\Section[ \eng{Machine-Learning} \ger{Maschinelles Lernen} ]{ml} \Subsection[ \eng{Performance metrics} \ger{Metriken zur Leistungsmessung} ]{performance} \eng[cp]{correct predictions} \ger[cp]{richtige Vorhersagen} \eng[fp]{false predictions} \ger[fp]{falsche Vorhersagen} \eng[y]{ground truth} \eng[yhat]{prediction} \ger[y]{Wahrheit} \ger[yhat]{Vorhersage} \begin{formula}{accuracy} \desc{Accuracy}{}{} \desc[german]{Genauigkeit}{}{} \eq{a = \frac{\tgt{cp}}{\tgt{fp} + \tgt{cp}}} \end{formula} \TODO{is $n$ the nuber of predictions or the number of output features?} \begin{formula}{mean_abs_error} \desc{Mean absolute error (MAE)}{}{$y$ \gt{y}, $\hat{y}$ \gt{yhat}, $n$ ?} \desc[german]{Mittlerer absoluter Fehler (MAE)}{}{} \eq{\text{MAE} = \frac{1}{n} \sum_{i=1}^n \abs{y_i - \hat{y}_i}} \end{formula} \begin{formula}{root_mean_square_error} \desc{Root mean squared error (RMSE)}{}{$y$ \gt{y}, $\hat{y}$ \gt{yhat}, $n$ ?} \desc[german]{Standardfehler der Regression}{Quadratwurzel des mittleren quadratischen Fehlers (RSME)}{} \eq{\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^n \left(y_i - \hat{y}_i\right)^2}} \end{formula} \Subsection[ \eng{Regression} \ger{Regression} ]{reg} \Subsubsection[ \eng{Linear Regression} \ger{Lineare Regression} ]{linear} \begin{formula}{eq} \desc{Linear regression}{Fits the data under the assumption of \hyperref[f:math:pt:distributions:cont:normal]{normally distributed errors}}{$\mat{x}\in\R^{N\times M}$ input data, $\mat{y}\in\R^{N\times L}$ output data, $\mat{b}$ bias, $\vec{W}$ weights, $N$ samples, $M$ features, $L$ output variables} \desc[german]{Lineare Regression}{Fitted Daten unter der Annahme \hyperref[f:math:pt:distributions:cont:normal]{normalverteilter Fehler}}{} \eq{\mat{y} = \mat{b} + \mat{x} \cdot \vec{W}} \end{formula} \begin{formula}{design_matrix} \desc{Design matrix}{Stack column of ones to the feature vector\\Useful when $b$ is scalar}{$x_{ij}$ feature $j$ of sample $i$} \desc[german]{Designmatrix Ansatz}{}{} \eq{ \mat{X} = \begin{pmatrix} 1 & x_{11} & \ldots & x_{1M} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{N1} & \ldots & x_{NM} \end{pmatrix} } \end{formula} \begin{formula}{scalar_bias} \desc{Linear regression with scalar bias}{Using the design matrix, the scalar is absorbed into the weight vector}{$\mat{y}$ output data, $\mat{X}$ \fqEqRef{comp:ml:reg:design_matrix}, $\vec{W}$ weights} \desc[german]{Lineare Regression mit skalarem Bias}{Durch die Designmatrix wird der Bias in den Gewichtsvektor absorbiert}{} \eq{\mat{y} = \mat{X} \cdot \vec{W}} \end{formula} \begin{formula}{normal_equation} \desc{Normal equation}{Solves \fqEqRef{comp:ml:reg:linear:scalar_bias}}{$\mat{y}$ output data, $\mat{X}$ \fqEqRef{comp:ml:reg:linear:design_matrix}, $\vec{W}$ weights} \desc[german]{Normalengleichung}{Löst \fqEqRef{comp:ml:reg:linear:scalar_bias}}{} \eq{\vec{W} = \left(\mat{X}^\T \mat{X}\right)^{-1} \mat{X}^T \mat{y}} \end{formula} \Subsubsection[ \eng{Ridge regression} \ger{Ridge Regression} ]{ridge} \TODO{ridge reg, Kernel ridge reg, gaussian process reg} % \Subsection[ % \eng{Bayesian probability theory} % % \ger{} % ]{bayesian} \Subsection[ \eng{Gradient descent} \ger{Gradientenverfahren} ]{gd} \TODO{in lecture 30 CMP}