\Section{em} \desc{Electromagnetism}{}{} \desc[german]{Elektromagnetismus}{}{} \begin{formula}{vacuum_speed_of_light} \desc{Speed of light}{in the vacuum}{} \desc[german]{Lightgeschwindigkeit}{in the vacuum}{} \constant{c}{exp}{ \val{299792458}{\m\per\s} } \end{formula} \begin{formula}{vacuum_relations} \desc{Vacuum permittivity - permeability relation}{\TODO{Does this have a name?}}{\ConstRef{vacuum_permittivity}, \ConstRef{magnetic_vacuum_permeability}, \ConstRef{vacuum_speed_of_light}} \desc[german]{Vakuum Permittivität - Permeabilität Beziehung}{}{} \eq{ \epsilon_0 \mu_0 = \frac{1}{c^2} } \end{formula} \begin{formula}{poisson_equation} \desc{Poisson equation for electrostatics}{}{\QtyRef{charge_density}, \QtyRef{permittivity}, $\Phi$ Potential} \desc[german]{Poisson Gleichung in der Elektrostatik}{}{} \eq{\laplace \Phi(\vecr) = -\frac{\rho(\vecr)}{\epsilon}} \TODO{double check $\Phi$} \end{formula} \begin{formula}{poynting} \desc{Poynting vector}{Directional energy flux or power flow of an electromagnetic field}{} \desc[german]{Poynting-Vektor}{Gerichteter Energiefluss oder Leistungsfluss eines elektromgnetischen Feldes [$\si{\W\per\m^2}$]}{} \quantity{\vecS}{\W\per\m^2}{v} \eq{\vec{S} = \vec{E} \times \vec{H}} \end{formula} \begin{formula}{electric_field} \desc{Electric field}{}{\QtyRef{electric_field}, \QtyRef{electric_scalar_potential}, \QtyRef{magnetic_vector_potential}} \desc[german]{Elektrisches Feld}{}{} \eq{\vec{\E} = -\Grad\Epotential - \pdv{\vec{A}}{t}} \end{formula} \begin{formula}{hamiltonian} \desc{Hamiltonian of a particle in an electromagnetic field}{In the \fRef{ed:em:maxwell:gauge:coulomb}}{\QtyRef{mass}, $\hat{p}$ \fRef{qm:se:momentum_operator}, \QtyRef{charge}, \QtyRef{magnetic_vector_potential}, \ConstRef{vacuum_speed_of_light}} \desc[german]{Hamiltonian eines Teilchens im elektromagnetischen Feld}{In der \fRef{ed:em:maxwell:gauge:coulomb}}{} \eq{ \hat{H} = \frac{1}{2m} \left[\hat{p} \ \frac{e \vec{A}}{c}\right]^2 } \end{formula} \Subsection{maxwell} \desc{Maxwell-Equations}{}{} \desc[german]{Maxwell-Gleichungen}{}{} \begin{formula}{vacuum} \desc{Vacuum}{microscopic formulation}{} \desc[german]{Vakuum}{Mikroskopische Formulierung}{} \eq{ \Div \vec{\E} &= \frac{\rho_\text{el}}{\epsilon_0} \\ \Div \vec{B} &= 0 \\ \Rot \vec{\E} &= - \odv{\vec{B}}{t} \\ \Rot \vec{B} &= \mu_0 \vec{j} + \frac{1}{c^2} \odv{\vec{\E}}{t} } \end{formula} \begin{formula}{material} \desc{Matter}{Macroscopic formulation}{} \desc[german]{Materie}{Makroskopische Formulierung}{} \eq{ \Div \vec{D} &= \rho_\text{el} \\ \Div \vec{B} &= 0 \\ \Rot \vec{\E} &= - \odv{\vec{B}}{t} \\ \Rot \vec{H} &= \vec{j} + \odv{\vec{D}}{t} } \end{formula} \Subsubsection{gauge} \desc{Gauges}{}{} \desc[german]{Eichungen}{}{} \begin{formula}{coulomb} \desc{Coulomb gauge}{}{\QtyRef{magnetic_vector_potential}} \desc[german]{Coulomb-Eichung}{}{} \eq{ \Div \vec{A} = 0 } \end{formula} \TODO{Polarization} \Subsection{induction} \desc{Induction}{}{} \desc[german]{Induktion}{}{} \begin{formula}{farady_law} \desc{Faraday's law of induction}{}{} \desc[german]{Faradaysche Induktionsgesetz}{}{} \eq{U_\text{ind} = -\odv{}{t} \PhiB = - \odv{}{t} \iint_A\vec{B} \cdot \d\vec{A}} \end{formula} \begin{formula}{lenz} \desc{Lenz's law}{}{} \desc[german]{Lenzsche Regel}{}{} \ttxt{ \eng{ Change of magnetic flux through a conductor induces a current that counters that change of magnetic flux. } \ger{ Die Änderung des magnetischen Flußes durch einen Leiter induziert einen Strom der der Änderung entgegenwirkt. } } \end{formula}