{diff}$ \fRef{::diffusion_layer_thickness}, $\nu$ \qtyRef{kinematic_viscosity}, \QtyRef{angular_frequency}} % \desc[german]{Limitierender Strom}{}{} \eq{j_\infty = nFD \frac{c^0}{\delta_\text{diff}} = \frac{1}{1.61} nFD^{\frac{2}{3}} v^{\frac{-1}{6}} c^0 \sqrt{\omega}} \end{formula} \Subsubsection{ac} \desc{AC-Impedance}{}{} \desc[german]{AC-Impedanz}{}{} \begin{formula}{nyquist} \desc{Nyquist diagram}{Real and imaginary parts of \qtyRef{impedance} while varying the frequency}{} \desc[german]{Nyquist-Diagram}{Real und Imaginaärteil der \qtyRef{impedance} während die Frequenz variiert wird}{} \fig{img/ch_nyquist.pdf} \end{formula} \begin{formula}{tlm} \desc{Transmission line model}{Model of porous electrodes as many slices}{$R_\text{ion}$ ion conduction resistance in electrode slice, $R$ / $C$ resistance / capacitance of electode slice} % \desc[german]{}{}{} \ctikzsubcircuitdef{rcpair}{in, out}{% coordinate(#1-in) (#1-in) -- ++(0, -\rcpairH) -- ++(\rcpairW, 0) to[R, l=$R$] ++(0,-\rcpairL) -- ++(-\rcpairW, 0) -- ++(0,-\rcpairH) coordinate (#1-out) ++(0,\rcpairH) -- ++(-\rcpairW, 0) to[C, l=$C$] ++(0,\rcpairL) -- ++(\rcpairW,0) (#1-out) } \pgfmathsetmacro{\rcpairH}{0.5} \pgfmathsetmacro{\rcpairW}{0.5} \pgfmathsetmacro{\rcpairL}{1.8} \ctikzsubcircuitactivate{rcpair} \pgfmathsetmacro{\rcpairD}{3.0} % distance \centering \begin{circuitikz}[/tikz/circuitikz/bipoles/length=1cm,scale=0.7] \draw (0,0) to[R,l=$R_\text{electrolyte}$] ++(2,0) -- ++(1,0) \rcpair{rc1}{} (rc1-in) to[R,l=$R_\text{ion}$] ++(\rcpairD,0) \rcpair{rc2}{} (rc2-in) to[R,l=$R_\text{ion}$] ++(\rcpairD,0) ++(\rcpairD,0) \rcpair{rc3}{}; \draw[dashed] (rc2-in) ++(\rcpairD,0) -- (rc3-in) (rc2-out) ++(\rcpairD,0) -- (rc3-out); \draw (rc1-out) -- (rc2-out) -- ++(\rcpairD,0) (rc3-out) -- ++(\rcpairD/2,0); \end{circuitikz} \fig{img/ch_nyquist_tlm.pdf} \end{formula}