\Section[ \eng{Band theory} \ger{Bändermodell} ]{band} \Subsection[ \eng{Hybrid orbitals} \ger{Hybridorbitale} ]{hybrid_orbitals} \begin{ttext} \eng{Hybrid orbitals are linear combinations of other atomic orbitals.} \ger{Hybridorbitale werden durch Linearkombinationen von anderen atomorbitalen gebildet.} \end{ttext} % chemmacros package \begin{formula}{sp3} \desc{sp3 Orbital}{\GT{eg} \ce{CH4}}{} \desc[german]{sp3 Orbital}{}{} \eq{ 1\text{s} + 3\text{p} = \text{sp3} \orbital{sp3} } \end{formula} \begin{formula}{sp2} \desc{sp2 Orbital}{}{} \desc[german]{sp2 Orbital}{}{} \eq{ 1\text{s} + 2\text{p} = \text{sp2} \orbital{sp2} } \end{formula} \begin{formula}{sp} \desc{sp Orbital}{}{} \desc[german]{sp Orbital}{}{} \eq{ 1\text{s} + 1\text{p} = \text{sp} \orbital{sp} } \end{formula} \Section[ \eng{Diffusion} \ger{Diffusion} ]{diffusion} \begin{formula}{diffusion_coefficient} \desc{Diffusion coefficient}{}{} \desc[german]{Diffusionskoeffizient}{}{} \quantity{D}{\m^2\per\s}{s} \end{formula} \begin{formula}{particle_current_density} \desc{Particle current density}{Number of particles through an area}{} \desc[german]{Teilchenstromdichte}{Anzahl der Teilchen durch eine Fläche}{} \quantity{J}{1\per\s^2}{s} \end{formula} \begin{formula}{einstein_relation} \desc{Einstein relation}{Classical}{\QtyRef{diffusion_coefficient}, \mu \qtyRef{mobility}, \QtyRef{temperature}, $q$ \qtyRef{charge}} \desc[german]{Einsteinrelation}{Klassisch}{} \eq{D = \frac{\mu \kB T}{q}} \end{formula} \begin{formula}{concentration} \desc{Concentration}{A quantity per volume}{} \desc[german]{Konzentration}{Eine Größe pro Volumen}{} \quantity{c}{x\per\m^3}{s} \end{formula} \begin{formula}{fick_law_1} \desc{Fick's first law}{Particle movement is proportional to concentration gradient}{\QtyRef{particle_current_density}, \QtyRef{diffusion_coefficient}, \QtyRef{concentration}} \desc[german]{Erstes Ficksches Gesetz}{Teilchenbewegung ist proportional zum Konzentrationsgradienten}{} \eq{J = -D\frac{c}{x}} \end{formula} \begin{formula}{fick_law_2} \desc{Fick's second law}{}{\QtyRef{particle_current_density}, \QtyRef{diffusion_coefficient}, \QtyRef{concentration}} \desc[german]{Zweites Ficksches Gesetz}{}{} \eq{\pdv{c}{t} = D \pdv[2]{c}{x}} \end{formula} \Section[ \eng{\GT{misc}} \ger{\GT{misc}} ]{misc} \begin{formula}{work_function} \desc{Work function}{Lowest energy required to remove an electron into the vacuum}{} \desc[german]{Austrittsarbeit}{eng. "Work function"; minimale Energie um ein Elektron aus dem Festkörper zu lösen}{} \quantity{W}{\eV}{s} \eq{W = \Evac - \EFermi} \end{formula} \begin{formula}{electron_affinity} \desc{Electron affinity}{Energy required to remove one electron from an anion with one negative charge.\\Energy difference between vacuum level and conduction band}{} \desc[german]{Elektronenaffinität}{Energie, die benötigt wird um ein Elektron aus einem einfach-negativ geladenen Anion zu entfernen. Entspricht der Energiedifferenz zwischen Vakuum-Niveau und dem Leitungsband}{} \quantity{\chi}{\eV}{s} \eq{\chi = \left(\Evac - \Econd\right)} \end{formula} \begin{formula}{laser} \desc{Laser}{Light amplification by stimulated emission of radiation}{} \desc[german]{Laser}{}{} \ttxt{ \eng{\textit{Gain medium} is energized \textit{pumping energy} (electric current or light), light of certain wavelength is amplified in the gain medium} } \end{formula}